
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1998

Exploratory Aspects of Sensor Based Planning Exploratory Aspects of Sensor Based Planning

Andrew Hicks
University of Pennsylvania

David Pettey
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Andrew Hicks and David Pettey, "Exploratory Aspects of Sensor Based Planning", . January 1998.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-98-07.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/808
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/808
mailto:repository@pobox.upenn.edu

Exploratory Aspects of Sensor Based Planning Exploratory Aspects of Sensor Based Planning

Abstract Abstract
In sensor based planning exploration is unavoidable. To understand this aspect of sensor based planning,
the authors consider the problem of motion planning for a point with "tactile sensors". In dimensions
greater than two, this problem has been shown to be unsolvable given a certain mathematical framework.
But, if the formulation of the problem is changed by taking the C-space to be discrete, then path planning
with tactile sensors is possible. In this setting we give a resolution complete algorithm for planning the
motion of a point in any dimension. Measuring the complexity of the problem by the number of discrete
moves that the robot makes, we give an upper bound for the complexity of our algorithm that is linear in
the surface area of the boundary of the C-space obstacles.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-98-07.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/808

https://repository.upenn.edu/cis_reports/808

Exploratory Aspects of Sensor Based Planning

Andrew Hicks, David Pettey

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

Exploratory Aspects of Sensor Based Planning
Technical Report MS-CIS-98-07

Andrew Hicks David Pettey

GRASP Laboratory
Department of Computer
and Information Science

University of Pennsylvania
Philadelphia, PA 19104
rah@grip.cis.upenn.edu

Abstract

I n sensor based planning exploration is unavoidable.
To understand this aspect of sensor based planning,
the authors consider the problem of motion planning
for a point with '(tactile sensors". I n dimensions
greater than two, this problem has been shown to be
unsolvable given a certain mathematical framework.

Department of
Physics and Astronomy

University of Pennsylvania
Philadelphia, PA 19104

pettey@student.physics.upenn.edu

start Start
I I

But, if the formulation of the problem is changed Figure 1: A robot with vision must get to the goal.
taking the C - s ~ a c e t o be discrete, then path planndng Even if it knows the coordinates of the goal, it does
with tactile sensors is possible. I n this setting we give not know which of the two above situations it is in.
a resol'Ution complete for planning the mo- Thus forced exploration is an inevitable problem in
tion of a point in any dimension. Measuring the com- sensor based planning.
plexity of the problem by the number of discrete moves
that the robot makes, we give a n upper bound for the
complexity of our algorithm that is linear in the sur-
face area of the boundary of the C-space obstacles.

1 Introduction

Classical robot motion planning considers problems
where the robot has full knowledge of it's workspace.
Unfortunately, robots are sometimes faced with the
more difficult situation of having incomplete descrip-
tions of their environment, and consequently the clas-
sical algorithms are often not applicable. Often,
robots have only local knowledge of their environ-
ment, i.e. their sensors have limited range and the
problem becomes one of sensor based motion plan-
ning. A familiar example of this is when a robot's
only sensor is a camera, and so only line-of-sight in-
formation is available. A more extreme example is

tactile sensing, in which case the robots sensors can
only detect an object by having physical contact with
it1. Using tactile sensors, the robot gains information
about the environment by "groping" around the en-
vironment, like a person searching for an object in
a dark room. The major difference between classical
planning problems and sensor based planning prob-
lems is that sensor based planning problems invari-
ably have an exploratory aspect to them, even if the
robot has the exact coordinates of it's goal (see figure
1). The amount of exploration necessary depends, of
course, on the type of sensor: one would expect a
robot with only tactile sensors to take much longer
to reach it's goal than a robot with a camera.

The authors goal was to understand the ex-

'Throughout this paper we will use the term "tactile" to
include very short-range sensors, i.e. the robot may not have
to actually touch an object to sense when it is very close to it.

ploratory aspects of sensor based planning. We chose
to investigate planning with tactile sensors because
we feel that the problem of sensor based planning
should be viewed as being made of a collection of lo-
cal problems which are patched together according
to global data. This data must be obtained from ex-
ploration. Thus, when investigating the exploratory
nature of the problem, the fundamental unit that is
sensed is not important. The more general problem of
efficiently fusing together all of the local information
obtained by more complex sensors will be addressed
in future work.

2 Contributions

We give an algorithm, Makepath, for tactile planning
in a discrete configuration space of any dimension.
This algorithm amounts to an on-line search on a
on the boundary of the C-space obstacles, similar to
what is proposed in [lo] and also similar in spirit to
PI.

Makepath generates a path in less than 2S + d ac-
tual physical motions of the robot, where S is roughly
the area of all of the C-space obstacles, measured in
the fundamental unit of the resolution and d is the
"Manhattan" distance from the start to the goal, also
measured in the fundamental unit of the resolution.
(This bound represents the "external complexity" of
the problem, i.e. how much time must be spent by
the robot moving.) It seems likely that 2 5 + d would
be the best upper bound that could be achieved in
our framework.

3 Relations to Previous Work

This paper has it's origins in two subjects: sensor
based planning with tactile sensors and classical plan-
ning using discrete spaces.

In 1141, Lumelsky and Stepanov considered the
problem of navigating a point in a plane with tactile
sensors, and gave two algorithms to solve this prob-
lem. These algorithms produce paths whose lengths
are no more than the sum of the straight line distance
between the start and the goal, plus a term that was
proportional to the total perimeter of the obstacles.

Lumelsky and Sun, in [15] and [17], and Cheung and
Lumelsky in [2], attempt to generalize this solution to
higher dimensions. In [9], Kutulakos, Lumelsky and
Dyer describe a theoretical framework for the prob-
lem of planning the motion of a point with sensors
in n dimensions. They conclude that the problem of
planning for a point with tactile sensors is necessarily
unsolvable.

The discretization of the configuration space of
a planning problem essentially reduces it to a graph
search problem, as was observed by Donald in [5] and
in [6]. Donald considers the problem of global path
planning and develops the "Bumble Strategy", which
was a breadth-first search from the start to the goal
on a C-space grid. Here the C-space grid is inter-
nally available to the algorithm, which is what makes
the problem global. In principle this algorithm could
be implemented for on-line planning, but due to the
fact that the robot would actually have to move to
execute the search, the runtime would be too large
because of the amount of backtracking done by the
robot. This leads us to look for algorithms that min-
imize backtracking while searching the special types
of graphs that arise from C-space obstacles.

4 The Bug2 Algorithm

Makepath was motivated by Lumelsky and Stepanov's
Bug2 algorithm [14], which is for planning the mo-
tion of a point with tactile sensors in the plane, and
has the very nice property of being provably com-
plete. One major difference between our algorithm
and Bug2 is that our algorithm remembers the C-
space obstacles that it encounters, in contrast to
Bug2, which only uses a small amount of memory.
Bug2 can be described roughly as follows: travel
on the straight line, 1, that connects the start and
the goal until bumping into an obstacle a t a point
p. Then follow the perimeter of the obstacle clock-
wise until encountering a point on 1 that is closer to
the goal than p, which we will call an exit point (if a
path connecting the start and goal exists, then this
is guaranteed to occur because of the simple topolog-
ical structure of planar obstacles). Then continue on
the line towards the goal and repeat this process if
necessary. See figure 2.

21ndirectly related, is the work that has been done with In the case of a point moving in n-dimensions, we
range data, such as [3], [8], and [7]. Additionally, there has
been some work in the algorithms community done on the com-

can still move along a line 1 that connects the start
plexity issues of planning for a point in the plane, for example and goal in the space.
[16] and [I]. But now the obstacles encountered in the configura-

start

Figure 3: What do we do in higher dimensions ? The
Figure 2: Lumelsky and Stepanov'~ for obstacles encountered in three dimensions are sur-
navigating a point in the plane: head towards the faces, and there is no natural way to go around them,
object until bumping into it, then turn left, and follow as there was in the case where the robot is a point in
the perimeter of the obstacle. the plane.

tion are manifolds of any dimension from 0 to n - 1,
and this is where the hard part of extending the algo-
rithm begins. There is no notion of clockwise as there
was in the lower dimensional case, and so there is no
single direction to move in that will guarantee that
the robot will find a closer point on I (see figure 3).
Consequently, we are forced to find a way to search
the surface, and we clearly we would prefer to do this
with as little "backtracking" as possible in order to
minimize the travel time for the robot.

5 Definitions

Since we will be making a discrete approximation
to a continuous problem it is important to carefully
define the objects that we will use.

Definition 1 A (un i t) cube in Rn is a set of the form
[a l , bl] x ... x [a,, b,] where bi - ai = 1, i = l...n. A
hyperface of this cube is a set of the form Ul x ... x U,
where Ui = {ai) or {bi) or [ai, bi]. The number of
intervals occurring in the product is the dimens ion
of the hyperface. A hyperface of dimension n - 1 is
called a face and a hyperface of dimension n - 2 is
called an edge.

C, is then simply a subset of T. The robot is allowed
to move around in this subset from cube to cube,
but may not enter it's complement, T - C, which we
denote as Cc.

Since the space that we will do our planning in
is discrete, it is not clear what should be meant by
a continuous path in it. We say that two cubes are
ad3acent if they intersect in a face (eq. if their cor-
responding center points differ only by a unit change
in one of their coordinates). For example, in two di-
mensions a square has 4 squares adjacent to it, and
in three dimensions a cube has 6 cubes adjacent to
it. By a path in C from p to q we mean a sequence of
cubes in C, p = pl,pz, ..., pr = q such that any pair
of consecutive points in this sequence are adjacent.
What this means for the robot in the real world is
that it is allowed to move in at most one direction at
a time, and only in unit increments.

A boundary cube of C is a cube p E C such that
there is a cube lying in CC, and the two cubes inter-
sect in an edge or a face.

We take as our total space, T, the set of cubes Corresponding to C and Cc are the underlying
of unit size whose vertices lie on points in Rn that spaces, C and C" which are subsets of Rn. By a
have only integer entries. Thus each cube in T is a hyperface of C or C" we mean a hyperface of a cube in
single state, and it does not make sense to consider C or CC. The set of boundary points of is equal to
moving around in the interior of a single cube. Two the set of boundary points of C", and we will denote
distinct cubes may intersect in a face, but they still this set by aC, discarding the bar over the C to keep
correspond to distinct states. Our discrete C-space, the notion simple.

,..--...--..... < - - - - - - - - - - ~ - "
* 8 , , , , ,' 8

,' '
, ,

* , , 8
_' ,
, , 7 Searching the Surface

,? .---. L --....,: - - - - - L ------.' '
8 I , m

I '
I ,

, 8

, 8
, 8

> 8
, 8 , 8 lrgl ~ , # . . - - . . , i

The robot's state is the cube entry, and it now navi-

, , ,, ,, I I

gates in the space of boundary cubes, looking for an
8 , m
8 _' I

.... ~ ...-. r , exit cube. It is always on the look out for a cube that
, 8 , t , ,
, I S m

lies on 1 that is closer to goal than is entry. We will
8 8
8 8 , 8

call such cubes exit cubes. If we consider the space of
..-..-*...--.

I " , ,
, I ' ,,

boundary cubes of a connected piece of dC, then it is
........~...., path connected with respect to our above definition

of path. We would like to find an exit cube, which is
Figure 4: The may One face of aC actually a cube of C that intersects d C in an entire

but it needs go "edge" cubes. face. Unfortunately, the set of cubes that intersects
a component d C in an entire face is not connected.
We need to add in the "edge" cubes, in order to get

6 The Algorithm Makepath from one such cube to another(see figure 4).
The robot then begins an on-line depth-first

In this section we give our algorithm Malce~ath, search through the space of boundary cubes, start-
which constructs a path beheen two cubes in C if ing at entry. As it moves, it creates a record, Cubes,
such a ~ a t h exits, or indicates that no such path is which contains a list of all the cubes that the robot
possible. Our fundamental assumption of local sens- has sensed, and which ones it has actually occupied.
ing is: if the robot occupies a cube P, in C, then The robot moves from one cube to the next available
for any cube (not just the adjacent ones) in- boundary cube if one is available. If several choices
tersecting P, the robot can tell if that cube lies are available, for now we may assume that it chooses
in C or CC. Our basic premise is that when doing one arbitrarily.
this sort of very local planning, the robot should nav- ~h~ robot may get into a situation where no
igate on the boundary of the configuration space, and boundary cubes are available for it to move to. In
thus the question that needs to be answered is how this case it looks at its record, Cubes, and does an in-
efficiently this can be done. ternal breadth-first search for the nearest boundary

Step I Suppose that we fix C and Cc and we are cube that it has not entered. So it travels back and
given a pair of states start and goal in C. The first resumes its on-line search. From a geometric view-
step is to "digitize" the straight line in Rn that con- point, the robot is covering a component of dC.
nects the center points of start and goal, i.e. compute
a path 1 in T from start to goal. The calculation of
1 is an internal operation that does not require any 8 Runtime Issues
global knowledge except the coordinates of goal.

Step I1 The robot starts at start and moves along
1, from one cube to the next, towards goal, until it
finds that the next point on the line lies in Cc, i.e.
the robot has bumped into an obstacle. The robot
then occupies a cube entry.

Step 111 This step requires the algorithm
Surf acesearch, which searches the surface for an exit
point. Roughly, Surfacesearch is an on-line depth-
first search through all of the boundary cubes of C,
starting at entry. If the robot enters a cube where
all adjacent cubes have been visited, then it performs
an internal breadth-first search, looking for a bound-
ary cube that it has not visited. Once it determines
the location of such a cube, it then backtracks to it,
through cubes that it has already entered. Upon ar-
riving a t this cube, it then returns to step 11.

To see how many moves the robot may have to make,
we count the number of moves it makes during the
periods when it is in the searching phase and the
number of moves it makes during the backtracking
phases.

During the search phase a cube is never entered
twice. Therefore the maximum number of move is
equal to the number of boundary cubes.

During backtracking, as mentioned above, the
robot need never backtrack farther than the length of
the path it has generated, since it can simply travel
back on the same path that it came on. Since this
is always a choice, that means that an upper bound
for the backtracking is equal to at most the number
of boundary cubes. But most of the time one would
expect the robot to find a much shorter way back.

tart

Figure 6: After the robot climbs out of the pit, it is
Figure 5: Here the robot searches a surface (the dot- lucky and can head straight to the goal. In this case,
ted line indicates the path). Using a gradient flow, it it never has to do any backtracking.
gets stuck in a pit.

Thus, while not traveling on I , the robot need from one run of a simulator. These plots show an

never move more than twice the number of bound- obstacle surface, (the cubes), and a path from a given

ary cubes. A~~~~~ to this the number of moves it start to a goal (the dotted line). Here we have chosen
makes on the straight line from start to goal, and de- the start and the goal to be near the surface. In this

noting the nu.mber of boundary cubes as S , gives a example the robot finds the goal without ever getting

total number of 2S + as an upper bound for the stuck. In figure 5 we see that the robot is on the back
number of moves it needs to make. It would seem of the object and that it walks into a "pit". But after

that a lower bound would be close to S + d, given it gets out of the pit, in figure 6, we see that it travels

the above framework, since the robot might have to directly to the goal. The reason for this is that in this

search the whole surface. It certainly seems that in imp1ementation we chose not On

the worst case the robot would have to search almost the surface, but roughly by moving in the direction
the entire surface, for essentially the reason given in of the gradient of the distance function to the goal.
figure 1. Fortunately there a two facts that can pas- If the gradient vanishes, then we do our next

sibly be exploited to avoid this in an implementation.
First, the robot may have sensors, that, a t a fixed

time see a part of the surface that is much larger than
just a "quantum unit", as we have considered here. ReferenceS
For example, in the planar piano movers problem, the
boundary of the configuration space is two dimen- [I] A. Blum, P. Raghavan and B. Scheiber, Navigating
siond, but if a robot with tactile Sensors makes a one & unfamiliar Geometric Terrain, SIAM J. cornput.,
dimensional motion, e.g. slides along while touch- 26(1997), pp. 110-137.
ing a wall, then it retrieves two dimensional data,
since once it knows where the wall is, it can inter- 1 ~ 1 E, Cheung and V. Lumelsky, Motion Planning for a
nally reconstruct a large piece of the Fspace bound- whole ~ ~ b ~ t ~ ~ ~ i ~ ~ ~ ~ ~ ~ ~ , , , Proc. of
ary. Thus one should take care to distinguish be- the IEEE International Conference on Robotics and
tween sensor based planning for mechanical systems, Automation, Cincinnati, OH, 1990, pp. 344-349.
as opposed to sensor based planning for a point in an
arbitrary space. [3] H. Choset and J . Burdick, Sensor Based Plan-

A second possible to speed UP the search is ning for a Planar Rod Robot: Incremental Con-
to use potential fields. The authors wrote several struction of the Planar Rod-HGVG , in Proceedings
simulators, and in figure 5 and figure 6 are two plots IEEEIICRA, New Mexico, USA, 1997.

[4] J . Cox and C.K. Y a p , On-line Motion Planning: [17] K . Sun and V . Lumelsky, Path Planning among un-
Case of a Planar Rod, Annals o f Mathematics and known obstacles: the case of a three dimensional
Artificial Intelligence, 3(1991), pp. 1-20. cartesian a m , IEEE Trans. o n Robotics and Au-

[5] B. R. Donald, Motion Planning with Six Degrees of
tomation, vol. 8 , no. 6 , pp. 776-786, 1992.

Freedom, Report No. MIT A I - T R 791, MIT, Artifi-
cial Intelligence Laboratory, 1984.

[6] B. R. Donald, A Search Algorithm for Motion Plan-
ning with Six Degrees of Freedom, Artificial Intelli-
gence, 31, 1987, pp. 295-353.

[7] I . Kamon, E. Rimon and E. Rivlin, A new
range-sensor based globally convergent navigation
algorithm for mobile robots,IEEE Conference on
Robotics and Automation(l996), pp. 429-435.

[8] K . N . Kutulakos, C . R. Dyer, and V . J . Lumelsky,
Provable Strategies for Vision-Guided Exploration
i n Three Dimensions , Proc. 1994 IEEE Int. Conf .
Robotics and Automation, 1994, pages 1365-1372.

[9] K . Kutalakos, V . Lumelsky and C . Dyer, Vision-
Guided Exploration: A Step Toward General Motion
Planning i n Three Dimensions, IEEE Conference on
Robotics and Automation(l993), pp. 289-296.

[lo] K . Kutalakos, V . Lumelsky and C . Dyer, Vision-
Guided Exploration: A Step Toward General Mo-
tion Planning i n Three Dimensions, University o f
Wisconsin Computer Sciences Department Techni-
cal Report l l l l (1 9 9 3) .

[l l] J.C. Latombe, Robot Motion Planning, Kluwer Aca-
demic Publish ers, Boston, M A , 1991.

1121 J . Lengyel, M. Reichart, B. Donald, D . Greenberg,
Real- T ime Robot Motion Planning Using Rasterizing
Computer Graphics Hardware, Proceedings o f SIG-
GRAPH'90, Dallas, T x , 1990, pp. 327-335.

[13] V . J . Lumelsky , Algorithmic and Complexity Issues
of Robot Motion i n an Uncertain Enviorment, Jour-
nal o f Complexity(3),1987, pp. 146-182.

1141 V .J . Lumelsky and A.A. Stepanov, Dynamic path
planning for a mobile automaton with limited infor-
mation on the environment, IEEE Trans. Automatic
Control, AC-31(1986), pp. 1058-1063.

[15] V . J . Lumelsky and K . Sun, A Unified Methodology
for motion planning with uncertainty for 2d and 3d
two-link robot arm manipulators, Int. J . o f Robotics
Research, vol. 9 , no. 5 , pp.89-104, 1990.

[16] C.H. Papadimitriou and M. Yannakakis, Shortest
paths without a map, i n Proc. 16th International Col-
loquim on Automata, Languages, and Programming,
Springer-Verlag, Berlin, 1989, pp. 610-620.

	Exploratory Aspects of Sensor Based Planning
	Recommended Citation

	Exploratory Aspects of Sensor Based Planning
	Abstract
	Comments

	tmp.1199829075.pdf.exil4

