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Abstract 

I n  sensor based planning exploration is unavoidable. 
To understand this aspect of sensor based planning, 
the authors consider the problem of motion planning 
for a point with '(tactile sensors". I n  dimensions 
greater than two, this problem has been shown to be 
unsolvable given a certain mathematical framework. 
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But,  if  the formulation of the problem is changed Figure 1: A robot with vision must get to the goal. 
taking the C - s ~ a c e  t o  be discrete, then path planndng Even if it knows the coordinates of the goal, it does 
with tactile sensors is  possible. I n  this setting we give not know which of the two above situations it is in. 
a resol'Ution complete for planning the mo- Thus forced exploration is an inevitable problem in 
tion of a point in any dimension. Measuring the com- sensor based planning. 
plexity of the problem by the number of discrete moves 
that the robot makes, we give a n  upper bound for the 
complexity of our algorithm that is  linear in the sur- 
face area of the boundary of the C-space obstacles. 

1 Introduction 

Classical robot motion planning considers problems 
where the robot has full knowledge of it's workspace. 
Unfortunately, robots are sometimes faced with the 
more difficult situation of having incomplete descrip- 
tions of their environment, and consequently the clas- 
sical algorithms are often not applicable. Often, 
robots have only local knowledge of their environ- 
ment, i.e. their sensors have limited range and the 
problem becomes one of sensor based motion plan- 
ning. A familiar example of this is when a robot's 
only sensor is a camera, and so only line-of-sight in- 
formation is available. A more extreme example is 

tactile sensing, in which case the robots sensors can 
only detect an object by having physical contact with 
it1. Using tactile sensors, the robot gains information 
about the environment by "groping" around the en- 
vironment, like a person searching for an object in 
a dark room. The major difference between classical 
planning problems and sensor based planning prob- 
lems is that sensor based planning problems invari- 
ably have an exploratory aspect to them, even if the 
robot has the exact coordinates of it's goal (see figure 
1). The amount of exploration necessary depends, of 
course, on the type of sensor: one would expect a 
robot with only tactile sensors to take much longer 
to reach it's goal than a robot with a camera. 

The authors goal was to understand the ex- 

'Throughout this paper we will use the term "tactile" to 
include very short-range sensors, i.e. the robot may not have 
to actually touch an object to  sense when it is very close to it. 



ploratory aspects of sensor based planning. We chose 
to investigate planning with tactile sensors because 
we feel that the problem of sensor based planning 
should be viewed as being made of a collection of lo- 
cal problems which are patched together according 
to global data. This data must be obtained from ex- 
ploration. Thus, when investigating the exploratory 
nature of the problem, the fundamental unit that is 
sensed is not important. The more general problem of 
efficiently fusing together all of the local information 
obtained by more complex sensors will be addressed 
in future work. 

2 Contributions 

We give an algorithm, Makepath, for tactile planning 
in a discrete configuration space of any dimension. 
This algorithm amounts to an on-line search on a 
on the boundary of the C-space obstacles, similar to 
what is proposed in [lo] and also similar in spirit to  
PI. 

Makepath generates a path in less than 2S + d ac- 
tual physical motions of the robot, where S is roughly 
the area of all of the C-space obstacles, measured in 
the fundamental unit of the resolution and d is the 
"Manhattan" distance from the start to the goal, also 
measured in the fundamental unit of the resolution. 
(This bound represents the "external complexity" of 
the problem, i.e. how much time must be spent by 
the robot moving.) It  seems likely that 2 5  + d would 
be the best upper bound that could be achieved in 
our framework. 

3 Relations to  Previous Work 

This paper has it's origins in two subjects: sensor 
based planning with tactile sensors and classical plan- 
ning using discrete spaces. 

In 1141, Lumelsky and Stepanov considered the 
problem of navigating a point in a plane with tactile 
sensors, and gave two algorithms to solve this prob- 
lem. These algorithms produce paths whose lengths 
are no more than the sum of the straight line distance 
between the start and the goal, plus a term that was 
proportional to the total perimeter of the obstacles. 

Lumelsky and Sun, in [15] and [17], and Cheung and 
Lumelsky in [2], attempt to generalize this solution to 
higher dimensions. In [9], Kutulakos, Lumelsky and 
Dyer describe a theoretical framework for the prob- 
lem of planning the motion of a point with sensors 
in n dimensions. They conclude that the problem of 
planning for a point with tactile sensors is necessarily 
unsolvable. 

The discretization of the configuration space of 
a planning problem essentially reduces it to  a graph 
search problem, as was observed by Donald in [5] and 
in [6]. Donald considers the problem of global path 
planning and develops the "Bumble Strategy", which 
was a breadth-first search from the start to the goal 
on a C-space grid. Here the C-space grid is inter- 
nally available to the algorithm, which is what makes 
the problem global. In principle this algorithm could 
be implemented for on-line planning, but due to the 
fact that the robot would actually have to move to 
execute the search, the runtime would be too large 
because of the amount of backtracking done by the 
robot. This leads us to look for algorithms that min- 
imize backtracking while searching the special types 
of graphs that arise from C-space obstacles. 

4 The Bug2 Algorithm 

Makepath was motivated by Lumelsky and Stepanov's 
Bug2 algorithm [14], which is for planning the mo- 
tion of a point with tactile sensors in the plane, and 
has the very nice property of being provably com- 
plete. One major difference between our algorithm 
and Bug2 is that our algorithm remembers the C- 
space obstacles that it encounters, in contrast to 
Bug2, which only uses a small amount of memory. 
Bug2 can be described roughly as follows: travel 
on the straight line, 1, that connects the start and 
the goal until bumping into an obstacle a t  a point 
p. Then follow the perimeter of the obstacle clock- 
wise until encountering a point on 1 that is closer to 
the goal than p, which we will call an exit point (if a 
path connecting the start and goal exists, then this 
is guaranteed to occur because of the simple topolog- 
ical structure of planar obstacles). Then continue on 
the line towards the goal and repeat this process if 
necessary. See figure 2. 

21ndirectly related, is the work that has been done with In the case of a point moving in n-dimensions, we 
range data, such as [3], [8], and [7]. Additionally, there has 
been some work in the algorithms community done on the com- 

can still move along a line 1 that connects the start 
plexity issues of planning for a point in the plane, for example and goal in the space. 
[16] and [I]. But now the obstacles encountered in the configura- 
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Figure 3: What do we do in higher dimensions ? The 
Figure 2: Lumelsky and Stepanov'~ for obstacles encountered in three dimensions are sur- 
navigating a point in the plane: head towards the faces, and there is no natural way to go around them, 
object until bumping into it, then turn left, and follow as there was in the case where the robot is a point in 
the perimeter of the obstacle. the plane. 

tion are manifolds of any dimension from 0 to n - 1, 
and this is where the hard part of extending the algo- 
rithm begins. There is no notion of clockwise as there 
was in the lower dimensional case, and so there is no 
single direction to move in that will guarantee that 
the robot will find a closer point on I (see figure 3). 
Consequently, we are forced to find a way to search 
the surface, and we clearly we would prefer to do this 
with as little "backtracking" as possible in order to 
minimize the travel time for the robot. 

5 Definitions 

Since we will be making a discrete approximation 
to a continuous problem it is important to carefully 
define the objects that we will use. 

Definition 1 A (un i t )  cube in Rn is a set of the form 
[ a l ,  bl] x ... x [a,, b,] where bi - ai = 1, i = l...n. A 
hyperface of this cube is a set of the form Ul x ... x U, 
where Ui = {ai) or {bi) or [ai, bi]. The number of 
intervals occurring in the product is the dimens ion  
of the hyperface. A hyperface of dimension n - 1 is 
called a face and a hyperface of dimension n - 2 is 
called an edge. 

C, is then simply a subset of T. The robot is allowed 
to move around in this subset from cube to cube, 
but may not enter it's complement, T - C, which we 
denote as Cc. 

Since the space that we will do our planning in 
is discrete, it is not clear what should be meant by 
a continuous path in it. We say that two cubes are 
ad3acent if they intersect in a face (eq. if their cor- 
responding center points differ only by a unit change 
in one of their coordinates). For example, in two di- 
mensions a square has 4 squares adjacent to it, and 
in three dimensions a cube has 6 cubes adjacent to 
it. By a path in C from p to q we mean a sequence of 
cubes in C,  p = pl,pz, ..., pr = q such that any pair 
of consecutive points in this sequence are adjacent. 
What this means for the robot in the real world is 
that it is allowed to move in at most one direction at 
a time, and only in unit increments. 

A boundary cube of C is a cube p E C such that 
there is a cube lying in CC, and the two cubes inter- 
sect in an edge or a face. 

We take as our total space, T, the set of cubes Corresponding to C and Cc are the underlying 
of unit size whose vertices lie on points in Rn that spaces, C and C" which are subsets of Rn. By a 
have only integer entries. Thus each cube in T is a hyperface of C or C" we mean a hyperface of a cube in 
single state, and it does not make sense to consider C or CC. The set of boundary points of is equal to 
moving around in the interior of a single cube. Two the set of boundary points of C", and we will denote 
distinct cubes may intersect in a face, but they still this set by aC, discarding the bar over the C to keep 
correspond to distinct states. Our discrete C-space, the notion simple. 
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boundary cubes of a connected piece of dC, then it is 
........~...., path connected with respect to our above definition 

of path. We would like to find an exit cube, which is 
Figure 4: The may One face of aC actually a cube of C that intersects d C  in an entire 

but it needs go "edge" cubes. face. Unfortunately, the set of cubes that intersects 
a component d C  in an entire face is not connected. 
We need to add in the "edge" cubes, in order to  get 

6 The Algorithm Makepath from one such cube to another(see figure 4). 
The robot then begins an on-line depth-first 

In this section we give our algorithm Malce~ath, search through the space of boundary cubes, start- 
which constructs a path beheen two cubes in C if ing at entry. As it moves, it creates a record, Cubes, 
such a ~ a t h  exits, or indicates that no such path is which contains a list of all the cubes that the robot 
possible. Our fundamental assumption of local sens- has sensed, and which ones it has actually occupied. 
ing is: if the robot occupies a cube P, in C, then The robot moves from one cube to the next available 
for any cube (not just the adjacent ones) in- boundary cube if one is available. If several choices 
tersecting P, the robot can tell if that cube lies are available, for now we may assume that it chooses 
in C or CC. Our basic premise is that when doing one arbitrarily. 
this sort of very local planning, the robot should nav- ~h~ robot may get into a situation where no 
igate on the boundary of the configuration space, and boundary cubes are available for it to move to. In 
thus the question that needs to be answered is how this case it looks at its record, Cubes, and does an in- 
efficiently this can be done. ternal breadth-first search for the nearest boundary 

Step I Suppose that we fix C and Cc and we are cube that it has not entered. So it travels back and 
given a pair of states start and goal in C. The first resumes its on-line search. From a geometric view- 
step is to "digitize" the straight line in Rn that con- point, the robot is covering a component of dC. 
nects the center points of start and goal, i.e. compute 
a path 1 in T from start to goal. The calculation of 
1 is an internal operation that does not require any 8 Runtime Issues 
global knowledge except the coordinates of goal. 

Step I1 The robot starts at start and moves along 
1, from one cube to the next, towards goal, until it 
finds that the next point on the line lies in Cc, i.e. 
the robot has bumped into an obstacle. The robot 
then occupies a cube entry. 

Step 111 This step requires the algorithm 
Surf acesearch, which searches the surface for an exit 
point. Roughly, Surfacesearch is an on-line depth- 
first search through all of the boundary cubes of C,  
starting at entry. If the robot enters a cube where 
all adjacent cubes have been visited, then it performs 
an internal breadth-first search, looking for a bound- 
ary cube that it has not visited. Once it determines 
the location of such a cube, it then backtracks to it, 
through cubes that it has already entered. Upon ar- 
riving a t  this cube, it then returns to step 11. 

To see how many moves the robot may have to make, 
we count the number of moves it makes during the 
periods when it is in the searching phase and the 
number of moves it makes during the backtracking 
phases. 

During the search phase a cube is never entered 
twice. Therefore the maximum number of move is 
equal to the number of boundary cubes. 

During backtracking, as mentioned above, the 
robot need never backtrack farther than the length of 
the path it has generated, since it can simply travel 
back on the same path that it came on. Since this 
is always a choice, that means that an upper bound 
for the backtracking is equal to at most the number 
of boundary cubes. But most of the time one would 
expect the robot to  find a much shorter way back. 
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Figure 6: After the robot climbs out of the pit, it is 
Figure 5:  Here the robot searches a surface (the dot- lucky and can head straight to the goal. In this case, 
ted line indicates the path). Using a gradient flow, it it never has to do any backtracking. 
gets stuck in a pit. 

Thus, while not traveling on I ,  the robot need from one run of a simulator. These plots show an 

never move more than twice the number of bound- obstacle surface, (the cubes), and a path from a given 

ary cubes. A~~~~~ to this the number of moves it start to a goal (the dotted line). Here we have chosen 
makes on the straight line from start to  goal, and de- the start and the goal to be near the surface. In this 

noting the nu.mber of boundary cubes as S ,  gives a example the robot finds the goal without ever getting 

total number of 2S + as an upper bound for the stuck. In figure 5 we see that the robot is on the back 
number of moves it needs to make. It would seem of the object and that it walks into a "pit". But after 

that a lower bound would be close to S + d, given it gets out of the pit, in figure 6, we see that it travels 

the above framework, since the robot might have to directly to the goal. The reason for this is that in this 

search the whole surface. It certainly seems that in imp1ementation we chose not On 

the worst case the robot would have to search almost the surface, but roughly by moving in the direction 
the entire surface, for essentially the reason given in of the gradient of the distance function to the goal. 
figure 1. Fortunately there a two facts that can pas- If the gradient vanishes, then we do our next 

sibly be exploited to avoid this in an implementation. 
First, the robot may have sensors, that, a t  a fixed 

time see a part of the surface that is much larger than 
just a "quantum unit", as we have considered here. ReferenceS 
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tween sensor based planning for mechanical systems, Automation, Cincinnati, OH, 1990, pp. 344-349. 
as opposed to sensor based planning for a point in an 
arbitrary space. [3] H. Choset and J .  Burdick, Sensor Based Plan- 

A second possible to speed UP the search is ning for a Planar Rod Robot: Incremental Con- 
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