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Abstract 

We examine color constancy algorithms based on finite-dimension1 linear models of surface 

reflectance and illumination from a computational point of view. It is shown that, within finite- 

dimensional models, formulation and solution of color constancy are determined by the choice of 

basis functions, the number of spectral receptors and the spatial constraints. We analyze some 

algorithms with examples, and limitations of algorithms for applications on real images. 

1 Introduction 

The spectral power distribution (SPD) of the irradiance that reaches the eye is the product of 

the illuminant SPD and surface reflectance SPD. Color constancy is the ability in a visual system 

of reconstructing surface reflectance functions from received color signals which is the product 

of surface reflectance and illumination. Psychophysical experiments have shown that the human 

visual system perceives colors of objects relatively independent of the variations in the spectral 

distribution of the light. The processes that may explain this phenomenon have been intensively 

studied in human vision and several different solutions have been proposed [lo] [13] [17] [12] [22] 

[71 PI. 

Helmholtz [lo] suggested that the memory of object color, viewed under white illumination, 

helps to assign stable colors to objects viewed under different Illumination conditions. On the other 

hand, there are some approaches to finding ways of estimating the relative power distribution of 

illuminants in the scene which would then enable determination of the surface reflectances. Judd 

[13] proposed several solutions for finding the spectral characteristics of the illuminant directly, 

by observing the illuminant or the light scattered by dust or air, or alternatively to estimate the 

illumination from the highlights of glossy objects [13] [17]. Others proposed estimation of illuminant 

SPD using space-averaged surface reflectances [13] [12] [22]. 

There are some computational color constancy algorithms based on the finite-dimensional linear 



models. With limited number of receptors, the algorithms need some spatial/spectral the conditions 

or contraints which render the separation of the illumination and surface reflectance mathematically 

possible [22] [7] [6]. Most of the theories (for an overview see [9]) have been proposed to  explain 

and predict the human visual response with limited number of receptor classes. Therefore the 

formulations require some spectral or spatial contraints. In machine vision, however, the contraints 

can be partly reduced by using more spectral receptors. The goal is also to  extract aspects of the 

spectral properties of object surfaces discounting various illuminations in order to  provide useful 

information for image analysis such as recognition and identification of colored objects and ima,ge 

segmentation. [I] 

In this paper we present an overview of general color constancy methods which a.re based 

on finite-dimensional linear models of illumination and surface reflectance. Emphasis is on the 

implementational feasibility for real images. A simple color constancy algorithm under restricted 

conditions employing a reference plate has been discussed elsewhere [2]. We beginOC in Section 2 

with the representation of the spectral model for surface reflectance and illumination, and with 

the sensing of color images and the relationship between the reflectance, the illumination and the 

sensors. In Section 3 the possible algorithms for solving color constancy are described. We present 

some of our initial results and simulations in Section 4. Discussions on the limitations of algorithms 

are given in Sections 5 with suggestions for further studies. 

2 Representation and Sensing 

First we introduce some notation: 



Representation of color with finite-dimensional linear models has been a topic of many studies 

[19] [20] [7] [21]. There have been some approaches to obtaining characteristic basis functions by 

investigating many samples of daylight and surface reflectances [20] [19]. I t  has been suggested that, 

although the number of basis functions required to completely describe full spectra is essentially 

infinite, a small number of basis functions can provide good spectral approximations of most natural 

illurninants and surface reflectances. 
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For the finite-dimensional linear model, surface reflectance and illumination can be represented 
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as a weighted sum of basis functions expressed as: 



where S;(A) and Ej(A) are the basis functions, and a;(x, y) and &j(x, y) are the scalar weighting 

factors at (2, y). 

The color image sensing is usually performed with a CCD camera using filters of different spec- 

tral responses. The measured color signal I (x,  y, A) is obtained as a product of the spectral power 

distribution (SPD) of illumination and the spectral response of the surface reflectance function, 

lee., 

With k different filters, the quantum catch or the measured signal from the camera is given by 

where Qk(A) and pk(x, y) for k = O , l ,  . .p are the spectral response of the k-th filter and the camera 

output through the k-th filter at  (x,y), respectively. The wavelengths from XI = 400 nm to A2 = 

700 nm cover the range of the visible spectrum. 

With n + m basis functions, the relationship between the sensor response, illumination and 

reflectance is given as 

p = nu& = nEu ( 5 )  

where the elements of Sla and SIE in the k-th row and j-th (or i-th) column are respectively 



3 Color Constancy Algorithms 

In psychological literature, the color constancy problem is usually defined in terms of approximate 

color constancy, which means that colors of objects are approximately constant with changes in 

the illuminant. Here we will adopt a more rigorous definition of the color constancy problem. 

Given the sensor quantum catches at  each location in the sensor array I(x,  y, A), com- 

pute stable color descriptors for S(x, y, A) discounting the illumination E(x, y, A). 

In this section, we present an overview of various color constancy algorithms which are based on 

finite-dimensional linear models of illumination and surface reflectance. First we consider the case 

where there are no spatial constraints on the illuminant or the surface reflection. Later we a.nalyze 

the situations where illumination or surface reflectances are spatially constrained. It is shown how 

the spatial-spectral relationship defines the local or global nature of the color constancy algorithm. 

Computationally, the color constancy problem is to solve Equation 5 for E'S and a's with the 

measurements p7s. The number of required measurements depends on the number of unknowns, the 

number of spatial points, the choice of basis functions and other spatial/spectral constraints. We 

mainly investigate the finite-dimensional case of m = n =3, and the extension to higher dimensional 

cases is straightforward. 

Since we are given the product E(A)S(A), E(A) and S(A) can be recovered only up to a mul- 

tiplicative constant. This scaling ambiguity cannot be generally resolved, and thus we only solve 

for the spectral components of surface reflectance and illumination up to a multiplicative factor. 

For only obtaining spectral responses of illumination, we can normalize the illumination such that 

Eg = 1. 



3.1 Color Constancy Using a Reference Object 

While the general solution for color constancy with unknown illumination demands complex al- 

gorithms and some spectral and/or spatial constraints [22] [6], it is simple to  remove the known 

illumination measured with a reference object in the controlled lighting environment. One as- 

sumption is that the objects of interest are illuminated by light sources of the same SPD, and the 

reference object is applicable. If we use a reference plate with known reflectance aref (spectrally 

wide, e.g., white or grey), the SPD of illumination obtained from 

represents the spectral composition of the global illumination throughout the image area. With 

the normalized ~zf,,, the calculation of 

leads to the surface reflectance components under whitened illumination. This method is not 

sensitive to  the choice of basis functions, but errors can arise when cannot be approximated 

well with a small number of basis functions. Note that for many illumination sources with different 

colors or for the environments where the reference object cannot be applied, this calibration method 

is not effective. 

3.2 Pointwise Color Constancy 

In this subsection we investigate the color constancy with no spatial assumptions on the illuminant 

or the surface reflectance, but with an assumption that the representation of both illumination and 

surface reflectance is is limited to  three basis functions The generalization to  more number of basis 

functions is straightforward. 

The basic limitations of the color constancy algorithms come from the errors in finite-dimensional 



approximation. The measure of goodness of an algorithm is how gracefully the solution degrades as 

the approximation breaks down. Choice of basis functions is important not only for good spectral 

approximation of surface reflectance and illumination, but also for solving color constancy prob- 

lems. It  determines the number of independent equations in Equation 5 and thus the solvability of 

the equations [5]. 

3.2.1 Nine-Receptor Case 

The finite-dimensional model of image irradiance I(X) is rewritten as: 

The actual number of independent terms in Equation 10 depends on basis functions. If the 

basis functions are chosen such that all the functions Ej(X)Si(X) are linearly independent, we can 

have nine independent measurement. It known [ll] that the first three of Cohen's reflectance 

basis functions, multiplied with the first three of Judd's illumination functions, form a set of nine 

independent terms in ~ j a ;  product-pair unknowns. Figure 1 shows (a) the first three basis functions 

for reflectance by Cohen and (b) the first three basis functions for illumination by Judd. 

With nine different Ej(X)S;(X)'s, we have a system of nine independent linear equations. 

The elements of the matrix n'in the k-th row and 2-th colun~n are given as: 

for 1 = 0,1,2, ..... 9. In Appendix, we will show how to determine if the matrix 0' is well conditioned. 

In order to solve the set of linear equations (11) we need to obtain independent measurements 

through nine different receptors. From the nine measurements, we can solve a system of 9 different 

linear equations for 9 E j a ;  product pairs. When the 3-dimensional model does not approximate tlle 
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Figure 1: (a)Three basis functions for reflectances by Cohen. (b)Three basis functions for illuminations 

by Judd. 

illumination and reflectance well, error can arise due to the neglected higher-order terms. In this 

case, a minimum-error solution can be obtained. 

3.2.2 Five-Receptor Case 

Using a finite-dimensional linear model which is limited to three basis functions for the illumination 

and three basis functions for reflectance, we actually deal only with five unknowns, that is, ao, al, 

0 2 ,  EI and ~2 (with EO = 1). This means that we may need only five independent equations (five 

measurements), but in this case we have to solve in general a system of non-linear equations. 

As shown by Yuille [5 ] ,  the number of independent terms in Equation 10 depends on the basis 

functions and the filter functions. If the number of independent terms is less than nine and greater 

than or equal to five with some basis functions, we have to deal in general with non-linear equations. 

If there are less than five independent terms, pointwise color constancy cannot be achieved and 



other (spatial or spectral) constraints have to  be employed. 

With same basis functions for surface reflectance and illumination, the number of independent 

equations is less than or equal to six. An example of such a case is presented in Section 7, where the 

illumination and surface reflectance are modeled with three Fourier basis functions, respectively, 

and only five independent equations are available. When the scene is illuminated by the reflected 

lights coming from another object (inter-reflections) [2], spectral characteristics of the illumination 

(secondary illumination) are very similar to those of the reflectance and the number of independent 

equations is reduced. Having the basis functions for illumination very similar to those for surface 

reflectance, we can get at  most five independent equations. 

3.3 Color Constancy Using Spatial Constraints 

In this subsection we discuss the color constancy problems in situations where illumination or 

surface reflectances are spatially constrained, and show how the spatial-spectral relationship defines 

the local or global nature of color constancy. The advantage of including the spatial domain, in 

addition to the spectral, is twofold. First, we can reduce the number of filters that are necessary 

to solve the problem. Second, spatial measurements can be used to overconstrain the system of 

equations, thus making the method less sensitive to noise. 

Several spatial assumptions have been proposed [8] [6] [5].  Basically they differ only in the 

size of the region, across which the spectral energy distribution of the light is assumed to be 

constant. The size of the region can vary from two neighboring image elements to the whole 

image. Since illumination and surface reflectance, from a computational point of view, represent two 

interchangeable components, these assumptions mean that in a localized area only one component 

can change at a time. The relationship between the number of spatial points q, which have the same 

illumination, but have distinctively different surface reflectance, and the number of basis functions 

m, n and receptor classes p is given as follows [5 ] :  



An important result which follows from Equation 13 is that the number of basis functions for 

reflection must always be less than the number of sensor classes: p > n. 

3.3.1 Two-point Color Constancy 

This approach was suggested by Yuille [5]. It is proposed to pick points on both sides of a material 

edge close enough in order to  ensure the same illumination. If we include another point (q = 2) of 

1 1 1  

different reflectance (ao, al, a2)  and same illumination, four measurements (p = 4) are necessary 

for eight equations and for eight unknowns (ao, al, 0 2 ,  a;, a;, ah, ~ 1 ,  and ~ 2 ) .  Even with an extra 

point, we cannot avoid non-linear formulation. 

Under the assumption that the color of surface reflectances is constant, solutions obtained at 

the boundaries can be propagated to the regions away from the boundaries. However, in the 

images where color edges are not present evenly over the image area, the region of color constancy 

calculation is limited and thus determination of spectral components far from the edges would be 

difficult. Note that color constancy using two points is inevitably related to  the problems of color 

edge detection [18]. 

3.3.2 Three-point Color Constancy 

The three-point (q = 3) color constancy algorithm was first proposed by Maloney [8] for four 

receptors (p = 4). The difficulty in using this algorithm in practical applications lies in the method 

of finding three points with the same illumination, but with distinctively different surface reflection. 

Points near junctions where more that three different surfaces meet would be appropriate for input 

points in the algorithm, but such regions do not frequently appear in real images. 



3.3.3 Multi-point Color Constancy 

Using more points than three under same illumination, we can improve the results by reducing 

errors due to  the finite-dimensional models 181. Again the problem is how to find the points of 

different reflectances under same illumination. 

Other approach is to put more serious assumptions on the illuminations and reflectances that 

illumination varies smoothly in space and reflectances are Mondrian (two-dimensional with patches 

of uniform reflectance and of sharp discontinuities). In this case we can use 3 measurements and 

many lightness algorithms either with receptor primaries (RGB) or with E'S and a's. 1121 [14] 1151 

[I61 

4 Simulations and Experimental Results 

In this section we will present some results on synthetic and real images. The major concern is 

how well the solutions of color constancy are approximated with finite-dimensional linear models 

of reflectances and illuminations. 

4.1 Pointwise Color Constancy with Five Receptors 

Let us assume that surface reflectance and illumination can be well approximated with the first 

three Fourier basis functions: 

So(X) = Eo(X) = 1, &(A) = EI(X) = sinX, S2(X) = E2(X) = c o d .  

It follows that irradiance I(X) is: 

= T o I o ( ~ )  + ylIl(X) + 'Y212(X) d- y&(X) 4- yd4(X), 

where 



With EO = 1, the normalized system of equations has the following form: 

1 
7 4  = -(-&la1 + ~202)  2 (21) 

The system is non-linear, and there are two important problems related to the solution. The first 

one is whether the solution exists, and the second is whether it is unique. Because the equations 

describe a physical phenomenon, we expect that the solution exists. 

Let /3 denote & = $. From the above equations we can derive a cubic equation for /3 as 

It can be shown that there are 3 positive solutions for beta and the smallest one is the correct value. 

With P value obtained, the quadratic equation 

gives us either ~1 or al/ao, and 

gives us either ~2 or a2/00. For each picture element in the color image, we have the pair of 

separated values for ( E ~ , E ~ )  and (al/ao,a2/uo). However, because of symmetry, we do not know 

which one is illumination and which one is surface reflectance. 

Figures 2, 3, 4 and 5 show the results of simulation. We generated the illumination, and for 

the surface reflectance, we used a picture obtained through a CCD camera which contains realistic 

13 



Figure 2: Genenated illumination (a) 1 Surface reflectance (c) 1 

noises. Figure 2 (a) and (b) show ~1 and ~2 of the illumination, respectively, and Figure 2 (c) and 

(d) show a1 and a2 of the surface reflectance, respectively. The spectral coefficients 71, 72, 73 and 

y4 of the multiplied color image are shown in Figure 3 (a), (b), (c) and (d), respectively. 

Figure 4 (a) and (b) again show ~1 and ~2 of the illumination only in the object regions, 

respectively, and Figure 4 (c) and (d) show the normalized surface reflectance al/uo and az/ao, 

respectively. The solutions of pointwise color constancy XI and x2 are shown in Figure 5 (a) and 

(b), respectively, and yl and yz are shown in Figure 5 (a) and (b), respectively. As shown in 

Figure 5, the reflectance and the illumination are correctly decomposed pointwise, but they are 

not properly arranged for reflectance and illumination. Therefore we see that as long as surface 

reflectance and illumination are strictly confined to three dimensions, solutions of the five-point 

formulation provides good separation of reflectance and illumination. 

The only possible way to resolve color constancy at a point would be to choose different basis 

functions for illumination and different basis functions for reflectance. Otherwise, it is not possible 

to solve the problem without any further information or some additional assumptions. One source of 

information is the knowledge of the spatial arrangement of illumination and reflectance signals. Two 

solutions obtained at each point can be grouped into two sets on the basis of spectral proximity. This 

is successful if the spectral properties of the illumination and spectral properties of the reflectance 



Figure 3: Color image (a) 1 (b) 2 (c) 3 (d) 4 

Figure 4: (a) Generated illumination 1 (b) Normalized surface reflectance 1 (c) Generated 

illumination 2 (d) Normalized surface reflectance 2 

Figure 5: Results of separation (a) x l  (b) x2 (c) yl (d) y2 



do not change abruptly at  the same point. After classifying the spectral values into two groups, we 

can determine what is light and what is reflectance. 

4.2 Experiments 

We have performed some experiments for color constancy with 5 filters. Figure 6 shows the 5 filters 

we used in which the spectral responses of camera lens, CCD receptor and IR-cutoff filter shown 

in Figure 7 are included. 

We use a matte object of the distinct colors of red, green, blue, yellow, white and grey under 

daylight (3:OO PM, May 3, 1989, Philadelphia, Pennsylvania), and specular reflection is avoided. 

Figure 8 shows 6 curves of spectral approximation with Fourier basis functions. 

Figure 9 (a), (b), Figure 10 (a), (b) and Figure 11 (a), (b) show the results of separation obtained 

from the nonlinear equations described in the above, for white, grey, red, green, blue and yellow, 

respectively. As can be seen in the figures, although the 5 Fourier bases approximates the spectra 

well, the separated curves show neither any common illumination nor correct approximations of 

surface reflectances. It can be easily seen that the separation fails due to  the perturbation of 

higher-order-dimensional terms. 

4.3 Finite-Dimensional Approximation of Real Reflectances and Illuminations 

In order to better understand the finite-dimensional linear approximation of natural surface re- 

flectance~ and illuminations, we examined some real reflectance and illumination functions. We 

used some color plates with spectrophotometric measurements shown in Figure 12. Figure 13, 

Figure 14 (a), (b) and Figure 15 (a), (b) show the power spectra in Fourier domain for white, 

red, green, blue and yellow plates, respectively. Figure 16, Figure 17 (a), (b) and Figure 18 (a), 

(b) show the magnitude spectra in Fourier domain for white, red, green, blue and yellow plates, 

respectively. It can be seen in the figures that, although the first three terms take most of the 



Figure 6: Spectral response of 5 filters 

power, there are many higher-order terms in the magnitude spectra. In the computation of color 

constancy, therefore, errors can be caused by the neglect of the higher-order coefficients, since the 

coefficients of magnitude spectrum are used for the calculation. 

Figure 19 shows the approximations of surface reflectances up to second-order terms (five coef- 

ficients) and they are similar to the ones we experimentally obtained using five filters. Figure 20 

shows the data of a light from a tungsten bulb that we measured using a monochrometer and 

a calibrated photo-detector, and Figure 21 (a) and (b) show the magnitude spectrum and the 

approximation with 5 coefficients. 

In order to compare the above results with the optimal case, we computed the principal com- 

ponents of the surface reflectances by Karhunen-Loeve (K-L) transformation (i.e., principal axes 

transformation). The K-L transformation applied on the distribution of illumination and surfa,ce 

reflectance irradiance can provide us with the optimal basis functions in the statistical sense. Fig- 

ure 22 (a) shows the three principal components, and Figure 22 (b), Figure 23 (a),(b), and Figure 24 
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Figure 7: (a)Spectral responses of IR filter and CCD receptor. (b) Spectral response of  camera lens 

(a), (b) show the magnitude spectra on K-L domain of white, red, green, blue and yellow. respec- 

tively. Note that the basis functions are not ordered by the magnitude of their eigenvalues in the 

K-L domain. In this optimal case, most of the coefficients are very small except the three or four. 

Note that the optimal basis functions can be obtained by choosing the principal components of 

large values, only when we know the spectral data of all the possible objects. Although Cohen's 

basis functions for surface reflectances are derived from many spectral data, they do not always 

effective in approximating reflectances in small dimensions. 

5 Discussion 

We examined some cases of color constancy with finite-dimensional linear models of surface re- 

flectance~ and illuminations. Besides the lightness algorithms, the algorithm which requires the 

least number of receptors is the one with four filters proposed by Maloney and Wandell [6] which 

demands three points in space having different spectral reflectance functions, but sharing the same 
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Figure 8: (a) Spectral approximation with (b) 5 Fourier bases 
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Figure 11: (a) Separation o f  blue (b) yellow 
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Figure 12: Measured spectra o f  6 surfaces 

Figure 13: Power spectrum in Fourier domain, Whi te  
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Figure 14: Power spectrum in Fourier domain (a) Red (b) Green 
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Figure 15: Power spect r~~m in Fourier domain (a) Blue (b) Yellow 
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Figure 16: Magnitude spectrum in Fourier domain, White 
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Figure 17: Magnitude spectrum in Fourier domain (a) Red (b) Green 
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Figure 18: Magnitude spectrum in Fourier domain (a) Blue (b) Yellow 
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Figure 20: Measured spectrum of tungsten bulb light 
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Figure 21: (a) Fourier magnitude spectrum (b) Approximation using 5 Fourier Coefficients 
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Figure 24: Magnitude spectrum in K-L domain (a) Blue (b) Yellow 

illumination. As mentioned earlier, however, the question is where to find such points. Those 

points can be found near the junctions of three or more regions under uniform illumination. These 

constraints are severe in many applications with real images, and it is not clear how the results 

can be used to  solve color constnacy for other points. This method has the advantage that a small 

number of receptors is required. 

Both the color constancy algorithm with four filters and two points [5] and the pointwise color 

constancy with five filters involve solving non-linear equations and require same basis functions for 

reflectance and illumination. Surface reflectances of artificial color may be represented by three 

basis functions since they are produced mostly by three or four color pigment vectors, and it is 

reported that small number of Fourier bases can well approximate artificial surface reflectances 

(e.g., Munsell chips) [7].  However we see that for color constancy using non-linear equations they 

are not good enough to  be used as basis functions for reflectance and illumination. 

Despite that a large number of independent measurements are needed with nine narrow band 



filters, the pointwise algorithm using nine filters has the advantage that the basis functions can be 

separately optimized for surface reflectance and illumination, and that a system of linear equations 

can be solved up to the solutions E j a ; .  However choosing the optimal basis functions requires 

studying many natural reflectances and illuminants. 

Our future studies include more quantitative error analyses for various color constancy algo- 

rithms. As mentioned earlier, the measure of good algorithm is how gracefully the solutions degrade 

as the approximation breaks down. It can be expected that the algorithms of non-linear equations 

are very sensitive to the errors in the finite-dimensional approximation and to any errors in mea- 

surements. In controlled lighting environments, we found that the method using a reference object 

is insensitive to small errors [2], and the nine-filter formulation has the advantage of solving linear 

equations up to &a product-pairs. 

The choice of basis functions requires investigation of many natural reflectances and illumina- 

tions. Since illumination and surface reflectance are different in nature, it is difficult to determine 

a small number of common basis functions to be used for the four or the five filters non-linear 

algorithms. The functions by Judd can be used well for daylights, however it has not yet been 

studied whether they can well represent other light sources such as tungsten and fluorescent lights 

or the lights reflected from other surfaces. 

6 Conclusion 

In this report we present an overview on the computational aspects of color constancy. The choice 

of basis functions determines the formulation of color constancy algorithms which also depend on 

the number of receptors and spatial points. Color constancy methods based on nonlinear equa- 

tions are sensitive to  errors in the finite-dimensional representation of reflectance and illumination. 

It is shown that the Fourier basis functions are not appropriate for use with this type of color 



constancy algorithm. Development of color constancy algorithms based on the finite-dimensional 

representation should be directed towards better basis functions and robustness against modeling 

errors. 

Appendix 

The transformation from the sensor space p into the space subtended by functions I ( X )  is charac- 

terized by a linear system. Let us denote it by 

where the components of the vector y are combinations of coefficients of basis functions for 

reflectance ui and illumination ~ j .  0 is the matrix, whose elements depend on the choice of basis 

functions and filter functions, and components of the vector p are sensor measurements. 

There is uncertainty in the elements of matrix 0 caused by the error in estimation of filter 

functions. The values of the vector p contain digitization errors and sensory noise. The robustness 

analysis follows the arguments about the conditionality of linear systems [23]. Let us change the 

matrix R for 6 0  and vector p for Sp. The new solution will be y + Sy. 

What we are interested in is the relative change of 1 1  Sy 1 1  / 1 1  y I( relative to the changes 

I( 6 0  1 1  / 11 R 11 and ( 1  Sp 1 1  / )I p 1). From equation (26) we have 

(I + 0-'6R)Sy = 52-I (Sp - SQy). 

Applying an vector norm on the equation (27) we get 



(1- I I  f2-' l l l l  6 0  II) I I  6 7  11511 0-' 1 1  (I1 6~  I l  + l l  sf2 l l l l  r Ill. 

The final result is 

Let us denote the product 

1 )  0 1 1 1 1  0-' \ I =  cond(f2). 

If cond(f2) is small, then small perturbations in the data have little influence on the solution. 

The lower bound of cond(f2) is 

cond(f2) > 1. (31) 

The cond(0) depends on the choice of basis functions and filter functions. 
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