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Introduction 

From a very genera-1 point of view, this paper is about the interaction between "first-order 
computation" modeled by algebraic rewriting, and "higher-order polymorphic computation" 
modeled by reduction in the Girard-Reynolds polymorphic lambda calculus. Our results 
permit to conclude that this interaction is quite smooth and pleasant. 

Changing the perspective, we regard algebraic rewrite systems as tools for the proof-theoretic 
analysis of algebraic equational theories, and we recall that such algebraic theories are used 
to model data type specifications [EMS5]. Then, our results continue to confirm a thesis put 
forward in a series of papers [MRSG, BMS7, BreSS] , namely that strongly normalizing type 
disciplines interact nicely with algebraic data type specifications. 

The preservation of the confluence of algebraic rewriting is a case in point. We show in 
this paper that the very powerful, impredicative, but strongly normalizing, polymorphic 
type discipline yields confluent rewriting when combined with confluent algebraic rewriting. 
In contrast, this fails for type disciplines which allow the type-checking of fixed points, as 
in lambda calculi with recursive types, in particular in the untyped lambda calculus. (A 
counterexample is furnished by I<lop's result a.bout the 1a.mbda calculus with surjective 
pairing; see [Bre8S] for a simpler one.) 

The first main result of this paper, (see section 4) states that combining a confluent many- 
sorted algebraic rewrite system with almost all lcinds (except q) of polymorphic term reduc- 
tion notions gives a system that,  globally, is confluent. A comparison of such a result with 
the preservation of confluence results of [Toy871 and [Klo80] appears in [Bre88]. 

A brief summary of the technical setting for our result goes a.s follows. Given a many-sorted 
signature C, we construct mixed lambda terms with the sorts of C as constant "base" types 
and from the symbols in C seen, by currying, a.s higher-order constants. Then, given a set 
R of rewrite rules between algebraic C-terms, we show that if R is CR on algebraic C-terms, 
then R + /? + type-/? + type-q rewriting of mixed terms has the Church-Rosser property 
too. (Notice the absence of 77;  a counterexample appears in section 4.) An obvious, but 
important, feature of R-rewriting on mixed terms is that this is done such that the variables 
occurring in the algebraic rules can be instantiated with any mixed terms, as long as they 
are of the same "base" type as the va,riables they replace. 

Our result and its proof are direct genera.liza,tions of the corresponding result for the simply 
typed lambda calculus presented in [BreSS]. I-Iowever, since the publication of [Bre88], we 
have found an error in the proof of one of the 1emma.s (specifically lemma 2.2) used there for 
the confluence result. In this paper we correct the error, and generalize the statement of the 
lemma-from simply typed normal forms to arbitrary polymorphic terms (see theorem 3.5). 

Our second main result is about preservation of strong normalization (SN). In the same 
setting as above, we show in section 6 that given a set R of rewrite rules between algebraic 
C-terms, if R is SN on algebraic C-terms, then R + P + 77 + type-P + type-q rewriting 



of mixed terms is also SN (no problem with q here). This settles an open question posed 
in [Bre88], where some insight into the problem was also given. 

Combinations of SN rewrite systems are notoriously impredictable. Toyama [Toy871 gives 
two SN algebraic rewrite systems whose direct sum is not SN. Results like ours in which SN 
is preserved in the combination (which is not even a direct sum, since application is shared) 
are therefore mat hematically very interesting. 

We prove our conservation of SN result by generalizing a technique due to Girard [Gir72], the 
method of candidates of reducibility. For the simple type discipline the idea of associating 
certain sets of strongly normalizing terms to types to facilitate a proof by induction that 
all terms are SN already appears in [Tai67] but the situation is much more complicated for 
the polymorphic lambda calculus. The idea that such techniques could be used for proving 
other results than strong norma,lization with respect to P-reduction apparently originated 
with Statman [StaS5]. (His unary syntactic logical relations are simply typed versions of 
the sets of generalized candidates.) This idea. is ta.ken further, and very well articulated 
by Mitchell [Mitt361 where most of the ingredients of the generalization we give here appear 
except that it works for proving properties of type-erasures of polymorphic lambda terms, and 
not all such properties reflect ba.ck to typed terms. Tait also uses the type-erasing technique 
just for strong normalization [Tai75],3 and the technical conditions we use in section 5 owe 
to both Tait and Mitchell. In order to accomodate many-sorted algebraic rewriting we use 
a generalization of Girard's original typed candidates. 

Working independently from us, Dougherty also gives an answer to [Bre88]'s open question 
on SN preservation [DouSS]. His method works for any strongly normalizing untyped terms, 
using an analysis of the residuals of algebraic reduction on untyped lambda terms. However, 
the use of type- and therefore sort-erasure limits its applicability to one-sorted algebraic 
systems: indeed, it is easy to construct an SN many-sorted algebraic rewrite system which 
ceases to be SN when the sorts are identified. 

Combining our two results, we obtain the following: if R is canonical (SN and CR) on 
algebraic terms, then R + P + type-P + type-q is ca.nonica1 on mixed terms. Again, we 
should point out that even direct sums of ca.nonica1 systems are not necessarily canonical, 
as was shown by Barendregt and Klop [I<lo87]. 

The reader may wonder wha,t happens with 7-reduction. An example is given in section 4 
which shows that q-reduction does not commute even with the simplest kind of algebraic 
reduction. We do not regard this a.s a, significa.nt fact since the computational interpretation 
of q-reduction is quite unclear. However, q, regarded as an equational axiom, may be useful 
when reasoning about programs. In vielv of this, we examine the problem of deciding R + P 
+ q + type-,O + type-7 convertibility. We show in section 7, by using long 7-normal forms, 
that if R is canonical then convertibility is decidable. 

3Mitchell's results were obtained independently of Tait's. 



2 Mixing algebra and polymorphic lambda calculus 

This section is devoted to developing the notation for stating our results. We start with an 
arbitary many-sorted algebraic signature and define mixed terms i.e., polymorphic lambda 
terms constructed with the symbols of the signature seen as higher-order constants. In 
the process, we give a new, simpler, notation for polymorphic terms. The motivation for 
departing from the style of recent presentations [MitsG, BC88] is that the notation they offer 
is too cluttered. We sketch a new notation which handles polymorphic lambda terms with 
almost the same ease as the usual notation handles simply typed lambda terms [Sta82]. This 
is very helpful to the intuition needed in proofs depending heavily on the combinatorics of 
terms as is demonstrated very well by Statman7s work on the simply typed lambda calculus. 
This notation deserves a detailed development, but because of space limitations we shall do 
it elsewhere. We conclude the section with a precise statement of the main theorems we 
prove in the paper. 

Let S be a set of sorts and C an S-sorted algebraic signature. Each function symbol f E C 
has an arity, which is a string sl - s, E S*,  12 > 0, and a sort s E S intending to symbolize 
a heterogenous opera.tion which talies a,rguments of sorts (in order) sl, . . . , s, and returns a 
result of sort s .  

Type expressions (types) are defined by 

where s ranges over S and t ranges over an infinite set V of type variables. Therefore, the 
"base" types are exactly the sorts of the signature. Free and bound variables are defined in 
the usual way. We denote by FTV(a )  the set of type variables which are free in a. We will 
identify the type expressions which differ only in the name of the bound variables. The set 
of type expressions will be denoted by 7. 

A type substitution is a map 8 : V + 7. The result of applying 0 to a is denoted a[@] 
and, if 0 is the identity everywhere except B(t) = T ,  a[r/ t] .  

Let X be an infinite set of (term) variables. A tgpe assignment is a partial function A : X + 

7 with finite domain. Alternatively, we will also regard type assignments as finite sets of 
pairs x: a such that no x occurs twice. We write A, x: a for AU {x: a) and, by convention, the 
use of this notation implies that x gI domA. The empty type assignment is usually omitted. 
A declaration is a pair consisting of a type assignement and a type, written A t- a .  Terms, 
together with their declarations, a.re defined inductively as follows 

Variables. For any A and any x: a in A, the triple (A, x, a )  is a term of declaration A l- a .  

Constants. For any f E C of arity sl . . . s, and sort s ,  and for any A, the triple (A,  f ,  a) 
d ~ f  where a - s l+  . . . -t s, -+ s is a term of declaration A I- a. 



Application. If M is term of declaration A t a  -t T and N is a term of declaration A I- a 
then M N  is a term of declaration A t T .  

Abstraction. If M is a term of declaration A, x: a t T then Ax: a. M is a term of declaration 
A l - O + T .  

T y p e  application. If Ad is a term of declaration A k Vt. a then for any T E 7, MT is a 
term of declaration A I- a[ r / t ] .  

T y p e  abstraction.  If M is a term of declaration A t a  and t  FTV(ranA), then At. M 
is a term of declaration A t Vt. a. 

For a term M of declaration A I- a  we define the type of M to be a and we write M : a. 

We denote by A the set of a.11 terms. 

Free and bound varia.bles are defined a.s usua.1. We denote by FV(M)  the set of free variables 
of M. Clearly if M has declaration A t a then F V ( M )  C domA. If x: r E A, we say 
that x:a is declared in Ail. A term can have declared variables which do not belong to 
FV(M).  The free and bound type variables of a term, and substitution of types for type 
variables in terms are defined such that free occurrences in type assignments and types 
count too. (We denote by FTV(AI) the set of free type variables of M.) For example, 

FTV((A, x, a)) %' FTV(ranA) U FTV(a) .  Aga,in we identify the terms which differ only 
in the name of the bound variables a,nd bound type variables. 

In view of their inductive definition, we will regard terms as trees. Consequently, we can 
define subterms (as subtrees), occurrences of subterms in a term, and replacement of a 
subterm by another term. 

Note that if a variable or a constant of dec1a)ration A t a occurs as a subterm of a term 
of declaration A' t r then A' C A. Given a term N of declaration A' t T and a type 
assignment AN such that A' & A", there is a ca.nonica1 expansion of N to a term N' of 
declaration A" t- T obtained by adding AN \ A' to the declarations of the variables and 
constants of N  . (This may require some renaming of the bound variables.) 

Substitution of terms for variables in terms can he defined via replacement of subterms. Let 
A and A' be two type assignments. A substitution from A to A' written 9 : A --+ A' is a 
map that associates to any x E do~nA a term ~ ( z )  of declaration A' 1 A(x). Let M  be a 
term of declaration A t- a  and 9 : A - A' a substitution. Define the result of applying 
y to M as the term of declaration A' t a obtained by replacing all the occurrences in M 
of subterms of the form (A", x, a) where x E domA with corresponding expansions of y(x) 
from A' to A' U (A'' \ A) where the union is a.ssumed disjoint (some renaming of bound 
variables may be necessary). 

Notation for substitution: A/r[y] and Al[N/x] if y is the identity everywhere except y(x) = N. 

This introduction to the notation is, by necessity, informal. In particular, many details and 
many tedious proofs are hidden behind the casual "we identify types and terms which differ 



only in the name of the bound variables". But the rigorous treatment is similar to that of 
other lambda calculi and will be given elsewhere. The point of this notation is that once all 
these basic definitions are made precise, declarations can almost always be left implicit, as is 
the case with types in the simply typed lambda calculus. Taking advantage of this, except 
for the the basic definition of terms we just gave, we will not actually need to use the triple 
notation for variables and constants. This is well illustrated, for example, by the definition 
of the usual notions of reduction: 

(P-reduction) M N iff 
N is obtained from M by replacing a subterm of the form (Ax: a. X ) Y  with X[Y/x]. 

(q-reduction) M --?-t N iff 
N is obtained from M by replacing a subterm of the form Ax: a. Zx  with 2, where 
x $ FV(Z) .  

( type-P reduct ion)  M 3 N iff 
N is obtained from M by replacing a subterm of the form (At. X ) T  with X [ T / ~ ] .  

(type-q reduct ion)  M 3 N iff 
N is obtained from M by repla.cing a subterm of the form At. Zt  with 2, where 
t $ FTV(Z) .  

Let 
A' def P r] 70 + =  +u+u---+u-+, 

and we will also need 
A -  def P T O  I, - - t - - - + U t U - + .  

Next we will introduce algebraic terms a.nd rewriting. There is a well-known transformation, 
known as currying that maps algebraic C-terms into A. This transformation is an injection. 
In view of that, we choose to talk directly &out curried algebraic terms and define algebraic 
rewriting on them. 

A declaration is algebraic iff all the types occurring in it a.re sorts. Among polymorphic 
terms, algebraic terms are defined inductively by 

Any variable (term) of algebraic declaration is an algebraic term. 

If f is a constant (term) of declaration 4 1 sl+ . . -t s, + s, ranA consists only of 
sorts, and Al : s l ,  . . . A, : s, are a1gebra.i~ terms, then f A1 . . . A, is an algebraic 
term. 



As intended, it follows that any algebraic term has an algebraic declaration. 

An algebraic rewrite rule is a pair r of algebraic terms, written r = A + A', where A, A' 
have the same declaration, FV(Ar) 5 FV(A),  and A is-not a ~ a r i a b l e . ~  Such a rule defines 
a reduction relation on all terms not only the algebraic ones: 

Ad '. N iff 

there exists a substitution c p  such that N is obtained from M by replacing an occurrence of 
A[y] as a subterm with A1[p]. 

Lemma 2.1 If B is algebraic and B Z then Z is algebraic. 

Thus, we can talk about algebraic rewriting on algebraic terms. It is easy to see that 
currying establishes the expected relation between many-sorted algebraic rewriting of C- 
terms [MG85] and our definition of algebra,ic rewriting. Indeed, for any many-sorted C- 
rewrite rule m s p + p' and any many-sorted C-terms q, q' 

where c (m)  s curry(p) -+ curry(pl). 

Let R be a set of algebraic rewrite rules. Define the following notions of reduction on terms: 

R def R + =  
TER 

For any of these notions of reduction we will denote by - the reflexive-transitive closure 
of +. 
It is well-known that both Xv and X -  reduction are canonical (i.e., strongly normalizing and 
confluent) on all terms. In fact, the generalized method of candidates presented in section 5 
can be used to prove this (see theorem 5.6). We denote by Xvnf (X) and A-nf(X) the 
corresponding normal forms of X. 

Finally, we state precisely our main results: 
R (Conservation of Strong Normalization.) If ---+ is strongly normalizing on algebraic 

A ~ R  terms then + is strongly normalizing on all terms. 

R (Conservation of Confluence.) If -+ is confluent on algebraic terms then 3 is confluent 
on all terms. 

4The results hold also if we have degenerate rules 2 - A' where FV(A1)  = 0 but their effect can be 
simulated with normal rules anyway. 



3 Algebraic rewriting of higher-order terms 

In this section;we show that the properties that algebraic reduction has on algebraic terms 
transfer to algebraic reduction on arbitrary terms. 

Theorem 3.1 
R R If 4 is strongly normalizing on algebraic terms then + is strongly normalizing on all 

terms. 

Proof Sketch. We proceed by induction on the size of terms. The only case in which 
the induction hypothesis does not immediately apply is the case of an application term. 
Let M = H TI Tk be such that H is not an application and the T;'s are terms or types. 
Suppose there is an infinite R-reduction sequence out of M. If H is an abstraction, a type 
abstraction, a variable, or a constant which takes > k arguments (i.e., the length of its arity 
is > k ) ,  then each reduction in the sequence is inside some term among the H and T,'s, and 
since there are only finitely ma.ny such terms there must be an infinite reduction sequence 
from one of them, contradicting the induction hypothesis. (This kind or argument based 
on the pigeonhole principle will be invoked again.) The only complex case is when H is a 
constant which takes exactly k arguments, and in this case the type of M is a sort. We need 
to analyze algebraic reductions on such terms, in particular to separate "trunk" (close to the 
"root" of terms) algebraic reductions from other reductions. 

An algebraic trunk decomposition of a term M consists of an algebraic term A (the "trunk") 
and a substitution cp such that A d  A[v], variables occur in A only once, and for all 
x E FV(A) the term cp(x) has the form H TI . . . Tk where H is an abstraction, a type 
abstraction, or a variable and TI, .  . . , Tk are terms or types. Clearly the type of any term 
that has an algebraic trunk decomposition must be a sort, but in fact that's all it takes: 

Lemma 3.2 
Any term M whose type is a sort has an algebraic trunk decomposition M = A[cp]. Moreover, 

this decomposition is unique up to renaming the free variables of A. 

With this, the last case in the proof of the theorem follows from 

Lemma 3.3 
Let 5 be SN on algebraic terms. Let A[cp] be mz algebraic trunk decomposition. If for each 

x E FV(A) 3 is SN on y(x) then -% is SN on A[p]. 

Before we sketch the proof of this lemma, we give a motivating discussion. For an algebraic 
trunk decomposition M G A[y], a.n algebraic redex must occur either entirely within one 
of the subterms cp(x), or "essentially" within the trunk part. More precisely, we say that 



R A[cp] --, Af[cp'] is an algebraic trunk reduction step if the R-redex is not a subterm of one 
R 

of the cp(x)'s. It is easy to see that if A[y] - Af[cp'] then for each x' E FV(A1) there 
R 

is an x E FV(A) such that p(x)  -+ v'(xl). However, separating the trunk reductions 
is somewhat subtle because algebraic rewrite rules may be non-linear, or may erase some 

R 
of their arguments. In particular, the following example shows that A[cp] - A1[cp'] does 

R tR  
not necessarily imply A - A'. (We shall denote algebraic trunk reductions by + and 

algebraic reductions in the non-trunk part by 2.) 

Example 3.4 
Let R = { f xx  ---+ gxxx, a ---t b, b -+ c } ,  and A4 = f (Fa)(Fb),  where F is a higher-order 

variable. While we have the rewrite sequence 

R 
we do not have that fx1x2 --H gy1y2y3 even if we rename the y's. However, note that 

R 

Sketch of Proof for Lemma 3.3. Suppose there is an infinite R-reduction sequence out 
of A[cp]. If this sequence has only finitely many trunk reduction steps, let A1[cp'] be term 
obtained after the last trunk step. By a pigeonhole principle kind of argument, some y'(x1) 
is not SN hence some y(x)  is not SN,  contradiction. If this sequence has infinitely many 
trunk reduction steps then we get an infinite sequence of R-reductions on algebraic terms 

ntR 
(hence a contradiction) from the following observation: if A1 [vl] - A2[yz] 2 A3[cp3] then 

A, [<I 5 A3[<] where is the substitution that ta.kes all variables of a sort into some fixed 
variable of that sort. 

We now turn to the confluence result. 

Theorem 3.5 
R R If --, is confluent on algebraic terms then ---t is confluent on all terms. 

Proof Sketch. We show by induction on the size of A4 that R-confluence holds from M. 
Again, the only case in which the i~iduction hypothesis does not immediately apply is the case 
of an application term. For application terms A'f = H TI . - TI, such that H is an abstraction, 
a type abstraction, a variable, or a, consta.nt which ta.kes > E arguments, each R-reduction 
out of M is completely inside H or inside one of the Ti's. By induction hypothesis, confluence 
holds from each of these, thus confluence holds from M. 



This leaves only case when H is a constant which takes exactly k arguments. Note that the 
example 3.4 also shows that nontrunk rewrite steps and trunk rewrite steps cannot always be 
permuted. The problem is caused by non-linear rewrite rules. Part of the proof of lemma 2.2 
(page 85) of [Bre88] is invalidated by this problem. However, the argument can be repaired, 
but the technical details are surprisingly involved. The key is to realize that on terms of type 

R ntR tR 
sort, - is the transitive reflexive closure of - -  o -. then, with the observation that if 

R 
for each x E FV(A) 5 is CR on ~ ( x )  and if A[y] - A'[ipt] then for each x' E FV(A1) 

3 is CR on ip'(xl), the R-confluence needed in the last case of the proof of the theorem 
follows from 

Lemma 3.6 
Let 5 be CR on algebraic terms. Let A[v] be an algebraic trunk decomposition. If for 

t R ntR ntR tR  
each x E FV(A) 5 is CR on ~ ( x )  and if N c N' c A[(?] - PI - P then there is 

ntR t R t R ntR 
a Q such that N - N" - Q c P" - P.  

The proof of this lemma is inspired by some key ideas of Toyama [Toy871 and is omitted 
here. 

4 Conservation of the Church-Rosser property 

Let R be a set of algebraic rewrite rules. 

Lemma 4.1 
Let X , Y  E A and r E R. If X 5 Y then X d n f ( X )  A A-n f (Y ) .  

The proof is essentially the same as that of lemma 2.1 in [Bre88] with the minor addition 
that one checks that the form of certain subterms is also preserved by 7 P  and 777 reduction. 
This is where the proof breaks down for 7 .  This lemma is false if we replace A- with X v  as 
can be seen from the simple example r f x --+ a and X Xz. f z. 

Theorem 4.2 
If R-reduction is confluent on algebraic terms then A-R-reduction is confluent on all terms. 

A-R A-R 
Proof. (The same as the proof of theorem 2.3 in [BreSS].) Suppose that Y tt X + Z . 

R 
By taking everything to A--normal form, we obtain from lemma 4.1 that X-nf ( Y )  +-- 

R R 
X -  nf ( X )  - X -  nf ( 2 )  . Then, by theorem 3.5, there exists a W such that A- nf ( Y )  + 

X - R R A - 
W > A - n f ( Z ) .  Thus Y - -  A-n f (Y )  - W - A-n f (Z )  +-- Z .  



5 Generalized candidates of reducibility 

We give here a brief development of our generalization of Girard's typed candidates of re- 
ducibility technique. We also state that the technique can be applied to obtain some well- 
known SN and CR results, in addition to Girard's original SN result. We begin with the 
defininition of the generalized candidates. For the intuition behind the definition the reader 
may consult [GLT89]. The technical use of the candidates should be evident from the proof 
of theorem 5.1. 

Let P be a property of terms. For each type a, let Po be the set of all terms of type a which 
have the property P. A P-candidate is a pair (a, C) where a E 7 and C is a set of terms of 
type a having the property P (i.e., C Po) such that the following hold. 

(Cand 1) If x is a variable, TI,. . . , Tk (k > 0) are either terms which have the property P or 
types, and x TI - . - TI, has type a ,  then x Tl . - Tk E C. 

(Cand 2) If f E C is a constant, TI,. . . , Tk ( k  2 0) are either terms which have the property P 
or types, and f TI . . . T k  has type a ,  then f Tl . . - Tk E C. (Note that the length of the 
arity of f may differ from k.) 

(Cand 3) If M, N are terms which have the property P, TI , .  . . , Tk ( k  2 0) are either terms 
which have the property P or types, x: T is declared in M, and M[N/x] Tl . - .  Tk E C 
then (Ax: T.  M) N Tl - . Tk E C. 

(Cand 4) If M is a term which has the property P, TI,. . . , Tk n > 0 are either terms which have 
the property P or types, T is a type, a,nd Al[r/t] TI - . Tk E C then (At. M) T Tl . - - Tk E 
C. 

The property P is candidate-closed iff the following hold. 

(Clo l a )  If M x  (where x is a variable) has property P, then M has property P. 

(Clo l b )  If M t  (where t is a type variable) has property P, then M has property P .  

(Clo 2) For any type a, the pair (a, Po) is itself a P-candidate. 

Theorem 5.1 
If P is candidate-closed then all t e ~ r r ~ s  have property P .  

Proof Sketch. Assume P is candidate-closed. 

A candidate assignment is map y that a.ssociates to ea.ch type variable a P-candidate. Taking 
the first projection, we can regard any ca.ndidate assignment also as a type substitution, and 
write a [ ~ ]  for any type a. 



We associate to each type a and each ca.ndidate assignment y a pair consisting of a type and 
a set of terms, denoted [a]y, as follows 

dzf 
us17 - (s7Ps) 

I t l r  7(t) 
dzf 

-+ 717 - (a[rl-+ drl, { M  I VN, N E 64r * M N  E [[~ly}) 
def 

p t .  017 = (W. a[?], {hf 1 V(T, C) P-and. ,  MT E [a]y{t: = (7, C)) )) 

Lemma 5.2 
[any is a P-candidate of type a[y] 

All this is then used to show that any term belongs to some P-candidate, and thus has the 
property P. One uses induction on terms, strengthening the induction hypothesis as follows. 

Lemma 5.3 
For any t e rn  M of declaration A I- a, for any candidate assignment y, for every substitution 
9 : A - A[y] such that Vx E doma,  p (x)  E [A(x)[r]]y, we have M[r][cp] E [ a ] ~ .  

def The theorem now follows by applying the previous lemma to ~ ( t )  %f (t , Pt) and cp(x) = I. 
We give without proof some applications. While all these results are certainly well-known, 
apparently the Church-Rosser results for polymorphic terms have not been proved by the 
"candidates" method before (but this pa,th started in [Sta85, Mit861). 

P7P Theorem 5.4 (Girard) " A! is +-strongly normalizing " 
is a candidate-closed property of teirns Ail  E A.  

Theorem 5.5 (Girard) " P3-confluence holds from A 4  " 
is a candidate-closed property of terms Ail  E A .  

Theorem 5.6 
The following are also candidate-closed properties of terms M E A: 

A' 4-conf luence holds fro~n, A 9  " 

" z-conf luence  holds from A! " 



6 Conservation of strong normalization 

Let R be a set of algebraic rewrite rules such that 5 is strongly normalizing on algebraic 
terms. In view of theorem 5.1, the desired result follows from 

Xv R Theorem 6.1 " M is --strongly normalizing " 
is a candidate-closed property of terms A4 E A. 

Proof Sketch. (Clo l a )  and (Clo l b )  are immediate. For (Clo 2) we need to  check that 
the set of strongly normalizing terms of a certain type satisfies (Cand 1)-(Cand 4). (Cand 
1) is immediate by the pigeonhole principle kind of argument (see the proof of theorem 3.1). 
Checking (Cand 3) is a bit of work but the presence of algebraic rules makes no difference 
compared to theorems 5.4 and 5.6 so we choose to omit it due to space limitations. Checking 
(Cand 4) is an easier version of checking (Cand 3) .  The really new situation appears in 
checking (Cand 2). 

R Suppose that Nl . . Nk are all +-strongly normalizing and that there is an infinite reduction 
sequence from M - f Nl - .  . Nk. Let the length of the arity of f be n. Since M type-checks 
k 5 n. If Ic < n the pigeonhole principle kind of argument applies. 

If k = n then the type of M and tha.t of all the terms in the reduction sequence is a sort, so 
we can find algebraic trunk decompositions for them. From here we distinguish two cases. 

Case 1. The reduction sequence out of M conta.ins only finitely many algebraic trunk 
reduction steps. 

Let then M' = A1[cp'] be the term in the sequence obtained through the last algebraic trunk 
reduction step. Then, any further reduction step in the sequence is non-trunk and therefore 
is inside one of the y'(x1), x' E FV(A1). By a pigeonhole principle kind of argument, one 
of these is not strongly normalizing. Since we ca.n also show 

Lemma 6.2 
X"R 

Let A[cp] be an algebraic trunk decomposition. If A[y] ---H A1[y'] then for any x' E FV(A1) 
there exists an x E FV(A) and a subterm .AT' of A1[y'] such that yl(x') is a subterm of N1 

X'R 
and cp(x) + N'. 

It follows that one of the y (x) ,  x E FV(A) is not strongly normalizing. Since each of these 
is a subterm of one of the N;'s we have a. contradiction a.gain. 

Case 2. The reduction sequence out of AT contains infinitely many algebraic trunk reduction 
steps. 

In this case the idea is to take all the terms in the sequence to At/-normal form but this 
does not quite work because of the ba.d interaction between q and R. Instead we use the 
following: 



A long normal form is (recursively) a term of the form Xv'. h Zl . . . Zn where h is a variable 
or a constant, each 2; is a long normal form, and the type of h Z1 . . . Zn is either a sort, or 
a type variable, or of the form Vt.  a. While such a term is in general not in 7-normal form, 
the name is justified by the fact that any term, X, is Xv-convertible to a unique long normal 
form, lnf (X);  to  effectively obtain it, take the term to A--normal form and then perform 
(if needed) some 7-expansions. With this, we have a result very similar to lemma 4.1 (the 
proof is also similar), and we strengthen it for algebraic trunk reduction steps: 

Lemma 6.3 
Let X , Y  E A and r E R.  If X It Y then lnf (X) i* l n f (Y ) .  Moreover, if X Y is 

actually an algebraic trunk reduction step then lnf (X) ' Inf (Y). 

Now convert all the terms of the infinite reduction sequence out of M to  long normal form. 
Since there are infinitely many algebraic trunk steps, the result will be an infinite sequence 
of R-reductions. By theorem 3.1, this is impossible. 

7 Deciding convertibility in the presence of q 

In view of the counterexample involving 7 prsented in section 4 there are algebraic rewrite 
systems R which are canonical such that XvR is not confluent, and thus not canonical. 
Nonetheless, lemma 6.3 provides a satisfactory solution: 

Theorem 7.1 
If R is canonical on algebraic terms th,e~z XvR convertibility is decidable. 

Proof. Since R is canonical on algebraic terms it also canonical on all terms, by theorems 3.1 
and 3.5. Let Rnf (X) be the R-normal form of a term X .  

The algorithm is the following: to decide if A4 a.nd N are convertible test if Rnf (lnf (M)) = 
Rnf (lnf (N)).  

Indeed, if M, N are convertible to each other by a chain of XvR conversion steps then take 
all the terms in this chain to long normal form. By lemma 6.3 lnf (M) and lnf (N)  are 
R-convertible so their R-normal forms coincide. The converse is trivial. 

8 Directions for Further Research 

Of course, one would a.lso like to li110w wha.t to do in the absence of an equivalent canon- 
ical rewrite system. We conjecture that the proof-theoretic reduction from simply typed 



theories with algebraic axioms to a1gebra.i~ theories, given in [Bre8S], can be generalized to 
polymorphic theories. 

Our results show that some important properties of algebraic systems are preserved when al- 
gebraic rewriting and polymorphic lambda-term rewriting are mixed. As applications to the 
results of this paper, we intend to investigate higher-order unification modulo an algebraic 
theory. For the simply-typed lambda calculus, we conjecture that adding the lazy paramod- 
ulation rule investigated in [GSSSa] to the set of higher-order transformations investigated 
in [GS89b] yields a complete set of transformations for higher-order E-unification. Such 
a result would have several applica.tions in automated theorem proving. We also intend to 
investigate the possibility of extending I<nuth-Bendix completion procedures to  polymorphic 
theories with algebraic axioms. 

Another direction of investigation is to consider more complicated type disciplines, such as 
that of the Calculus of Constructions [CHSS]. 

More generally, we feel that the results of this paper are only a first step towards extending 
the important field of term rewriting systems to include higher-order rewriting. One of our 
main goals is to provide rigorous methods for understanding higher-order functional and 
logic programming. In particular, one is interested in rules which describe the behaviour 
of higher-order operations (such as maplist, for example). In any case, a lot of care will be 
needed with higher-order rules beca.use, for example, fixed points are also described this way: 
Y F  = F(YF) .  
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