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recovery from timing faults. To do this, we draw on ideas from (non-distributed) real-time programming 
and distributed transaction-based systems [81]. A complete language is not specified; the constructs 
described are assumed to be embedded in a block-structured procedural host programming language 
such as C [9] or C++ [10] (our current preliminary implementation is in C). The model consists of 
resources, processes, and a global scheduler. Resources are abstractions that export operations to 
processes, and specify acceptable concurrency of operations to the scheduler. Processes manipulate 
resources using the exported operations, and specify synchronization and restrictions on concurrency (at 
the exported operation level) to the scheduler. Examples of the types of information given to the 
scheduler are that a set of operations should be performed "simultaneously", or that a sequence of 
operations should be performed without interference by another process. The global scheduler embodies 
the entity or entities that schedule the CPU, memory, devices and other resources in the system. It 
performs preemptive scheduling of all resources based on dynamic priorities associated with the 
processes, preserves restrictions on concurrency stated by resources and processes, and is capable of 
giving "guarantees" to processes that they will receive resources during a specified future time interval. 

The remainder of the paper is structured as follows. In the next section, we present language constructs 
for an expression of timing constraints called temporal scopes, and described resources and processes. 
Section 3 describes what is required of the global scheduler to support these constructs, and what is 
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1 Introduction 

Real-time applications such as robotics, industrial control and avionics, operate in environrnellts that impose complex 

functional and timing constraints with severe consequences if violated. Frequently, they are distributed to match 

the topology of the application devices, to provide better performance through concurrency, and to improve system 

fault tolerance. For example, consider an application in which two robot arms must lift a container of chemicals 

from a moving conveyer belt [I]. The belt and each robot arm is controlled by separate process; these processes 

must synchronize to grab the container as it passes by the arms. To prevent spills, either both arms should lift or 

neither arm should lift, the arms should lift simultaneously, and no other use of the arms should be allowed while 

the lift is being performed. Furthermore, the lift should be performed under timing constraints to adhere to the 

dynamics of the moving belt and inherent properties of robot control algorithms. 

Language support for these distributed real-time applications is crucial. Since the applications are extremely 

complex, programs must be easy to write, verify, and modify. The language must be capable of expressing the 

functional, synchronization and timing constraints inherent in the underlying application in a structured manner in 

the program. Programs should be modular so that resources and processes can be decomposed and constraints 

can be locally specified in modules with limited knowledge of the behavior of other modules. Abstraction should 

be supported so that interaction between modules is based on a simple, well-defined interface. The abstract 

characterization of modules and constraints should be a simple, natural reflection of information that the programmer 

has available. Currently, however, very little has been done to provide structured support for distributed real-time 

programming. 

One approach that has been taken is to extend traditional cyclic executive scheduling to distributed real-time 

systems [2]. However, this fixed scheduling approach is inadequate for dynamic real-time applications since 

it becomes intractable for a fixed schedule to account for the number of possible scenarios posed by a changing 

environment. Even if it were possible to account for dynamic behavior, creating distributed synchronized executives 

is complicated and modification requires re-scheduling the system. 

Another approach has been to write a concurrent program that is logically correct and then add run-time 

scheduling primitives to satisfy real-time constraints. For instance, in Ada [3] the programmer must translate timing 

constraints into static priorities so that a priority-based scheduler schedules tasks to meet the timing constraints. In 



Modula-2 [4] the programmer must explicitly add transfer commands so that co-routines coordinate with each other 

to meet timing constraints. However, using scheduling primitives to "express" timing constraints results in programs 

that are difficult to write, verify, and modify. Hiding timing constraints in complicated synchronization patterns 

hinders error recovery from Liming violations since it is difficult or impossible to determine which timing constraint 

was violated. Furthermore, since the scheduling primitives are added at compile-time, coping with a dynamic 

run-time environments is complicated. Another problem is that the scheduling primitives are only concerned with 

scheduling the CPU and not other shared resources that are needed to meet timing constraints, such as memory and 

devices. The result is that priority inversions may occur, and timing constraints violated. 

Many of these problems can be avoided or mitigated by explicitly expressing timing constraints and exception 

handlers for timing violations, and allowing the run-time system to schedule system resources to best meet them. 

This is similar to the approach taken in programming languages such as Pearl [5], Real-Time Euclid [6], and Flex 

[7]. These languages, however, do not provide structured programming for distributed systems. In particular, they 

do not support the synchronization of two actions that must be either simultaneous, exclusive, or all-or-nothing. 

Furthermore, these languages are not concerned with expressing timing constraints on resources other than the CPU. 

In this paper, we present a model and language constructs for a distributed real-time system with the goal of 

allowing the structured specification of functional and timing constraints, along with explicit, early error recovery 

from timing faults. To do this, we draw on ideas from (non-distributed) real-time programming and distributed 

transaction-based systems [81. A complete language is not specified; the constructs described are assumed to be 

embedded in a block-structured procedural host programming language such as C [9] or C++ [lo] (our current 

preliminary implementation is in C). The model consists of resources, processes, and a global scheduler. Resources 

are abstractions that export operations to processes, and specify acceptable concurrency of operations to the sched- 

uler. Processes manipulate resources using the exported operations, and specify synchronization and restrictions on 

concurrency (at the exported operation level) to the scheduler. Examples of the types of information given to the 

scheduler are that a set of operations should be performed "simultaneously", or that a sequence of operations should 

be performed without interference by another process. The global scheduler embodies the entity or entities that 

schedule the CPU, memory, devices and other resources in the system. It performs preemptive scheduling of all 

resources based on dynamic priorities associated with the processes, preserves restrictions on concurrency stated by 

resources and processes, and is capable of giving "guarantees" to processes that they will receive resources during 

a specified future time interval. 

The remainder of the paper is structured as follows. In the next section, we present language constructs for an 

expression of timing constraints called temporal scopes, and described resources and processes. Section 3 describes 

what is required of the global scheduler to support these constructs, and what is entailed in guaranteeing functional 

consistency.' We conclude in Section 4. 

2 Language Constructs 

What timing expression is needed in a distributed environment where there are multiple threads of execution? Firstly, 

constraints on single threads of execution must be expressed. These include bounds on start times, deadlines, and 

A complete explanation of these ideas is presented in [ tech89?]. 



total execution times [l 11. Secondly, constraints on the coordinated execution of multiple threads must be expressed. 

In traditional distributed environments where only functional consistency must be reasoned about, there are notions 

of "synchronizing" the order of execution of threads using synchronous communication or a rendezvous construct 

[3], there are also notions of serializable execution and a guarantee of atomicity, both of which are bound up in 

the notion of a transaction [8,12]. In a time-constrained environment, we sometimes need something stronger than 

synchrony or serializability: simultaneity so that threads may execute at the same time and exclusive execution so 

that threads can be assured of no interference during specific time intervals. For example, in the coordinating robots 

example, the two arms must lift the container simultaneously to avoid spilling. Exclusive execution is also required: 

each arm must execute a "grasp" and series "lifts" without interference from other processes attempting to use the 

arm. This lifting must also be done atomically, that is, either both arms should "grasp" and "lift", or neither should. 

Furthermore, the entire lifting task is time-constrained since there is a deadline, imposed by the dynamics of the 

belt, by which the lift must either be completed, or the coordinating process notified that it did not occur. 

In this section, we give constructs for timing expression, starting with temporal scopes for single threads of 

execution. We then define resources as single threads of execution that export operations to processes. Processes can 

fork concurrent execution of exported operations, and therefore can require that a set or a sequence of operations be 

exclusive or simultaneous. Finally, there is a notion of timed atomic commitment, which allows a set of operations 

to be performed if and only if there is a guarantee that, barring faults, the operations can all be completed by a 

global deadline. 

2.1 Temporal Scopes 

In a real-time applications, operations frequently must start at a specific time or complete by a deadline. Temporal 

scopes [ l l ]  explicitly express these timing constraints as follows: 

after (sa) before (sb) execute (e) within (d) do 
(statements-1) 

except 
when E-START do (statements2) end when 
when E-EXECUTE do (statements3) end when 
when EBEADLINE do (statements-4) end when 

end before 

(statements-1) must not start until after (sa). If (statements-1) are not started by (sb), then (statements2) are 

executed. If (statements-1) or (statements2) take over (e) execution time, then execution is terminated and 

(statements3) are executed. If the the action is not completed by (d), then execution is terminated and (statementsA) 

are executed. Each constraint and exception handler clause is optional. A discussion of nested temporal scopes and 

a summary of the temporal scope and periodic temporal scope language constructs is gven in [ tech89?]. 

2.2 Resources 

Resources are designed as abstract data types where each resource has a local state and a set of exported operations. 

A resource is declared as follows: 

resource (resourceID) 



(data structure declarations) 
(local procedure declarations) 
(action declarations) 
(statements) 

end resource 

The resource's state parameters and local procedures are declared using data structure and procedure declarations 

of the host language. For example, state parameters of the robot arm resource might include declaration of data 

structures for its Cartesian coordinates and the position of its hand (grasplungrasp). The resource's body consists 

of {statements) that are executed when the resource is created. The resource's exported operations, called actions, 

are declared as follows: 

action (actionID) (arguments); 
compatible { (actionID1). . . . , (actionID,) ) 
(statements) 

end action 

(arguments) are value parameters. The compatible declaration is used to inform the scheduler which actions may 

preempt this action without causing functional inconsistency (see Section 3). The action's body is a sequence of 

(statements) designed to meet functional constraints when executed in isolation to completion. Its original deadline 

is inherited from the process that calls it. Temporal scopes within the action expressing timing constraints that 

are inherent to the resource are nested within the inherited temporal scope. Consider a robot arm resource as an 

example; it could have the following actions: lift, lower and grasp; as well as others. The coordinating process 

may impose a 10 second deadline on a lift action of a robot arm when the action is called. The lift action inherits 

this deadline, and any constraints inherent to the action due to the lift control algorithm are nested within this 10 

second deadline. 

2.3 Processes 
Process are declared as follows: 

process (processID) 
(local data structure declarations) 
(local procedure declarations) 
(timed action declarations) 
(process body} 

end process 

Local data structures and procedures are declared in the host language and may be used only within the process. 

Timed actions are a special kind of procedure for use in timed atomic commitment, and are described later. A 

process body consists of a sequence of either host language statements, action calls, concurrency blocks, reservation 

blocks, or tac blocks. The temporal scope construct described in Section 2.1 is used to express timing constraints 

on sequences of blocks in processes. We now describe the components of a process body. 

Action calls are specified as: 

(resourceID.action1D) ( {params)). 

Concurrency blocks are expressed using cobegin - coend constructs. Only action calls are allowed in this block. 

The actions are called concurrently and all actions must complete in order for the concurrency block to complete. 



Reservation Blocks. Reservation blocks allow a process to detect potential timing constraint violations before they 

occur by determining whether resources will be available to meet timing constraints. A single reserve statement 

requests a guarantee from the scheduler that an action will receive e units of execution time somewhere in a time 

interval [ s ,  dl; e is not necessarily consecutive. It can be used as a statement in a process: 

[ S T ,  er] = reserve e, [s ,  d] (resourceID.actionID) 

The return value indicates the lower and upper bounds of the time that the action is reserved for, or NULL indicating 

that the guarantee could not be made. These bounds may be used to synchronize subsequent reservations requests; 

for example er from one reservation can be used as s in a later reservation to ensure that second reservation starts 

after the first reserved interval completes. 

Another form of reservation block is a simultaneous reservation block, which is used to specify that actions start 

at the same time and that each action's reserved time is uninterrupted after this common start time. The syntax is 

begin align 
  ST^, er l ]  = reserve e l ,  [ s l ,  d l ]  (resourceID.actionID1) 

[srn,  el-,] = reserve e,, [s,, d,] (resourceID.actionlD,) 
end align 

Section 3 describes how the scheduler ensures that srl = sra = . . . sr, and that each reservation is uninterrupted. 

This construct can be used in the example to specify that the arms are to lift simultaneously. 

Another use of reservations is to exclude other actions from executing at certain times because, in order to 

reason about consistency, some sets of actions in a process must appear to be executed without interference from 

other processes. For instance, while the lift coordinating process is performing a series of incremental lift actions 

on an arm, we do not wish to allow a lower action issued by another process to be scheduled. Exclusive actions 

may not necessarily be on the same resource. For instance, the process may wish to ensure that the passing of an 

object from one arm to another, which is a sequence of interleaved actions of the two arms, is not interfered with 

by other processes trying to use either arm. To express these requirements, another form of reservation block called 

an exclusive block is used in a process. An exclusive block has the structure: 

begin exclusive 
[sr l ,  er l ]  = reserve e l ,  [sl, dl]  (resourceID.actionID1) 

[ST,, ern] = reserve en, [s,, d,] (resourceID.actionlD,) 
end exclusive 

The exclusive block specifies that during the interval bounded by the earliest start of a reservation granted in the block 

to the end of the latest reservation granted in the block, called the exclusive interval, no action that could interfere with 

any action in the block can be executed. Note that this is a stronger requirement than the serializability requirement 

found in non-real-time distributed systems [8,13,12]. Serializability requires that, although actions which could 

potentially interfere with a transaction can be scheduled during the transaction, the schedule must be functionally 

equivalent to one in which no interference occurs. Exclusive blocks further require that no incompatible action 

appear anywhere in the exclusive interval. This stronger requirement is needed because traditional serializability is 



not concerned with when interfering actions occur, only that they do not cause the schedule to be unserializable. 

However, in a distributed real-time control application where resources interact, the time at which interfering actions 

occur is important. For instance, consider the passing of an object from one arm to another: Serializing the schedule 

of each arm is not sufficient because it may allow an incompatible movement of the arm to be executed on arml 

while the passing of the object is being performed. If the incompatible move action is scheduled after all movement 

of arml required by the passing process is done, the passing actions may be serializable, but this incompatible 

action could cause arml to be moved before arm2 is done interacting with it. An exclusive block alleviates this 

problem by specifying that the interfering movement can not be scheduled while any actions in the block are still 

executing. An exclusive block also specifies that either all reservations are granted with the above restriction or all 

of them are denied (indicated by NULL return values for all intervals in the exclusive block). Section 3 describes 

how a scheduler can ensure these requirements. 

Simultaneous and exclusive reservation blocks may be nested within each other. A simultaneous block nested 

within an exclusive block specifies that the actions in the simultaneous block start at the same time, and that their 

reservations, like all other reservations in the outer exclusive block, are used to compute the exclusive interval. An 

exclusive block nested within a simultaneous block specifies that the all actions in the simultaneous block, including 

those within the nested exclusive block, have reservations starting at the same time; those actions in the nested 

exclusive block further require that no actions that interfere with them be executed until all of their reservations 

have completed. Nesting exclusive blocks in exclusive blocks or simultaneous blocks in simultaneous blocks is 

redundant; it adds no further restrictions on the scheduler. 

Timed Atomic Commitment. Another constraint posed by processes is that some sets of actions have the property 

that either all actions in the set be performed correctly or none should be performed. Reaching a decision to perform 

under an all-or-none constraint is known as atomic commitment [13]. When the decision and the performance of 

the decided-upon action must be done under timing constraints, it is called timed atomic commitment (TAC) [I]. 

In the example, the lifting of the two arms is a TAC because if one arm can not grasp the container or it appears 

that one arm can not complete lifting within timing constraints, then neither arm should lift to prevent spills of the 

container. A more formal definition of the TAC problem and its constructs is given in [I]. 

An action in a TAC is a special form of process procedure called a timed action that coordinates with other 

timed actions by executing an underlying protocol, such as a centralized timed two-phase commit protocol [I] to 

ensure all-or-nothing behavior. Timed actions have three stages to detect timing constraint violations as early as 

possible: a reservation stage which detects potential violations before a timed action starts; a vote stage which 

detects violations before a timed action performs any actions that affect consistency; and a performance stage 

during which consistency-altering actions are performed. The structure of the timed action construct is: 

timed action (action-name) ( (parameters) ) 
{ (reservation-block) ) 

begin 
(statementsl) /* decide vote: YES or NO */ 
vote (YES/NO) 
await 

when COMMIT do (statements2) end when 



when ABORT do (statementsa) end when 
except 

when EDEADLINE do (statements4) end when 
end action 

The timed action's reservation stage is indicated by { (reservation-block) } which lists a set of reservation blocks 

(described above). If any of the specified reservations are denied, then (statements3) are executed. (statementsl) 

constitute the vote stage, which ends with the vote statement. If the decision arrived at by the underlying protocol 

is to commit in the performance stage, then (statements2) are executed; if the decision is not to perform (abort), 

(statements3) are executed. If the timed action's inherited deadline is violated, then current execution is terminated 

and (statements4) are executed. 

In our example, a timed action for lifting arm1 would first attempt to reserve use of arml in time to meet its 

deadline. In its vote stage, it would call the grasp action of arml to attempt to grasp the container before lifting. 

If the initial reservation is denied or it can not grasp, then it will vote NO and not lift. Otherwise, it executes the 

underlying TAC protocol to determine if it should lift. 

To invoke a TAC, a process starts a set of concurrent timed actions and then waits for their results. The structure 

of the TAC block is: 

begin tac 
Vl := (Timed-actionID, ) ((args)) 

V,:= (TimedactionID~) ((args)) 
end tac; 

The return values, Vi, in the TAC block indicate whether the timed action committed, aborted, or has not 

returned. When all timed actions have returned, the TAC completes. To establish a deadline for TAC, the TAC 

block is enclosed within a temporal scope. 

Scheduling 

We include the scheduler in our language construct presentation because the scheduler must enforce the consistency 

that the program expresses. Proposing a new scheduling algorithm or advocating a particular existing scheduling 

algorithm is beyond the scope of this paper; instead, we discuss the requirements posed to a scheduling algorithm 

by our language constructs and outline possible implementation techniques. 

Meeting Timing Constraints. To meet timing constraints, a scheduler should use the timing constraints expressed 

by temporal scopes to schedule the actions. This can be done by incorporating timing constraint information into 

a dynamic priority associated with a process and scheduling based on this priority. For example, earliest-deadline- 

first scheduling determines dynamic priority as a function of the deadline alone and has been shown to be optimal 

for meeting deadlines under certain conditions [14]. A more complex example is the Spring kernel [IS], which 

incorporates slack time, static priority, and resource use into it dynamic priority value. 



To further support timing constraint enforcement, the scheduler should avoid priority blocking that occurs when 

a lower-priority process keeps a higher-priority process from executing by holding resources required by the higher- 

priority process. Avoiding priority blocking allows more important processes to meet their timing constraints, and if 

the dynamic priority value is dependent on timing urgency, then timing consistency is better supported. Furthermore, 

the scheduler should minimize the time that it allows processes to hold idle resources because this holding may 

block other processes and contribute to them missing their timing constraints unnecessarily. One way to do avoiding 

priority blocking and reduce the holding of idle resources is to allow the scheduler to preempt one action for another 

wherever possible. Preemptive scheduling has been shown to be optimal for meeting timing constraints [14]. 

Meeting Functional Constraints. The problem with allowing arbitrary preemption is that the functional constraint- 

preserving property of actions may be lost because the property is predicated on the action's executing without 

interference from other actions. The scheduler should preempt only if the resulting resource schedule is functionally 

consistent. A functionally consistent schedule is one in which all actions that have completed in the schedule 

produce consistent states. One way to achieve a functionally consistent schedule is to require that the schedule be 

serializable. A serializable schedule yields the same result as a schedule where all actions are run to completion 

without concurrency [13]. All serializable schedules are, by the definition of actions, functionally consistent. 

However, there may be preemptions that produce a functionally consistent schedule that is not serializable. 

To determine the functional consistency of a schedule, we use a similar method to that used to determine 

serializability [12]: a dependency graph. Let S,  be a schedule for a resource r and let DG(Sr)  be a directed 

graph. The nodes of DG(S,.) are the actions in S,.. Let start(ai) be the absolute time that action ai starts in S,. 

and complete(ai) be the absolute time that it completes. There is an edge in DG(S,.) from the node representing 

ak to the node representing al, iff ak is not compatible with a1 and start(ak) < complete(al) in S,. Capturing 

compatibility semantic information is done using a compatibility set [12] associated with each action expressed by 

the compatible declaration found in actions. For instance, assuming the grasp action does not affect the z-coordinate 

of the robot arm and the lift and lower actions affect only the z-coordinate, grasp should be declared as compatible 

with lift and lower. In [ tech89?] we show that a schedule is functionally consistent if and only if its dependency 

graph is acyclic by using a proof similar to that for showing serializability from a dependency graph. To ensure 

a functionally consistent schedule, the scheduler must allow only compatible actions to preempt each other so that 

cyclic edges in the dependency graph are prevented. Thus, grasp may have its operations interleaved with operations 

from lift and lower in the robot arm's schedule; however, lift and lower are not compalible, thus they may not be 

interleaved. 

Reservations. The scheduler must also be capable of handling requests for reservations. To do this, it keeps a 

reservation table that records the interval that actions have been granted reservations. Each time unit in the table is 

marked as either: available, indicating that any action may execute or be given a reservation; restricted, indicating 

that only a certain specified class of compatible actions may execute or be given a reservation; or reserved, indicating 

that no action may execute or be given a reservation. In order to guarantee receiving e execution time the requesting 

action must be given e reserved units of time. The reserved interval does not necessarily have to be consecutive, it 

may be split into several sub-intervals. However, to maintain functionally consistent schedules, actions possessing 



reservations in the intervening intervals must be compatible with the requesting action. 

To support simultaneous reservation blocks, the scheduler must find a common start time for the reserved 

intervals of the actions in a simultaneous block and must additionly ensure that each of these reserved intervals is 

not broken into subintervals. To agree on a start time, a centralized scheduler (one scheduler for all resources in the 

system) could check reservation tables for all resources in the request; a decentralized scheduler (e.g. a scheduler 

for each resource), could employ a distributed agreement protocol [13]. 

To support exclusive reservation blocks, the scheduler must not only mark e units of reserved time for each 

reservation request made in the exclusive block, it must also mark all times in the exclusive interval as restricted 

to those actions which are compatible with all actions in the exclusive block. A method for doing this is to first 

attempt to make independent "conditional reservations" for each request. A conditional reservation is one that, if 

granted, may be released later. If all conditional reservations are granted, then the reserved interval is determined 

and the scheduler attempts to restrict it. If incompatible reservations have already been made in the exclusive 

interval, then all conditional reservations are released and the exclusive block is denied. Otherwise, the exclusive 

interval is marked as restricted and the exclusive block is granted. We are investigating other methods for enforcing 

exclusive blocks that reduce the amount of restricted time and improve the probability of granting the requests, 

such as a two-phase reservation protocol, which is similar to a two-phase locking protocol [13]. 

4 Conclusion 

This paper has described language constructs for distributed real-time programming that are designed to support 

timing consistency and functional consistency, including simultaneity, exclusiveness, and atomicity of actions. The 

constructs also support early recovery, and structured programming techniques. 

Functional consistency is supported through actions, which are designed to preserve functional constraints when 

executed without interference, and by the scheduler which ensures that actions are not interfered with by incompatible 

actions. Further functional consistency constraints on sets of actions are expressed by the exclusive block construct 

that specifies sets of actions that may not be interfered with, by the simultaneous block that specifies concurrent 

actions start at the same time and are uninterrupted, and by the TAC block that specifies all-or-nothing performance 

of timed actions. Resources and processes provide information to allow the scheduler to meet these constraints. 

Timing consistency is supported by temporal scopes which explicitly express timing constraints for the scheduler 

to enforce. Allowing preemption also supports timing consistency by reducing priority blocking and holding of 

idle resources. To inform the scheduler of preemption that maintains functional consistency, we introduced the 

specification of compatibility sets for actions. The reduction of priority blocking and of holding idle resources is 

also supported by the use of the reserve consb-uct, which allows the functional consistency preservation provided 

by traditional locking techniques while reducing the idle holding of resources found in traditional locking. 

Early detection of constraint violations is supported by the use of reservations that determine whether certain 

sets of actions will meet their timing constraints before the actions are executed. The exception handler associated 

with temporal scopes provides recovery in the event that constraints are actually violated. In addition, each of the 

three stages of a timed action provide an opportunity to check if constraints will be met and to invoke recovery if 

they will not be met. 



The use of an abstract data type paradigm for resource design and a transaction paradigm for action and process 

design supports modularity and abstraction in our approach. Expression of a resource's functional and timing 

constraints is isolated within its actions. The actions then provide an abstract interface to processes that hides 

these constraints. Temporal scopes, exclusive blocks, and TAC blocks modularize and explicitly express constraints 

making the writing, modification, and verification of the distributed real-time programs easier. In addition, the 

constructs support the use of a dynamic real-time scheduler, such as that proposed in [15], that abstracts the 

scheduling of constraints from the processes and actions themselves. 

The language constructs are currently being embedded in the C language [9] executing using a real-time kemel 

[16] being developed at the University of Pennsylvania for distributed real-time control applications. 
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