
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

4-2011

A Semantic Framework for Mode Change
Protocols
Linh T.X. Phan
University of Pennsylvania, linhphan@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Engineering Commons

17th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Chicago, April 2011.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/458
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Linh T.X. Phan, Insup Lee, and Oleg Sokolsky, "A Semantic Framework for Mode Change Protocols", 17th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS 2011) , 91-100. April 2011. http://dx.doi.org/10.1109/RTAS.2011.17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76393593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F458&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F458&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F458&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F458&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_papers%2F458&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/RTAS.2011.17
http://repository.upenn.edu/cis_papers/458
mailto:libraryrepository@pobox.upenn.edu

A Semantic Framework for Mode Change Protocols

Abstract
We present a unified framework for the specification and analysis of mode-change protocols used in multi-
mode realtime systems. We propose a highly expressive formalism, called MCP, to model the system behavior
during mode transitions, and show how various existing mode change protocols can be described as MCPs.
The explicit representation of the MCP model provides a means to analyze the system state during a mode
transition as well as during an intra-mode execution. We introduce the concept of feasibility with respect to
the MCP model, and give a decidable method for checking the feasibility of a MCP for a given multi-mode
system. The formalization of mode change behaviors using the MCP model allows a range of mode change
protocols to be modeled, evaluated, and optimized to the specific operations and performance requirements
of the system. Besides feasibility analysis, it is also possible to analyze other system behaviors (e.g., delay
between modes, buffer backlog) using automata verification techniques. Our framework can also be used to
describe mode change semantics of multi-mode systems whose modes/transitions have different criticality
levels, or of systems composed of multiple multi-mode components that require different mode change
protocols.

Disciplines
Computer Engineering | Engineering

Comments
17th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Chicago, April
2011.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/458

http://repository.upenn.edu/cis_papers/458?utm_source=repository.upenn.edu%2Fcis_papers%2F458&utm_medium=PDF&utm_campaign=PDFCoverPages

A Semantic Framework for Mode Change Protocols
Linh T.X. Phan Insup Lee Oleg Sokolsky

Department of Computer and Information Sciences, University of Pennsylvania
Email: {linhphan, lee, sokolsky}@cis.upenn.edu

Abstract—We present a unified framework for the specification
and analysis of mode-change protocols used in multi-mode real-
time systems. We propose a highly expressive formalism, called
MCP, to model the system behavior during mode transitions,
and show how various existing mode change protocols can be
described as MCPs. The explicit representation of the MCP
model provides a means to analyze the system state during a
mode transition as well as during an intra-mode execution. We
introduce the concept of feasibility with respect to the MCP
model, and give a decidable method for checking the feasibility of
a MCP for a given multi-mode system. The formalization of mode
change behaviors using the MCP model allows a range of mode
change protocols to be modeled, evaluated, and optimized to the
specific operations and performance requirements of the system.
Besides feasibility analysis, it is also possible to analyze other
system behaviors (e.g., delay between modes, buffer backlog)
using automata verification techniques. Our framework can
also be used to describe mode change semantics of multi-mode
systems whose modes/transitions have different criticality levels,
or of systems composed of multiple multi-mode components that
require different mode change protocols.

I. INTRODUCTION
A wide spectrum of real-time embedded systems, ranging

from conventional control systems to modern smart devices,
operate in multiple modes that correspond to different mutually
exclusive phases of operation and control. An aircraft, for
instance, operates at one of the four modes: take-off, normal
cruise, emergency, and landing. A smartphone may run in the
voice-processing, video-decoding, GPS, or idle mode. Each
such mode may be characterized by a different set of tasks,
different data arrival rates, a different resource availability, and
a different scheduling policy. Mode changes may be both time-
triggered (e.g., servicing time-triggered interrupts) and event-
triggered (e.g., an incoming voice call). Such a triggering
condition is called a mode change request.
A change in the operating mode of a multi-mode system

introduces a transient stage where the system needs to process
both the pending events (data items) in the buffers of the
current mode and new incoming events of the new mode. This
co-execution of both types of events may lead to a temporal
overload that causes some tasks to miss their deadlines.
Simultaneously, the system may need to perform transitional
activities (e.g., saving state variables to maintain functional
correctness), which adds delay to the mode transition. Hence,
appropriate mechanisms for handling transient stages –
otherwise known as mode change protocols – are crucial to
the overall performance of the system.

Related work: Several techniques have been proposed to
extend models and timing analysis techniques from the real-
time systems literature to accommodate multimodal behaviors.

For example, the frameworks presented in [4], [5] allow certain
tasks to intentionally change their execution periods, which is
a type of mode change. The variable rate execution (VRE) [8]
task model allows variable execution time and period, which
may change at any time, and allows tasks to enter or leave the
system at arbitrary times. Different mode change protocols
have been studied (see e.g., [7], [13], [17], [18], [20]) and
have been classified in [16]. Techniques developed in these
papers ensure that all deadlines are met in each of the modes
and during the mode transitions. They can be categorized into
synchronous, where new mode tasks are released only when
the current mode tasks have all completed their last activations,
and asynchronous, where a combination of current and new
mode tasks execute during the transition [16]. Asynchronous
protocols typically involve discarding unfinished tasks of the
current mode or applying an offset to the initial activations
of the new mode tasks. The feasibility analysis of the overall
system can then be reduced to computing the minimum offsets
for the new tasks (e.g., [9], [18]).
These existing mode change protocols exhibit many re-

strictions, however. First, they assume that during a mode
transition, pending events in the buffers of the tasks that are not
active in the new mode (Mnew) must all be finished/discarded
before leaving the new mode, thus allowing no cascading
pending events. In streaming multimedia systems where data
loss is not desirable, these protocols will enforce the pending
encoded video data to be completed in Mnew. Since video de-
coding tasks are computationally expensive, this enforcement
will effectively lead to (i) a very large offset for the tasks in
Mnew (to ensure schedulability), or (ii) a long delay before
the system can leave Mnew. The former (latter) is intolerable
if Mnew (the mode following Mnew) contains a safety-critical
task. On the other hand, delaying the output video stream is
usually acceptable; hence, a better alternative for this system
is to delay the processing of the pending events in Mnew (i.e.,
preserve the buffer state) until the system moves back to a
video-decoding mode.
Second, these protocols are based on an analysis that

considers each transition in isolation and considers only the
active tasks in the two modes of the transition. Thus, they
ignore the timing constraints and the buffer states when a
mode change request occurs, thereby assuming the worst-case
behavior. Consider for instance a scenario where the system
changes from a mode M to a mode M′ if an input buffer
B contains no more than 2 events (“bl(B) ≤ 2”). Suppose
further that the maximum backlog of B when the system is
at M is 100 and the task that processes the events in B is not
active in M′. In this case, any analysis that does not consider
the constraint “bl(B) ≤ 2” but instead assumes “bl(B) = 100”

when the mode transition occurs will be overly pessimistic. An
analysis that neglects timing constraints associated with the
transitions/modes will also experience similar accuracy loss.
Third, all the proposed techniques assume a single mode

change protocol for the entire system. As we will see in
Section VII, this is often too restrictive for systems where
different modes exhibit different criticality levels that need
different handling methods. Further, these protocols also lack
expressiveness because they cannot be used to describe the
mode change behavior of a system that is composed of
multiple subsystems, with each employing a different protocol.
Currently, none of the existing frameworks supports the com-
bination of different transition-based mode change protocols
and composition of different mode change protocols.
Finally, existing feasibility analysis techniques are protocol-

dependent and assume simplistic multi-mode models. These
protocols are also often given in a semi-formal description
style. The lack of formal semantics and expressiveness restricts
their utility and makes their evaluation challenging.
Semantics of multi-mode systems has also been explored

for the mode-automata model used in dataflow synchronous
languages (e.g., Lustre programs) [11], [19]. However, their
focus is on the functional correctness of the programs instead
of timing and resource aspects. [3] presented a mode change
semantics for AADL models, but this semantics is specific
to the AADL mode change protocol, which is restrictive as
it requires all threads to be synchronized when moving to a
new mode. Timed automata extended with tasks [2] can also
be used for checking schedulability of systems in which tasks
may change during run time. However, these models assume a
constant processor availability and do not consider the effects
of mode changes. They too do not provide a means to handle
system overload during mode transitions. [12] discussed the
general meaning of modes and mode changes in uniprocessor
systems, which align with our notions of modes and mode
changes; however, no concrete semantics for mode change
protocols was given.

Our contributions: In this paper, we propose a semantic
framework for the formal modeling and analysis of multi-mode
protocols that overcomes the above drawbacks of existing
techniques. We present a model for mode change protocols
(denoted in this work as MCP) that is highly expressive and
capable of capturing various realistic mode change behaviors.
Each MCP model is a DAG-structured finite state automaton
where each node captures the actions that must be performed
by the system in an intermediate state during a mode transition.
Each edge specifies a buffer update and a timing/buffer con-
dition between two intermediate transitional states. We show
how the MCP model can be used to describe several existing
mode change protocols, as well as protocols that cannot be
expressed by existing techniques such as (i) preempting a task
whose deadline is not stringent but data loss is undesirable
(e.g., in multimedia applications); (ii) discarding a non-critical
task whose stale data (previous data values) is no longer useful
in the current system state (e.g., weather information data in
the emergency state of automotive applications), (iii) restarting
a partially executed task to minimize transition delay required

in saving state variables (e.g., when moving to an emergency
mode) while allowing the task to be executed at some point
later, (iv) delaying new task activations if the existing tasks
in the current mode are more critical, and (v) performing a
mixture of the above depending on the current state of the
buffers.
The MCP model is designed for general mixed time- and

event-triggered multi-mode systems that process complex
event/data streams (captured by arrival functions [6]) and
general resources (captured by service functions [6]). Given a
multi-mode system, modeled as a multi-mode automaton, and
its associated MCPs, we describe the precise semantics of the
system during an intra-mode and an inter-mode execution.
With this semantics, we can now reason about the system
state (e.g., the buffer state, the maximum mode change delay)
during both normal execution at a mode and a transient mode
transition stage. We define the notion of feasibility with
respect to the MCP model and give a decidable method for
checking if a (set of) mode change protocol(s) is feasible for
a given multi-mode automaton. We then illustrate the utility
of our framework using an adaptive cruise control system.
Organization of the paper: The next section introduces the
basic concepts and the multi-mode automata model for multi-
mode systems. Section III describes the behaviors of different
elements of a system during a mode transition, and presents
the MCP model that formalizes such mode change behaviors.
Section IV presents a technique for modeling existing mode
change protocols using MCP. The formal semantics of MCP
and of a multi-mode automaton associated with an MCP is
given in Section V, followed by a feasibility analysis technique
in Section VI. Finally, we present in Section VII an illustrating
example that showcases some of the benefits of our semantic
framework before concluding the paper.

II. SYSTEM DESCRIPTION AND BASIC MODELS

Tasks and input events. The system consists of a finite set of
tasks, each of which processes an input event stream. Each task
has a finite input FIFO buffer that stores the incoming events
from the stream. Whenever an event arrives at the buffer of a
task, an instance (a job) of the task is released to process the
event. Events in the same buffer are processed sequentially
in the order of their arrivals. Each task T is characterized
by a tuple T =

(
B,E,D,α,π

)
, where B, E , D, α and π are

the input buffer, the worst-case execution demand, the relative
deadline, the arrival function of the task, and the priority,
respectively. The priority of a task is used only when it is
scheduled with other tasks in the system under a Fixed Priority
(FP) scheduling policy; it is set to 0, otherwise. Note that, the
smaller π is, the higher priority the task has. Fig. 1 shows a
task and its parameters.

T

B
input events

task

output events

T = (B, E, D, α, π)

buffer

Fig. 1. A task and its parameters.

The arrival function α of T consists of an upper arrival
function αu(Δ) and a lower arrival function αl(Δ), which
specify the maximum and minimum number of events that can
arrive at the input buffer B over any time interval of length Δ,
respectively, for all Δ∈ N [6]. This arrival function α captures
all the acceptable arrival patterns of the input events of T ,
which are also the release patterns of the jobs of T . Each
pattern is abstracted as a sequence of non-negative integers
A = k1k2 · · ·km, where ki is the number of events (jobs) that
arrive (are released) over the unit interval (i−1, i], such that

∀ 1≤ i≤ j ≤ m : αl(j− i+1) ≤
j∑

h=i
kh ≤ αu(j− i+1).

In this case, we say A is bounded by α, written as A |= α. One
can verify that A |= α iff A′ |= α where A′ = km km−1 · · · k1.
The processing requirement of an event in the buffer of

T is captured by the job that processes the event, given by
J = (e,d), where e is the remaining execution time (RET),
and d is the elapse time to deadline (ETD), i.e., the duration
from the current time to the job’s absolute deadline. A new
input event of T is characterized by J = (E,D). In other
words, one can view the buffer of T as a job waiting queue
that contains unfinished jobs of T , which will be executed
(sequentially in their release orders) when T is active. We
assume that E , D, αu(Δ), αl(Δ), and π are finite non-negative
integer numbers for all Δ∈ N. Further, B has a finite capacity,
denoted by size(B).

Resource. The resource availability of a processing element
(PE) is modeled by a service function β = (βu,βl), where
βu(Δ) and βl(Δ) specify the maximum and minimum number
of execution units (e.g., processor cycles) that can be provided
by the PE over any time interval of length Δ. Service patterns
are defined in the same manner as arrival patterns. In
this paper, all jobs in a multi-mode system are executed
(sequentially) on a single PE.

Multi-mode automata. The behavior of a multi-mode system
is modeled by a multi-mode automaton (MMA), which is a
finite state machine whose states represent operating modes
and transitions represent mode changes. Each state of the
automaton specifies the set of tasks that are active, the schedul-
ing policy, and the available resource when the system is
executing at the corresponding mode. The guard associated
with a transition specifies a mode change request (MCR). The
MMA model resembles the one in [15], except that, it has a
resource supply associated with the states and its mode change
semantics can be given by any general protocol modeled by
the MCP model (introduced in the coming section).
Let INT be the set of intervals [k,k′] with 0 ≤ k ≤ k′ and

k,k′ ∈ N. By abuse of notation, we use [k,∞] to denote the
right open interval [k,+∞). We denote by bl(B) the backlog
of B. The model is formally defined as follows.
An MMA is a tuple A = (T ,B,M,Min, Inv,Φ,Act,R)

where
• T is a finite set of tasks of the system.
• B is a finite set of input buffers of the system.

• M is a finite set of modes.
• Min ∈M is the initial mode.
• Inv :M → INT is an invariant function that assigns to
each mode in M an interval [Il, Iu], where Il is the
minimum amount of time that the system must stay in
the mode and Iu is the maximum amount of time that the
system may stay in the mode.

• Φ is the set of constraints of the form bl(B)#c where
∈

{
<,>,≤,≥

}
and B ∈ B.

• Act is a set of signals that trigger the mode changes.
• R⊆M×Act×Φ× INT×M is a transition relation.

Each mode M ∈M has the form 〈τ,β,SC〉 where τ⊆T is the
set of active tasks, β is the service function of the available
resource, and SC is the scheduling policy at M. The buffer of
an active task in M is also said to be active in M.
Each transition in R is of the form (M,a,ϕ, I,M′) where

M and M′ are the origin and destination modes, a is a signal
that triggers the transition, ϕ is a guard on the backlogs of the
buffers, and I is the interval (relative to the instant the system
enters M) during which the transition can be enabled. MMA
transitions are non-deterministic. Further, if an outgoing
transition from a mode is enabled, the system will take the
transition as soon as it satisfies the delay imposed by the
mode change protocol associated with the MMA.

Example of MMA. Fig. 2 shows the MMA of a multi-mode
system consisting of four tasks T1,T2,T ′

2 and T3 that process
input events from the buffers B1,B2 and B3, where T1 =(
B1,2,5,α1,1

)
, T2 =

(
B2,3,7,α2,2

)
, T ′

2 =
(
B2,3,14,α2,2

)
and T3 =

(
B3,4,20,α3,0

)
. Here, T ′

2 is a modified task of T2.

M2 M3

[5, 35][10, 30]
a

a

bl(B2) ≥ 15 ∧ bl(B3) ≤ 2

bl(B2)≥ 15

M1

[0, 30]

time guard
external event

buffer guard

M1 = 〈{T1 , T2 }, β1, FP 〉
M2 = 〈{T1 , T2 }, β2, FP 〉
M3 = 〈{T1 , T2 , T3}, β3, EDF〉

′

′

[5, 30]

invariant

Fig. 2. A multi-mode automaton.

As shown in the figure, the system is initially at mode M1
where T1 and T2 are active. The processor initially offers a
service function β1, which is shared between T1 and T2 under
FP with T1 having higher priority than T2. While the system
is at M1, if the input buffer B2 contains more than 15 events
(denoted by “bl(B2) ≥ 15”), the system will move to mode
M2. At M2, the task T2 is modified to become T ′

2 which has
a deadline doubled that of T2. At the same time, the service
function is increased to β2. The unchanged task T1 and the
modified task T ′

2 are again scheduled under FP with the same
priority order. The system will stay in M2 for at least 10 and
at most 30 time units before it moves back to M1. During this
duration, however, if the signal a arrives, the system moves to
M3 where the processor offers a service function β3. AtM3, the
task T3 becomes active and it will be scheduled together with
T ′
1 and T2 under EDF. The rest can be explained accordingly.

III. MODE CHANGE PROTOCOL (MCP) MODEL

A mode change protocol describes the execution behavior
of a multi-mode system during a transition from one mode
to another, i.e., from the instant a transition is enabled until
the instant all the new attributes associated with the desti-
nation mode are in effect. Different transitions of a system
may require different protocols. For example, one can use
a protocol that delays the arrival of the input events of a
new task when an aircraft transits from the take-off mode
to the cruise mode; however, this protocol is undesirable for
a transition from the cruise mode to the emergency mode,
which requires the emergency jobs to be released and executed
as soon as possible. In general, the desirable mode change
behaviors vary depending on the characteristics of the system.
We identify below a spectrum of mode change behaviors that
will be formalized by the MCP model.

A. System behaviors enforced by mode change protocols
Pending events in the buffers: There are generally three
ways to handle the pending events in an active buffer in the
origin mode: (a) all pending events remain unchanged (i.e., the
buffer state is preserved); (b) a subset of the pending events are
discarded; and (c) a subset of the pending events are transfered
(migrated) to another buffer. The subset of pending events in
(b) and (c) is determined based on the designer’s objective,
which often falls into the following categories for some k≥ 1:

• Oldest. The set of k oldest events (arrived earliest).
• Newest. The set of k newest events (arrived latest).
• Highest priority. The set of k events with highest priorities
with respect to (w.r.t.) a scheduling policy.

• Lowest priority. The set of k events with lowest priorities
w.r.t. a scheduling policy.

• Random. The set of k randomly chosen events.
Besides, the execution demands and deadlines of these
pending events can be either preserved or assigned to the
new parameters of the associated tasks in the destination
mode. Thus, their timing parameters upon a mode change
depend on the mode at which they arrive, in the former case,
and on the mode at which they are processed, in the latter case.
The partially processed events: These events are either
partially processed by a preempted job or currently being
processed by an executing job. These events can be (i)
continued to be processed until completion, (ii) saved and
continued at some point later, (iii) discarded, or (iv) reset
(their timing state) and re-queued in their input buffers (e.g.,
in systems that allow job rescheduling).
Active tasks during the transition interval: The set of
tasks that are active during a mode transition is often a
subset of the active tasks in the origin and destination mode,
possibly with modified timing parameters.
Scheduling policy: The scheduling policy used during a
mode transition is either the scheduling policy of the origin
mode or of the destination mode.
Triggering conditions of the above actions: The conditions
during which the above behaviors are enforced can be
specified as a constraint on a timing delay, on the RET of

a partially processed event, or on the backlog of an input
buffer. These must be specified until the destination mode is
successfully entered.
Mode change deadline: The behavior of a mode change
protocol specified above must guarantee that the transition
completes within a bounded amount of time called mode
change deadline. A protocol is usually considered to be better
than another one if it satisfies a smaller mode change deadline.
In the following section, we present the theory of MCP

model, which formalizes the above mode change behaviors.

B. The mode change protocol (MCP) model
An MCP is a DAG-structured finite automaton, where each

run of the automaton explicitly captures the behavior imposed
on the system during a mode transition. Each node along a
run of the MCP specifies the specific tasks that are executed
at an intermediate system state during the mode transition.
For example, to force the pending events to be processed
during a mode transition, we include the tasks associated with
these events into the active task set of the MCP nodes, while
modifying the events’ arrival functions to allow/disallow new
event arrivals. The guard associated with an edge between two
nodes of an MCP gives the condition upon which the system
moves from one intermediate state (source node) to the next
intermediate state (destination node). The buffer update along
an edge specifies a specific way of handling the pending
events and the partially executed events (as outlined earlier).
For instance, resetting the RET of a partially processed event
to zero will discard the event, whereas resetting the RET to
its initial value will restart the event. Similarly, resetting a
buffer content to an empty buffer is equivalent to discarding
all the pending and partially executed events in the buffer.
Such buffer updates are done via buffer valuations, which are
described below.
Buffer valuation. By abuse of notation, we denote by variable
B the content of the physical buffer B. Each value of B
corresponds to a state of the buffer. A buffer valuation is a
function V which assigns to each buffer B a vector of size
size(B)+1, where size(B) is the capacity of the buffer.1 The ith
element of V (B), i.e., V (B)[i], contains the timing information
of the ith oldest event (evi) currently in the buffer. It is given
as a job Ji = (ei,di) that is released when evi arrives (recall
that ei is the RET and di is the ETD). An empty slot in B is
characterized by an empty job J = (0,0). Note that a real job
has (0,0) as its parameters only when it finishes executing, in
which case it can be removed from the buffer (thereby leaving
an empty slot in the buffer). The backlog of a buffer B under
a valuation V is the number of non-empty jobs in V (B), i.e.,

bl(B) def= |V (B)| =
∑{

1 | 1 ≤ i ≤ size(B)+1 ∧ Ji �= (0,0)
}

where V (B) = [J1, . . . ,Jsize(B)+1]. We say V satisfies a buffer
constraint “bl(B)#c”, written as V |=

(
bl(B)#c

)
, iff |V (B)|#c.

Definition 1 (MCP Model). A mode change protocol P is
a DAG-structured finite automaton P = (MP ,E ,Morig,Mdest)
whereMP is the set of state (nodes), E is the set of transitions
1The additional slot will be used to check buffer overflows.

(edges), Morig is the initial state (unique root) and Mdest is the
final state (unique sink). Each node v of P has the same syntax
and semantics as that of an MMA mode. Each edge ρ∈E from
v to v′ is characterized by ρ = 〈v, δ, ϕ, Z, v′〉 where:

• δ ∈ INT is the interval during which ρ can be taken.
• ϕ is the guard associated with ρ, which is specified as
a conjunction of atomic forms bl(B)#c and eJ #c where
∈

{
<,>,≤,≥

}
, B is an active buffer in v or in v′, and

J = (eJ,dJ) is a job in some active buffer in v or in v′.
• Z is the reset valuation of the buffers, i.e., Z(B) gives the
new state of B when the system enters v′ if B appears in
Z, and Z(B) gives the current state of B otherwise.

All edges in P are instantaneous. Further, for each v ∈MP ,
its service function and its scheduling policy must be the same
as that of Morig or that of Mdest. Additionally, for every task T
active in v, there is a task T ′ active in Morig or in Mdest with
the same input buffer that has a larger upper arrival function
and a larger worst case execution demand than T does. The
last condition is to ensure that the protocol does not introduce
extra workload during a mode transition.
Composition of MCP models. Consider a system that
is composed of two communicating (via common signals)
MMA models A1 and A2, where each Ai uses an MCP
Pi = (Mi,Ei,Mi

orig,Mi
dest). The mode change semantics of

the system can be described by a protocol P that is the
composition of P1 and P2, given by P = (MP ,E ,Morig,Mdest)
where MP = M1×M2, E ⊆ E1×E2, Morig = (M1

orig,M2
orig)

and Mdest = (M1
dest,M2

dest). The transition relation E can be
computed in the same manner as the composition of twoMMA
described in [15]. It can be easily verified that the MCP model
is closed under composition.
As demonstrated in the next section, the MCP model

formalizes the common mode change protocols in literature.
In addition, it can also describe more general protocols
beyond the existing ones. For instance, protocols that allow
behaviors such as cascading pending events, discarding
some events while delaying or executing others, dynamically
adjusting the execution priorities of the jobs based on the
buffer state. With MCP, we can express mode-dependent and
transition-dependent protocols for systems that distinguish
between different criticality levels of modes/transitions by
simply associating with each multi-mode transition an MCP
that is best suited for the transition. Additionally, one can
model and analyze the mode change semantics of a system
comprising multiple multi-mode components that employ
different mode change protocols via MCP composition.

Instance of MCP with respect to an MMA. Observe that
MCP is defined in a generic manner, i.e., independent of the
multi-mode automaton. The exact system behaviors that are
enforced by an MCP depends on the specific transition in the
MMA that employs the MCP. Suppose σ = (M,a,ϕ, I,M′) is
a transition of an MMA A and P = (MP ,E ,Morig,Mdest) is
an MCP that is associated with σ. The protocol obtained by
instantiating Morig to M and Mdest to M′ is called an instance
of P w.r.t. σ, written as Pσ. Thus, the behavior of A during
the transitional period when A moves from M to M′ via σ

is exactly the behavior of Pσ. This concept will be clear in
the next section where we demonstrate examples of MCP that
model common mode change protocols and their behaviors
when applied to a specific transition of an MMA. The precise
semantics of MCP w.r.t. to an MMA will be detailed in
Section V.

IV. MODELING COMMON MODE CHANGE PROTOCOLS
We first state some notations that are necessary to model

common mode change protocols. The example transition be-
low will be used to illustrate various concepts throughout this
section.

Example 1 (A running example). Consider a multi-mode
transition σ from M = (τ,β,FP) to M′ = (τ′,β′,EDF)
with τ =

{
T1, T2, T3

}
and τ′ =

{
T ′
1 , T3, T4

}
, where T1 =(

B1,2,5,α1,1
)
, T ′

1 =
(
B1,2,6,α′

1,1
)
, T2 =

(
B2,3,7,α2,2

)
,

T3 =
(
B3,4,20,α3,3

)
and T4 =

(
B4,3,10,α4,0

)
.

Task classification. Let Morig = 〈τorig, βorig, SCorig 〉 and
Mdest = 〈τdest, βdest, SCdest 〉 be the root node and sink node
of an MCP. Denote BT and BT ′ as the buffers of T and T ′,
respectively. The tasks that are active in these nodes can be
classified into five disjoint sets as follows.

• τAA = τorig ∩ τdest: the set of tasks that are active in both
Morig and Mdest.

• τAC =
{
T ∈ τorig | ∃T ′ ∈ τdest : T ′ �= T ∧ BT ′ = BT

}
:

the set of tasks that are active in Morig, which will be
modified when the system moves to Mdest.

• τCA =
{
T ′ ∈ τdest | ∃T ∈ τorig : T ′ �= T ∧ BT ′ = BT

}
:

the set of tasks that are active in Mdest, which are
modifications of some tasks that were active in Morig.

• τAI =
{
T ∈ τorig | ∀T ′ ∈ τdest : BT ′ �= BT

}
: the set of

tasks that are active in Morig and inactive in Mdest.
• τIA =

{
T ′ ∈ τdest | ∀T ∈ τorig : BT ′ �= BT

}
: the set of

tasks that are active in Mdest and inactive in Morig.
Thus, τorig = τAA ∪ τAC ∪ τAI and τdest = τAA ∪ τCA ∪ τIA. The
tasks in τAA (resp. τAI, τIA) are also known as unchanged (resp.
old, new) tasks. The tasks in τAC and τCA are called changed
tasks. Note that each task T ′ in τCA is the modification of a
task T in τAC when the system moves to Mdest (i.e., both T,T ′

share the same buffer).

Example 2. Suppose τorig = τ and τdest = τ′ where τ and τ′ are
defined in Example 1. Observe that T ′

1 and T1 share the same
buffer B1 but have different timing parameters. Thus, τAA =
{T3}, τAC = {T1}, τCA = {T ′

1}, τAI = {T2}, and τIA = {T4}.
Notations. Let τ be a set of tasks. Then, Bτ denotes the set
of input buffers of the tasks in τ. bl(Bτ)#c is the conjunction
of all bl(B)#c for B ∈ Bτ. Thus, a valuation V satisfies the
buffer constraint bl(Bτ)#c iff it satisfies bl(B)#c for all B∈Bτ.
Further, Γ(τ) is the set of tasks obtained from τ after setting
the arrival functions of each task in τ to the zero function
(i.e., for all T ∈ Γ(τ), αuT (Δ) = αlT (Δ) = 0 for all Δ≥ 0) while
keeping other parameters intact.

Example 3. Consider the transition in Example 1. Then,
Bτ = {B1,B2,B3} and Bτ′ = {B1,B3,B4}. Hence, bl(Bτ)#c=
(bl(B1)#c) ∧ (bl(B2)#c) ∧ (bl(B3)#c). Besides, Γ(τ) =

{T ∗
1 ,T ∗

2 ,T ∗
3 } with T ∗

1 =
(
B1,2,5,α0,1

)
, T ∗

2 =
(
B2,3,7,α0,2

)
,

T ∗
3 =

(
B3,4,20,α0,3

)
, where αu0(t) = αl0(t) = 0 for all t ≥ 0.

Using the above notations, we illustrate next how various
mode change protocols described in [16] can be modeled by
MCP. The reader is referred to [16] for their naming conven-
tion. As these protocols assume the same service function and
the same scheduling policy for all modes, in our models the
service function and the scheduling policy will be updated to
that of the destination mode upon the first activation of a new
task in the destination mode.

A. Synchronous Idle Time Protocol
The arrival of a mode change request (MCR) does not affect

the normal activation of tasks in the original mode until an
idle instant (no CPU load) occurs. In other words, the mode
change can only happen when all the input buffers of the tasks
τorig are empty. This is achieved by having a constraint on the
backlogs of these buffers, as depicted in Fig. 3. Fig. 4 shows
an instance of the protocol w.r.t. the transition σ defined in
Example 1.

Morig Mdest

Fig. 3. Synchronous Idle Time Protocol.

M M‘

Fig. 4. An instance of the protocol in Fig. 3 with respect to σ (cf. Example 1).

B. Maximum Period Single Offset Protocol
When an MCR occurs, unchanged tasks (τAA) are unaffected

and pending jobs in the origin mode are completed as normal.
Old tasks and changed tasks of the origin mode (τIA and τAC)
are released as normal for up to Pmax time units, where Pmax
is the period of the least frequent task in both modes. New
tasks and the modified tasks in the destination mode (τIA and
τCA) are only released after Pmax time units. The protocol is
shown in Fig. 5.

Morig Mdest
[Pmax, Pmax]

Fig. 5. Maximum Period Single Offset Protocol.

C. Synchronous Minimum Offset without Periodicity Protocol
When an MCR occurs, pending jobs in the origin mode are

completed as normal. There will be no new releases of the
tasks in the origin mode (τorig). Tasks in the destination mode
(τdest) are delayed until all pending tasks of the origin mode
complete. The MCP model of the protocol is given in Fig. 6.
An instance of the protocol with respect to the transition σ is
shown in Fig. 7.

Morig Mdestv1

v1

Fig. 6. Synchronous Minimum Offset without Periodicity Protocol.

M M‘

v

v1

Fig. 7. An instance of the protocol in Fig. 6 with respect to σ (cf. Example 1).
The value of τ1 is given in Example 3.

D. Synchronous Minimum Offset with Periodicity Protocol
When an MCR occurs, unchanged tasks (τAA) are unaffected

and pending jobs in the origin mode are completed as normal.
There will be no new releases of the old tasks and changed
tasks of the origin mode (τAI and τAC). New tasks and the
modified tasks in the destination mode (τIA and τCA) are
delayed until there is no more pending tasks of τAI and τAC.
This protocol can be modeled as an MCP depicted in Fig. 8.

Morig Mdestv1

v1

Fig. 8. Synchronous Minimum Offset with Periodicity Protocol.

Similarly, one can also model the Asynchronous without
Periodicity Protocol and the Asynchronous with Periodicity
Protocol proposed by Real and Crespo [16] using the MCP
model. The details of the models are available in our technical
report [14].

Semantics preservation. One can easily verify that the MCPs
given above preserve the same semantics as their correspond-
ing existing protocols. Unlike the existing ones, however,
our MCP representation captures the mode change behaviors
explicitly, thereby allowing the analysis of the system state
during mode transitions.

V. SEMANTICS OF MCP AND MMA
The semantics of MCP and MMA are defined based on the

semantics of modes and transitions, which we now develop.

A. Mode and transition semantics
We assume that all arrival and service functions are specified

for a finite number of time intervals. Let N ∈N be the smallest
upper-bound on the lengths of the intervals constrained by the
arrival and service functions in the system.
Suppose A= c1c2 · · ·cm is a finite sequence with ci ∈ N for

all 1 ≤ i ≤ m and c ∈ N. We denote by c ◦A the sequence
cc1 c2 · · · cm if m < N, and cc1 c2 · · · cN−1 otherwise, with N
defined above. We further denote by /0 the empty sequence

and k+ =max{k,0} for all k. Let B = {B1, . . . ,Bn} be the set
of buffers in the system.

Definition 2 (Mode configuration). A state of a mode M =〈
τ,β,SC

〉
is a configuration of the form S = (M,V,�A,C,t)

where
• V is a buffer valuation.
• �A= {A1, . . . ,An} where each Ai is an arrival pattern of
the input events of Bi, if Bi is active in M, and Ai = /0
otherwise.

• C is a service pattern of M, i.e., C |= β.
• t ∈ N is the number of time units the system has been at
M.

LetV be a valuation of the buffers atM. The valuation of the
buffers after xi new events arrive at each Bi when the system
is in M is given by V ⊕M x with x= [x1, . . . ,xn], computed as
follows. For each buffer Bi, we denote by Ti = (Bi,Ei,Di,πi)
the active task in M that is associated with Bi. Then, for all
1≤ j ≤ size(Bi)+1, (V ⊕M x)(Bi)[j] is

• V (Bi)[j], if 1≤ j ≤ |V (Bi)|, and
• (Ei,Di), if |V (Bi)| < j ≤min{|V (Bi)|+ xi,size(Bi)+1}.

Note that if xi+ |V (Bi)|> size(Bi), the buffer Bi will overflow.

Buffer updates with respect to scheduling policy. Suppose
xi is the number of events that arrive at Bi and y is the
number of execution units offered by the PE over the unit
time interval [t, t+ 1), where 1 ≤ i ≤ n. The valuation V ′ of
the buffers at time t + 1 when the system is at M is given
by a buffer mapping UPDATE that updates the new buffer
content based on the current buffer content (given by the
valuation V) and the scheduling policy used in the mode, i.e.,

V ′ = UPDATE(M,V,x,y,SC) def= Schedule(V, y, SC) ⊕M x.

where x = [x1, . . . ,xn]. An example of the mapping Schedule
is shown in the following example for FP.

Example 4 (FP schedule). We assume that all released jobs
in a buffer have the same fixed priority, which is the priority
of the associated task that is currently active in the mode. For
any k and j, denote ekj as the RET of the job V (Bk)[j] if Bk is
active in M, and ekj = 0 otherwise. Denote πk as the priority
of Tk. Then, for any buffer Bi, the total number of execution
units required by the active jobs that have higher priority than
the ones in Bi is

ȳi =
∑
k �=i

{
ekj |

(
πk < πi

)
or

(
πk = πi ∧ k < i

)}
.

Thus, the number of execution units allocated to each Bi is
yi =max

{
0, y− ȳi

}
if Ti is active in M, and yi = 0 otherwise.

Further, let ni =min{ j | ei1+ . . .+ eij > yi ∧ 1≤ j ≤ |V (Bi)|}
and e′i = ei1+ . . .+ eini − yi. Then, after Bi is scheduled, ni−1
oldest jobs in Bi are completed. Further, e′i will be the
RET of the (ni)th job. Let d′i be the ETD of this (ni)th job.
Due to time elapsed, all ETDs are decreased by 1. Thus,
Schedule(M,V, y, FP) is the valuation VFP defined by: For
all 1≤ i≤ n, 1≤ j ≤ mi, VFP(Bi)[j] is

•
(
e′i, (d′i −1)+

)
, if j = 1.

•
(
eij+ni−1,(d

i
j+ni−1−1)+

)
, if 2≤ j ≤ |V (Bk)|−ni+1.

• (0,0), otherwise.

if Bi is active in M, and VFP(Bi)[j] =
(
eij,(dij−1)+

)
otherwise.

Execution steps. An execution trace of an MMA can be
described as a sequence of mode configurations S0 → S1 →
··· → Sm where S0 is the initial configuration of the initial
mode and each S j is reachable from S j−1. There are two types
of execution steps: intra-mode (i.e., when the system continues
to stay at the current mode) and inter-mode (i.e., when the
system takes a transition to a new mode).

Definition 3 (Intra-mode execution step). Consider a mode
M =

〈
τ,β,SC

〉
and a configuration S= (M,V,�A,C,t). A con-

figuration S′ = (M,V ′, �A′,C′,t + 1) with �A′ = {A′1, . . . ,A′n} is
directly reachable from S when the system remains at M –
written as S [M,x,y〉S′ – iff there exist non-negative integers
x1, . . . ,xn, y such that

• V ′ = UPDATE(V, x, y, SC), where x= [x1, . . . ,xn];
• A′i = xi ◦ A and A′i |= α if there exists T ∈ τ with input
buffer Bi and arrival function α, and A′i = Ai = /0 other-
wise;

• C′ = y ◦ C and C′ |= β; and t+1 ∈ Inv(M).

Denote [k] as the finite alphabet {0,1, . . . ,k}. Let K1 be the
maximum number of events arriving at a buffer over a unit
interval and K2 be the maximum number of execution units
offered by the PE over a unit interval, i.e., K1 =max{αuT (1) |
T ∈ τ ∧ (τ,β,SC) ∈ M} and K2 = max{βu(1) | (τ,β,SC) ∈
M}, where αuT denotes the upper arrival function of T . Then,
w = (x,y) is a symbol in the alphabet Σ = [K1]n× [K2]. We
say that the system accepts (generates) the symbol w at S if
S [M,w〉S′.
We say a configuration S′ is reachable from a con-

figuration S of M if S [M,w〉S′ for some w ∈ Σ, or
there exists a sequence of configurations S1, . . . ,Sk of M
and a word w = w1w2 . . .wkwk+1 with wi ∈ Σ such that
S [M,w1〉S1 [M,w2〉 · · · [M,wk〉Sk [M,wk+1〉S′. The word w is
said to be accepted by the automaton at S.
Given a buffer valuation V and a buffer reset Z. We denote

by V |Z the valuation V ′ that is defined by: for all B ∈ B,
V ′(B) = Z(B) iff B appears in Z, and V ′(B) =V (B) otherwise.
Often, Z is a buffer valuation defined based on the objective
of the protocol. Consider, for instance, a protocol that will
discard k oldest events currently pending in a buffer B, then
Z(B)[j] = V (B)[k+ j] for all 1 ≤ j ≤ size(B) + 1− k and
Z(B)[j] = (0,0) otherwise.

Definition 4 (Inter-mode execution step). Consider an edge
ρ = 〈M, δ, ϕ, Z,M′〉 from a mode M =

〈
τ,β,SC

〉
to a mode

M′ =
〈
τ′,β′,SC′〉 in an MCP. Suppose S = (M,V,�A,C,t) is

a configuration of M. A configuration S′ = (M′,V ′, �A′,C′,0)
is said to be reachable from S when the system takes the
transition ρ, denoted by S [ρ〉S′, iff t ∈ δ, V |= ϕ, V ′ =V |Z,
and (i) �A′ = {A′1, . . . ,A′n} where A′i =Ai if there exists T ∈ τ∩τ′

with input buffer Bi, and A′i = /0 otherwise, and (ii) C′ =C if
β = β′, and C′ = /0 otherwise.

B. Semantics of MCP
Consider an MCP P = (MP ,E ,Morig,Mdest). Suppose S0

is a starting configuration of Morig. Then, an execution of P
starting from S0 is a sequence of configurations S0

w1→ S1
w2→

··· wm→ Sm where v0 =Morig, vm =Mdest, and for all 1≤ i≤m:
• Si is a configuration of vi ∈MP
• vi = vi+1 and Si [vi,wi+1〉Si+1, or vi �= vi+1, Si [ρi〉Si+1
where ρi ∈ E is a transition from vi to vi+1, and wi+1
is the empty symbol.

The behavior of P for a given starting configuration S0 of
Morig is captured by the automaton TSP(S0) = (S,S0,→,F ,Σ)
– called the associated behavioral automaton – where S is
the set of states, which consists of all configurations that are
reachable from S0 via one or more nodes/transitions in P .
The initial state of TSP(S0) is S0. There is a transition S w→ S′
from S = (M,V,�A,C,t) to S′ = (M′,V ′, �A′,C′,t ′) in TSP(S0)
iff S [M,w〉S′, or S [ρ〉S′ for some transition ρ = (M,M′) ∈ E
and w is the empty symbol. The set of final states F is the
set of all configurations in S that contain Mdest.
It is easy to verify that each path of TSP(S0) starting from

S0 to a final state corresponds to an execution trace of P . A
configuration S is said to be reachable from S0 on a word
w ∈ Σ∗ with respect to P , denoted by S0 [P ,w〉S, iff S ∈ F
and there is a path S0

w1→ S1
w2→ ··· wk→ Sk = S in TSP(S0) where

w= w1w2 . . .wk.

C. Semantics of MMA with respect to MCP
The behavior of MMA can now be described

based on its associated MCP. Consider an MMA
A = (T ,B,M,Min, Inv,Φ,Act,R). We present here the
case where A employs a single MCP P for all its transitions.
The results for the case where each transition σ of A is
associated with a different MCP P can be obtained by simply
substituting Pσ with Pσ where applicable.
The behavior of A with respect to P is given by a finite

automaton TSA,P whose states are configurations of the modes
in M. The initial state of TSA,P is the initial configuration of
Min where all buffers and arrival/service patterns are empty,
i.e., Sin = (Min,Vin, �Ain,Cin,0) where:

• For each B ∈ B, Vin(B) is a vector of size(B)+1 empty
jobs J0 = (0,0) (i.e., with execution time and deadline
being zeros).

• �Ain = {A01, . . . ,A0n} where A0i = /0 for all 1≤ i≤ n.
• Cin = /0.

There is a transition from configuration S = (M,V,�A,C,t) to
configuration S′ = (M′,V ′, �A′,C′,t ′) in ⇒ on a word w ∈ Σ∗,
written S w⇒ S′ if S [M,w〉S′ or there exists a transition σ =
(M,a,ϕ, I,M′) ∈ R such that V |= ϕ, t ∈ I and S [Pσ,w〉S′.

VI. FEASIBILITY ANALYSIS OF MCP
As seen in the previous section, the behavior of an MMA A

varies with respect to its associated MCPs. The choice of the
MCPs depends on the nature of the multi-mode application;
however, the chosen MCPs must guarantee that all tasks meet
their deadlines and the buffers do not overflow. In this case,
we say the MCPs are feasible for A.

Definition 5 (Feasible configurations). A configuration S =
(M,V,�A,C,t) is violated iff there exists a buffer B ∈ B with
V (B) = [J1, . . . ,Jsize(B)+1] such that Jsize(B)+1 �= (0,0) or Ji =
(ei,di) and ei > di = 0 for some 1 ≤ i ≤ size(B). The first
condition indicates an overflow at the buffer B whereas the
second condition indicates a job Ji missing its deadline. A
configuration S is feasible if it is not violated.

Definition 6 (Feasibility of MCP). An MCP P is said to be
feasible for an MMA A iff (i) all configurations of TSA,P are
feasible, and (ii) for all transitions S⇒ S′ in TSA,P such that
S [Pσ〉S′ for some transition σ in A, the associated behavioral
automaton TSPσ(S) contains only feasible configurations.

Observe that the above concept of feasibility of mode
change protocols is developed based on the semantics of
MMA. Most existing mode change protocols, however, do not
explicitly define a formal model for the multi-mode systems.
They assume instead that the system comprises multiple
modes where it can stay in a mode arbitrarily long, mode
change requests may arrive arbitrarily outside transitional
intervals, and there is no cascade of mode change effects. As
a result, the feasibility condition of a mode change protocol
can be restricted to guaranteeing schedulability and no buffer
overflows during the transitional period from an old mode to
a new mode for any given pair of modes. Such restriction
can reduce the complexity of the feasibility analysis.

Feasibility analysis of MCP. Given an MCP P and an MMA
A, one can verify if P is feasible for A by exploring the
behavioral automaton TSA,P and checking that the conditions
specified in Definition 6 are satisfied.
Recall that Σ = [K1]n × [K2] (cf. Section V-A). Observe

that each of TSA,P and TSPσ(S) is a potentially infinite state
automaton accepting (generating) sequences over the finite
alphabet Σ. The decidability of the feasibility analysis follows
from the fact that the associated behavioral automaton TSA,P
(TSPσ(S)) can be quotiented into a finite state automaton
which accepts the same set of finite sequences (i.e., arrival
and service patterns). Given below are the main details.

Finite quotient of TSA,P . Let U be the maximum of all the
integers (different from ∞) that appear in the mode invariants
and transition timing guards of A and P . For instance, in
the MMA in Fig. 2 and the MCP in Fig. ?? (Section ??),
U =max{35,Y}.

Two configurations S = (M,V,�A,C,t) and
S′ = (M′,V ′, �A′,C′,t ′) are equivalent, denoted as S ≈ S′,
iff (i) M = M′, V = V ′, �A = �A′ and (ii) t = t ′, or t >U and
t ′ >U . Clearly, ≈ partitions the infinite set of states of TSA,P
into a finite number of equivalence classes. The number of
these classes is bounded by |M|×Bnmax×KNn

1 ×KN
2 ×(U+1),

where Bmax is the maximum of all buffer sizes and N is the
maximum length of the time intervals constrained by the
arrival and service functions. The following lemma extends
the classical Myhill-Nerod theorem [10] on equivalent
configurations from the automata theory to the MCP model.

Lemma VI.1. Configurations belonging to an equivalence
class exhibit the same behavior in the following sense. Sup-
pose S ≈ S′ and S w⇒ S1 with w ∈ Σ∗, S = (M,V,�A,C,t),
S′ = (M,V,�A,C, t ′) and S1 = (M1,V1, �A1,C1,t1). Then there is
S′1 = (M1,V1, �A1,C1,t ′1) such that S′

w⇒ S′1 and S1 ≈ S′1.
Proof: Recall that S w⇒ S1 if M = M1 and S [M,w〉S1

with w ∈ Σ∗, or M �= M1 and there is a transition
σ= (M,a,ϕ, I,M1)∈R such that V |= ϕ, t ∈ I and S [Pσ,w〉S1.

Case 1. Consider the first case and let t ′1 = t ′ + 1. Since
S [M,w〉S1, t1 = t + 1 ∈ Inv(M). In addition, S ≈ S′ implies
that t = t ′ or t > U and t ′ > U . If t = t ′ then t ′1 = t1 and
t ′1 ∈ Inv(M), which in turn imply that S1 ≈ S′1 and S′

w⇒ S′1.
Otherwise, suppose t > U and t ′ > U . Then, t ∈ Inv(M)
implies that Inv(M) = [L,∞] for some L ≤ U . Since
t ′1 > t ′ > U > L, t ′1 ∈ Inv(M). In other words, S′ [M,w〉S′1 or
S′ w⇒ S′1. Furthermore, since t1 > t >U and t ′1 > t ′ >U , S1≈ S′1.

Case 2. Next consider the case M �= M1. Then there is a
transition σ = (M,a,ϕ, I,M1) ∈ R such that V |= ϕ, t ∈ I
and S [Pσ,w〉S1. Thus, there exists a complete path η =
S w1→ S1

w2→ S2 → ··· wm→ Sm = S1 in the associated behavioral
automaton TSPσ(S) of Pσ, where w= w1w2 . . .wm. Based on
the definition of TSPσ(S), we imply that t1 = 0. By induction
on the length m of η, we can prove that S′ [Pσ,w〉S1. Indeed,
consider the case when m= 1. Then, w is the empty word and
S [ρ〉S1 for some ρ = 〈M, δ1, ϕ1, Z,M1〉 in Pσ with t ∈ δ1.
Since S≈ S′, either (i) t = t ′, which implies t ′ ∈ I and t ′ ∈ δ1,
or (ii) t > U and t ′ > U , which implies that I = [L,∞] and
δ1 = [L1,∞] for some L ≤ U and L1 ≤ U . In other words,
t ′ ∈ I and t ′ ∈ δ1. As a result, S′ [ρ〉S1 and thus, S′ [Pσ,w〉S1.
The induction step can be derived equally easily (based on the
results established in this base step and in Case 1).

Construction of REGA,P : We now define the quotiented
version of TSA to be the finite state automaton REGA,P =
(Ŝ,Σ,�,〈Sin〉) where:

• Ŝ is the set of all 〈(M,V,�A,C,t)〉 such that M ∈M is a
mode, V is a buffer evaluation, and �A and C are finite
arrival patterns of the input events and service pattern of
the PE, and t ∈ [U + 1]. Here, 〈S〉 is the ≈-equivalence
class containing S. In other words, 〈S〉 = {S′ | S ≈ S′}.

• 〈S〉
w
� 〈S′〉 iff there exists S1 in 〈S〉 and S′1 in 〈S′〉 such

that S1 w⇒ S′1, where w ∈ Σ∗.
Clearly, REGA,P can be effectively constructed using the
presentation of A and P . It is not difficult to show that the
language of finite words accepted by REGA,P is exactly the
words generated by TSA,P . Using the same method, for each
transition σ in A and each 〈S〉, we can construct a finite
quotient REGPσ(〈S〉) of the set

{
TSPσ(S′) | S′ ∈ 〈S〉

}
.

Observe that S is feasible iff S′ is feasible for all S′ ≈ S.
Hence, one can analyze the feasibility of P when applied to A
by checking that all the states of REGA,P and of REGPσ(〈S〉)
are feasible, where σ is a transition in A and 〈S〉 ∈ Ŝ.
Theorem VI.2. For any given pair of MCP P and MMA A,
the feasibility analysis is always decidable.

The proof of the theorem follows directly from the finiteness
of the quotient automata REGA,P and all REGPσ(〈S〉).

VII. CASE STUDY
This section demonstrates the advantages of the MCP frame-

work in modeling mode change behaviors via a simplified
version of the Adaptive Cruise Control (ACC) system [1].
ACC is an advanced automotive feature that allows a

vehicle’s cruise control system to adapt the vehicle’s speed to
the traffic environment. An ACC vehicle has a radar attached
to the front of the vehicle to detect whether slower moving
vehicles are in its path. If a slower moving lead vehicle is
detected, the ACC system will slow the vehicle down and
control the clearance between the ACC vehicle and the lead
vehicle. If the lead vehicle is no longer in the ACC vehicle’s
path, the ACC system will accelerate the ACC vehicle back to
its set cruise control speed. During ACC operation, in case the
danger of a collision is detected, the ACC system will provide
a red warning light that flashes on the windshield and wait for
the driver’s response. It also pre-charges the brakes to prepare
the vehicle for more aggressive braking to help avoid rear-end
accidents. It will then move to standby mode and return the
vehicle’s control to the driver.

Brake Control
Module

ACC
Module

Instrument
Cluster

Engine Control
Module

CAN

Radar

(a) ACC system architecture.

Standby Speed
Control

Emergency Time Gap
Control

activate

collision

vehicle-detected no-vehicledriver-intervention

(b) The multi-mode ACC Module.

Fig. 9. An Adaptive Cruise Control (ACC) System.

A typical ACC system consists of a series of interconnecting
components communicating via a communication bus (e.g.,
Controller Area Network (CAN)) as shown in Fig. 9(a). Here,
we are interested in the ACC Module, whose internal behavior
is a multi-mode automaton depicted in Fig. 9(b).
When the ACC Module is turned on, it is idle at the Standby

mode. Upon activation by the driver, the system enters the
SpeedControl mode. In this mode, the ACC system computes
the target speed based on the input vehicle speed from the
Brake Control Module, and sends the result to the Engine
Control Module. If the radar detects a lead vehicle at or
within the clearance distance, the ACC Module enters the
TimeGapControl mode. Here, the target speed is computed
such that the set time gap between the vehicles is maintained.
Additionally, the system also computes and sends the de-

sired acceleration/deccelaration rate to the Brake Control Mod-
ule. Switching between SpeedControl and TimeGapControl
mode is done based on whether the lead vehicle is in the
clearance distance. While the system is in the TimeGapControl
mode, if the danger of a collision is detected, the system enters
Emergency mode where it sends driver warning messages to
the Instrument Cluster and informs the Brake Control. It will
then move to Standby mode and give the control back to the
driver. The tasks active in each mode and their execution times
and deadlines (in milliseconds), are given as follows.

• SpeedControl: Speed (5, 40), Brake (3, 15), Radar (4,
20), Weather (5, 50), Friction (5, 50).

• TimeGapControl: Speed (5, 20), Brake (3, 10), Radar (4,
20), AdjacentLane (5, 40), TimeLeft (5, 40).

• Emergency: Alarm (1, 5), Brake (2, 5), Speed (2, 5).
All tasks are periodic, with deadlines equal to periods. Their
arrival functions are computed based on their periods. The
tasks are scheduled under FP, where their priorities are as-
signed based on Rate Monotonic. The processor offers the
same unit-rate service function in all the modes. To ensure
safety, the following constraints are imposed on the ACC:
(C1) Tasks that are active in the Emergency mode are most

critical and hence, the system enters the Emergency mode
immediately if a collision is detected.

(C2) Active tasks of the TimeGapControl mode are more
critical than that of the SpeedControl mode.

Given such a system, we would like to design a mode change
protocol for the ACC that satisfies the above constraints. To-
wards this, we employ two specific protocols from two distinct
classes: synchronous and asynchronous protocols. The first
(P1) is the synchronous minimum offset without periodicity
(Section IV-C). The second (P2) is the protocol that discards
all pending events and forces the system to move immediately
to the new mode. We will compare these protocols with a
transition-based MCP (P3) that associates (P1) with the tran-
sition from TimeGapControl to SpeedControl, and associates
(P2) with the rest of the transitions.
Table I shows the performance of the three protocols

w.r.t. (i) the mode change delay when the system moves to
Emergency; and (ii) the number of jobs in TimeGapControl
that are missed (due to a delay in the release time) or discarded
due to a mode change during normal operation. As shown
in the table, the protocol (P1) violates both (C1) and (C2)
constraints: it requires a long mode change delay when moving
to the Emergency mode, and causes the system to miss the
arrivals of jobs of the TimeGapControl mode. The protocol
(P2) satisfies (C1), however, it violates (C2) as it requires the
system to discard the jobs of the TimeGapControl mode. On
the other hand, the proposed (P3) satisfies both constraints.

Protocol Delay to Emergency #jobs missed #jobs discarded

P1 40 ms 11 0

P2 0 0 5

P3 0 0 0

TABLE I
PERFORMANCE OF MODE CHANGE PROTOCOLS FOR THE ACC.

The above illustrates the benefits of having different pro-
tocols for different mode transitions. In the same manner,
other modules in the complete ACC system (cf. Fig. 9(a))
may also need different mode change protocols. As a result,
compositions of different protocols is necessary to describe
the mode change behavior of the overall system. All these
requirements can be conveniently supported by MCPs.

VIII. CONCLUDING REMARKS
We have presented a unified framework for the modeling

and analysis of mode change protocols in a mixed time- and

event- triggered multi-mode systems. We have discussed in de-
tails the basic model for mode change protocols, its semantics
when applied to the multi-mode systems, and how feasibility
analysis can be done using the model. We plan to evaluate and
optimize the tradeoffs among different existing mode change
protocols and their combinations using our framework. Due to
the state-based nature of the models, efficiency can be an issue
for large systems. We would like to investigate approximation
techniques that employ results from real-time calculus [6] to
drive the automata abstraction and verication. Finally, we plan
to build a tool that incorporates the MCP semantic framework
with the compositional analysis techniques for multi-mode
systems in [15] to support the component-based design of
multi-mode systems.

IX. ACKNOWLEDGEMENTS
This research was supported in part by NSF CNS–0931239,

NSF CNS–0930647, NSF CNS–0834524, and NSF CNS–
0721541.

REFERENCES
[1] Adaptive cruise control system overview. http://sunnyday.mit.edu/

safety-club/workshop5/Adaptive Cruise Control Sys Overview.pdf,
2005.

[2] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Times: a
tool for schedulability analysis and code generation of real-time systems.
In FORMATS, pages 60–72, 2003.

[3] D. Bertrand, A.-M. Déplanche, S. Faucou, and O. H. Roux. A study of
the aadl mode change protocol. In ICECCS, pages 288–293, 2008.

[4] G. C. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for adaptive
rate control. In RTSS, pages 286–295, 1999.

[5] G C. Buttazzo, G Lipari, M. Caccamo, and L. Abeni. Elastic scheduling
for flexible workload management. IEEE Transactions on Computers,
51(3):289–302, 2002.

[6] S. Chakraborty, S. Künzli, and L. Thiele. A general framework for
analysing system properties in platform-based embedded system designs.
In DATE, pages 288–293, 2003.

[7] G. Fohler. Changing operational modes in the context of pre run-
time scheduling. IEICE Transactions on Information and Systems, E76-
D(11):1333–1340, 1993.

[8] S. Goddard and X. Liu. A variable rate execution model. In ECRTS,
pages 135–143, 2004.

[9] Q. Guangming. An earlier time for inserting and/or accelerating tasks.
Real-Time Systems, 41(3):181–194, 2009.

[10] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 2000.

[11] F. Maraninchi and Y. Rémond. Mode-automata: a new domain-specific
construct for the development of safe critical systems. Sci. Comput.
Program., 46(3):219–254, 2003.

[12] P. Martins and A. Burns. On the meaning of modes in uniprocessor
real-time systems. In SAC, pages 324–325, 2008.

[13] P. Pedro and A. Burns. Schedulability analysis for mode changes in
flexible real-time systems. In ECRTS, pages 172–179, 1998.

[14] L. T. X. Phan, I. Lee, and O. Sokolsky. A semantic framework for mode
change protocols. Technical report, University of Pennsylvania, 2011.

[15] L.T.X. Phan, I. Lee, and O. Sokolsky. Compositional analysis of multi-
mode systems. In ECRTS, pages 197–206, 2010.

[16] J. Real and A. Crespo. Mode change protocols for real-time systems: A
survey and a new proposal. Real-Time Systems, 26(2):161–197, 2004.

[17] L. Sha, R. Rajkumar, J. Lehoczsky, and K. Ramamritham. Mode change
protocols for priority-driven preemptive scheduling. Real-Time Systems,
1(3):244–264, 1989.

[18] N. Stoimenov, S. Perathoner, and L. Thiele. Reliable mode changes in
real-time systems with fixed priority or edf scheduling. In DATE, pages
99–104, 2009.

[19] J.-P. Talpin, C. Brunette, T. Gautier, and A. Gamatié. Polychronous
mode automata. In EMSOFT, pages 83–92, 2006.

[20] K. W. Tindell, A. Burns, and A. J. Wellings. Mode changes in priority
pre-emptively scheduled systems. In RTSS, pages 100–109, 1992.

	University of Pennsylvania
	ScholarlyCommons
	4-2011

	A Semantic Framework for Mode Change Protocols
	Linh T.X. Phan
	Insup Lee
	Oleg Sokolsky
	Recommended Citation

	A Semantic Framework for Mode Change Protocols
	Abstract
	Disciplines
	Comments

	rtas10.dvi

