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Abstract
Recent years have seen the emergence of a new programming paradigm for Web applications that emphasizes
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libraries to achieve function and software reuse. With JavaScript code mashup, external libraries are usually
given full privileges to manipulate data of the mashup application and executing arbitrary code. This imposes
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One major causes for these trust problems is that the mashup developers tend to focus on the functional
aspects of the application and implicitly trust the external code libraries to satisfy security, privacy and other
non-functional requirements. In this paper, we present ToMaTo, a development tool that combines a novel
trust policy language and a static code analysis engine to examine whether the external libraries satisfy the
non-functional requirements. ToMaTo gives the mashup developers three essential capabilities for building
trustworthy JavaScript code mashup: (1) to specify trust policy, (2) to assess policy adherence, and (3) to
handle policy violation. The contributions of the paper are: (1) a description of JavaScript code mashup and
its trust issues, and (2) a development tool (ToMaTo) for building trustworthy JavaScript code mashup.
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ABSTRACT
Recent years have seen the emergence of a new program-
ming paradigm for Web applications that emphasizes the
reuse of external content, the mashup. Although the mashup
paradigm enables the creation of innovative Web applica-
tions with emergent features, its openness introduces trust
problems. These trust issues are particularly prominent in
JavaScript code mashup – a type of mashup that integrated
external Javascript libraries to achieve function and soft-
ware reuse. With JavaScript code mashup, external libraries
are usually given full privileges to manipulate data of the
mashup application and executing arbitrary code. This im-
poses considerable risk on the mashup developers and the
end users.

One major causes for these trust problems is that the
mashup developers tend to focus on the functional aspects
of the application and implicitly trust the external code li-
braries to satisfy security, privacy and other non-functional
requirements. In this paper, we present ToMaTo, a develop-
ment tool that combines a novel trust policy language and a
static code analysis engine to examine whether the external
libraries satisfy the non-functional requirements. ToMaTo
gives the mashup developers three essential capabilities for
building trustworthy JavaScript code mashup: (1) to spec-
ify trust policy, (2) to assess policy adherence, and (3) to
handle policy violation. The contributions of the paper are:
(1) a description of JavaScript code mashup and its trust
issues, and (2) a development tool (ToMaTo) for building
trustworthy JavaScript code mashup.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based Ser-
vices; C.2.0 [Computer-Communication Networks]: Gen-
eral—Security and protection (e.g., firewalls)

∗This research was supported in part by ONR MURI
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General Terms
Design, Languages, Verification

Keywords
Mashup, Trust, JavaScript, Code Analysis

1. INTRODUCTION
A popular Web programming paradigm, the mashup, has

been widely adopted to quickly develop new Web applica-
tions by reusing existing third-party content. The word
“mashup” also refers to a hybrid Web application that com-
bines content from two or more sources to create a new ser-
vice(s). Examples of mashup include third-party advertise-
ments in web pages, Web widgets in portal sites such as
iGoogle, and external code libraries. For instance, mlb.com,
a mashup that presents information about Major League
Baseball, uses jQuery JavaScript libraries [13] for visual ef-
fects, services from omnitrue.com for Web traffic analysis,
and advertisements from doubleclick.net.

External content is usually accessible through certain form
of application programming interface (API). The APIs used
in mashup can be classified into two categories: data-centric
and code-centric. Data-centric APIs often serve as an infor-
mation source for mashup applications. For example, news
and video feeds are often considered to be data-centric. In
contrast, code-centric APIs focus on providing specific func-
tionality and software reuse for mashup applications. Exam-
ples include visualization and presentation libraries, such as
YUI [25] and jQuery UI [13]. There also exist external APIs
that are both data and code centric. They can be viewed as
the hybrid of the two categories, and examples include the
Google Map API [9] and the AdSense API [8].

Although the mashup paradigm simplifies the creation of
new Web applications, this openness to external content
also creates new vulnerabilities. In this paper, we focus on
examining the trust issues associated with JavaScript code
mashups – a specific type of code-centric mashup that uti-
lizes JavaScript. A JavaScript code mashup is a Web appli-
cation that integrates functionalities from external JavaScript
libraries (often developed by third-party) to build a new
service(s). To create a JavaScript code mashup, developers
identify JavaScript libraries to use as basic building blocks
for their mashup, utilize the libraries to create an integrated
application, and finally test and publish the mashup. It
is important to note that the current development prac-
tice is often function-driven. That is, the developers focus



on choosing code libraries that meet the functional require-
ments of their mashup(s). Consequently, the developers im-
plicitly trust the code libraries to satisfy security, privacy
and other non-functional requirements.

This blind trust in the external libraries used by mashup
applications is problematic. As demonstrated in [24], 66.4%
of 6805 popular mashup sites include external JavaScript
libraries into the top-level document of their Web pages.
These external libraries have full privileges to manipulate
data and can execute arbitrary JavaScript code. As a result,
the information security of these mashups is a serious cause
for concern [2]. For example, external libraries can manip-
ulate or leak cookies belonging to the mashup site, which
may lead to serious confidentiality (privacy) violations [12].
Further, a malicious external script can potentially navigate
the end user’s browser to an elaborately designed phishing
site, tampering with the integrity of the mashup application.

Motivated by these observations, we propose ToMaTo, a
Trustworthy code Mashup development Tool. ToMaTo al-
lows mashup developers to specify trust policies that capture
the information security requirements over external JavaScript
libraries used in their mashup applications. The semantics of
the trust policy are expressive, which control access to criti-
cal function invocations and protect memory access. Taking
the trust policy and the mashup application code as its in-
put, ToMaTo evaluates each external library for its policy
adherence. The evaluation process uses static code analysis
to extract useful program information (e.g., call graph, alias
information) and combines with an information flow solver
to identify potential policy violations. The policy evalua-
tion process is sound, and ToMaTo will trigger warnings to
pinpoint all the potential policy violations. The mashup
developers can then use the warning information to design
corresponding countermeasures to avoid or minimize the po-
tential trust issues. The principal contributions of the paper
are: (1) a description of JavaScript code mashup and its
trust issues, (2) a development tool for building trustwor-
thy JavaScript code mashup by combining a novel policy
description language and a static code analysis-based policy
adherence assessment engine.

The remainder of the paper is organized as follows. The
formal definitions of JavaScript code mashup and other im-
portant notions are introduced in Section 2. Section 3 de-
scribes the problem statement and an overview of our ap-
proach. The detailed system design of ToMaTo is presented
in Section 4, including the trust policy language, the policy
adherence assessment process, and the handling of policy vi-
olation. Related work is briefly surveyed in Section 5, and
Section 6 concludes the paper.

2. BACKGROUND
In this section, we first describe the basics of JavaScript

and the Document Object Model (DOM), and define the
basic terminologies that we use in the rest of the paper.
Finally, the life cycle of JavaScript code mashup is discussed.

2.1 JavaScript and DOM Basics
JavaScript is an implementation of the ECMAScript lan-

guage standard [7], and it is widely supported by Web browsers
to enhance Web pages dynamics. JavaScript is designed to
be a prototype-based, object-oriented language with first-
class function support and many other dynamic features.

The Document Object Model (DOM) is a language-neutral

and platform-independent interface that allows programs
and scripts to dynamically access and update the content,
the structure, and the style of documents [5]. DOM is also
well-supported by most Web browsers and represents every
HTML document as a tree structure. An example DOM tree
is illustrated in Figure 1. Every HTML element, attribute,
and embedded text has a corresponding node in the DOM
tree. The DOM tree can be modified through DOM APIs
that the scripting languages can utilize.

Figure 1: Example of DOM Node Tree

2.2 Definitions
A node in the DOM tree representation of an HTML page

is called JavaScript node if (1) it has the value script in
its tag name, and (2) it has a child node of attribute type

with value “text/JavaScript”. The code contained within a
JavaScript node can be either in-line or linked. The code
is considered in-line, if the script is explicitly embedded in
child node. On the other hand, the code is considered linked
if it is hosted on a remote server whose location URL is speci-
fied as the value of a child node with attribute src. In either
case, one can establish a bijection between a piece of script
and a DOM node that contains the concrete code or its loca-
tion information. Figure 2 shows an example of JavaScript
node.

Figure 2: Example of JavaScript Node and Script
Code Embedded

Further, the creation of a JavaScript node and its child
node can be either static or dynamic. If all the information
contained in a JavaScript node and its children is explic-
itly encoded within HTML, then we say it is statically cre-
ated. Otherwise, the creation is considered to be dynamic,
which is often the result of executing other JavaScript code.
For example, by invoking the DOM API, such as docu-

ment.write, appendChild or setAttribute, one can create
new JavaScript nodes or modify information contained in
existing nodes.

JavaScript code can also be characterized by its origin,
which is either: internal or external. JavaScript code is de-
fined to have an internal origin, if it meets one of the follow-



ing conditions: (1) it is in-line and statically created; (2) it
is linked with the corresponding src attribute pointing to
a host, which is under the control of the mashup developer
(i.e., not third-party); or (3) it is in-line, but was dynam-
ically created through the execution of another script with
internal origin. Otherwise, we consider the JavaScript code
to have an external origin. An HTML page is defined to be a
JavaScript code mashup, if and only if, any JavaScript code
contained in the DOM tree has an external origin. Please
note that in the rest of the paper, we will use the terms
JavaScript code mashup and code mashup interchangeably.

As we can see, using linked script with the corresponding
src attribute pointing to externally hosted JavaScript code
is the only way to start the inclusion of external JavaScript
code in a mashup. Such external JavaScript code is often
encapsulated in text files to facilitate further reuse under
current Web programming practices. Thus, we take advan-
tage of this convention to define the notion of JavaScript
library as a collection of JavaScript code, uniquely identified
by their source URL, that independently provides function-
alities or services through well-defined APIs. In this pa-
per, we do not consider the dependencies between different
JavaScript code libraries explicitly. Instead, we assume that
it is the mashup developer who will have the domain knowl-
edge to handle this issue by including all the libraries within
a dependency closure, in proper order.

2.3 Mashup Life Cycle
The life cycle of a JavaScript code mashup can be di-

vided into two parts – design phase and execution phase –
as illustrated in Figure 3. In the design phase, the mashup
developer identifies a set of external JavaScript libraries that
serve as building blocks for the mashup application. By in-
cluding these libraries as linked scripts, the developer sets
the stage for constructing the mashup. Finally, the mashup
developer writes HTML or JavaScript code to integrate all
the building blocks in a meaningful way to provide the de-
sired service(s).

Figure 3: JavaScript Code Mashup Life Cycle

It is important to note that the design phase only de-
fines the logical skeleton of a mashup, the concrete code
fusion only occurs during the execution phase. To execute a
mashup, the end user’s browser fetches all the linked scripts
from their respective external sources, puts them into the

same code space within the browser’s JavaScript interpreter,
and executes the code as specified. This client-side mashup
execution has two main advantages: (1) it saves CPU, band-
width, and other resources for the mashup host’s server by
pushing the computation to end users; and (2) it enables the
mashup to always use the most recent version of the external
libraries with only minimal source modifications.

3. PROBLEM STATEMENT & APPROACH
OVERVIEW

In this section, we discuss the problem space of building
trustworthy JavaScript code mashup and present an overview
of our approach to address the problem.

3.1 Problem Statement
The status quo development strategy of JavaScript code

mashups is often function-driven. This implies a strong trust
by mashup developers on the external JavaScript libraries,
especially as it relates to satisfying non-functional proper-
ties. However, given the potential for external code libraries
to be buggy or even malicious, one needs to provide mashup
developers a way to validate their trust assumptions. Cur-
rently, there is no convenient way for the mashup devel-
opers to (1) explicitly specify various trust requirements
(e.g., information security requirement) over different exter-
nal libraries, and (2) soundly evaluate whether an external
JavaScript library meets these trust requirements.

Therefore, the principle problem being addressed in this
paper is to evaluate the trustworthiness of external JavaScript
libraries, with respect to preserving the information security
requirements of the mashup developers. Note that, we fo-
cus solely on the design phase of the mashup life cycle in
this work. Execution phase related trust issues are future
work and beyond the scope of this paper. Further, other
non-functional properties such as quality-of-service, perfor-
mance, and reliability, though important, are not addressed
herein.

3.2 Approach Overview
In this paper, we propose ToMaTo, a Trustworthy code

Mashup development Tool. ToMaTo assists the mashup de-
velopers with three important capabilities: (1) Trust Policy
Specification: using an expressive but intuitive trust policy
language to capture mashup developers’ information secu-
rity requirements over external JavaScript libraries (see Sec-
tion 4.1); (2) Policy Adherence Assessment: soundly evalu-
ating external JavaScript libraries for their adherence to a
trust policy, and triggering warnings that pinpoint all the
potential trust violations (see Section 4.2) ; (3) Policy Vio-
lation Handling: enabling mashup developers to plan ahead
and to handle the potential trust problems before publishing
their mashup application (see Section 4.3).

4. TOMATO SYSTEM DESIGN
In this section, we provide a detailed discussion of the

ToMaTo tool. Figure 4 illustrates the principal workflow.
After a prototype of the mashup application has been built,
the mashup developer can make use of ToMaTo by provid-
ing three inputs: (1) the mashup application source code;
(2) the URLs of the JavaScript libraries that are considered to
be external; and (3) the mashup developer’s trust policy re-
garding the privileges granted to different external libraries.



Figure 4: ToMaTo Workflow for Developing Trustworthy JavaScript Code Mashup

The trust policy is expressed as a set of behavior-limiting
rules over security-critical JavaScript data structures or op-
erations that need to be protected. ToMaTo then fetches
all the JavaScript libraries and performs static code anal-
ysis over the entire mashup code space according to the
trust policy. The code analysis is sound (i.e., it only suf-
fers from false positives) and triggers warnings for two types
of problems: (1) code sections that potentially violate the
trust policy, and (2) code sections that enable dynamic code
injection during the execution phase (e.g., the invoking of
reflective function eval). To handle the warnings triggered,
the mashup developer has three options: (1) avoid the po-
tential problems by replacing the problematic libraries with
alternatives that adhere to the trust policy; (2) avoid the po-
tential problems by carefully skipping the execution of the
problematic code sections; and (3) minimize the potential
trust issues by handling them with customized countermea-
sures. We now describe the policy language, assessment and
violation handling in more detail.

4.1 Trust Policy Language
<principal id="URL">

DefaultPrivilege
<function id="FunctionID">

FuncPrvilege
</function >
<object id="ObjectID">

InfoSecPrivilege
</object >
<domnode >

InfoSecPrivilege
<domattribute >

InfoSecPrivilege
</domattribute >
<domproperty id="PropertyName">

InfoSecPrivilege
</domproperty >

</domnode >
</principal >

Listing 1: Trust Policy Markup Language Syntax

We propose a Trust Policy Markup Language (TPML) for
mashup developers to encode their trust requirements over
the external JavaScript libraries. The TPML adopts the

Extensible Markup Language (XML) syntax as shown in
Listing 1. The mashup developer will use TPML to specify
trust policy in a top-down fashion. One starts with the most
coarse-grained rules and continues refining them with more
fine-grained ones. We believe that this top-down scheme
can guide the mashup developer to specify an accurate and
complete policy set. In total, the TPML have six basic policy
elements:

4.1.1 The principal Element
The principal policy element encodes the default rule

for external JavaScript libraries. The other five policy ele-
ments are children of the principal element, and they fur-
ther refine the default rule. The principal element has
an id attribute to uniquely identify an external JavaScript
library. We use the url of the external library for this pur-
pose. For example, the id of the Google Analytics API is
www.google-analytics.com/ga.js. In contrast, if the id

attribute is assigned with value *, the policy will then be
enforced for all the external libraries used in the mashup.
The text of the principal element, DefaultPrivilege, is
defined as:

DefaultPrivilege:: Allow | Deny ;

Value Allow means that the external library in question has
no behavior limitation by default, except those specified by
the children policy elements. In contrast, Deny means the
external library cannot exhibit behavior out of the scope
its children policy elements explicitly allow. This default
rule eases the policy specification process by reducing the
number of rules that need to be explicitly written.

4.1.2 The function Element
The function policy element encodes behavior-limiting

rules for invoking security-critical JavaScript functions. Its
id attribute identifies the function, with FunctionName be-
ing the name of the JavaScript function. The text of the
function element, FuncPrvilege, is defined as:

FuncPrivilege:: AllowInvoke | DenyInvoke ;



Value AllowInvoke means that the library is allowed to in-
voke the specified function. In contrast, DenyInvoke means
the external library is forbidden from invoking that function.

Example Policy – Restricting Pop-ups: Pop-ups can be
a major annoyance when using Web sites. The following
example policy can restrict pop-ups by forbidding the invo-
cation of JavaScript functions alert and window.open:

<principal id="*">
Allow
<function id="alert">

DenyInvoke
</function >
<function id="window.open">

DenyInvoke
</function >

</principal >

Listing 2: Restricting Pop-ups

4.1.3 The object Element
The object policy element encodes information security

rules for variables in JavaScript programs. Its id attribute
uniquely identifies the variable in question, which is de-
noted in the form FunctionName/VN. VN is the name of the
variable. FunctionName identifies the JavaScript function
where the variable is defined or used. For global variables,
FunctionName should be an empty string. The text field
InfoSecPrivilege is a two-dimension vector defined as:

InfoSecPrivilege:: (CFDOption,ITGOption);

CFDOption:: AllowRead | DenyRead ;

ITGOption:: AllowWrite | DenyWrite;

The first dimension, CFDOption, encodes the confidential-
ity property of the variable. Value AllowRead means that
the information of the variable can flow to the external li-
brary specified by the parent principal element. In con-
trast, DenyRead means such flows are forbidden. The second
dimension, ITGOption, encodes the integrity property. Value
AllowWrite means that the information of the external li-
brary is allowed to flow into the variable in question. In
contrast, DenyWrite means such information flows are for-
bidden.

Example Policy – Restricting Browser Redirection: The
location of Web pages can be changed by JavaScript code,
which might lead to the redirection of the browser to mali-
cious sites. The following policy can restrict this behavior
by protecting the critical data-structures:

<principal id="*">
Allow
<object id="window.location">

(AllowRead , DenyWrite)
</object >

</principal >

Listing 3: Restricting Browser Redirection

4.1.4 The dom{node,property,attribute} Elements
The domnode policy element expands the TPML’s expres-

siveness by refining the information security rules for the
DOM node objects. This semantic is hard to capture by us-
ing the object policy element, since most (if not all) DOM
nodes are initialized by the Web browser by parsing the
HTML page. The text of this policy element has the same
syntax and value range as the text of the object element

described above. It defines the default information security
rule for all the properties and attributes of DOM node ob-
jects, unless otherwise explicitly specified by the children
domproperty or domattribute policy elements.

These two children policy elements of domnode further re-
fine the information security rules for the properties or at-
tributes of the DOM node. The id attribute of the domproperty
policy element uniquely identifies the DOM property in ques-
tion (e.g., the innerHTML property). The text of these policy
elements have the same syntax, value range and semantics
as the text of the object element described above.

Example Policy – Restricting Dynamic Code Injection: It
is possible to introduce dynamic JavaScript code on-the-fly.
This practice is strongly discouraged by many parties [14].
The following example policy can restrict this behavior by
preventing one commonly used mechanism for this purpose:

<principal id="*">
Allow
<domnode >

(AllowRead ,AllowWrite)
<domproperty id="innerHTML">

(AllowRead ,DenyWrite)
</domproperty >

</domnode >
</principal >

Listing 4: Restricting Dynamic Code Injection

4.2 Policy Adherence Assessment
Once the trust policy has been specified, external libraries

must be evaluated against the policy. ToMaTo uses static
code analysis as its policy adherence assessment engine. The
static code analysis is designed to be sound, in which we con-
sider all possible cases for condition breach, function over-
load, and array access through index variables. Our analyzer
is based on the WALA static analysis framework developed
by IBM [23]. Overall, the assessment process has four steps:

1. Pre-processing: The mashup source code is first pro-
cessed by a HTML parser to extract all the JavaScript
code used. The core JavaScript definition and browser
built-in JavaScript APIs are also included to form a
complete code space. All the JavaScript code is then
passed into a JavaScript interpreter, which will trans-
late the source program into its abstract syntax tree
(AST) representation. By traversing through the AST,
the source program is further translated into an inter-
mediate representation (IR) that is designed to take
the static single assignment (SSA) form. SSA is a
well-studied instruction form to facilitate static code
analysis [4]. The whole translation process preserves
the semantic of the source program. During this trans-
lation process, two other tasks are conducted in par-
allel: (1) every IR instruction is associated with the
original source program position information (i.e., the
corresponding source JavaScript library file and con-
crete line numbers); (2) the prototype chain informa-
tion of the source program are conservatively tracked
and recorded to facilitate later analysis steps.

2. Evaluating function policy element: To evaluate the
function policy element, a call graph is constructed
by analyzing the IR. Every node in the call graph
corresponds to a JavaScript function and every di-
rected edge (x[i],f) corresponds to the function in-



vocation from the caller node x to the callee node f

at instruction i. Besides the default function invo-
cation syntax function(arguments), we also include
function.call and function.apply as the syntax in-
dicator of function call to construct the call graph.
Assuming a function policy element forbids the invo-
cation of function f by external library e, this policy
element is violated, if and only if, the node correspond-
ing to function f has at least one in-edge (x[i],f),
where x[i] is associated with e as its source program
position. This results in the triggering of a policy vio-
lation warning, which includes information about the
violated policy element and the original program posi-
tion information of instruction i.

3. Evaluating object policy element: We begin by con-
ducting an Andersen-style pointer analysis [1] to iden-
tify the alias information of all the variables. We de-
note the set of aliases of a variable v (including v it-
self) as Alias(v). A context-sensitive information flow
solver is used to track information flow through the en-
tire mashup application. The information flow solver
is based on the tabulation-based analysis proposed in
[21]. Assuming an object policy element forbids write
access to a variable v by external library e, this policy
element is violated, if and only if, there is at least one
instruction i that flows information from the external
librarye into any variable in set Alias(v). In contrast,
assuming an object policy element forbids read access
of variable v by external library e, this policy element
is violated, if and only if, there is at least one instruc-
tion i from the external library e that uses the infor-
mation from any variable in set Alias(v). A violation
of the policy results in a warning being triggered, as
in the previous step.

4. Evaluating dom{node,property,attribute} policy el-
ements: Since DOM nodes, properties, and attributes
are operated by the JavaScript DOM APIs provided
by the browser, we use the evaluation process of the
function and the object policy elements as building
blocks to evaluate the DOM related policies. To do so,
we first identify three variable sets as shown in Table
1. We then translate the domproperty, domattribute,
and domnode policy elements into policy sets using the
basic function and object elements as shown in Table
2, 3, and 4, respectively, for the same external library
e in question. The violation of any policy in the policy
set will result in a warning being triggered, as in the
previous step.

Besides policy violation warnings, the static code analyzer
of ToMaTo also tracks mechanisms that can be used to dy-
namically introduce JavaScript code during the mashup ex-
ecution phase. Specifically tracked are (1) invocations of
function eval, setTimeout, setInterval, document.write
and document.writeln; and (2) write access of DOM prop-
erty innerHTML. A code injection warning is triggered, for
the source code segment that matches either of these two
rules.

Table 1: Variable Sets Used for DOM-related Policy
Element Evaluation

Set Name Elements

DomNode

The return variable of function item,
getElementById, getElementByName,
getElement, ByTagName, and cloneNode.

DomNodeString
The return variable of function
v.toString, where v is in the DomNode set.

DomAttribute

The return variable of function
v.getAttribute, where v is in the
DomNode set.

Table 2: domproperty Policy Element Translation
Rule Translation
DenyWrite for
DOM property p

object DenyWrite policy for variable v.p,
where v is in the DomNode set.

DenyRead for
DOM property p

object DenyRead policy for variable v.p,
where v is in the DomNode set.

Table 3: domattribute Policy Element Translation
Rule Translation

DenyWrite for
DOM attributes

object DenyWrite policy for variable
v.attribute, where v is in the DomNode

set.
function DenyInvoke policy for func-
tion v.setAttribute and function
v.removeAttribute, where v is in the
DomNode set.

DenyRead for
DOM attributes

object DenyRead policy for every variable
in DomAttr set and variable v.attribute,
where v is in the DomNode set.

Table 4: domnode Policy Element Translation
Rule Translation

DenyWrite for
DOM nodes

object DenyWrite policy for variable
v.childNodes, where v is in DomNode set.
function DenyInvoke policy for func-
tion v.normalize, v.insertBefore,
v.appendChild, v.removeChild, and
v.replaceChild, where v is in the
DomNode set.
domproperty DenyWrite policy for every
DOM property, which is further translated.
domattribute DenyWrite policy for DOM
attributes, which is further translated.

DenyRead for
DOM nodes

object DenyRead policy for variable v and
v.childNodes, where v is in the DomNode

set.
object DenyRead policy for variable s in
the variable set DomNodeString.
domproperty DenyRead policy for every
DOM property, which is further translated.
domattribute DenyRead policy for DOM
attributes, which is further translated.



4.3 Policy Violation Handling
If any policy violation warning is triggered, the mashup

developer can choose to handle the potential trust issue us-
ing one of the following three approaches:

1. The mashup developer could use alternative JavaScript
libraries with similar functionality to replace the pol-
icy violating libraries. If the alternative libraries can
satisfy the trust policy, the potential trust violation is
then avoided. This approach takes advantage of the
mashup programming paradigm, which is modular in
nature. The disadvantage of this approach is the over-
head of programming the prototype mashup applica-
tion using the alternative libraries and re-running the
ToMaTo workflow. Alternatively, the mashup devel-
oper could revisit the trust policy to see whether the
current policy is too strict to achieve the trust require-
ment. By appropriately relaxing the trust policies that
are too demanding or unnecessary, the corresponding
violation warnings can be reduced.

2. The mashup developer could choose to skip the execu-
tion of the policy violating code segment to preserve
both functionality and trust. For example, the mashup
developer may specify a policy that forbids external
libraries from triggering alert messages or pop-up win-
dows by invoking function alert or window.open. The
ToMaTo tool will pinpoint the concrete source code
position where these policies are violated. Using this
information, the mashup developer can use a local copy
of the problematic library with the policy violating
code carefully removed, thus addressing the problem.

3. The mashup developer could design application-specific
countermeasures to address the potential trust viola-
tions. For example, the mashup developer may specify
policies that forbid external libraries to gain read ac-
cess to the cookie of the mashup application. If such
policy violations are identified, the mashup developer
might consider encrypting the information stored in
the cookie. This approach is application dependent
and requires the mashup developer to select the best
countermeasures according to the mashup application
and its trust requirements.

Note that, ToMaTo, given the static nature of the policy
assessment process, cannot evaluate dynamically generated
code for policy adherence. It therefore possible that such
dynamically generated code might introduce new policy vi-
olations that are not observed during the mashup design
phase. As the result, code injection warnings are used to
identify such instances within the external libraries. We are
currently working on extending our policy adherence capa-
bilities to address such dynamic code generation scenarios.

5. RELATED WORK
Guaranteeing the behavior of a JavaScript program has

received much attention in recent years. Studies in the lit-
erature address this issue from three main aspects:

(1) JavaScript Program Analysis: Pointer analysis tech-
niques of JavaScript program have been proposed in [10,
11, 16]. These techniques make different trade-offs between
analysis precision and performance overhead. In [10], the

authors also applied their technique for Web widget por-
tals (e.g., live.com) to perform sanity checks before allow-
ing new widgets to be published. In [2], a staged approach
has been proposed to reduce the performance overhead of
information flow analysis for JavaScript programs. This
technique requires JavaScript program developers to collab-
orate with application end-users to split up the workload.
The major difference between these works and ToMaTo is
that our ystem combines the use of these individual analy-
sis techniques to evaluate the high-level trust semantics of
JavaScript code mashup applications. Each of these individ-
ual techniques can be used with ToMaTo to further improve
its precision and performance.

(2) Debugging Client-side Web Application Code: In [15],
the authors propose a proxy service that positions itself be-
tween Web applications and end-users to facilitate JavaScript
program debugging and testing. This proxy service works
transparently and adopts a code rewriting technique. The
authors demonstrated that many commonly performed de-
bugging and testing tasks can be easily handled by their
proxy service. FLAX [22] is a development tool designed
for JavaScript programmers to find code injection bugs in
their JavaScript applications. FLAX assumes end users and
remote Web servers might be malicious and will try to in-
ject and execute arbitrary JavaScript code, breaking the in-
tegrity of the original JavaScript programs. FLAX com-
bines static code analysis and black-box testing techniques
to identify such flaws and trigger alerts to JavaScript pro-
grammers. Recently, Google also release a Chrome browser
extension that helps JavaScript programmers to monitor and
debug insecure practices commonly found in JavaScript code
[6]. Work in this category focuses mainly on general Web
programming issues. It therefore does not address the spe-
cific trust problems of code mashup, causing by the reuse of
third-party libraries.

(3) Enhancing Web Application Security: In [17], a sand-
box mechanism, called AdJail, was proposed to enforce in-
formation security on third-party advertisements. By plac-
ing ads in a shadow iframe tag and taking advantage of
the same-origin-policy of Web browsers, ads cannot access
any information on the host page by default. Further, by
monitoring the operations performed by the ad script, Ad-
Jail mimics these operations on the host page, if and only
if they are allowed by the predefined security policies of the
host page owners. Although similar to the design object of
our work, AdJail is much more focused on the web adver-
tisement application domain. ToMaTo, on the other hand,
is designed to work with general code mashup applications.

Finally, it should be noted that in the realm of web secu-
rity much work has been done to understand the Web-based
malware problem [3, 18, 19, 20]. However, these address is-
sues orthogonal to our work on mashups, where the focus is
on protecting against the trust issues that this programming
paradigm might introduce.

6. CONCLUSION
In this paper we presented ToMaTo, a development tool

for creating trustworthy JavaScript code mashups. By al-
lowing mashup developers to specify customized and fine-
grained trust policy, the trust requirements on external code
libraries are explicitly captured. The policy evaluation pro-
cess is sound, which conservatively triggers warnings to pin-
point source code segments with policy violations or code-



injection risks. By properly using the warning information,
mashup developers can plan ahead and handle trust risks
before publishing their code mashup applications.

Currently, we are actively working on the performance
optimization of ToMaTo and preparing for an open-source
release to the mashup development community. In the fu-
ture, we would like to extend the capabilities of ToMaTo
into the execution phase of code mashups. By obtaining
run-time information of mashup executions, we plan to im-
prove the expressiveness of the trust policy language used
by ToMaTo and its policy adherence evaluation capabilities.
The ultimate goal is to make ToMaTo a complete trust man-
agement solution that covers the entire trustworthy mashup
life cycle.
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