
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

November 1989

Language Constructs for Distributed Real-Time Consistency Language Constructs for Distributed Real-Time Consistency

Victor Wolfe
University of Pennsylvania

Susan Davidson
University of Pennsylvania, susan@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Victor Wolfe, Susan Davidson, and Insup Lee, "Language Constructs for Distributed Real-Time
Consistency", . November 1989.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-89-78.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/813
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F813&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/813
mailto:repository@pobox.upenn.edu

Language Constructs for Distributed Real-Time Consistency Language Constructs for Distributed Real-Time Consistency

Abstract Abstract
In this paper, we present a model and language constructs for a distributed real-time system with the goal
of allowing the structured specification of functional and timing constraints, along with explicit, early error
recovery from timing faults. To do this, we draw on ideas from (non-distributed) real-time programming
and distributed transaction-based systems [81]. A complete language is not specified; the constructs
described are assumed to be embedded in a block-structured procedural host programming language
such as C [9] or C++ [10] (our current preliminary implementation is in C). The model consists of
resources, processes, and a global scheduler. Resources are abstractions that export operations to
processes, and specify acceptable concurrency of operations to the scheduler. Processes manipulate
resources using the exported operations, and specify synchronization and restrictions on concurrency (at
the exported operation level) to the scheduler. Examples of the types of information given to the
scheduler are that a set of operations should be performed "simultaneously", or that a sequence of
operations should be performed without interference by another process. The global scheduler embodies
the entity or entities that schedule the CPU, memory, devices and other resources in the system. It
performs preemptive scheduling of all resources based on dynamic priorities associated with the
processes, preserves restrictions on concurrency stated by resources and processes, and is capable of
giving "guarantees" to processes that they will receive resources during a specified future time interval.

The remainder of the paper is structured as follows. In the next section, we present language constructs
for an expression of timing constraints called temporal scopes, and described resources and processes.
Section 3 describes what is required of the global scheduler to support these constructs, and what is
entailed in guaranteeing functional consistency.' We conclude in Section 4.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-89-78.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/813

https://repository.upenn.edu/cis_reports/813

Language Constructs
For Distributed

Real-Time Consistency

MS-CIS-89-78
GRASP LAB 199

Victor Wolfe
Susan Davidson

Insup Lee

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

December 1989

Language Constructs for Distributed Real-Time Consistency

Victor Wolfe, Susan Davidson, and Insup Lee
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19 104

November 27, 1989

1 Introduction

Real-time applications such as robotics, industrial control and avionics, operate in environrnellts that impose complex

functional and timing constraints with severe consequences if violated. Frequently, they are distributed to match

the topology of the application devices, to provide better performance through concurrency, and to improve system

fault tolerance. For example, consider an application in which two robot arms must lift a container of chemicals

from a moving conveyer belt [I]. The belt and each robot arm is controlled by separate process; these processes

must synchronize to grab the container as it passes by the arms. To prevent spills, either both arms should lift or

neither arm should lift, the arms should lift simultaneously, and no other use of the arms should be allowed while

the lift is being performed. Furthermore, the lift should be performed under timing constraints to adhere to the

dynamics of the moving belt and inherent properties of robot control algorithms.

Language support for these distributed real-time applications is crucial. Since the applications are extremely

complex, programs must be easy to write, verify, and modify. The language must be capable of expressing the

functional, synchronization and timing constraints inherent in the underlying application in a structured manner in

the program. Programs should be modular so that resources and processes can be decomposed and constraints

can be locally specified in modules with limited knowledge of the behavior of other modules. Abstraction should

be supported so that interaction between modules is based on a simple, well-defined interface. The abstract

characterization of modules and constraints should be a simple, natural reflection of information that the programmer

has available. Currently, however, very little has been done to provide structured support for distributed real-time

programming.

One approach that has been taken is to extend traditional cyclic executive scheduling to distributed real-time

systems [2]. However, this fixed scheduling approach is inadequate for dynamic real-time applications since

it becomes intractable for a fixed schedule to account for the number of possible scenarios posed by a changing

environment. Even if it were possible to account for dynamic behavior, creating distributed synchronized executives

is complicated and modification requires re-scheduling the system.

Another approach has been to write a concurrent program that is logically correct and then add run-time

scheduling primitives to satisfy real-time constraints. For instance, in Ada [3] the programmer must translate timing

constraints into static priorities so that a priority-based scheduler schedules tasks to meet the timing constraints. In

Modula-2 [4] the programmer must explicitly add transfer commands so that co-routines coordinate with each other

to meet timing constraints. However, using scheduling primitives to "express" timing constraints results in programs

that are difficult to write, verify, and modify. Hiding timing constraints in complicated synchronization patterns

hinders error recovery from Liming violations since it is difficult or impossible to determine which timing constraint

was violated. Furthermore, since the scheduling primitives are added at compile-time, coping with a dynamic

run-time environments is complicated. Another problem is that the scheduling primitives are only concerned with

scheduling the CPU and not other shared resources that are needed to meet timing constraints, such as memory and

devices. The result is that priority inversions may occur, and timing constraints violated.

Many of these problems can be avoided or mitigated by explicitly expressing timing constraints and exception

handlers for timing violations, and allowing the run-time system to schedule system resources to best meet them.

This is similar to the approach taken in programming languages such as Pearl [5], Real-Time Euclid [6], and Flex

[7]. These languages, however, do not provide structured programming for distributed systems. In particular, they

do not support the synchronization of two actions that must be either simultaneous, exclusive, or all-or-nothing.

Furthermore, these languages are not concerned with expressing timing constraints on resources other than the CPU.

In this paper, we present a model and language constructs for a distributed real-time system with the goal of

allowing the structured specification of functional and timing constraints, along with explicit, early error recovery

from timing faults. To do this, we draw on ideas from (non-distributed) real-time programming and distributed

transaction-based systems [81. A complete language is not specified; the constructs described are assumed to be

embedded in a block-structured procedural host programming language such as C [9] or C++ [lo] (our current

preliminary implementation is in C). The model consists of resources, processes, and a global scheduler. Resources

are abstractions that export operations to processes, and specify acceptable concurrency of operations to the sched-

uler. Processes manipulate resources using the exported operations, and specify synchronization and restrictions on

concurrency (at the exported operation level) to the scheduler. Examples of the types of information given to the

scheduler are that a set of operations should be performed "simultaneously", or that a sequence of operations should

be performed without interference by another process. The global scheduler embodies the entity or entities that

schedule the CPU, memory, devices and other resources in the system. It performs preemptive scheduling of all

resources based on dynamic priorities associated with the processes, preserves restrictions on concurrency stated by

resources and processes, and is capable of giving "guarantees" to processes that they will receive resources during

a specified future time interval.

The remainder of the paper is structured as follows. In the next section, we present language constructs for an

expression of timing constraints called temporal scopes, and described resources and processes. Section 3 describes

what is required of the global scheduler to support these constructs, and what is entailed in guaranteeing functional

consistency.' We conclude in Section 4.

2 Language Constructs

What timing expression is needed in a distributed environment where there are multiple threads of execution? Firstly,

constraints on single threads of execution must be expressed. These include bounds on start times, deadlines, and

A complete explanation of these ideas is presented in [tech89?].

total execution times [l 11. Secondly, constraints on the coordinated execution of multiple threads must be expressed.

In traditional distributed environments where only functional consistency must be reasoned about, there are notions

of "synchronizing" the order of execution of threads using synchronous communication or a rendezvous construct

[3], there are also notions of serializable execution and a guarantee of atomicity, both of which are bound up in

the notion of a transaction [8,12]. In a time-constrained environment, we sometimes need something stronger than

synchrony or serializability: simultaneity so that threads may execute at the same time and exclusive execution so

that threads can be assured of no interference during specific time intervals. For example, in the coordinating robots

example, the two arms must lift the container simultaneously to avoid spilling. Exclusive execution is also required:

each arm must execute a "grasp" and series "lifts" without interference from other processes attempting to use the

arm. This lifting must also be done atomically, that is, either both arms should "grasp" and "lift", or neither should.

Furthermore, the entire lifting task is time-constrained since there is a deadline, imposed by the dynamics of the

belt, by which the lift must either be completed, or the coordinating process notified that it did not occur.

In this section, we give constructs for timing expression, starting with temporal scopes for single threads of

execution. We then define resources as single threads of execution that export operations to processes. Processes can

fork concurrent execution of exported operations, and therefore can require that a set or a sequence of operations be

exclusive or simultaneous. Finally, there is a notion of timed atomic commitment, which allows a set of operations

to be performed if and only if there is a guarantee that, barring faults, the operations can all be completed by a

global deadline.

2.1 Temporal Scopes

In a real-time applications, operations frequently must start at a specific time or complete by a deadline. Temporal

scopes [l l] explicitly express these timing constraints as follows:

after (sa) before (sb) execute (e) within (d) do
(statements-1)

except
when E-START do (statements2) end when
when E-EXECUTE do (statements3) end when
when EBEADLINE do (statements-4) end when

end before

(statements-1) must not start until after (sa). If (statements-1) are not started by (sb), then (statements2) are

executed. If (statements-1) or (statements2) take over (e) execution time, then execution is terminated and

(statements3) are executed. If the the action is not completed by (d), then execution is terminated and (statementsA)

are executed. Each constraint and exception handler clause is optional. A discussion of nested temporal scopes and

a summary of the temporal scope and periodic temporal scope language constructs is gven in [tech89?].

2.2 Resources

Resources are designed as abstract data types where each resource has a local state and a set of exported operations.

A resource is declared as follows:

resource (resourceID)

(data structure declarations)
(local procedure declarations)
(action declarations)
(statements)

end resource

The resource's state parameters and local procedures are declared using data structure and procedure declarations

of the host language. For example, state parameters of the robot arm resource might include declaration of data

structures for its Cartesian coordinates and the position of its hand (grasplungrasp). The resource's body consists

of {statements) that are executed when the resource is created. The resource's exported operations, called actions,

are declared as follows:

action (actionID) (arguments);
compatible { (actionID1). . . . , (actionID,))
(statements)

end action

(arguments) are value parameters. The compatible declaration is used to inform the scheduler which actions may

preempt this action without causing functional inconsistency (see Section 3). The action's body is a sequence of

(statements) designed to meet functional constraints when executed in isolation to completion. Its original deadline

is inherited from the process that calls it. Temporal scopes within the action expressing timing constraints that

are inherent to the resource are nested within the inherited temporal scope. Consider a robot arm resource as an

example; it could have the following actions: lift, lower and grasp; as well as others. The coordinating process

may impose a 10 second deadline on a lift action of a robot arm when the action is called. The lift action inherits

this deadline, and any constraints inherent to the action due to the lift control algorithm are nested within this 10

second deadline.

2.3 Processes
Process are declared as follows:

process (processID)
(local data structure declarations)
(local procedure declarations)
(timed action declarations)
(process body}

end process

Local data structures and procedures are declared in the host language and may be used only within the process.

Timed actions are a special kind of procedure for use in timed atomic commitment, and are described later. A

process body consists of a sequence of either host language statements, action calls, concurrency blocks, reservation

blocks, or tac blocks. The temporal scope construct described in Section 2.1 is used to express timing constraints

on sequences of blocks in processes. We now describe the components of a process body.

Action calls are specified as:

(resourceID.action1D) ({params)).

Concurrency blocks are expressed using cobegin - coend constructs. Only action calls are allowed in this block.

The actions are called concurrently and all actions must complete in order for the concurrency block to complete.

Reservation Blocks. Reservation blocks allow a process to detect potential timing constraint violations before they

occur by determining whether resources will be available to meet timing constraints. A single reserve statement

requests a guarantee from the scheduler that an action will receive e units of execution time somewhere in a time

interval [s , dl; e is not necessarily consecutive. It can be used as a statement in a process:

[S T , er] = reserve e, [s , d] (resourceID.actionID)

The return value indicates the lower and upper bounds of the time that the action is reserved for, or NULL indicating

that the guarantee could not be made. These bounds may be used to synchronize subsequent reservations requests;

for example er from one reservation can be used as s in a later reservation to ensure that second reservation starts

after the first reserved interval completes.

Another form of reservation block is a simultaneous reservation block, which is used to specify that actions start

at the same time and that each action's reserved time is uninterrupted after this common start time. The syntax is

begin align
 ST^, er l] = reserve e l , [s l , d l] (resourceID.actionID1)

[srn, el-,] = reserve e,, [s,, d,] (resourceID.actionlD,)
end align

Section 3 describes how the scheduler ensures that srl = sra = . . . sr, and that each reservation is uninterrupted.

This construct can be used in the example to specify that the arms are to lift simultaneously.

Another use of reservations is to exclude other actions from executing at certain times because, in order to

reason about consistency, some sets of actions in a process must appear to be executed without interference from

other processes. For instance, while the lift coordinating process is performing a series of incremental lift actions

on an arm, we do not wish to allow a lower action issued by another process to be scheduled. Exclusive actions

may not necessarily be on the same resource. For instance, the process may wish to ensure that the passing of an

object from one arm to another, which is a sequence of interleaved actions of the two arms, is not interfered with

by other processes trying to use either arm. To express these requirements, another form of reservation block called

an exclusive block is used in a process. An exclusive block has the structure:

begin exclusive
[sr l , er l] = reserve e l , [sl, dl] (resourceID.actionID1)

[ST,, ern] = reserve en, [s,, d,] (resourceID.actionlD,)
end exclusive

The exclusive block specifies that during the interval bounded by the earliest start of a reservation granted in the block

to the end of the latest reservation granted in the block, called the exclusive interval, no action that could interfere with

any action in the block can be executed. Note that this is a stronger requirement than the serializability requirement

found in non-real-time distributed systems [8,13,12]. Serializability requires that, although actions which could

potentially interfere with a transaction can be scheduled during the transaction, the schedule must be functionally

equivalent to one in which no interference occurs. Exclusive blocks further require that no incompatible action

appear anywhere in the exclusive interval. This stronger requirement is needed because traditional serializability is

not concerned with when interfering actions occur, only that they do not cause the schedule to be unserializable.

However, in a distributed real-time control application where resources interact, the time at which interfering actions

occur is important. For instance, consider the passing of an object from one arm to another: Serializing the schedule

of each arm is not sufficient because it may allow an incompatible movement of the arm to be executed on arml

while the passing of the object is being performed. If the incompatible move action is scheduled after all movement

of arml required by the passing process is done, the passing actions may be serializable, but this incompatible

action could cause arml to be moved before arm2 is done interacting with it. An exclusive block alleviates this

problem by specifying that the interfering movement can not be scheduled while any actions in the block are still

executing. An exclusive block also specifies that either all reservations are granted with the above restriction or all

of them are denied (indicated by NULL return values for all intervals in the exclusive block). Section 3 describes

how a scheduler can ensure these requirements.

Simultaneous and exclusive reservation blocks may be nested within each other. A simultaneous block nested

within an exclusive block specifies that the actions in the simultaneous block start at the same time, and that their

reservations, like all other reservations in the outer exclusive block, are used to compute the exclusive interval. An

exclusive block nested within a simultaneous block specifies that the all actions in the simultaneous block, including

those within the nested exclusive block, have reservations starting at the same time; those actions in the nested

exclusive block further require that no actions that interfere with them be executed until all of their reservations

have completed. Nesting exclusive blocks in exclusive blocks or simultaneous blocks in simultaneous blocks is

redundant; it adds no further restrictions on the scheduler.

Timed Atomic Commitment. Another constraint posed by processes is that some sets of actions have the property

that either all actions in the set be performed correctly or none should be performed. Reaching a decision to perform

under an all-or-none constraint is known as atomic commitment [13]. When the decision and the performance of

the decided-upon action must be done under timing constraints, it is called timed atomic commitment (TAC) [I].

In the example, the lifting of the two arms is a TAC because if one arm can not grasp the container or it appears

that one arm can not complete lifting within timing constraints, then neither arm should lift to prevent spills of the

container. A more formal definition of the TAC problem and its constructs is given in [I].

An action in a TAC is a special form of process procedure called a timed action that coordinates with other

timed actions by executing an underlying protocol, such as a centralized timed two-phase commit protocol [I] to

ensure all-or-nothing behavior. Timed actions have three stages to detect timing constraint violations as early as

possible: a reservation stage which detects potential violations before a timed action starts; a vote stage which

detects violations before a timed action performs any actions that affect consistency; and a performance stage

during which consistency-altering actions are performed. The structure of the timed action construct is:

timed action (action-name) ((parameters))
{ (reservation-block))

begin
(statementsl) /* decide vote: YES or NO */
vote (YES/NO)
await

when COMMIT do (statements2) end when

when ABORT do (statementsa) end when
except

when EDEADLINE do (statements4) end when
end action

The timed action's reservation stage is indicated by { (reservation-block) } which lists a set of reservation blocks

(described above). If any of the specified reservations are denied, then (statements3) are executed. (statementsl)

constitute the vote stage, which ends with the vote statement. If the decision arrived at by the underlying protocol

is to commit in the performance stage, then (statements2) are executed; if the decision is not to perform (abort),

(statements3) are executed. If the timed action's inherited deadline is violated, then current execution is terminated

and (statements4) are executed.

In our example, a timed action for lifting arm1 would first attempt to reserve use of arml in time to meet its

deadline. In its vote stage, it would call the grasp action of arml to attempt to grasp the container before lifting.

If the initial reservation is denied or it can not grasp, then it will vote NO and not lift. Otherwise, it executes the

underlying TAC protocol to determine if it should lift.

To invoke a TAC, a process starts a set of concurrent timed actions and then waits for their results. The structure

of the TAC block is:

begin tac
Vl := (Timed-actionID,) ((args))

V,:= (TimedactionID~) ((args))
end tac;

The return values, Vi, in the TAC block indicate whether the timed action committed, aborted, or has not

returned. When all timed actions have returned, the TAC completes. To establish a deadline for TAC, the TAC

block is enclosed within a temporal scope.

Scheduling

We include the scheduler in our language construct presentation because the scheduler must enforce the consistency

that the program expresses. Proposing a new scheduling algorithm or advocating a particular existing scheduling

algorithm is beyond the scope of this paper; instead, we discuss the requirements posed to a scheduling algorithm

by our language constructs and outline possible implementation techniques.

Meeting Timing Constraints. To meet timing constraints, a scheduler should use the timing constraints expressed

by temporal scopes to schedule the actions. This can be done by incorporating timing constraint information into

a dynamic priority associated with a process and scheduling based on this priority. For example, earliest-deadline-

first scheduling determines dynamic priority as a function of the deadline alone and has been shown to be optimal

for meeting deadlines under certain conditions [14]. A more complex example is the Spring kernel [IS], which

incorporates slack time, static priority, and resource use into it dynamic priority value.

To further support timing constraint enforcement, the scheduler should avoid priority blocking that occurs when

a lower-priority process keeps a higher-priority process from executing by holding resources required by the higher-

priority process. Avoiding priority blocking allows more important processes to meet their timing constraints, and if

the dynamic priority value is dependent on timing urgency, then timing consistency is better supported. Furthermore,

the scheduler should minimize the time that it allows processes to hold idle resources because this holding may

block other processes and contribute to them missing their timing constraints unnecessarily. One way to do avoiding

priority blocking and reduce the holding of idle resources is to allow the scheduler to preempt one action for another

wherever possible. Preemptive scheduling has been shown to be optimal for meeting timing constraints [14].

Meeting Functional Constraints. The problem with allowing arbitrary preemption is that the functional constraint-

preserving property of actions may be lost because the property is predicated on the action's executing without

interference from other actions. The scheduler should preempt only if the resulting resource schedule is functionally

consistent. A functionally consistent schedule is one in which all actions that have completed in the schedule

produce consistent states. One way to achieve a functionally consistent schedule is to require that the schedule be

serializable. A serializable schedule yields the same result as a schedule where all actions are run to completion

without concurrency [13]. All serializable schedules are, by the definition of actions, functionally consistent.

However, there may be preemptions that produce a functionally consistent schedule that is not serializable.

To determine the functional consistency of a schedule, we use a similar method to that used to determine

serializability [12]: a dependency graph. Let S, be a schedule for a resource r and let DG(Sr) be a directed

graph. The nodes of DG(S,.) are the actions in S,.. Let start(ai) be the absolute time that action ai starts in S,.

and complete(ai) be the absolute time that it completes. There is an edge in DG(S,.) from the node representing

ak to the node representing al, iff ak is not compatible with a1 and start(ak) < complete(al) in S,. Capturing

compatibility semantic information is done using a compatibility set [12] associated with each action expressed by

the compatible declaration found in actions. For instance, assuming the grasp action does not affect the z-coordinate

of the robot arm and the lift and lower actions affect only the z-coordinate, grasp should be declared as compatible

with lift and lower. In [tech89?] we show that a schedule is functionally consistent if and only if its dependency

graph is acyclic by using a proof similar to that for showing serializability from a dependency graph. To ensure

a functionally consistent schedule, the scheduler must allow only compatible actions to preempt each other so that

cyclic edges in the dependency graph are prevented. Thus, grasp may have its operations interleaved with operations

from lift and lower in the robot arm's schedule; however, lift and lower are not compalible, thus they may not be

interleaved.

Reservations. The scheduler must also be capable of handling requests for reservations. To do this, it keeps a

reservation table that records the interval that actions have been granted reservations. Each time unit in the table is

marked as either: available, indicating that any action may execute or be given a reservation; restricted, indicating

that only a certain specified class of compatible actions may execute or be given a reservation; or reserved, indicating

that no action may execute or be given a reservation. In order to guarantee receiving e execution time the requesting

action must be given e reserved units of time. The reserved interval does not necessarily have to be consecutive, it

may be split into several sub-intervals. However, to maintain functionally consistent schedules, actions possessing

reservations in the intervening intervals must be compatible with the requesting action.

To support simultaneous reservation blocks, the scheduler must find a common start time for the reserved

intervals of the actions in a simultaneous block and must additionly ensure that each of these reserved intervals is

not broken into subintervals. To agree on a start time, a centralized scheduler (one scheduler for all resources in the

system) could check reservation tables for all resources in the request; a decentralized scheduler (e.g. a scheduler

for each resource), could employ a distributed agreement protocol [13].

To support exclusive reservation blocks, the scheduler must not only mark e units of reserved time for each

reservation request made in the exclusive block, it must also mark all times in the exclusive interval as restricted

to those actions which are compatible with all actions in the exclusive block. A method for doing this is to first

attempt to make independent "conditional reservations" for each request. A conditional reservation is one that, if

granted, may be released later. If all conditional reservations are granted, then the reserved interval is determined

and the scheduler attempts to restrict it. If incompatible reservations have already been made in the exclusive

interval, then all conditional reservations are released and the exclusive block is denied. Otherwise, the exclusive

interval is marked as restricted and the exclusive block is granted. We are investigating other methods for enforcing

exclusive blocks that reduce the amount of restricted time and improve the probability of granting the requests,

such as a two-phase reservation protocol, which is similar to a two-phase locking protocol [13].

4 Conclusion

This paper has described language constructs for distributed real-time programming that are designed to support

timing consistency and functional consistency, including simultaneity, exclusiveness, and atomicity of actions. The

constructs also support early recovery, and structured programming techniques.

Functional consistency is supported through actions, which are designed to preserve functional constraints when

executed without interference, and by the scheduler which ensures that actions are not interfered with by incompatible

actions. Further functional consistency constraints on sets of actions are expressed by the exclusive block construct

that specifies sets of actions that may not be interfered with, by the simultaneous block that specifies concurrent

actions start at the same time and are uninterrupted, and by the TAC block that specifies all-or-nothing performance

of timed actions. Resources and processes provide information to allow the scheduler to meet these constraints.

Timing consistency is supported by temporal scopes which explicitly express timing constraints for the scheduler

to enforce. Allowing preemption also supports timing consistency by reducing priority blocking and holding of

idle resources. To inform the scheduler of preemption that maintains functional consistency, we introduced the

specification of compatibility sets for actions. The reduction of priority blocking and of holding idle resources is

also supported by the use of the reserve consb-uct, which allows the functional consistency preservation provided

by traditional locking techniques while reducing the idle holding of resources found in traditional locking.

Early detection of constraint violations is supported by the use of reservations that determine whether certain

sets of actions will meet their timing constraints before the actions are executed. The exception handler associated

with temporal scopes provides recovery in the event that constraints are actually violated. In addition, each of the

three stages of a timed action provide an opportunity to check if constraints will be met and to invoke recovery if

they will not be met.

The use of an abstract data type paradigm for resource design and a transaction paradigm for action and process

design supports modularity and abstraction in our approach. Expression of a resource's functional and timing

constraints is isolated within its actions. The actions then provide an abstract interface to processes that hides

these constraints. Temporal scopes, exclusive blocks, and TAC blocks modularize and explicitly express constraints

making the writing, modification, and verification of the distributed real-time programs easier. In addition, the

constructs support the use of a dynamic real-time scheduler, such as that proposed in [15], that abstracts the

scheduling of constraints from the processes and actions themselves.

The language constructs are currently being embedded in the C language [9] executing using a real-time kemel

[16] being developed at the University of Pennsylvania for distributed real-time control applications.

References
[I] S. Davidson, I. Lee, and V. Wolfe, "Timed atomic commitment," Tech. Rep. MS-CIS-88-80, Department of Computer and

Information Science, University of Pennsylvania, Oct. 1988. Submitted for publication.

[2] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Sentf, and R. Zainlinger, "The Mars approach," IEEE
Micro, vol. 9, pp. 2 5 4 0 , Feb. 1989.

[3] U.S. Department of Defense, "Ada Programming Language," 1983. ANSVMIL-STD-1815A-1983.

[4] N. Wirth, Programming in Modula-2. New York: Springer-Verlag, 1983.

[5] T. Martin, "Real-time programming language Pearl - concept and characteristics," in Proc. COMPSAC, Chicago, pp. 301-
306, 1978.

[6] E. Klingennan and A. Stoyenko, "Real-time Euclid: a language for reliable real-time systems," IEEE Transactions on
Software Engineering, vol. SE-12, pp. 941-949, Sep. 1986.

[7] K. Lin and S. Natarajan, "Expressing and maintaining timing constraints in FLEX," in Red-Time Systems Symposium,
pp. 96-105, 1988.

[8] B. Liskov, "Distributed programming in Argus," Communications of the ACM, vol. 31, pp. 300-312, March 1988.

[9] B. Kernighan and D. Ritchie, The C Programming Language. Englewood Cliffs, New Jersey: Prentice-Hall, 1978.

[lo] B. Stroustrup, The C++ Programming Language. Reading, Ma.: Addison-Wesley. 1986.

[l l] I. Lee and V. Gehlot, "Language constructs for distributed real-time programming," in Proc. IEEE Real-Tim Systems
Symposium. Dec. 1985.

[12] H. Garcia-Molina, "Using semantic knowledge for transaction processing in a distributed database system," ACM Trans-
actions on Database Systems, vol. 8. pp. 186-213, June 1983.

[13] P. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in Database Systems. New York:
Addison Wesley, 1986.

[14] C. Liu and J. Layland, "Scheduling algorithms for multi-programming in a hard-real-time environment," Journal of the
ACM, pp. 46 - 61, Jan. 1973.

[15] K. Ramamritham and J. Stankovic, "Overview of the spring kemel," Tech. Rep. COINS 87-54, Department of Computer
Science, The University of Masseschesetts. 1987.

[16] I. Lee, R. B. King, and R. P. Paul, "A predictable real-time kemel for distributed multi-sensor systems," IEEE Computer,
vol. 22, pp. 78-83, June 1989.

	Language Constructs for Distributed Real-Time Consistency
	Recommended Citation

	Language Constructs for Distributed Real-Time Consistency
	Abstract
	Comments

	tmp.1199893757.pdf.cThEZ

