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Improving Resource Utilization for Compositional
Scheduling using DPRM Interfaces

Jaewoo Lee Linh T.X. Phan Sanjian Chen Oleg Sokolsky Insup Lee
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Abstract—The paper revisits the generation of interfaces for
compositional real-time scheduling. Following an established line
of research, we use periodic resource models in component
interfaces to describe resource demand of the component. We
identify a deficiency of existing interface generation algorithms
that may require parameters of the resource model to be infeasi-
bly small. We propose a new algorithm for interface generation
that avoids this deficiency. We further demonstrate that resource
utilization can be improved by usingdual-periodic resource model
(DPRM) interfaces that employ two periodic resource models to
characterize the resource demand more precisely.

Index Terms—hierarchical real-time scheduling; periodic re-
source model; interface generation

I. I NTRODUCTION

Component-based design has become the widely used tech-
nology for the construction of complex computer-based sys-
tems. Component technologies allow us to apply the divide-
and-conquer approach to reduce design complexity. Com-
ponents provide well-defined interfaces that abstract away
implementation details and enable reuse of a component in
different applications. Furthermore, many modern systems
are developed through collaboration of many independent
providers; in this case, components allow us to encapsulate
intellectual properties.

Increasingly, real-time systems are also built using indepen-
dently developed components. However, unlike conventional
systems, real-time components need to satisfy timing and
resource constraints and thus have to be allocated sufficient
computational resources for this purpose. Schedulabilityanal-
ysis is employed to check that all timing constraints of an ap-
plication containing multiple real-time tasks will be satisfied in
the implementation. However, classical schedulability analysis
algorithms are global; that is, they need to know all the tasks
that comprise the system. This global nature of schedulabil-
ity analysis greatly reduces the benefits of component-based
development.
Compositional schedulability analysis techniques have been
developed to allow component-based development to be used
for systems where multiple independently developed compo-
nents share a computational resource [1]. Interfaces of real-
time components contain information about the resource needs
of a component, and the system scheduler uses this informa-
tion to allocate resources to components. Within a component,
a separate component-level scheduler further allocates the
resource to the component workload, which can contain real-
time tasks or other subcomponents.

A common way to represent resource requirements in a
component interface is to use aresource model[2]. Several
resource models have been proposed in the literature, with the
periodic resource model [1] being one of the most commonly
used. A periodic resource modelΓ = (Π,Θ) used as the
interface of a component specifies that the component needs
to be allocated at leastΘ units of resource access in everyΠ
time units. A necessary part of a resource model-based com-
positional schedulability analysis framework is an algorithm to
calculate parameters of the resource model sufficient to make
the component schedulable. It is also desirable to make such
an algorithm optimal so that the component is not allocated
unnecessary resources.

An optimal algorithm for the calculation of resource in-
terfaces has been introduced in [3]. The algorithm computes
periodic resource model(Π,Θ) that minimizes theresource
bandwidthΘ/Π. While theoretically optimal, the algorithm
cannot always be used in practice, because it calculatesΘ as
a rational number. Practically,Θ should be an integer multiple
of the time slice used by the operating system, which may
not be under the control of the application developer. We
thus restrict the set of acceptable periodic resource models
to have integer values of bothΠ andΘ. While scaling both
Π andΘ by the same factor may yield an acceptable resource
model with the same bandwidth, we remind the reader that
Π cannot be made arbitrarily large, otherwise the component
will become unschedulable due to theblocking interval of
the resource model [1]. It is clear that an approximation of
the optimal resource model with integer values introduces
additional overhead into the scheduling framework. One of
the goals of this paper is to quantify this overhead.

Furthermore, it is not sufficient to round up the value
calculated by the existing algorithm. Consider the following
example. Let the optimal resource model for a component be
(1,0.54). Rounding the result up, we obtain the resource model
(1,1). However, this may not be the minimum bandwidth that
can be obtained with integer values, as a periodic resource
model (4,3) may be able to schedule the component. We thus
set out to develop a new algorithm to calculate an acceptable
periodic resource model with the minimum bandwidth.

We then show that it is possible to characterize resource
demand of a component even more precisely. We introduce
a dual-periodic resource model(DPRM) interface, which
contains two periodic resource models instead of one. It can
be shown that if rational numbers are used in periodic models,



DPRM interfaces do not improve the total resource bandwidth
[3]. However, when restricted to integer parameter values,we
show that it is possible to reduce the overhead of the interface
bandwidth by using DPRM. An extensive simulation study
allows us to demonstrate the scale of the improvement.
Contributions. This paper makes three distinct contributions
related to the use of periodic resource models in the interfaces
of real-time components.

• We propose an efficient algorithm to calculate the
minimum-bandwidth periodic resource model with inte-
ger parameter values.

• All algorithms for resource model calculation, including
the one proposed here, rely on an upper bound on the
value of the resource model periodΠ. In the literature,
the upper bound is a parameter of the algorithm specified
by the designer. In this paper, we derive a the theoretical
upper bound for the period of the minimum-bandwidth
resource model.

• Finally, we propose a new resource-demand interface,
DPRM, and show that it allows us to reduce resource
utilization compared to the minimum-bandwidth periodic
resource model with integer parameters.

Related work. Since the first two-level hierarchical real-
time scheduling framework introduced by Deng et al. [4] and
its extension to multi-level hierarchical systems [2], several
compositional analysis techniques have been proposed for
such systems (see e.g., [1], [3], [5]). The majority of these
techniques assume independent periodic task models – or their
variations – for the components. However, these techniques
have also recently been extended to analyze hierarchical sys-
tems with dependency, such as systems containing interacting
tasks [6] and resource sharing [7]. Compositional analysis
methods have also been investigated in the context of virtual
machine (VM) environment [8], [9].

Most of the existing compositional analysis frameworks
represent component interfaces using one of the two resource
models: periodic [1] and explicit deadline periodic [5].
The advantages of these two resource models are that they
can be directly transformed into real-time tasks, which are
required by the upper-level scheduler, and their supply bound
functions have regular structures that allow for optimal
interface generation. All the existing algorithms, however,
assume that the resource model take rational parameter
values, which cannot always be used in practice. Further,
these algorithms rely on a pre-specified bound on the
resource period that is manually chosen by the designer,
which cannot guarantee the optimality of the output interfaces.

Organization. The next section revisits the hierarchical
scheduling framework. Section III-A presents a bound on the
resource period and a revised interface generation algorithm
using this bound, followed by a more efficient algorithm in
Section IV. Section V proposes the DPRM interface that is
able to reduce this overhead suffered by the periodic resource
interface. Finally, we present our evaluation of our proposed
techniques in Section VI before concluding the paper.

II. H IERARCHICAL SCHEDULING BACKGROUND

In a hierarchical scheduling framework, a system is com-
posed of a set of real-timecomponentsthat are scheduled in
a tree-like manner as shown in Figure 1. Each component
C in the system is defined by a tuple(W,Γ, A), whereW
is the component’s workload,Γ is the resource interface of
the component, andA is the scheduling policy that is used to
scheduleW . The workloadW consists of either (i) a finite set
of real-time tasks{T1, T2, . . . , Tn}, if C is a leaf-component;
or (ii) a finite set of subcomponents{C1, C2, . . . , Cn}, other-
wise. The resource interfaceΓ captures the minimum amount
of resource that must be given toC to feasibly schedule the
tasks/components inW . The compositional analysis of the
system involves (1) computing the resource interface for each
leaf-component from the resource demands of its tasks, and
(2) subsequently, computing the resource interface for each
non-leaf component from the interfaces of its subcomponents.
We will focus on the former; the latter can be done using
similar techniques as in [1].

In this paper, we assume that all tasks are periodic tasks
with relative deadlines equal to periods. Each taskT is defined
by a period (deadline)p, a worst-case execution timee, with
p ≥ e > 0. The scheduling policyA is assumed to be
Earliest Deadline First (EDF) and all our discussions pertain
to EDF (without mentioning it explicitly). Note, however, the
methods developed here can easily be extended to the RM
(Rate Monotonic) by substituting the schedulability condition
of EDF with that of RM.

Fig. 1. A hierarchical scheduling system.

Schedulability condition. Given a workloadW , the real-
time resource requirement ofW is characterized by ademand
bound function(DBF) [10], denoted bydbfW (t), which gives
the maximum number of execution (resource) units required
by the tasks/components ofW in any time interval of lengtht
for all t ≥ 0. The DBF of a workloadW = {T1, T2, · · · , Tn},
with Ti = (pi, ei) for all 1 ≤ i ≤ n, under EDF is [10]:

∀ t ≥ 0, dbfW (t) =
n
∑

i=1

(

⌊ t

pi

⌋

ei

)

Similarly, the minimum resource guaranteed by a resource
model Γ is captured by asupply bound function(SBF) [1],
written as sbfΓ(t), which gives the minimum number of
execution units provided byΓ in any time interval of length
t for all t ≥ 0. Lemma 1 states the schedulability condition



based on DBF and SBF [11]. In this lemma and the rest of
the paper,LCMW denotes the least common multiple (LCM)
of all pi where1 ≤ i ≤ n.

Lemma 1:Given a componentC =
(

W,Γ, EDF
)

with
W = {T1, T2, · · · , Tn} andTi = (pi, ei) for all 1 ≤ i ≤ n.
Then, C is schedulable (Γ can feasibly scheduleW ) iff

∀ t s.t. 0 ≤ t ≤ LCMW , sbfΓ(t) ≥ dbfW (t). (1)
Periodic Resource Model. A periodic resource model is
defined byΓ = (Π,Θ) whereΠ is the resource period and
Θ is the execution time guaranteed byΓ within everyΠ time
units. The SBF ofΓ is thus given by [1]:

sbfΓ(t) =

{

yΘ+max
(

0, t− x− yΠ
)

, if t ≥ Π−Θ

0, otherwise
(2)

wherex = 2(Π−Θ) andy = ⌊ t−(Π−Θ)
Π ⌋.

An important concept associated with the periodic resource
model isbandwidth. Specifically, the bandwidth ofΓ = (Π,Θ)
is given bybwΓ = Π

Θ . A resource model isbandwidth-optimal
for a workloadW iff its bandwidth is the smallest among that
of any resource model that can feasibly scheduleW . In this
paper, our notion of optimality refers to bandwidth-optimality

Definition 1 (Bandwidth-Optimal):A periodic resource
modelΓ = (Π,Θ) is bandwidth-optimal for a given workload
W iff bwΓ ≤ bwΓ′ for all Γ′ that can feasibly scheduleW .

Computation of the optimal periodic resource model. Al-
gorithm 1 outlines the conventional procedure for computing
the optimal resource model of a given workload (see e.g., [1],
[12]). In this algorithm,Πmax is a predefined upper bound on
the resource period. The functionMinExec(Π, dbfW , LCMW )
(Line 3) computes the minimumΘ for a givenΠ such that
Γ = (Π,Θ) can feasibly scheduleW (c.f. Lemma 1).

Algorithm 1 the optimal periodic resource model computation
Input: Πmax, anddbfW andLCMW of a workloadW
Output: The minimum bandwidth periodic resource modelΓ

1: minBW = 1
2: for Π = 1 to Πmax do
3: Θ = MinExec(Π, dbfW , LCMW )
4: if Θ

Π < minBW then
5: minBW = Θ

Π
6: Γ = (Π,Θ)
7: end if
8: end for

In existing work, the maximum boundΠmax of the resource
period used in Algorithm 1 is either not discussed (and thus,
ultimately infinite) or manually chosen by the designer. While
the former approach is infeasible, the latter does not guarantee
optimality, as illustrated in the example below.

Example 1:Consider a workloadW = {T1, T2} with T1 =
(51, 23) andT2 = (130, 70). SupposeΠmax is chosen to be
80 in Algorithm 1. Then, the output given by Algorithm 1
is Γ = (1, 1). However, this resource model isnot optimal
because there exists a periodic resource modelΓ′ = (97, 96),
which can feasibly scheduleW (c.f. Lemma 1 and Equation 2)
and has a lower bandwidth than that ofΓ (because9697 < 1

1 ).

Since the optimality of Algorithm 1 depends on how large
Πmax is, the value chosen forΠmax must guarantee that
the algorithm always outputs a minimum bandwidth model.
Simultaneously,Πmax should be as small as possible to limit
the computational complexity. In the next section, we present
our method for computing the boundΠmax theoretically and
a revised version of Algorithm 1 that uses this bound.

III. B OUND ON OPTIMAL RESOURCE PERIOD AND A

REVISED ALGORITHM

A. An upper bound on the resource period

We first define the preliminary results that serve as founda-
tion for our computation. Observe that any SBF of a periodic
resource model can be upper bounded by a linear function.
We define theupper supply bound function(USBF) [5] of a
resource modelΓ to be the linear function with the smallest
slope among all linear functions that upper boundsbfΓ. The
USBF of a periodic resource modelΓ = (Π,Θ) is [5]:

∀ t ≥ 0 : usbfΓ(t) = max
(Θ

Π

(

t− (Π−Θ)
)

, 0
)

. (3)

Lemma 2:Given a componentC = (W,Γ, EDF ) where
W = {T1, T2, · · · , Tn}, Ti = (pi, ei) for all 1 ≤ i ≤ n, and
Γ = (Π,Θ). Then, C is schedulable only if

∀ t s.t. 0 ≤ t ≤ LCMW , usbfΓ(t) ≥ dbfW (t). (4)
The proof of Lemma 2 is available in our technical

report [13]. Note that Lemma 2 is necessary and not sufficent
condition. By abuse of notation, we refer to Equation 4 as
the USBF-schedulability conditionfor W and we say that a
modelΓ canpotentiallyscheduleW iff it satisfies Equation 4.

Basic ideas. The upper bound on the resource period of
the optimal periodic resource model for a given workloadW
can be derived based ondbfW and its relationship with the
USBFs of the resource models that can potentially schedule
W . Intuitively, let M be the set of resource models that can
potentially scheduleW . SupposeΓopt = (Πopt,Θopt) is the
optimal resource model forW . Then,

bwΓopt
≥ Bmin

def
= min

{

bwΓ | Γ ∈ M
}

.

To derive the bound onΠopt, we will find all the possible
resource models inM that have the minimum bandwidth equal
to Bmin. Towards this, we vary the resource periodΠ and
compute for eachΠ a (unique) resource modelΓΠ = (Π,ΘΠ)
belonging toM that has the minimum bandwidth among all
the resource models inM with the same resource periodΠ.
Then,Bmin can be computed byBmin = min

{

bwΓΠ
| Π ∈

N
}

. We will show that for allΠ, the USBF ofΓΠ intersects
dbfW at exactly one special point – acritical time point. At
the same time,ΓΠ has the largest bandwidth among all the
resource modelsΓΠ,t with period Π that have their USBF
intersectingdbfW at critical time pointst. In other words,

bwΓΠ
= max

t∈CrTW
ΓΠ,t=(Π,ΘΠ,t)

{bwΓΠ,t
| usbfΓΠ,t

(t) = dbfW (t)},

where CrTW is the set of all critical time points ofW ,
which is determined based solely on the structure ofdbfW .
Further, for given anyΠ and anyt ∈ CrTW , we compute



the bandwidth ofΓΠ,t directly from dbfW (t), Π and t. From
these values, we deriveBmin, which allows us to boundΠopt.

Computation details. First, we define the set of critical time
points of a workloadW .

Definition 2: Given a workloadW = {T1, T2, · · · , Tn}
where n ∈ N and Ti = (pi, ei) for all 1 ≤ i ≤ n. The
set of critical time points ofW is defined by

CrTW =
{

argmax
0<t<LCMW

dbfW (t)

t− s
| s ∈ {1, 2, · · · , l}

}

(5)

wherey = min1≤i≤n pi and l = y − dbfW (y).

Example 2:ConsiderW = {(5, 1), (12, 2), (17, 1)}. The
set of critical time points ofW is CrTW = {5, 36}, which
is shown in Figure 2.

Fig. 2. Relationship betweenCrTW anddbfW .

Lemma 3:Given a componentC = (W,Γ, EDF ) where
W = {T1, T2, · · · , Tn}, Ti = (pi, ei) for all 1 ≤ i ≤ n,
andΓ = (Π,Θ). SupposeΓ satisfies the USBF-schedulability
condition forW . Then, for allt ≥ 0, if usbfΓ(t) = dbfW (t)
then t ∈ CrTW .

Proof: We will prove the lemma by contradiction. Sup-
pose there existst0 /∈ CrTW such thatusbfΓ(t0) = dbfW (t0).
Let s = Π−Θ. Then, by Definition 2,

∃ t′ ∈ CrTW :
dbfW (t′)

t′ − s
>

dbfW (t0)

t0 − s
(6)

On the other hand,usbfΓ(t′) ≥ dbfW (t′) implies

Θ

Π
(t′ − (Π−Θ)) ≥ dbfW (t′)

⇒
dbfW (t0)

t0 − s
(t′ − s) ≥ dbfW (t′)

⇒
dbfW (t0)

t0 − s
≥

dbfW (t′)

t′ − s
. (7)

Since Equation 7 contradicts Equation 6, the lemma holds.
For any givenΠ and any givent ∈ CrTW . Let ΓΠ,t be the

resource model with periodΠ such that its USBF intersects
dbfW at time pointt. Then,ΓΠ,t is unique and its bandwidth
can be determined using Lemma 4. Due to space constraint,
we refer the reader to [13] for the proof of the lemma.

Lemma 4:Given anyΠ ∈ N and any t ∈ CrTW . Let
ΓΠ,t = (Π,Θ) be the periodic resource model such that

usbfΓΠ,t
(t) = dbfW (t). Then, Θ = Exec(Π, t, dt) and

bwΓΠ,t
= BW(Π, t, dt), wheredt = dbfW (t) and

Exec(Π, t, dt)
def
=

Π− t+

√

(Π− t)
2
+ 4Πdt

2
,

BW(Π, t, dt)
def
=

Π− t+

√

(Π− t)
2
+ 4Πdt

2Π
.

The boundΠmax on the optimal periodΘopt can now be
computed based onCrTW and a known resource modelΓc =
(Πc,Θc) with Πc ≤ Π that can feasibly scheduleW .

Theorem 1:Given a workloadW = {T1, T2, · · · , Tn} with
Ti = (pi, ei) for all 1 ≤ i ≤ n. SupposeΓc = (Πc,Θc) is the
current periodic resource model obtained at some intermediate
execution step of Algorithm 1. Then, the optimal periodic
resource modelΓopt = (Πopt,Θopt) for W satisfies

Πc ≤ Πopt ≤ MaxResPeriod(κ, dbfW , LCMW )

whereκ = Θc

Πc
and

MaxResPeriod(κ, dbfW , LCMW )
def
= min

t∈CrTW

κt− dbfW (t)

κ(1− κ)
.

Proof: Since Algorithm 1 finds the optimal resource
period in an increasing manner,Πopt ≥ Πc. Further,

bwΓopt
≤ bwΓc

= κ. (8)

Next, for any givent ∈ CrTW , let ΓΠopt,t = (Πopt,Θt)
where Θt = Exec(Πopt, t, dt) and dt = dbfW (t). That is,
the USBF ofΓΠopt,t(t) intersectsdbfW at time pointt. Let
Γ∗
opt = (Πopt,Θ

∗
opt) be the resource model with the minimum

bandwidth among all resource models with periodΠopt that
can potentially scheduleW . Then, its bandwidth must be at
least equal to that ofΓΠopt,t for all t ∈ CrTW (otherwise,Γ∗

opt

does not satisfy the USBF-schedulability condition). Thus,

∀ t ∈ CrTW : bwΓ∗
opt

≥ BW(Πopt, t, dt) (9)

On the other hand, sinceΓopt can feasibly scheduleW , its
bandwidth must be at least equal to that ofΓ∗

opt. That is,

bwΓopt
≥ bwΓ∗

opt
(10)

Combine Equations 8, 9 and 10, we obtain: For allt ∈ CrTW ,
BW(Πopt, t, dt) ≤ κ is equivalent to

⇔

√

(Πopt − t)
2
+ 4Πoptdt ≤ 2Πoptκ+ t−Πopt

⇔ (Πopt − t)2 + 4Πoptdt ≤
(

(2κ− 1)Πopt + t
)2

⇔ Πopt ≤
κt− dt
κ(1− κ)

=
κt− dbfW (t)

κ(1− κ)

The above can be rewritten asΠopt ≤ mint∈CrTW

κt−dbfW (t)
κ(1−κ)

or Πopt ≤ MaxResPeriod(κ, dbfW , LCMW ).

Example 3:Given a workloadW with CrTW = {10}
and dbfW (10) = 2 as shown in Figure 3. Suppose that
Γc = (2, 1) is the current minimum bandwidth periodic
resource model that can feasibly scheduleW among all
models with periodΠ ≤ 2. In this case,κ = 0.5. The
upper bound on the resource period is computed to be
Πopt ≤ MaxResPeriod(0.5, dbfW , LCMW ) = 0.5·10−2

0.5(1−0.5) = 12
by Theorem 1. The optimal periodic resource model forW is
given byΓopt = (3, 1), which indeed satisfies Theorem 1.



Fig. 3. The upper bound on the resource period in Example 3.

B. A revised algorithm using bound on resource period

Algorithm 2 gives an extension of Algorithm 1 by
incorporating the upper bound on the resource periods
MaxResPeriod(κ, dbfW , LCMW )) defined in Section III-A.

Algorithm 2 A revised algorithm using resource period bound.
Input: dbfW , LCMW for a workloadW
Output: The optimal periodic resource modelΓ for W

1: if dbfW (LCMW ) ≥ LCMW − 1 then
2: Γ = (1, 1)
3: else
4: Θ′ = MinExec(LCMW , dbfW , LCMW )
5: κ = Θ′

LCMW

6: Πmax = MaxResPeriod(κ, dbfW , LCMW )
7: for Π = 1 to Πmax do
8: Θ = MinExec(Π, dbfW , LCMW )
9: if Θ

Π < κ then
10: κ = Θ

Π
11: Γ = (Π,Θ)
12: Πmax=min(Πmax, MaxResPeriod(κ,dbfW ,LCMW ))
13: end if
14: end for
15: end if

In Algorithm 2, Line 1-2 handles the special case
dbfW (LCMW ) ≥ LCMW − 1, which hasΓ = (1, 1) as
the minimum bandwidth resource model. This is because
any resource modelΓ′ = (Π,Θ) that can feasibly schedule
W must satisfy2(Π − Θ) ≤ 1 (due to sbfΓ′(LCMW ) ≥
dbfW (LCMW ) ≥ LCMW − 1) and henceΠ = Θ (since
Θ,Π ∈ N). In Line 4-5,Θ′ denotes the minimum supply for
Π = LCMW and κ denotes the bandwidth of(LCMW ,Θ′).
Since κ is not 1, we can find the initialΠmax in Line 6.
The functionMinExec(Π, dbfW , LCMW ) (Line 4,8) is the
same as in Algorithm 1. The functionMaxResPeriod(κ, dbfW ,
LCMW ) in Line 6 and 12 computes the upper bound on the
resource period as defined in Theorem 1. Finally, the minimum
bandwidth acquired during algorithm execution is stored inκ
and used to re-evaluateΠmax (Line 9-13).
Computation complexity. Observe that computing the set
CrTW has O

(

minPi∈W Pi · LCMW

)

time complexity, and
Θ′ = LCMW andΠmax = minPi∈W Pi · LCMW in the worse

case. Hence, the time complexity of Algorithm 2 is [13]:
O
(

minPi∈W Pi · LCMW + LCMW × (minPi∈W Pi · LCMW )
)

,
which is equal toO

(

(LCMW )2 ·minPi∈W Pi

)

.

IV. A NEW ALGORITHM FOR COMPUTING THE OPTIMAL

PERIODIC RESOURCE MODEL

In this section, we present a new algorithm for comput-
ing the optimal resource model that is more efficient than
the revised algorithm in the previous section. Observe that
in searching for the optimal resource model for a work-
load W , Algorithm 2 iterates the resource periodΠ from
1 to the period boundΠmax, which is computed using
MaxResPeriod(κ, dbfW , LCMW ) and updated with respect to
the minimum bandwidthκ obtained thus far. Since computing
the resource execution timeΘ for any given periodΠ has
a constant time complexity, the algorithm’s time complexity
is proportional to the number of iterations ofΠ, which is
MaxResPeriod(κ0,dbfW , LCMW ) in the worst case whereκ0=
MinExec(LCMW ,dbfW ,LCMW )/LCMW . Since Θ ≤ Π, the
upper bound onΘ will always be less than or equal to the
upper bound onΠ. Further, computing the resource period
Π for any givenΘ has the same time complexity as that of
computingΘ from Π. As a result, we can reduce the search
space by iteratingΘ instead ofΠ.

Based on the above observation, Algorithm 3 gives a new
procedure for computing the optimal resource model. We
first explain the different steps involved in the algorithm and
then present theoretical results supporting its correctness. Note
that the result for the special case whendbfW (LCMW ) ≥
LCMW−1 is Γ = (1, 1) for the same reason as in Algorithm 2.

Algorithm 3 A new interface generation algorithm
Input: dbfW , LCMW for a workloadW with

dbfW (LCMW ) < LCMW − 1
Output: The optimal periodic resource modelΓ for W

1: κ = MinExec(LCMW , dbfW , LCMW )/LCMW

2: Θmax = MaxResExec(κ, dbfW , LCMW )
3: for Θ = 1 to Θmax do
4: Π = MaxPeriod(Θ, dbfW , LCMW )
5: if Θ

Π < κ then
6: κ = Θ

Π
7: Γ = (Π,Θ)
8: Θmax = min(Θmax,MaxResExec(κ, dbfW , LCMW ))
9: end if

10: end for

In Algorithm 3, the functionMinExec(Π, dbfW , LCMW )
(Line 1) is the same as in Algorithm 1. The variableκ (Line 1)
indicates the bandwidth of (LCMW ,MinExec(LCMW , dbfW ,
LCMW )). The function MaxResExec(κ, dbfW , LCMW )
(Line 2 and 8) computes the upper bound ofΘ based on
Theorem 3. The initial value ofΘmax is in Line 2. The
function MaxPeriod(Θ, dbfW , LCMW ) (Line 4) computes –
for any givenΘ – an upper bound on the resource periodΠ of
any resource model(Π,Θ) that can feasibly scheduleW . The
functionsMaxPeriod(Θ, dbfW , LCMW ) andMaxResExec(κ,



dbfW , LCMW ) are computed as below.

Computation of MaxPeriod(Θ, dbfW , LCMW ). Theorem 2
gives the upper bound on the periodΠ of any resource model
Γ = (Π,Θ) that can feasibly scheduleW .

Theorem 2:Given a workloadW = {T1, T2, · · · , Tn}
where Ti = (pi, ei) for all 1 ≤ i ≤ n. For any givenΘ,
the resource modelΓ = (Π,Θ) can feasibly scheduleW iff

Π ≤ min
0≤t≤LCMW

IntPeriod(Θ, t)
def
= MaxPeriod(Θ, dbfW , LCMW )

where: IntPeriod(Θ, t)
def
=

{

⌊

t+Θ
m−1

⌋

, if sbfΓ(t) ≥ dbfW (t)
⌊

t+Θ
m

⌋

, otherwise

with m =
⌈

dbfW (t)+Θ
Θ

⌉

.
Before presenting the proof of Theorem 2, we state some

notations. For any givenΘ and any given t such that
1 ≤ t ≤ LCMW , Period(Θ, t) denotes a period value such
that the resource modelRΘ,t = (Period(Θ, t), Θ) satisfies
sbfRΘ,t

(t) = dbfW (t). Then, the following corollary holds.
Its proof can be found in [13].

Corollary 1: For all Θ ≥ 0, and allt s.t. 1 ≤ t ≤ LCMW ,
⌊

Period(Θ, t)
⌋

= IntPeriod(Θ, t).

Proof of Theorem 2: (⇒) Recall the SBF ofΓ defined
in Equation 2. One can easily verify that for allΠ1,Π2,

Π1 ≤ Π2 ⇔ sbf(Π1,Θ)(t) ≥ sbf(Π2,Θ)(t) ∀t ≥ 0. (11)

SupposeΓ = (Π,Θ) can feasibly scheduleW , i.e.,

∀ 0 ≤ t ≤ LCMW : sbfΓ(t) ≥ dbfW (t).

By definition, dbfW (t) = sbfRΘ,t
(t) where RΘ,t =

(Period(Θ, t), Θ) for all 0 ≤ t ≤ LCMW . Hence,

∀ 0 ≤ t ≤ LCMW : sbfΓ(t) ≥ sbfRΘ,t
(t). (12)

SinceΓ andRΘ,t have the same execution timeΘ, and due
to Equation 11, Equation 12 is equivalent to

∀ 0 ≤ t ≤ LCMW : Π ≤ Period(Θ, t).

Since Π ∈ N, Π ≤ Period(Θ, t) is equivalent toΠ ≤
⌊

Period(Θ, t)
⌋

= IntPeriod(Θ, t) due to Corollary 1. Hence,

Π ≤ min
0≤t≤LCMW

IntPeriod(Θ,W, t)

(⇐) SupposeΠ ≤ min0≤t≤LCMW
IntPeriod(Θ, t). Then,

Π ≤ IntPeriod(Θ, t) ≤ Period(Θ, t), ∀ 0 ≤ t ≤ LCMW .

DenoteΠt = Period(Θ, t). Apply Equation 11, we have

∀ 0 ≤ t ≤ LCMW , sbf(Π,Θ)(t) ≥ sbf(Πt,Θ)(t).

Sincesbf(Πt,Θ) = dbfW (t) by the definition ofΠt, we imply
sbf(Π,Θ)(t) ≥ dbfW (t) for all 0 ≤ t ≤ LCMW . In other
words,Γ = (Π,Θ) can feasibly scheduleW .

Computation of MaxResExec(κ, dbfW , LCMW ). For any
given current minimum bandwidthκ at some intermediate
execution step of Algorithm 3, we can compute the upper
boundMaxResExec(κ, dbfW , LCMW ) on the valueΘ of the

optimal resource modelΓopt = (Πopt,Θopt) in a similar
fashion as done in Section III-A.

Theorem 3:Given a workloadW = {T1, T2, · · · , Tn} with
Ti = (pi, ei) for all 1 ≤ i ≤ n. SupposeΓc = (Πc,Θc)
is the current periodic resource model obtained at some
intermediate execution step of Algorithm 3. Then, the optimal
periodic resource modelΓopt = (Πopt,Θopt) for W satisfies
Θc ≤ Θopt ≤ MaxResExec(κ, dbfW , LCMW ) with κ = Θc

Πc
,

MaxResExec(κ, dbfW , LCMW )
def
= min

t∈CrTW

κt− dbfW (t)

1− κ
.

Proof: The proof is establish based on similar arguments
as that of Theorem 1. Its details can be found in [13].

Fig. 4. The upper bound on the resource execution units in Example 4.

Example 4:Given a workloadW with CrTW = {10} and
dbfW (10) = 2. Suppose thatΓc = (3, 1) is the current
minimum-bandwidth periodic resource model that can feasibly
scheduleW given by Algorithm 3. In this case,κ = 1

3 . The
upper bound on the resource execution units is computed using
Theorem 3 to beΘopt ≤ MaxResExec( 13 , dbfW , LCMW ) =
1
3 10−2

1− 1
3

= 2. As illustrated in Figure 4, the optimal resource
model forW is Γopt = (3, 1), which satisfies Theorem 3.

Computation complexity compared to Algorithm 2. From
Theorem 3 and 1,MaxResExec(κ, dbfW , LCMW ) =
κMaxResPeriod(κ, dbfW , LCMW ). Sinceκ ≤ LCMW−1

LCMW
, one

can hence verify that Algorithm 3 is at leastLCMW

LCMW−1 times
faster than Algorithm 2 [13].

V. DUAL PERIODIC RESOURCEMODEL

A. Overhead of periodic resource interface with integer values

When assuming rational parameter values for resource
interfaces, the periodic resource interface with period of1
and execution time equal to the utilization of the workload
always has the minimum bandwidth among that of all resource
interfaces [3]. However, this optimality of periodic resource
model is no longer achievable when it is restricted to have
only integer parameters. As an example, consider a workload
W composed of only one taskT = (5, 1). The ideal minimum
bandwidth resource interface (i.e., with rational parameter
values) given by Algorithm 1) is(1, 0.2). Hence, the minimum
bandwidth ofW is 0.2. On the other hand, the minimum



bandwidth resource interface with integer parameter values for
W (given by Algorithm 2) is(3, 1), which has a bandwidth of
1
3 . Thus, the minimum bandwidth periodic resource interface
with integer parameter values incurs at least 66% overheads
compared to the ideal one with rational parameter values.
By the same reason, the new algorithm (Algorithm 3) also
experiences similar bandwidth overhead.

The above overhead introduced by the integer constraints
has prompted a need for new resource interfaces with integer
parameters and their associated interface computation tech-
niques that can achieve better resource utilization than the
periodic resource interface do. In the coming sections, we
present such an interface and its computation. Here, we discuss
the computation for leaf-components only; the computation
for non-leaf components can be established using a similar
technique as in the case of periodic resource interface [1].

B. Dual periodic resource model (DPRM)

A dual periodic resource model (DPRM) interface is defined
by Ω = (Γ1,Γ2) where Γ1 and Γ2 are periodic resource
models. Semantically, each DPRM offers the same amount
of resource as the total resource units given by the two
resource modelsΓ1 andΓ2. Thus, its bandwidth is given by
bwΩ = bwΓ1

+ bwΓ2
. Its SBF and schedulability condition

are given by Lemma 5 and 6, respectively, whose proofs are
available in [13].

Lemma 5:The SBF of a DPRMΩ = (Γ1,Γ2) whereΓ1 =
(Π1,Θ1) andΓ2 = (Π2,Θ2) is given by:

sbfΩ(t) = sbfΓ1
(t) + sbfΓ2

(t), ∀t ≥ 0. (13)

Lemma 6:Given a componentC = (W,Ω, EDF ) where
W = {T1, T2, . . . , Tn}, Ti = (pi, ei) for all 1 ≤ i ≤ n, and
Ω = (Γ1,Γ2) is a DPRM interface. C is schedulable underΩ
iff

∀t s.t. 0 ≤ t ≤ LCMW , dbfW (t) ≤ sbfΩ(t). (14)

DPRM interface computation. Given a component with
workload W that is scheduled under EDF, we would like
to compute the optimal DPRM interfaceΩ = (Γ1,Γ2) for
W (i.e., Ω has the minimum bandwidth among that of all
DPRM interfaceΩ′ = (Γ′

1,Γ
′
2) that can feasibly schedule

W ). The basic idea is to iterate the periodΠ1 and execution
time Θ1 of the first elementΓ1 as well as the periodic
Π2 of the second elementΓ2 of the DPRM interfaceΩ =
(Γ1,Γ2). For each runningΠ1, Θ1 andΠ2, we compute the
correspondingΘ2 such thatΩ =

(

(Π1,Θ1), (Π2,Θ2)
)

has
the minimum bandwidth among that of all DPRM interface
Ω′ =

(

(Π1,Θ1), (Π2,Θ
′
2)
)

that can feasibly scheduleW .
We then keep track of the interfaceΩ with the minimum
bandwidth during our iteration.

Algorithm 4 shows the procedure for computing the
minimum-bandwidth DPRM interfaceΩ. The functions
MinExec(Π, dbfW , LCMW ) and MaxResPeriod(κ, dbfW )
(Line 1 and 2, respectively) are the same as in Algorithm 3.
The function MaxResExecDPRM(Π, dbfW , LCMW ) (Line
4) gives an upper bound on the value ofΘ1. The function
getResModel(dbfW , LCMW , Γ1) (Line 7) gives the optimal

periodic resource model for the remaining resource demand of
W afterW has been served by the resource modelΓ1. These
two new functions are computed as below.

Algorithm 4 DPRM interface computation
Input: dbfW , LCMW for a workloadW with

dbfW (LCMW ) < LCMW − 1
Output: The optimal DPRMΩ = (Γ1,Γ2) for W

1: κ = MinExec(LCMW , dbfW , LCMW )/LCMW

2: Πmax
1 = MaxResPeriod(κ, dbfW , LCMW )

3: for Π1 = 1 to Πmax
1 do

4: Θmax
1 = MaxResExecDPRM(Π, dbfW , LCMW )

5: for Θ1 = 1 to Θmax
1 do

6: Γ1 = (Π1,Θ1)
7: Γ2 = getResModel(dbfW , LCMW ,Γ1)
8: if bwΓ1

+ bwΓ2 < κ then
9: κ = bwΓ1

+ bwΓ2

10: Ω = (Γ1,Γ2)
11: Πmax

1 =min(Πmax
1 ,MaxResPeriod(κ,dbfW ,LCMW ))

12: end if
13: end for
14: end for

Computation of MaxResExecDPRM(Π, dbfW , LCMW ).
Given anyΠ1,Θ1 and Π2, the execution timeΘ2 of Ω is
determined such that the resource supplied by the periodic
resource model(Π2,Θ2) must be at least equal to the
remaining demand of the workloadW after W has been
serviced by(Π1,Θ1). Towards this, we define theremaining
demand bound function(RDBF) as below.

Definition 3: Given a workloadW = {T1, T2, ..., Tn} with
1 ≤ i ≤ n. The RDBF ofW after being serviced by a resource
model R, denoted byrdbfW−R(t), specifies the maximum
number of remaining execution units required byW in any
time interval of lengtht afterW has been serviced byW .

One can easily verify that

∀ t ≥ 0 : rdbfW−R(t) = max
(

0, dbfW (t)− sbfR(t)
)

. (15)

Lemma 7 gives the schedulability condition forW underΩ.
Its proof comes directly from Lemma 6 and Equation 15.

Lemma 7:Given a componentC = (W,Ω, EDF ) where
W = {T1, T2, . . . , Tn}, Ti = (pi, ei) for all 1 ≤ i ≤ n, and
Ω = (Γ1,Γ2) is a DPRM. Then,C is schedulable underΩ (Ω
can feasibly scheduleW ) iff

∀t s.t.0 < t ≤ LCMW , rdbfW−Γ1
(t) ≤ sbfΓ2

(t). (16)
We define the LSBF (lower supply bound function) of a

periodic resource modelΓ to be the linear function with the
smallest slope that lower boundssbfΓ, given by [1]:

∀ t ≥ 0 : lsbfΓ(t) = max
(Θ

Π

(

t− 2(Π−Θ)
)

, 0
)

. (17)

The maximum value ofΘ1 in the optimal DPRM interface
Ω = (Γ1,Γ2) with Γ1 = (Π1,Θ1) can now be computed using
functionMaxResExecDPRM(Π, dbfW , LCMW ) defined in the
following theorem.

Theorem 4:Given a workloadW = {T1, T2, · · · , Tn},
with Ti = (pi, ei) for all 1 ≤ i ≤ n. For any



given Π1, the minimum bandwidth DPRM interfaceΩ =
(

(Π1,Θ1), (Π2,Θ2)
)

for W satisfiesΘ1 ≤ Θmax
1 where

Θmax
1 = max

t∈CrTW

(2Π1 − t) +

√

(2Π1 − t)
2
+ 8Π1dt

4
.

Proof: The proof is similar to that of Theorem 1 except
that it is based on LSBF instead of USBF. The details are
available in [13].

Computation of getResModel(dbfW , LCMW ,Γ1). The func-
tion getResModel(dbfW , LCMW ,Γ1) computes a period re-
source modelΓ2 such thatΩ = (Γ1,Γ2) is the minimum
bandwidth DPRM interface that can scheduleW . This Γ2

can be obtained as the output of Algorithm 3 on the inputs
rdbfW−Γ1

(t) andLCMW . The correctness of this computation
is justified in [13].

VI. SIMULATION

To evaluate our algorithms and DPRM interface, we ran
simulations on 200 random workloads, each consisting of
three tasks. Each task’s period was randomly chosen in the
range of 10-100 following the uniform distribution. Each task’s
execution time was uniformly distributed random number from
1 to the task’s period. We constrained the workload utilization
to be no more than 0.8.

Fig. 5. Comparison between Periodic Resource Model and DPRM.

For each generated workload, we computed its optimal
periodic resource model (iPRM) and its optimal DPRM (iD-
PRM) with integer parameters. We also computed the optimal
periodic resource model with rational number (rPRM) [3].

Figure 5 shows the results of the first ten workloads.
The X-axis is the workload identifier sorted by utilization
whereas the Y-axis is the optimal bandwidth of the computed
resource models. As shown in the figure, the iDPRM was
always better than or as good as the iPRM: the iDPRM
had smaller bandwidth than the iPRM did in 77% of the
simulated workloads, with a bandwidth reduction of up to
12.5%. Further, with respect to the ideal bandwidth given
by the rPRM, the iDPRM incurred only 1.25% bandwidth
overhead in average whereas the iPRM suffered more than
2.56 times as much (3.22% overhead).

To evaluate the scalability of DPRM interface, we repeated
the above experiment for larger workloads. Our simulation
results showed that as the number of tasks increases, the above
improvement of DPRM interface (over the periodic resource
interface) also increases [13]. This is expected due to the
corresponding increase in complexity of the DBF function of
the workload, which can be more effectively captured by the
DPRM interface.

VII. C ONCLUSION

Traditional algorithms for computing the minimum-
bandwidth resource model face two drawbacks: (i) they as-
sume rational parameters for the resource model, which cannot
always be used in practice, and (ii) the resource period is
searched within a range specified by the designer, which
cannot guarantee optimality. We have presented more efficient
algorithms that tackle these drawbacks by considering integer
parameters and a safe bound on the period. We further
proposed the DPRM interface and an algorithm for computing
the minimum bandwidth DPRM interface that is more accu-
rate than the periodic resource interface when restrictingthe
interface to have only integer parameters.

Our simulation results showed that the DPRM achieved
a lower bandwidth than the periodic model did in 77% of
the workloads. DPRM further reduced more than half the
bandwidth overheads suffered by the periodic resource model.
This advantage of DPRM interface over the periodic model
interface was also shown to scale to the size of the workload.
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