
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1990

A Distributed System for Robot Manipulator Control, NSF Grant A Distributed System for Robot Manipulator Control, NSF Grant

ECS-11879 Fourth Report ECS-11879 Fourth Report

Richard P. Paul
University of Pennsylvania

Peter Corke
University of Pennsylvania

Janez Funda
University of Pennsylvania

Gaylord Holder
University of Pennsylvania

Hiroaki Kobayashi
University of Pennsylvania

See next page for additional authors

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Richard P. Paul, Peter Corke, Janez Funda, Gaylord Holder, Hiroaki Kobayashi, Yangsheng Xu, and Yehong
Zhang, "A Distributed System for Robot Manipulator Control, NSF Grant ECS-11879 Fourth Report", .
January 1990.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-07.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/818
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F818&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/818
mailto:repository@pobox.upenn.edu

A Distributed System for Robot Manipulator Control, NSF Grant ECS-11879 A Distributed System for Robot Manipulator Control, NSF Grant ECS-11879
Fourth Report Fourth Report

Abstract Abstract
This is the fourth annual report representing our last year's work under the current grant. This work was
directed to the development of a distributed computer architecture to function as a force and motion
server to a robot system. In the course of this work we developed a compliant contact sensor to provide
for transitions between position and force control; developed an end-effector capable of securing a stable
grasp on an object and a theory of grasping; developed and built a controller which minimizes control
delays; explored a parallel kinematics algorithms for the controller; developed a consistent approach to
the definition of motion both in joint coordinates and in Cartesian coordinates; developed a symbolic
simplification software package to generate the dynamics equations of a manipulator such that the
calculations may be split between background and foreground.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-90-07.

Author(s) Author(s)
Richard P. Paul, Peter Corke, Janez Funda, Gaylord Holder, Hiroaki Kobayashi, Yangsheng Xu, and Yehong
Zhang

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/818

https://repository.upenn.edu/cis_reports/818

A Distributed System for
Robot Manipulator Control

NSF Grant ECS-11879
Fourth Report

Richard P. Paul
Peter Corke Janez Funda Gaylord Holder

Hiroaki Kobayashi Yangsheng Xu
Yehong Zhang

The University of Pennsylvania
Moore School

Philadelphia PA 191 04

ABSTRACT

This is the fourth annual report representing our last years work
under the current grant. This work was directed to the development
of a distributed computer architecture to function as a force and mo-
tion server to a robot system. In the course of this work we developed
a compliant contact sensor to provide for transitions between position
and force control; developed an end-effector capable of securing a sta-
ble grasp on an object and a theory of grasping; developed and built
a controller which minimizes control delays; explored a parallel kine-
matics algorithms for the controller; developed a consistent approach
to the definition of motion both in joint coordinates and in Cartesian
coordinates; developed a symbolic simplification software package to
generate the dynamics equations of a manipulator such that the cal-
culations may be split between background and foreground.

1 PAST RESEARCH

Research during the prior years of this grant related to the problems of multi-
sensor control of robots, sensor fusion, and grasp planning. A distributed
computing architecture was proposed in which sensors and actuation con-
trollers run on separate processors coupled together by a network and super-
vised by a coordinator. The coordinator used Bayesian techniques to cluster
sensor observations. and to provide a robust estimate of environment state.

Problems of grasp planning were considered together with the design of
a new three fingered hand of medium complexity. A contact sensor was
developed which was to provide contact detection information, compliance
during contact, and relative end-effector displacement.

Actuation was handled by a special purpose, concurrent processor which
provided for both force and motion control. The aim of this processor was
to remove the computational limitations on manipulator performance. This
system involves delays of the order of 5 milliseconds between changes in
Cartesian coordinates and a response at the manipulator actuator level. A
number of software and hardware tools were developed in the course of this
work. Algorithms were carefully studied in order to reduce the real time
complexity of manipulator control.

Documentation relating to this work was as follows:

the integration, coordination, and control of multi-sensor systems [I]

PI [31 141 [51 [GI;

grasping [7] [8] [9, 10, 111 [12]; a four joint wrist design [13] [12];

the initial development of the distributed force and motion server [14]
I151 [16, 17][18l;

research on general manipulation and dynamics [I91 [20] [21] [22] [23]
[23, 24, 251; the development of a passively compliant instrumented
wrist [26, 271.

CURRENT RESEARCH

Research during the current year of this grant, in the absence of the Hughes
Systolic Array Processor, was in the areas of software and hardware devel-
opment, representations of displacement, the use of a passive, instrumented,
compliant wrist, redundant wrist design and control, visual servoing, and
finally an analysis of stability of control systems with random rates.

We have developed a systems software package to map devices into user
memory space for direct, simple robot manipulator control. We have also
developed a hierarchical software motor control package allowing the sepa-
ration of control from specific hardware configurations. With regard to the
systolic array processor we have developed an assembler and simulator for
the processor. We have also written the Faddeev algorithm and checked it
with the simulator. While the systolic array processor is ideal for matrix
operations we have also investigated the use of quaternions and line based
coordinates showing that they are computationally equivalent to their matrix
equivalents. We have moved ahead on the investigation of the use of a com-
pliant wrist. This device, located at the end of the manipulator, provides for
a low pass filter on environmental interactions. It provides for stable compli-
ance control and for hybrid control. Two devices have now been built. We
have built a four joint wrist and developed control algorithms to avoid kine-
matic singularities which severly limit the usefulness of manipulators. Base
on a dedicated visual processor we have achieved video rate visual servoing
of a manipulator. Finally we investigated the stability of systems subject to
random control rates.

2.1 Array Processor Software Tools

Without the right tools, experiments and hence applied research doesn't
advance very much. One of the major tools developed during this grant has
been that of /dev/bus. The development of /dev/bus gave user processes on
MicroVAX 11s the ability to access and control hardware on the system bus.
See Appendix A.l

Sun Micro Systems, Masscomp, and IBM all supply a version of Unix
which allows a user process direct access to hardware on the system bus.
However, the Unix for MicroVAX 11s supplied by Digital Equipment Co.
and which runs our robot control software, does not. Thus, interfacing new

equipment necessitated recompiling the operating system, slowing projects
and experiments.

With the implementation of /dev/bus, robot control programs now have
fast access to frame buffers, parallel communications, Analog-to-Dat a Con-
verters. We no longer have to bring an entire machine down while the soft-
ware interface to new hardware is being coded. This has greatly simplified
the designed of robot control experiments.

Many projects within the GRASP laboratory involve motion control via
electric servo motors, for example robots, hands, camera mounts and ta-
bles. To date each project has been based on a unique hardwarelsoftware
approach with associated development problems and delays. MMCS[28] see
Appendix A.2 is a new modular, and host independent, motor control system
for laboratory use.

One additional development is a 2 axis motor interface board that can be
plugged into an IBM PC bus. Also developed is an adaptor that connects an
IBM PC bus to a SUN workstation, allowing IBM PC cards to appear in the
SUN'S memory space. Device driver software provides a powerful and general
way to control the closed loop performance of each axis, under application
software control.

Preliminary experiments indicate that a SUN workstation can perform
6 axis servo control at rates exceeding 500Hz whilst still providing a Unix
windowed environment for program development and execution.

While we are still waiting for the Hughes Processor we have developed
both a symbolic assembler, see Computer and Information Science Depart-
ment Report MS-CIS-88-39 or GRASP Lab Report 143, and a simulator, see
Appendix A.3.

Much of robotics computing involves matrix operations and this gen-
erally becomes the computation bottleneck in problem solving. Faddeev's
algorithm provides not only a method general enough to deal with a large
variety of matrix operations but also simple enough for systolic implementa-
tion and forms the basic algorithm that the Hughes Processor will execute.
See Appendix A.4.

2.2 Quaternions

Three-dimensional modeling of rotations and translations in robot kinemat-
ics is most commonly performed using homogeneous transforms. We inves-

tigated an alternate approach, employing quaternion/vector pairs as spatial
operators, and compared it with homogeneous transforms in terms of compu-
tational efficiency and storage economy. The two formalisms were compared
in terms of the computational speed in performing a spatial transformation
of a point vector, composition of two such operator, computing the corre-
sponding inverse transformation, and normalizing the rotational part of the
operator. Both sequential and parallel implementations of the corresponding
algorithms were considered. The results of our analysis suggest that the two
formalisms are virtually equivalent for the case of non-normalizing sequen-
tial applications, ie the case where computations are carried out on a single-
processor machine and the rotational operators are not normalized prior to
being used in the computations. We also observed that the non-normalizing
algorithms based on homogeneous transforms parallelize slightly better than
their quaternion/vector counterparts. If the cost of normalizing the rota-
tional operator is included in the total cost, however, the quaternion/vector
pair approach yields much more efficient implementations on both single and
multi-processor systems. This is due to the fact that a quaternion can be
normalized with a minimal amount of computational expense, whereas nor-
malization of a rotational matrix requires substantially more effort. In sum-
mary, it is our conclusion that quaternion/vector pairs are as efficient, more
compact, and mathematically more elegant than their matrix counterparts.

We further presented a robust algorithm for converting rotational matri-
ces into equivalent unit quaternions, which exhibits stability in the neighbor-
hood of rotational singularities. As a demonstration of power and elegance of
quaternion algebra, we also developed an efficient quaternion based inverse
kinematics solution for the Puma 560 robot ,arm, see Computer and Infor-
mation Science Department Report MS-CIS-88-06 or GRASP Lab Report
133.

Further investigations of available mathematical models of spatial trans-
formations led us to consider the set of Pliicker coordinate based screw trans-
formations. We performed a similar analysis as above of the four most com-
monly used line-oriented formalisms for representing and effecting spatial
screw displacements of rigid bodies. The formalisms analyzed were: dual
3x3 orthogonal matrix, dual unit quaternion, dual unitary 2x2 matrix, and
dual Pauli spin operators. The analysis and comparison was again based
on the computational efficiency in performing common operations needed in
kinematic analysis of multi-linked spatial mechanisms, ie transformation of

a line in space, and composition of two such successive transformations. We
found that the dual unit quaternion representation offers the most compact
and most efficient screw transformation formalism, but that line-oriented
methods in general are not well suited for efficient kinematic computations.
The mathematical redundancy inherent in Pliicker coordinate based screw
operators makes them computationally less attractive than the corresponding
point-oriented formalisms, mentioned above. See Computer and Information
Science Department Report MS-CIS-88-83 or GRASP Lab Report 159.

2.3 Instrumented Passive Compliant Wrist Manipu-
lator Control

Most industrial robots today are utilized to perform tasks in which the end-
effectors are in contact with the environment. It is becoming increasingly
clear that robots require a more sophisticated compliant motion. A new com-
pliant motion methodology combining passive compliance and active control
together has been developed.

The compliant wrist which is installed between the end-effector and the
robot was developed in the GRASP lab. The wrist consists of two portions:
a passive compliance element and a sensing mechanism [29], [30] [31]. The
passive compliance provides an adaptation for assembly operations and man-
ufacturing processes so that the positioning tolerances are relaxed and the
high forces normally produced in jamming or wedging are reduced. The sens-
ing information is used two ways. In position control, the sensed information
is utilized to compensate deflection of the wrist, due to the load or external
forces, so as to increase apparent stiffness of the manipulator wrist system.
In force control, the wrist sensor is used as a force sensor by which means the
manipulator is driven in the same direction as the sensed force and the de-
sired contact force is maintained. See Appendix A.5. Various experiments in
force and position control demonstrated its applicability [31] [32]. Transition
as the robot makes contact with or breaks away from the surface is accom-
modated by the method presented [32]. Based on these algorithms, a new
hybrid control strategy has been derived. See Appendix A.6. As its applica-
tion, a sinusoid surface tracking experiment has been performed. The effects
of various conditions, such as digital filter, force gain, position compensa-
tion gain, desired contact force, environmental characteristics, and passive

damping in the device, on the system performance have been analyzed and
demonstrated by experiments [32].

A systematic approach to design of a decoupling compliance mechanism
has been studied and the results are useful not only for a passive compli-
ance design but also for parallel manipulators compliant control [33] [34].See
Appendix A.7. For a complete dynamic control of a robot with a compliant
wrist, we have built a dynamics model for the entire system including link
elasticity, actuator characterists, and compliant wrist and applied the non-
linear feedback control theory to the system, and thus a complete dynamic
hybrid control has been studied [35]. See Appendix A.8.

2.4 Redundant Wrist Design

When a manipulator loses one or more kinematic degrees-of-freedom, there
are directions in which the manipulator cannot apply forces and/or moments
- these configurations have been termed configuration singularities. Con-
figuration singularities are inherent in the kinematic structure and the type
of joint-actuators used in the manipulator. For example, when revolute and
prismatic joints are used, it can be shown that singularities always exist. As
Fisher [I9841 has shown, the configuration singularities in the traditional 3-R
spherical wrist can be avoided only when an additional joint is added to the
wrist.

The screw theory of mechanics [Ball, 19001 provides a framework for an-
alyzing configuration singularities in a compact manner. In this paper, we
study the kinematics of a serial chain 4-R spherical wrist from the view-
point of screw theory. Fisher's original solution for the 4-R spherical wrist is
developed further by integrating the geometry of the wrist into the control
scheme. See Appendix A.9

2.5 Redundant Manipulator Control

Most redundancy control methods require the computation of the pseudoin-
verse of the Jacobian matrix. The large computation load makes the real time
control of a redundant manipulator impossible. This paper presents a redun-
dancy control algorithm for avoiding singularities of the 6 DOF manipulator.
It is based on the partitioning of the Jacobian matrix. The formulation is
computationally simple since it only requires the inversion of a 6x6 matrix.

The control is applied to a seven degree of freedom robot manipulator with
a 4 joint spherical wrist built at the GRASP Lab. Two types of simulation
results are presented. The first plots trajectories of the manipulator and
the second is a video tape using graphical packages. Both simulation results
confirm that the method can be used successfully to solve the singularity
problem of the 6 DOF manipulator. See Appendix A.lO.

2.6 Visual Servoing

Some experiments in real-time sensor based robot control were conducted in
which the robot position loop was closed visually[36]. Using newly available
binary image, and existing grey-level processing hardware in conjunction
with two workstation computers, the robot position loop was closed at video
field rates, 60Hz. The control strategy is very different to the usual approach
using explicit trajectory generation, and more closely resembles a feedback
control system. see Appendix A. 11.

2.7 Stability of Systems with Random Communica-
tion Rates

Robot systems are now based on distributed computer networks with sensing
on one or more computers, sensor fusion of another, and actuation on yet
another computer. Communications is accomplished by means of a shared
network. Such a network involves random delays. The work reported here
relates to the stability of such systems under various sampling rate distribu-
tions. See Appendix A.12.

3 DOCUMENTATION

[l] Richard P. Paul, Hugh F. Durrant-Whyte, and Max Mintz. A ro-
bust, distributed sensor and actuation robot control system. In Oliver
Faugeras and Georges Giralt , editors, Robotics Research: The Third
International Symposium, pages 93-100, MIT Press, Cambridge, Mas-
sachusetts, 1986.

[2] Hugh F. Durrant-Whyte and R. P. Paul. Integration of distributed
sensor information: an application to a robot system coordinator. In
Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics, page 415, November 1985.

[3] Hugh F. Durrant-Whyte. Consistent integration and propogation of
disparate sensor observations. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1464-1469, April 1986.

[4] Hugh F. Durrant-Whyte. Consistent integration and propogation of dis-
parate sensor observations. To appear, International Journal of Robotics
Research, Fall 1986.

[5] Hugh F. Durrant-Whyte. Concerning uncertain geometry in robotics.
In International Workshop on Geometric Reasoning, June 1986.

[6] Hugh F. Durrant-Whyte, Ruzena Bajcsy, and Richard Paul. Using a
blackboard architecture to integrate disparate sensor observations. In
DARPA Workshop on Blackboard Systems fo r Robot Perception and
Control, June 1986.

[7] Jeffrey C. Trinkle, Jacob M. Abel, and R. P. Paul. Enveloping, Fric-
tionless, Planar Grasping. Technical Report MS-CIS-86-57, University
of Pennsylvania, CIS Dept., Moore School, Philadelphia, PA 19104, July
1986.

[8] Jeffrey C. Trinkle, Jacob M. Abel, and R. P. Paul. Enveloping, friction-
less, planar grasping. In Proceedings of the 1987 IEEE International
Conference on Robotics and Automation, 1987.

[9] Jeffery C. Trinkle. The Mechanics and Planning of Enveloping Grasps.
Technical Report MS-CIS-87-46, University of Pennsylvania, CIS Dept.,
Moore School, Philadelphia, PA 19104, June 1987.

[lo] Jeffery C. Trinkle and Richard P. Paul. An investigation of friction-
less, enveloping grasps. The International Journal of Robotics Research,
7(3):33-51, June 1988.

[ll] Jeffery C. Trinkle and Richard P. Paul. Planning for dextrous manip-
ulation with sliding contacts. The International Journal of Robotics
Research, 1988. submitted for publication.

[12] Nathan Ulrich, %chard Paul, and Ruzena Bajcsy. A medium-complex-
ity compliant end effector. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 434-436, April 1988.

[13] Gregory Long and Richard P. Paul. Avoiding orientation degeneracies
with a spherical four-joint wrist. 1988. Work in progress.

[14] R. P. Paul and Hong Zhang. Design and implementation of a robot
force/motion server. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation, pages 1878-1883, 1986.

[15] Hong Zhang and R. P. Paul. Hybrid control of robot manipulators.
In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 602-607, March 1985.

[16] Hong Zhang and Richard P. Paul. Non-kinematic errors in robot ma-
nipulators. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 1138-1139, April 1988.

[17] Hong Zhang and Richard P. Paul. A parallel solution to robot inverse
kinematics. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 1140-1145, April 1988.

[18] Zhang Hong. RFMS Software Reference Manual. Technical Re-
port MS-CIS-88-01, University of Pennsylvania, CIS Dept., Moore
School, Philadelphia, PA 19104, January 1988.

[19] R. P. Paul and Hong Zhang. Robot motion trajectory specification and
generation. In Hideo Hanafusa and Hirochika Inoue, editors, Robotics
Research: The Second International Symposium, pages 373-380, MIT
Press, Cambridge, Massachusetts, 1985.

[20] R. P. Paul and Hong Zhang. Computationally efficient kinematics for
manipulators with spherical wrists based on the homogeneous transfor-
mation representation. The International Journal of Robotics Research,
5(2), 1986. Special Issue on Kinematics.

[21] Alberto Izaguirre and R. P. Paul. Computation of the inertia and gravi-
tational coefficients of the dynamic equations of the robots. In Proceed-
ings of the IEEE International Conference on Robotics and Automation,
pages 1024-1032, March 1985.

[22] Alberto Izaguirre and Richard P. Paul. Automatic generation of the
dynamics equations of the robot manipulators using a LISP program.
In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 220-226, April 1986.

[23] Alberto Izaguirre, Minoru Hashimoto, Richard P. Paul, and Vincent
Hayward. Identification of the parameters of the dynamic equations
of robot manipulators. In IEEE International Whorkshop on Robotics:
Trends, Technology and Applications, Madrid, 1987. I

[24] Alberto Izaguirre, Minoru Hashimoto, Richard P. Paul, and Vincent
Hayward. A new computational structure for real time dynamics.
In Identification of parameters in dynamics, S.I.C.E. Conference, Hi-
roshima, JAPAN, July 1987.

[25] Alberto Izaguirre, Minoru Hashimoto, Richard P. Paul, and Vincent
Hayward. A new computational structure for real-time dynamics. The
International Journal of Robotics Research, 1988. accepted for publica-
t ion.

[26] Yangsheng Xu and Richard. P. Paul. On position compensation and
force control stability of a robot with a compliant wrist. In Proceed-
ings of the IEEE International Conference on Robotics and Automation,
pages 1173-1 178, April 1988.

I

I [27] Richard P. Paul, Yangsheng Xu, and Xiaoping Yun. Terminal link force
I and position control of a robot manipulator. September 1988. To ap-

pear in the Proceedings of CISM Conference on Theory and Practics of
Robots Manipulator.

i [28] Peter I. Corke. A New Approach to Laboratory Motor Control MMCS.
I Technical Report, University of Pennsylvania, 1989.

I [29] Richard P. Paul, Yangsheng Xu, and Xiaoping Yun. Terminal link force
and position control of a robot manipulator. In Proceedings of Seventh

I CISM and IFToMM International Symposium on Theory and Practice
of Robots and Manipulators, Udine, Italy, 1988.

[30] Yangsheng Xu and Richard P. Paul. On position compensation and
force control stability of a robot with a compliant wrist. In Proceed-
ings of the IEEE International Conference on Robotics and Automation,
pages 1173-1 178, 1988.

[31] Yangsheng Xu, Richard P. Paul, and Peter I. Corke. Compliant wrist
design and hybrid position force control. Submitted to IEEE Interna-
tional Conference on Robotics and Automation, Arizona, USA, 1989.

[32] Richard P. Paul and Yangsheng Xu. On implementation of hybrid con-
trol in the presence of a passive compliance. Submitted to 1989 the
International Symposium on Robotics Research.

[33] Yangsheng Xu and Richard P. Paul. Orthogonal jacobian matrix and
compliance of robots manipulators. In Proceedings of International Con-
ference on Advances in Robot I<inematics, pages 26-35, Ljubljana, Yu-
goslavia, 1988.

[34] Yangsheng Xu and Richard P. Paul. Decoupling compliance mecha-
nisms of robot manipulators. Submitted to the International Journal of
Robotics and Computer-Intergrated Manufacturing.

[35] Yangsheng Xu, Xiaoping Yun, and Richard P. Paul. Nonlinear feedback
control of robot manipulator and compliant wrist. Submitted to the 4th
International Conference on Advanced Robotics, Ohio, USA, 1989.

[36] Peter I. Corke and Richard P. Paul. Real-Time Visual Servoing for
Robotics. Technical Report, University of Pennsylvania, 1988.

A.l A General Device Driver for Ultrix: dev/bus

A General Device Driver for Ultrix
or

Leave the Driver to /dev/busl

Gaylord Holder
General Robotics and Active Sensory Perception Laboratory

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19 104-6389
(holder@grasp.cis.upenn.edu)

Abstract

New hardware is the bane and the boon of the research laboratory: the boon
because it brings new power, new capabilities, and new solutions; the bane
because it means someone has to sit down and write the interface code for
the board. /dev/bus attempts to simplify the process on the MicroVAX 11s
running Ulmx 2.0 by allowing user processes direct access to the board's
control status registers and Q-Bus memory. Unlike similar drivers for
Suns, RTs and Masscomp, /dev/bus provides a means of establishing a user
function as an interrupt handler. The delays and variability of the interrupt
delivery are analyzed. Problems with the implementation are also described.

Introduction

Inspired by device drivers for the IBM RT and Sun which allowed user processes direct
access to the bus, Idevlbus brings this capability to Ultrix 2.0 on the MicroVAX. After
opening /dev/bus, a process can request access to both the Q-Bus VO space and the Q-Bus
memory.2 In addition, the driver can signal a process when an interrupt comes in on a
vector.

The General Robotics and Active Sensory Perception Laboratory (GRASP) at the
University of Pennsylvania has been using /dev/bus for the past two years to provide user
processes with access to:

frame buffers.
parallel YO.
analog to digital data acquisition.
real-time clock for timing analysis.

/dev/bus has proved to be reliable, easy to use and versatile.

This work was funded in part by National Science Foundation grant number DMC-8512838. Any
opinions, findings, conclusions or recommendations expressed in this publication are those of the author
and do not necessarily reflect the views of the National Science Foundation. The author wishes to thank
Robert King and Filip Fuma for their help and support in this work

The MicroVAX I1 uses a private bus for system memory which /dev/bus doesn't touch. Memory on the
Q-Bus is usually provided by hardware such as frame buffers. This is the Q-Bus memory that /dev/bus
provides access to.

The rest of this paper describes the user interface and implementation of /dev/bus.

User interface

After the user process opens /dev/bus, it may request a pointer to the Q-Bus 00 space,
Q-Bus memory, or install an interrupt handler by calling the functions: b u s - g e t i o () ,
bus - getqmem () , and bus - s e t h a n d () respectively.

bus - getio()
The function b u s g e t i o () is used to obtain a pointer the Q-Bus VO space. The bus
address of a deviccis added to the pointer to reference the device's CSRs (Control Status
Registers). NULL is returned on error.

c a d d r - t bus - g e t i o (f d) ;
i n t fd;

The CSRs for the DRV-1 1C 16-bit parallel communications board from Digital Equipment
Corporation consist of a control word, output buffer, and and input buffer. A structure
similar to the following may be used to interface with the DRV-1 1C:

t y p e d e f s t r u c t {
u s h o r t csr; / * C o n f i g u r a t i o n word * /
u-short obuf ; / * Output b u f f e r * /
u-short i b u f ; / * I n p u t b u f f e r * /

drv - i l c ;

If the DRV- 11C lives at DRV - ADDR on the Q-Bus, it may be accessed by:

d r v - l l c *drv_p; / * P o i n t e r t o D R V - 1 1 C ' s CSRs * /

d r v p = b u s g e t i o (f d) ;
d r v p - = (d r v - l l c *) ((u - i n t) (d r v ~) + DRV - ADDR) ;

where f d is file descriptor returned from a call to open "/dev/bus". If b u s - g e t i o ()
should fail, it returns NULL.

bus - get qmem ()
The function b u s getqmem () is used to reference memory on the MicroVAX's Q-Bus
such a memory i n a frame-buffer. A pointer to the Q-Bus memory is obtained by passing
the /dev/bus file descriptor, the beginning address of the desired Q-Bus memory, and the
size of the memory in bytes to b u s g e t q m e m () .

caddr - t b u s - getqmem(fd, qbus - addr, n b y t e s) ;
i n t f d ;
c a d d r - t qbus addr ;
i n t n b y t G ;

The argument, nby tes , must be a multiple of 512. NULL is returned on error.

1 The Data Translation 2651 is a frame-grabber with two 512 by 512 by 8 bit frame buffers.

typedef struct {
u char fba[512][512]; / * Frame buffer A * /
u-c har fbb[512] [512] ; / * Frame buffer B * /

) dt - fb;

Given that it is at DTQMEMADDR, the following code can be used to access the DT265 1's
1 memory.
!

! dt - fb *fbp; / * Ptr to DT2651 frame buffer memory * /

fbp = bus - getqmem(fd,DTQMEMADDR, sizeof (dt - fb)) ;

i
Again, f d is the /dev/bus fde descriptor.

' bus - se thand()

A user process may attach a function to an interrupt vector with bus sethand () . The
/dev/bus descriptor, pointer to the function, and interrupt vectoy are all passed to
bus - sethand 0.

int bus - sethand (fd, fn, vec)
I int fd;

int (*fn) () ;
i int vec;
I

1 bus set hand () returns -1 on error. -

After a interrupt hander has been installed with bus sethand () , /dev/bus will send a
S I G INT signal to the user process whenever an interrupt is asserted. bus set hand ()
takes care of calling signal () so (* f n) () will be executed with the driver delivers the
signal.

The DRV- 11 C can be configured to interrupt the CPU whenever a word is sent and/or
received. A simple(-minded) scheme to count the number of times a device at the vector
VEC - ADDR interrupts is shown below.

int interrupt - counter = 0;

interrupt - handler ()
{

++interrupt - counter;
1

main ()

bus - sethand(fd,interrupt-handler,VEC - ADDR);

/ * Don ' t e x i t u n t i l w e ' r e f i n i s h e d * /
f o r (; ;)

s i g p a u s e () ;
1

Because of the time required to process signals, this is not a highly reliable scheme if the
device can interrupt more frequently than 500 times a second.

Implementation

This section provides a brief outline of the /dev/bus driver.

Initialization

The first thing the driver does when /dev/bus is opened is to lock the process in memory.
This keeps the kernel from trying to do something stupid like swap frame buffer memory a
process is accessing out to disk. In addition, open () allocates a data structure the driver
will use to keep track of Q-Bus memory the process is accessing, the process id, and
interrupt vectors the process is handling, so the process's state can be restored when it exits
or closes /dev/bus.

Q-Bus Access

bu s get i o () and bu s g e t qmem () work in pretty much the same way. The major
difference is that b u s get i o () returns a pointer to the Q-Bus YO space, addresses
0x20000000 to O X ~ ~ ~ O ~ F F F , while b u s ge tqmemo works with the address from
0x30000000 ~ O O X ~ O ~ F F F F F . ~ A ~ i n ~ l ~ c ~ m m ~ n d r i v e r r o u t i n e , b u s qmern(),is
called by both b u s g e t i o () and b u s getqmem () . It takes a pointer 6 the process
structure, the beginnGg address of the theQ-Bus memory to be mapped in, and the number I

of bytes to be mapped.

b u s qmem () calls expand () to add PTEs (Page Table Entries) to the user process. The
origl'ial value of the PTEs are saved so they can be restored later. The new PTEs are
changed to reference the appropriate Q-Bus page frames and the pointer to the Q-Bus
memory is returned to the user process. The only funny business about this whole thing is 1

that it requires the swap space associated with the process also be expanded, otherwise, the
operating system panics, thinking it somehow grew a process without remembering to
adjust the swap space.

Interrupt Handling

When a user process establishes a signal handler, the /dev/bus driver records the vector in
the data structure that it allocated the process when /dev/bus was opened. A small change
to the assembler routine - st r a y in l o c o r e . s allows /dev/bus to pass device interrupts
to interested processes.

When a device for which the operating system is not configured interrupts, s t r a y picks I

off the interrupt vector and interrupt priority. -st r a y was changed to c d the /dev/bus

MicroVAX Handbook, pp 5-34 to 5-36, Digital Equipment Corporation, Nauhua, N.H. b

function, bu s s ig int r () with the interrupt vector as an argument. This function runs
though the I d e a u s data structures looking for a process which wants to handle it. If none
is found, the bus sigintr () returns and stray logs the stray interrupt. If a process
has established ananinterrupt handler for the vector, bus-sigintr () calls psignal () to
deliver a S I G I N T signal to the process.

.Interrupt Latency

1 One of the original uses planned for /dev/bus was to provide a real time capability for user
programs. The idea was that a device could interrupt the user process which would do its

i thing. This would be great for robot control since all the code would be running in user
space on a single machine. Standard debuggers could be used to make sure the code
worked and life would be just peachy. The big question was how long it took the interrupt
to wend its way through Ultrix and kick in the user's interrupt handler and how variable the
times where. An experiment was set up to learn how long it took until the kernel got a-hold
of the interrupt, and then how long it took to pass to the user process.

A KWV-11 real time clock board was set to run at 2 MHz. It was then set to wait 2
milliseconds and then interrupt. The time between the interrupt and resetting the KWV-11
was recorded. The interrupt routine would set the KWV-11 to interrupt in 2 milliseconds ' to give the interrupt handler to return and restores the process's normal context A total of

I 10 mals of 10,000 samples were run with the interrupt handler in the kernel and from the
user process. The trials were run on a MicroVAX I1 with 5 Mb of memory, a quiet
network, standard user priority and a version of Ultrix 2.0 modified for /dev/bus.

I As figure 1 shows, the interrupt latency for the user process averages to about 0.7
milliseconds while the kernel latency, as shown in figure 2, is about 0.12 milliseconds.

1
I The MicroVAXts 10 millisecond clock shows up in figure 2 quiet clearly.

(a) Interrupt Latency (b) Expanded Intenupt Latency

Figure 1: Interrupt to User Process Latency

1 The kernel interrupt is being called lowest hardware priority. However, the only thing that
I it do to bring in the user process and still clear the interrupt stack (remember, there isn't a
I clean way to get back from the user process context to the kernel interrupt stack) is to set up
I an AST (Asynchronous System Trap), which is essentially what Ultrix's signaling
I mechanism does, or call p s i gna 1 () as /dev/bus already was.
1
1
I

(a) Kernel Intermpt (b) Sorted Kernel
Intermpt Latency

600

985 Of the samples are
less than the average of

0.122 milliseconds

Figure 2: Interrupt to Kernel Latency

From these, and other, experiments clearly showed that the variability of the interrupt
latency is coming after the setting up the AST. Other hardware, kernel housekeeping,
network traffic and what not was being handled at the expense of the interrupt handler's
reliability and responsiveness.

Although the latency from interrupt to user process was less than 7 milliseconds 90% of the
time, see figure 3, the enormous variability destroyed any hope of using /dev/bus for real
time work.

Sorted Interrupt Latency

930 Of the samples are
less than the average of

0.702 milliseconds 1
Figure 3: Sorted Interrupt to User Latency

Clean Up

The user interface doesn't provide any means of removing an interrupt handler or restoring
the process's original memory map, but the kernel must. When a process closes /dev/bus,
or it exits, the kernel function bus clear u i n f o () is called to restore any PTEs that
/dev/bus used. Any interrupt handlFrs the process had installed are also removed.

Other Issues

So far, with the exception of the m&ication of s t r a y , the implementation of /dev/bus
has been completely in the driver module. Unfofiately, there are a few more patches that
must be made to get everything working.

More Cleaning Up

The biggest problem /dev/bus has been getting the operating system to call
b u s c lear u i n f o () at the right time. During the initial design of the driver, it had

i beenassume&that driver's close function would be called before any of the process's
I memory was de-allocated -- or at least there was a single procedure where processes were

dismantled. It was a great surprise to find not only is the process's memory returned to the
system's memory pool long before the devices are closed, but also that it is done from
several routines.

1 In the current implementation, bus -c l ea r - u i n f o () is called from vrnernf ree () in
. /sys/vm-mem. c.

Protecting the User from HimIHerself

I One of the other modules which had to be modified was machdep . c. Without this
1 change, a user process could request memory that wasn't really there, for example the

memory address to bus-get qrnem () could be wrong. When the process went to use the
pointer, it would reference non-existent memory, and the system would panic. A check
was added to see if the current process was using /dev/bus. If so, it was assumed to be
responsible for problem. This way, a process making an invalid reference exited with

I s IGBuS rather than taking the whole system with it.

I

Memory Allocation

One of the bigger surprises was that the s b r k () keeps a local copy of the size of the
process in the global assembler variable curbrk . When a process called b u s g e t i o ()

l
or b u s ge t q m e m () the size of a process changed without s b r k updating c u r b rk .
Thus, the next time the process decided to print something with p r i n t f () (which calls

I ma 1 l o c () which can in turn call s b r k ()) sb r k () decides to set the process size based
on the value in c u r b r k which is usually a good deal smaller than the real size of the
process. The kernel then tries to free the newly allocated PTEs which point to the Q-Bus

! and panics when it realizes that someone has been tampering with its processes.

/ T o f i x t h i s p r o b l e m , b u s g e t i o () a n d b u s g e t q r n e m o ca l la rout ine
f i x c u r b r k () with the number of bytes to add t o c u r b r k . This way s b r k () ' s
notion of the process's size matches reality.

I

Problems
1 There are still some problems.

I /dev/bus should provide some support for multi-user access. At the moment, no checking
is done to see if the Q-Bus memory or interrupt vector requested by one process is already

1 being used by another.
I

/dev/bus also ignores problems that might crop up if a process using Idevlbus decides to
spawn a child. Since both the intempt and illegal memory reference features look up a
process based on the recorded process id, fork () can be a nasty problem. An associated
p'tobieemhas to do with debug@.ng. WKde a p'tocess u h g l hew fous can SIX\ be run unhe~
any of the standard debuggers, care must be exercised when looking a variable values. If
the /dev/bus process has a pointer out to Q-Bus memory, it is fine to look at the value of the
pointer -- but looking at the contents of what the pointer references sends the whole system
into an uproar. This is because the process being run under the debugger had its PTEs
mangled by /dev/bus, while the debugger didn't.

The only board with DMA used on the GRASP laboratory's MicroVAXen is the Ethernet
Interface. This is not one to use to debug the DMA facilities of /dev/bus, so the DMA
support isn't.

Finally, /dev/bus still occasionally will crash the machine. For the most part, the machines
are as stable as any other Unix box. But once and a while, especially if there is a system is
to be demonstrated, the system will panic in vrelvm () or something and away it goes.
Sigh.

Conclusion

/dev/bus was originally designed so that user processes could interface with new hardware
without the operating system overhead or writing a new device driver. On the whole, that
goal has been met. New devices can be installed and a rough set of interface libraries
written in only a few days. The best part is that usually, the system only has to be rebooted
for the physical installation of the device.

While /dev/bus doesn't make device drivers redundant, it does give the system's
programmer a chance to work with the device before having to plunge into the kernel. This
pulls more of the development work out of the kernel and shortens the time need to write
the device driver. Best of all, it gives knowledgeable users the tools needed to write their I

own interface software.

A New Approach to Laboratory Motor Control

MMCS

The Modular Motor Control System

Peter I. Corke'
pic@grasp .cis.upenn.edu

Computer and Information Science Department
University of Pennsylvania

Philadelphia, PA 19104

January 13, 1989

'Research Scientist, CSIRO Division of Manufacturing Technology, Melbourne, Australia.

Abst rac t

Many projects within the GRASP laboratory involve motion control via electric
servo motors, for example robots, hands, camera mounts and tables. To date
each project has been based on a unique hardware/software approach.

This document discusses the development of a new modular, and host inde-
pendent, motor control system, MMCS, for laboratory use. The background to
the project and the development of the concept is traced.

An important hardware component devloped is a 2 axis control motor control
board that can be plugged into an IBM P C bus or connected via an adaptor to
a high performance workstation computer.

To eliminate the need for detailed understanding of the hardware compe
nents, an abstract controller model is proposed. Software implementing this
model has been developed in a device driver for the Unix operating system.
However for those who need or wish to program at the hardware level, the man-
ual describes in detail the various custom hardware components of the system.

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Background and Motivation . 2

. 1.3 System overview 4
1.3.1 Control Processor and Software 4
1.3.2 Motor interface . 6

1.4 Acknowledgements . 7

2 Application model of the motor controller 8
2.1 Compensator . 9

2.1.1 The general transfer function 9
2.1.2 PID implementation . 10
2.1.3 PD implementation . 10
2.1.4 PI implementation . 10

2.2 Control options . 11
2.2.1 Velocity servo . 11
2.2.2 Torque servo . 11
2.2.3 Coulomb friction compensation 11
2.2.4 Feedback source . . . : 11
2.2.5 Setpoint source . 12

2.3 The Unix device driver . 12
2.3.1 Configuring the servo . 12
2.3.2 Choice of parameters . 14
2.3.3 Accessing servo state . 15
2.3.4 Error handling . 16
2.3.5 Other device driver functions 16
2.3.6 Code example . 18

2.4 Accessing hardware directly . 18
2.5 Control synthesis . 18

4 Host adaptor 27
4.1 Introduction . 27
4.2 Adaptors in general . 27

4.2.1 Generic specification for adaptors 27
4.2.2 PCbus signals redefined 28

4.3 In particular: VMEbus adaptor 28
4.3.1 VME memory Map . 28
4.3.2 PC bus access . 28
4.3.3 Adaptor Control Registers 31
4.3.4 The Servo Clock . 31
4.3.5 Panic signal . 32
4.3.6 Interrupts . 32
4.3.7 LED indicators . 32
4.3.8 Miscellaneous Notes . 32

5 The Mark I motor interface card 35
5.1 Servo board specification . 35
5.2 Design aims . 35
5.3 Description . 36

5.3.1 Memory map . 36
5.3.2 The latch signal . 38
5.3.3 D/A double buffering . 38
5.3.4 Calibration . 39
5.3.5 Diagnostics . 39
5.3.6 Panic signal . 39

5.4 Board details . 40
5.4.1 Switches . 40
5.4.2 LED indicators . 41
5.4.3 Configuration . 41
5.4.4 Pinouts . 41

List of Figures

. 1.1 Notional controller structure 5

. 2.1 Motor controller block diagram 9
. 2.2 MMCS code example 19
. 2.3 MMCS code example 20
. 2.4 MMCS code example 21

2.5 SunOS code example for direct hardware access 22

4.1 VME Host adaptor memory map (byte addresses shown) 29
4.2 PC bus 110 space address formation 30

5.1 Servo board memory map . 37
. 5.2 Motor interface board layout 40

Chapter 1

Introduction

1.1 Overview

This first chapter discusses the motivation for a new modular, and host indepen-
dent, motor control system for laboratory use. The background to the project
and the development of the concept is traced. A number of possible solutions
are proposed and discussed, leading to a general description of the system that
has been implemented.

Chapter 2 describes in detail an abstract programmer's model of the axis
controller. Details of the servo interface hardware are hidden, allowing the
applications programmer to concentrate on higher level control. The software
implements position, velocity or torque control, selectable per axis, and the
closed loop dynamics may be modified by a digital compensation network.

Chapter 3 describes an interactive graphical tool that allows a user to con-
figure the axis controller, perform diagnostics and perform joint level motions.

The last two chapters are not essential reading for casual programmers, but
are essential for those programming at the hardware level.

Chapter 4 describes the function performed by the host bus adaptor and
also the axis controller bus, which is the same as IBM/PC bus. Details such
as redefinition of some signal lines1, and the addressing conventions used are
covered. It describes in detail the hardware implementation of the VME host
to P C bus adaptor that was built.

Chapter 5 describes in detail the hardware and programming details for the
Mark I servo interface board.

'It's not as bad as it sounds

1.2 Background and Motivation
Many projects within the GRASP lab. involve motion control via electric servo
motors, for example robots, hands, camera mounts and tables. Each project
has been based on a unique hardwarelsoftware approach. In the last few years
the approaches have included

VAL-I1 control language receiving commands over a serial line from a host
computer

RCCL (Hayward and Paul)

RFMS multiprocessor (Zhang and Paul)

The first approach is limited by communications speed, and is not suitable
for real-time sensor based control. The RFMS controller has proved in practice
to be very difficult to program, and does not seem to have realized the full
potential of its parallel hardware architecture.

RCCL is a very general robot programming environment and is capable of
real-time sensor based control, as has been demonstrated by various projects
within the lab. It does have the drawback that it is tightly coupled to the VAX
architecture and Unimate robots and their controllers

RCCL provides the programmer with a particular model of the robot and
its environment. This model, based on kinematic position equations and carte-
sian representation using homogeneous transforms, is very powerful, however
there are many applications to which it is not well suited. It is at this point
that the inherent inflexibility of RCCL becomes a problem, and the applica-
tion programmer's effort goes increasingly into outwitting and thwarting RCCL
"features".

Based on discussions with robot users in the laboratory the following points
were made

1. Robot control hardware. It was considered that the best platform for robot
control would be a powerful single processor system like a workstation. A
single thread machine is inherently easier to program, and a workstation
provides an integrated environment for program development and high
speed execution. To allow a workstation to perform robot control an
interface is required to the robot's electronic subsystems.

2. Robot interface. The RCCL controllers use a relatively high level inter-
face to the Puma robot. The Unimate controller boxes provide position
servo capability, A/D2 and D/A3 converters etc. A functionally more gen-
eral interface was designed for the RFMS project, but the interface was
physically limited to use within the RFMS(board size, connectors etc).

2 ~ n a l o g to digital
3Digital to analog

Professor Paul commisioned a final year project to build a general pur-
pme 6 axis interface for the MicroVAX Qbus, but this was never finished
and there is some doubt as to whether MicroVAXs and Qbus are the
hardware platform to use in the future.

The author suggested a more general solution, based on the technology
developed for the RFMS. The axis controller would be modular, thus al-
lowing it to be expanded easily to cope with changing requirements, for
example 7 axis robot, robot + hand, or two cooperating robots. Most
importantly the axis controllers would be independent of the host proces-
sor bus, whether it be Multibus, VMEbus or Qbus. A simple electronic
adaptor would connect the axis controller bus to the host bus, and would
represent a relatively small fraction of the total system complexity, thus
allowing easy migration to new host computing platforms. It was decided
that the axis controller bus should be the IBM-PC bus, due to the variety
of compatible products in the marketplace.

3. Robot control software. Based on experience with RCCL and CSIRO's
ARCL robot controller[5] it has been decided to redesign the robot control
software so as to be very modular, as opposed to the "monolithic" struc-
ture of RCCL. The structure looks like comprising a number of simple
interfaces and functional blocks, implemented as libraries, and on which
the applications programmer can build. The detailed work would be tack-
led by Gaylord Holder as a Master's project. A number of considerations
in the design are:

at the lowest level it must be able to interface with the existing RCI
interface to Unimate controllers, as well as the new MMCS hardware.

at the highest level it must provide a similar level of functionality to
the RCCL programming environment, since this is one (despite its
limitations) with which many workers are familiar. Within this new
programming environments different programming tools will hope-
fully spring up and eventually replace RCCL.

To restate this, a new motion controller should

a be based on a fast single thread processor

a contain a host independent and modular motor interface

a be accessible via a small and modular software library

The remainder of this document is concerned with the first two points only.

1.3 System overview

This section provides an overview of the hardware and software components of
MMCS.

1.3.1 Control Processor and Software

The control processor has two main computations to perform

High rate servo control loops for the motors

Slower rate trajectory generation

In the existing Unimate controller the servo control loop functions are per-
formed per axis by an 8 bit 6503 microprocessor, see Figure 1.1. To achieve
high joint stiffness and dynamic performance a sample rate approaching lkHz
is desired. There is no way that a process running under Unix (on a 1988 vin-
tage workstation) can achieve this order of response, thus the alternatives are
to

1. use a separate processor to perform the high speed servo calculations. The
software could run on '%bare-metal" or under a real-time operating system.

2. perform the servo computation at interrupt level in a Unix device driver.

The first approach offers the most flexibility, and there are a number of
possibilities for a separate processor including

680x0 VME CPU cards manufactured from many sources. These pro-
cessor boards can plug into the VME backplane and communicate with
the host via shared memory. Having the same instruction set as the host
eliminates the need for software cross development tools. Communications
and support software could be developed, or an off-the-shelf package such
as VxWorks could be utilized.

Bell Labs JIFFE[3] processor, which can be plugged into a SUN work-
station, and has full software support including a C compiler, and host
communication facilities.

The second approach is lower in cost but not as flexible. With an attached
processor the user can code up an experimental servo algorithm, download then
run it. However, a servo loop in the kernel means that the user would have to
rewrite the driver, link a new kernel and boot it. Debugging tools exist for the
kernel but they are primitive. More seriously kernel code cannot use floating
point arithmetic. Such an approach, under the Xenix operating system, has
been described[4].

A variation on this theme is the RCI package written by John Lloyd[9]
in which the kernel interrupt handler invokes a user process function in kernel

I applications
I
I

existing controller MMCS controller

Figure 1.1: Notional controller structure

mode. This provides run time linkage of user code into the kernel, but debugging
remains difficult and the user code must obey some strict guidelines.

The approach taken in this project is to build hardware consistent with both
approaches, but the first implementation will be use servo loops embedded in a
device driver. The driver implements a very general servo loop capable of being
configured for position, velocity or torque mode operation. Any application that
wishes to can bypass the servo loops and specify motor currents directly (torque
mode). In this case the control algorithm is running in a user process and its
scheduling cannnot be guaranteed, with possibly serious consequences for stable
and smooth control. This is unavoidable when working under Unix.

Comparison of the two approaches in Figure 1.1 shows that the functionality
of the six 6503 servo cards in the Unimate controller has been shifted to the
host computer. Simulations of the servo software for 6-axis computation time
was done for a number of processors and the results are summarized below

Sun 31160

This indicates that Unix device driver based servo loops can provide satisfac-
tory sample rates on most of the GRASP laboratory machines. The simulation
does not take into account effects such as adaptor hardware access time, inter-
rupt latency, or service overhead time.

1.3.2 Motor interface

The motor interface was designed with the following design aims

make it as host bus independent as possible

8 make it as modular as possible

use as much of the proven iSBX design[7] as possible

8 control up to 16 axes

To achieve this the hardware has been partitioned into three components

1. Motor interface hardware that provides current drive signal to the motor
and processes signals from sensors regarding the motor's state.

2. Axis controller bus into which motor interface cards are plugged.

3. Host adaptor to connect motor interfaces to a host computer that will
perform the servo computations.

The motor interface is the electronics that connects the motor to the axis
controller bus. It provides an analog drive signal to the motor, and measures
shaft angle via an incremental encoder, as well as application specific quantities
via a general purpose analog input.

Control of a system with upto 16 axes introduces a number of problems
such as timing skew between sampling the first and last axis. If the system is
connected to a Unix host computer we cannot rely on software, even a t driver
level to initiate sampling since interrupt latencies can vary by upto 100 psec.
Thus it was seen to be essential that sampling is controlled by a hardware clock,
and the host is notified by interrupt so that it can read and processs the state
information. The hardware clock signal, SCLOCK, is common to all motor
interface cards.

Since the host is also interrupted by the SCLOCK, by the time the inter-
rupt handler routine is entered all state information is available to be read.
This means that A/D conversion time is overlapped with the interrupt service
overhead for maximum efficiency.

Safety considerations indicate that every motor interface should have the
ability to indicate its readiness for operation or an error condition. This signal,
referred to as PANIC, is also common to all interface cards, anyone of which
can assert the line to indicate a system failure. The type of failure can be
determined by host software polling all cards.

The axis controller bus needs to be an ordinary computer bus with address,
data and control signals, but it also needs to have the SCLOCK and PANIC
signals. It was initially decided to define and use a custom bus for this purpose,
but later the decision to use the IBM PC bus was made. The PC bus is nearly
ideal in that it is simple to interface to, and a wide range of peripheral cards
is available for it. The two special signals could have been implemented by a
separate ribbon cable linking all boards, but this is not failsafe in that it is
possible for cards to be not connected. Instead two signals from the IBM PC
bus were "redefined" for these purposes and is discussed further in Chapter 4.

1.4 Acknowledgements

Professor Richard Paul provided the impetus and support for the project.
Dave Feldman did the detailed design of the servo board and design and

constructruction of the VME/PC bus adaptor. Filip Fuma and Mat Donham
designed and built the iSBX cards used in the RFMS.

off

Chapter 2

Application model of the
mot or controller

A general model for servo motor control is proposed. It is capable of performing
most commonly required functions such as closed-loop position or velocity con-
trol. If this functionality is not required the application can also directly specify
motor current demands. The motor controller referred to here comprises

The motor interface hardware described in detail in Chapter 5.

Servo software in the kernel of the host computer

Since future interface boards may incorporate more control functionality, an
abstract user model allows the software/hardware balance to be changed without
applications being recoded.

Figure 2.1 shows the proposed control model. A number of switches S l . . . S5
control various operating modes of the controller. Feedback can come from one
of two sources (S4)

An incremental shaft angle encoder

An A/D converter

A derivative block may be switched into the feedback path (S5) which will cause
a velocity servo function to be implemented. The setpoint signal may come from
either (Sl)

The application program via a write() system call, which is represented
by u in Figure 2.1.

The A/D converter

S3 switches in an optional Coulomb friction compensation block, while S2 by-
passes the feedback control and allows the setpoint to control motor current
directly.

I

kernel I . -

Figure 2.1: Motor controller block diagram

2.1 Compensator

A compensator is included in the forward path to allow users to tailor the
dynamic response of the closed-loop system. Typically for a DC electric servo
motor, the transfer function is

where 9 is motor shaft angle, i is motor current, k is the motor torque constant,
J is the motor inertia comprising self and reflected load inertia, and B is viscous
friction.

To provide position control, feedback is required, and to achieve good dy-
namic peformance and disturbance rejection some compensation is required.

2.1.1 The general transfer function

The controller implements a unity gain negative feedback loop on position, with - -

a general discrete transfer function compensator as shown in Figure 1. The
transfer function is

a2z -2 + al z-' + a0
D (z) =

bzz-2 + b l z - l + bO

where the coefficients ai and bi are programmable by the user. The DC gain is
given by C a i l C bi. All coefficients and quantities are 32 bit signed integers,
so care must be given to the scaling of the integer coefficients.

Many design methodologies may be used to synthesize the compensator
coefficients[6]. If a continuous time transfer function is synthesized, perhaps
using any of the standard forms discusssed below, techniques such as bilininear
transform, Z-transform or pole/zero mapping[6] may be used to generate equiv-
alent discrete time transfer functions. Details of some commonly used control
strategies are given below. An example of synthesis for a PID control law is
given in Section 2.5.

2.1.2 PID implementation

The classical continuous time PID controller has a transfer function of

u = Pe + D-e + I edt
dt J

where e is the error, demanded minus measured plant output. This may be
Laplace transformed to

U 1 - = P + D s + I -
E s

u P S + D S ~ + I - -
E - s

from which it is clear that the transfer function has a pole a t the origin, s = 0,
and a complex pair of zeros affected by the parameters P, I, and D.

2.1.3 PD implementation

The transfer function of a PD controller is

which has azero at s = -P/D.

2.1.4 PI implementation

The transfer function of a PI controller is

which has a zero at s = -I/P, and a pole at the origin.

2.2 Control options

2.2.1 Velocity servo

A velocity servo loop may be implemented by switching in a differentiator (S5)
to the position feedback path. The differentiator is implemented by a three
point derivative

dy 3yt - 4yt-1 + yt-2 -
dt

X
2

to yield a smoother velocity estimate. Note that the velocity units (see S4) are
either encoder counts, or transformed AID units, per sample interval.

2.2.2 Torque servo

For torque control, the compenstation computation is completely switched out
(S2), and the user specified value is used directly as motor current demand.

2.2.3 Coulomb friction compensation

Coulomb friction is a non-linear effect, in which an approximately constant
torque opposes the motor's torque. The friction torque is not necessarily the
same for each direction of rotation, and varies with joint loading, and will thus be
somewhat configuration dependant. A optional Coulomb friction feedforward
function may be enabled (S3) to compensate for this non-linear effect. The
compensator implements the control law

where i is the output of switch S2.
If the velocity is zero, and a non-zero current is specified the sign of the

current demand (from the digital compensator) is used, since that indicates the
direction of desired motion.

icp and icn are the currents required to overcome the Coulomb friction
torques in the positive and negative rotational directions respectively.

2.2.4 Feedback source

The feedback signal (S4) may come from either the shaft angle incremental
encoder 8, or from the AID converter associated with the axis. The raw data
from the AID converter is processed with a simple linear law

that provides scaling and offset before it is used as the feedback signal.

For example, opening the feedback path (S5), and selecting demand from
the A/D (Sl), the servo will implement a programmable digital filter between
A/D and D/A. Application software could also log the raw or filtered signal.

2.2.5 Setpoint source

The setpoint, or demand signal may come from one of two sources (Sl) as shown
in Figure 2.1. Normally it would be supplied by the user's application program
to the device driver via a write() system call. However it may be selected to
come from the processed AID signal, 4.

2.3 The Unix device driver

A SunOS device driver (/dev/mc) has been written to implement the applica-
tion model of the controller, and is described in this section. The mc device
driver does not support the many individual features of specific motor interfaces.
To access these capabilities it is probably more effective to map to the device
hardware from Unix, and directly manipulate control registers as described in
section 2.4.

2.3.1 Configuring the servo

Every axis has a parameter structure which describes the mode of operation to
the mc device driver.

/*
* Per joint parameter structure .
* /

struct mc-param C
in t which;
int a2, a l , aO, b2, b i , bO; /* compensator coeff ic ients */
in t ic-pos, ic-neg; /* feedforward constants */
in t mode, clkdivisor ;
in t i l im, ilimmax; /* current l i m i t */
int plo, phi; /* position limits * /
int adc-a, adc-b; /* adc conversion law */
int ipole ; /* current f i l t e r pole */

>;
The units for i c p o s , ic-neg and ilim are D/A converter units. plo and phi

are in the units of whatever feedback source is selected. clkdivisor is the number

of hardware clock ticks between servo computations for this axis. That is, each
axis may be servoed at a sub-multiple of the hardware clock rate.
Possible values for mode are

MD-OFF Not servoed
MD-POS Position control mode
MD-VEL Velocity control mode
MD-TORQ Torque (current) control mode
MD-TEST1 Generate triangle waveform

Additional values may be or'd with the mode word, such as

COULCOMP Enable the Coulomb friction feedforward (S3)
ADFB Feedback comes from 4 not 9 (S4)
ZEROFB Zero feedback, that is, open-loop operation (S5)
ADDMD Demand comes from 4 not the computer (Sl)
ADOFF Torque offset comes from 4 not the computer
POSCHK Check position limits on feedback signal
SOFTERR Don't shut motors down when error is detected

Note that not all switch combinations are useful, and this is not checked.
The servo parameters for an axis are set or examined using an ioctl() system
call on the mc device. To retrieve parameters from an axis the which element
must first be set to indicate which axis the parameters are required for

struct mc-param p a ;

par.vhich = ax i s ;
i o c t l (mcf d , HGETPARAH , &par) ;

mcfd is the file descriptor for the motor control device, /dev/mcO. To set
parameters the parameter structure should be initialized by the user's program,
and the which element set to indicate which axis the parameters are destined
for.

struct mc-param par ;

par.which = 3;
par. mode = W -VEL;
i o c t l (mcf d , HSETPARAH , e a r) ;

Only one axis may be initialized per ioctl(). All parameters are initialized
as shown in Table 2.1 when the device is opened.

Also at open time the driver scans the axis controller bus looking for motor
interface cards from axis 0 through axis 15. When the device is closed, all motor
currents are set to zero and the PANIC signal asserted.

Table 2.1: Initial parameter values

Structure element
a0
a1
a2
bO
b 1
b2
ic-pa
icaeg
ilim
ilimmax
adc-a
adc-b
mode
clkdivisor
ipole

2.3.2 Choice of parameters

Initial value
1
0
0
1
0
0
0
0
1/2 maximum current
0
1
0
MD-OFF
1
0

It may appear that there is an overwhelming number of parameters to set before
anything can be done. This is true, and unavoidable with the general appoach
taken. For the Unimate controller many of these issues are handled by the 6503
microprocessors and the code they execute from EPROM. The Unimate servos
have been tuned for good performance with the motors and mechanical systems
used. For MMCS these parameters must be determined by the user, there
is no alternative. The interactive tool mctool can let a user adjust controller
parameters to obtain good performance.

The controller parameters are very dependent upon the type of motor, the
power amplifier, and mechanical drive train. Parameters that work well for one
motor may cause instability with another.

However some practical hints are in order

Determine which direction the encoders change when a positive torque is
applied to the motor. If the encoders increase in a negative direction then
the DC gain of the compensator must be negative, and both Coulomb
friction compensation paramters must be negative.

For position mode control PD control is appropriate, for velocity mode PI
control is appropriate.

The maximum current should be left at some low value (default is half
maximum) until the controller parameters and application are well be-
haved.

2.3.3 Accessing servo state

The driver maintains state information for each axis.

* Per joint s ta te and status
*/

struct mc-state <
i n t adcval ; /* l a t e s t A/D value (processed) */
int encnow ; /* l a t e s t encoder value */
in t inow; /* l a s t current command issued */
in t error ; /* l a tes t error value */
int f bnow ; /* l a t e s t value of feeback quantity */
in t ve l ; /* l a tes t velocity estimate d/dt Cfbnow) */

1;

A read() system call on the mc device returns a vector of m u t a t e structures,
which may be used by the user as required. The state variables are

adcval The instantaneous value of the A/D after processing via the linear law.

encnow The instantaneous value of the incremental encoder counter.

inow The instantaneous or filtered motor current demand, is related to the
torque needed to maintain the position or velocity demand set. It will be
related to disturbance forces such as gravity or robot/object interactions.
If the parameter ipole is zero inow is the instantaneous current. If non-zero,
then the motor current demand is filtered by a unity gain first order digital
filter whose pole is a t ipolelMC-FSCALE, and the value of inow should
be divided by MC-FSCALE to convert from fixed point filter arithmetic
to real value.

error The instantaneous error between the feeback quantity and the demand.

fbnow The instantaneous value of the feedback quantity, which will always be
the same as either encnow or adcval .

vel The current plant output velocity estimate, in units per sample period.

State information is always available once the mc device is open. It is
updated a t every SCLOCK, the sample interval is set by the MSETINTERVAL
ioctl() call.

MERRPLO Low position limit crossed
MERRPHI High position limit crossed
MERFLILIM Sustained current overload
MERRPANIC Hardware panic detected

Table 2.2: Device error codes

2.3.4 Error handling

The MMCS subsystem can generate a number of error conditions. The reason
for the error can be found by using the MLASTERR ioctl() call.

int errcode ;

ioctl (m i f d, HLASTERR, &errcode) ;

The low eight bits of errcode are the axis that caused the error, while the high
order bits may be one of the codes shown in Table 2.2. The bit MERRPOSERR,
if set, indicates that a position error, high or low occurred.

On all error conditions the application process is notifed by a signal SI-
GUSR1. If the operting mode of the axis is or'd with SOFTERR then no
further action is taken by MMCS, and the user's signal handler is responsible
for dealing the condition. If SOFTERR is not set the robot shutdown by giving
a zero current demand to all motors, and activating the brakes.

The driver always checks for sustained torque overdrive of the motor. If the
current demand exceeds the parameter ilim for more than ilimmaz samples the
MMCS is shutdown. Motor current is always clipped to the maximum value
allowed by the D/A converter. If ilimmax is zero, then motor currents are
clipped to ilim and no error condition is generated.

If mode has the POSCHK bit set then the feedback quantity, from encoder
or AID is checked against the limit parameters phi and plo. The error condition
is generated only when the limits are crossed, not continuously while the limit
exists.

A hardware panic is initiated by one of the motor interface cards, or the
hand held panic button. The failsafe nature of the system design means that
panic will also be asserted if connections such as that between host and MMCS,
or MMCS and panic button are broken. The axis number bitfield in the error
code is meaningless for this condition.

2.3.5 Other device driver functions

Functions, not already discussed, that can be controlled via ioctl() calls are
given in Table 2.3.

Reauest

MGETNUMCARDS

MSETNUMJOINTS

MGETPARAM

MSETPARAM

MSTOP

MENABLE

MSETVERBOSITY

MGETVERBOSITY
MGETLASTERR

MSETINTERVAL

MGETINTERVAL
MSETENC

MSETLED

Argument
int

int

struct mc-param

1 struct mc-param

int

int
int

unsigned int

unsigned int
unsigned int

int

Comments
Return the number of motor interface cards
present in the axis controller bus.
Specify the number of axes that will be controlled
by the servo code. Returns EINVAL if this number
is greater than that supplied by the motor inter-
face cards present.
Return the parameter structure for the axis speci-
fied by the which element of the passed parameter
(readlwrite argument). Will return EINVAL if
which is greater than the number of axes, or if bo
is equal to zero.
Set the parameter structure for the axis specified
by the which element of the structure. Will return
EINVAL if which is greater than the number of
axes.
Stop all axes, set all motor torques to zero, joint
control modes to MD-OFF, remove enable status,
and activate brakes.
Check that all boards are operating, and allow all
D/A's to be written.

If M-VERBOSE bit is set then the driver prints
additional diagnostic information during opera-
tion. If M-ERRORPRINT bit is set then infor-
mation is only printed during error situations.
Returns the verbosity flag.
Returns the error code for the last error that hap-
pened. The lower 8 bits specify the axis, the higher
bits specify the error type, see 2.2.
Set the hardware timer interval in psec. Return
EINVAL if timer is incapable of meeting the inter-
val requested. If the time interval is greater than
the heartbeat timeconstant in the motor interface
board PANIC will be asserted by hardware, see
5.3.6
Get the hardware timer interval in psec

Set the hardware encoder register to given value.
Lower 8 bit specify axis, next 16 bits specify value.
Control axis indicator LEDs, each bit in the argu-
ment controls one LED associated with the axis.
Axis is specified by lower 8 bits, LEDs by bits 8. . .

Request I Argument Comments

MSETDAC

MDACMODE

MGETSTATS

MZEROSTATS

Specify the diagnostic operating mode. If bit
MANDIAG is set then analog loopback is en-

int

int

struct mcstats

abled, if bit M-ENDIAG is set then encoder loop-
back is enabled. EINVAL is returned if the board
cannot perform the specified diagnostic.
The lower 8 bits of the argument specify which
axis D/A is set to the value specified by the next
higher 12 bits.

If argument is non-zero then DAC double buffer -
mode is enabled for all axes, otherwise single
buffered mode is enabled.
Returns a structure of statistics gathered by -
the driver about interrupts, such as total, those
missed, overrun etc.
Zero the driver's statistics structure.

Table 2.3: Ioctl calls for the mc device

2.3.6 Code example

Figure 2.4 is a code fragment that illustrates the important steps in controlling
motors via the mc device driver.

2.4 Accessing hardware directly

This approach to interfacing, mapping device hardware registers to a Unix pro-
cess, is very specific to the flavor of Unix being used. Some likely approaches
are Ultrix via the /dev/bus device driver, or SunOS via the /dev/vme* device
drivers. User's following this path should be very familiar with the material in
Chapters 4, 5 and the appendices. A SunOS code fragment is given in Figure
2.5.

For more details consult the Unix manual entries for valloc(2) and mmap(2).
If an access is made to a address a t which no device resides, the VMEbus times
out and a SIGSEGV (segmentation violation) signal is delivered to the user
process. A SIGBUS (bus error) signal can be delivered if the device hardware
messes up the VME cycle.

Note that accesses to devices via mapped memory cause "non-priviliged"
address modifiers to be issued while accesses from a device driver cause "priv-
iliged" address modifiers[l].

/*
* Example program showing use of MHCS system f o r 2 ax i s control i n
* velocity mode with random t ra jec to r ies .
*
* pic 1/89
*/

#include cstdio. h>
#include <sys/fi le.h>
itinclude "/usr/sys/sundev/mcdei.h"
#include <signal . h>

i n t f d ,
naxis ,
verbose,
in tva l = 2;

i n t setpC161;
char *pname;

#define VAL (b) (atoi(&bCll> >
main(ac, av)
i n t ac;
char **av ;
C

s t r u c t mc-stats s t a t s ;
s t r u c t mc-state s t a t e [I61 ;
s t r u c t mc-param param;
i n t i ;
void mmcserr() ;

pname = av [O] ;
/*
i f (ac == 1) C

usage : f p r i n t f (s t d e r r , "Usage: %s O\n", avCO1);
e x i t (I) ;

1
*/

while (--ac > 0 80 **++av == I - ') <
reg i s te r char *p = *av;

while (*++p != '\O1)
switch (*p) (
case ' v J : verbose++; break;
Lase ' t J : in tva l = VAL(p); break;

Figure 2.2: MMCS code example

-

if (verbose) (
i = H-VERBOSE;
ioctl(fd, MSETVERBOSITY, Bi) ;

1

if (ioctl(fd, MGETNWCARDS, &i) < 0)
perror("ioct1:");

printf("%d cards in system\nW, i);

naxis = i*2;
if (ioctl(fd, HSETNUHJOINTS, Bnaxis) < 0)

p~rror(~'ioct1: ") ;

intval *= 1000;
if (ioctl (f d, HSETINTERVAL, Bintval) < 0)

perror("ioct1:");

/ *
* zero the encoders
* /
for (i=O; icnaxis; i++) <

setp[i] = 0;
ioctl(fd, MSETEIC, Bi);

/ *
initialize the parameters

* /
param.vhich = 0;
ioctl(f d, HGETPARAH , Bparam) ;
param.aO = 50;
param.bO = -1;
param.mode = MD-VEL I SOFTERR I POSCHK;
param.plo = -6000;
param-phi = 6000;
param-ilimmax = 0;
1

Figure 2.3: M w code example

f o r (i=O; icnaxis; i++) C
param.which = i ;
i o c t l (f d , MSETPARAH , ¶m) ;

1

i f (ioc t l (fd , HEHABLE) < 0) <
fp r in t f (s tde r r , "cant enable\nM) ;
e x i t (3) ;

3

f o r (i=O; icnaxis; i + +)
s e t p t i l = veloc() ;

write(fd, se tp , naxis * sizeof (i n t)) ;

/*
* The program now waits, a l l control i s done i n a s ignal
* handler invoked when an axis exceeds i t s posit ion limits.
*/

f o r (; ; I
s igpause () ;

3

void.
mmcserr(
<

i n t errcode ;
i n t axis , code;

ioc t l (fd , MGETLASTERR, &errcode);
axis = errcode & Oxff; .
code = errcode & 'Oxff;
pr in t f ("%s l i m i t on axis %d\nN,

(code == HERR-PLO) ? "low" : "high",
axis

1;
/ *

choose random velocity i n opposite d i rect ion f o r e r ro r axis
*/

setp[axis] = -veloc() * abs(setpCaxis1) / setpLaxis1;
write(fd, se tp , naxis * s izeof (in t)) ;

r e tu rn random() % 20 + 10;
2 1

Figure 2.4: MMCS code example

int fd,
lens
off,
buserr() ;

cad&-t ad&, valloc() ;

/* file descriptor for the bus device */
/* length of memory window to map */
/* base of memory window */

if (len < getpagesize()) /* round len up to a page size */
len = getpagesize() ;

fd = open("/dev/vmei6", 0-RDWR); /* open the bus device */
if (fd < 0)

perror("open");

addr = valloc(1en); /* allocate virtual memory */
if (addr == NULL)

perror ("valloc") ;

/ *
* map bus memory window into user's virtual memory
* /
if (mmap(addr, lens PROT-READ I PROT-WRITE, HAP-SHARED , f d, off) < 0)

perror (llmmapll) ;

signal(S1GBUS. buserr); /* set up signal handlers */
signal(SIGSEGV, buserr);

buserr ()
C

printf ("BUS ERROR\nU) ;
longjmp(env, 1);

1

Figure 2.5: SunOS code example for direct hardware access

Symbolic Simulat or/Debugger
for the

Syst olic/Cellular Array Processor

Janez Funda

University of Pennsylvania
Department of Computer and Information Science

Philadelphia, PA '19104

October 15, 1988

Contents

1 Introduction

2 Description of the System 3

2.1 General . 3

2.2 User interface in sim . 4

2.3 Data file format . 7

2.4 Disassembly conventions . 8

2.5 Processor display format . 11

3 Discussion and Suggested Improvements 13

4 Some Implementational Details 14

A A sample SCAP assembly language program and data file 17

B A sample run of the simulator/debugger 18

1 Introduction

This document describes an implementation of a symbolic simulator/debugger for the

Systolic/Cellular Array Processor (SCAP), which is currently being built at Hughes

Research Laboratories. The SCAP system is a parallel computer with 256 identical

processing elements (PEs) connected using a mesh interconnection network in a 16 x 16

grid. Each PE features a two-bus internal architecture, with seven functional units,

and four 1/0 ports used to communicate with its four neighboring PEs. All functional

units operate on 32-bit fixed point data. The reader is refered to [Przytula,88] for a

detailed description of SCAP's architecture, data representation format, and machine

level operation of the system.

The construction of a symbolic simulator/debugger for the SCAP system was

motivated by the need to run, test and debug some assembly language programs

that were being developed in the General Robotics and Active Sensory Perception

(GRASP) Laboratory here at the University of Pennsylvania. The Laboratory is

expecting a delivery of the actual computer some time this year. However, we felt

that availability of a simulator/debugger prior to the actual delivery of the system

would increase the utilization of the harware, once installed.

The scope of the simulator/debugger project included (1) an implementation of

a simulator, that corresponds as closely as possible to the operation of the actual

hardware, (2) a loader module to load user data into memory prior to program ex-

ecution, and (3) an easy-to-use basic user interface, allowing the user to trace the

execution of the program, single-step through the code, examine all relevant portions

of the system, and make references to the symbolic information in the source pro-

gram (e.g., symbolic labels, processor mask names, e tc) . The current implementation

meets all aspects of the above objectives. It does not, however, strive for a sophis-

ticated visual interface with the user. Therefore, no graphics front end interaction

has been implemented. This would be a useful extension to the system, should the

simulator/debugger be used more than currently anticipated.

The SCAP simulator/debugger (hereforth refered to as sim) described in this doc-

ument is designed to operate in conjunction with the corresponding SCAP assembler

(ass), developed by h t h o l t z [Hartholtz,88]. The reader is e m o u r a d to refer t o

[Hartholz,88] for a description of the SCAP assembly language syntax, facilities, and

, the

shes

iical

x 16

nits,

onal

or a

hine

was

ams

t ion

,y is

felt

tem

n of

tual

ex-

the

ions

pro-

tion

his-

tion

the

loc-

bler

r t o

and

features.

Simulating the execution of a given SCAP assembly language program is therefore

a two stage process. The program is first assembled using ass, producing a file

containing non-relocatable absolute object code and the symbol table information

[Hartholz,88]. This file plus a file containing the data to be operated on are then

passed as arguments to sim. The details of the data file format as well as user

interaction with the system are described below.

This document is intended as a brief user's guide for sim. To illustrate some of

sim's features, I have added a couple of appendices at the end of this document,

showing an actual interaction with the system. Appendix A shows an assembly lan-

guage source program and the corresponding data file, while Appendix B contains the

transcript of a s im session, performing a simulation of the program on the given data.

Note that the program has been written to exhibit a wide variety of instructions for

testing and demonstrational purposes, and is not intended to compute any particular

useful function.

2 Description of the System

2.1 General

NAME

s im - SCAP symbolic simulator/debugger

SYNOPSIS

s im [-w] codefile datafile

DESCRIPTION

sim is a symbolic simulator/debugger for the Systolic/Cellular Array Processor

currently being designed and built at Hughes Research Laboratories.

codefile is a binary file containing non-relocatable object code, produced by

running ass on a SCAP assembly language source program. codefile also

contains symbol information about the original source program.

datafile is an ascii text file containing the data to be manipulated by the

program stored in codefile. See Section 2.3 for a detailed description of the

datafile format.

The following option is recognized by sim:

-w Enable the reporting of run-time warnings. Most of the warnings, which are

suppressed by default, are concerned with alerting the user to the potentially

undesirable side effects of inter-processor 1 /0 (see [Przytula,88]).

s im operates by reading codefile and datafile and initializing its internal data struc-

tures corresponding to the Instruction Memory (also refred to as Program Memory)

and Data Memory accordingly. Information about the symbols defined in the original

source program is also obtained from codefile and appropriate internal symbol tables

are constructed. sim then enters a prompt-execute loop where the user is repeat-

edly prompted for commands, which are in turn parsed, interpreted, and executed

by the simulator. Various self-explanatory error and warning diagnostics at both the

command and execution levels are issued when appropriate.

2.2 User interface in s im

Upon invoking sim, the simulator displays a message indicating that loading has been

completed and prints the size (in machine instructions) of the loaded program. It then

displays the prompt 'sim>' and awaits a user command. The following commands

are recognized by sim:

? or help

Print a summary of all available commands.

r u n or cont

Run the program or resume execution after a breakpoint. Execution contin-

ues until one of the following conditions becomes true:

a fatal run-time error has occured in one of the active processors (e.g.,

multiplication overflow)

a breakpoint has been encountered, or

the end of the program has been reached.

Execute the next j instructions. If the specification of j is absent, a step

of one instruction is assumed. Termination conditions are equivalent to the

ones in the case of run or cont above.

UC-

'Y 1
nal

11es

at-

ted

the

Zen

ien

ids

Show the contents of the program counter (pc). The program counter is

displayed in hexadecimal, octal, and decimal formats.

readaddr

Show the contents of the read-address counter. This value will be used as

the source address during the next memory read (i . e . , shift north/south with

memory read).

writeaddr

Show the contents of write-address counter. This value will be used as the

destination address during the next memory write (i. e., shift nort h/south

with memory write).

p fi fo

Show the contents of the Program Queue (pfifo). The list of Program Memory

addresses comprising the queue are displayed along with the status of the

queue (empty/full/ok) .

wfifo

Show the contents of the Write Queue (wfifo). The list of Data Memory

addresses comprising the queue are displayed along with the status of the

queue (empty / full/ok) .

rfifo

Show the contents of the Read Queue (rfifo). The list of Data Memory

addresses comprising the queue are displayed along with the status of the

queue (empty / full/ok) .

Show the contents of the processor in row i and column j. The default format

is to display the contents of the processor's registers and ports as real values

(format = %19.16f). If the - f option is specified, then the registers and ports

are printed as the hexadecimal equivalent of the 32 bit fixed point internal

representation of data (format = %8x). The first format lends itself to a more

natural inspection by the user, but contains small roundoff errors incurred

by the conversion. Conversely, the hexadecimal format corresponds exactly

to the internal data representation, but is difficult to interpret. See Section

2.5 for a detailed description of the processor display format.

proglen

Display the length of the program. The length is given in the number of ma-

chine instructions and is printed in hexadecimal, octal, and decimal format.

Display rows i through j of Data Memory. If the specification of j is absent,

only the row i is displayed. Each row is preceded by a decimal address of

the row. The default format is to print the 16 elements of the row as real

values (format = %13.10f), 4 per line. If the - f option is specified, the

elements are printed as hexadecimal equivalents of the internal fixed point

data representation (format = %8x), 8 per line. In either format, printing of

identical rows is suppressed.

instr i [j 1
Display rows i through j of Program Memory. If the specification of j is

absent, only the instruction at address i is displayed. Instructions are dis-

assembled and printed in symbolic notation, closely resembling that of the

assembly language syntax. Some departures were necessary because certain

assembly language instructions translate into more than one machine instruc-

tion (e.g., inter-processor 110 instructions). See Section 2.4 for more detail.

mask label

Display the mask with the symbolic name label. A simple graphical repre-

sentation of the processor array is printed and the enabled processors are

I.. -

marked with "x".

sysfld code

Decode the hexadecimal system field code code. The names of the eight

system signals are given and the asserted signals are marked with "X".

dump

Produce a system dump in file "core.dumpn. Data Memory, Program Mem-

ory, Read, Write, and Program Queues (fifo's), as well as the contents of

all 256 processors are written out to a text file for later inspection. Default

printing formats are used for the Data and Program Memory.

break [label J

Set a breakpoint at the symbolic label label. Only one breakpoint can be set

at a given label. A total of 20 breakpoints can be active in the system at any

given time. If no label argument is given, all currently active breakpoints are

listed.

unbreak label

Remove a breakpoint at the symbolic label label.

exit or quit

Exit the simulator.

2.3 Data file format

All data in the SCAP system is organized into named data queues of fixed size. Each

queue is composed of a non-zero number of rows of data. The system distinguishes

between three different kinds of data queues - ascending, descending, and constant

queues [Przytula,88]. Ascending queues grow towards higher Data Memory addresses,

descending queues grow toward lower Data Memory addresses, and constant queues

are comprised of a single row of data.

The simulator obtains the information about the sizes and types of all data queues

defined in the original source program from the object code symbol tables. However,

in order for the loader (i.e., the first stage of the simulator) to be able to correctly

load data into Data Memory, the user must list the data queues in the data file

(datafile) in the same order in which the corresponding typelsize definitions appear

in the original source program. Each queue must be listed as a sequence of real values

in the range (-2.0, +2.0) and it is the user's responsibility to ensure that the sizes of

the given data queues agree with those specified in the queue definitions in the source

program. All queues should be listed from head to tail, regardless of the type of the

queue. The loader phase of the simulator will account for a particular type of a data

queue and load the data in the correct memory locations.

In the absence of any information about the exact placement of the queues in

the Data Memory (only the sizes of the queues are known), the simulator assumes

that data is to be loaded into Data Memory starting at address 0. Therefore, all

input data is loaded into the top portion of the memory and extends as far down

(towards higher addresses) as necessary. This convention may change in response to

a possible future change in the way data queues are declared in the source program

- if the syntax of ass is modified to allow the programmer to explicitly specify where

in memory particular queues should be located, then the simulator's loader (as well

as the actual loader) can be modified to account for that.

2.4 Disassembly conventions

In this section I will briefly present the mnemonics used in the symbolic disassembly,

employed by s im to display instructions stored in the Program Memory. A typical

disassembled instruction appears as follows:

external (phi/ph2) in terna l (~hl/~h2)

pc sel mask s y s f l d i / o s r c d s t i / o src d s t
..
0024 R/C OFOFFOFO OOFF NOP CSUM2A NOP NOP CSUM2A NOP

NOP B7 ADD2 NOP B7 ADD2

where the first four fields (from left to right) correspond to

1. the decimal value af the p n > p counter associated with the instruction,

2. mask type indicator (R/C = row/column; D = diagonal),

tly
ile

3ar

xes

of

cce

;he

tta

nes

all

wn

bly,
ical

3. hexadecimal encoding of the mask (see [Hartholz,88]) - use mask command

(Section 2.2) to decode,

4. hexadecimal encoding of the system field bits (see [Przytula,88]) - use sysfld

command (Section 2.2) to decode

The remaining fields encode both phases of the actual instruction. The top line

corresponds to Phase 1 and the second line to Phase 2 of the instruction cycle. More-

over (as is suggested by the header), the first three of these fields refer to the external

processors (column 1 of the processor array), whereas the second triple of fields refers

to the internal processors (columns 2 through 16).

As mentioned above, the mnemonics used in disassembly have been chosen to

correspond as closely as possible to the ones used in the assembly language. An

important exception are the mnemonics for inter-processor I/O, because a single line

of assembly language code expands into two or three (depending on the type of I/O)

machine level instructions (see [Przytula,88]). There are a few other minor exceptions.

However, all of the additional mnemonics, not present at the assembly language level,

are easy to identify and interpret, and a detailed description of the differences will

therefore be omitted in this document. Instead, a complete list of the mnemonics,

as used by sim, is given below. For convenience, the mnemonics have been grouped

into functional categories.

1. registers: (src or dst)

ABO . . . AB7 : registers accessible from both buses

A0 ... A7 : registers accessible from bus A
BO ... B7 : registers accessible from bus B

2. 1/0 ports: (src or dst)

E:N : to/from East port over bus A, North port over bus B

N:E : to/from North port over bus A, East port over bus B

S:W : to/from South port over bus A, West port over bus B

W:S : to/from West port over bus A, South port over bus B

3. functional uni t o u t p u t registers: (src only)

SUMlA

CSUMlB

SUM2B

CSUM2A

QUOTA

HIGHA

LOWB

SFTA&B

: sum from Adderl accessible from bus A

: 1's compl. of sum from Adderl accessible from bus B

: sum from Adder2 accessible from bus B

: 1's compl. of sum from Adder2 accessible from bus B

: quotient of the Divider unit accessible from bus A

: maximum output of Sorter unit accessible from bus A

: minimum output of Sorter unit accessible from bus B

: outputs of the Shifter unit (accessed together only)

4. Arithmetic operation codes:

ADD2 : addition in Adder2

ADDD : addition in both Adderl and Adder2

MULTFl : multiplication in Multiplierl, first stage

MULTSl : multiplication in Multiplierl , second stage

MULTF2 : multiplication in Multiplier2, first stage

MULTS2 : multiplication in Multiplier2, second stage

DIVS : division with inputs coming from the Shifter unit

DIV : division with inputs coming from the buses

SORT : sort/comparison in the Sorter unit

SHIFT : shift/normalization in the Shifter unit

5. 1 /0 operation codes:

SWLJN : receive low-order word from South and West neighbors

SWHJN : receive high-order word from South and West neighbors

NEL J N : receive low-order word from North and East neighbors

NEH J N : receive high-order word from North and East neighbors

SWL-OUT : send low-order word to South and West neighbors

SWH-OUT : send high-order word to South and West neighbors

NEL-OUT : send low-order word to North and East neighbors

NEH-OUT : send high-order word to North and East neighbors

SWH&NEL : receive high-order word from South and West neighbors,

and send low-order word to North and East neighbors

NEH&SWL : receive high-order word from North and East neighbors,

and send low-order word to South and West neighbors

2.5 Processor display format

As mentioned in Section 2.2, the contents of a processor's 1/0 ports and/or general

purpose registers can be displayed in two different formats - fixed point format

(unsigned long) and floating point format (double). An example of a floating point

format processor information display (taken from Appendix B) is shown below.

I N.in = 0.0199999995529652 N.out = 0.0000000000000000 I
I W.in = 0.0000000000000000 E.in = -0.0000000009313226 1
I W . out = -0.0000000009313226 E.out = 0.0000000000000000 1
I S.in = 0.0000000000000000 S.out = -0.0299999993294477 I

I ABO: 0.0199999995529652
1 AB1: 0.0000000000000000
I AB2: 0.0000000000000000
I AB3: 0.0799999982118606
I AB4: 0.0000000000000000
1 ABS: 0.0000000000000000
I AB6: 0.0000000000000000
1 AB7: 0.0000000000000000

AO: 0.0199999995529652
A1: 0.0399999991059303
A2: 1.2799999713897700
A3: 0.0000000000000000
A4: 0.0000000000000000
A5: 0.0000000000000000
A6: 0.0000000000000000
A7: 0.0000000000000000

BO: 0.0199999995529652
Bl: 0.0399999991059303
B2: 0.6399999856948850
B3: 0.0000000000000000
B4: 0.0031999992206693
B5: 0.0000000000000000
B6: 0.0000000000000000
B7: 0.9999999999999996

I Adder1 : (dyn. clock = -1) 1 Multiplierl: (dyn. clock = - 1 I
I SUMiA = 0.0399999991059303 1 PAR-PROD & CARY : inaccessible I
I CSUMlB = -0.0400000000372529 I ready = y (mu1,clock = -1) I

1 Adder2: (dyn. clock = 4) 1 Multiplier2: (dyn. clock = 4) I
I CSUM2A = -0.0032000001519918 1 PAR-PROD & CARY : inaccessible I
I SUM2B = 0.0031999992206693 1 ready = y (mul-clock = -1) I
+--------------------------------------+-------------------------------------- +
I Divider: (dyn. clock = -1) I Shifter: (dyn. clock = -1) I
I QUOTA = 0.0000000000000000 1 SHIFTA = 1.2799999713897700 1
I ready = y (div-clock = -1) I SHIFTB = 0.6399999856948850 1
+--------------------------------------+-------------------------------------- +
I Sorter: (dyn. clock = -1) I row 0002 1

. I HIGHA = 0.0000000000000000 I column 0016 I
! 1 LOWB = 0.0000000000000000 1 enabled? . yes I
i +--------------------------------------+-------------------------------------- +
i

The topmost box gives the contents of the processor's 1/0 port regisks. The

i values of both input and output registers (32 bits) for each of the processor's four ports

1 are shown (see [Przytula788] for a discussion of PE architecture). Following the listing

of the general purpose register contents, the template shows the current status of the

seven functional units of the given processor. All functional unit output registers

(their names appear capitalized in the template) are dynamic registers, which means

that the information they store becomes unreliable after 5 clock cycles. Therefore,

each functional unit has an associated dynamic clock, which shows the number of

cycles remaining until the expiration of the register contents. The value of - 1 denotes

an expired clock.

Because division and multiplication are multi-cycle operations, two additional

global system clocks are maintained by sim - mul-clock and div-clock. Following

the loading of the operands, the SCAP system requires 4 cycles to perform a multi-

plication, and 9 cycles to perform a division. Therefore, the two clocks are set to 4

and 9, respectively, in the cycle in which the corresponding operation was initiated.

When the operation has completed, i.e., when the corresponding clock has expired,

the results become available in the dynamic output registers, the ready flags are set

to y (yes), and the corresponding dynamic clocks are set to 5.

As decribed in [Przytula,88], the two multiplier units of the SC AP system produce

partial products and cary values, rather than final products. For each multiplier, the

two partial results (stored in dynamic registers PAR-PROD and C ARY, respectively),

must then be added together to yield the final product. Note that P A W R O D and

CARY are not connected to the buses and thus can not be accessed by the user

directly. The reader will notice that the boxes in the above template corresponding to

the multiplier units do not give the contents of the PAR-PROD and CARY registers.

This is due to the fact that sim simulates multiplication as a monolithic operation,

and therefore computes the final product directly, without producing intermediate

partial product and cary values. However, this in no way compromises the correctness

or usefulness of the simulator, as the SCAP hardware provides no way for the user to

access and use these intermediate results. Moreover, all timing information concerning

availability and maturity of the result as given by sim is consistent with the actual

hardware behavior.

A final note to the user - sim updates all clocks at the beginning of each cy-

cle. The clock values displayed at any given point during program execution (i. e.,

simulation) will therefore be updated in the upcoming cycle before the corresponding

instruction is executed.

;he

ers

tns

re,

of

ltes

nal

,ing

~lti-

0 4

;ed.

:ed,

set

uce

the

ly),
and

lser

5 to

ers.

ion,

iate

less

r to

king

;ual

CY-
2. e.,

ling I

3 Discussion and Suggested Improvements

As of this writing, a couple of fixes to sim are still pending due to the prerequisite

corrections/modifications that need to be done to the corresponding assembler. The

most important of these concerns the loading stage of the simulator. With the current

format of the assembler symbol tables, the simulator can not load descending data

queues correctly, because the sizes of the queues are not given as part of the symbol

table information. This should be fixed shortly.

Data is represented internally as unsigned long 32-bit integer data (see [Przy-

tula,88] for a description of the format). All inter-processor 110, intra-processor

data movements, and even some of the functional units (e.g., shifter) work with this

format. Only when data is passed to arithmetic functional units, such as adders,

multipliers, the divider, or the sorter, the representation changes and the data is con-

verted to floating point format (double). The current conversion scheme effects the

conversion of an unsigned long (representing 32-bit fixed point format) into a floating

point format by casting the unsigned long into a double and scaling the result by

2-30. The reverse conversion is analogous. Each such format conversion introduces a

slight error, and therefore the error compounds as successive arithmetic computations

perform futher conversions. An initial error in data representation is introduced by

the conversions at loading time, where real values are read from datafile and stored

internally as fixed point unsigned longs. Whereas we can clearly not escape some

inaccuracies in the presence of multiple representations of data, we may be able to

improve on the present scheme.

The current implementation of the simulator (i.e., loader) assumes that scaling of

the data into the appropriate range (-2.0, +2.0) has been done by the user and so the

data appearing in datafile are expected to be in the correct range. Loader warnings

are issued if this is not the case, and zeroes are loaded in place of out-of-range values.

Whereas this assumption may seem limiting, it also gives the user greater flexibility in

choosing her own scaling factor, which minimizes the loss of precision due to scaling

for the particular application. The optimal scaling factor for an application which uses

a relatively narrow numerical range of data will be different than that corresponding

t o a n a p p k c a t i ~ ~ ~ w B e r e a v e r y U r q e d & d f o ~ d k e v W .

As mentioned above, all data is loaded into the top portion of the Data Memory.

The current syntax of the assembly language enables the user to specify a set of

data queues, their types, and their sizes. However, the user is not given the option

of specifying the starting addresses of where these data queues should appear in

memory. Consequently, the data is loaded into Data Memory sequentially, starting

at address 0. Should a future extension to the assembler modify the queue declaration

mechanism (and reflect the additional information in the object code symbol tables),

the simulator's loader could be easily adapted to accomodate this new information.

In Section 2.5 we noted that multiplication in sim is handled differently from the

actual hardware multiplication. The first stage of the multiplication operation on

SCAP hardware produces the partial product and the cary, which are then added

in the second stage to give the final result. sim, on the other hand (for reasons of

simplicity) computes the final product already in the first stage and simulates the

second stage of multiplication as a simple "move" to the appropriate adder output

registers, rather than an "add* of the partial product and the cary. As mentioned,

this has no effect on the correctness of the results and is completely transparent to the

user, as the partial product (PARTROD) and cary (CARY) dynamic registers are

not accessible from the buses and thus can not be manipulated by the user. However,

in keeping with the goal of faithfully adhering to the architecture and workings of the

actual machine, this should perhaps be changed, so that multiplication in sim in fact

mimics SCAP's two-stage multiplication process exactly.

Finally, due to the size and internal complexity of the simulator/debugger sys-

tem, the system has been only marginally tested. A reasonable stabilizing period of

continued usage, testing, and debugging is to be expected.

4 Some Implementational Details

The simulator/debugger is implemented entirely in C and is currently running on a

VAX-11/785 under Ultrix V2.0-1. The source code occupies 230 Kbytes of storage

(x 7,000 source lines of code), and the optimized object code takes up 66 Kbytes of

storage.

mg

ion

4 3

n.

the

on

ied

; of

the I

put
led,

the

are
I

ver ,
the

i
fact

sys-

d of

rage I

References

[I] Miriam A. Hartholz. The Systolic/Cellular System Assembler: User's Guide.

Master's thesis, University of Pennsylvania, August 1988.

[2] K. Wojtek Przytula. Systolic/Cellular System. Hughes Research Laboratories,

March 1988. Technical reference manual.

&
p

m
n

d
ix

-A

P
a

t
O

c
t

1
5

 1
9

:5
3

:3
5

1

9
8

8

1

:
 d

a
ta

 q
u

eu
e

(1
6

ro

w
s,

a

s
c

)
;
 d

a
ta

 q
u

eu
e

(1
 r

o
w

,
c

o
n

s
ta

n
t)

D
E

F
W

K

H
1

(:
:2

-7
.1

3
-1

7
.2

3
-2

8
)

;
 d

m
y

 m
s

k

(d
ia

g
o

n
a

l)

D
E

FM
SK

PU

(1
-4

.9
-1

2:
s-

8.
1.

3-
16

:)

;
 p

ro
c

e
ss

o
r

m
as

k
(r

o
w

lc
o

lu
m

n
~

H
O

P
R

EA
D

0
0

2

LO
:

G
eT

N
R

(B
7,

B
7)

lX
Xl
P

1
5

 L
O

NO
P

R
E

M
Q

 9
1

L

1:

C
E

T
N

R
IA

O
, A

O
)

m
o

p

1
5

 L
l

:
 r

e
a

d

fr
o

m
 c

o
n

st
a

n
t

q
u

eu
e

0
2

:
 e

v
e

ry
 p

ro
c

 h
a

s
1

 i
n

 8
7

;
 s

e
t

re
a

d

a
d

d
re

rs
 t

o
 0

1

:
 r

e
a

d

fr
o

m
 a

sc
e

n
d

in
g

 q
u

eu
e

0
1

:
 r

e
a

d

1
6

 r
o

w
s

o
f

d
a

ta

;
 i

n
te

rn
1

1
 d

a
ta

 m
o

v
em

en
ts

(m

as
k

ed
)

L
2:

IO

V
(A

0,
A

B
O

:)

1
1

2
:

~

V
(:

A
B

O
,B

O
)

n
2

:
 A

O

- B

O
 - M

O
 - x

(x

 -
lo

c
a

l
d

a
ta

)
A

D
D

D
(A

0.
80

)
14

2
;
 a

d
d

it
io

n
 i

n
 b

o
th

 a
d

d
e

rs

~
v

(
~

u
U

~
A

,
A

~
:

S
~

~
~

,
B

~
)

1

2

;
 A

I
- 81

 - 2
.x

S

H
IF

T
(A

1.
 0

0
)

U
2

:
 s

h
if

ti
n

g
 -

>
1
 c

-
A

1
<

2

K)
VI
SH
IF
TA
,A
Z:
SH
IP
TB
,B
2)

HZ

:
 A

2
- sh

if
t (

A
ll

,
B2

- s

h
if

t(
B

0
)

M
D

2
IA

l.
S

l)

HZ

;
 a

d
d

it
io

n

in
 A

d
d

er

2

m
V

(:
 S

U
M

B
.A

B
3)

H

2
:

M
3

-
4

.x

13
:

M
lL

T
F2

 (
A

1
,S

W
B

)
11

2
:
 m

u
lt

ip
li

c
a

ti
o

n
 i

n
 M

u
lt

ip
li

e
r

2
(l

o
a

d
)

NO
P

11
2

;
 4

c

y
c

le
s

 o
f

c
a

n
p

u
ta

ti
o

n

NO
P

a
;

NO

P
I

U
:

H

O
P

I4
2

:
M

L
T

sZ

n
2

;
 s

e
c

o
n

d
 s

ta
g

e
 o

f
m

lt
.

in
 H

u
lt

ip
li

e
r

2

m
V

(
:P

R
O

D
Z

B
,B

I)

t4
2

:
 8

4
 - (

2
*

x
)*

(4
*

x
)
- 8*

x
a2

:
 s

u
b

tr
a

c
t

:
M

3
 -
 8

1
 (

4.
x

-
2.

x)

L
4:

A

D
D

Z
(-

,E
l)

H

2
:
 C

SU
IU

A

- -(

2
*

x

t

(-
2'

-3
0)

I
- -2

*
x

A

D
D

2
IC

SI
M

Z
A

, A
B

3)

11
2

:
 S

M
Z

B
 -

-2
.2

1
t

4.
x

- 2.X

K
)V

(:
S

U
IQ

B
.A

M
)

I4
2

:
 A

M
 - 2

.x

(t
h

e
 d

if
fe

re
n

c
e

)

L
5:

D

IV
F

IA
1,

B
O

)
U
Z

;
 d

iv
is

io
n

:
 n

o
rm

a
li

z
e

D

IV
S

U
2

;
 d

iv
is

io
n

:

d
iv

id
e

 B
O

lA
l

H
O

P
H

2
:
 1

NO

P
U

2
;
 2

N

O
P

H
2

:
3

N
O

P
n

2

:
 r

SO

R
T

(A
B

4,
 B

Z
)

2

;
 5

(i

n
te

rm
e

d
ia

te

s
o

rt
 o

p
e

ra
ti

o
n

)
NO

P
H

2
:
 6

NO

P
M

2
;
 7

N

O
P

n
2

:
 I

)
NO

P
H

2
;
 9

K

)V
(W

O
T

A
,A

3:
)

H
2

:
 A

3
- 0

.5

(t
h

e
 q

u
o

ti
e

n
t)

ST
O

P
;
 r

e
tu

rn

EN
D

D0000000000000l U
COOOOOOOOOOOOo1vC

CZZZZZZ:Z4EPZ81"?
acecee,oD,o,,,~~; rnnnnn

---- BgBP XXXX ----

X X X X

x x x x

X X x x

X X X X

I I
I N ,

I -u I 0 & I I:
- u l .a& = a : s:!

a I
% a l P g . I a I

M I
. I

C I P O I L a l w
- Y 1 0 0 3 : ; - =

m I * P I 4 I * I m I

E I
Q I

E I
Q I

u o l L L C.8 0 0 2: C . 1 0 0 ;;; 4 . 4 l Z Z

X X X X

X X X X

X X X X

X X X X

Q W X X X X
Y 4

* V I X X X X
I 4

I * X X X X
n
m P I X X X X

TI
4

d 2
a z
m 0 * 4

m h
Q
0 - x x x x
2
a C X X X X

BUS A

EAST
WEST

REG' REG' REG'
-
ADD MULT+ PORT + PORTC ~ ~ 0 8

Ao-
'

80- ' SMIT MUy+ , 2 NOW+ DIV

? ? t t
C C I

4 BUS B
SOUTH
PORT

v
Internal Organization of A PE

Figure 3:

Two values x and y are loaded into the sorter x through bus A and y bus B.
In one cycle, the shifter will shift both x and y until x falls within the range
of 1 and 2. It is mainly used before division.
DIVIDER
If the operands are within range, they can be loaded directly into the loader
for division. Otherwise, they will have to go through the shifter first and
then be loaded into the divider for division.

3 System Configuration

The SAP has four major components as noted before. The processor array
has been discussed in the previous section and we will briefly discuss the other
three components. The SAP is to be controlled by a host computer with a
VME bus. For our application, the host will be a SUN 31160 running UNIX
operating system or a real time operating system if it becomes available.
Figure 4 is a schematic system diagram[4, 91.

3.1 Data Memory

The data memory is a dual port memory and from Diagram 4 it can be seen
that the top port is used by both the host and the processor array. The
bottom port is however used exclusively by the processor array. The host
uses the top port to load input data into the memory. The processor array
access the input data from the bottom port of data memory. Because of
the distinctively different functions each port performs, there is a need for
maintaining the top and bottom parts of the memory separately. This is
accomplished by having one address counter, one FIFO for each port. The
data is organized into rows of 16 words each. In other words, the processor
array can access 16 words of data at once one for edch PE in a row. The data
needed is organized into a queue which contains multiple rows of 16 words
each. Each element in a given row has the same address as the others in the
same row. The address counter for the top port contains the memory address
into which a row of 16 words will be written. The address counter for the
bottom port contains the memory address from which a row of 16 words will
be read into the array. When a data queue is to used for either writting or
reading, the beginning address of the queue is loaded into the appropriate

MACHINE T2
HOST BUS ' ~ $ i : e control s s

ARRAY
PROCESSOR
BUS I

data I address

I I I
I DATA MEMORY

data I (address , 1 I I I

16x1 6
PROCESSOR
ARRAY

Figure 4: Array System Configuration

queue. The rows of data are sequentialy accessed because the content of the
appropriate address counter is updated automatically according to whether
the queue is ascending, descending or constant.

3.2 Program Memory

Data memory stores the data to be processed and the results of processing.
The processing is under the control of a program stored in the program mem-
ory. It consists of program memory, program counter, instruction counter
and a program FIFO. The program FIFO contains the starting address of
the program and all the destination addresses of jump instructions. Before
the execution of the program, the host computer loads the starting address
of the program from the FIFO into the program counter. The instruction
is taken from the memory address indicated by the content of the program
counter and loaded into the instruction register. The program counter is au-
tomatically updated to provide the address of the next instruction. If a jump
instruction is encountered, the destination address of the jump is loaded into
the program counter from the program FIFO. -...

3.3 Control and Clock

The control circuitry receives signals from the host and interpret them. They
signals are then used to control various subsystems described above. It checks
certain bits of the SAP instruction and flags. It also sets bits of the status
registers. The clock system consists of three separate clocks, namely system
clock, multiplier clock and divider clock. The system clock starts working
once the power is turned on. The other two clocks are turned off until
multiplication and division are to be performed. The system clock is to
operate at a frequency of 8MHz. The multiplication and division clocks are
to operate at 22MHz and 17MHz respectively. It takes 17 multiplication
cycles to perform multiplication and 31 division cycles to perform division.

4 Implementation of the Modified Faddeev's
Algorithm Using the Systolic Array Pro-
cessor

The coding of the Faddeev's algorithm for the Systolic Array Processor is
done at the GRASP Lab of the University of Pennsylvania, with the help of
the Hughes Research Labs.

4.1 The Assembler

The first task was to write the assembler for the machine. This was done
by Miriam A. Hartholz[2]. The machine instruction set contains around 25
112-bit instructions. These instructions can be roughly separated into 4
categories, namely arithmetic operations, on-chip data transfer, inter-chip
communication and system functions. The large number of bits in each
instruction was to give the system as much parallelism as possible. That
translates into high computational efficiency. Since Given's rotation in the
QR decomposition routine is carried out in the first column of the processor
array, the operations in the first column are thus different from those in
the remainning processors. The instructions allow different operations to be
executed concurrently in the first column and the rest of the array. Another
feature of the systolic structure is that at any given time, the same command
will be executed by multiple processors in a region of the array. The masking
field of the instruction allows the masking of entire regions of the processor
array for command execution. For more details, readers are refered to [2].

4.2 The Simulator
Realizing that debugging such a complex parallel system will be difficult,
a simulator of the Systolic Array Process was written by Janez Funda[l].
This simulator allows the user to step through the application program one
instruction at a time. The program execution can be halted and the content
at that moment of every processor can be examined. This allows the user
to view the contents of all the dynamic and static registers on board. The
simulator also provides information on I/O between processors. In the coding

of Faddeev's algorithm, the simulator proves an invaluable tool. A detailed
description can be found in [I].

4.3 System Operation

A and B matrices are first broadcast down the array and the processing
elements perform Given's rotation. When the A and B matrices finish going
through the array, elements of the R and QB matrices are left in the array.
Then matrices C and D are broadcast down the 'array and the processing
elements perform a different set of operations to achieve Gaussian elimination
using elements of R as pivots. The results come out row by row at the bottom
of the array.

4.4 QR Decomposition Using the Systolic Array Pro-
cessor

The first step of the Modified Faddeev's Algorithm is the QR decomposi-
tion using Given's rotation[S]. This can be accomplished when processor in
different regions of the array act in the manner indicated by Figure 5 .

The sin and cos values used in Given's rotation are generated in the
boundary elements and propagate diagonally through the array. The ele-
ments of the A and B matrices are brodcast down the array from the top
and turn left when hit the main diagonal and turn downward once they en-
counter left most subdiagonal. The diagonal values of the resulting R matrix
will be stored in the boundary elements.

4.5 Gaussian Elimination Using the Systolic Array
Processor

The A and B matrices are immediately followed by the C and D matri-
ces. But as C and D enter the processor array, Gaussian elimination will be
performed on them using values stored in the boundary elements as pivots.
This means that the processors will be executing a different set of commands
than in QR decomposition. The data flow pattern and the different oper-
ations corresponding to different regions of the array are given in Figure

6[81-

f xour (c,s) +(c,s) Xout . .I)

delay cell internal cell boundary cell
X O U ~ = dii - W

IF X i = 0, r = 0, M E N
Xout - Xin c = l , s - 0

r = sXin + cr ELSE

OPERATIONS IN QR DECOMPOSITION

t

Figure 5:

c31 c32 c33 d3 1 d32 d33

c21 c22 c23 d2 1 d22 d23

c l l c12 c13 dl 1 dl2 dl 3

delay cell internal cell boundary cell

Xout = Xin Xout = Xin - Yr Xout = Xinlr

OPERATIONS IN GAUSSIAN ELIMINATION

Figure 6:

The matrix elements follow the same data pattern but the processor op-
erations are quite different from before. For example, the boundary pro-
cessors,instead of generating sin and cos, simply performs a division on the
incoming x value. This is the pivoting process. The internal cells perform the
subtrction in Gaussian elimination. The result comes out of the processing
array one row at a time.

4.6 Some Important Procedures

A few procedures are described below which perform square root computa-
tion, absolute value operation, branching and transition from QR decompo-
sition to Gaussian elimination[8, 71.

4.6.1 Logical Branching in QR Decomposition

As indicated in Figure 5, the boundary elements generate sin and cos values
depending on the current r value and Xin.But the machine instruction set
does not support logical branching. This however can be overcome by noting
that 010 = 0 for this machine. Let's set the following variable:

z = 1 - t l t

Compute sin,cos and t as follows:

sin = Xinlt

cos = r l t + z

If Xin = 0 and r = 0, then t = 0 and z = 1 - 010 = 1 which implies

that sin = 010 = 0 and cos = 1. If otherwise, then t = JG, z = 0,
sin = Xin/t and cos = r l t . Branching is thus done elegantly using the
variable z and the property that 010 = 0.

4.6.2 Square Roo t Computation

The boundary elements have to perform a square root operation during QR
decomposition. This operation has to be carried out using the fundamental

arithmatic operations which are supported by the instruction set, such as
addition, multiplication and division. The algorithm we used for evaluating
square root is the met hod of Newton-Raphson Iteration with polynomial
approximation.

Let's assume the following:

Then

JG = X J W

= (x / 2) (f o + (1 + u2)/ fo)

Where fo is computed by:

The results of this method have shown to be very satisfactory.

4.6.3 Absolute Value Computation

As indicated above, there is a need to evaluate the absolute values of x and
y. This is done very nicely by the following two commands.

ADDD (, x)
SORT (x , CSUMlB)

The first command adds x to the unloaded bus in adder 1. The 1's comple-
ment of the result (C S U M l B) is the negative of x. Sorting the two will give
the absolute value of x

4.6.4 Transition F'rom QR to Gaussian

It is shown that the processing elements perform different instructions during
QR decomposition than during Gaussian elimination. The transition has
to be smooth without adding too much computational overhead. This is

achieved by setting another variable M and switching M from 1 to 0 during
transition.

Let's assume the following:

Where M = 1 for QR and M = 0 for Gaussian. For all internal processors,
the operations are given below at ALL times:

xout = X;,,COS - rszn

r = rcos + xlsin

For all external processors, the operations are given below at ALL tiems:

sin = xi,/t

cos = r l t + 1 - t l t

During QR decomposition, M = 1. The above equations give:
Internal Processing Elements

xout = X;,,COS - rszn

r = rcos + sinsin

External Processing Elements

sin = x;,,/t

cos = r l t + 1 - t l t

These operations correspond with those in section 5.3. During Gaussian
elimination M = 0, the general equations give:
Internal Processing Elements

xOut = xi,, - rszn

r = r

External Processing Elements

t = r

sin = xin/r

cos = 1 I.

These correspond with those in section 5.4. Consequently the data is to be
organized as follows.

The M value travels down vertically as well as diagonally. The speed of
diagonal propagation is twice that of vertical propagation.

5 Computational Cost Analysis

The Systolic Array Processor is built to solve real time computational prob-
lems such as common in the control of robots. This section gives a compu-
tational analysis of Faddeev's algorithm running on this machine.

5.1 Code Optimization

The assembly program for the Modified Faddeev's Algorithm can be found
in Appendix A. The code was optimized by taking advantage of the following
three features of the system.

1. There are multiple functional units on every processing element.

2. Boundary and internal elements can be instructed to concurently exe-
cute different commands.

3. Other instructions can be executed while multiplication and division
are taking place.

The code can probably be further optimized by a careful time dependancy
analysis.

Q

DATE FLOW PATERN
Figure 7:

5.2 Cost

A data flow diagram is given in Figure 8.
As made obvious in the diagram, data enters the array one row at a time.

Once it enters the top of the array, all elements in the row travel exactly the
same number of steps before coming out. The number of steps taken inside
the array is 2n + p. Since there are m + 1 rows of data outside of the array.
The total number of steps is therefore 2n + p + m + I . During each step,
a set of arithmetic operations is performed in every processor. This set of
operations does not change from step to step.

The external and internal processors perform two different sets of oper-
atiions as indicated by equations 15-16 and equations 17-19. The two sets
of operations are independent of each other in the sense that the results of
one set do not influence that of the other. This can be taken advantage of
by noting that boundary and internal elements can execute different com-
mands concurrently. Therefore, a good measure of operational requirement
will be the set with the larger number of operations and which takes longer
to execute. In this case, the boundary processors take have many more op-
erations and take much longer to execute than the internal processors, so
the operations for the boundary processors will be used as a measure of the
computational requirement in each step of the data flow.

First of all, the operations involved in the square root approximation are
evaluated. Refering to equations 7-13, they are 1 absolute values(since r is
always positive), 1 comparison, 3 divisions, 4 multiplications and 4 additions.
The other operations involve 3 divisions, 1 multiplication, 1 subtraction and
1 addition. The total number of different operations are listed below:

division with shift 6.

multiplication 5.

addition 5.

absolute value 1.

comparison 1.

subtraction 1.

For the Hughes' Systolic Array Processor, t he following table gives the
number of system clock cycles for executing each of the above listed opera-
tions.

division with shift 11 cycles.

multiplication 7 cycles.

addition 1 cycle.

absolute value 2 cycles.

comparison 1 cycle.

subtraction 2 cycles.

internal transfer 1 cycle.

external transfer with memory access 3 cycles.

external transfer withour memory access 2 cycles.

Note that the last three entries have nothing to do with arithmetic op-
erations. They are there because data transfer both inside the processing
elements and outside of them is a very important part of the systolic array
implementation of the Modified Faddeev's Algorithm and takes up quite a lot
of time. Internal transfer refers to the storing of results of computation for
later use. It is internal because the computational result will be transfered
from a dynamic register of the functional unit to a static register in the same
processor. External transfer with memory access refers to the fetching of new
rows of the matrices from the memory and brodcasting them into the array
and this is done twice in every step, one for one row of new data and one for
the value of M. External transfer without memory access refers to the data
transfer with the array between different processing elements. It includes all
data transfer caused by the propagation of sin, cos, M and z inside of the
array. The numbers of all above data transfers are listed below.

internal transfer 15.

external transfer with memory access 2.

external transfer without memory access 8.

Given the above information, the total number of cycles in a single step
can be calculted as follow:

The total number of cycles required will be the product of 148 and the number
of steps necessary in a given task.

Let's assume a clock frequency of K MHz, then the amount of time(in sec-
onds) needed for the task is as follows:

Let's do two simple examples.
EXAMPLE 1.

To invert a 6x6 matrix, m=n=l=p=6. Let's suppose the clock frequency
is 8MHz or K = 8. Then the time needed for this inversion is T = 0.555 ms.
EXAMPLE 2.

To compute the pseudo-inverse of a 6x7 matrix assuming the same clock
frequency as above. T = (1 / 8) 3 3 ~ 1 4 8 ~ 1 0 - ~ + (1 / 8) 3 0 ~ 1 4 8 ~ 1 0 - ~ + (1 / 8) 3 1 ~ 1 4 8 ~ 1 0 - ~ =
1.74 ms.

6 Summary and Future Work

The fact that this machine can carry out matrix operations very quickly de-
rives from the efficient parallel implementation of the Faddeev's Algorithm
on a parallel computer architecture. Equation 32 indicates that the com-
putational complexity grows linearly with respect to the dimensions of the
matrices. This is remarkable for the following reason. Most existing methods
of matrix operations have their computational loads increase exponentially
with respect to the dimensions of the matrices. Another interesting feature
is that A + B takes the same amount of time as AB. This is so because
the amount of computational time depends only on the dimensions of the
matrices and how they are positioned with regards to the array.

A.6 Hybrid Control in the Presence of Passive Com-
pliance

THE IMPLEMENTATION OF HYBRID CONTROL IN THE
PRESENCE OF PASSIVE COMPLIANCE

Richard P. Paul

Yangsheng Xu

General Robotics Active Sensory Perception Laboratory
Department of Computer and Infomation Science

University of Pennsylvania
Philadelphia, PA 19104

ABSTRACT

A new compliance motion control method combining passive compliance and
active control is presented. Position compensation and force control of the robot manipu-
lator in the presence of passive compliance is discussed and a new hybrid control scheme
is derived. The applicability of the method is demonstrated by experimental results. The
entire system performance is analyzed under different conditions, such as environment
characteristics, feedback gain, digital filter, and contact force, etc. A sinusoid surface
tracking experiment was performed as an application of the hybrid control scheme and
some useful results were obtained. The velocity discontinuity as the robot makes contact
with, or breaks from, the environment is accommodated by the passive compliance at the
wrist The method shown is simple, economical, and applicable in industry.

1. INTRODUCTION
Today's robot needs to provide for a more sophisticated compliant motion. Considerable attention

has been directed to compliant motion of robot manipulators in this decade. We may categorize currently
available compliance motion control techniques as two basic types. One is the active compliance which is
specified in the joint servo either by setting a linear relation between the force and displacement (or velo-
city and displacement) such as impedance control [14], damping control [24], stiffness control [12], or by
controlling farce in certain degrees while controlling position in the remaining degrees, such as compliance
control [19], compliance and force control [Ill, hybrid control [IS]. Another is the passive compliance
which is provided by an additional tool near the end-effector such as a wrist, hand, or fingers. The most
famous one is the Remote Center of Compliance (RCC) [4] although many different versions have been
developed in Japan [201[21], France [161[22]. West Germany [18] and USA [13][23].

There are fundamental problems for both techniques. For the active compliance, an instability prob-
lem in a stiff environment has been observed, thus a passive compliance installed in the end-effector is
desirable to reduce the overall system stiffness. For the passive compliance alone, a positioning capability
of robot is degraded. Based on these two main problems, much researche has been performed recently
[8][9][10][17], but a simple, economical and reliable method is still demanded so that the compliant motion
of the robot manipulators could be finally implemented in industry.

In this paper, we propose to use a passive compliance mechanism with six DOF compliance which is
also capable of measuring of six DOF deflection of the device between the end-effector and robot wrist.
Passive compliance can correct the positioning error automatically and relax the tolerance as well as

'Ibis material is based on work snppolted by the National Scimcx Foundation under Grant No. DMC-8512838. Any opin-
ions, findings. and conclusions or mcommendatiom expressed in this publicatian are those of the authors and do n u neces-
sarily reflea the views of the National Science Foundation,

accommodate the transition between the position and force control modes. The sensed deflection in the
wrist can used for feedback control such that the entire system is controllable.

Such a device, with a passive compliance and active sensing mechanism together, was developed in
our lab. The passive compliance is made of a compliant rubber element yielding compliance along and
about all axes. The device is instrumented by providing a simple six joint serial linkage with potentiometer
sensors at its joints. The sensing information is used in two ways. In position control, the sensed informa-
tion is utilized to compensate deflection of the wrist, due to the load or external forces, so as to increase
apparent stiffness of the manipulator wrist system. In force control, the wrist sensor is used as a force sen-
sor by which means the manipulator is driven in the same direction as the sensed force and the desired con-
tact force is maintained.

The paper is organized as follows. In the first section, the compliant wrist device combining passive
compliance and sensing mechanism is described. In the second section, position compensation of the
robotic system in the presence of a passive compliance is investigated. Two control algorithms in Carte-
sian space and joint space is proposed. The analytical and experimental results are illustrated. In the third
section, force control scheme is presented and demonstrated by the experiment and analysis. In the fourth
section, based on the position and force control scheme, a new hybrid control strategy is developed. In the
fifth section, a sinusoid surface tracking experiment is performed as an application of the hybrid control
scheme and some useful results are obtained. In the sixth section, the system performance is analyzed and
an effect of a digital filter on the entire system is discussed. We conclude the paper in the last section.

2. PASSIVE COMPLAINCE AND SENSING MECHANISM
The compliance device includes two parts: a special rubber element acting as a damped compliance,

and a sensing mechanism to measure the deflection of the device during the end-effector motion. The sen-
sor mechanism is capable of measuring six DOF motions of the upper plate of the device related to the
lower one. The mechanism is a serial linkage mechanism with six potentiometer sensors at its joints instead
of six actuators for the manipulator. The task of the computation from the sensed data of the joints is sim-
ply the direct kinematics so that the end-effector motion is identified, while that for the robot manipulator is
the inverse kinematics so that the joint motion is determined from the desired Cartesian trajectory at the
end-effector. We at first, intended to use a parallel mechanism as in the paper [6], and LVDTs as displace-
ment sensors. However, the direct kinematics is difficult for a parallel mechanism, while inverse kinemat-
ics is easy. On the contrary, for a series mechanism the direct kinematics is much easier than the inverse
[7], so this was chosen. The computer interface using A/D convertor is also simpler than the digital conver-
tor as the LVDT is used. The mechanical structure of the serial linkage is easier to make than that of the
parallel one. Only disadvantage is the error accumulation of the serial mechanism, while the error is com-
pensated in the parallel mechanism. We, however, use the filter and carefully calibrate the mechanism and
potentiometers, so the designed precision of the device is obtained. The device feature is shown in Fig. 1.

The rubber element is chosen because the stiffness of rubber and its shape is such as to yield reason-
able stiffness in each direction. Also, from a stability analysis, some damping in the device is necessary as
the damping ratio of the system is critical for system performance [I]. The rubber material in the device
can provide significant inherent damping.

We introduced passive compliance in each of six directions instead of three or five directions for
most of passive compliance devices. The reason is that the device is used not only to correct lateral and
torsional emrs in assembly operations but also to absorb kinetic energy when the robot tool stops suddenly
on making contact with the environment so that the transition between the force and position is accommu-
dated. The positioning capability will not be degraded because of the active sensing and compensation
control in the feedback loop.

3. POSITION CONTROL
Experiments with the compliant wrist shown in Fig. 2 were performed on a PUMA 560. A video to

demonstrate the experiment is available in the conference time. Before the experiment, six potentiometers
were adjusted in a proper range and the compliant wrist sensor was calibrated carefully. The control was
executed on a Microvax 2 using the RCI primitives of RCCL [5], which allowed the software to directly
command robot joint angles. The software package allowed various parameters to be set, and also allowed

sawo3aq
we ias~ puemurm I~O[wsap aq 1eq1 os dx xyem ~$3 e mnpasu! dew aM dpaua3 aro~

'a~ojaia~ -paqsap q uoyesuadwm alaldum tr JI (s) q *XV jo a~paau aq plnoqs (9) uy xv 'luawa3qd
-syp aq se uoyxmp a!soddo aq y sa~om lo1tr1nd!uem aq~ leq os pnuo:, uoy!sod u! pqsap s! uogesuad
-mo3 a3u!s -m~qnd!uem aq jo a3ueqa pguarajm lq@ pue xyem ueyqmef aq are we^ pua "r aiaqm

.ursyqsm iosuas aq u! s8uypear larawoyualod u! may pammw are qqqm "ev pue
*r xyew qqmer urqqsm lspw aq woy palqn3p aq asp dm s~uama3qdsyp mualajjrp XIS asaq
Lpuoss '"1 lspw ~ua!~durm aq JO nqm uo~euuqsueq paqdn aq~ way panmxa aq dew wuammqd
-syp pue sa18ue sang aq Lpq~ -olaz s! uog-gap aq araqm uogrsod pg!u! aq 01 paw1a.1 suoymuauo aaq
pua quamazldsp uog~sod aaq qrm *XV J~SA luamaz1dsyp nuarajm e la3 a sAe~ om arrr aJau
-1s- ~q~dmm aq~ JO luawaqdsp muangyp aq 3ulzypn mum IU!O[aq~ s! aAyeuxap uv

s! uogqar s3pemaq
ams 1uaun3 aq lew os ',g a pa3q3 snq s! uoyeuuo~sur?a aleuFpIoo3 qs\?l aq 'WOJ @uIalxa iaqo
lo pE01 aq a anp ;.L a p3ueq3 s! ".L amq aleu!p1oo3 I~JM lmr!ldurm aq alms luaun:, aq llz asoddns

q alms aq IE uopqar 3gmaup1 au ~uoyeuuo~sm
a~truquoo:, qs\?l aq se pamp~um s! q3!qm a S! m!Aap 1uegdmo3 aq jo alqd iaddn pue aseq aq uaamlaq
leq pua '".L s! 1~1~d1~o3 aq~ JO saqd OM mmaq leq '9~- s! aqAap lspw ~q~dwm aq jo alqd
paq3we aq a aleurpom asaq aq uray uogmojsuea aq~ augap am '~arlum aeds uqw.nz3 aq q

'pIlum uoy!sod JOJ pale8 ,

-ysaAuy amfi 'loauo:, aim lurd aq pue p.aum ax& ue!sau~ aq 'samaq3s larluo:, IU~J~JJIP OWL

'[Z1[11 sJaded JaYm Jno u!
punoj aq um 'a3uauuoJJaa msAs aq uo lspw 1uegdmo3 aq JO ISJJ~ aq se IIaM se 'sralamd mlldsum
ladoxi 3uym1as ioj s?sLp pamap v .paquFw .q ~on?pd?ueur ~oqcu JO A~emmtr %quoy!sod aq pue
pamuadmm q saaoj paxa JO peo~ a anp lsy~ 1uegduro3 aq JO uopsgap aq 'sprom iaq~o UI guaw
-axldsq pasuas aq 01 uoyq alpoddo aq u! ~mpd!uem aq %U!AOW Aq =yap aq jo ssaujms tuarad&
aql asmnu! a pasodd safi 9spw IW!I~CU~~ e Buypnpy 'walsds 3yoqm aq JO ~~um uoy!sod

-s!sd@urr luanbasqns ioj aIg e a pa3301 aq a mp luammqdsyp 1~ pue XralsIeq

The experiment consisted of an incremental change of load in or around a certain direction. The six
DOF wrist deflections and six DOF manipulator endpoint were recorded. position response. Shown in
Fig.3 are the results as the load is applied around the x direction, with a gain Kp of 1.0, and the digital filter
pole a set to 0.8. The upper curve is the observed wrist angle deflection around the x direction 9, and the
lower curve is a recording of the manipulator endpoint response in the same direction. From these curves,
we can see that the manipulator moves in the opposite direction but by the same amount as the wrist
deflection so that the absolute endpoint location is maintained

The experimental results indicate that the use of an active sensing of the compliant wrist makes it
possible to retain the original static stiffness chmcteristics of the manipulator in spite of the presence of a
passive compliance in the wrist.

We may analyze the system dynamic performance with a simple single degree of freedom system as
shown in Fig.4. The end-effector is represented as a mass m and the compliant wrist is represented as a
spring with stiffness Kw and a viscous damping Cw which are attached to the manipulator end-point. The
manipulator is assumed to be rigid. The end-effector motion is x2 and the manipulator end-point motion is
X I . The compliant sensor records the difference of the motions Ax = x r x l . The controller uses the error
information Ax with the end-point command x 1, together to drive the end-point motion x 1 so that the end-
effector motion x2 is not affected by the external force F , in position control while dominated by F,, in
force control.

Using the position control scheme discussed above to this simple system, the control strategy can be
described by the block diagram in Fig.5 where the feedback loop can be switched to a negative gain in
position control or a positive gain in force control which we will discuss later. The transfer function from
x l to x2, G 1, and from the external force F , to x2, G2 can be obtained from the system in Fig.4.

In position control, the system function can be derived,

To make a comparison, the system hnction for Fig.4 without active feedback control may also be written
as

From (1 l) , we may be clear that the effect of the external force is decreased by (1-Kp) times. If a unit gain
Kp is used, the external force can be eliminated and the system is totally independent of the force F , .

The system dynamic stiffness Z (s) can be derived from (1 1) if the second term is not considered.

We also can derive it for the case without feedback control (12).

Therefore, the virtual stiffness in steady state is increased by ll(1-Kp) due to introduction of the active
feedback and the entire system has a better positioning ability despite the presence of the passive compli-
ance.

We may obtain the system characteristic equation from (1 1) for position control mode

Utilizing the feedback gain Kp <1 in position control which ensures the system stability from (15). If a unit
gain is used, which can provide complete compensation as shown in our paper [I] , the system open-loop
function G 1 (9) can present a gain margin less than zero.

4. FORCE CONTROL
In the force control case where the end-effector is partially constrained by the workpiece, we use the

compliant wrist as a sensor to detect the force exerted in the end-effector. The sensed deflection is used to
drive the manipulator in the same direction as the the deflection of the wrist, i.e, the generalized force
direction so that the apparent stifmess is decreased and a desired contact force is obtained.

We utilize a joint rate control scheme for the force control experiments. As discussed above, we can
obtain the six components generalized displacement of the wrist AX, from either the wrist Jacobian matrix
or the transformation matrix.

The manipulator rate control scheme is given by

A0, = JilAX

and the displacement AX relates to the exerted force F, by the desired stiffness Kd

whereas measured displacement relates to the exerted force by

where K, is the actual stiffness of the wrist. Substituting yields

where KF is a dimensionless stiffness ratio

Equation (17) becomes

The desired joint angles are thus

Comparing (8) with (22), we may note

(1) The equations are very similar, and both contain a dimensionless gain term Kp or KF with the dif-
ferent sign in front. The former represents the gain by which we want to modify the displacement of
the wrist according to how much amount of the deflection we expect to compensate in position con-
trol. The latter represents another gain matrix by which the stiffness of the endeffector relates to the
effective stiffness of the system according to how much compliance is required in the force control
task. If complete compensation in all directions is required in position control, the gain Kp is iden-
tity matrix. If the desired compliance level is just the natural compliance, K,, of the wrist, the gain
matrix KF is again the identity matrix.

(2) Since in position control the end-effector is supposed to move in the opposite direction to the dis-
placement we measured while it is to move in the same direction in force control, the differential dis-
placement A0, in Equation (8) is negative while positive in Equation (22).

(3) Provided the end-effector is in steady state and a constant deflection (i.e, constant force) exists in the
compliant wrist, the manipulator should keep moving in the force control mode while it should stop
if a constant compensation has been already responsed to in position control mode. Therefore, the
desired joint angles O h should be based on the specified joint angles in position control (8), but
based on the current joint angles 0, in force control (22).

To check the force control mode, a constant force was applied suddenly, simulating the end-effector
coming into contacted with environment. Shown in Fig.6 are the results of the deflection of the wrist and
the endpoint response of the manipulator, provided the desired force level is zero. At first, the force was
applied and the wrist was deformed, and the manipulator end-point was moving in the same direction as the
measured force. Then, as the manipulator reached the desired force level which is specified as zero, the
manipulator moves from the surface, the wrist has no deflection and the manipulator stops.

In force control, we also can analyze the system as in position control case. The system block
diagram is shown in Fig.5 where the feedback loop is switched to "force control". The system function can
be derived as

(~ + K F) G ~ F ~ + G 1x1, = (~+KF-KFG 1)X2 (23)

Here we may see the feedback control makes the external force dominate the system. The dynamic stiff-
ness is

Comparing (24) to (14), the virtual stiffness of the system is decreased by 1/(1+K~) times. The higher gain
is set, the softer the system becomes. The system characteristic equation is given as

(l+K~)mr~ + Cws + Kw = 0 (25)

which indicates that the system is always stable in force control. However, as the gain KF is increased, the
gain margin and phase margin are decreased and the relative stability is affected. On the other hand, the
force gain selection is also dependent on the desired pole assignment of the system. Since the physical and
desired stiffness in each direction or around each axis are different, the force gains were set differently in
our experiment.

If the environmental compliance must be considered, the contact force can be modeled as spring and
damper between the end-effector x2 and a rigid hypothetic surface X3 as shown in Fig.7. The stiffness and
damping of the environment are represented as K, and C, . The problem can be interpreted as that the com-
pliance between X2 and Xg is controlled to a desired level. Hence, the force control problem is actually the
problem of controlling the compliance between the end-effector and the environment. In our case, the
problem can be specSed so that the end-effector motion X2 is modified by adjusting the manipulator end-
point motion XI in the presence of change in the environmental compliance (including surface geometry
and material elasticity). In this way the complaince between X2 and X3 is maintained in a desired level. The
control block diagram can be shown in Fig.8. Similarly as in the analysis above, we can derive the system
transfer functions as

Equation (28) and (27) indicate clearly that the active feedback control makes the system softer and the
compliance of the contact can be controlled by adjusting the feedback gain KF .

5. HYBRID CONTROL
It is well known that every manipulator task can be broken down into elemental components that are

defined by a particular set of contacting surfaces, a generalized smface can be defined in a constraint space
having six degree of freedom, with position constraints along the n o d to this surface and forces con-
saaints along the tangents. These two type of constraints, force and position, partition the degree of free-
dom of possible end-effector motions into two orthogonal sets, that must be controlled according to dif-
ferent control strategies (8) and (22). Since the desired angles Oh is based on Omnj in position control (8).
but based on 8, in force control (22), the hybrid control can not simply combine Equation (8) and (22)
together. Here we present a hybrid control scheme for the robot system including a passive compliance as
follows.

First, we partition AXw which is the Cartesian error measured from the wrist sensor into two sets
AX$ corresponding to the direction in which force control is required, and AX! in the remaining directions
in which the position control is required. For example, if the force in the z direction and the torques around

Sil
de
thc

Th
als

Eq
Eci
rnt
to1
in
rec
thc
an

the x and y directions are controlled and in the remaining directions are position controlled, we partition
AXW

Ax Ay Az A0, A0, A0,

into
I T

Then, we multiply these vectors by the gain matrices K p and KF as in (8) and (22) to obtain the desired dif-
ferential motion of the end-effector.

where AXp is compensated in position control mode and AXF is controlled in force control mode provided
that the desired force level is zero.

From differential motions AXp and AXF we can form differential transform matrices Tmr and TAX,
respectively. When force control is considered in Cartesian space, the desired motion of the end-effector is
with respected to T&, where the superscript j refers to the time.

Since we must consider the deflection of the end-effector in the presence of the passive compliance, the
desired motion T & j has to be modified by the differential motion TAX, which represents the deflection of
the compliant wrist in (32). Therefore, the required motion TrpJ to yield the desired motion T& is

Thus, the end-effector not only provides the desired compliance in the specified degrees of freedom, but
also compensates the deflection of the compliant wrist simultaneously.

Similarly in joint space, we also can perform hybrid control. The joint rate control scheme from
Equation (6) is

The desired joint angles of the end-effector must move in the same direction as the differential joint angles
caused by AXF , J m - l A x ~ , based on the current desired joint angles as in Cartesian space control (34).

Also, the end-effector motion must be modified by the differential joint angles which represents the
deflection of passive compliance A X p in (32). Jm-lAXp,

Equation (37) and (38) represents hybrid position and force control in joint space in correspondence with
Equation (34) and (35) for Cartesian space. We chose the latter approach because of simplicity. An experi-
ment based on this control scheme was performed. We specified that the force along the z axis and the
torques around the x and y axes while in the remaining directions position control was performed. Force
in an arbitrary direction was applied and the wrist deflection as well as the end-effector motion was
recorded. The experimental curves in force control mode are identical with the curves shown in Fig.6 and
those in position control mode are identical with the curves shown in Fig.3. The results were satisfactory
and demonstrated the control scheme is stable.

6. SURFACE TRACKING
A surface tracking experiment was performed as an application of the hybrid control strategy of the

robotic system with a compliant wrist. The surface is sinusoid curved as shown in Fig.2. The robot does
not have any information about the surface. The end-effector aajectory is modified by the sensed contact
forces. When the robot comes down with a certain velocity and makes contact with the surface, the con-
troller is automatically switched from a full position control (i.e., six DOF position control) to a hybrid con-
trol scheme. The force normal to the surface is set to be controlled, while in other directions position is
controlled. A desired contact forces, force feedback gain, position gain, and other parameters can be
specified in the terminal.

A detail analysis for the system performance with a digital filter will be discussed in next section.
Here, we present some experimental results, in order to investigate the effect of different conditions on the
system performance.

(1) Force gain KF must be selected carefully. As we expected, the less stiff the support of the con-
tacted surface (i.e, environment) is, or the more compliant the end-effector is, the larger gain can be util-
ized This is the reason why we introduce some passive compliance in the wrist When we provide a pas-
sive compliance device in the end-effector, a much larger force gain can be used than that without it. How-
ever, the force gain has to be set according to the compliance we provided and environment behavior. As a
too large force gain is set, tracking will also get unstable. Fig9 are the curves recorded for two translation
motions y and z in the end effector as the end-effector is tracking a sinusoid surface. We may see that in
the direction normal to the surface, z direction, the record is a sinusoid curve. Since the tracking is accom-
plished by moving along y direction in a certain velocity, the curve of y direction motion is a line with a
certain slope. The upper curves is for the case that force gain is 0.2, while the lower one is that the force
gain is 0.6. It is clear that in the latter case, tracking can not copy the surface behavior perfectly because of
a too large gain.

(2) Transition as the robot makes contact with the surface or breaks contact from the surface can be
accommodated by the method proposed above. The passive compliance provides a mechanism to absorb a
kinetic energy of impulsive force as the robot suddenly stops on the workpiece from a significant velocity.
Without the passive compliance, the force or velocity may be discontinuous in this moment. From our
experiment, we used different velocities before the contact is made. In all cases, the contact is very smooth
and no shock was observed. In Fig.9, we also can find that the robot initially moves down with a certain
velocity and then make contact with the environment smoothly as in the area we circled

(3) A reasonably large contact force specified is desirable. The experiment shows that the larger con-
tact force we specified, the more smooth the contact becomes. It is also needed to know that a large contact
force specified results in a large deflection of the compliant wrist, thus the contact force is limited since the
deflection of the wrist has to be within a permitted range.

'

7. SYSTEM PERFORMANCE
There is a need to use a digital filter in the close-loop of the system because of mechanical backlash

in the potentiometers and electronic noise. A first order digital filter with a unity-gain is utilized in the
closed-lmp system. The digital filter in the Z transformation form is

F(Z) = % = d
z-a

The low pass corner frequency is controlled by the pole of the digital filter, a

where T is the sample interval, in our case 28 ms.

The system performance is dominated by the digital filter. The system block diagram without the
filter in Fig.5 can be modified as the diagram in Fig 10, where F denotes the digital filter. It has been
known that the discrete variable Z relates the Laplace variables s by

Thus, substituting yields that F (z) in Equation (39) becomes the Laplace transformation form F (s)

Let

thus

As the pole of the digital filter a becomes zero, a0 goes to unity, and vice versa. The system transfer func-
tion from Xi, to Xz in position control mode (1 1) is changed as

Thus the characteristic function is

(m+Kpaom)s3+(mafo--Kpamf o+C,)s2+(Cwaafo+KW)s+Kwado= 0 (46)

The stability conditions for position control mode can be derived as

mdo-K~pmaafo+C~ > 0 (47)

[m a f d l - K ~) t C ~ l (C ~ a d & K ~) > KWaafdl+Kpao)m (48)

From the stability condition, we may see:

(i) Passive damper is of significance. If the damping Cw = 0, the second condition and first condition
yield respectively

-1 > a0 and K, < 1

The former is contradictory and the latter means that a full compensation is impossible.

(i) The pole of the digital filter a should be selected as close to unity as possible. As a goes to unity, a0
become zero, and the first and second conditions yield

Cw > 0, and CwKw > 0

which are always true, while as a0 goes to unity, the conditions are not always satisfied.

(iii) The gain K, dominates the system. As K, is selected close to unity, both conditions are getting criti-
cal, especially when the less damper is used.

Since the mass of the end-effector in our experiment is small and parameters Kp and a0 are both less
than 1, we neglect the third order term in (46), thus the nature frequency of the system on can be obtained

Compared to the nature frequency of the original system a,,~

Kw in
o n 0 = (,.I

Equation(49) can be written in the form of

a n = P 0 0 n 0

where the coefficient P 0 is the ratio of w, /a,o

For most cases Po is less than unity. As Cw is decreased and K, , ao, m are increased, Po is increased and
goes to near unity, and thus an oscillation may occurs.

The curve in Fig.11, can give us a clear picture of the discussion above, where a; is the variable a0
corresponding to the unity Po. If K, = 0.8, Cw = 10 kg Is, f 0 = 100 Its, m = 0.1 kg, the critical value
a; = 0.8. The permitted region for a0 is 0 G o < al , where a1 should be less than critical value a:. In other
words, a0 has to be set near zero, which means the pole of the digital filter has to be close to 1, so that the
system oscillation is avoided. For example, if a1 = 113, the pole is allowed to be selected within
1 > a > 112.

From here, we conclude that in position control mode the system bandwidth is limited by the nature
frequency of passive compliance on@ In other words, the compliant wrist device can not be made too soft.

The surface tracking experiment demonstrated that for position control model if the pole of the digi-
tal filer is lowered to a certain value, an oscillation may occur. Using the same parameters except for the
pole of the filter in position control mode, the experiment results are shown in Fig.12. The upper curve is
for the case in which the pole is 0.95, while the lower curve is for the case in which the pole is 0.6 where
an oscillation is evident.

We also can investigate the system performance for force control mode with the similar analysis as
shown above, provided a zero contact force is desired. For simplicity, we only give a stability condition.

It is clear that if the force gain KF and the pole of digital filter are both selected less than unity, the system
will not be unstable. The nature frequency in force control mode is

where

Compared Po in position control (51) with Qo in force control (53). We may see that there is no resonance
in force control since the denominator in (53) always larger than 1 and Qo is never reach to unity. This is
also verified by the experiment.

8. CONCLUSIONS
(1) The compliant wrist performs successfully both in passive compliance and active sensing. Using

such a device makes it possible to provide the system with a flexibility which simplifies contact force con-
trol and the transient state control, and compensates the end-effector deflection due to the external forces.

(2) The applicability of the position and force control strategies is shown by experiment. In position
control, the manipulator moves in the opposite direction to the deflection of the wrist so that the apparent
stiffness of the end-effector is increased. In force control, the matlipulator is driven in the same direction
as the sensed force so as to decrease the stiffness.

(3) Hybrid position and force control for the robot system including passive compliance is possible
and the control scheme's feasibility is demonstrated by the experimental results. The scheme can also be
utilized as a free joint control scheme, as well as a conventional hybrid control without a passive compli-
ance.

(4) The digit filter dynamics dominate the systems response. In position control, a large pole of the
filter results in a slow response. To lower the pole to an extent, an oscillation may occur. The lower critical
value of the pole is limited by the nature frequency of passive compliance. In other words, a trade off has
to be made between a fast response and a large compliance of the wrist device.

(5) Force gain should be selected carefully according to the stiffness of the passive compliance dev-
ice, the mass of the end-effector, and the desired compliance of the system. The different force gains are ' necessary for each direction and around each axis. The less stiff the passive compliance device or environ-
ment, the larger force gain can be used.

I 9. REFERENCES

[I] Y. Xu and R.P. Paul, "On position compensation and force control stability of a robot with a compli-
ant wrist", Proceedings of the IEEE International Conference on Robotics and Automation, P. 1173-
1178,1988

[2] R.P. Paul, Y. Xu and X. YUI, "Terminal link force and position control of a robot manipulatorn,
Seventh CISM and IFToMM International Symposium on Theory and Practice of Robots and Mani-
pulators, I988

[3] R. K. Roberts, R. P. Paul, and B. M. Hillberry, "The effect of wrist force sensor stiffness on the con-
trol of robot manipulators", Proceedings of the IEEE International Conference on Robotics and
Automation, P.269-274,1985

[4] D. E. Whitney and J. M. Rourke, "Mechanical behavior and design equations for elastomer shear pad
remote center compliance", ASME Journal of Dynamic System, Measurement, and Control, Vol.
108, P.223-232,1986

[51 V. Hayward, RCCL User's Guide, edited for CVaRL by John Lloyd, 1984

[6] H. Inoue, Y. Tsusaka, and T. Fukuizumi, "Parallel manipulatorn, Proceedings of Third International
Symposium of Robotics Research, P.321-327,1986

[71 K.J. Waldron and K.H. Hunt, "Serial-parallel dualities in actively coordinated mechanisms", Fourth
International Symposium on Robotics Research, Santa C m , Sept. 1987

[8] D. S. Seltzer, "Compliant robot wrist sensing for precision assembly", Robotics: Theory and Applica-
tion, P.161-168, 1986

[9] H. Kazemni, and J. Guo, "Direct-drive, active compliant end-effector" Proceedings of the IEEE
International CoMerence on Robotics and Automation, P.758-766,1987

[lo] J.De Schutter, "Compliant robot motion control methods for rigid manipulators based on a generic
scheme", Proceedings of the IEEE International CoMerence on Robotics and Automation, P.1060-
1065,1987

[Ill M. Mason, "Compliance and force control for computer controlled manipulators", in Robot Motion
Planning and Control, M. Brady et al, ed., The MIT Press, Cambridge, MA, 1982, P.373-404. ch.5.

, [12] K. Salisbury, "Active stiffness control of a manipulator in Cartesian coordinates", Proc. 19th IEEE
Conference on Decision and Control, Albuquerque, NM, December 1980, P.87-97.

[13] M.R. Cutkosky and P.K. Wright, "Position Sensing Wrists for Industrial Manipulators", 12th Inter-
national Symposium on Industrial Robots, Paris, France, June 1982.

[14] N. Hogan, "Impedance control of industrial robots", Robotics and Computer Integrated Manufactur-
ing, Vol.1, No.1, 1984.P.97-113.

[I51 M.H. Rabait and JJ. Craig, "Hybrid positidforce control of manipulators", ASME Journal of
Dynamics system, Measurement, and Control, Vol. 102,1981, P.126-133

[I61 C. Reboulet and A. Robert, "Hybrid control of a manipulator with an active compliant wrist",
Proceedings of the Third International Symposium on Robotics Research, 1985

[17] H.V. Brussel, H. Thielman and J. Simons, "Further developments of the active adaptive compliant
wrist (AACW) for robot assembly", 11th International Symposium on Industrial Robots, Tokyo,
Japan, October 1981. P.377-384.

[I81 R. Dillmann, "A Sentor Controlled gripper with tactile and non-tactile sensor environment",
Proceeding of the 2nd International Conference on Robot Vision and Sensory Controls. Stuffgart,
Germany, November, 1982, P.159-170

[I91 R.P.C. Paul and B. Shirnano, "Compliance and control", in Robot Motion Planning and Control. M.
Brady et al, ed., The MIT Press, Cambridge, MA, 1982, P.404-418, ch.5.

[20] K. Takuse, H. Inoue, K. Sato and S. Hagiuara, "me design of the articulated manipulator with torque
control ability", Fourth International Symposium on Indusm'al Robots, Nov. 1974

[21] H. Asa& and K. Ogawa, "On the dynamic analysis of a manipulator and its end effector interacting
with the environmentn, Proceedings of the IEEE International Conference on Robotics and Automa-
tion, P.751-756, 1987

[22] J-P. Merlet, "C-surface applied to the design of an hybrid force-position robot controller", Proceed-
ings of the IEEE International ~onference'on Robotics and Automation, 1987

[23] J. J. Bausch, B. M. Kramer and H. Kazemni, "The development of compliant tool holders for
robotic debuning", Robotics: Theory and Application, P.79-89,

[I D.E. Whitney, "Force feedback control of manipulator fine motions", ASME Journal of Dynamic
Systems, Measwement and Control, June 1977, P.91-97.

/

Rubber

\

I Fig.

Fig. 2

Jobdw

I Vd

Z iw
P 1w

+w

s bod

9 bod

Fig. 4 Simple model of thc wrirt sy~tcm

position control

force control

Fig. 5 Block diagnm of lhe acliyc c0nml

Fig. 6 Deflcclioa reading of lhc wist nnd manipuhlm ud-poinl nxpms~ in l-mx uarutd

Fig. 7 Simple modcl of lhc wrist wsIm aud cnvimnmuu Fig. 8 Blodr diagnm of the c ~ l p l i a ~ ~ % w n m l

I I I I I I
I I I I I I

0.00 110.00 im.00 1w.w 200.m no.m 300.00 mo.w 4m.00

Tine (one unit = 28 m.5)

Tic (onc unit = 28 ms)

Fig. 12 Sinusoid surface trackkg ruding of the end-effcdor (in y and z direction)

DECOUPLING COMPLIANCE MECHANISMS OF ROBOT
MANIPULATORS

Yangsheng Xu

Richard P. Paul

General Robotics Active Sensory Perception Laboratory
School of Engineering and Applied Science

University of Pennsylvania, Philadelphia, PA 19104-6389, USA

ABSTRACT

For the proper correction of position and angular errors with a passive compliance,

the position measurements, force sensing, and the hybrid control for active compliance

are simplified if the compliance of the end-effector is decoupled. To find a geomemc

configuration corresponding to such a decoupled compliance of the end-effector is an

unsolved problem. The paper presents a new concept of an orthogonal Jacobian mechan-

ism in which the compliance matrix is diagonal. The mechanism configuration can be

found using Plucker coordinates. The process is simple and illustrated by several exam-

ples. The nonlinear equations is derived and a program is designed to generate such

mechanism configurations. The mechanism can be selected for a specific compliance of

each direction in the task space. Dynamics of the mechanism is also addressed and the

dynamic performance can be similarly specified easily by certain configurations and

geomemc parameters. When the end-effector is in motion, avoidance of the intersection

is one of the key problems in implementation of the parallel manipulator. We present a

method to determine whether the links are intersected for a given trajectory in off-line

planning. The method can also be used for all parallel mechanisms whose configurations

are specified.

1. INTRODUCTION

Passive compliance of the end-effector of the manipulator allows external constraints to modify the

trajectory of the end-effector. Passive compliance mechanisms have an adaptation capability which permit

self-correction to accommodate to the geomemc errors and uncertainties in assembly tasks.

This material is based on work supported by h e National Science Foundation under Grant No. DMC-8512838. Any opin-
ions, findings, and conclusions or rccommmdations aprcssed in this publication are those of the authors and do not neces-
sarily refiea the views of the National Science Foundation.
Pan of this material was presented in the International Conference on Advances in Robot Kinematics, Ljubjania, Yugosla-
via. Sept. I988

lel

linl

Pro
wit

If 1

I obt

SYS

is d

Thi

Be4

cat

for
8

plil

cal

sui
1

a P

I no1

The passive compliance device known as an RCC is designed for this purpose[q. The device,

1 located at the robot wrist, has a number of advantages: automatic assembly could be facilitated in more

applications, the positioning error or dimensional tolerances can be relaxed, the possible high forces gen-
i

erated in assembly operation can be reduced, and expensive electronics normally required for precision

positioning eliminated. The passive compliance device instrumented by a force or position sensor which

measures the deflections of the compliance structure or the forces exerted exhibits the advantages of both

1 passive compliance and active sensing, thereby the position and force control of the end-effector become

possible as discussed in our earlier papers [1][21.

Similarity in geometric configwation and task can be found in another kind of mechanism, the paral-

lel manipulator or Steward plateform mechanism. It consists of two plates connected by six articulated

links. The end-effector is manipulated by six prismatic joints in six links. The mechanism was designed to

provide compliance in assembly workstations primarily and then developed as a small motion manipulator

with passive compliance[3] [4] 153 [6].

It is well known that the forces applied at the compliance device must be decoupled so that the force

only causes a pure translation and the torque produces only pure rotation. The RCC is the device that the

lateral forces and rotational torques are partially decoupled.

The decoupling problem becomes more important if the compliance device is used as a force sensor.

If the deflections of the device are coupled, the generalized forces applied are coupled and cannot be

obtained directly from the deflection sensing. As both position and contact force is controlled by a hybrid

system, the controller incorporates two sets of closed loops for force and position control. The force control

is driven by the motion of the end-effector, and becomes difficult if the force and displacement are coupled.

The decoupling problem can be interpreted as orthogonalizing the Jacobian matrix of the mechanism.

This paper presents a method to find mechanism configurations in which the Jacobian matrix is orthogonal.

Because the inverse Jacobian can be replaced by its transpose, the joint rate control scheme is not compli-

cated by singularities of the Jacobian. Therefore, a diagonal compliance mechanism is attractive not only

for the passive compliance but also for active control.

The problem has been addressed by some papers. Whiuley [7] indicated signiiicance of the decou-

pling problem and analyzed the RCC device mechanics based on this principle. The compliance center was

calculated by chosing proper parameters. However, the RCC is not fully decoupled and the results are not

suitable for parallel manipulators. Loncaric [81 presented a method to normalize the compliance matrix by

a particular choice of the coordinates frame using the Lie Group approach. But, the choice of the frame is

not clear physically and is difficult to realize. Merlet [61 analyzed some mechanisms which can be used as

parallel manipulators, and one of mechanisms was mentioned as a diagonal compliance matrix mechanism.

A systematic way to find and analyze such orthogonal Jacobian mechanisms is needed.

This paper presents the relation between the diagonalizing compliance matrix of the end-effector and

orthogonalizing the Jacobian matrix of the manipulator. The Plucker Line Coordinates method is applied

to find the mechanisms in which Jacobian matrix is orthogonal. The geomemc configuration of the

mechanism is very clear physically and the process is illustrated by some examples. The compliance and

dynamics performance can be specified easily by chosing mechanism configuration, or modifying some

geometric parameters for a given mechanism. The nonlinear equations associated with the parameters of

the mechanisms are derived and a program to generate such mechanisms is designed using the Damped

Newton algorithm. Since the links may intersect each other as the top plate is in motion, we present a

method to determine the perpendicular distance between the links, thereby to identify intersection for a

given trajectory in off-line planning. The method we proposed is not only suitable to the decoupling com-

pliance mechanism, but also can be used in all kinds of the parallel mechanism.

2. ORTHOGONAL JACOBIAN MATRIX AND COMPLIANCE

We now consider a parallel manipulator as described in [4][5][6] which has two plateforms con-

nected by six movable links as shown in Fig.1. The top plate, or called the mobile plate, is controlled by

adjusting six prismatic joint motions. It is known that there is relation between the forces f in each link

along its axes and the generalized forces F applied to the center of the top plate.

where J is Jacobian matrix of the mechanism. If the forces along the link are proportional to the deflections

of the length 1, then

D-'

insti

can

where K is the stiffness matrix, K = diag (kl&z, . . . , ks), k; is stiffness of each link. The deformation of and
I

the top plate AX is related to the deflection of each link by

Combining those equations and assuming each link has a same stiffness k , we obtain i

= k (JT)" J-1

or

A x = k - ' J JTF

We define the compliance matrix C and the stiffness matrix K as

C=k-I JJT

Namely,

effa

for c

bian

(5)

I Plut

(6)
1

Hence, the problem becomes clear. In order to decouple compliance or stiffness matrix, the Jacobian

matrix must be orthogonal.

where

D = diag (d l d 2 , ..., d6)

Some interesting facts associated with the orthogonal Jacobian mechanism may be noted:

(1) Since the Jacobian matrix is orthogonal, the inverse Jacobian can always be replaced by its uan-

spose. From (8) , we have

D-I is easy to obtain because D is diagonal. Actually, as shown in the later sections we calculate D-I first

instead of D. Therefore, the inverse Jacobian computational cost and excessive joint rates near a singularity

can be avoided.

(2) The end-effector deflections of the manipulator can be easily predicted since the compliance

matrix is diagonal. The maximum deflection and minimum deflection occur in the weakest stiffness and the

strongest stiffness direction. Therefore, the desired stiffness of each direction in Cartesian space which is

dependent upon the tasks of the robot manipulator can be specified by selecting the geometric parameters

and configuration of the mechanism.

(3) The manipulability measure is an ability of the robot in positioning and orienting the end-

effector. It can be defined by [l l]

for determining the best posture of various types of manipulators and articulated robot fingers. If the Jaco-

bian matrix is orthogonal, the manipulability can be evaluated by multiplication of each diagonal element

di as in Equation 8, thereby selecting the mechanism configuration according to manipulability becomes

easy in the design state.

3. PLUCKER LINE COORDINATES AND MECHANISM CHOICE

In this section, we are going to find the mechanism whose Jacobian is orthogonal by the method of

Plucker Line Coordinates.

The line in space can be represented by so called Plucker line coordinates [9]. As shown in Fig.2,

two points MI and Mz can be formed by a vector S = M1M2. Let us construct another three dimensional

vector M by

M = OMlxS = OMlxOM2 = SxM20

where

We combine these vectors to form a six dimensional vector which is the vector U of the Plucker coordi-

nates of this line M1M2.

u = [S, Sy ,S* Mx iMy Mz IT

U can be normalized as

Fig. 1 P d e l Mechanism Fig. 2 Plucker Line Coordinates

Therefore, first three components of the vector U' are the components of an unit vector S. The last three

components are orthogonal with the first three as

S',M', + S ; M ; +S',M', = O (12)

and can be given by

where M is any point of the line.

OMxS

1 Jau

i S ~ O ;

The mutual moment of two lines segments S1 and S2 is

SxlM.xI + Sy,Mya + Sz,MzI + SxIMx, + SyIMyI + SzaMz, = d sins (13)

where d is the perpendicular distance between the lines, and a is the angle between them. When the mutual

moment is zero the lines either intersect or are parallel.

A mamx P can be formed as

Now, if we consider the vectors S'i as unit force along the axes of the link, M'I as the moment around the

reference point generated by the force S;. Suppose the external generalized force vector F including the

forces and torques about the origin 0 acting on the top plate, using the notation (14), we can obtain

Comparing (15) with the Equation 1, we see that Plucker Coordinate vector matrix has a relation with the

Jacobian mamx of the device.

pl= JT (16)

or,

J = (PT)-' (17)

Both (16) and (17) are useful to find the required mechanisms. The orthogonal Jacobian matrix condition

(8) or (9) can be satisfied if

P P T = A (18)

where A is a diagonal matrix and is an inverse of D in (8). From (18), we can find a mechanism whose

Jacobian matrix is orthogonal by choosing proper Plucker line coordinates matrix P because the Equation

18 only involves the transpose, and the configuration is clear physically.

A detailed discussion to find such a mechanism will be addressed in the next section. Here we try to

show an alternative way to find the configuration by using the syrnmemc structure without numerical cal-

culation of the nonlinear equations.

An example is shown in Fig.3, S; is the line vector corresponding to line I ; , B; is the distance vector

from the origin to the vector S; , Mi is the moment vector corresponding to Si and B; . The link i is denoted

by two end points (i ,i), as (1,l) for the first link and etc.

Fig. 3 Orthogonal Jacobian Mechanism as Example 1

At first, we look for six vectors Si which will be satisfied to the orthogonality condition (18).

Namely,

To facilitate the process, we partition the above equation into two sets of three

f s , s , = 0
I = @, s , = 0

From here, it is not difficult to find a number of sets of the vectors which are satisfied the above equations.

As an example we list one set of the vectors.

S1= (O,a ,h

3, - a S2=(T 9 T h)

4 a
S3 = (-y ,--2,h)

1 No
I nal
t det
i
i

Now we need to choose the set of the vectors for which the vectors Bi , and thereby Mi satisfy the orthogo-

nal condition (8). We know if Si and the reference point 0 are determined, then Bi and thereby Mi are

determined. Similarly, we partioned the first three sets and the last three sets of equations and let

As for the vectors S; listed above, we can find their Bi and Mi.

6 a BI = (- p ,T,O)

As we find such a set of vectors Mi, we verify whether the mutual orthogonality of Si and Mi (18) holds.

If the orthogonal condition holds, the mechanism configuration is found. If not, we have to go back to the

second step to choose another set of vectors Bi and repeat the process until we find a solution. The vectors

we listed satisfy the orthogonality condition.

P = (U'l ,U82 I... ,U8fj)

P P T = A

and

A = diag @I, ~ 2 , p3,kLq, PS, k)

= diag (3a2/p, 3a2//p, 6h2/p, a2h2/p, a2h2/p, l / h 4 / p)

where

Two other mechanisms are found as shown in Fig.4 and Fig.5.

Fig. 5 Orthogonal Jacobian Mechanism

I The
den

the

one

the

Fig. 4 Orthogonal Jacobian Mechanism

4. PROPERTIES OF THE DECOUPLING COMPLIANCE MECHANISMS

The vector of the Plucker line coordinates Ui has six variables but not all of them are independent if

the reference point is given. From now, we suppose the reference point is in the origin of the coordinates.

The vector Si has three variables. But if the length of the vector is given, only two variables are indepen-

dent. The possible location of the end of the vector is in a spherical surface whose radius is the length of

the link and so has the dimension two. If we also give the height of the device (i.e, the z coordinate), only

one variable is free and the possible location of the end of the vector lies on a curve produced by cutting

the spherical surface by a plane z = h . Therefore, if the location of the vector Si is known (i.e, Bi is given),

only one variable is needed to determine the vector S; in our particular problem.

Next, since Bi could be any vector from the origin to a given vector, without losing any generality

we assumed the vector B; is always in the X-Y plane, thereby two variables can identify Bi. Since

Mi = BixSi, if Si is determined, Mi is only dependent on Bi . From here, it is clear that three independent

variables are sufficient to identify the vector Ui. Therefore, we need only to find 18 variables to determine

six vectors Ui , i.e, a full matrix P.

The orthogonality condition of the Jacobian matrix (18) includes 15 equations for 15 vanished non-

diagonal elements. We will show later that there is only three independent elements for six diagonal ele-

ments. Therefore, if the three variables for the diagonal elements are given, 18 variables can be solved by

18 equations. If the diagonal elements are not given but one vector of Si is known, 15 variables can also be

solved by 15 equations. The program to do this is shown.

The vector Si is located at (Xi, Yi) in X-Y plane. Therefore, the vector Bi is

Bi =(Xi, Yi, O)T

and the constrains condition of S; is

If the spherical coordinates are used,

x = pcos@xs0 = r cos0
y = pco@sin0 = r sine
z = psin*

where r = pcos$ and 9 = sin-'(h Ip) are known, so that only variable 0 is free to determine Si .

Suppose six links have the same length p and the device height is h , then

thereby,

Mi = (hYi, -hXi, rXisinei, -rYicosei)T (24)

Ui = (rcose, rsin0, h , h Yi , -hXi, r Xisinei, -rYicosei)T (25)

For the X-Y-Z coordinates expression,

Ui = (xi, +(pL~&hz)~, h , h Y i . -h Xi, , Si (~2xiLh2)'A-X~ Yi)T (26)

The Cartesian space unit compliance (i.e, the compliance as each link has a unit stiffness) of the device

corresponding to (26) are

We may notice:

i
(1) Two lateral compliance dl and d2 are related and only one is free. If it is desired to have the

same stiffness, i.e, d l = d2, then

(2) Since the compliance is always positive, d2 must be positive, d p 0 , then

(3) Whenever h is determined, d 3 is determined which is equal to 6hZ, The higher the device, the

more compliant its axial stiffness becomes. However, the relative ratio of the stiffness could be arranged

by the length and different configuration.

(4) If the axial compliance is equal to the lateral compliance, d = d a = d l , then

f F ? = d l = d 2 = d 3 = 2 p 2
1 =

(5) Usually the large axial stiffness and the symmetric lateral stiffness are desired, i.e, d3 I dl = d2,

In this case, the height of the device must be satisfied the following condition.

h %p2D

(6) From dl to dg expressions, we know if eighteen variables X i , yi , X i , Yi are given, di are all

determined. These eighteen variables can be solved by the orthogonality condition of 15 equations as a

function of any three free variables. Now, if we add one equation from d 1 or dz, and two equations from

d4, d s , or d6, normally we can solve the problem. However, if the eighteen variables are identified, we

always can determine six di as we mentioned before. Therefore, we conclude there are only three indepen-

dent variables for six stiffness in each direction.

The program was designed to generate the configuration of the mechanism using the spherical coor-

dinate expression (25) and the orthogonality condition (8). The Damped Newton algorithm is applied to

- 13 -

solve the nonlinear equations. The computation is rather efficient.

5. PARAMETERS AND DYNAMICS SPECIFICATION

First, if we assume each link has a same stiffness, the compliance of the end-effector is dependent on

the configuration and geometric parameters. For a given mechanism configuration, the compliance is only

dependent on the geometric parameters. Taking the mechanism shown as in Fig.4 for instance, we have

C = l lk A = diag (3a2/k p, 3a2/kp, 24h2/kp, a2h2/k p, a2h2/kp, lRa4/kp) (27)

The lateral, axial, bending and torsional compliance are function of the distance between two links in the

base plate and the height of the link. As the mechanism is chosen, the geometric parameters can obtained

by specific stiffness desired in each direction. For example, the lateral and axial compliance for a unit k

and unit height h can be evaluated as shown in Fig.6, while the bending and torsional compliance for a unit

distance a is shown in Fig.7. From the curves, we may know how to modify a and h in order to obtain a

desired compliance in each direction.

- 7 Cmrplii*Iri.tioorrrIhsheightof
the mubnisn varies

Further, if the sensitivities of the compliance to the geometric parameters are evaluated, a more pre-

cise adjustment can be made. The derivative of the stiffness in each direction to the distance a are obtained

from Equation 27 as following.

ac2 - ac1 aa-aa
ac3 24ah2
Ti = -(al+h2)k

ac4 - 2ah4
3i -.-

acs - ac4 aa-aa

XT= ac6 W (a h) k

Thc

whc

the :

Fro1

forn

freq

We have arbitrarily chosen the first set of joint variables to comprise the primary wrist, i
I

; L I I ~ wc denote the inverse kinematic solution for this wrist with a subscript p for primary. I
Ilcnce, when U3,, is given a predetermined value, explicit solutions for el,,, 02,p, and 04,p call I
I)c obtained in terms of "n, "0, and "a.

A characteristic of the primary solution is that as "a approaches and passes through a
I

I
iillgular region, d l , gets exceedingly large and becomes unbounded. In fact, Blip is unstablc 1
i l l the vicinity of a singular region. Indeed, for any n-revolute-joint orientation device, Baker

i1.11~1 &'ampler [I9881 show that any conservative inverse kinematic algorithm will have either i
t.wo singular regions, one in both its northern and southern hemispheres, or one singular

rcgion a t its equator. For the primary solution given in this paper, the singular regions arc:

;kt the nortli and soutli poles.

I
I
I

We note that these singularities in the primary solution are not configuration singularitics
*

I'or the 4-R wrist, as we have judiciously placed our redundant joint-screw, S3, SO that it will

I)c perpendicular to the plane spanned S1 and S4. Hence, when the wrist approaches and
I

passes through the singular regions of the primary wrist, in theory, differential motion can I

still be achieved.

Near the singular regions, the following two sets of joint-screws form three-systems I
I

I-Iowever, since the twist-velocity corresponding to S1 will be ill-defined in the primary so- l
i

lution, Ollp is unbounded, the second set of joint-screws is a better choice for achieving i
differential motion. The objective of this paper is to present a method by which the control

, . A , .

of the wrist is transferred from the primary set of joint-screws, {S1, SZ, S4), to a secondary

set of joint-screws given by {s?, s3, s4), such that the transition is smooth and continuous, L

I
and that the control algorithm is simple.

i s t ,

ary.

C a l l

;h a

tblc

t her

ulas

arc:

itics

will

and

can

y so-

s ing

ntrol

d a r y

lous,

4.1 Primary Solution

'I'llc primary values 01,,, 02,p, and 04,p are obtained by setting 0 3 , = 0. From Long and Paul

[I!)SS], the inverse kinematics for the primary solution is given by

wa
= tan-' {Y)

ax

OZ,p = tan-' (w

-WnxSOI,p + wnyCO1,p
04,p = tan-' {

-wo,sol,p + Wo,Col,p 1

Since the tan-' function in Equation (12) is unstable when both Wax and "a, approacl~

zero, the two singular points in the orienting region correspond to when Wa, = f 1, whicl-I

occurs at the north and south poles, respectively.

By differentiating 01, with respect to time, we see that d l , is infinite at the two singular

4.2 Secondary Solution

The secondary solution uses the fact that when Wa is directed along the polar axis, the set

of joint-screws given by is2, s3, s4) forms a third order screw system.

Since, in the primary mode, the twist-velocity of s, , becomes infinite when s1 and

SC1 become dependent, our desire is to to force Ollp to zero before this dependency occurs.

Since the magnitude of the cross-product of S1 with S4 approaches zero as s1 and $ become

dependent, lnultiplying e l , by this magnitude yields a secondary twist-velocity for s1

Ilowever, since o , , ~ is infinite when "a is directed along the polar axis, a wiser choice

r~llld be to use the maximum value of dl, o~,,, in place of i
Moreover, since I

1 cliiation (17) can be rewritten as

I Ilcte, t is the ti~lle and t , is the sample period. We note that 19~,, is a non-conservative

i'l~nction, as it is now both time and path dependent.
!
i

Fsom Long and Paul [19SS] 02,$ and 03,, can be written as functions of 01,, I
I

02,s = tan-' { -a,Cfll,s + "ayS~1,s
W a,

1

And, 04,s has the same form as 04,p except that OIlp is replaced by el,,

Of pedagogic value is the analogy between the expression for e l , and the quaternion I

representation of spatial rotations invented by Hamilton [1969]. Using Hamilton's quaternion
I

concept, a rotation of the vector v, about an arbitrary axis k is given by

~dlcre , v' is the final orientation of v, q is the unit quaternion given by

Kobs is the observation gain in rnmfpixel and is related to the calibration gains discussed below.
We will ignore mechanical and servo dynamics of the robot and model it as a single sample time

1 delay, R (z) = -. Thus the open-loop transfer function for the frame rate tracker is
Z

Kobs
z~(z- I)

This system is of type 1, and will thus exhibit steady state error for a constant velocity target.
The simple compensator,

introduces another pole at z = 1 to produce a type 2 system, while the zero is used to postion the
closed-loop poles.

The achievable closed-loop bandwidth of a discrete system is typically less than one fifth of the
sample rate, or approximately 30rad/s in this case.

4.1. Step response tests

The step response of the system was measured by a test rig with two spatially separated LEDs,
only one of which was illuminated at a time. A manual switch controlled the LEDs and joint tra-
jectory logging code in the robot server was activated by a change in the LEDs as sensed via an
A/D converter channel.

Figure 5. Measured closed-loop step response. I

-9- January 11,1989
C 1

Ithe
I
r the

The compensator zero was located at z = 0.95, and a loop gain of 0.12 was chosen. This yields
dominant closed loop poles at z = 0.915M.0619jY which yields a time to first peak of 1.3s with
1.5% overshoot. Figure 5 is the measured response of joint 2 of the robot, to a step applied at
time 0. It can be seen that the measured response shows considerable overshoot, 36%, which is
due to the action of the zero in the compensator.

The simple classical compensator is very sensitive to gain and compensator zero position, and
performance is very far short of the potential bandwidth. Further work with state-feedback con-
trol and predictive state estimators is planned.

4.2. Control behaviour

The controller described works well in practice, and has the advantage of being computationally
inexpensive. The visual tracking process does not produce cartesian rate commands at a con-
stant interval, occasionally skipping video frames when Unix schedules other processes to run.
In practice this causes very little problem since the robot carries on at its previous velocity until
another command is received. This strategy could also be used to follow a target moving, with
low acceleration, that becomes temporarily obscured or merged with the background.

5. Depth determination

A camera calibration is required to relate real world dimensions to those sensed by the camera in
pixel space. Due to the aspect ratio of standard TV screens an image of a circle will appear as a
vertically elongated ellipse in pixel space, thus two calibration constants Kx and Ky are deter-
mined. These are def~ned such that at a distance u one pixel represents a rectangle of width
Kx u and height Ky u .
Many techniques for depth determination exist[33], and could perhaps be categorized as static,
using cues such as lighting or texture, and triangulation based where multiple views from mov-
ing cameras or stereo camera pairs are interpreted. The technique outlined here is a simple static
technique based on a priori knowledge of the target object's area.

The area of a pixel is

If the object of known area A , is determined by the APA to have N pixels then an estimate of
the objects distance is

This simple technique works well in experiments, although factors such as focus and threshold
may be expected to introduce errors. Further work using a continuous sequence of views from a
moving camera has been commenced.

6. Further work and discussion

The initial objective relating to non-trivial scenes has been only partially met. The system works
well on a scene containing many regions but good constrast between target and background is
still required.

Motion blur effect in the camera has not been a problem due to the slow moving objects
currently used. Experiments have shown that interlaced frames are substantially distorted due to
the delay between exposure times of the component fields, but this problem is eliminated when

-10- --- p - - January 11,1989

working at field rate. Motion blur effects have been investigated in detail by Anderson[21]

The development and execution of the visual tracker has been canied out under Unix on a
workstation computer. Unix is an excellent environment for software development, and on a
graphics workstation becomes a very powerful tool indeed. Unix is much maligned for its poor
real-time performance, but in reality does an acceptable job. The particular machine used here
with a 25MHz processor and 8Mbyte of memory, and with a single user did not page or swap
processes. The only processes competing for the processor were the application and the periodic
update daemon. Unix allows for rapid prototyping of software, and by placing the most
response critical code in device drivers an acceptable level of performance was obtained for
experimental purposes.

This work, and others such as[21] show that video standards and conventional cameras are now
a limiting factor in high performance video sensing applications. Video technology is currently
tied to the needs of the television industry where conflicting requirements such as small
bandwidth and flicker have to lead to such devices as interlaced scanning. However when the
end user is a machine vision system the requirements are very different. Fortunately, a new gen-
eration of cameras with both high resolution and high speed non-interlaced data formats are
becoming available.

Areas for further work include:

(1) Determining the trajectory of target objects so that some attempt to follow them through
occlusion or background clutter can be made.

(2) Investigation of more sophisticated control algorithms to improve the position response
time of the closed-loop system.

(3) Investigate adaptive segmentation based on feedback of segmentation results from the APA
so as to modify edge and scene thresholds.

7. Conclusion

This paper has described a high performance image processing system capable of providing
robot positioning commands at rates of up to 60Hz, and demonstrated closed-loop position con-
trol. The image processing subsection is comprised entirely of off-the-shelf components, not-
ably a hardware region growing and moment generation unit.

The region oriented approach used here enables the system to identify the target object whether
or not there is relative motion between object and camera.

8. References

1. W.N. Martin and J.K. Aggarwal, Survey. Dynamic Scene Analysisl978.

2. R. Jain, "Dynamic Scene Analysis Using Pixel-Based Processes," Computer 14(8) pp.
12-18 IEEE, (Aug 1981).

3. B.K.P. Horn and B.G. Schunck, "Determining Optical Flow," Artr~cial Intelligence 17 pp.
185-203 (1981).

4. P. Anandan, "Measuring Visual Motion from Image Sequences,'' COINS 87-21 (Mar 87).

5 . A.M. Waxman and K. Wohn, "Contour Evolution, Neighborhood Deformation, and Global
Image Flow: Planar Surfaces in Motion.," Inernational Journal of Robotics Research
4(3) pp. 95-108 (Fall 85).

-11- January 11,1989 I

)n a
In a
poor
here
wap
odic
nost
1 for

now
mtly
;mall
n the
gen-
s are

APA

riding
I con-
, not-

6. D.W. Murray and B.F. Buxton, "Reconstructing the Optic Flow Field from Edge Motion:
An examination of two different approaches.," First Conference on Artificial Intelligence
Applications, pp. 382-388 IEEE, @ec 84).

7. W.B. Thompson and S.T. Barnard, "Lower-Level Estimation and Interpretation of Visual
Motion," Computer 14(8) pp. 20-28 IEEE, (Aug 1981).

8. H. Nagel, "Represenation of Moving Rigid Objects Based on Visual Observations," Com-
puter 14(8) pp. 29-39 IEEE, (Aug 198 1).

9. C.L. Fennema and W.B. Thompson, "Velocity Determination in Scenes Containing
Several Moving Objects," Computer Graphics and Image Processing 9pp. 301-315
(1979).

10. A.C. Sanderson, L.E. Weiss, and C.P. Neuman, "Dynamic Sensor-Based Control of Robots
with Visual Feedback," IEEE Journal of Robotics and Automation RA-3(5) pp. 404-417
(Oct 1987).

11. M. Kabuka, E. McVey, and P. Shironoshita, "An Adaptive Approach to Video Tracking,"
IEEE Journal of Robotics and Automation 4(2) pp. 228-236 (April 88).

12. M. Kabuka, J. Desoto, and J. Miranda, "Robot Vision Tracking System," IEEE Transac-
tions on Industrial Electronics 35(1) pp. 40-51 (Feb 88).

13. C.H. Anderson, P.J. Burt, and G.S. van der Wal, "Change Detection and Tracking Using
Pyramid Transform Techniques," Proceeding of SPIE 579 pp. 72-78 SPIE, (Sept 1985).

14. R.L. Andersonn, "Real-Time Gray-Scale Video processing Using a Moment-Generating
Chip," IEEE Journal of Robotics and Automation RA-l(2) pp. 79-85 (June 1985).

15. P. Vuylsteke, P. Defkaeye, A. Oosterlinck, and H. Van den Berghe, "Video Rate Recogni-
tion of Plane Objects,'' Sensor Review, pp. 132- 135 (July 198 1).

16. J.P. Froith, C. Eisenbarth, E. Enderle, H. Geisselmann, H. Ringschauser, and G. Zirnrner-
mann, "Real-time processing of binary images for industrial applications," pp. 61-168 in
Digital Image Processing Systems, ed. 2. Kulpa,Springer-Verlag, Germany (1981).

17. J. Hill and W.T. Park, "Real Time Control of a Robot with a Mobile Camera," 9th Inter-
national Symposium on Industrial Robots, SME, (Mar 13-15, 1979).

18. P.Y. Coulon and M. Nougaret, "Use of a TV camera system in closed-loop position control
of mechnisms.," pp. 1 17- 127 in International Trends in Manufacturing Technology
ROBOT VISION, ed. Alan Pugh, ().

19. A.G. Makhlin, "Stability and Sensitivity of Servo Vision Systems," Proc 5th Int Conf on
Robot Vision and Sensory Controls - RoViSeC 5, pp. 79-89 IFS (Publications), (29-31 Oct,

8) PP. 1985).

20. A.L. Gilbert, "Video Data Conversion and Real-Time Tracking," Computer 14(8) pp.
17 PP. 50-56 IEEE, (Aug 1981).

21. R.L. Andersonn, A Robot Ping-Pong Player, MIT Press (1988).
,87).

- ,
22. John Lloyd, Implementation of a Robot Control Development Environment, McGill Univer-

jlobal sity (December 1985).
yearch

23. R.P. Paul and Hong Zhang, "Computationally Efficient Kinematics for Manipulators with
Spherical Wrists," International Journal of Robotics Research S(2) pp. 32-44 (Summer

1,1989
4 -12- January 11,1989

1986).

R.M. Haralick and L.G. Shapiro, "Survey. Image Segmentation Techniques," Computer
Vision, Graphics, andImage Processing 29 pp. 100-132 (1985).

Joan S. Weszka, "A Survey of Threshold Selection Techniques," Computer Graphics and
Image Processing 7 pp. 259-265 (1978).

P.K. Sahoo, S. Soltani, and A.K.C. Wong, "A Survey of Thresholding Techniques," Com-
puter Vision, Graphics, and Image Processing 41 pp. 233-260 (1988).

C.J. Samwell and G.A. Cain, "The BAe (BRACKNELL) Automatic Detection, Tracking
and Classification System," 2nd Int.Conf. on Image Processing and Applications IEE-
265 pp. 164-170 (June 1986).

O.R. Mitchell and S.M. Lutton, "Segmentation and Classification of Targets in FLIR
Imagery," SPIE 155 pp. 83-90 (1978).

S. Cussons, "A Real-Time Operator for the Segmentation of Blobs in Imaging Sensors,"
Proc. IEE Electronic Image Processing Conference. 214 pp. 51-57 ().

Helen L. Anderson, Ruzena Bajcsy, and Max Mintz, "Adaptive Image Segmentation,"
MS-CIS-88-26, University of Pennsylvania (April 1988).

APA-512MX Area Parameter Accelerator User ManualOct 87.

H. Tropf, H. Geisselmann, and J.P. Foith, "Some Applications of the Fast Vision System
S.A.M.," Workshop on Industrial Applications of Machine Vision Conf. Record, pp. 73-79
IEEE Computer Society, (May 3-5, 1982).

R.A. Jarvis, "A Perspective on Range Finding Techniques for Computer Vision," IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-5(2) pp. 122-139
(March 1983).

9. Acknowledgments

This research was conducted at the General Robotics and Sensory Perception (GRASP) Labora- I
tory, University of Pennsylvania.

I
The authors are grateful to Vision Systems Ltd, Adelaide, Australia, for lending me the APA-
512 unit upon which this project is based. Professor Kwangyoen Wohn of the University of
Pennsylvania provided advice and comments. Dr Bob Brown, Chief of the CSIRO Division of
Manufacturing Technology, Melbourne Australia, made this visit to University of Pennsylvania 1
possible. i

pui

)

On the Stability of Robotic Systems with Random Communication
I

Rates*

H. Kobayashit X. Yun, R. P. Paul
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104-6389

Abs t rac t
I

This paper studies control problems of sampled data systems which are subject to random sample
rate variations and delays. Due to the rapid growth of the use of computers more and more systems
are controlled digitally. Complex systems such as space telerobotic systems require the integration
of a number of sub-systems a t different hierarchical levels. While many subsystems may run on a
single processor, some sub-systems require their own processor or processors. The sub-systems are
integrated into functioning systems through communications. Comunications between processes sharing
a single processor are also subject to random delays due to memory management and interrupt latency.
Communications between processors involve random delays due to network access and to data collisions.
Furthermore, all control processes invlove delays due to causal factors in measuring devices and to signal
processing.

Traditionally, sampling rates are chosen to meet the worst case communication delay. Such a strategy
is wasteful as the processors are then idle a great proportion of the time; sample rates are not as high
as possible resulting in poor performance or in the over specification of control processors; there is the
possibility of missing data no matter how low the sample rate is picked.

Randomly sampled systems have been studied since later 1950'9, however, results on this subject are
very limited and they are not applicable to practical systems. This paper studies asymptotical stability
with probability one for randomly sampled multi-dimensional linear systems. A sufficient condition for
the stability is obtained. This condition is so simple that it can be applied to practical systems. A design
procedure is also shown.

1 Introduction
Many complex systems today involve the integration of a number of different subsystems at various hierar-
chical levels. Examples of hierarchical subsystems are, for example, in the case of spacecraft:

Level 1 - Assignment of systems to tasks;
Level 2 - Assignment of subsystems t o task systems, such as the shutt le manipulator, one of more cameras, 1

a n astronaut o n EVA; I

*This material is based upon work supported by the National Science Foundation under Grant No. ECS-11879. Any
opinions, findings, conclusions or recommendations expressed in this publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

tDept. of Precision Eng., Meiji UNV., Japan. He is m e n t l y visiting at Dept. of Computer and Information Science, Univ. ,
of Penn.

ion

i hierar-

:amer as,

$79. Any
~ecessarily

Level 3 - Control of individual subsystems, cameras comprised of pan tilt, zoom, focus, feature tracking,
exception warning; or control of machine tools comprised of spindle, table, tool changer, gauge;

Level 4 - Control of elements, control of manipulator joints, end-effector force measurement, machine
tool spindle drive, elevator motor drive, submaring plane control.

These systems all comprise many components which may be ranked hierarchically. Many of the compo-
nents are now computer controlled and are integrated by means of digital busses or networks. The integration
of these components into functioning feedback systems, camera - force-sensor - manipulator roll sensor, pitch
sensor - main propulsion - planes, implies in addition to data communications, communication rates.

In the case of communication networks, the data rates of point to point communication busses are well
known. The rates at which a computer can respond to communication data interrupts requests add a variance
to the data rates. In the case of shared networks, such as Ethernet, data collisions add considerable variance
to the data rate frequently exceeding the data rate itself. However, these shared networks are very attractive
from both the reliability and flexibility standpoints.

Because of their flexibility in programming and speed in computing, digital computers are now regularly
employed as integral components of dynamic feedback control systems. They are easily programmed to
realize desired compensators. Due to the discrete nature of digital computers, variables in dynamic systems
are sampled and quantized before sending to the computers. The well established discrete time system theory
(e.g., [8]) provides methods to analyze the behavior of sampled data systems, based on the assumption that
the sampling rates are fixed and the same, and the sampling operations on different channels of the systems
are synchronized. If the sampling rates are fixed but different on different channels, known as multi-rate
sampling, the system analyses are simple if the sampling rates have integral ratios [6, 101.

Due to random delays in measurement devices, signal processing, interrupt latency, priority scheduling,
conditional branching, network communications, etc., sampling rates vary randomly in many systems, and
the system performance could be expected to be improved if a theory supporting random sampling rates
was used. Systems with random sampling processes are called randomly sampled systems. The behavior
of a randomly sampled system is, presumably, related to the statistical properties of the random sampling
processes as well as system parameters. Randomly sampled systems have been studied by Kalman [ll],
Leneman [16], Kushner and Tobias [15], Agniel and Jury [2], and others. One of the major motivations
for studying randomly sampled systems in late 1950's and early 1960's was the introduction of digital
computers in control systems. However as the speed of computers improved dramatically, time delays
caused by computers became practically negligible in simple single processor controlled systems compared
to other delays, and research on randomly sampled systems came to an end. Nowadays, development of
computer controlled systems has reached beyond the stage of single processor control. Many subsystems are
integrated into large systems. Furthermore, many complex dynamic systems impose demanding computation
requirement. For example, computation time becomes a bottleneck in the implementation of dynamic control
algorithms of multi-joint robot manipulators. Delay caused by computation and communication is no longer
a negligible factor.

Early researchers in the area of randomly sampled systems primarily considered stability conditions
of the systems. Their work is briefly summarized below. Kalman carried out a comprehensive study of
sampling systems [ll]. He classified sampling into six categories: conventional sampling, nonsynchronous
sampling, multiple-order sampling, multi-rate sampling, noninstantaneous sampling, and random sampling.
For randomly sampled systems, Kalman showed that if the second moment of the output of an autonomous
system is stable, the second moment of the output remains bounded when a bounded input is applied
to the system. Based on his state space method [13], Kalman [12] also discussed the regulator problem
and stability of a linear system described by independent random functions. This class of systems include
randomly sampled systems. Thus the stability conditions obtained for this class of systems are applicable
for randomly sampled systems. Kushner and Tobias [15] studied an autonomous linear system with linear
and nonlinear feedback. Using a stochastic Lyapunov function, criteria for stability with probability one

and s-th moment stability (s > 0) were obtained for scalar linear systems, and criteria for stability with
probability one and second moment stability were obtained for multi-dimensional linear systems. Agniel
and Jury [2] investigated asymptotic stability with probability one of a linear system with a saturating type
nonlinear component. A computational procedure was provided to determine the largest stability sector of
the nonlinearity for asymptotic stability with probability one. Using a stochastic Lyapunov function, Agniel
and Jury in another paper [I] gave a condition for the asymptotic stability with probability one and the
second moment asymptotic stability for single-input single-output multi-dimensional linear systems. They
also showed that if an autonomous system exhibits asymptotic stability with probability one, the system is
almost surely bounded input-bounded output. Leneman [16] studied a single-input single-output first order
linear system with feedback. He derived the second moment of the output for the cases with and without
input. The input is a stationary stochastic process independent of the sampling process. Consequently, a
condition for the second moment stability was given. Assuming the independence of the sampling times and
the signals, Dannenberg and Melsa 171 took the expectation of a linear system equation, obtaining a system
equation of expectation of the states and outputs. The first moment stability analysis is similar to that of
deterministic sampled-data systems. An example of a spacecraft control problem was given, in which it is
assumed that there is a probability of missing messages. The problem of random sampling of a random
signal was studied by Bergen [4] and Leneman [17]. Their focus was on deriving expressions of the spectral
density of a random signal after a random sampling.

This paper studies the stability of randomly sampled systems in relation to the random sampling pro-
cesses. Though Kalman [l l] and Kushner [15] have obtained necessary and sufficient conditions for the
stability in the second moment, it is not so easy to apply these conditions to practical systems. This paper
studies asymptotic stability with probability one and gives a necessary and sufficient condition for one-
dimensional systems and a sufficient condition for multi-dimensional systems. These conditions are easy to
verify for given sampling distributions and are thus applicable to practical systems.

In the next section, the asymptotical stability with probability one is defined. A sufficient condition
is given for multi-dimensional linear time-invariant randomly sampled systems which is also necessary for
one-dimensional systems. A design procedure todetermine feedback gains is obtained in Section 3. If we use
a nonlinear compensator such as a computed torque controller for a robotic control system, then we would
have a set of simple two-dimensional linear systems. In Section 4, the stability of such two-dimensional
systems is considered and the design prcedure is shown for a Bernoulli distribution, a uniform distribution
and a mixed uniform disptibution.

2 Stability
Consider following linear time-invariant control system. 1

where x is an n-dimensional state vector, u an r-dimensional control vector, and A and B are n x n and
n x r matrices, respectively. For this system, we apply a constant state feedback input

from t = t t to t = tk+~(= tk + Ak), where K is an r x n matrix. Then ~ (t ~ + ~) is given as follows. I
I

where
A k

@(Ak) = exp(AAk), and P(Ak) = 1 exp(Ar)drB.

3

with
piel
type
>r of
gniel
. the
rhey
:m is
)r der
hout
JY, a
3 and
stem
[at of
I it is
adorn
xtral

: pro-
)r the
paper
: one-
zsy to

dition
.ry for
we use
would
sional
sution

(1)

n and

Sampling interval Ak is assumed to be subject to some probability distribution function F(A) or distribu-
tion density function f (A) and Ai and Aj(i # j) are statistically independent of each other. For simplicity,
we write Eq. (3) as follows

Xk+l = r (A k) ~ k . (4)

In this paper, we use the followiilg matrix norm which is compatible with usual Euclid norm for vectors:

where I?* is the conjugate transformed matrix and u(r) denotes the maximum eigenvalues of the matrix r.
Note, however, that while the stability of the system (1) or (3) is invariant under a similarity transformation
of the state variables, the matrix norm depends on the transformation, namely in general

The stability of randomly sampled control system Eq. (4) is defined as follows.

Definition 1 (Stability) The randomly sampled date system Eq. (4) is asymptotically stable with proba-
bility one if

Prob[lim llxkll = 01 = 1
k-00

for any initial state xo.

Now we define the following notation:

a w l : Expectation of random variable w ,

v [w] : Variance of random variable w ,

and assume that

E [{ ~ o ~ (~ ~ ~ (A) I I ~ ~ ~ I < m.

Then a sufficient condition of the asymptotical stability is given in the next proposition.

Proposition 1 (Sufficient Condition) Randomly sampled control system (1) i s asymptotically stable with
probability one if there exists a non-singular matrix T such that

W e also have v
~rob[l(T"xtll < (I ~ - ~ x ~ (l e x p { k (E + r))] > 1 - s,

for any r > 0, where V = v[Io~(JIT-'I'(A)T~~)]

< proof > Assuming xo # 0 without loss of generality, from Eq. (4) we have

Then the proposition is easily proved by the statistical independence of Ai's and Thebyshev's inequality.
< end of proof >

We note that for one-dimensional systems the condition stated in the above proposition is necessary and
suficient for the aymsptotic stability with probability one [14]. If the sampling interval is constant, the
condition in Prop. 1 is also necessary for the asymptotic stability of multi-dimensional systems.

Now we define I

Y(A) = log(ll~-'r(A)TII), and g(A) = 1 7 (~) d ~ ,
0

(9)

then we have the following proposition. I

r
Proposition 2 I

i. If the sampling rate A i s subject to a Bernoulli distribution where A = a with probability p and A = ,O 1
with probability q = 1 - p, then the system is asymptotically stable with probability one, i f i

ii. If the sampling rate A is subject to a uniform distribution U[a,P], then the system is asymptotically stable
with probability one, i f

s(a) < s(P>

iii. If the sampling rate A is subject to U[a,P] with probability E and to U[lr,v] with probability 1 - a , then 1
the system is asymptotically stable with probability one, i f

I

The proof is straightforward, so we omit it here. 1 1

3 Design Procedure I

Next we discuss a design procedure of a feedback gain K and a matrix T in the following. Now, assume that
system

x (t) = A x (t) + B u (t) (10) I
is controllable, then it is well known that the discretized system 1

is also controllable for almost all sampling interval Ak [5] . Then we can assign poles {Xi, i = 1,2,. . . , n) to
system (11) if poles {A;) are symmetric with respect to the real axis. Here, we apply Hikita's pole assignment
algorithm[9] to the randomly sampled control systems. i

[Algorithm] 1
step (i) For given {Ai), find r-dimensional vectors ti, i = 1,2, . . . , n, which makes matrix

T(A) = _[vl : . - - : v,] non-singular. Vector v, 's are given as follows where @ = @(A) and
4 = 4(A).

if Xi is a real number, then
v; = (@ - Ai1")-14<i.

and
the

stable

, then

le that

(10)

if Xi and Xi+1 are conjugate complex numbers ai f jpi, then

v i = vli<i - V,i&+l, and vi+~ = Vli& + V2i<i+l,

where

Vli = { (@ - a i 1 ~) ~ + / 3 ~ 1 ~ } - ~ (@ - O~I,,)\E, and V2i = { (@ - a i ~ n) 2 + p ~ ~ n) - 1 / 3 i ~ . (14)

s t ep (ii) Feedback gain K is given as follows.

s tep (iv) Check the stability using Proposition 1 o r 2. If not stable, return step (i) and try
anoiher {Ai} and/or A.

It is easy to show that for this T(A) and K(A), we have

Hence we can use matrices T(A) and K(A) to calculate y(A) and g(A). In the next section, we use notations
7(Al A) and g(A, A) for 7(A) and ~J(A), respectively, to show the dependence of the functions on A clearly.

4 Two Dimensional Systems

In this section, we consider control of robot manipulators. We view a robot manipulator as a component
of a large system, such as a space station. The robot controller communicates with the other components
of the system to achieve cooperative actions. Communication between components is considered to have a
longer delay than that within a component. We assume that robot controller has an inner feedback loop
which compensates the nonlinearity of manipulator dynamics and operates independently of the other part
of the system. The robot dynamic system together with the inner feedback loop becomes a linear system. It
is feasible to treat the robot manipulator subsystem as a linear system when integrating and communicating
with the other components. For example, if we use the nonlinear feedback controller developed in [3], we
have n (=DOF of manipulator) decoupled two-dimensional linear systems

where x(t) = (e i (t) , ti(t)) is the error vector for the i-th component of outputs and u (t) is the corresponding
input for this component of outputs. If the task is specified in joint space (the joint space control), the i-th
component of output is simply the displacement of the i-th joint and the error vector is composed of the
joint position error and joint velocity error.

We now study the asymptotical stability of this system under the random sampling rate. The corre-
sponding discrete time system is easily obtained for a sampling interval A as follows.

We apply the algorithm given above to this system directly. Then we have the following proposition.

Figure 1: function y(6, l) and g(6, l)

I

Proposition 3 (PD Controller) Assume that {Xi} = {A1,X2} where X1 # Xz, then we have I
I

and
7(A, A) = 7(6, I),

where 0 = A/A.

The proof is obtained by direct calculation. This proposition implies that the function y(A, A) is the
same as the function r (B, l) if we use K(A) = (kP/A2, k , / ~) instead of K (l) = (kp, k,,). Therefore we have
g(A, A) = Ag(B,l) for the same K(A). This fact is very useful to design the feedback gain. This will be
shown by examples.

Fig. 1 shows 7(0,1) and g(B, 1) for X I = 0.4 and X z = 0.7, where we have

-0.759 -0.934
K (l) = -(0.18,0.81), and T(l) = [0.651 0.333 1 '

and ti was used to make the norm of column vectors of T matrix be equal to one.

Example 1 (Bernoulli Distribution) Let's assume that the sampling interval is subject to Bernoulli dis-
tribution, i.e. A = a with probability p and A = P with probalilaty q, where a < P, 0 5 p 5 1, and q = 1 - p .
The sufficient stability condition is given as follows. 1

Note that if^ > P/1.96(= A*) then the system is asymptotically stable for any a because y(B, 1) < 0 fafor
any 0 5 1.96. But we are generally interested in the smallest A because it gives us the fastest response.

Fig. 1 shows that the function 7(8,1) reaches the minimum value -0.417 at 0 = 1.35. Let B* be the poini j
which satisfies the following equation. I

y(B*, 1) = x 0.417.
q I

s the
have

ill be

li dis-
1 - p .

0 for

point

Then it is clear that A must be greater than A,;,(= BIB*) for Eq. (19).
A suitable value of A can be found from the range ~ , i , < A < A* by a trial-and-error method using

Fig. 1 or Table 1 which gives pairs of { e l , 82) such that y(O1,l) = y(B2,l) .

(i) calcurate a = - (Q / P) ~ (P / A , 1).

(ii) Find { e l , 02} such that y(O1, 1) = ~ (6 2 , 1) 5 a using Fig. 1 or Table 1.

(iii) Check 81 < a / b < 82. If so, calculate K(A) . If not so, go back to step (i) with another A.

For ezample, if a = 10 msec, ,8 = 30 msec, and p = 0.75, then O* is about 3.64 and ~ , i , = 8.24 msec,
while i\' = 15.3 msec. If we select A = 11 msec then : 7 (p / ~ , 1) = -0.278 and a / 6 = 0.91. Therefore
we can try the 6-th row of Table. 1 , and we have 81 = 0.84 < 0.91 < 82 = 1.68. Hence the system is
asymptotically stable for K = -(1488,73.64).

Example 2 (U n i f o r m Dis t r ibu t ion) Now assume that A is subject to a uniform distribution U [o , P] .
The sufficient condition of the asymptoiical stability with probability one is given as follows:

The function g (d , 1) has its minimum value at 8 = 1.96. Now we define A* = P119.6 and A,;, = p/2.89.
I ~ A 2 A*, then the above suficient condition is satisfied for any a. Therefore the system is asymptotically
stable if A 2 A*. On the other hand, if A < A,,,, then the above condition is not satisfied for any a.

Table 1 also gives pairs of {03,84) and the ratio 03/04 such that g(83, l) = g(84, l) . If there is a pair
{03,04) such that a /@ > 03/d4, then the system is asymptotically stable for the K (A) where A = a/&.
Therefor we can determine a easily using this table as follows:

(i) Calculate a = (YIP.
(ii) Find a pair (83, 84) in the Table 1 such thai a > 63/84.

(i i) Calculate A = a183 and K (A) .

Now assume that a = 10msec and p = 30msec, then we have i\' = 15.3 msec, Amin = 10.38 msec, and
a/P = 113 > 0.273 in the Table 1. Therefore we can use * / A = 0.75 and A = 13.33msec. Hence the system
is asymptotically stable with K = -(1065,62.31) if P < 36.7 msec. Table 2 shows the I A E (Integration of
Absolute value of the Error) for fifty random streams with the initial condition x (0) = (1.0,0)*. The table
shows that when p 2 40 msec, the S T D (STanderd Deviation) and the maximum values of I A E for the
velocity error e i (t) become very large compared to the cases where P 5 35 msec. This means that the system
is still stable but there is a large vibration in the response for A 2 40 rnsec. It is interesting since A selected
above assures the asymptotically stability for P < 36.7 msec.

Example 3 (Mixed U n i f o r m Dis t r ibu t ion) Nett we assume that A is subject to a uniform distribution
U [a , p] with probability E and to Ub, V] with probability 1 - E . The suficient condition is given as follows:

Though the selection of A becomes a little difficult, we can use the following procedure to estimate an
appropriate A:

(i) Dejine & = (a + P)/2.0, p = (p + v)/2.0, p = c, and q = 1 - p.

8

Figure 2: Simulations for Bernoulli Distribution, Uniform Distribution and Mixed Uniform Distribution

(ii) Determine A using the procedure in Exam. 1 for cr = ti and /3 = p.
(iii) Check the condition. If satisfied, calculate K (A) . If not, try another value for A.

Now assume that A is subject to U [5 msec, 15 msec] with probability E = 0.75 and to U[20 msec, 40 msec]
with probability 0.25. Then we have a = lomsec, p = 30msec, p = 0.75, and q = 0.25. If we use A = l lmsec
from the result of Exam. 1, then we have E = -0.04 < 0. Therefore the system is asymptotically stable for
the same K = -(1488,73.64).

Fig. 2 shows the simulations of t (t) for three cases discussed above where x (0) = (1.0, o) ~ .
It is easily shown that even if we use a PID controller

zk+l = zk + [l : O]xk, and uk = Klzk + K2xk, (20)

or a PD controller with one step delay

instead of the PD controller given in Prop. 3, we have the similar proposition . Therefore we can determine
A easily.

5 Conclusions

In this paper, the stability of randomly sampled linear control systems was discussed and the following results
were obtained.

1. A sufficient condition for the asymptotical stability in a norm with probability one was obtained for
'

multi-dimensional systems.
2. For a simple two-dimensional system with PD controllers, a design procedure was shown which was

easily applicable to systems with PID controllers or PD controllers with one step delay.
I
!

The results given in this paper are also easily applicable to the robotic control systems where computed
torque controllers or PD controllers with a feedforward term are used a t the random sampling rate. The
results will be shown in the near future [14].

	A Distributed System for Robot Manipulator Control, NSF Grant ECS-11879 Fourth Report
	Recommended Citation

	A Distributed System for Robot Manipulator Control, NSF Grant ECS-11879 Fourth Report
	Abstract
	Comments
	Author(s)

	tmp.1200517000.pdf.gp6GA

