
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

May 1988

Generalized Image Translation and Realignment: The GITR Generalized Image Translation and Realignment: The GITR

Process Process

Scott H. Novack
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Scott H. Novack, "Generalized Image Translation and Realignment: The GITR Process", . May 1988.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-29.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/834
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/834
mailto:repository@pobox.upenn.edu

Generalized Image Translation and Realignment: The GITR Process Generalized Image Translation and Realignment: The GITR Process

Abstract Abstract
Image processing is continually hampered by the effects of noise. This paper introduces the GITR noise
reduction and analysis system. It is performing removal and analysis of noise in images of a scale model
of the University of Pennsylvania campus. GITR uses several algorithms including voting and median
filtering to remove noise and difference of images and histogram functions for noise analysis.

Also, this work includes reports on inherent noise contained in the cameras available in the Penn GRASP
Laboratory. A stuck-pixel map and analysis of any inherent noisy screen pattern is presented for four
camera systems. Statistical data for all noise patterns is also given.

Future research directions concerning other noise removal algorithms and comparisons with this study,
and reports of noise profiles of other cameras or camera lenses are motivated by the results of this
experiment, namely study of the effect of combining using rotated or scaled data.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-29.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/834

https://repository.upenn.edu/cis_reports/834

GENERALIZED IMAGE
TRANSLATION AND

REALIGNMENT:
THE GlTR PROCESS

Scott H. Novack

MS-CIS-88-29
GRASP LAB 139

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 191 04

May 1988

Acknowledgements: This work was in part supported by: Air Force grant AFOSR
F49620-85-K-0018, DARPAIONR grant N0014-85-K-0807, NSF grant DCR-8410771,
IR184-10413-A02, NSF-CERlDCR82-19196 A02, ArmylDAAG-29-84-K-0061,
DAA29-84-9-0027, NIH grant NS-10939-11 as part of Cerebrovascular Research Center, NIH
1-R01-NS-23636-01, NSF INT85-14199, NSF DMC85-17315, by DEC Corp., IBM Corp. and
LORD Corp.

UNIVERSITY OF PENNSYLVANIA
SCHOOL OF ENGINEERING AND APPLIED SCIENCE

MOORE SCHOOL O F ELECTRICAL ENGINEERING

GENERALIZED IMAGE
TRANSLATION AND

REALIGNMENT:

The GITR Process

Scott H. Novack

Philadelphia, Pennsylvania
April 26, 1988

A report presented to the Faculty of Engineering and Applied Science of the
University of Pennsylvania in partial fulfillment of the requirements for the degree
of Bachelor of Science in Engineering for undergraduate work in the Department
of Computer Science and Engineering.

Advisor: Dr. Ruzena Bajcsy

Abstract

Image processing is continually hampered by the effects of noise.
This paper introduces the GITR noise reduction and analysis system.
It is performing removal and analysis of noise in images of a scale model
of the University of Pennsylvania campus. GITR uses several algorithms
including voting and median filtering to remove noise and difference of
images and histogram functions for noise analysis.

Also, this work includes reports on inherent noise contained in the
cameras available in the Penn GRASP Laboratory. A stuck-pixel map
and analysis of any inherent noisy screen pattern is presented for four
camera systems. Statistical data for all noise patterns is also given.

Future research directions concerning other noise removal algorithms
and comparisons with this study, and reports of noise profiles of other
cameras or camera lenses are motivated by the results of this experi-
ment, namely study of the effect of combining using rotated or scaled
data.

CONTENTS

Contents

1 Introduction 1

2 What is GITR? 2

3 Definition of "Improvement" 4

4 Correlation 7

5 Combining 9
. 5.1 Voting 9

. 5.2 Median filtering 10
. 5.3 Otheralgorithms 11

. 5.3.1 Cedge 11

. 5.3.2 Cgray 12
. 5.4 Combination of techniques 12
. 5.5 Comparison of algorithms 12

6 Noise analysis 13
. 6.1 Spatial 13

. 6.1.1 Goals 13
. 6.1.2 Implementation 14

. 6.2 Temporal 15
. 6.2.1 Goals 15

. 6.2.2 Implement ation 16

7 Conclusions 19

A Shell Script 20

B Other Relevant Images 21

1 INTRODUCTION

1 Introduction

Image processing is continually hampered by the effects of noise. Regardless
of purpose, it is obvious that a less noisy image is a more useful image. For
instance, getting information extracted from an aerial photograph [HA 871 can
be severely hampered by noisy picture elements or pixels-finite-sized cells of
constant gray level that partition an image [BB 82, ~.37]-that cut across
edges or other features of the ground objects. Noise pixels are random varia-
tions in an image that cause undesirable effects [BB 82, p.651. For instance, a
white dot on one face of an otherwise gray cube would be a noisy pixel. Noisy
pixels cause errors in further processing. For example, thinned edges from
Canny's method [JC 861 may be broken or extended in aberrant directions. It
would be beneficial to remove as much noise as possible. The first thing is to
understand the noise, then it will be easier to eliminate, but exactly what pro-
cedures do a good job? And what kind of noise will they find to remove? Thus,
the GITR (Generalized Image Translation and Realignment) Experiment on
noise reduction is presented.

This process was developed for use on 512 x 512 x 8 bits (256 gray levels)
gray scale images and thresholded, thinned, gradient edge images of any scene
with complex discernible features (not simple images). The process is not a
real-time process, but rather useful for off-line analysis and camera evaluation.
The system consists of modules for correlation, combination, and noise analysis
which attempt to reduce and analyze noise without destroying or altering the
original image as convolution algorithms would [BB 821.

Main objectives are:

Use of several different techniques in the GITR noise reduction system.

Analysis of techniques to deduce which one produces the highest "im-
provement ."
Portability of process to different camera systems in the Penn GRASP
Laboratory.

Construction of a stuck-pixel map and temporal pattern profile for all
camera systems.

The following assumptions are made:

Images are not highly textured.

Images contain many edges on every scanline. (Figure 1)

Images will be in focus to facilitate sharp edges.

2 WHAT IS GITR? 2

Actual contents of the scenes and illumination of the scenes are constant
across the input time of the experiment.

a Images will be dissimilar within a limited range of displacements.

Images will not be disparate due to stereo effects.

Two image sets will be used to verify spatial noise analysis.

What is GITR?
GITR is basically an experiment in noise understanding. GITR attempts
to reduce both spatial and temporal noise through the combining of several
(between 5 and 8) images of the same object. Successive images are taken
with a small translation in the camera-a jitter. Such displacement will not
result in significant stereo disparity, only a shift in the image from the reference
position, assuming the objects recorded are not at largely different depths in
the field of view. In this experiment, a percentage of 3 percent or less for the
ratio between maximum depth difference of any two objects and maximum
camera distance was found to be acceptable.

The translated images are correlated with the reference image so that re-
alignment can occur and facilitate combining the several images into one result
picture. The logic behind the GITR process is as follows:

1. by combining several images, temporal noise-noise occurring randomly
in time like a magnetic fluctuation phenomenon-will be removed and
replaced by "correct" data pixels. (Figure 2)

2. by jittering the camera and correlating the images, spatial noise-fixed
in location in all images of every object taken with the same camera
(stuck pixel), usually a result of the camera's digitizing chip-will be
removed.

The result should be a cleaner reference image.
Once clean images are created, noise analysis starts. The differences be-

tween the new clean image and the input images are examined for bright spots
which are questionable pixels. Later, stuck pixels are confirmed. In addition,
the difference image is brightened and examined for any temporal pattern
which should not be in the clean image, assuming enough input images were
combined (Figure 3). The pattern found moves through the image, but is not
a representation of how an arbitrary pixel changes with time. Dataflow for the
experiment appears in Figure 4.

2 WHAT IS GITR? 3

Figure 1: Typical GITR image.

3 DEFINITION OF "IMPROVEMENT"

Figure 2: Deliberate noise in an image.

Definition of "Improvement"
In order to decide whether a pixel should be changed or not, it is necessary
to define "improvement" of an image. The definition of improvement is that
amount of an image which has been changed because it has been deemed
"bad."

Some of the pixels that were changed would obviously be an improvement,
but the white words in Figure 2, for instance, were not in the reference image.
These pixels were correctly "voted out", but this does not improve the reference
image. Including these pixels in the improvement count, would result in the
amount of improvement in the total number of images rather than for one
image. An average over the number of images could be taken, but, in the case
of images like those in Figure 2, this average would not be representative of the
improvement that might be rendered with images that don't contain obvious
noise. It would be too high for a clean image.

The only important image is the reference image. Therefore, GITR uses
the definition that improvement was defined only with respect to the reference
image which was as clean as could be guaranteed. Therefore, the obvious noise
of Figure 2 would not be counted, but any pixel that changed in the reference
image would. Hence, improvement is the percentage of the reference image
that was changed in the combining process.

Again, the question arises whether the changes made are, in fact, beneficial
to the image. The logic for the combining process is sound enough (and will

3 DEFINITION OF "IMPROVEMENT"

. ..--------... ... --. .----c ---.- -.::.---:. . - ,- : - < 6.. :. - : ! : : -- -- ..:..- .. .:..*!. . -4:. < . r:. .: I - . I -
- : ? 4.. .. I . I =c\..-.-.:n.-%* -,r?vY:?:?E-. t.: 5. .: " I -- --.-. . . - - -

.' ' r . . ' :SI iLF~+F!Z: . .~ .: I. . II.... - *. I-.. :-:.-.,.:.2,-F . . - " ' , " . .i-:;*,. : : . - : :-: s:-;...;;;-. . -. .-....,...--.A. ! . : ...-... .:: !. :y;. *+ : . --. L. ... : - I " I :. :i,.*:;., g* . ' - . -. 'i..:,.' . . * - . : *. -. . : . .- . . ;. I I -, " k . ,-,.: -..,:.:. a . . +7fi+,, .-?, .- - .. : ; . . : .n - <....LA:.:#. a . : ; :;. ... s ..d i. . . . ' j . , . .'. I. - : - ..: . - . . - - . - - . -. -=. : ,. . = --',""..' ".. C j ! - . . - --. :..:. *<:. a -.-.---.-- -: L.k. . * - I . - - .iuc-.-,+.,=d: . .--.. ," .. :1. .. 1 - ! . . . ; .. : : ! :r. . a . . -
... -,+.

. . .:
.-... . : :. :-*eg+z$$!&-.+. . Y:?;.;+='i;.:. 1.. . . - . . A - . ';: . . . : . - -..--. .- .. - - . , a -. -* . I.. I

. a . . 7 b!b . ! . " Z ' - . - . -.. .I.
:. ? . !~..:-.r.. i F -. :. -. - 0 . - ! - ..I . - . .- . . . ' .f

. - - - - - : - : . - . . . " , i '. I:,." : -. :,. .; :... -. ,.: *. - . : :.--. ' -. : . :- ..#?.a-:r..:.-." :--:::.: ":. -----
. . .:........:i%!.*,g a- :..:: L-- ;: --.&:wY+z= ..;

. -...
.:.:: .,-.. . :r p -.- .:.:. Pi! .: : - , ' . . . E -..%.:.; . .

7 - -. -

Figure 3: Typical screen pattern.

3 DEFINITION OF "IMPROVEMENT"

Images

7

c Border Size Table

COMBINATION c % Improvement

I

Result Image I
I I

DIFFERENCE ENHANCED
HISTOGRAM DIFFERENCE

Stuck Pixel Map Screen Pat tern

Figure 4: GITR Dataflow

4 CORRELATION

Figure 5: Image run through the Canny operator.

be described in Section 5), but the numbers returned for the improvement per-
centage are not conclusive in themselves. Just because algorithm A rendered a
higher percentage improvement than algorithm B does not mean it performed
better. It is indeed possible that the algorithm removed too many pixels in
its attempt to remove noise. The algorithm cannot independently decide this
since no a priori knowledge of what the final image should look like is input.
For this reason, the various result images had to be personally inspected and
a subjective judgment made. Since the human eye has trouble distinguishing
pixels that are less than about 4 gray levels (quantized measurements of image
brightness at a pixel [BB 82, p.231, 0 to 255 for the GITR images) apart in
brightness [FVD 84, p.5941, edge data were used to make judgments. Edge
images are gray level images run through Penn's Canny operator which de-
tects and highlights edges in the image (Figure 5). These pictures are much
more easily compared. The results appear in Section 5.

4 Correlation

The following formula was used [BB 82, p.661:

A = x(imagel [x][TJ] - image%[x - dx] [y]) 2 .

This formula is Euclidean distance squared. Delta is computed with different
values of dx. The displacement at the minimum value for delta determines

4 CORRELATION 8

the best match, and, thus, the value for dx. A perfect match occurs when
delta equals 0. The above formula's dx is the displacement in the second
image in the x direction. This value is plugged into the dual of the formula
to find delta-y. Then, this dy is plugged back into the original formula to see
if the new y-displacement had any effect on the choice for dx. This process is
reiterated until dx and dy do not change. For this project, displacements were
kept between f 20.

To demonstrate the correctness of the program, images taken a year ago
as part of a project by Dominique Bartolo [DB 871 were used as input. The
images were not translated from one another, but had different lighting. This
correlation algorithm correctly deduced translations of 0 in both x and y for
the images. The algorithm can be fooled however if the lighting creates a
large amount of shadow and therefore a large amount of disparity even at
no displacement. Consequently, a requirement for this experiment is that the
images are constant in content and illumination over the period over which
the images were taken. The algorithm will still perform well if the illumination
requirement is violated, but not with the same degree of reliability.

To reduce computational complexity, calculations on only one scanline
(horizontal or vertical line of pixels) in an image are performed. A prob-
lem with this technique is that if the image is featureless at that one scanline,
no displacement will be discerned. This indeed occurred when taking correla-
tion on images of an eye chart. For this reason, GITR requires images with
abundant features on every scanline. This requirement could be avoided with
certainty, but only with a drastic increase in computational complexity.

Another problem is that different camera systems have regions of "bad"
data at the borders that are quite dissimilar. Sometimes this bad data can
be composed of zeroes (black), or 255's (white). Sometimes it can be random
values. Black regions do not effect the correlation algorithm, but white ones do.
To counteract this effect, it is necessary to manually inspect the numbers being
checked by the correlation algorithm and determine which ones are invalid.
Then the correlation is changed to ignore the useless pixels and return a correct
correlation. Each camera system must be treated separately. The results for
the various cameras are in Table 1. Notice that a large amount of the right
side of the Sony Laser Rangefinder images is unused.

One last feature of the algorithm exists. It is conceivable that a cyclic
situation might arise during correlation. This means that the reiteration of
the loop changed the dx value by one, which changed the dy value by one,
which changed the dx value back, which changed the dy value back. This
can happen if the aliasing of the image would place an image feature halfway
between two pixel locations. This infinite loop is interrupted if it continues
beyond ten iterations, and the algorithm will warn the user that the values

5 COMBINING

Fairchild (green)
Sonv 32

Table 1: Border Size Table

GE
Laser

have been cycling and therefore the final value may be off. It then suggests
that the user consider redoing the trial without the problem image. If enough
images remain, the output should not be adversely effected.

Combining

*these pixels are 255; rest are 0.

4
8

Once correlation data is determined for the set of images, it is used to combine
the images into one clean image. Part of the experimental nature of this
project is to find out how much noise several different combining algorithms
would remove. The results are based on the percentage improvement in the
final image over the initial image of the set (see Section 3). The algorithms
tried were Voting, Median Filtering, Cedge and Cgray (courtesy of Dominique
Bartolo [DB 87]), and combinations of these.

5.1 Voting

It has been said that the majority is always sane. It is assumed this applies
to images as well. The idea behind voting is as follows:

0
161

1. Correlation data is used to access corresponding pixels in the various
images.

0
2

2. The pixel in the first (reference) image is taken as the first "choice" of
the final gray value for the result image since the result should be an
improved version of the reference image. Any of the input images can
be the reference image.

3. Other pixels are compared to Choice 1. If the difference between the test
pixel and the reference pixel is not greater than the amount input by the

33
32

u

-

5 COMBINING 10

user-which is referred to as the sameness value-they cast a vote for
Choice 1.

4. If it is greater, the first such pixel's value is deemed Choice 2. Any other
pixels with equal or greater differences than Choice 2's cast votes for
Choice 2.

5. At the end of the "election," the majority winner becomes the pixel in
the result image. It is assumed that the other choice was the result of
noise and should be ignored.

6. If Choice 2 is elected, then the reference image was wrong, and the
improvement counter is incremented. A final percentage of the reference
image that is changed is presented.

Voting was performed on two sets of data: gray level images and edge
images. The gray level images were voted on with a sameness value of 20,
and then the edge picture of the result image was produced. To compare
with this, the edge pictures of all the input images were taken and combined
into a result edge image. The sameness value of the edge combination was
unimportant since the edge pictures have only black (0) and white (255) gray
values.

The results were very similar, yet the differences are discernible. Combining
the gray images produced an improvement of 2.62 percent as compared to
2.77 percent for combining the edge images. More important, however, is the
judgment of how well they performed when looking at the final edge images
from both trials. Gray combining improved the image less (by 0.14 percent),
which would make it seem worse. It is worse as exhibited by the higher
noise content of the image, which was small but could be made out. But
it also did not remove too much. Looking at part of the edge combination
result reveals that some of the "good" edges are incomplete whereas they
are completely retained in the gray combination. Neither of these results is
completely desirable, so it was obvious some other algorithm should be tested.

5.2 Median filtering

The logic of performing median filtering takes into consideration the Majority
Rule idea of voting, but determines the choice gray level in a different way.
The idea is as follows:

1. If there exists a majority of one value of pixel (or close to it) among
the corresponding pixels of the images, this value will appear also in the
median value.

5 COMBINING 11

2. If there is no real majority, chances are that noise will be lighter and
darker (either extreme) than the real value which will appear in the
median.

The implementation is:

1. Load all corresponding pixel values into a linear array.

2. Sort this array into either ascending or descending order. Any simple
sorting algorithm will do because of the small set to be sorted. A shell-
sort is used.

3. The middle element of the array is the final choice.

For this algorithm, a sameness value--acceptable difference between values
of reference and test pixels-had no real impact on what final value was chosen.
Instead, it was used to maintain consistency between median and voting trials.
Sameness was used in median only to determine the amount of improvement.

With an identical sameness value, median filtering results fall in between
those of the two voting techniques. Actual improvement was 1.03 percent.
The final picture, on the other hand, was more satisfactory than the other
two. Median found and kept more edges than edge combination and removed
more noise than gray combination.

5.3 Other algorithms

The following algorithms were adapted, by addition of GITR's correlation
algorithm, for use with this project.

5.3.1 Cedge

Cedge is an algorithm used previously by Dorninique Bartolo to combine edges
of the same object given different lighting conditions. It was not known
whether this algorithm could be used with GITR. After extensive trials us-
ing all possible options of the program, it is concluded that cedge is not useful
for this study. Cedge trials increased noise rather than removing it, for cedge
thickens edges in an effort to connect them into whole regions. Option 5 of
cedge had the thinnest edges, but even these were thicker than any edges
produced from any of the other algorithms tried. There is no way to compare
cedge results with the other results because of the disparity of the output data.

5 COMBINING

5.3.2 Cgray

Another of D. Bartolo's algorithms, Cgray, was tried also. Cgray was found
to be unhelpful because it did not remove noise at all. It combined gray
level images by using the maximum value of the corresponding pixels in the
images. Thus, spatial noise was not only not removed, but also duplicated
into its relative positions in the other images. In addition, the temporal noise
in Figure 2, being white, stood out distinctly.

5.4 Combination of techniques

Combination of combining techniques occurred in two ways: using the median
gray result image as reference image for gray voting, and using the edge image
from the median result as reference for edge voting. The use of median as
the first step will be explained in the next Section. The question is, if one
algorithm improves the image, will another run of an improvement algorithm
improve it appreciably? The answer is not really. Both algorithms rendered
improvement of less than 1 percent (0.65 and 0.75 percent), but the author
could not see any real change from the reference median image. Considering
the processing time to run any of the combining algorithms, one combination
is enough.

5.5 Comparison of algorithms
This study shows that median filtering is actually the best algorithm of those
tried. Neither of the voting algorithms could be considered best since median
combines the best attributes of both in one run. In addition, changing the
sameness value from 20 to 10 caused some of the obvious noise in Figure 2 to
appear in the result from voting. This occurred because of an underlying noise
pattern which appears in the camera which is not immediately apparent. This
error does not occur with median filtering since the noise value will almost
assuredly not be found in the middle position. Also, median does not rely on
order of images to come up with a value for Choice 2 as voting does; it is more
concrete.

As the best algorithm, median is used as the base for combination of tech-
niques and later for noise analysis. One warning: median can, and has, caused
an error when used during spatial noise analysis, warranting the last assump-
tion for the project (Section I), although its overall performance is accept able.
The details appear in Section 6.1.

6 NOISE ANALYSIS

6 Noise analysis

Now that a reliable and clean result image has been generated, GITR focuses
on the properties of the cameras that took the images. Although some noise
present in images can come from outside (magnetic disturbances from low-
flying planes or other nearby machinery), noise can also be inherent in the
camera itself or from the digitizer connected to it. Errors in the digitizing chip
of the system can cause certain pixels to be consistently incorrect or stuck at
one value. This is spatial noise. The way the system is hooked up can cause a
pattern to appear to scroll down the screen, affecting all the pixels over time.
This is temporal noise. GITR strives to find any noise in the camera/digitizer
system and report on its location (spatial) or waveform (temporal). It is
important to know the characteristics of the noise for purposes of camera
evaluation and system electrical configuration. The camera/digitizer systems
used were:

1. Fairchild CCD stereo camera (red and green) with Penn's thumb dt2651
digitizer.

2. K. Wohn's Sony camera on the thumb digitizer.

3. GE camera from the GRASP Lab Laser Platform with Penn's index
digitizer.

4. Sony Laser Rangefinder system on the index digitizer.

6.1 Spatial

Spatial noise comes in several varieties. The easiest to find is a pixel "stuck"
on white or black. Then there are pixels that are not stuck, but are additive;
that is, always x gray levels brighter/dimmer than the correct value. Finally,
pixels can be at any random value.

6.1.1 Goals

The goal of spatial noise analysis is a map for each camera system of error
pixels. Once these pixels are identified, it is very simple to preprocess any
further images taken with these cameras so as to reassign a correct value to
the problem pixels, perhaps assigning the median or mean value of the pixel's 8-
connected neighbors. Since cameras are made with a certain degree of quality,
the number of bad pixels should rarely be of a quantity to cause preprocessing
to have a burdensome computational complexity. The result is that later users

6 NOISE ANALYSIS

of the system need never worry about the problem pixels interfering with their
research.

In addition, a look at the stuck pixel map of a camera system yields in-
formation useful for proposing to keep, fix, or replace the camera. Every once
in a while, this test can be run on a camera to see if its internal workings are
degenerating or if it is now unacceptable. This same data can be referred to
when purchasing new cameras.

6.1.2 Implementation

To find noise pixels, first GITR uses an algorithm to produce the unsigned dif-
ference image between the median combination image and an arbitrary input
image. Immediately viewing this image may show some bright spots which
could be bad pixels. Bad pixels will be brighter than most because they are
consistently off the true value.

To verify spots in the image, the difference image is passed into a histogram
program with a user-input threshold value. This threshold value is a report
value for the histogram. It is usually beneficial to start the threshold at the
brightest gray level of the system. In this case, the histogram produces a list of
how many pixels are at which gray level in the difference image. The histogram
should be inspected for a value such that some, but not too many, pixels lie
above this value. Then the difference image should be viewed thresholded at
this value. Edges will appear from imperfect matching due to digitizer aliasing
and focus. Also, some individual pixels should appear. If not, try a different
value.

Once a satisfactory threshold is found, run the histogram again with this
threshold value. The program will yield a list of the coordinates of all the
pixels at or brighter than this threshold. The output of this program should
be saved.

Repeat this sequence with all the input images. Each should be thresholded
at the same level to retain consistency in finding bad pixels. Bad pixels may be
off by the same amount in several images, and different thresholds might pass
over them in some of the images. Once all the images have been processed,
the histogram files are inspected. Bad pixels will appear at the same exact
coordinates in several images. Edges may also appear, and the user must be
careful not to determine that a long line of pixels that are off in all the images
is a large amount of bad pixels. Most bad pixels will appear alone or, rarely, in
pairs. Careful inspection of the histogram files will produce pixels that appear
to part of no feature in the image, but are off nonetheless. These pixels appear
in Table 2.

Notice how far inferior the red Fairchild camera (one of a stereo pair) is.
It's first four pixels are additive, the last two are subtractive.

6 NOISE ANALYSIS

Camera

7 1) Fairchild (red)

Laser

Coordinates 1

Table 2: Stuck Pixels by camera.

One requirement of this test is that it should be run on more than one
set of objects. This is to prevent pixel washout. Should a pixel be stuck on
white, but the region it is in is white also, the pixel will fail to appear in the
histogram survey. Another test will find this pixel (assuming the region it's in
is not white again) and verify the data from the first trial.

Now the stuck pixel map can be used for preprocessing. However, a strange
phenomena appeared in the red Fairchild camera. Upon processing another
set of images, the "same" bad pixels were discovered in different locations. It is
certain that these other pixels are the same ones because they were always the
same relative distance from one another although the entire map had moved.
It is possible that this occurs because of changes in the memory addressing in
the digitizer chip. This camera will have to be checked every month or so to
determine if it has again shifted it's pattern.

6.2 Temporal

Temporal noise is often more subtle than spatial noise. Noise like the words in
Figure 2 is ridiculously blatant, but often the noise appears as an underlying
pattern scrolling down the input and changing the value of any one pixel over
time. This pattern may or may not be visible and can be any waveform.

6.2.1 Goals

The goal of this part of the experiment is to gather as much information as
possible on any such pattern in the camera systems. Once this pattern is
identified and measured, further simple tests can be run to determine the
actual change in time of any pixel. The pattern shows how a pixel is going
to change, but not in what time. Strict watch of time taken between image
digitization must be kept to retrieve this information. For now, the information

6 NOISE ANALYSIS

Figure 6: Vertical (a) and diagonal (b) noise patterns.

retrieved will be the pattern's waveform and this waveform's own amplitude
and frequency (in pixels) along with statistical data.

6.2.2 Implementation

The implementation of the pattern search is similar to the spatial search. As
before, bring up a difference image. Brighten (threshold) it at the value used
in spatial analysis. Now brighten it further. Eventually, a pattern will be
noticed like the one in Figure 3 or in another direction like vertical or diagonal
(Figure 6).

The diagonal noise pattern is a strange occurrence because all the rest
of the noise patterns are horizontal or vertical (See Figure 3, Figure 6a, and
Appendix B). Conjecture on how this came about for this camera system
(Fairchild green) amounts to coupling of the vertical and horizontal sync sig-
nals into the digitization of the image [GT 881. The combination of the two
signals would create a diagonal pattern with slope dependent on offset of the
sync signals.

Detection is not a complete study of the noise patterns. Amplitude, wave-
form, and frequency are all of interest. Waveform for the various patterns was
difficult to determine because of low amplitudes. For those patterns described
as "bands", the waveform is probably a sinusoid or triangle wave caused by
offset and overlap in the digitizer memory [JH 881 (Figure 7). Besides bands,

6 NOISE ANALYSIS

-
0 100 200 300 400 500

Location on Scan Line

Figure 7: Waveform for Fairchild (red) noise pattern.

the remaining patterns are described as "lines" because of a width of 1 pixel.
Frequencies are all peak to peak. Frequency information was gained through
the use of scanline intensity plotter and image rotation programs.

Fairchild (red) : horizont a1 bands. Freq. %lo- 15 pixels.
Fairchild (green): diagonal bands. Frequency 10- 15 pixel equivalent.
Sony : vertical lines. Frequency of 1 line per 3-4 pixels.
GE : horizontal bands. Frequency = 4 pixels.
Laser: vertical lines. Frequency of 1 line per 3-4 pixels.

Amplitudes for the various patterns are described with statistical data.
This data-variance, standard deviation, and mean-was computed with an-
other algorithm described in Appendix A. Standard deviation and mean data
appear in Figure 8. Notice that the Fairchild cameras are not only inferior with
respect to bad pixels (Table 2), but also below par with respect to amplitude
of the noise pattern.

The computation algorithm needs a threshold value which marks the bound-
ary between background pattern noise and noise from edges or bad pixels in
the difference image. A suitable threshold can be determined during bright-
ening the difference image. When the noise pattern is discovered, that value
will be the computational threshold. Edges and bad pixels must be ignored to
get statistical data on only the pattern (Figure 9).

6 NOISE ANALYSIS

0 1 1
-

I I I I

FRed FGrn S GE L

Standard deviation Mean

Figure 8: Statistical information by camera system.

Gray level

105 "

l o 4
0

f lo3
P
i l o 2
x
e
1 lo1
S

l o0

Figure 9: Histogram of a typical difference image.

0 50 100 150 200 250

-11

O d
1 \:

-\,
-

-

-

e

g
;

I
'I.

%94=:3b00 l

fit'' • a. 0 0 . . 0.

0.0

I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 CONCLUSIONS

7 Conclusions

The GITR Experiment is a success. GITR improves images using median
filtering over other combining methods. As further research in the area of
image improvement through combining, the author proposes using rotations
or scaling as basis for combining: GIRR-Generalized Image Rotation and
Realignment ; ISMI-Image Scaling, Matching , and Interpolation.

GITR also serves as camera/digitizer evaluator. GITR finds bad pixels
such that preprocessing will forever remove this bad data from consideration.
GITR also discovers noise patterns involved in the system. With all this data,
the research facility owning the cameras can make intelligent proposals con-
cerning further camera purchases or replacement s. For instance, the Fairchild
camera used in this experiment is the most unreliable, especially the red. This
is compounded by the fact that it is supposed to give stereo data. The re-
placement or repair of the Fairchild cameras should be considered. Other uses
for the Sony cameras should also be considered in the light of this experiment.

A SHELL SCRIPT

Shell Script

The following is provided as a tool for actually performing GITR on a new or
old camera system on a UNIX machine with an IKONAS monitor:

WARNING It is assumed that the border information is already known for
the camera system and the correlation algorithm changed accordingly.

Use the median filter combining program. Vary sameness at will.

% med -n <# images) -v (sameness va l> -0 <out-name>
-i <in-name> -i . . . > < d a t a f i l e >

% d i f f <out-name> <any in-name> <diff,name>
% cp <diff,name> <dummy-name>
% h i s t -i <dummy-name) -0 <hist-name> -v 250

This will yield, improvement data, correlation data, and a histogram without
any stuck pixels. The first histogram should now be inspected and a threshold
chosen such that there are some, but not too many points above the threshold.
If possible, the difference image should be viewed when thresholded at this
value. Edges will appear from imperfect matching due to digitizer aliasing
and focus. Also, some individual pixels should appear. If this is not true, try
a different threshold until one is satisfactory.

The diff and hist parts are run for each image. Then, the various histogram
files are visually inspected and pixels appearing in all, or most, histograms are
logged as stuck pixels. Now get the screen pattern:

% ik load <diff-name>
% b r igh t <some va l>
% b r igh t (some lower va l> , e t c .

This will eventually display the pattern. To analyze it, various scanline plots
and rotations can be run. Finally, to get the variance, standard deviation, and
mean of the noise (x and y are the correlation values computed earlier):

% comp -i < i m j > -m (median i m j > -d <d i f f i m j > -v <threshold>
-c x -c y > < f i l e >

33 OTHER RELEVANT IMAGES

a b

Figure 10: Noise patterns for GE camera (a) and Laser Rangefinder (b).

B Other Relevant Images

REFERENCES 2 2

References

[HA 871 H.L. Anderson. "Edge Detection for Object Recognition in Aerial
Photographs," University of Pennsylvania GRASP Laboratory
Technical Report 96, 1987.

[BB 821 D.H. Ballard and C.M. Brown. Computer Vision. Prentice-Hall, En-
glewood Cliffs, New Jersey, 1982.

[DB 871 Dominique Bartolo, et al. "Eliminating Shadows and Reducing
Noise by Combining Pictures with Different Lighting Directions,"
University of Pennsylvania, August, 1987.

[JC 861 J. Canny. "A Computational Approach to Edge Detection," in IEEE
Trans. on PAMI, Volume PAMI-8, Number 6, November, 1986, pp.
679-698.

[FVD 841 J.D. Foley and A. Van Dam. Fundamentals of Interactive Computer
Graphics. Addison-Wesley, Reading, Massachusetts, 1984.

[JH 881 John Hoford, personal conversation.

[GT 881 Gus Tsikos, personal conversation.

	Generalized Image Translation and Realignment: The GITR Process
	Recommended Citation

	Generalized Image Translation and Realignment: The GITR Process
	Abstract
	Comments

	tmp.1201190652.pdf.MZ1ZX

