
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

May 1989

Polymorphic Rewriting Conserves Algebraic Strong Normalization Polymorphic Rewriting Conserves Algebraic Strong Normalization

and Confluence and Confluence

Val Tannen
University of Pennsylvania, val@cis.upenn.edu

Jean H. Gallier
University of Pennsylvania, jean@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Val Tannen and Jean H. Gallier, "Polymorphic Rewriting Conserves Algebraic Strong Normalization and
Confluence", . May 1989.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-89-27.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/782
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76393579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/782
mailto:repository@pobox.upenn.edu

Polymorphic Rewriting Conserves Algebraic Strong Normalization and Polymorphic Rewriting Conserves Algebraic Strong Normalization and
Confluence Confluence

Abstract Abstract
We study combinations of many-sorted algebraic term rewriting systems and polymorphic lambda term
rewriting. Algebraic and lambda terms are mixed by adding the symbols of the algebraic signature to the
polymorphic lambda calculus, as higher-order constants.

We show that if a many-sorted algebraic rewrite system R is strongly normalizing (terminating,
noetherian), then R + β + η + type-β + type-η rewriting of mixed terms is also strongly normalizing. We
obtain this results using a technique which generalizes Girard's "candidats de reductibilité", introduced in
the original proof of strong normalization for the polymorphic lambda calculus.

We also show that if a many-sorted algebraic rewrite system R has the Church-Rosser property (is
confluent), then R + β + type-β + type-η rewriting of mixed terms has the Church- Rosser property too.
Combining the two results, we conclude that if R is canonical (complete) on algebraic terms, then R + β +
type-β + type-η is canonical on mixed terms.

η reduction does not commute with a1gebraic reduction, in general. However, using long β- normal forms,
we show that if R is canonical then R + β + η + type-β + type-η convertibility is still decidable.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-89-27.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/782

https://repository.upenn.edu/cis_reports/782

POLYMORPHIC REWRITING
CONSERVES ALGEBRAIC
STRONG NORMALIZATION

AND CONFLUENCE
Val Breazu-Tannen
and Jean Gallier

MS-CIS-89-27
LOGIC & COMPUTATION 06

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104

May 1989

To appear in the proceedings of ICALP, Stresa, July 1989

Acknowledgements: This research was supported in part by ONR grants N00014-88-
K-0634, NO001 4-88-K-0593, DARPA grant NO001 4-85-K-0018, NSF grants MCS-8219196-
CER, IR184-10413-A02 and U.S. Army grants DAA29-84-K-0061, DAA29-84-9-0027.

Polymorphic Rewriting Conserves Algebraic Strong
Normalization and Confluence

Val Breaxu- ~ a n n e n ' Jean Gallie?

Department of Computer and Information Science
University of Pennsylvania

200 South 3.3rd St., Philadelphia, PA 19104, USA

Abstract. We study combinations of many-sorted algebraic term rewriting systems and
polymorphic lambda term rewriting. Algebraic and lambda terms are mixed by adding
the symbols of the algebraic signature to the polymorphic lambda calculus, as higher-order
const ants.

We show that if a many-sorted algebraic rewrite system R is strongly normalizing (terrni-
nating, noetherian), then R + /? + 7 + type-/? + type-? rewriting of mixed terms is also
strongly normalizing. We obtain this results using a technique which generalizes Girard's
"candidats de reductibilit&", introduced in the original proof of strong normalization for the
polymorphic lambda calculus.

We also show that if a many-sorted algebraic rewrite system R has the Church-Rosser prop-
erty (is confluent), then R + /? + type-/? + type-? rewriting of mixed terms has the Church-
Rosser property too. Combining the two results, we conclude that if R is canonical (complete)
on algebraic terms, then R + P + type-P + type-17 is canonical on mixed terms.

17 reduction does not commute with a1gebra.i~ reduction, in general. However, using long 7-
normal forms, we show that if R is canonical then R + /? + 7 + type-/? + type-17 convertibility
is still decidable.

To appear in the proceedings of ICALP, Stresa, July 1989

'Partially supported by ONR Grant N00014-88-I(-0634 and by ARO Grant DAAG29-84-K-0061
'partially supported by ONR Grant N00014-88-I<-0593.

1

Introduction

From a very genera-1 point of view, this paper is about the interaction between "first-order
computation" modeled by algebraic rewriting, and "higher-order polymorphic computation"
modeled by reduction in the Girard-Reynolds polymorphic lambda calculus. Our results
permit to conclude that this interaction is quite smooth and pleasant.

Changing the perspective, we regard algebraic rewrite systems as tools for the proof-theoretic
analysis of algebraic equational theories, and we recall that such algebraic theories are used
to model data type specifications [EMS5]. Then, our results continue to confirm a thesis put
forward in a series of papers [MRSG, BMS7, BreSS] , namely that strongly normalizing type
disciplines interact nicely with algebraic data type specifications.

The preservation of the confluence of algebraic rewriting is a case in point. We show in
this paper that the very powerful, impredicative, but strongly normalizing, polymorphic
type discipline yields confluent rewriting when combined with confluent algebraic rewriting.
In contrast, this fails for type disciplines which allow the type-checking of fixed points, as
in lambda calculi with recursive types, in particular in the untyped lambda calculus. (A
counterexample is furnished by I<lop's result a.bout the 1a.mbda calculus with surjective
pairing; see [Bre8S] for a simpler one.)

The first main result of this paper, (see section 4) states that combining a confluent many-
sorted algebraic rewrite system with almost all lcinds (except q) of polymorphic term reduc-
tion notions gives a system that, globally, is confluent. A comparison of such a result with
the preservation of confluence results of [Toy871 and [Klo80] appears in [Bre88].

A brief summary of the technical setting for our result goes a.s follows. Given a many-sorted
signature C, we construct mixed lambda terms with the sorts of C as constant "base" types
and from the symbols in C seen, by currying, a.s higher-order constants. Then, given a set
R of rewrite rules between algebraic C-terms, we show that if R is CR on algebraic C-terms,
then R + /? + type-/? + type-q rewriting of mixed terms has the Church-Rosser property
too. (Notice the absence of 77; a counterexample appears in section 4.) An obvious, but
important, feature of R-rewriting on mixed terms is that this is done such that the variables
occurring in the algebraic rules can be instantiated with any mixed terms, as long as they
are of the same "base" type as the va,riables they replace.

Our result and its proof are direct genera.liza,tions of the corresponding result for the simply
typed lambda calculus presented in [BreSS]. I-Iowever, since the publication of [Bre88], we
have found an error in the proof of one of the 1emma.s (specifically lemma 2.2) used there for
the confluence result. In this paper we correct the error, and generalize the statement of the
lemma-from simply typed normal forms to arbitrary polymorphic terms (see theorem 3.5).

Our second main result is about preservation of strong normalization (SN). In the same
setting as above, we show in section 6 that given a set R of rewrite rules between algebraic
C-terms, if R is SN on algebraic C-terms, then R + P + 77 + type-P + type-q rewriting

of mixed terms is also SN (no problem with q here). This settles an open question posed
in [Bre88], where some insight into the problem was also given.

Combinations of SN rewrite systems are notoriously impredictable. Toyama [Toy871 gives
two SN algebraic rewrite systems whose direct sum is not SN. Results like ours in which SN
is preserved in the combination (which is not even a direct sum, since application is shared)
are therefore mat hematically very interesting.

We prove our conservation of SN result by generalizing a technique due to Girard [Gir72], the
method of candidates of reducibility. For the simple type discipline the idea of associating
certain sets of strongly normalizing terms to types to facilitate a proof by induction that
all terms are SN already appears in [Tai67] but the situation is much more complicated for
the polymorphic lambda calculus. The idea that such techniques could be used for proving
other results than strong norma,lization with respect to P-reduction apparently originated
with Statman [StaS5]. (His unary syntactic logical relations are simply typed versions of
the sets of generalized candidates.) This idea. is ta.ken further, and very well articulated
by Mitchell [Mitt361 where most of the ingredients of the generalization we give here appear
except that it works for proving properties of type-erasures of polymorphic lambda terms, and
not all such properties reflect ba.ck to typed terms. Tait also uses the type-erasing technique
just for strong normalization [Tai75],3 and the technical conditions we use in section 5 owe
to both Tait and Mitchell. In order to accomodate many-sorted algebraic rewriting we use
a generalization of Girard's original typed candidates.

Working independently from us, Dougherty also gives an answer to [Bre88]'s open question
on SN preservation [DouSS]. His method works for any strongly normalizing untyped terms,
using an analysis of the residuals of algebraic reduction on untyped lambda terms. However,
the use of type- and therefore sort-erasure limits its applicability to one-sorted algebraic
systems: indeed, it is easy to construct an SN many-sorted algebraic rewrite system which
ceases to be SN when the sorts are identified.

Combining our two results, we obtain the following: if R is canonical (SN and CR) on
algebraic terms, then R + P + type-P + type-q is ca.nonica1 on mixed terms. Again, we
should point out that even direct sums of ca.nonica1 systems are not necessarily canonical,
as was shown by Barendregt and Klop [I<lo87].

The reader may wonder wha,t happens with 7-reduction. An example is given in section 4
which shows that q-reduction does not commute even with the simplest kind of algebraic
reduction. We do not regard this a.s a, significa.nt fact since the computational interpretation
of q-reduction is quite unclear. However, q, regarded as an equational axiom, may be useful
when reasoning about programs. In vielv of this, we examine the problem of deciding R + P
+ q + type-,O + type-7 convertibility. We show in section 7, by using long 7-normal forms,
that if R is canonical then convertibility is decidable.

3Mitchell's results were obtained independently of Tait's.

2 Mixing algebra and polymorphic lambda calculus

This section is devoted to developing the notation for stating our results. We start with an
arbitary many-sorted algebraic signature and define mixed terms i.e., polymorphic lambda
terms constructed with the symbols of the signature seen as higher-order constants. In
the process, we give a new, simpler, notation for polymorphic terms. The motivation for
departing from the style of recent presentations [MitsG, BC88] is that the notation they offer
is too cluttered. We sketch a new notation which handles polymorphic lambda terms with
almost the same ease as the usual notation handles simply typed lambda terms [Sta82]. This
is very helpful to the intuition needed in proofs depending heavily on the combinatorics of
terms as is demonstrated very well by Statman7s work on the simply typed lambda calculus.
This notation deserves a detailed development, but because of space limitations we shall do
it elsewhere. We conclude the section with a precise statement of the main theorems we
prove in the paper.

Let S be a set of sorts and C an S-sorted algebraic signature. Each function symbol f E C
has an arity, which is a string sl - s, E S*, 12 > 0, and a sort s E S intending to symbolize
a heterogenous opera.tion which talies a,rguments of sorts (in order) sl, . . . , s, and returns a
result of sort s .

Type expressions (types) are defined by

where s ranges over S and t ranges over an infinite set V of type variables. Therefore, the
"base" types are exactly the sorts of the signature. Free and bound variables are defined in
the usual way. We denote by FTV(a) the set of type variables which are free in a. We will
identify the type expressions which differ only in the name of the bound variables. The set
of type expressions will be denoted by 7.

A type substitution is a map 8 : V + 7. The result of applying 0 to a is denoted a[@]
and, if 0 is the identity everywhere except B(t) = T , a[r/ t] .

Let X be an infinite set of (term) variables. A tgpe assignment is a partial function A : X +

7 with finite domain. Alternatively, we will also regard type assignments as finite sets of
pairs x: a such that no x occurs twice. We write A, x: a for AU {x: a) and, by convention, the
use of this notation implies that x gI domA. The empty type assignment is usually omitted.
A declaration is a pair consisting of a type assignement and a type, written A t- a . Terms,
together with their declarations, a.re defined inductively as follows

Variables. For any A and any x: a in A, the triple (A, x, a) is a term of declaration A l- a .

Constants. For any f E C of arity sl . . . s, and sort s , and for any A, the triple (A, f , a)
d ~ f where a - s l+ . . . -t s, -+ s is a term of declaration A I- a.

Application. If M is term of declaration A t a -t T and N is a term of declaration A I- a
then M N is a term of declaration A t T .

Abstraction. If M is a term of declaration A, x: a t T then Ax: a. M is a term of declaration
A l - O + T .

T y p e application. If Ad is a term of declaration A k Vt. a then for any T E 7, MT is a
term of declaration A I- a[r / t] .

T y p e abstraction. If M is a term of declaration A t a and t FTV(ranA), then At. M
is a term of declaration A t Vt. a.

For a term M of declaration A I- a we define the type of M to be a and we write M : a.

We denote by A the set of a.11 terms.

Free and bound varia.bles are defined a.s usua.1. We denote by FV(M) the set of free variables
of M. Clearly if M has declaration A t a then F V (M) C domA. If x: r E A, we say
that x:a is declared in Ail. A term can have declared variables which do not belong to
FV(M). The free and bound type variables of a term, and substitution of types for type
variables in terms are defined such that free occurrences in type assignments and types
count too. (We denote by FTV(AI) the set of free type variables of M.) For example,

FTV((A, x, a)) %' FTV(ranA) U FTV(a) . Aga,in we identify the terms which differ only
in the name of the bound variables a,nd bound type variables.

In view of their inductive definition, we will regard terms as trees. Consequently, we can
define subterms (as subtrees), occurrences of subterms in a term, and replacement of a
subterm by another term.

Note that if a variable or a constant of dec1a)ration A t a occurs as a subterm of a term
of declaration A' t r then A' C A. Given a term N of declaration A' t T and a type
assignment AN such that A' & A", there is a ca.nonica1 expansion of N to a term N' of
declaration A" t- T obtained by adding AN \ A' to the declarations of the variables and
constants of N . (This may require some renaming of the bound variables.)

Substitution of terms for variables in terms can he defined via replacement of subterms. Let
A and A' be two type assignments. A substitution from A to A' written 9 : A --+ A' is a
map that associates to any x E do~nA a term ~ (z) of declaration A' 1 A(x). Let M be a
term of declaration A t- a and 9 : A - A' a substitution. Define the result of applying
y to M as the term of declaration A' t a obtained by replacing all the occurrences in M
of subterms of the form (A", x, a) where x E domA with corresponding expansions of y(x)
from A' to A' U (A'' \ A) where the union is a.ssumed disjoint (some renaming of bound
variables may be necessary).

Notation for substitution: A/r[y] and Al[N/x] if y is the identity everywhere except y(x) = N.

This introduction to the notation is, by necessity, informal. In particular, many details and
many tedious proofs are hidden behind the casual "we identify types and terms which differ

only in the name of the bound variables". But the rigorous treatment is similar to that of
other lambda calculi and will be given elsewhere. The point of this notation is that once all
these basic definitions are made precise, declarations can almost always be left implicit, as is
the case with types in the simply typed lambda calculus. Taking advantage of this, except
for the the basic definition of terms we just gave, we will not actually need to use the triple
notation for variables and constants. This is well illustrated, for example, by the definition
of the usual notions of reduction:

(P-reduction) M N iff
N is obtained from M by replacing a subterm of the form (Ax: a. X) Y with X[Y/x].

(q-reduction) M --?-t N iff
N is obtained from M by replacing a subterm of the form Ax: a. Zx with 2, where
x $ FV(Z) .

(type-P reduct ion) M 3 N iff
N is obtained from M by replacing a subterm of the form (At. X) T with X [T / ~] .

(type-q reduct ion) M 3 N iff
N is obtained from M by repla.cing a subterm of the form At. Zt with 2, where
t $ FTV(Z) .

Let
A' def P r] 70 + = +u+u---+u-+,

and we will also need
A - def P T O I, - - t - - - + U t U - + .

Next we will introduce algebraic terms a.nd rewriting. There is a well-known transformation,
known as currying that maps algebraic C-terms into A. This transformation is an injection.
In view of that, we choose to talk directly &out curried algebraic terms and define algebraic
rewriting on them.

A declaration is algebraic iff all the types occurring in it a.re sorts. Among polymorphic
terms, algebraic terms are defined inductively by

Any variable (term) of algebraic declaration is an algebraic term.

If f is a constant (term) of declaration 4 1 sl+ . . -t s, + s, ranA consists only of
sorts, and Al : s l , . . . A, : s, are a1gebra.i~ terms, then f A1 . . . A, is an algebraic
term.

As intended, it follows that any algebraic term has an algebraic declaration.

An algebraic rewrite rule is a pair r of algebraic terms, written r = A + A', where A, A'
have the same declaration, FV(Ar) 5 FV(A), and A is-not a ~ a r i a b l e . ~ Such a rule defines
a reduction relation on all terms not only the algebraic ones:

Ad '. N iff

there exists a substitution c p such that N is obtained from M by replacing an occurrence of
A[y] as a subterm with A1[p].

Lemma 2.1 If B is algebraic and B Z then Z is algebraic.

Thus, we can talk about algebraic rewriting on algebraic terms. It is easy to see that
currying establishes the expected relation between many-sorted algebraic rewriting of C-
terms [MG85] and our definition of algebra,ic rewriting. Indeed, for any many-sorted C-
rewrite rule m s p + p' and any many-sorted C-terms q, q'

where c (m) s curry(p) -+ curry(pl).

Let R be a set of algebraic rewrite rules. Define the following notions of reduction on terms:

R def R + =
TER

For any of these notions of reduction we will denote by - the reflexive-transitive closure
of +.
It is well-known that both Xv and X - reduction are canonical (i.e., strongly normalizing and
confluent) on all terms. In fact, the generalized method of candidates presented in section 5
can be used to prove this (see theorem 5.6). We denote by Xvnf (X) and A-nf(X) the
corresponding normal forms of X.

Finally, we state precisely our main results:
R (Conservation of Strong Normalization.) If ---+ is strongly normalizing on algebraic

A ~ R terms then + is strongly normalizing on all terms.

R (Conservation of Confluence.) If -+ is confluent on algebraic terms then 3 is confluent
on all terms.

4The results hold also if we have degenerate rules 2 - A' where FV(A1) = 0 but their effect can be
simulated with normal rules anyway.

3 Algebraic rewriting of higher-order terms

In this section;we show that the properties that algebraic reduction has on algebraic terms
transfer to algebraic reduction on arbitrary terms.

Theorem 3.1
R R If 4 is strongly normalizing on algebraic terms then + is strongly normalizing on all

terms.

Proof Sketch. We proceed by induction on the size of terms. The only case in which
the induction hypothesis does not immediately apply is the case of an application term.
Let M = H TI Tk be such that H is not an application and the T;'s are terms or types.
Suppose there is an infinite R-reduction sequence out of M. If H is an abstraction, a type
abstraction, a variable, or a constant which takes > k arguments (i.e., the length of its arity
is > k) , then each reduction in the sequence is inside some term among the H and T,'s, and
since there are only finitely ma.ny such terms there must be an infinite reduction sequence
from one of them, contradicting the induction hypothesis. (This kind or argument based
on the pigeonhole principle will be invoked again.) The only complex case is when H is a
constant which takes exactly k arguments, and in this case the type of M is a sort. We need
to analyze algebraic reductions on such terms, in particular to separate "trunk" (close to the
"root" of terms) algebraic reductions from other reductions.

An algebraic trunk decomposition of a term M consists of an algebraic term A (the "trunk")
and a substitution cp such that A d A[v], variables occur in A only once, and for all
x E FV(A) the term cp(x) has the form H TI . . . Tk where H is an abstraction, a type
abstraction, or a variable and TI, . . . , Tk are terms or types. Clearly the type of any term
that has an algebraic trunk decomposition must be a sort, but in fact that's all it takes:

Lemma 3.2
Any term M whose type is a sort has an algebraic trunk decomposition M = A[cp]. Moreover,

this decomposition is unique up to renaming the free variables of A.

With this, the last case in the proof of the theorem follows from

Lemma 3.3
Let 5 be SN on algebraic terms. Let A[cp] be mz algebraic trunk decomposition. If for each

x E FV(A) 3 is SN on y(x) then -% is SN on A[p].

Before we sketch the proof of this lemma, we give a motivating discussion. For an algebraic
trunk decomposition M G A[y], a.n algebraic redex must occur either entirely within one
of the subterms cp(x), or "essentially" within the trunk part. More precisely, we say that

R A[cp] --, Af[cp'] is an algebraic trunk reduction step if the R-redex is not a subterm of one
R

of the cp(x)'s. It is easy to see that if A[y] - Af[cp'] then for each x' E FV(A1) there
R

is an x E FV(A) such that p(x) -+ v'(xl). However, separating the trunk reductions
is somewhat subtle because algebraic rewrite rules may be non-linear, or may erase some

R
of their arguments. In particular, the following example shows that A[cp] - A1[cp'] does

R tR
not necessarily imply A - A'. (We shall denote algebraic trunk reductions by + and

algebraic reductions in the non-trunk part by 2.)

Example 3.4
Let R = { f xx ---+ gxxx, a ---t b, b -+ c } , and A4 = f (Fa)(Fb), where F is a higher-order

variable. While we have the rewrite sequence

R
we do not have that fx1x2 --H gy1y2y3 even if we rename the y's. However, note that

R

Sketch of Proof for Lemma 3.3. Suppose there is an infinite R-reduction sequence out
of A[cp]. If this sequence has only finitely many trunk reduction steps, let A1[cp'] be term
obtained after the last trunk step. By a pigeonhole principle kind of argument, some y'(x1)
is not SN hence some y(x) is not SN, contradiction. If this sequence has infinitely many
trunk reduction steps then we get an infinite sequence of R-reductions on algebraic terms

ntR
(hence a contradiction) from the following observation: if A1 [vl] - A2[yz] 2 A3[cp3] then

A, [<I 5 A3[<] where is the substitution that ta.kes all variables of a sort into some fixed
variable of that sort.

We now turn to the confluence result.

Theorem 3.5
R R If --, is confluent on algebraic terms then ---t is confluent on all terms.

Proof Sketch. We show by induction on the size of A4 that R-confluence holds from M.
Again, the only case in which the i~iduction hypothesis does not immediately apply is the case
of an application term. For application terms A'f = H TI . - TI, such that H is an abstraction,
a type abstraction, a variable, or a, consta.nt which ta.kes > E arguments, each R-reduction
out of M is completely inside H or inside one of the Ti's. By induction hypothesis, confluence
holds from each of these, thus confluence holds from M.

This leaves only case when H is a constant which takes exactly k arguments. Note that the
example 3.4 also shows that nontrunk rewrite steps and trunk rewrite steps cannot always be
permuted. The problem is caused by non-linear rewrite rules. Part of the proof of lemma 2.2
(page 85) of [Bre88] is invalidated by this problem. However, the argument can be repaired,
but the technical details are surprisingly involved. The key is to realize that on terms of type

R ntR tR
sort, - is the transitive reflexive closure of - - o -. then, with the observation that if

R
for each x E FV(A) 5 is CR on ~ (x) and if A[y] - A'[ipt] then for each x' E FV(A1)

3 is CR on ip'(xl), the R-confluence needed in the last case of the proof of the theorem
follows from

Lemma 3.6
Let 5 be CR on algebraic terms. Let A[v] be an algebraic trunk decomposition. If for

t R ntR ntR tR
each x E FV(A) 5 is CR on ~ (x) and if N c N' c A[(?] - PI - P then there is

ntR t R t R ntR
a Q such that N - N" - Q c P" - P.

The proof of this lemma is inspired by some key ideas of Toyama [Toy871 and is omitted
here.

4 Conservation of the Church-Rosser property

Let R be a set of algebraic rewrite rules.

Lemma 4.1
Let X , Y E A and r E R. If X 5 Y then X d n f (X) A A-n f (Y) .

The proof is essentially the same as that of lemma 2.1 in [Bre88] with the minor addition
that one checks that the form of certain subterms is also preserved by 7 P and 777 reduction.
This is where the proof breaks down for 7 . This lemma is false if we replace A- with X v as
can be seen from the simple example r f x --+ a and X Xz. f z.

Theorem 4.2
If R-reduction is confluent on algebraic terms then A-R-reduction is confluent on all terms.

A-R A-R
Proof. (The same as the proof of theorem 2.3 in [BreSS].) Suppose that Y tt X + Z .

R
By taking everything to A--normal form, we obtain from lemma 4.1 that X-nf (Y) +--

R R
X - nf (X) - X - nf (2) . Then, by theorem 3.5, there exists a W such that A- nf (Y) +

X - R R A -
W > A - n f (Z) . Thus Y - - A-n f (Y) - W - A-n f (Z) +-- Z .

5 Generalized candidates of reducibility

We give here a brief development of our generalization of Girard's typed candidates of re-
ducibility technique. We also state that the technique can be applied to obtain some well-
known SN and CR results, in addition to Girard's original SN result. We begin with the
defininition of the generalized candidates. For the intuition behind the definition the reader
may consult [GLT89]. The technical use of the candidates should be evident from the proof
of theorem 5.1.

Let P be a property of terms. For each type a, let Po be the set of all terms of type a which
have the property P. A P-candidate is a pair (a, C) where a E 7 and C is a set of terms of
type a having the property P (i.e., C Po) such that the following hold.

(Cand 1) If x is a variable, TI,. . . , Tk (k > 0) are either terms which have the property P or
types, and x TI - . - TI, has type a , then x Tl . - Tk E C.

(Cand 2) If f E C is a constant, TI,. . . , Tk (k 2 0) are either terms which have the property P
or types, and f TI . . . T k has type a , then f Tl . . - Tk E C. (Note that the length of the
arity of f may differ from k.)

(Cand 3) If M, N are terms which have the property P, TI , . . . , Tk (k 2 0) are either terms
which have the property P or types, x: T is declared in M, and M[N/x] Tl . - . Tk E C
then (Ax: T. M) N Tl - . Tk E C.

(Cand 4) If M is a term which has the property P, TI,. . . , Tk n > 0 are either terms which have
the property P or types, T is a type, a,nd Al[r/t] TI - . Tk E C then (At. M) T Tl . - - Tk E
C.

The property P is candidate-closed iff the following hold.

(Clo l a) If M x (where x is a variable) has property P, then M has property P.

(Clo l b) If M t (where t is a type variable) has property P, then M has property P .

(Clo 2) For any type a, the pair (a, Po) is itself a P-candidate.

Theorem 5.1
If P is candidate-closed then all t e ~ r r ~ s have property P .

Proof Sketch. Assume P is candidate-closed.

A candidate assignment is map y that a.ssociates to ea.ch type variable a P-candidate. Taking
the first projection, we can regard any ca.ndidate assignment also as a type substitution, and
write a [~] for any type a.

We associate to each type a and each ca.ndidate assignment y a pair consisting of a type and
a set of terms, denoted [a]y, as follows

dzf
us17 - (s7Ps)

I t l r 7(t)
dzf

-+ 717 - (a[rl-+ drl, { M I VN, N E 64r * M N E [[~ly})
def

p t . 017 = (W. a[?], {hf 1 V(T, C) P-and. , MT E [a]y{t: = (7, C))))

Lemma 5.2
[any is a P-candidate of type a[y]

All this is then used to show that any term belongs to some P-candidate, and thus has the
property P. One uses induction on terms, strengthening the induction hypothesis as follows.

Lemma 5.3
For any t e rn M of declaration A I- a, for any candidate assignment y, for every substitution
9 : A - A[y] such that Vx E doma, p (x) E [A(x)[r]]y, we have M[r][cp] E [a] ~ .

def The theorem now follows by applying the previous lemma to ~ (t) %f (t , Pt) and cp(x) = I.
We give without proof some applications. While all these results are certainly well-known,
apparently the Church-Rosser results for polymorphic terms have not been proved by the
"candidates" method before (but this pa,th started in [Sta85, Mit861).

P7P Theorem 5.4 (Girard) " A! is +-strongly normalizing "
is a candidate-closed property of teirns Ail E A.

Theorem 5.5 (Girard) " P3-confluence holds from A 4 "
is a candidate-closed property of terms Ail E A .

Theorem 5.6
The following are also candidate-closed properties of terms M E A:

A' 4-conf luence holds fro~n, A 9 "

" z-conf luence holds from A! "

6 Conservation of strong normalization

Let R be a set of algebraic rewrite rules such that 5 is strongly normalizing on algebraic
terms. In view of theorem 5.1, the desired result follows from

Xv R Theorem 6.1 " M is --strongly normalizing "
is a candidate-closed property of terms A4 E A.

Proof Sketch. (Clo l a) and (Clo l b) are immediate. For (Clo 2) we need to check that
the set of strongly normalizing terms of a certain type satisfies (Cand 1)-(Cand 4). (Cand
1) is immediate by the pigeonhole principle kind of argument (see the proof of theorem 3.1).
Checking (Cand 3) is a bit of work but the presence of algebraic rules makes no difference
compared to theorems 5.4 and 5.6 so we choose to omit it due to space limitations. Checking
(Cand 4) is an easier version of checking (Cand 3) . The really new situation appears in
checking (Cand 2).

R Suppose that Nl . . Nk are all +-strongly normalizing and that there is an infinite reduction
sequence from M - f Nl - . . Nk. Let the length of the arity of f be n. Since M type-checks
k 5 n. If Ic < n the pigeonhole principle kind of argument applies.

If k = n then the type of M and tha.t of all the terms in the reduction sequence is a sort, so
we can find algebraic trunk decompositions for them. From here we distinguish two cases.

Case 1. The reduction sequence out of M conta.ins only finitely many algebraic trunk
reduction steps.

Let then M' = A1[cp'] be the term in the sequence obtained through the last algebraic trunk
reduction step. Then, any further reduction step in the sequence is non-trunk and therefore
is inside one of the y'(x1), x' E FV(A1). By a pigeonhole principle kind of argument, one
of these is not strongly normalizing. Since we ca.n also show

Lemma 6.2
X"R

Let A[cp] be an algebraic trunk decomposition. If A[y] ---H A1[y'] then for any x' E FV(A1)
there exists an x E FV(A) and a subterm .AT' of A1[y'] such that yl(x') is a subterm of N1

X'R
and cp(x) + N'.

It follows that one of the y (x) , x E FV(A) is not strongly normalizing. Since each of these
is a subterm of one of the N;'s we have a. contradiction a.gain.

Case 2. The reduction sequence out of AT contains infinitely many algebraic trunk reduction
steps.

In this case the idea is to take all the terms in the sequence to At/-normal form but this
does not quite work because of the ba.d interaction between q and R. Instead we use the
following:

A long normal form is (recursively) a term of the form Xv'. h Zl . . . Zn where h is a variable
or a constant, each 2; is a long normal form, and the type of h Z1 . . . Zn is either a sort, or
a type variable, or of the form Vt. a. While such a term is in general not in 7-normal form,
the name is justified by the fact that any term, X, is Xv-convertible to a unique long normal
form, lnf (X); to effectively obtain it, take the term to A--normal form and then perform
(if needed) some 7-expansions. With this, we have a result very similar to lemma 4.1 (the
proof is also similar), and we strengthen it for algebraic trunk reduction steps:

Lemma 6.3
Let X , Y E A and r E R. If X It Y then lnf (X) i* l n f (Y) . Moreover, if X Y is

actually an algebraic trunk reduction step then lnf (X) ' Inf (Y).

Now convert all the terms of the infinite reduction sequence out of M to long normal form.
Since there are infinitely many algebraic trunk steps, the result will be an infinite sequence
of R-reductions. By theorem 3.1, this is impossible.

7 Deciding convertibility in the presence of q

In view of the counterexample involving 7 prsented in section 4 there are algebraic rewrite
systems R which are canonical such that XvR is not confluent, and thus not canonical.
Nonetheless, lemma 6.3 provides a satisfactory solution:

Theorem 7.1
If R is canonical on algebraic terms th,e~z XvR convertibility is decidable.

Proof. Since R is canonical on algebraic terms it also canonical on all terms, by theorems 3.1
and 3.5. Let Rnf (X) be the R-normal form of a term X .

The algorithm is the following: to decide if A4 a.nd N are convertible test if Rnf (lnf (M)) =
Rnf (lnf (N)).

Indeed, if M, N are convertible to each other by a chain of XvR conversion steps then take
all the terms in this chain to long normal form. By lemma 6.3 lnf (M) and lnf (N) are
R-convertible so their R-normal forms coincide. The converse is trivial.

8 Directions for Further Research

Of course, one would a.lso like to li110w wha.t to do in the absence of an equivalent canon-
ical rewrite system. We conjecture that the proof-theoretic reduction from simply typed

theories with algebraic axioms to a1gebra.i~ theories, given in [Bre8S], can be generalized to
polymorphic theories.

Our results show that some important properties of algebraic systems are preserved when al-
gebraic rewriting and polymorphic lambda-term rewriting are mixed. As applications to the
results of this paper, we intend to investigate higher-order unification modulo an algebraic
theory. For the simply-typed lambda calculus, we conjecture that adding the lazy paramod-
ulation rule investigated in [GSSSa] to the set of higher-order transformations investigated
in [GS89b] yields a complete set of transformations for higher-order E-unification. Such
a result would have several applica.tions in automated theorem proving. We also intend to
investigate the possibility of extending I<nuth-Bendix completion procedures to polymorphic
theories with algebraic axioms.

Another direction of investigation is to consider more complicated type disciplines, such as
that of the Calculus of Constructions [CHSS].

More generally, we feel that the results of this paper are only a first step towards extending
the important field of term rewriting systems to include higher-order rewriting. One of our
main goals is to provide rigorous methods for understanding higher-order functional and
logic programming. In particular, one is interested in rules which describe the behaviour
of higher-order operations (such as maplist, for example). In any case, a lot of care will be
needed with higher-order rules beca.use, for example, fixed points are also described this way:
Y F = F(YF) .

References

[BC88] V. Breazu-Tannen and T. Coquand. Extensional models for polymorphism. The-
oretical Computer Science, 85-1 14, 1988.

[BM87] V. Breazu-Tannen and A. R. h'leyer. Computable values can be classical. In
Proceedings of tlze 14th Sym~)os'ium on Principles of Programming Languages,
pages 238-245, ACM, January 1987.

[Bre88] V. Breazu-Tannen. Combining algebra a.nd higher-order types. In Proceedings of
the Symposium on Logic in. Com.puter Science, pages 82-90, IEEE, July 1988.

[CHS8] T. Coquand and G. Huet. The calculus of constructions. Information and Control,
76:95-120, 1988.

[Dou89] D. Dougherty. Adding a.lgebraic rewriting to the untyped lambda calculus.
Manuscript, Wesleyan University. h'larch 1989.

[EM851 H. Ehrig and B. Rilahr. Fz~ndanzentnls of algebraic specification 1: equations and
initial semantics. Springer-Verlag, 1985.

[Gir72] J.-Y. Girard. Interpre'tation fonctionelle et e'limination des coupures duns l'ari-
thme'tique d'ordre supe'rieure. PhD thesis, Universitk Paris VII, 1972.

[GLT89] J . Y. Girard, Y. Lafont, and P. Taylor. Typed lambda calculus. Cambridge Univer-
sity Press, 1989. Forthcoming.

[GS89a] J. Gallier and W. Snyder. Complete sets of transformations for general E-
Unification. Theoretical Computer Science, 1989. To appear.

[GSSgb] J. Gallier and W. Snyder. Higher-order unification revisited: complete sets of
transformations. Journal of Symbolic Computation, 1989. To appear.

[Klo80] J. W. Klop. Combinatory reduction systems. Tract 129, Mathematical Center,
Amsterdam, 19S0.

[Klo87] J. W. Klop. Term rewriting systems: a tutorial. Bull. EATCS, 32:143-182, June
1987.

[MG85] J. Meseguer and J. Goguen. Deduction with many-sorted rewrite. Technical Re-
port 42, CSLI, Stanford, 1985.

[Mit86] J . C. Mitchell. A type-inference a.pproa.ch to reduction properties and semantics of
polymorphic expressions. In Proceedings of the LISP and Functional Programming
Conference, pages 308-319, ACM, New York, August 1986.

[MR86] A. R. Meyer and M. B. Reinhold. 'Type' is not a type: preliminary report. In Conf.
Record Thirteenth Ann. Symp. Principles of Programming Languages, pages 287-
295, ACM, January 1986.

[Stat321 R. S tatman. Completeness, invariance and A-definability. Journal of Symbolic
Logic, 47: 17-26, 1982.

[S tag51 R. Statman. Logical relations and the typed A-calculus. Information and Control,
65:85-97, 1985.

[Tai67] W. W. Tait. Intensional interpretations of functionals of finite type i. Journal of
Symbolic Logic, 323198-212, 1967.

[Tai75] W. W. Tait. A realizability interpretation of the theory of species. In R. Parikh,
editor, Proceedings of the Logic Colloqium '73, pages 240-251, Lecture Notes in
Mathematics, Vol. 453, Springer-L7erla,g, 1975.

[Toy871 Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting
systems. Journal of the AChf, 34(1):128-143, January 1987.

	Polymorphic Rewriting Conserves Algebraic Strong Normalization and Confluence
	Recommended Citation

	Polymorphic Rewriting Conserves Algebraic Strong Normalization and Confluence
	Abstract
	Comments

	tmp.1198358442.pdf.BjlwW

