
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

May 1988 

Generalized Image Translation and Realignment: The GITR Generalized Image Translation and Realignment: The GITR 

Process Process 

Scott H. Novack 
University of Pennsylvania 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 
Scott H. Novack, "Generalized Image Translation and Realignment: The GITR Process", . May 1988. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-29. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/834 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/834
mailto:repository@pobox.upenn.edu


Generalized Image Translation and Realignment: The GITR Process Generalized Image Translation and Realignment: The GITR Process 

Abstract Abstract 
Image processing is continually hampered by the effects of noise. This paper introduces the GITR noise 
reduction and analysis system. It is performing removal and analysis of noise in images of a scale model 
of the University of Pennsylvania campus. GITR uses several algorithms including voting and median 
filtering to remove noise and difference of images and histogram functions for noise analysis. 

Also, this work includes reports on inherent noise contained in the cameras available in the Penn GRASP 
Laboratory. A stuck-pixel map and analysis of any inherent noisy screen pattern is presented for four 
camera systems. Statistical data for all noise patterns is also given. 

Future research directions concerning other noise removal algorithms and comparisons with this study, 
and reports of noise profiles of other cameras or camera lenses are motivated by the results of this 
experiment, namely study of the effect of combining using rotated or scaled data. 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-29. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/834 

https://repository.upenn.edu/cis_reports/834


GENERALIZED IMAGE 
TRANSLATION AND 

REALIGNMENT: 
THE GlTR PROCESS 

Scott H. Novack 

MS-CIS-88-29 
GRASP LAB 139 

Department of Computer and Information Science 
School of Engineering and Applied Science 

University of Pennsylvania 
Philadelphia, PA 191 04 

May 1988 

Acknowledgements: This work was in part supported by: Air Force grant AFOSR 
F49620-85-K-0018, DARPAIONR grant N0014-85-K-0807, NSF grant DCR-8410771, 
IR184-10413-A02, NSF-CERlDCR82-19196 A02, ArmylDAAG-29-84-K-0061, 
DAA29-84-9-0027, NIH grant NS-10939-11 as part of Cerebrovascular Research Center, NIH 
1-R01-NS-23636-01, NSF INT85-14199, NSF DMC85-17315, by DEC Corp., IBM Corp. and 
LORD Corp. 



UNIVERSITY OF PENNSYLVANIA 
SCHOOL OF ENGINEERING AND APPLIED SCIENCE 

MOORE SCHOOL O F  ELECTRICAL ENGINEERING 

GENERALIZED IMAGE 
TRANSLATION AND 

REALIGNMENT: 

The GITR Process 

Scott H. Novack 

Philadelphia, Pennsylvania 
April 26, 1988 

A report presented to the Faculty of Engineering and Applied Science of the 
University of Pennsylvania in partial fulfillment of the requirements for the degree 
of Bachelor of Science in Engineering for undergraduate work in the Department 
of Computer Science and Engineering. 

Advisor: Dr. Ruzena Bajcsy 



Abstract 

Image processing is continually hampered by the effects of noise. 
This paper introduces the GITR noise reduction and analysis system. 
It is performing removal and analysis of noise in images of a scale model 
of the University of Pennsylvania campus. GITR uses several algorithms 
including voting and median filtering to remove noise and difference of 
images and histogram functions for noise analysis. 

Also, this work includes reports on inherent noise contained in the 
cameras available in the Penn GRASP Laboratory. A stuck-pixel map 
and analysis of any inherent noisy screen pattern is presented for four 
camera systems. Statistical data for all noise patterns is also given. 

Future research directions concerning other noise removal algorithms 
and comparisons with this study, and reports of noise profiles of other 
cameras or camera lenses are motivated by the results of this experi- 
ment, namely study of the effect of combining using rotated or scaled 
data. 
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1 INTRODUCTION 

1 Introduction 

Image processing is continually hampered by the effects of noise. Regardless 
of purpose, it is obvious that a less noisy image is a more useful image. For 
instance, getting information extracted from an aerial photograph [HA 871 can 
be severely hampered by noisy picture elements or pixels-finite-sized cells of 
constant gray level that partition an image [BB 82, ~.37]-that cut across 
edges or other features of the ground objects. Noise pixels are random varia- 
tions in an image that cause undesirable effects [BB 82, p.651. For instance, a 
white dot on one face of an otherwise gray cube would be a noisy pixel. Noisy 
pixels cause errors in further processing. For example, thinned edges from 
Canny's method [JC 861 may be broken or extended in aberrant directions. It 
would be beneficial to remove as much noise as possible. The first thing is to 
understand the noise, then it will be easier to eliminate, but exactly what pro- 
cedures do a good job? And what kind of noise will they find to remove? Thus, 
the GITR (Generalized Image Translation and Realignment) Experiment on 
noise reduction is presented. 

This process was developed for use on 512 x 512 x 8 bits (256 gray levels) 
gray scale images and thresholded, thinned, gradient edge images of any scene 
with complex discernible features (not simple images). The process is not a 
real-time process, but rather useful for off-line analysis and camera evaluation. 
The system consists of modules for correlation, combination, and noise analysis 
which attempt to reduce and analyze noise without destroying or altering the 
original image as convolution algorithms would [BB 821. 

Main objectives are: 

Use of several different techniques in the GITR noise reduction system. 

Analysis of techniques to deduce which one produces the highest "im- 
provement ." 
Portability of process to different camera systems in the Penn GRASP 
Laboratory. 

Construction of a stuck-pixel map and temporal pattern profile for all 
camera systems. 

The following assumptions are made: 

Images are not highly textured. 

Images contain many edges on every scanline. (Figure 1) 

Images will be in focus to facilitate sharp edges. 
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Actual contents of the scenes and illumination of the scenes are constant 
across the input time of the experiment. 

a Images will be dissimilar within a limited range of displacements. 

Images will not be disparate due to stereo effects. 

Two image sets will be used to verify spatial noise analysis. 

What is GITR? 
GITR is basically an experiment in noise understanding. GITR attempts 
to reduce both spatial and temporal noise through the combining of several 
(between 5 and 8) images of the same object. Successive images are taken 
with a small translation in the camera-a jitter. Such displacement will not 
result in significant stereo disparity, only a shift in the image from the reference 
position, assuming the objects recorded are not at largely different depths in 
the field of view. In this experiment, a percentage of 3 percent or less for the 
ratio between maximum depth difference of any two objects and maximum 
camera distance was found to be acceptable. 

The translated images are correlated with the reference image so that re- 
alignment can occur and facilitate combining the several images into one result 
picture. The logic behind the GITR process is as follows: 

1. by combining several images, temporal  noise-noise occurring randomly 
in time like a magnetic fluctuation phenomenon-will be removed and 
replaced by "correct" data pixels. (Figure 2) 

2. by jittering the camera and correlating the images, spatial noise-fixed 
in location in all images of every object taken with the same camera 
(stuck pixel), usually a result of the camera's digitizing chip-will be 
removed. 

The result should be a cleaner reference image. 
Once clean images are created, noise analysis starts. The differences be- 

tween the new clean image and the input images are examined for bright spots 
which are questionable pixels. Later, stuck pixels are confirmed. In addition, 
the difference image is brightened and examined for any temporal pattern 
which should not be in the clean image, assuming enough input images were 
combined (Figure 3). The pattern found moves through the image, but is not 
a representation of how an arbitrary pixel changes with time. Dataflow for the 
experiment appears in Figure 4. 
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Figure 1: Typical GITR image. 
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Figure 2: Deliberate noise in an image. 

Definition of "Improvement" 
In order to decide whether a pixel should be changed or not, it is necessary 
to define "improvement" of an image. The definition of improvement is that 
amount of an image which has been changed because it has been deemed 
"bad." 

Some of the pixels that were changed would obviously be an improvement, 
but the white words in Figure 2, for instance, were not in the reference image. 
These pixels were correctly "voted out", but this does not improve the reference 
image. Including these pixels in the improvement count, would result in the 
amount of improvement in the total number of images rather than for one 
image. An average over the number of images could be taken, but, in the case 
of images like those in Figure 2, this average would not be representative of the 
improvement that might be rendered with images that don't contain obvious 
noise. It would be too high for a clean image. 

The only important image is the reference image. Therefore, GITR uses 
the definition that improvement was defined only with respect to the reference 
image which was as clean as could be guaranteed. Therefore, the obvious noise 
of Figure 2 would not be counted, but any pixel that changed in the reference 
image would. Hence, improvement is the percentage of the reference image 
that was changed in the combining process. 

Again, the question arises whether the changes made are, in fact, beneficial 
to the image. The logic for the combining process is sound enough (and will 
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Figure 5: Image run through the Canny operator. 

be described in Section 5), but the numbers returned for the improvement per- 
centage are not conclusive in themselves. Just because algorithm A rendered a 
higher percentage improvement than algorithm B does not mean it performed 
better. It is indeed possible that the algorithm removed too many pixels in 
its attempt to remove noise. The algorithm cannot independently decide this 
since no a priori knowledge of what the final image should look like is input. 
For this reason, the various result images had to be personally inspected and 
a subjective judgment made. Since the human eye has trouble distinguishing 
pixels that are less than about 4 gray levels (quantized measurements of image 
brightness at a pixel [BB 82, p.231, 0 to 255 for the GITR images) apart in 
brightness [FVD 84, p.5941, edge data were used to make judgments. Edge 
images are gray level images run through Penn's Canny operator which de- 
tects and highlights edges in the image (Figure 5). These pictures are much 
more easily compared. The results appear in Section 5. 

4 Correlation 

The following formula was used [BB 82, p.661: 

A = x(imagel  [x][TJ] - image%[x - dx] [ y ] ) 2 .  

This formula is Euclidean distance squared. Delta is computed with different 
values of dx. The displacement at the minimum value for delta determines 
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the best match, and, thus, the value for dx. A perfect match occurs when 
delta equals 0. The above formula's dx is the displacement in the second 
image in the x direction. This value is plugged into the dual of the formula 
to find delta-y. Then, this dy is plugged back into the original formula to see 
if the new y-displacement had any effect on the choice for dx. This process is 
reiterated until dx and dy do not change. For this project, displacements were 
kept between f 20. 

To demonstrate the correctness of the program, images taken a year ago 
as part of a project by Dominique Bartolo [DB 871 were used as input. The 
images were not translated from one another, but had different lighting. This 
correlation algorithm correctly deduced translations of 0 in both x and y for 
the images. The algorithm can be fooled however if the lighting creates a 
large amount of shadow and therefore a large amount of disparity even at 
no displacement. Consequently, a requirement for this experiment is that the 
images are constant in content and illumination over the period over which 
the images were taken. The algorithm will still perform well if the illumination 
requirement is violated, but not with the same degree of reliability. 

To reduce computational complexity, calculations on only one scanline 
(horizontal or vertical line of pixels) in an image are performed. A prob- 
lem with this technique is that if the image is featureless at that one scanline, 
no displacement will be discerned. This indeed occurred when taking correla- 
tion on images of an eye chart. For this reason, GITR requires images with 
abundant features on every scanline. This requirement could be avoided with 
certainty, but only with a drastic increase in computational complexity. 

Another problem is that different camera systems have regions of "bad" 
data at the borders that are quite dissimilar. Sometimes this bad data can 
be composed of zeroes (black), or 255's (white). Sometimes it can be random 
values. Black regions do not effect the correlation algorithm, but white ones do. 
To counteract this effect, it is necessary to manually inspect the numbers being 
checked by the correlation algorithm and determine which ones are invalid. 
Then the correlation is changed to ignore the useless pixels and return a correct 
correlation. Each camera system must be treated separately. The results for 
the various cameras are in Table 1. Notice that a large amount of the right 
side of the Sony Laser Rangefinder images is unused. 

One last feature of the algorithm exists. It is conceivable that a cyclic 
situation might arise during correlation. This means that the reiteration of 
the loop changed the dx value by one, which changed the dy value by one, 
which changed the dx value back, which changed the dy value back. This 
can happen if the aliasing of the image would place an image feature halfway 
between two pixel locations. This infinite loop is interrupted if it continues 
beyond ten iterations, and the algorithm will warn the user that the values 
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Fairchild (green) 
Sonv 32 

Table 1: Border Size Table 
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have been cycling and therefore the final value may be off. It then suggests 
that the user consider redoing the trial without the problem image. If enough 
images remain, the output should not be adversely effected. 

Combining 

*these pixels are 255; rest are 0. 

4 
8 

Once correlation data is determined for the set of images, it is used to combine 
the images into one clean image. Part of the experimental nature of this 
project is to find out how much noise several different combining algorithms 
would remove. The results are based on the percentage improvement in the 
final image over the initial image of the set (see Section 3). The algorithms 
tried were Voting, Median Filtering, Cedge and Cgray (courtesy of Dominique 
Bartolo [DB 87]), and combinations of these. 

5.1 Voting 

It has been said that the majority is always sane. It is assumed this applies 
to images as well. The idea behind voting is as follows: 

0 
161 

1. Correlation data is used to access corresponding pixels in the various 
images. 

0 
2 

2. The pixel in the first (reference) image is taken as the first "choice" of 
the final gray value for the result image since the result should be an 
improved version of the reference image. Any of the input images can 
be the reference image. 

3. Other pixels are compared to Choice 1. If the difference between the test 
pixel and the reference pixel is not greater than the amount input by the 

33 
32 

u 

- 
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user-which is referred to as the sameness value-they cast a vote for 
Choice 1. 

4. If it is greater, the first such pixel's value is deemed Choice 2. Any other 
pixels with equal or greater differences than Choice 2's cast votes for 
Choice 2. 

5. At the end of the "election," the majority winner becomes the pixel in 
the result image. It is assumed that the other choice was the result of 
noise and should be ignored. 

6. If Choice 2 is elected, then the reference image was wrong, and the 
improvement counter is incremented. A final percentage of the reference 
image that is changed is presented. 

Voting was performed on two sets of data: gray level images and edge 
images. The gray level images were voted on with a sameness value of 20, 
and then the edge picture of the result image was produced. To compare 
with this, the edge pictures of all the input images were taken and combined 
into a result edge image. The sameness value of the edge combination was 
unimportant since the edge pictures have only black (0) and white (255) gray 
values. 

The results were very similar, yet the differences are discernible. Combining 
the gray images produced an improvement of 2.62 percent as compared to 
2.77 percent for combining the edge images. More important, however, is the 
judgment of how well they performed when looking at the final edge images 
from both trials. Gray combining improved the image less (by 0.14 percent), 
which would make it seem worse. It is worse as exhibited by the higher 
noise content of the image, which was small but could be made out. But 
it also did not remove too much. Looking at part of the edge combination 
result reveals that some of the "good" edges are incomplete whereas they 
are completely retained in the gray combination. Neither of these results is 
completely desirable, so it was obvious some other algorithm should be tested. 

5.2 Median filtering 

The logic of performing median filtering takes into consideration the Majority 
Rule idea of voting, but determines the choice gray level in a different way. 
The idea is as follows: 

1. If there exists a majority of one value of pixel (or close to it) among 
the corresponding pixels of the images, this value will appear also in the 
median value. 
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2. If there is no real majority, chances are that noise will be lighter and 
darker (either extreme) than the real value which will appear in the 
median. 

The implementation is: 

1. Load all corresponding pixel values into a linear array. 

2. Sort this array into either ascending or descending order. Any simple 
sorting algorithm will do because of the small set to be sorted. A shell- 
sort is used. 

3. The middle element of the array is the final choice. 

For this algorithm, a sameness value--acceptable difference between values 
of reference and test pixels-had no real impact on what final value was chosen. 
Instead, it was used to maintain consistency between median and voting trials. 
Sameness was used in median only to determine the amount of improvement. 

With an identical sameness value, median filtering results fall in between 
those of the two voting techniques. Actual improvement was 1.03 percent. 
The final picture, on the other hand, was more satisfactory than the other 
two. Median found and kept more edges than edge combination and removed 
more noise than gray combination. 

5.3 Other algorithms 

The following algorithms were adapted, by addition of GITR's correlation 
algorithm, for use with this project. 

5.3.1 Cedge 

Cedge is an algorithm used previously by Dorninique Bartolo to combine edges 
of the same object given different lighting conditions. It was not known 
whether this algorithm could be used with GITR. After extensive trials us- 
ing all possible options of the program, it is concluded that cedge is not useful 
for this study. Cedge trials increased noise rather than removing it, for cedge 
thickens edges in an effort to connect them into whole regions. Option 5 of 
cedge had the thinnest edges, but even these were thicker than any edges 
produced from any of the other algorithms tried. There is no way to compare 
cedge results with the other results because of the disparity of the output data. 
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5.3.2 Cgray 

Another of D. Bartolo's algorithms, Cgray, was tried also. Cgray was found 
to be unhelpful because it did not remove noise at all. It combined gray 
level images by using the maximum value of the corresponding pixels in the 
images. Thus, spatial noise was not only not removed, but also duplicated 
into its relative positions in the other images. In addition, the temporal noise 
in Figure 2, being white, stood out distinctly. 

5.4 Combination of techniques 

Combination of combining techniques occurred in two ways: using the median 
gray result image as reference image for gray voting, and using the edge image 
from the median result as reference for edge voting. The use of median as 
the first step will be explained in the next Section. The question is, if one 
algorithm improves the image, will another run of an improvement algorithm 
improve it appreciably? The answer is not really. Both algorithms rendered 
improvement of less than 1 percent (0.65 and 0.75 percent), but the author 
could not see any real change from the reference median image. Considering 
the processing time to run any of the combining algorithms, one combination 
is enough. 

5.5 Comparison of algorithms 
This study shows that median filtering is actually the best algorithm of those 
tried. Neither of the voting algorithms could be considered best since median 
combines the best attributes of both in one run. In addition, changing the 
sameness value from 20 to 10 caused some of the obvious noise in Figure 2 to 
appear in the result from voting. This occurred because of an underlying noise 
pattern which appears in the camera which is not immediately apparent. This 
error does not occur with median filtering since the noise value will almost 
assuredly not be found in the middle position. Also, median does not rely on 
order of images to come up with a value for Choice 2 as voting does; it is more 
concrete. 

As the best algorithm, median is used as the base for combination of tech- 
niques and later for noise analysis. One warning: median can, and has, caused 
an error when used during spatial noise analysis, warranting the last assump- 
tion for the project (Section I), although its overall performance is accept able. 
The details appear in Section 6.1. 
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6 Noise analysis 

Now that a reliable and clean result image has been generated, GITR focuses 
on the properties of the cameras that took the images. Although some noise 
present in images can come from outside (magnetic disturbances from low- 
flying planes or other nearby machinery), noise can also be inherent in the 
camera itself or from the digitizer connected to it. Errors in the digitizing chip 
of the system can cause certain pixels to be consistently incorrect or stuck at 
one value. This is spatial noise. The way the system is hooked up can cause a 
pattern to appear to scroll down the screen, affecting all the pixels over time. 
This is temporal noise. GITR strives to find any noise in the camera/digitizer 
system and report on its location (spatial) or waveform (temporal). It is 
important to know the characteristics of the noise for purposes of camera 
evaluation and system electrical configuration. The camera/digitizer systems 
used were: 

1. Fairchild CCD stereo camera (red and green) with Penn's thumb dt2651 
digitizer. 

2. K. Wohn's Sony camera on the thumb digitizer. 

3. GE camera from the GRASP Lab Laser Platform with Penn's index 
digitizer. 

4. Sony Laser Rangefinder system on the index digitizer. 

6.1 Spatial 

Spatial noise comes in several varieties. The easiest to find is a pixel "stuck" 
on white or black. Then there are pixels that are not stuck, but are additive; 
that is, always x gray levels brighter/dimmer than the correct value. Finally, 
pixels can be at any random value. 

6.1.1 Goals 

The goal of spatial noise analysis is a map for each camera system of error 
pixels. Once these pixels are identified, it is very simple to preprocess any 
further images taken with these cameras so as to reassign a correct value to 
the problem pixels, perhaps assigning the median or mean value of the pixel's 8- 
connected neighbors. Since cameras are made with a certain degree of quality, 
the number of bad pixels should rarely be of a quantity to cause preprocessing 
to have a burdensome computational complexity. The result is that later users 
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of the system need never worry about the problem pixels interfering with their 
research. 

In addition, a look at the stuck pixel map of a camera system yields in- 
formation useful for proposing to keep, fix, or replace the camera. Every once 
in a while, this test can be run on a camera to see if its internal workings are 
degenerating or if it is now unacceptable. This same data can be referred to 
when purchasing new cameras. 

6.1.2 Implementation 

To find noise pixels, first GITR uses an algorithm to produce the unsigned dif- 
ference image between the median combination image and an arbitrary input 
image. Immediately viewing this image may show some bright spots which 
could be bad pixels. Bad pixels will be brighter than most because they are 
consistently off the true value. 

To verify spots in the image, the difference image is passed into a histogram 
program with a user-input threshold value. This threshold value is a report 
value for the histogram. It is usually beneficial to start the threshold at the 
brightest gray level of the system. In this case, the histogram produces a list of 
how many pixels are at which gray level in the difference image. The histogram 
should be inspected for a value such that some, but not too many, pixels lie 
above this value. Then the difference image should be viewed thresholded at 
this value. Edges will appear from imperfect matching due to digitizer aliasing 
and focus. Also, some individual pixels should appear. If not, try a different 
value. 

Once a satisfactory threshold is found, run the histogram again with this 
threshold value. The program will yield a list of the coordinates of all the 
pixels at or brighter than this threshold. The output of this program should 
be saved. 

Repeat this sequence with all the input images. Each should be thresholded 
at the same level to retain consistency in finding bad pixels. Bad pixels may be 
off by the same amount in several images, and different thresholds might pass 
over them in some of the images. Once all the images have been processed, 
the histogram files are inspected. Bad pixels will appear at the same exact 
coordinates in several images. Edges may also appear, and the user must be 
careful not to determine that a long line of pixels that are off in all the images 
is a large amount of bad pixels. Most bad pixels will appear alone or, rarely, in 
pairs. Careful inspection of the histogram files will produce pixels that appear 
to part of no feature in the image, but are off nonetheless. These pixels appear 
in Table 2. 

Notice how far inferior the red Fairchild camera (one of a stereo pair) is. 
It's first four pixels are additive, the last two are subtractive. 
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Camera 

7 1) Fairchild (red) 

Laser 

Coordinates 1 

Table 2: Stuck Pixels by camera. 

One requirement of this test is that it should be run on more than one 
set of objects. This is to prevent pixel washout. Should a pixel be stuck on 
white, but the region it is in is white also, the pixel will fail to appear in the 
histogram survey. Another test will find this pixel (assuming the region it's in 
is not white again) and verify the data from the first trial. 

Now the stuck pixel map can be used for preprocessing. However, a strange 
phenomena appeared in the red Fairchild camera. Upon processing another 
set of images, the "same" bad pixels were discovered in different locations. It is 
certain that these other pixels are the same ones because they were always the 
same relative distance from one another although the entire map had moved. 
It is possible that this occurs because of changes in the memory addressing in 
the digitizer chip. This camera will have to be checked every month or so to 
determine if it has again shifted it's pattern. 

6.2 Temporal 

Temporal noise is often more subtle than spatial noise. Noise like the words in 
Figure 2 is ridiculously blatant, but often the noise appears as an underlying 
pattern scrolling down the input and changing the value of any one pixel over 
time. This pattern may or may not be visible and can be any waveform. 

6.2.1 Goals 

The goal of this part of the experiment is to gather as much information as 
possible on any such pattern in the camera systems. Once this pattern is 
identified and measured, further simple tests can be run to determine the 
actual change in time of any pixel. The pattern shows how a pixel is going 
to change, but not in what time. Strict watch of time taken between image 
digitization must be kept to retrieve this information. For now, the information 
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Figure 6: Vertical (a) and diagonal (b) noise patterns. 

retrieved will be the pattern's waveform and this waveform's own amplitude 
and frequency (in pixels) along with statistical data. 

6.2.2 Implementation 

The implementation of the pattern search is similar to the spatial search. As 
before, bring up a difference image. Brighten (threshold) it at the value used 
in spatial analysis. Now brighten it further. Eventually, a pattern will be 
noticed like the one in Figure 3 or in another direction like vertical or diagonal 
(Figure 6). 

The diagonal noise pattern is a strange occurrence because all the rest 
of the noise patterns are horizontal or vertical (See Figure 3, Figure 6a, and 
Appendix B). Conjecture on how this came about for this camera system 
(Fairchild green) amounts to coupling of the vertical and horizontal sync sig- 
nals into the digitization of the image [GT 881. The combination of the two 
signals would create a diagonal pattern with slope dependent on offset of the 
sync signals. 

Detection is not a complete study of the noise patterns. Amplitude, wave- 
form, and frequency are all of interest. Waveform for the various patterns was 
difficult to determine because of low amplitudes. For those patterns described 
as "bands", the waveform is probably a sinusoid or triangle wave caused by 
offset and overlap in the digitizer memory [JH 881 (Figure 7). Besides bands, 
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Figure 7: Waveform for Fairchild (red) noise pattern. 

the remaining patterns are described as "lines" because of a width of 1 pixel. 
Frequencies are all peak to peak. Frequency information was gained through 
the use of scanline intensity plotter and image rotation programs. 

Fairchild (red) : horizont a1 bands. Freq. %lo- 15 pixels. 
Fairchild (green): diagonal bands. Frequency 10- 15 pixel equivalent. 
Sony : vertical lines. Frequency of 1 line per 3-4 pixels. 
GE : horizontal bands. Frequency = 4 pixels. 
Laser: vertical lines. Frequency of 1 line per 3-4 pixels. 

Amplitudes for the various patterns are described with statistical data. 
This data-variance, standard deviation, and mean-was computed with an- 
other algorithm described in Appendix A. Standard deviation and mean data 
appear in Figure 8. Notice that the Fairchild cameras are not only inferior with 
respect to bad pixels (Table 2), but also below par with respect to amplitude 
of the noise pattern. 

The computation algorithm needs a threshold value which marks the bound- 
ary between background pattern noise and noise from edges or bad pixels in 
the difference image. A suitable threshold can be determined during bright- 
ening the difference image. When the noise pattern is discovered, that value 
will be the computational threshold. Edges and bad pixels must be ignored to 
get statistical data on only the pattern (Figure 9). 
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Figure 8: Statistical information by camera system. 
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Figure 9: Histogram of a typical difference image. 
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7 CONCLUSIONS 

7 Conclusions 

The GITR Experiment is a success. GITR improves images using median 
filtering over other combining methods. As further research in the area of 
image improvement through combining, the author proposes using rotations 
or scaling as basis for combining: GIRR-Generalized Image Rotation and 
Realignment ; ISMI-Image Scaling, Matching , and Interpolation. 

GITR also serves as camera/digitizer evaluator. GITR finds bad pixels 
such that preprocessing will forever remove this bad data from consideration. 
GITR also discovers noise patterns involved in the system. With all this data, 
the research facility owning the cameras can make intelligent proposals con- 
cerning further camera purchases or replacement s. For instance, the Fairchild 
camera used in this experiment is the most unreliable, especially the red. This 
is compounded by the fact that it is supposed to give stereo data. The re- 
placement or repair of the Fairchild cameras should be considered. Other uses 
for the Sony cameras should also be considered in the light of this experiment. 



A SHELL SCRIPT 

Shell Script 

The following is provided as a tool for actually performing GITR on a new or 
old camera system on a UNIX machine with an IKONAS monitor: 

*WARNING* It is assumed that the border information is already known for 
the camera system and the correlation algorithm changed accordingly. 

Use the median filter combining program. Vary sameness at will. 

% med -n <# images) -v (sameness va l>  -0 <out-name> 
-i <in-name> -i . . .  > < d a t a f i l e >  

% d i f f  <out-name> <any in-name> <diff,name> 
% cp <diff,name> <dummy-name> 
% h i s t  -i <dummy-name) -0 <hist-name> -v 250 

This will yield, improvement data, correlation data, and a histogram without 
any stuck pixels. The first histogram should now be inspected and a threshold 
chosen such that there are some, but not too many points above the threshold. 
If possible, the difference image should be viewed when thresholded at  this 
value. Edges will appear from imperfect matching due to digitizer aliasing 
and focus. Also, some individual pixels should appear. If this is not true, try 
a different threshold until one is satisfactory. 

The diff and hist parts are run for each image. Then, the various histogram 
files are visually inspected and pixels appearing in all, or most, histograms are 
logged as stuck pixels. Now get the screen pattern: 

% ik load  <diff-name> 
% b r igh t  <some va l>  
% b r igh t  (some lower va l> ,  e t c .  

This will eventually display the pattern. To analyze it, various scanline plots 
and rotations can be run. Finally, to get the variance, standard deviation, and 
mean of the noise (x and y are the correlation values computed earlier): 

% comp -i < i m j >  -m (median i m j >  -d <d i f f  i m j >  -v <threshold> 
-c x -c y > < f i l e >  
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a b 

Figure 10: Noise patterns for GE camera (a) and Laser Rangefinder (b). 

B Other Relevant Images 
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