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Abstract 

We address in the problem of control-based recovery of robot pose and the environmental 
lay-out. Panoramic sensors provide us with an 1D projection of characteristic features of a 2D 
operation map. Trajectories of these projections contain the information about the position of a 
priori unknown landmarks in the environment. We introduce here the notion of spatiotemporal 
signatures of projection trajectories. These signatures are global measures, like area, character- 
ized by considerably higher robustness with respect to noise and outliers than the commonly 
applied point correspondence. By modeling the 2D motion plane as the complex plane we 
show that by means of complex analysis our method can be embedded in the well-known affine 
reconstruction paradigm. 

1 Introduction 

The problem of obtaining metrical information about a scene by moving a camera is well-known 
one, and has many different forms. For example, the ego motion may or may not be  considered 
a n  unknown. I n  some robotics applications the ego motion may be accurately known by the use 
of sensors other than vision, e.g. by encoder data. Nevertheless, the problem of localizing a robot 
accurately is a hard one in its own right, and it seems prudent to  generally consider ego motion a n  
unknown. O n  the other hand, one could make assumptions about the curve on which the  motion 
occurs without saying anything about the exact position of the robot. For example, a mobile robot 
with a single camera may fixate on a target and move towards it in a straight line. While it may 
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be hard to accurately estimate the robots position, we do know that we can restrict the motion of 
the robot to a line if it uses a decent control law. Notice that this doesn't mean or assume that we 
know any of the parameters that describe this line in a global Cartesian reference frame, but in in 
principle there is some information here that can be exploited. Another example is provided by a 
four wheeled vehicle, which may accurately travel in a circular motion. This example differs from 
the first in that the restriction comes about by mechanical means. 

As stated above, this type of constraint does not assume that we have geometric information 
about the curve. It is a constraint of "higher order". In other words, not only does the robot not 
know where it is, but it does not even know exactly what curve it is on. What it does know it that 
the curve lies is a member of some prescribed space of curves, e.g. circles or lines. 

We have described two examples in which such constraints occur. Below we describe a general- 
ization of the example in which the constraint obtained by control. This topic is intimately related 
to the subject of image coordinates. 

This work has its origin in the study of panoramic vision systems for use in robot games. Using 
such a system, one may consider some vision problems as two dimensional, since the panoramic 
system essentially gives an overhead view of the scene. We will begin with a description of a such 
a system built in our lab in section 2. Section 3 describes the image coordinates that are naturally 
associated with the panoramic system. The main results of this paper are in section 4. This 
is the most technical section, and the one in which we demonstrate the how to extract metrical 
information from motion. Finally, in section 5,  we return to image coordinates and discuss some 
issues related to invariance under coordinate changes. 

2 Panoramic Vision 

Recently, some researchers in the robotics and vision community have begun to investigate the 
use of curved mirrors to obtain panoramic and omni-directional views1 These systems generally 
consist of curved mirror suspended above an upward pointing camera. 

How to interpret and make use of the visual information obtained by such systems, e.g. how it 
can be used to control robots, is not immediately clear. Nayar ([4]) constructed an omni-directional 
sensor using a parabolic mirror. In this case, the goal was to reconstruct the "normal" views that 
a camera would have, and so this system allows one to "pan the camera in software". Mouadddib 
and Pegard ([5]) use a conical mirror to estimate a robot's pose. This is done via a search for 
radial lines, which correspond to vertical lines in the world. The locations of the vertical lines in 
the world are not known, but by moving the robot and solving the correspondence problem for the 
radial lines, the robot's pose can be estimated by solving a non-linear equation. Ishiguro, Ueda, 
Tsuji.. . . Betke and Gurvits ([I]) investigated the localization problem, motivated by the Siemans 
mobile robot Ratbot. Ratbot, like our robots, used a spherical mirror. In this case the positions of 
a collection of landmarks are known. By measuring the angles between the landmarks, the robot's 
pose can be determined. As few as three landmarks are necessary to solve this problem and [I] 
investigates what can be done with noisy data if there are many landmarks available. 

'we will distinguish omni-directional sensors, i.e. sensors that see in all directions, from panoramic sensors, which 
can see only a 360 degree cross section of the world. 



3 Image Coordinates 

Consider the a 2-d situation where a robot can detect and track three fixed points in the plane 
and measure the angles between them, 0 and 4 as in figure 3. 

landmark () 

spherical mirro~ \ i 

Figure 1: The angles between three fixed landmarks provide a natural coordinate system 

In the formal sense, 0 and 4 define a local coordinate system on the plane, and so even if the 
robot does not have a means of measuring its Cartesian coordinates with respect to some frame, 
it can measure it's (0,4) coordinates. Notice that this is exactly what a panoramic vision system 
does when measuring the angles between vertical lines. Thus, in some sense, the panoramic vision 
system can be considered as an overhead camera. Considering that cameras naturally measure 
angles well, and remembering a lesson from differential geometry not to be prejudiced against 
strange coordinates, it seems likely that the (O,c$) coordinate system is a good one for the robot to 
use. 

What do the coordinate lines look like in this angular system ? The theorem of Thales that if 
one fixes two points on a circle A, B,  then for any third point C on the circle, the angle LACB is 
a constant. A familiar special case occurs when A and B lie on opposite sides of the circle - the 
angle is then 90'. Thus the coordinate curves, e.g. 0 = constant, are circles through two of the 
landmarks (see figure 3). Such a family is sometimes referred to as a pencil of circles. 

Therefore the "coordinate grid" of the angular coordinate system is formed by two families of 
intersecting circles (see 3). Of course, these coordinates are singular if the robot lies on the circle 
determined by the three landmarks, which we will refer to as the singular circle of the landmarks. 
Thus if the robot is near the singular circle, small perturbations in 0 and 4 correspond to large 
changes in the position of the robot. 

It is important to remember that we will consider the landmarks as distinguishable and defining 
0 and c$ by coming in a fixed order. Otherwise, it can appear that the angular coordinates do not 
determine a unique point in the plane. 

A natural question, especially from the point of view of controlling a robot is how to convert 
from angular coordinates to Cartesian coordinates. This of course, assumes that the positions of 



Figure 2: The pencil of circles through two fixed points 

Figure 3: The coordinate grid induced by three landmarks 

the landmarks are known. This is an old problem in fact, familiar to sailors and surveyors. An 
analytical solution can be found in [2], for example. One approach is simply to write down the 
equation of each of the three circles that contain the robot and two of the landmarks and the 
position of the robot is where they all intersect. Despite the fact that this method does not provide 
an explicit, compact formula for converting from angular to Cartesian coordinates, it works well 
on a computer. The authors have been able to use this method to obtain extremely precise pose 
estimates (better than 1 %) for a small mobile robot. This must be qualified though, by pointing 
out that we kept our robot "away" from the singular circle. For more precise statements about 
this problem, the reader is referred to [I]. Our main point here though, is not just that panoramic 
systems have the ability to very accurately estimate pose, but that we have experimental evidence 
that the angles 8 and q5 can be measured very accurately by our panoramic system. 

An interesting feature of the angular coordinate system is that it provides measurable coordinates 
even i f  the locations of the landmarks are unknown in  a Cartesian reference frame. Thus one could 
consider a reconstruction problem in which the Cartesian coordinates of both the robot and the 
landmarks are unknown, but several measurements of the angular coordinates have been made and 
the goal is to find the Cartesian coordinates of the landmarks and the robot. In this case, it is 
necessary to have more than three landmarks. One can write down the equations that must hold, 
and view the problem as an over-determined non-linear system. This method is employed in [3]. 

If the above method is attempted for three landmarks, there are more unknowns then equations. 
Here we consider the problem where there are only three landmarks, but we constrain the motion 
in the manner described in the introduction. 

 he sailors solved this problem with an analog device! 

4 



4 Relating the Landmarks 

We consider the problem of determining the positions of three landmarks, given that a robot 
moves in a complete circle, making a measurement of it's angular coordinates with respect to the 
landmarks at each instant in time. Without loss of generality, we take the circle to be the unit 
circle centered at the origin of the complex plane, and let zl, 22 and 23 be the three landmarks. 
We also assume that the position of the robot at time t is eit. (It will become clear below that 
the dynamics of the robot are not relevant.) Consider the trace of the curve t -+ (6(t), +(t)). The 
trace is a closed planar curve, and we may experimentally approximate it by simply having the 
robot record it's coordinates as it moves in the circle. We then pose the question "what can be 
said about zl, z2 and z3, given this curve ?" . 

There are several natural quantities associated with such a curve, and some of these quantities 
are relatively insensitive to error in measurement. For example, the area bounded by the curve, or 
its barycenter. Notice that once the data has been gathered, it may be transformed, e.g. instead 
of considering the trace of t + (O(t), +(t)), we can also consider the trace of t -+ (cos(8(2t), q5(t)). 
Our plan is as follows: for this last curve, compute a general formula for the area A, bounded by 
the curve in terms of zl, z2 and z3. Our main result is then 

Theorem 1 The area function A = A(zl, z2,23) for the region bounded by the curve t -+ (cos(6(t), c$(t)) 
can be expressed as a rational function of zl, zz and z3 and their conjugates. 

To apply this result, one can experimentally compute the area and set it equal to A(zl, z2, z3), 
determining a relation between zl, 22 and 23. 

Proof The area bounded by a closed curve C and parameterized by t (x(t),y(t)) may be 
expressed as the line integral 

Therefore we must express 8 and 4 in this manner. Up until this point, we have not been explicit 
about how to define 6 and 4 - one must address the usual sticky issues involved in choosing a branch 
of the arctangent function. We will return to this issue later, for now simply writing 

8(t) = arctan(y - yl, x - xl)  - arctan(y - y2, x - x2), 

where z, = x, + iyn, n = 1,2,3. If one then tries to plug in these equations to (I), a seemingly 
intractable integral results. This is where the methods of complex analysis enter. Taking x + iy = 
z = z(t) = eit we see that 

arctan(y - yl, x - XI) = Im(log(zl - z)), 

arctan(y - y2, x - 22) = Im(log(z2 - z)), 

where we use the complex logarithm defined by log(rei$) = r + i+, -x 5 + < T .  The identity 
Im(w) = T ( w  - 2 i j )  applied to the above yields 



Our goal is now to express A = J, 2cos(28)d4 as a complex integral over S1. Therefore we need to 
express 8 and 2 as functions of 2. It is convenient to let f (z) = E, and g(z) = s, so that 

f and may be expressed as rational functions of z since for unit z we have that Z = :. So we can 
, i t+,- i t  

express 8 as a function of z and using the fact that cos(t) = ---2--, we have that 

which is a rational function of z. 
Since 

dq3 i 2 dz - - - --(: - -)- 
dt 2 g g dt 

and $ = -$(eit) = ieit = iz, it follows that 

which has a rational function as an integrand. At this point, we employed the symbol manipulator, 
Maple, to analyze this integral. The integrand has singularities at zl , z 2 , 3  and -&, A, k. Assuming 
that the motion of the robot does not encircle any of the landmarks, the residue theorem says that 
the integral will be equal to 

2ni(R1 + RZ + R3), 

where RL, R2 and R3 are the respective residues of the integrand at %, i, $. The resulting 
expression for the area is quite large (see figure 4). This concludes the proof of our main result. 

In order to construct further relations between zl,zz and zz, the data may be transformed 
into another curve. For example, rather than considering t -+ (cos(2e(t)), +), the curve t + 
(sin(28(t)), 6) could have also been considered. Generically, one expects the area function from 
two different such representations to be independent, and so in principle one needs only to generate 
three such functions to solve for zl, zz and z2. Unfortunately the only rational functions that the 
authors have found so far are very large. 

Notice that area is only one of several quantities that may be chosen for such constructions. 
Arclength, winding number, barycenters, etc. are all possible choices, although some of these 
quantities are expected to be more stable than others. Arclength for example, is a quantity that 
involves derivatives, and so computing accurately from real data is trickier (and presumably less 
robust) than computing a quantity such as the barycenter. 



5 Circles are Invariant 

In this section we address the subject of angular coordinates further, and demonstrate how they 
may aide in gathering the data required to make use of the results of the above type. 

As mentioned earlier, an interesting feature of angular coordinates is that they can be measured 
without knowing anything about the location of the landmarks that define them. This allows one 
to define a curve in angular coordinates that can be followed by a robot, without knowing an 
expression for the curve in Cartesian coordinates. Additionally, there are some families of curves 
that are invariant under the transformation from one angular system to another. In order to 
demonstrate this, we begin by reviewing some complex analysis. 

A fractional linear transformation of the (extended) complex plane is a mapping of the form 

These transformations have many nice properties. To begin with, they form a group. The inverse 
of the above transform is given by 

Since these maps are analytic, they are conformal, i.e. they preserve angles. But in fact have 
the much stronger property that they takes circles and lines to circles and lines (if one views the 
extended complex plane as the Riemann sphere then this just means that circles on the sphere are 
taken to circles on the sphere). Finally, they are triply transitive, i.e. given an ordered triple of 
three distinct points in the extended complex plane, (zl, 22, Z3) they may be mapped to any other 
such triple. To see this observe that the above triple is mapped to (0, cm, 1) by the transformation 

These transformations are well suited for dealing with circles in the complex plane. Suppose 
that as above, zl, z2 and 23 are our landmarks. Using the transform (7), we see that the pencil of 
circles through zl and z2 are mapped to lines through the origin (since 22 + m, circles through zz 
becomes lines, lines being circles of infinite radius. 



Similarly, circles through z2 and z3 are mapped to lines through the real number 1. Thus the 
coordinate grid in figure 3 looks like figure 5. Since angles are preserved between the circles under 
this transformation, a point with coordinates (O,4) in the angular system is mapped to a point 
which lies on a line through 0 making an angle of 9 with the x-axis, and also on a line through 1 
that makes an angle of 4 with the x-axis. 

image of point with angular coordinates (8, $) !X  + 
Therefore the mapping described in Cartesian to angular coordinates is 

. Since x = rcos(t) + xo, y = rsin(t)  + yo describes a circle in the xy-plane, and because fractional 
linear transforms take circles to circles, the image of the this circle will also be a circle. It can be 
described explicitly as 

Notice that these equations do not refer to the landmarks at all, i.e. the equation of a circle is 
invariant under the choice of zl,z2 and z3. This means that it is should be possible for a robot to 
execute a circular motion in angular coordinates without knowing the locations of z l ,  ,752 and 22. 
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Figure 4: The area function. 
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