
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

8-2011

Video Quality Driven Buffer Sizing via Frame
Drops
Deepak Gangadharan
National University of Singapore, gdeepak@comp.nus.edu.sg

Linh T.X. Phan
University of Pennsylvania, linhphan@cis.upenn.edu

Samarjit Chakraborty
TU Munich, Germany, samarjit@tum.de

Roger Zimmermann
National University of Singapore, rogerz@comp.nus.edu.sg

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Sciences Commons

17th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), Toyama, Japan, Aug 2011.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/473
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Deepak Gangadharan, Linh T.X. Phan, Samarjit Chakraborty, Roger Zimmermann, and Insup Lee, "Video Quality Driven Buffer
Sizing via Frame Drops", 17th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA
2011) 1, 319-328. August 2011. http://dx.doi.org/10.1109/RTCSA.2011.49

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76393611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F473&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F473&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F473&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F473&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F473&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/RTCSA.2011.49
http://repository.upenn.edu/cis_papers/473
mailto:libraryrepository@pobox.upenn.edu

Video Quality Driven Buffer Sizing via Frame Drops

Abstract
We study the impact of video frame drops in buffer constrained multiprocessor system-on-chip (MPSoC)
platforms. Since on-chip buffer memory occupies a significant amount of silicon area, accurate buffer sizing
has attracted a lot of research interest lately. However, all previous work studied this problem with the
underlying assumption that no video frame drops can be tolerated. In reality, multimedia applications can
often tolerate some frame drops without significantly deteriorating their output quality. Although system
simulations can be used to perform video quality driven buffer sizing, they are time consuming. In this paper,
we first demonstrate a dual-buffer management scheme to drop only the less significant frames. Based on this
scheme, we then propose a formal framework to evaluate the buffer size vs. video quality trade-offs, which in
turn will help a system designer to perform quality driven buffer sizing. In particular, we mathematically
characterize the maximum numbers of frame drops for various buffer sizes and evaluate how they affect the
worst-case PSNR value of the decoded video. We evaluate our proposed framework with an MPEG-2 decoder
and compare the obtained results with that of a cycle-accurate simulator. Our evaluations show that for an
acceptable quality of 30 dB, it is possible to reduce the buffer size by upto 28.6% which amounts to 25.88
megabits.

Disciplines
Computer Sciences | Physical Sciences and Mathematics

Comments
17th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), Toyama, Japan, Aug 2011.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/473

http://repository.upenn.edu/cis_papers/473?utm_source=repository.upenn.edu%2Fcis_papers%2F473&utm_medium=PDF&utm_campaign=PDFCoverPages

Video Quality Driven Buffer Sizing via Frame Drops

Deepak Gangadharan1, Linh T.X. Phan2, Samarjit Chakraborty3, Roger Zimmermann1, Insup Lee2

1National University of Singapore, 2University of Pennsylvania, USA, 3TU Munich, Germany

E-mail:{gdeepak,rogerz}@comp.nus.edu.sg, {linhphan,lee}@cis.upenn.edu, samarjit@tum.de

Abstract— We study the impact of video frame drops in buffer-
constrained multiprocessor system-on-chip (MPSoC) platforms.
Since on-chip buffer memory occupies a significant amount of
silicon area, accurate buffer sizing has attracted a lot of research
interest lately. However, all previous work studied this problem
with the underlying assumption that no video frame drops
can be tolerated. In reality, multimedia applications can often
tolerate some frame drops without significantly deteriorating
their output quality. Although system simulations can be used
to perform video quality driven buffer sizing, they are time
consuming. In this paper, we first demonstrate a dual-buffer
management scheme to drop only the less significant frames.
Based on this scheme, we then propose a formal framework
to evaluate the buffer size vs. video quality trade-offs, which
in turn will help a system designer to perform quality driven
buffer sizing. In particular, we mathematically characterize the
maximum numbers of frame drops for various buffer sizes and
evaluate how they affect the worst-case PSNR value of the
decoded video. We evaluate our proposed framework with an
MPEG-2 decoder and compare the obtained results with that
of a cycle-accurate simulator. Our evaluations show that for an
acceptable quality of 30 dB, it is possible to reduce the buffer
size by upto 28.6% which amounts to 25.88 megabits.

I. INTRODUCTION

A. Motivation

Decoding video content on video playback devices requires

significant amount of on-chip buffer resources for storing

the incoming/partially processed frames. Therefore, accurate

buffer sizing in multimedia MPSoC platforms has attracted

lot of research attention. All the prior works in buffer sizing

(e.g., [11], [9] and [15]) did not tolerate video quality loss at

the output, i.e., they did not allow frame drops. On the other

hand, there have been works on frame dropping strategies ([7]

and [17]) to maximize video quality output in the presence of

buffer constraints. However, there has been no work on quality

driven buffer sizing using a frame dropping strategy. Such a

strategy would be very useful as it is a well known fact that

multimedia applications can tolerate some quality loss without

deteriorating the video perception.

In this paper, we propose a formal framework to explore

the buffer size vs. video quality trade-offs, which can help

a system designer to perform quality driven buffer sizing.

Although these trade-offs can be explored using system simu-

lations, simulation-based techniques are time consuming. The

concepts discussed here, however, can be applied in the context

of network- on-chip architectures where buffer size can be

traded off against some quality parameter by dropping the

less important data. In general, it is applicable to all such

scenarios where losing some low priority data helps in saving

buffer resources while still maintaining a good content quality.

Therefore, it is important to recognize the least important data

I and P frames

B
inf

Bfin

PE
to subsequent PE

…

B frames

SplitterIncoming frames

Frame

drops

P
Frame ordering

 information

0 100 200 300 400

30

35

40

45

Frame Interval
(W

o
rs

t
C

a
s
e
)

P
S

N
R

 (
in

 d
B

)

B
m

a
x

=
 3

0

B
m

a
x

=
 9

0

B
m

a
x

=
 1

5
0

Acceptable quality

Fig. 1. Dual buffer management scheme with drops in less significant
frames and buffer size vs. video quality trade-off results for a
benchmark MPEG-2 video susi 080 ([12]).

in the target application. As our framework bounds the quality

degradation, the video quality does not deteriorate too much.

In MPEG-2/MPEG-4 video streams, there are typically three

types of frames, namely, I frame (Intra coded), P frame (Pre-

dicted) and B frame (Bidirectionally predicted). I frames are

intra coded frames and are not dependent on other frames in

the video stream for decoding. Decoding a P frame requires the

previous I or P frame as the reference frame. Finally, decoding

a B frame requires two reference frames, namely, a forward

reference frame (I/P frame) and a backward reference frame

(I/P frame). It is clear from this organization of frames that

B frame drops result in lesser amount of quality degradation

in comparison to the I and P frame drops. Therefore, in

MPEG-2/MPEG-4 decoder applications mapped onto MPSoC

platforms, B frame drops can be used to trade-off quality for

buffer size. This selective dropping of frames requires a special

scheme to differentiate among frames.

In our approach, a simple dual buffer management scheme

is used in order to drop only the less significant frames

(B frames). This scheme is shown in Fig. 1. The incoming

multimedia stream is split into two distinct streams: the first

consists of the less significant frames (B frames) and the sec-

ond consists of the more significant ones (I/P frames). These

two streams are fed to two distinct buffers. This partitioning

will be explained in detail in Section III. The processing

element (PE) needs to be given a side information conveying

the order in which the frames are to be processed (shown as

the dotted line from the splitter to the PE in Fig. 1). In the

setup shown in Fig. 1, drops occur only for B frames and

the size of the associated buffer can be traded off with video

quality. This trade-off (shown in Fig. 1) is obtained using a

well known video benchmark susi 080 ([12]). In multimedia

literature ([19]), 30 dB is considered to be an acceptable output

video quality (shown as the horizontal line in the trade-off

graph in Fig. 1). From Fig. 1, it can be observed that we give

quality variations for three different buffer sizes over frame

intervals. We define frame interval below.

Definition 1: (Frame Interval). For a given video clip, a

frame interval F is defined as a window of any F consecutive

frames.

The worst case quality value for a frame interval F is the

minimum quality obtained over any F consecutive frames

across the clip. From Fig. 1, it can be observed that if a

maximum buffer size (Bmax) of 30 frames is chosen, then the

quality values (in dB) fall below the threshold value of 30 dB

for certain frame intervals from 80 to 260. If the target quality

constraint is to satisfy the 30 dB value for all frame intervals,

then Bmax = 30 frames will not be sufficient. However, if the

target quality constraint is that the threshold value of 30 dB

should be satisfied for any frame interval greater than 300,

then Bmax = 30 frames will be a good choice as the buffer

size. We denote buffer sizes in number of frames in the rest

of the paper because video frames consist of variable number

of bits. However, we give an estimate of the minimum buffer

savings in megabits (Mbs).

B. Our Contributions

To the best of our knowledge, this is the first attempt

at studying the influence of buffer sizing on worst case

quality deterioration using a formal framework. There are two

interlinked parts constituting our framework. For a given video

clip, we perform the following operations.

1) Firstly, we derive the maximum number of frame drops

(in any frame interval) for any given buffer size using a

Network Calculus ([2]) based mathematical framework.

2) Secondly, we propose a novel method to compute worst

case quality values for video clips. This is further used in

conjunction with the maximum number of frame drops

derived in the first part to find the worst case quality

values for various buffer sizes.

A system designer does buffer sizing for an extensive library

(covering all possible scenarios) of video clips, whereby

sufficient buffer size is chosen so that a quality constraint is

satisfied by all the clips in the library. Our framework can

be used in this context. The information obtained from buffer

size vs. quality trade-off curves for each clip can be used to

determine the optimal buffer size for the entire library.

C. Related Work

On-chip buffers take up a lot of chip silicon area. This

is evident from [6], in which experiments clearly show the

enormous amounts of silicon area increase due to the increase

in FIFO size in the router. In [18], this same concern is

demonstrated in the context of on-chip network design for

multimedia applications. However, the authors do not drop any

incoming packet from the buffer thereby giving importance to

maximum application quality. A buffer sizing algorithm has

been discussed in the context of networks on chip [3], where

the authors are concerned about the reduction of buffers in

network interfaces. There are various objective functions that

are considered while choosing the appropriate buffer size. A

buffer allocation strategy is proposed in [6] in order to increase

the overall performance in the context of a networks-on-chip

router design. In [14], an appropriate buffer size is chosen that

gives the best power/performance figure.

Buffer dimensioning is an important aspect of designing

media players. In the past, there has been lot of work in

this area where several design factors have been taken into

consideration while choosing the appropriate buffer size. Most

of this work concentrated on studying the playout buffer

vs. quality of service (QoS) tradeoffs. In [8], the authors

discussed an optimal allocation of playout buffer size such

that the playout delay is minimized for a given probability of

underflow or a given QoS. Similarly, in [4], the buffer vs. QoS

tradeoff is studied for multimedia streaming in a wireless sce-

nario using a dynamic programming framework. A combined

optimal transmission bandwidth and optimal buffer capacity

is considered to support video-on-demand services [20]. Here,

playout buffer overflow and underflow are not tolerated. There

are also some other prior works which have not tolerated any

loss as a result of buffer overflow and underflow ([10], [11], [9]

and [15]). However, none of these works have considered the

tradeoff between buffer and video quality by allowing some

buffer overflows (i.e., with constrained buffer). Here, video

quality is not the end-to-end QoS, but the distortion in the

received frames.

There are various frame dropping strategies that have been

discussed in literature that try to maximize the video quality

([7] and [17]). Invariably, all these strategies use a prioritiza-

tion scheme to drop the frames in a quality aware manner such

that the quality deterioration is minimized. In [7], frame size is

used to prioritize the frames before dropping. In this approach,

frames with larger size are dropped later and frames with

smaller size are dropped first. A distortion matrix is introduced

in [17] to compute the priority of frame dropping based on

the distortion that frame suffers if lost. As we drop only the

B frames in this paper, we consider the drop oldest policy

during a buffer overflow. Similar schemes like Drop Newest,

Drop Random and Drop All are also discussed in [16].

D. Organization of the Paper

In the next section, we give an overview of our analytical

framework. Section III discusses the process of partitioning

the arrival and service curves in order to analyze the dropping

of only certain frames, i.e., B frames. In Section IV, we present

the theory behind the calculation of maximum number of

frame drops for any frame interval. Section V presents the

analytical framework to derive the worst-case quality curve

from frame drop bounds. Section VI discussed a case study of

MPEG-2 decoder application. In Section VII, we present the

concluding remarks.

II. FRAMEWORK OVERVIEW

This section presents an overview of our mathematical

framework to study the influence of frame drops on the peak

signal to noise ratio (PSNR) of the decoded video under buffer

constraints. We use the arrival curves and service curves

from the Network Calculus to model the data streams and the

service given by the resources, respectively, as they can model

any arbitrary stream arrival pattern and any arbitrary resource

service pattern. In addition, they can easily capture the data

size variability and the processing variability exhibited in

the multimedia setting we consider here. Before describing

our framework, we introduce the underlying MPSoC platform.

Platform Description: In this work, we find the buffer

size vs. worst case quality trade-off for a video clip on a

buffer constrained MPSoC architecture as shown in Fig. 2.

The terms explained in the problem definition are marked

appropriately alongside the architecture. The architecture

consists of two PEs, PE1 and PE2, each with its own offered

service curves shown above them. Each PE is mapped with

a set of tasks from the target decoder application. The PEs

also each have a buffer in front of them, shown as B1 and

B2, with maximum capacity of B1max and B2max (quantified

in number of frames), respectively. As the buffer sizes are

not always adequate, frame drops may occur, which are

characterized as αu
drop1(∆) and αu

drop2(∆). αu
drop1(∆) and

αu
drop2(∆) give the upper bounds on the number of frames

dropped in any time interval of length ∆, where ∆ ≥ 0.

Although only a single buffer is shown in front of each PE,

each buffer internally has two parts - one part where some

of the least significant contents (B frames) are dropped and

the second part where adequate buffer size is provided and

the significant contents (I/P frames) are not dropped. The

frame drops occur in the droppable buffer section and its drop

bounds are derived by our framework. Before getting into

the details of our framework, we first define some terminology.

Definition 2: (Arrival Curve). For a video clip, let a(t)
denote the number of frames that arrive in time interval [0,t).
Then, the video clip is said to be bounded by the arrival curve

α = [αu,α l] iff for all arrival patterns a(t):

α l(∆)≤ a(t + ∆)−a(t)≤ αu(∆) (1)

for all ∆ ≥ 0. In other words, αu(∆) and α l(∆) give the

maximum and minimum number of frames that can arrive over

any interval of length ∆ across the length of the video clip.

input

stream

B1

α
β1

B2

to playout buffer
PE1

αdrop2
u

αdrop1
u

β2

PE2

Fig. 2. MPSoC setup with buffer constraints and frame drops

B

PE

drop

u

input

stream

d
ro

p

u

Q
u

q
u

Frame interval

Frame interval

Frame interval No. of frames

dropped (N
o

. o
f

fr
a

m
e

s

 d

ro
p

p
e

d
)

(w
o

rs
t

ca
se

 q
u

a
li

ty
)

B

PE

drop

u

input

stream

d
ro

p

u

Frame interval

(N
o

. o
f

fr
a

m
e

s

 d

ro
p

p
e

d
)

 d

ro
p

p
e

d
)

(w
o

rs
t

ca
se

 q
u

a
li

ty
)

Q
u

q
u

Frame interval

Frame interval No. of frames

of frames

dropped

dropped

(w
o

rs
t

ca
se

 q
u

a
li

ty
)

(w
o

rs
t

ca
se

 q
u

a
li

ty
)

Drop bound calculation Quality bound calculation

Fig. 3. Overview of the Analytical Framework

Definition 3: (Service Curve). Let c(t) denote the number

of frames processed by a task mapped onto a processor in time

interval [0,t). Then, the service curve β = [β u,β l] is a service

curve of the processor iff for all service patterns c(t):

β l(∆)≤ c(t + ∆)− c(t)≤ β u(∆) (2)

for all ∆ ≥ 0. In other words, β u(∆) and β l(∆) denote the

upper and lower bounds on the number of frames processed

over any interval of time ∆ across the length of the clip.

Problem Definition: Given the arrival curve [αu,α l] of the

video clip that is to be decoded on a decoder application

mapped onto a MPSoC platform, the service curve [β u,β l],
we analytically explore the trade-off between buffer resource

Bmax (measured in number of frames) and the worst case

quality (quantified in terms of PSNR) of the decoded video.

Once this trade-off is explored for all the clips in the

library, the system designer can appropriately choose the

minimal buffer resource required to satisfy an acceptable

quality constraint. The overall analytical framework consists

of two stages as shown in Fig. 3, namely the Drop bound

calculation stage and the Quality bound calculation stage.

These two stages are described briefly next.

Drop bound calculation: The first stage formally derives the

worst case frame drop bound αu
drop for the droppable part of

the buffer, with size Bmax. This analysis is based on concepts

from network calculus. Specifically, it computes the bounds

on the number of frames that are processed in an incoming

stream when the arrival curves [αu,α l], service curves [β u,β l]
and buffer size Bmax for a single PE are given. Our computation

is based on the idea of a virtual processor controlling the

admission of frames into the buffer such that the buffer

effectively acts as one with no drops, i.e., once an appropriate

number of frames are dropped from the stream, the finite and

constrained buffer will never overflow, thereby emulating an

infinite buffer. We also compute the bounds on the service

offered by the virtual processor to the incoming stream. This

can be used to compute the worst case bound on the number

of frame drops in any interval of time. However, we convert

the time interval based computation of frame drop bounds into

frame interval based bounds αu
dropF(F), where F is the frame

interval window and 1 ≤ F ≤ Ftotal . Here, αu
dropF(F) is the

upper bound on the number of frames dropped in a window of

F consecutive frames and Ftotal is the total number of frames

in the clip. The detailed formulation will be shown in Section

IV.

The useful feature of this stage is that it allows the analysis

of multiple PEs in pipeline with buffer constraints to be done

compositionally. In other words, one can compute the bounds

on the arrival curve to the next stage. The computed arrival

curve can then be used to derive the frame drop bounds in

the next stage. These frame drop bounds computed at various

stages (with constrained buffer resources) can be finally

summed up to obtain the overall bound on the frame drops.

Quality Bound Calculation: Once the frame drop bounds are

known, we compute a frame interval based worst-case bound

on quality in terms of PSNR. Towards this, a parameter called

the worst-case quality surface, denoted by Qu, is constructed

for each video clip. Qu is defined as below.

Definition 4: Worst-case quality surface (Qu). For any

frame interval F , the worst-case quality surface Qu(f ,F), for

all 0≤ f ≤F , is the worst-case quality of the video if f frames

are dropped in any window of F consecutive frames.

All dropped frames are replaced by immediately preceding

and successfully processed frames called concealment frames.

The amount of quality loss depends on the mean square

error (MSE) between the dropped and concealment frames.

The resultant quality is measured in terms of PSNR, which

in turn depends on the MSE between the dropped and

concealment frames. We find all possible concealment frames

for a dropped video and analyze which concealment frame

results in maximum error or worst quality degradation.

Bmax vs. quality trade-off: The final goal of the framework is

to explore the trade-off between the maximum buffer capacity

Bmax and the quality for each video clip in the library. Once

this trade-off is available for all the clips in the library, the

system designer can take a well-informed decision on the

appropriate buffer size. In order to derive this trade-off, we

use the frame drop bound αu
dropF and map it into the worst

case quality surface Qu(f ,F) where f is replaced by the value

αu
dropF . Therefore, the quality bound calculation is a mapping

from a three dimensional (3D) space to a two dimensional

(2D) space shown as

qu(F) = Qu(αu
drop(F),F) (3)

where qu(F) is the worst-case quality bound for the video

clip. This mapping is shown in Fig. 3, where the frame drop

bounds are shown at the bottom left hand side and the worst-

case quality space is shown on the bottom right hand side.

The final worst-case quality bound for a video clip is shown

in the top right hand side of Fig. 3.

III. PARTITIONING ARRIVAL AND SERVICE CURVES

In this paper, we study the effect of frame drops in the

context of a video clip being processed by the associated

decoder application. As we are more interested in studying

the effect of frame drops on quality degradation, we intend to

analyze the drop of those frames that least affect the quality

degradation. It has been observed in MPEG-2 or MPEG-4

decoders that B frames are generally the least significant when

compared to I and P frames as the loss of B frames results in

least quality degradation when compared to I and P frames.

Moreover, many video clips are encoded with a IPBBPBBP...

frame pattern, where a large percentage of B frames exist.

Therefore, we analyze the effect of only the B-frame drops. If

there are videos encoded without B frames, then P frames can

be dropped. In this case, the framework will remain the same.

Consequently, the system model for the platform architecture

consists of two kinds of buffers in front of each PE depending

on whether B frame drops are allowed or not. This is shown

in Fig. 4. If B frame drop is allowed, then we have a finite

buffer called the B frame buffer (B f in)) and another finite

buffer called the IP frame buffer (Bin f)) that does not have

any drop. The buffer size required for an IP frame buffer can

be computed using conventional Network Calculus technique

([2]).

The existence of two buffers makes it necessary to partition

the arrival curves and service offered to the two sets of

frames. As illustrated in Fig. 4, the original arrival curves of

the input stream are partitioned into αin f = [αu
in f ,α

l
in f] and

α f in = [αu
f in,α

l
f in], which correspond to the arrival curves of

the I and P frames together and of the B frames, respectively.

Similarly, the service curves offered by the PE are partitioned

into βin f = [β u
in f ,β

l
in f] and β f in = [β u

f in,β
l
f in], which correspond

to the service curves offered to the I and P frames and to

the B frames, respectively. As the I and P frames share the

same buffer Bin f with no frame drops, their buffer size can

be computed directly from αin f and βin f using the technique

in [2]. On the other hand, the B frames can be dropped; their

drop bound (αu
drop) can be computed using α f in, β f in and B f in.

The algorithm to compute the partitioned arrival curve for

B frames is shown as Algorithm.1. The arrival curves for

I and P frames can also be computed in the same manner.

However, due to the existence of partitioned arrival curves

and two buffers now, the PE needs to be given information

about what is the order in which the frames are processed.

This is generally the order in which the frames are encoded

and sent out in a video stream.

In Algorithm 1, we compute the arrival curves [αu
f in,α

l
f in]

for the B frames. Lines 4-12 compute the arrival times of each

B frame (denoted by b arr) in the video clip. Ftotal and B CNT

I and P input frames

Binf

Bfin
PE

αinf

to subsequent PE
…

B input frames

βinf

αdrop
u

αfin βfin

Fig. 4. System model with infinite and finite buffer for a single PE

Algorithm 1 Computing partitioned arrival curve for B frame

Input: f rsize(B CNT) - Size of each frame in bits;

Output: [αu
f in,α

l
f in]

1: b arr (cnt)← 0 for all 0≤ cnt ≤ B CNT , ip arr← 0;

2: btime max(k) ← 0, btime min(k) ← 0 for all 1 ≤ k ≤
B CNT

3: —Computing the arrival time of each B frame—

4: for i = 1 to Ftotal do

5: if B f rame then

6: b arr(cnt) = f rsize(i)/RAT E + ip arr

7: ip arr = 0

8: cnt = cnt + 1

9: else

10: ip arr = ip arr + f rsize(i)/RAT E

11: end if

12: end for

13: —Find max and min arrival times for k consecutive B

frames—

14: btime max(k)= max
∀i

{

k
∑

j=1

b arr(j + i)
}

, 0≤ i≤B CNT−k

15: btime min(k) = min
∀i

{

k
∑

j=1

b arr(j + i)
}

, 0≤ i≤ B CNT −k

16: —Find upper and lower arrival curves for B frames—

17: αu
f in(t) =

{

max
{

k−1
}

: btime min(k) < t

min
{

k
}

: btime min(k)≥ t

18: α l
f in(t) =

{

max
{

k−1
}

: btime max(k) < t

min
{

k
}

: btime max(k)≥ t

are the total number of frames and B frames, respectively, in

the video clip. The input bit rate of the video clip is denoted

by RATE . We then find the maximum and minimum arrival

times for k consecutive B frames. This is shown in lines 14-15.

Finally, the arrival curves are computed as in lines 17-18. The

upper bound on the B frame arrival curve is obtained from the

minimum arrival time required for k consecutive frames such

that they satisfy the condition in line 17. Similarly, the lower

bound of B frame arrival curve is determined by the maximum

arrival time required for k consecutive frames.

The service curves [β u
f in,β

l
f in] for B frames are also com-

puted as the arrival curves have been computed. The only

difference here is that instead of the arrival times of B frames,

we compute the time required for the execution of the tasks

mapped on the PE for each B frame, i.e., b arr is changed

to execution time. Execution time also depends upon the

frequency allocated to the PE. Subsequently, we compute

the maximum and minimum execution time required for k

consecutive B frames. Finally, we compute the service curves

in a similar manner as we did for arrival curves. The arrival and

service curves used in the following sections are the partitioned

arrival and service curves for B frames presented here.

IV. BOUNDS ON DROPPED FRAMES

In this section, we present a method for computing bounds

on the number of frames that are dropped due to an overflow

at a buffer. We first present the modeling idea and the basic

concepts, and then present the details of how drop bounds

can be obtained.

A single buffer case. Consider an input stream that is

processed by a single processing element (PE). Suppose the

input buffer that stores the incoming frames of the stream

before being processed by the PE, has a finite capacity of B

frames. If the buffer is full when a frame arrives, the oldest

frame at the head of the buffer will be dropped and the newly

arrived frame will be enqueued at the end of the buffer. We

are interested in the maximum bounds on the frames that can

be dropped over any interval of a given length. The system

architecture is shown in the top part of Figure 5. In the

figure, a1(t) denotes the input arrival pattern of the frame,

i.e., a1(t) gives the number of frames that arrive over the

time interval (0,t]. Similarly, a3(t) gives the number of output

frames corresponding to a1(t), respectively, over the interval

(0,t].
To model the buffer refresh at the input buffer, we use a

virtual processor Pv that serves as an admission controller, as

shown in the bottom part of Figure 5. The virtual processor

Pv splits the input stream a1(t) into two disjoint streams: the

former, a2(t), contains the frames that will go through the

system, and the latter, a′2(t), contains the frames that will be

dropped, such that there are no overflows at the buffer.

B

PE

β

…input

stream

finite buffer

PE

β

…input

stream

infinite

Pv

virtual processor

a
1
(t) a

2
(t) a

3
(t)

a
2
(t)′dropped

frames

a
1
(t) a

3
(t)

drop modeling

Fig. 5. Modeling systems with drop due to buffer overflow.

Based on this transformed system, we give the relationship

between a1(t) and a2(t), and the bounds on a3(t), stated

by Lemma 4.1 and 4.2. The (min,+) convolution ⊗ and

deconvolution � operators are defined as:
(

f ⊗g
)

(t) = inf
{

f (s)+ g(t− s) | 0≤ s≤ t
}

,
(

f �g
)

(t) = sup
{

f (t + u)−g(u) | u≥ 0
}

.

Similarly, the (max,+) convolution ⊗ and deconvolution �
operators are defined as:

(

f⊗g
)

(t) = sup
{

f (s)+ g(t− s) | 0≤ s≤ t
}

,
(

f�g
)

(t) = inf
{

f (t + u)−g(u) | u≥ 0
}

.

In what follows, g∗ denotes the sub-additive closure of g,

defined by g∗= min
{

gn | n≥ 0
}

, where g0(0) = 0 and g0(t) =
+∞ for all t > 0, and gn+1 = gn ⊗ g for all n ∈ N, n ≥ 0.

Further, I denotes the linear idempotent operator, i.e.,

Ia1
(x)(t) = inf

0≤s≤t

{

x(s)+ a1(t)−a1(s)
}

.

Lemma 4.1: Suppose f is the mapping from a2(t) to a3(t),
i.e., a3 = f (a2). Then, a2 =

(

Ia1
◦ (f + B)

)∗
(a1).

Lemma 4.2: Consider the system in Figure 5. Denote α as

the arrival curves of the input stream, β as the service curves

of the PE, and B as the size of the buffer. The output stream

of the system is bounded by the arrival curves α ′ = (αu′ ,α l′),
defined by

αu′ = min
{(

αu⊗β u
eff

)

�β l
eff , β u

eff

}

,

α l′ = min
{(

α l�β u
eff

)

⊗β l
eff

, β l
eff

}

.

where

β u
eff

=
(

αu⊗β u + B
)∗
⊗αu⊗β u

β l
eff =

(

α l⊗β l + B
)∗
⊗αu⊗β l.

Based on the above results, Lemma 4.3 gives the bounds on

the dropped input frames.

Lemma 4.3: Suppose α = (αu,α l) are the arrival curves of

an input stream, β = (β u,β l) are the service curves of the PE,

and B is the size of the input buffer. Then, the number of input

frames that can be dropped over any interval of length ∆≥ 0

is upper bounded by αu
drop(∆), defined by

αu
drop = (αu−β l

v)⊗ 0

where β l
v

def
= (α l ⊗β l + B)∗⊗αu.

Lemma 4.4: Define α , β , B and αdrop as in Lemma 4.3.

Denote δ u(k) = min{∆≥ 0 | α l(∆)≥ k} and δ l(k) = min{∆≥
0 | αu(∆)≥ k} for all k ∈N. Then, for any given non-negative

integer k, the number of frames that can be dropped over any

k consecutive input frames is upper bounded by αu
dropF(k),

where

αu
dropF(k)

def
= min{k,(αu

drop ◦ δ u)(k)}, (4)

All the lemmas are proved in [5].

Multiple buffers case. Consider a system consisting of m

PEs (as shown in Fig. 6). The input stream that is processed

by a sequence of m PEs, PE1, . . . ,PEm, where the input buffer

at PEi has a finite capacity of Bi (frames). The arrival curves

of the input stream and the service curves of PEi are denoted

by α1 and βi, respectively, as illustrated in Fig. 6. Given such

architecture, we would like to compute the maximum bounds

on the total number of frames that are dropped within the

system.

insufficient

 buffer

…input

stream

B1

α
β1 βm

B2 Bm

fully processed

output stream

PE1 PEm

α1
′ αm-1′ αm

′

insufficient

 buffer

insufficient

 buffer

Fig. 6. A sequence of PEs with insufficient buffers.

Since the frames that are dropped at the PEs are disjoint,

the number of frames that are dropped in the system is the

total number of frames that are dropped at each PE. The

maximum number of the frames that are dropped at PE1 over

any interval of a given length ∆, denoted by N1
∆, is derived

using Lemma 4.4. The maximum number of frames Ni
∆ that

are dropped over any interval of length ∆ at each subsequent

PEi for all 2 ≤ i ≤ m, can be computed in a compositional

manner: first, compute the output arrival curves α ′i−1 after

being processed by PEi−1 by applying Lemma 4.2; then,

compute the drop bounds Ni
∆ at PEi using Lemma 4.4, with

α ′i−1 as the input arrival curves, βi as the service curves and

Bi as the input buffer size. We repeat this process until we

reach the last PE. The maximum number of input frames that

are dropped within the system over any interval of length ∆ is

then the summation of all the computed drop bounds, which

is given by N1
∆ + · · ·+ Nm

∆ .

V. WORST-CASE BOUND ON QUALITY

In the previous section, we presented how the bounds are

computed for dropped frames. In this section, we use this

bound to compute the worst-case quality in terms of PSNR.

In order to find the worst-case quality for a video clip, we

need to construct a worst-case quality 3-D space as shown

in Fig.3. This is a surface that maps the frame interval based

drop bound from the previous section to a frame interval based

quality bound. Let us denote this mapping function as Qu

and the frame interval based quality bound as qu. Then the

mapping can be depicted as Qu : αu
dropF → qu. However, in

order to perform this mapping, the worst-case quality surfaced

Qu needs to be constructed. We construct this surface by

taking consecutive frame intervals as windows. For each frame

interval in the entire video, we find the maximum noise error

experienced if any number of frames upto the frame window

size is lost. This quantity is architecture independent and

depends only on the nature of the clip.

The maximum deviation among the dropped frames and the

possible concealment frames are computed in terms of the

mean squared error (MSE) given by

MSEavg =
(MSE r + MSE g + MSE b)

(3×W ×H)
(5)

where MSE r/g/b =
Ndrop−1

∑

n=0

(MSE r/g/b)n. MSE r/g/b)n is

the deviation for red/green/blue pixels due to a dropped frame.

The MSE for red pixel is given by

(MSE r)n =

W−1
∑

w=0

H−1
∑

h=0

(rd(h,w,n)− rc(h,w,n))2
(6)

where rd is the red pixel intensity of the dropped frame and

rc is the red pixel intensity of the concealment frame (imme-

diately preceding frame that was successfully processed). h, w

and n are the height, width and frame drop number indices.

Similar explanations hold true for MSE g and MSE b. W and

H are the horizontal and vertical resolution of each frame

in the video. Ndrop is the number of frames dropped in the

sequence. Finally, the PSNR value of a video sequence with

frame drops is expressed as

psnr = 10× log10
(255×255×Ntot)

(MSEavg)
(7)

where Ntot is the total number of frames in the video sequence.

In our case, we slide the frame interval window from 1→Ntot .

Within each frame interval window F , we find the worst-case

PSNR value or the highest MSE value from Equation.5 for

I P B B P B B P B B P B B P . . .

1 2 3 4 5 6 7 8

Fig. 7. GOP decoding order with possible replacements for B frames
if dropped.

every value f , such that 0≤ f ≤ F . Here f is the number of

frames that were dropped in the frame interval F . Therefore,

we construct the worst-case quality surface Qu(f ,F). This

procedure is shown in Algorithm 2.

The MSEmax structure containing the maximum MSE values

for B frames is calculated taking all possible concealment

frames into consideration. For example, let us take the order

of frames in group of pictures (GOP) as shown in Fig. 7. In

particular, for the 4th B frame, there are three different possible

concealment frames. If the 3rd B frame is not dropped, then

it will replace the 4th B frame. If the 3rd B frame is dropped,

then the P/I frame will replace 4th B frame in that order. Since

P frames are not dropped in our setting, P frame replaces the

4th B-frame if the 3rd B frame is lost. Therefore, MSEmax is

constructed taking all such possible concealment frames.

Lines 1 and 2 record the indices of the B frame in the GOP

decoding order and then sort the frames in decreasing order

of the MSE values in MSEmax structure, while retaining the

original indices after sorting. For each frame interval window

F , the frame index ranges from i to i + F− 1 where i is the

variable used for sliding across the video clip. We search for

the F frames within this index range from the sorted MSE

structure shown as MSEmaxsort (Line 3). We slide the window

across the entire video clip and find the F frames for each

i. These quantities are stored in the structure MSEmax(i,n,F)
where 0≤ n≤ F . The upper bound on MSE is then computed

by searching for the maximum value across all windows of size

F and for every drop count f which ranges from 0 ≤ f ≤ F

(Line 4). Once the upper bound MSEu(f ,F) is computed, the

worst-case quality surface Qu(f ,F) can be computed as given

Algorithm 2 Computing worst-case quality surface for a video

clip

Input: MSEmax - Maximum MSE values for B frames if

replaced by possible preceding I/P frames. MSE values

for I/P frames are set to 0.

Output: Qu(f ,F) - Worst-case quality surface, f is the num-

ber of frames dropped in a frame interval of F

1: Record the frame indices

2: Sort MSEmax structure in descending order preserving the

frame indices →MSEmaxsort

3: Find F values within frame index range i to (i+F−1) in

MSEmaxsort : ∀i,∀F and 1 ≤ i≤ Ntot −F + 1 and 0 ≤ F ≤
Ntot →MSEmaxF(i,n,F) where 0≤ n≤ F

4: MSEu(f ,F) = max
∀i

{

f
∑

n=0

MSEmaxF(i,n,F)
}

5: Qu(f ,F) = 10× log10
(255×255×F)
(MSEu(f ,F))

in Line 5.

It can be observed from Algorithm 2 that the time complex-

ity of computing worst-case quality surface is O(N3
tot).

VI. CASE STUDY (MPEG-2 DECODER)

In this section, we evaluate our proposed analytical frame-

work using an MPEG-2 decoder application. In this case study,

the MPEG-2 decoder tasks are mapped onto the two PEs in

the MPSoC architecture shown in Fig. 2. The tasks mapped

are Variable Length Decoding (VLD), Inverse Quantization

(IQ), Motion Compensation (MC) and Inverse Discrete Cosine

Transform (IDCT). VLD and IQ are mapped to PE1 while MC

and IDCT are mapped to PE2. According to our setup, each

buffer in Fig. 2 is composed of two buffers (as shown in Fig. 4)

to separate the B frames from I/P frames. We only analyze the

drops for B frames and therefore, we analyze only the B frame

buffer. The buffer used for I/P frames is not analyzed here

because it can be done using conventional Network Calculus

techniques ([2]). PE1 is allocated a frequency of 40 MHz,

whereas PE2 is allocated a frequency of 100 MHz. The various

B frame buffer sizes used in the first stage are set to be 30

frames, 60 frames, 90 frames, 120 frames and 150 frames. The

B frame buffer sizes used in the second stage are the same as

in the first stage. However, the analysis of drops in the second

stage is done by fixing the first stage buffer size to 90.

The cycle requirements for each task on the model of a

processor was obtained using the SimpleScalar simulator ([1]).

Here, we use a MIPS-like processor model using the Portable

instruction set architecture (PISA). We use three MPEG-2

video clips in our experiments, namely, susi 080, time 080

and orion 2. The first two videos are taken from [12], where

both have a total of 450 frames, i.e., Ntot = 450 with 1320

macroblocks (MBs) in each frame. The first clip is a motion

video and the second one is a still video. The third video, taken

from [13], is a combination of both motion and still frames.

It has a total of 1171 frames, i.e., Ntot = 1171 with 1350 MBs

in each frame. All the three video clips have a bit rate of 8

Mbps.

A. First stage results

The first stage involves computing the drop bounds of

the B frame buffer at PE1 (denoted by B f in1), which is

of size Bmax1. The arrival curves at the input of B f in1 are

α f in1 = [αu
f in1,α

l
f in1] as computed in Section 3. Similarly,

the service curves offered to the frames in B f in1 are

β f in1 = [β u
f in1,β

l
f in1].

Arrival curve, virtual processor service curve and drop

bound (in time intervals): Fig. 8 shows the upper arrival

curves of the B frames (αu
f in1) and the lower service curve of

the virtual processor (β l
v1) for the three clips (computed using

the techniques in Section 4). The worst case drop bound,

αu
drop1, obtained as a result of Lemma 4.3 is also shown

in the three plots. In this experiment, Bmax1 = 90, which

is in frames. It can be observed from the plots that, until

a certain time interval, the drop bound is zero. After that

interval, however, the drop bound increases. This is expected

� � � � � � � � � � � � � � � � �	
 ��

� � �� � �� � �� � �

� � � � � � � � � ! " # � � � $ � % &' ()* +,-./ ,0)+1 ®ufin1

¯lv1

®udrop1 2 3 4 4 4 5 6 6 6 6 7 8 9 9 9:; <= > >? @ AB C CD E FG H H

I J K L M N O L P Q R S T J N K U L V WX YZ[\]̂_̀]aZ\b ®ufin1

¯lv1

®udrop1 c d e f g h i j k l m n op q r stu v vw x xy z z{ | |} ~ ~� � �� � �� � �

� � � � � � � � � � � � � � � � � � � �� ��� ����� ����� ®ufin1

¯lv1

®udrop1

(a) (b) (c)

Fig. 8. Generation of time interval based drop bound curves (αu
drop

) from the upper arrival (αu) and lower virtual processor service (β l
v)

curves. Here Bmax = 90. The three plots are for clips (a) time 080, (b) susi 080 and (c) orion 2.

� ¡ ¡ ¢ £ £ ¤ ¥ ¥ ¦ § § ¨ © ©ª« ¬­ ®¯ °± ²³ ´ ´

µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿À Á ÂÁÃÃ ÄÅÆÇÈ ÄÁÉÊ Ë Ì Í Î Ï Ð Ñ Ò Í Î Ó Ô Õ Ö × Ø Ù Ô Ú ÛÜ Ý Þ ß à á â ã ä Ý Þ ß à å æ ç è
é ê ë ë ì í í î ï ï ð ñ ñ ò ó óôõ ö÷ ø øù ú ûü ý ý

þ ÿ � � � � � � � � �	
 �
��
����

�� � � � � � � � � � � � � � � ! " � # $% & ' () * + , % & ' () * - . , / 0 1 1 2 3 3 4 5 5 6 7 7 8 9 9 9 : ; < <=> ? ?@ A AB C CD E EF G GH I I
J K L M N O P Q R S TU V WVXX YZ[\] YV̂_ ` a b c d e f g b c h i j k l m n i o pq r s t u v w x q r s t u v y z x

(a) (b) (c)

Fig. 9. Comparison of Analytical and Simulation results of worst-case drop bound for two buffer capacities. The three plots are for clips
(a) time 080, (b) susi 080 and (c) orion 2.

{ | } ~ � �
(a) (b) (c)

Fig. 10. Worst case quality surface (Qu in dB) for the clips (a) time 080, (b) susi 080 and (c) orion 2.

because the buffer size of 90 frames is insufficient to avoid

buffer overflow. It is also seen that β l
v1 follows αu

f in1 until the

former rises above the buffer size. From there onwards, β l
v1

starts dropping behind αu
f in1 as frames are dropped. Another

interesting observation is that for still video time 080, β l
v1

is closer to αu
f in1 and hence, the drop bound is lower when

compared to clips susi 080 and orion 2. However, it is

interesting to notice that the video clip orion 2 has a higher

drop bound value than susi 080. This is because the service

required by the frames in orion 2 is higher than the the

service required by the frames in susi 080 as the former has

more macroblocks per frame.

Validation of drop bounds (in frame intervals) with sim-

ulation: We validate the drop bounds [αu
dropF1] computed

using our analytical framework with the ones obtained by

simulation. Here, the drop bound is in frame intervals and

not time intervals. Once αu
drop1 is computed, [αu

dropF1] can be

computed according to Lemma 4.4. We show the comparison

between simulation and analytical results for two buffer sizes,

Bmax1 = 60 and Bmax1 = 120. It is clear from Fig. 9 that the

analytical results emulate the simulation results very closely.

Our analytical results are a little pessimistic because they

consider the worst case in all the frame windows, whereas

the simulation result depicts only one continuous run. It is

also seen that [αu
dropF1] decreases as the buffer size increases,

which is expected. It is interesting to note that the difference

between simulation and analytical results is greater in orion 2

than in the other two videos. The reason for this behaviour is

that orion 2 is a larger clip and the variability in the required

service is larger. In the case of susi 080 and time 080, the

variability in required service is limited.

Worst-case quality surface: The worst-case quality surface

computed using Algorithm 2 is presented for the three clips in

Fig. 10. It is observed that the worst-case quality surface is an

exponential surface as it represents the PSNR value for various

frame drops within a frame interval. In all the Qu plots shown,

the PSNR value is highest when the least number of frames

are dropped in the largest frame interval. The PSNR surface

keeps falling from that point as the number of frames dropped

increases and the frame interval decreases. This surface is an

architecture independent feature of the video clips. According

to Fig. 10, time 080 has the highest Qu values among all the

video clips.

Comparison of qu with simulation results: The comparison

of frame interval based worst-case quality (qu) is presented

in Fig. 11(a), (b) and (c) for the three clips. The immediate

observation from the plots is that, for orion 2, there is a con-

siderable deviation of the analytical result from the simulation

results in the lower frame intervals. This is because the clip is

large and the analytical model considers the worst case across

the entire clip. On the other hand, the simulation based result

is the outcome of one continuous run. Therefore, if the worst

case does not occur in the beginning of the clip, the deviation is

large. However, the interesting point is that the curves converge

closer towards the higher frame intervals. Hence, it is useful

to use the higher frame intervals to explore the quality-buffer

design space because they help to reduce the overestimation

in buffer size required. However, even if overestimation exists,

buffer dimensions can be reduced for a lower tolerable quality

if the zero loss constraint need not be strictly adhered to.

Variation of worst-case quality with buffer size: The

variation of qu with buffer size is shown in Fig. 12. As is

expected, in Fig. 12(a), (b) and (c), qu values increase as the

maximum buffer capacity Bmax1 is increased. We explore the

variation for five buffer sizes as shown in Fig. 12. However,

it is interesting to note here that, in all the three curves, the

qu value rises infinitely at some frame interval value. This is

because below that frame interval, no frame drop is possible

with the corresponding buffer size and therefore, the quality

is maximum. As the first drop happens, the worst-case quality

reduces and assumes a finite value. Another interesting aspect

that this work highlights is shown clearly in Fig. 12. In the

higher frame intervals, the worst-case quality values are very

close to each other for different buffer sizes. This property

could be exploited to reduce buffer dimensions for a small

trade-off in qu. For example in Fig. 12(a), if 40− 45dB is

an acceptable value for qu, in a frame interval of 450, then

Bmax1 = 90 can be chosen rather than Bmax1 = 120 in order

to reduce the maximum buffer required. For an acceptable

qu = 30− 35dB, it is seen in Fig. 12(b) that the least buffer

size of 30 can be chosen for a frame interval of 450. Similar

tradeoffs are evident in the third curve as well.

B. Second stage

The second stage involves processor PE2 and again two

buffers. The frequency allocated to PE2 is 100 MHz. Again,

we do not consider the I/P frame buffer, but analyze drop

bounds for the B frame buffer only. Therefore, the resource

parameter that we include for the analysis of the second stage

is the buffer, labeled by B f in2, which has size Bmax2. The

arrival curves at the input of B f in2 are α f in2 = [αu
f in2,α

l
f in2] as

computed in Section 3. Similarly, the service curves offered

to the frames in B f in2 are β f in2 = [β u
f in2,β

l
f in2]. The detailed

results are presented in [5].

C. Buffer savings

In this analysis, we highlight the significance of our math-

ematical framework. The final goal of the framework was to

trade-off buffer size with quality. In the earlier results, we

have seen that as the maximum buffer capacity is reduced, the

quality reduces due to frame drops. However, if the resultant

quality after frame drops is within tolerable limits, we can

achieve significant savings in buffer. We present this result in

Table I. The savings shown consider drops only in the first

stage. We find the buffer saving using Bit l(Bnd)−Bitu(Bd).
Here, Bnd is the buffer size (in frames) required for no drops

and Bd is the buffer size (in frames) which allows drops within

the tolerable quality shown in Table I. Further, Bitu(F) and

Bit l(F) are the maximum and minimum number of bits in F

consecutive frames, respectively. It is known from multimedia

literature that a PSNR value of 30-50 dB is an acceptable

output quality. Hence, we vary the tolerable quality from 30-

40 dB in steps of 5 dB. The× symbol against the clip time 080

indicates that the quality never drops to 30 dB even if all the

B frames are dropped. We can see from Table I that time 080

shows more savings in terms of percentage when compared to

the other two video clips. This is because susi 080 and orion 2

require a higher buffer size (in terms of Megabits) without any

frame drops. Therefore, their savings (in percentage) is less.

TABLE I

BUFFER SAVINGS FOR THE THREE VIDEO CLIPS WITH QUALITY

VARIATION

Buffer savings
clip susi 080 time 080 orion 2

PSNR (in dB)

In Megabits
30 25.88 × 49
35 3.53 5.09 6.16
40 0.15 1.97 1.3

In percentage
30 28.6% × 29.1%
35 3.9% 39.4% 3.6%
40 0.16% 15.5% 0.77%

VII. CONCLUDING REMARKS

In this paper, we study the effects of frame drops in a
multiprocessor system-on-chip platform running video de-
coder applications. Towards this objective, we propose a novel
mathematical model to compute the worst-case drop bound
in a MPSoC architecture with finite buffers. This analytical

� � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � �� ¡ ¢ £ ¤ ¥ ¦ §
¨ © ª « ¬ ­ ® ¯ ¬ © ° ª ±² ³́µ¶ ·¹̧µº»¼¹½¾¶ ¿À¾ ÁÂÃÄ

Å Æ Ç Ç È É É Ê Ë Ë Ì Í Í Î Ï ÏÐ ÑÒ ÓÔ ÕÖ ×Ø ÙÚ Û Ü Ý Þ ß à á â ã Þ ßä å æ ç è é ê å ë ì
í î ï ð ñ ò ó ô ñ î õ ï ö÷ øùúû üýþúÿ��þ��û ��� ���	

 � � �
 � � � � � � � � � � � � � � � �� �� �� �� � !" #$ $% & ' () * + , - .) */ 0 1 2 3 4 5 0 6 7
8 9 : ; < = > ? < 9 @ : AB CDEF GHIEJKLIMNF OPN QRST

(a) (b) (c)

Fig. 11. Comparison of analytical and simulation results of worst-case quality (qu) for Bmax1 = 30 for three clips (a) time 080, (b) susi 080
and (c) orion 2.

U V W W X Y Y Z [[\]]^ _` ab cd ef fg h

i j k l m n o p m j q k rs tu vw xyzv{| }z~�w ��� ���� � ������� � ������� � ������� � � ¡¢£¤¥¦ § ©̈ª«¬­®̄
° ± ² ² ³ ´ ´ µ ¶ ¶ · ¸ ¸¹ º» ¼½ ¾¿ ÀÁ Â

Ã Ä Å Æ Ç È É Ê Ç Ä Ë Å ÌÍ ÎÏÐÑ ÒÓÔÐ ÕÖ ×ÔØÙÑ ÚÛÙ ÜÝÞß à áâãäåæç è éêëìíîï ð ñòóôõö÷ ø ùúûüýþÿ� � �������	

 � � �
 � � � � � � � � � � � �� �� �� �� �� �

� ! " # $ % & # ' ! () *+,- ./0,12 3045- 67 5 89:; < = > ? @ A B CD E F G H I J KL M N O P Q R ST U V W X Y Z [\] ^ _ ` a b c d e

(a) (b) (c)

Fig. 12. Variation of worst case quality (qu) with different buffer sizes for the clips (a) time 080, (b) susi 080 and (c) orion 2.

model helps in exploring the buffer-quality design space by
analyzing the worst-case quality when frames are dropped.
One important aspect of this work is that we can explore the
buffer-quality design space by trading off a significant buffer
area for a tolerable loss in quality. In future, we would like to
use our analytical framework to explore trade-offs with other
important system parameters like peak temperature.

REFERENCES

[1] T. M. Austin, E. Larson, and D. Ernst. Simplescalar: An infrastructure
for computer system modeling. IEEE Computer, 35(2):59–67, 2002.

[2] J. Y. Le Boudec and P. Thiran. Network Calculus: A Theory of

Deterministic Queuing Systems for the Internet, volume LNCS 2050.
Springer, 2001.

[3] M Coenen, S. Murali, A. Radulescu, K. Goossens, and G. D. Micheli.
A buffer-sizing algorithm for networks on chip using tdma and credit-
based end-to-end flow control. In 4th International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS),
pages 130–135, 2006.

[4] A. Dua and N. Bambos. Buffer management for wireless media
streaming. In GLOBECOM, pages 5226–5230, 2007.

[5] D. Gangadharan, L. T. X. Phan, S. Chakraborty, R. Zimmermann, and
I. Lee. Technical report. http://eiger.ddns.comp.nus.edu.
sg/pubs/TRC6-11.pdf.

[6] J. Hu, U. Y. Ogras, and R. Marculescu. System-level buffer allocation for
application-specific networks-on-chip router design. IEEE Transaction

on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
25(12):2919–2933, 2006.

[7] D. Isovic and G. Fohler. Quality aware mpeg-2 stream adaptation in
resource constrained systems. In 16th Euromicro Conference on Real-

Time Systems (ECRTS), pages 23–32, 2004.

[8] M. Kalman, E. G. Steinbach, and B. Girod. System-level buffer
allocation for application-specific networks-on-chip router design. IEEE
Transactions on Circuits and Systems for Video Technology, 14(6):841–
851, 2004.

[9] A. Maxiaguine, S. Chakraborty, and L. Thiele. Dvs for buffer-
constrained architectures with predictable qos-energy tradeoffs. In 3rd

International Conference on Hardware/Software Codesign and System

Synthesis (CODES+ISSS), pages 111–116, 2005.
[10] A. Maxiaguine, S. Kunzli, S. Chakraborty, and L. Thiele. Rate analysis

for streaming applications with on-chip buffer constraints. In 9th Asia

and South Pacific Design Automation Conference (ASP-DAC), pages
131–136, 2004.

[11] A. Maxiaguine, S. Kunzli, L. Thiele, and S. Chakraborty. Evaluating
schedulers for multimedia processing on buffer-constrained soc plat-
forms. IEEE Design & Test of Computers, 21(5):368–377, 2004.

[12] Mpeg-2 benchmark videos. ftp://ftp.tek.com/tv/test/

streams/Element/MPEG-Video/625/.
[13] Hubblesource mpeg benchmark videos. http://hubblesource.

stsci.edu/sources/video/clips/index_2.php.
[14] A. Nandi and R. Marculescu. System-level power-performance analysis

for embedded systems design. In 38th Design Automation Conference

(DAC), pages 599–604, 2001.
[15] B. Raman, S. Chakraborty, O. W. Tsang, and S. Dutta. Reducing data-

memory footprint of multimedia applications by delay redistribution. In
44th Design Automation Conference (DAC), pages 738–743, 2007.

[16] J. Ray and P. Koopman. Data management mechanisms for embedded
system gateways. In DSN, pages 175–184, 2009.

[17] W. Tu, W. Kellerer, and E. Steinbach. Rate-distortion optimized video
frame dropping on active network nodes. In Packet Video Workshop,
2004.

[18] G. Varatkar and R. Marculescu. Traffic analysis for on-chip networks
design of multimedia applications. In 39th Design Automation Confer-

ence (DAC), pages 795–800, 2002.
[19] A. Vishwanath, P. Dutta, M. Chetlu, P. Gupta, S. Kalyanaraman, and

A. Ghosh. Perspectives on quality of experience for video streaming over
wimax. ACM SIGMOBILE Mobile Computing and Communications

Review, 13(4):15–25, 2010.
[20] L. Zhang and H. Fu. Dynamic bandwidth allocation and buffer

dimensioning for supporting video-on-demand services in virtual private
networks. Computer Communications, 23(14-14):1410–1424, 2000.

	University of Pennsylvania
	ScholarlyCommons
	8-2011

	Video Quality Driven Buffer Sizing via Frame Drops
	Deepak Gangadharan
	Linh T.X. Phan
	Samarjit Chakraborty
	Roger Zimmermann
	Insup Lee
	Recommended Citation

	Video Quality Driven Buffer Sizing via Frame Drops
	Abstract
	Disciplines
	Comments

	D:/academic/research/RTCSA11/RTCSA11.dvi

