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A Contour-based Recovery of Image Flow: 

Iterative Method 

Abstract 

We present an iterative algorithm for the recovery of 2-D motion, i.e., an algorithm for the determi- 

nation of a transformation which maps one image onto another. The local ambiguity in measuring 

the motion of contour segments (called the "aperture problem") forces us to rely on measurements 

along the normal direction. Since the measured "normal flow" itself does not agree with the actual 

normal flow, the "full flow" recovered from this erroneous normal flow possesses substantial error 

too, and any attempt to recover the 3-D motion from such full flow is doomed to failure. 

Our method is based on the observation that a polynomial approximation of image flow provides 

sufficient information for 3-D motion computation. The use of an explicit flow model enables us 

to improve normal flow estimates through an iterative process. We discuss the adequacy and the 

convergence of the proposed algorithm. The algorithm has been tested on synthetic and some of 

simple natural time-varying images. The image flow recovered from this scheme was sufficiently 

accurate so as to  be useful in 3-D structure and motion computation. 



1 Introduction 

One issue in analyzing time-varying images is that of obtaining the motion of image from consec- 

utive image frames. The way in which the image changes in time can be conceptualized as being 

the result of a motion generated by a 2-D vector field defined in the image coordinates. Such a 

vector field is the perspective projection of the three dimensional velocity vector at  a point on 

the surface of the object. Our approach is based on a representation of the image flow as viewed 

in the Eulerian description (as opposed to the Lagrangian description). This was pioneered by 

Iioenderink [5] .  It relies on the continuity properties of the flow field within a small neighborhood. 

Waxman and Ullman [9] have shown that the 3-D motion and object structure (in terms of surface 

metric and curvature tensors) can be recovered from the image flow field and its first and second 

derivatives with respect to space. However their approach involves solving a set of non-linear equa- 

tions whose behavior is largely determined by the second-order derivatives of flow field. Wohn and 

Wu [ll] introduced an algorithm which is based on the flow field and its first derivatives over three 

consecutive frames, avoiding the use of second order spatial derivatives. 

The Eulerian approach assumes that flow field and its partial derivatives are already available 

in a small region. Such a rich description of image motion is not likely to  be obtained with 

sufficient accuracy from feature points unless there are many points which can be localized with 

extreme accuracy. Intensity itself is another possible candidate from which image motion might be 

recovered. Under the assumption of convected invariance of the image intensity, image motion can 

be measured by three different mechanisms: intensity correlation, differentiation in spatio-temporal 

space and filtering in frequency domain. Recently, analysis in the frequency domain method seems 

to regain favor (e.g., [2]). 

The texture boundaries and physical surface discontinuities are another source of information 

about the flow field. By observing the contours associated with these features, one can compute 

a flow. The local ambiguity in determining the flow vector along contours (called the "aperture 

problem") can be overcome by introducing additional constraints obtained from physical aspect of 

3-D motion or from a priori knowledge about the scene ([3, 41). Waxman and Wohn proposed a 

second-order polynomial approximation for the flow, and developed an algorithm (called the velocity 

functional method) which determines the twelve coefficients of the polynomial approximation by 

solving a linear system [lo]. Their model predicts the actual motion for planar surfaces under 



general 3-D motion, given the exact normal components of flow along contours. However, in red  

situations, the normal flow can be measured only to within certain accuracy and the error in the 

normal flow propagates to the consecutive stages of the motion computation. Often the resulting 

flow cannot be recovered with sufficient accuracy so as to be useful for the 3-D motion recovery. 

We shall perform an error analysis on the normal velocity measurement. Based on this analysis, 

we are led t o  propose an iterative method which utilizes a least-squares method as a basic module 

to predict the full flow, and re-estimates the normal flow based on the predicted value of the 

full flow. This process is applied iteratively until its further application results in no significant 

improvement. We choose a first order polynomial approximation as a flow model since, for our 

purpose, the flow up to the first order will suffice for the next stage of 3-D motion computation. 

Issues on the convergence of the method are discussed in Section 5.2.2. We study the performance 

of the proposed algorithms with experiments conducted on synthetic and real time-varying images. 

The rest of the paper is organized as follow: 

Solving the Aperture Problem (Section 2): The aperture problem is overcome by imposing 

some constraints on the flow field. In our case temporal changes are modeled as first order 

polynomials in the image plane. Least-squares method is used to  determine the coefficients 

of polynomials. 

r Estimating normal flows (Section 3, Appendix A): UTe discuss how to  measure the normal 

flow along contour segments. The formular for the error in the normal flow estimate is derived 

(Appendix A). The error in the normal flow is proportional to the size of motion. 

Estimating full flows (Section 4): When the least-squares method is used to solve for the full 

flow, the error in the normal flow is propagated to the full flow. The estimation error in the 

full flow is proportional to the error in the normal flow, and involves other parameters as well. 

Improving normal/full flows (Section 5.1, Appendix B): The full flow computed from the least- 

squares process is used to  re-estimate the normal flow. Insofar as the normal flow optained in 

this way has less error than the previous estimate had, the least-squares process guarantees 

the better estimate for the full flow. Appendix B verifies this argument by showing how the 

method works on a simple case - a square undergoing the 2-D euclidean motion. 



On the convergence of the method (Section 5.2, Appendix C): The iterative method is sound - 

it stops when it produces the correct answer. We also disscuss the computational complexity 

of the algorithm. A proof on convergence is found in Appendix C. 

2 Solving the Aperture Problem 

Suppose that contour T? at time to evolves into contour at  time t l  = t + At  such that 

1. There is a transformation T existing between the two contours, i.e., rl = T r .  

2. T = T(to) is small relative to the size of the contour. The size of a contour I' is define as 

y = maxlx-xol  
x E ~  

where xo = J, x d s j  J, ds with ds = ldxl is the center of the contour I' (treated as a point 

set). If we normalize y to be 1, then we say T is small iff 

for all x E I'. 

Under this condition, the velocity vector at t = to for every point x E I' can be estimated by the 

displacement of that point: 

T(t)x - x 
= lim 

t--+to t - to 

If we choose At  as the unit of the time scale then 

The right side of the above equation is the displacement vector from x to  Tx. T x  - x can be 

measured directly if we can match the point x of I' to its corresponding point T x  of TI'. Such a 

point-to-point match is only possible at so-called "feature points", i .e. ,  those points with features 

preserved under the transformation. For example, most of corners and junctions are preserved 



under T, so they can be used to establish the point-to-point match. However, most points on the 

contour are not "feature points". For those points, it is well known that both component of T x  - x  

cannot be measured directly, due to the "aperture problem". Marr and Ullman have argued that it 

is impossible to measure the tangential component of T x -  x  on short segments of evolving contours 

181 - 
For the above reason, the measurement from any contour-based method is not T x  - x, but the 

component of T x  - x  in the direction of the unit normal vector n ( x )  of I' at x .  This direction is 

often called the "normal direction"'. This component is called "normal flow" by many researchers. 

However, we shall not use the term "flow" since it has different meaning in mathematics. We shall 

use displacement for T x  - x  and velocity for v ( x ) .  Consequently, we use normal displacement, 

denoted as d,(x)  and normal velocity, denoted as vn (x )  for their components in the direction of 

the unit normal vector. 

Taking the inner product of n ( x )  with both sides of Equation (1) we have 

where N = { x k }  is a finite set of points at which n ( x k )  is not well defined. 

The Equations (2.a) indicates that the value of the normal velocity vn (x )  may be estimated by 

the normal displacement dn(x) .  The procedure by which we measure d,(x) from two given contours 

is based on Equation (2.c) and will be discussed in the next section. 

Assuming v,(x) is known, Equation (2.b) can be used to recover v ( x ) .  Let us rewrite n T ( x ) v ( x )  

as C ~ ( X ) ~ ,  where p  is a vector consisting of transformation parameters and c ( x )  is a vector deter- 

mined by x  and n ( x ) .  The explicit forms of cT(x )  and p for each transformation model can be 

calculated as follows. 

1. Euclidean Motion Model: 

'1n the intensity-based method, "normal direction" refers to the direction of the gradient of the intensities. 



2. Affine Motion Model: 

where v(x) = A x  + V and aij is the i-j ' th element of 2x2 matrix A. This model is locally 

valid for planar surfaces under rigid-body motion [ll]. 

3. Second- Order Motion Model: 

r nx 1 

where 



This model is globally valid for planar surfaces under rigid-body motion and is locally valid 

for curved surfaces too [lo]. 

Replacing nT(x)v(x) by cT(x)p, Equation (2.b) becomes 

It  is linear in the unknown p. Premultiplying both sides by c(x) and integrating along the contour 

I?, we have 

SP = L c(x)vn(x)ds (4) 

where 

S = L c(x)cT(x)ds 
is called the gnzmian by Brockett [I]. The uniqueness of p is determined by the rank of S: If 

det S # 0, we get 

p = S-' L c(x)v,(x)ds ( 5 )  

This is the least-squares solution for Equation (3). Notice that S is determined by the shape of 

the contour only, and is independent of the coordinate system chosen to compute it. Thus the 

singularity of the gramian S is intrinsic. Contours with singular S have poor observability for 

the motion, therefore we should not use them as the visual cue for recovering the motion. For 

this reason we will not discuss singular or near singular cases. We will assume that the condition 

number of S is reasonably far away from zero, in the sence that its smallest eigenvalue is >> 0. 

3 Estimation of Normal Velocity 

Estimation of normal velocity is based on Equations (2.a) and (2.c). That is, we measure d,(x) 

from the two given contours and treat it as an estimate of vn(x). However dn(x) itself can not be 

measured exactly. Figure 1 shows the true d,(x) and two estimates &(x) and &(x) obtained by 

the two most commonly used normal velocity estimation procedures2. They are as follows. 

2Since we estimate d, for the purpose of estimating v,, such procedures are traditionally called normal velocity 

(or flow) estimation procedures, but they in fact estimate the normal displacement. 



Figure 1: Estimate of vn. 

Definition 1 Normal Distance Estimation 

d,(x) is estimated b y  & ( x ) ,  the distance from the point x E I? to the transformed contour TI? in 

the direction of the normal vector v(x). 

Definition 2 Nearest Point Estimation 

d,(x) is estimated by 

= sup \ n T ( x )  (k - x) 1. 
a ~ { a )  

where {x) is the set of points of TI' nearest to x. 

In most cases there is only one point x of TI' nearest to x. Intuitively jl - x is parallel to the 

normal vetor n ( x )  of I', and 2 - x is parallel to the normal vector n(2) of TI?. 

The normal distance estimate is frequently used in practice since it requires only a linear search 

for each point. But it has the disadvantage in that, on some part of the contour, d;, may not be 

well-defined or the estimation error may be large. An example is shown in Figure 2. The part of 

contour where &(x) is not well-defined is marked by the dashed line and the part of of the contour 

where d, is a bad estimate of d,(x) is marked by the thick line. 



Figure 2: Places where d;, is undefined (dashed line) or is a bad estimate of d, (thick line). 

The nearest point estimate requires two-dimensional search, which makes this method unattrac- 

tive. However, it has an advantage that it is always well-defined wherever the normal vector is 

well-defined. Another nice property of the nearest point method is that 

So &(x) satisfies the same inecluality as d,(x) does: 

Consequently, the error involved in the estimation 

~ & ( x ) -  d,(x)l = \nT(x) ( ? - x - T x + x ) l  

InT(x) (x-x)I + InT(x) ( T x -  x)(  (7) 

i Zld(x)l 

is bounded by the value of the displacement itself. For this reason we shall use the nearest point 

estimate. 

Equation (7) shows the upperbound of measurement error at any point along I?. In fact we can 

establish the tighter bound by imposing a moderate assumption on the contour geometry. We only 



estimate the error for those points on a smooth piece of the contour such that in a neighborhood 

of the point, the piece of the contour can be estimated as a piece of a second order curve. 

Suppose TI' is parameterized by arc length s: 

Then we can parameterize I' as 

Note that I' is no longer parameterized by its arc length. 

Let xo = T - ~ F ( ~ ~ )  be any point on I' at which I' is smooth. Then Txo = F(so) is the (true) 

corresponding point on TI'. Let ko = F(2) be the estimated corresponding point obtained by the 

nearest point estimation procedure (See Figure 1.). Txo - xo is the true displacement vector at 

xo and ko - xo is the estimated displacement vector. We call the difference of the two vectors, 

k0 - Txo, the error vector at  xo. These three vectors projected on the unit normal n(%) of I' give 

us the true normal displacement dn(xo), the estimated normal displacement &(xo) and the error 

e(xo) - &(xo) - dn(xo), respectively. 

By the definition of the nearest point estimate, 3 should satisfy the following minimum condition: 

i = arg min {[zo - $(s)12 + [yo - d(s)12) 
sETr (8) 

Since 2 is on a smooth piece of contour, we can obtain the minimum by differentiation. Therefore 

ŝ  must be a root of the equation 

where $(s) and $(s) are derivatives of II, and 4 with respect to  s respectively. 

In order to solve Equation (9) we need to know the functions +(s) and $(s), i.e. the shape of 

the contour in a neighborhood of jco. We assume that k0 is in a small neighborhood of Txo and is 

connected to Txo by a smooth piece of the contour. (In this situation, we say that the two points 

are locally smoothly connected). VCTe then estimate this piece of the contour by a second order curve. 



To make the computation simple, let us introduce a new coordinate system with the origin at 

Txo and such that the x-axis coincides with the tangent vector r(Txo) of TI?. We re-parameterize 

TI? starting at the new origin. Then we have 

and the first order derivative, i.e. the unit tangent vector, has the form 

We also can calculate the second order derivatives 

4 ( 0 )  may not equal to  0. Since 4(0) = 1, 

is the curvature of TI' at the point Txo. So the best-fitting second order curve at the point Txo is: 

Substituting Equation (11) back into Equation (9) we have: 

Assuming K is not too big, so that l ~ s l  < 1, then ( ~ y o l  < 4. Since xo, yo << 1,  the equation can be 

solved by linear iteration; we get the root 

20 
1 2 3  

S = + 21i $0 + ... 
1 - &YO (1 - 

Thus the error vector is, 



e(xo), the error in the normal velocity estimate is the inner product of the unit normal n(xo) of 

r and the above vector. In order to get the expression for n(xo), let us look at the tangent vector 

r(xo) of I'. The non-normalized tangent, by definition, is 

Since F(0) = 0, only the linear part of T-' contributes to r(xo). Assume 

then we have the non-normalized tangent vector 

Therefore the non-normalized normal vector is: 

Let A. = I +  A'; with A'= {aij}, then 

The normalized norn~al vector is 

The inner product of Equation (14) and n(xo) gives us the error. 

Parameters involved in equation (15) are a2l,all, tc and >(so, yo) as in Equation (13). Notice 

(ZO yo) = T - ~ F ( o )  = bo; e(xo) is determined by the parameters of the transformation T-' and 



Figure 3: e(x) caused by d,,a,, and KO. (a) e(x) = 0 since d, = KO = 0. (b) e(x) # 0 due to d, 

and a,,. (c) e(x) = 0 since d, = a,, = 0. (d) e(x) # 0 due to d, and KO. 

the curvature of Tr at Txo. By the assumption that the transformation is small, one can observe 

a21, a l l ,  xo, yo << 1. So the error can be estimated as 

Furthermore, by the assumption that the curvature K is not too big (or for given K that yo is small 

enough), so that rcyo << 1, we have 

The parameters xo, a12 and K are associated with the transformation T-I and the point Txo of 

T r .  Physically xo = [I o](T-'o - 0) is the tangent component of the displacement, and a21 = 
a o i T - l x  

( l),,,-,, acts like a local rotation. (See Figure 3). A set of parameters corresponding to 

{xo, a21, K} but associated with T and xo is 

( KO = curvature of r at xo. 

We can check that the differences between the corresponding quantities are the third order terms 

of xo, yo and aij. So we can replace {xo,a21,~} of Equation (17) with {d , ,a , , ,~~) .  

We have seen that if the transformation is small in the neighborhood of xo, then the error in 

the normal displacement is of high order in the parameters of the transformation, provided that 
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Figure 4: Points of unreliable normal displacement estimation. 

1. the true corresponding point Txo and approximated corresponding point jc are locally smoothly 

connected, and 

2. the curvature of the contour around that point is not too large. 

These two conditions typically do not hold everywhere on a contour. (See Figure 4). The places 

where the above two conditions are violated are 

1. Where Txo and 120 are connected by a sharp turn such that &yo = 1. Physically, this means 

that the curve turns around within a neighborhood about the size of the displacement between 

the two points. 

2. Where the contour has two lines too close to each other, so that the displacement along the 

normal direction of the lines is bigger than the half of the interval between the lines3. 

3. Near a corner of the contour when Txo and io are separated by the corner. 

Of these three categories the first two are motion related, that is, if the motion is small enough, 

the error estimation of Equation (17) will still hold. Only the third is intrinsic to the contour itself. 

3This situation may reasonably be expected for the two edges of a bar; in this case the lines may be distinguished 

by checking direction of the intensity change across the lines. 



In this case, Equation (17)  simply does not hold at those points where the contour is not smooth. 

In general we have following theorem; 

Theorem 1 Let T ( t )  be a transformation, let d,(t), a,, and 60 be as defined i n  Equation (18). 

For any point xo E I' where n(xo) is defined. there exists a constant time to > 0, such that 

where O ( p 3 )  means the third order terms i n  transformation parameters. 

Proof of the above theorem can be found in Appendix A. 

Later in Section 5, we will present the iterative algorithm which reduces the error as the iter- 

ation continues. For the purpose of discussing its convergence, the exact behavior of error as in 

Equation (19)  will not be necessary; we have 

Corollary 1 Let IJpl( be the L ,  norm of p, where p ( T )  is the parameter vector as i n  Equation (5). 

For any point x E I' - N ,  where N is the set contains all non-differentiable points, there ezist 

p = p ( x )  > 0 and k ( x , p )  > 0 such that 

where p ( x )  is  required to be small enough so that the following conditions are satisfied: 

1. The true correspondence T x  and the estimate correspondence k are locally smoothly connected; 

by this we mean that they are close enough so that Equation (14) holds, and 

2. The parameters d,, a,, and 60 are small enough so that Equation (19) holds. 

Since each of a,, and d, has the order of I I p I I ,  and no is a constant, one can easily obtain Equa- 

tion (20)  from Equation (19) .  



4 Error Formula for the Least-Squares Procedure 

The presence of error in the normal velocity measurement will affect the accuracy of the recovered 

parameter vector p. However, if the transformation is small enough compared to the size of the 

contour, we know by Theorem 1 that on most of the contour the errors are quite small. For those 

points where error cannot be estimated by Equation (19), we know from Equation (6) that the error 

is bounded by a linear combination of the parameters vector p. Therefore after the least-squares 

procedure we can obtain a good estimate of the transformation parameters. 

Suppose the estimated normal velocity at x is 

where v,(x) is the true value and e ( s )  is the error. Replacing v,(x) in Equation (3) by .ir,(x) we 

have 

~ ( x ) P  = vn(x) + e(x); ~ E L N  

In light of the error e(x),  the least-sqaures solution for the above equation should become: 

where p is the true motion parameter vector and 

is the vector of errors for each component of p. 

Before we go on to estimate the magnitude of the error, let us start from a simple case in which 

a contour undergoes the one-dimensional translation. The motion V is restricted to the x direction 

only; the true value of V is Vo and the x component of the unit normal at x is denoted by n x ( x ) .  

So Equation ( 4 )  becomes 

and the least-squares solution is = Vo + Ve, where Ve is the error term. 



Figure 5: A simple motion - one dimensional translation. 

We can see that the translation Vo is what we want to detect, but we cannot observe it directly. 

What we can observe is nx(x)Vo on the right side of Equation (22) with the measurement error e(x). 

Thus n,(x) determines the local observability of the translation Vo. For those points with n,(x) 

nearly parallel to the direction of translation, InxVol/lVol m 1, we have a reliable measurement of Vo. 

For those points with n,(x) nearly perpendicular to the direction of the tra~lslation, InxVol/lVol F;: 0, 

we have a poor observation of Vo. The relative error involved in the observation is .*; we can 

see that for fixed amount4 of the absolute error e(x), the relative error will be large where the 

observability is poor. 

The gramian S = j' n2ds describes the observability of the whole contour. If S = 0, then 

n,(x) = 0 for all x E r, and we have no way to detect the translation even if there is one. If S # 0 

but is close to zero, we have a nearly singular situation in which many points on the contour have 

poor observability, so the relative errors are big. Consequently, the translation detected will also 

include large errors unless the absolute error e(x) is extremely small. The S-' in Equation (23) 

reflects this fact. 

To estimate the error V,, we have 1 Jn,eds( 5 J (elds = XeM, where X is the length, of I' and 

'e(x) may change while n,(x) is changing, but there is no indication that e(x) will decrease as n,(x) decreases. 

On the contrary, Theorem 1 suggests that decreasing n,(x) may increase the absolute error e(x) because of the 

increase in the tangent component of the translation. 



e M  = supxEr le(x)J. But we anticipate that large errors may occur only on a small part of the 

contour. So if we can decompose I' into two groups rg (Subscript g denotes "good".) and I'b 

(Subscript b denotes "bad" .) such that rg contains smooth contour segments while rb contains the 

relatively small portion of contour which is not smooth. 

for eg << eb < e M  and Xb << Xg7 then we can get a better estimate 

Now let us look at the general case of arbitrary image motion, in which the error formula (21) 

becomes 

Let i.i = supXEr Jci(x)( (ti 5 2, since 1x1, In1 5 1). If the gramian S is diagonal (In the Euclidean 

motion model, there is always a particular coordinate system so that the S computed in it is 

diagonal. See [I]), p, may be thought as m one-dimensional cases stacked together, and we can 

estimate the errors as in the one-dimensional case: 

For non-diagonal S we will have: 

where the g j i  are elements of S-l. 



The extent to  which S is diagonal is not particularly important in error analysis. (In fact, since 

S is a symmetric matrix, it is always diagonalizable in the space where the parameter vector p 

lives. Although by doing so, we may lose the physical meaning of p.) So as long as the original 

problem is not a nearly singular one, the sum x:=, I i j t j  in Equation (27) will not be too large. 

5 The Iterative Method for 2-D Motion Recovery 

We have seen that in general the parameter vector p of the 2-D transformation cannot be recovered 

exactly because of the imperfect measurement on v,. We have also shown that the error involved 

in the measurement is small when the two contours are close. In fact, any 2-D motion recovery 

method which uses a matching procedure has this property. Intuitively, matching is easier and more 

accurrate when two contours are closer than when they are far away.5 An extreme case occurs when 

the two contours are identical. In this case the problem become trivial and we can recover the flow 

field exactly. Consideration of this case leads us to an iterative method. 

5.1 Description of the Method 

Suppose two contours I' and r0 are given. We want to determine the transformation T which will 

bring the contour I' to  the contour rO, i.e., r0 = TI?. We begin by making an initial estimate To of 

T.  If Tor # rO, we need to make an extra transformation T' posterior to the initial transformation. 

I.e., T = TOT1, where T' is such that T'I' = TC'TO. The correction term needed is just the motion 

from to  r l ( =  T;'I'~), so that the problem of finding the correction term is that of recovering 

the transformation from r to I". This is exactly the same problem as we faced in the initial step 

except that this time I" is closer to I' than r0 is, so that we expect to  get a better estimate TI of T' 

at this step. This estimate will in turn, move I" to r2. So, as the iteration progresses, we estimate 

a sequence of transformations T; and a generate sequence of contours r i  such that = T y l r i  

and each Ti is supposedly closer to r than its previous one. Finally, if at a certain step n, Tn is 

identical to I' (or if the difference between the rn and the I' is small enough), we stop and integrate 

all the transformations recovered at eash step together, then report it as the transformation which 

takes I' to rO. 
5Apparantly, this argument does not hold when we are dealing with digitized images. 
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The whole procedure can be summarized as follows: 

1. Initialize i = 0. 

2. Calculate $)(x), the estimate of normal velocities from I? to I". 

3. Calculate the transformation Fi from 6(')(x). 

4. Use Ti  to generate ri+' = T ~ ' I ' ( ~ ) .  

5. Calculate 6c+')(x), the estimate of normal velocities from I? to ri+'. 

6. If Jr 1~2") Ids is small enough, go to step 7. Otherwise increase i, then go to step 3. 

7. Output the transformation obtained as Fi = - .  

5.2 Some Properties of the algorithm 

For any iterative method one must show that 

1. the method converges, 

2. it converges to  the correct solution, and 

3. it converges effectively. 

In this section we address these issues. 

5.2.1 Terminating condition 

The iteration stops whenever the solution is found. This property is summarized as the following 

proposition. 

Proposition 1 If at step j of the iterative procedure, the estimate ?j is exact, i.e. FjI'  = rj, then 

1. Further iteration will not alter the result. i.e. pi = Tj  for all i > j .  

2. The final estimate T j  = T - the true trunsformation which carries I' t o  ro. 

Proof: 

1. r(j+') = T F ' J ? ~  = r , vt+')(x)  = 0 =+ p(j+l) = 0 T'+, = TI.  By deduction 3 

Ti = TI for all i > j, therefore f j  = f i .  



2. r = 'j-lrj = ' j r l e l  . . .F;lI'O = f':lr0 =+ ?'I' = I 'O.  Since I' and are non- 
3 3 3-1 3 

degenerate, the transformation which carries I' to To is unique. Therfore Tj = T. 

5.2.2 Convergence 

In Appendix B we have calculated explicitly the iterative procedure for a square undergoing (1) 

pure translation and (2) pure rotation to demonstrate that the method converges to the correct 

s ~ l u t i o n . ~  We observe that the error e(x) of 8,(x) satisfies the following: 

1. Large errors occur only at the pieces of the contour near corners. The total length of these 

pieces is on the order of the tramsformation parameters themselves. 

2. For the rest of the contour the error is bounded by terms which are second-order in the 

transformation parameters. This agrees with Equation (20). 

Therefore by Equation (27) the error in the parameter vector after the least-squares estimation is 

also second-order in the transformation parameters. The errors both in the normal flow vector and 

in the parameter vector will decrease monotonically. At the same time the total length of the bad 

contour segments will decrease, thereby accelerating the convergence rate. 

Of course, the method may diverge or converge to the wrong solution if the motion is con- 

siderably larger than the size of contour (or the size of neighborhood in which the least-squares 

procedure is applied). Unfortunately, there is no single formular to predict how large the radius 

of converegence is. This issues is discussed in detail in Appendix C, along with the proof of con- 

vergence for arbitrary motion and contour. It was shown that in most cases the method converges 

if the maximal motion is smaller than the one eigth of contour size. So the error eventually goes 

to zero as the iterative procedure continues and the iterative procedure converges to the correct 

solution. 

5.2.3 Computational complexity 

A single iteration consists of two steps; one to  measure the normal flow, the other to solve the 

least-squares problem. Let n be the number of contour points inside the neighborhood where the 

'YOU may want to read the appendix at this point. 
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full flow is modeled as polynomials, and np be the size of p. For the affine model np = 6, and for the 

second-order model np = 12. For each point, finding the nearest point in the second image requires 

two dimensional search of O(m2), where m is the searching radius. Since there are n points, the 

time complexity of the first step is given as O(nm2). 

For the second step, it takes ~ (nn : )  to construct the pseudo-inverse matrix, followed by O(n;) 

to decompose it into triangular matrices using the Gaussian elimination. The backsubstitution of 

the inverse matrix needs O(ni). Hence, it takes O(n;) to solve the least-squares problem. However 

one can notice that, after the first iteration, the matrix inversion is not required since the system 

matrix which is determined by the contour geometry does not change, and a single operation of 

matrix multiplication (O(nE)) and backsubstitution (O(ni)) complete the least-squares procedure. 

Overall, the first iteration is the most expensive because (i) m, the searching radius has to be 

large, and (ii) the matrix inversion must be performed. Each additional iteration takes O(nm2 +n;). 

5.3 Experimental Results 

The performance of the iterative transformation method was studied with an example shown in 

Figure 6. Figure 6.a and Figure 6.b show two synthetic images of contours generated by a non- 

trivial 3-D motion of a planar surface containing two ellipses. The ideal velocity field for this motion 

is calculated and shown in Figure 6.c. In Figure 6.d the normal velocity vectors vE(x) along the 

contour are measured from the input contours. From vE(x), the full velocity field vO(x) is calculated 

by the velocity functional method, which is shown in Figure 6.e. Notice that this velocity field is 

quite different from the ideal velocity field in Figure 6.c. The velocity field obtained after three 

iterations is shown in Figure 6.f. Each flow vector was recovered within 5 percents of accuracy in 

the relative error. 

In the next test performed at the Robotics Laboratory, Harvard University, the robot-held 

camera traveled with V = (0.6, -0.25,0.4) units/ f rame and Q = 0 degrees/ f rame (Figure 7.a 

and Figure 7.b). The slope of table was measured approximately as p = -12 degrees and q = 55 

degrees with respect to the camera coordinates. Zerocrossing operator was used to extract contours 

[7]. The estimated flow is shown in Figure 7.c. The 3-D motion parameters were recovered from 

the flow field using the algorithm developed by Cliohn and \Vu [ll]. Their algorithm computes the 

3-D parameters (three translations, three rotations and two slope parameters) from the first order 



spatio-temporal derivative of flows. Assuming that the entire image consists of a single planar 

surface, 3-D parameters computed from this flow field are: V = (0.53, -0.18,0.47) units/ f rame 

and Cl = (0.021, -0.031,0.021) degrees/ frame, p = -18.53 degrees and q = 52.92 degrees. 

The third experiment was conducted at the GRASP Laboratory, University of Pennsylvania. 

Figures 8 show four consecutive frames of the campus scene. The camera "flies" over the 33'rd and 

Walnut Street with the translational velocity of (42.43,30.0,42.43) mm/ f rame, while keeping the 

pitch angle constant (= -45 degrees) with respect to the ground. The distance from the camera to 

the ground was measured as 700 mm with respect to the first camera position (frame 1). Figure 9.a 

shows the contour image obtained from frame 1 (Figure 8.a). The normal flow vectors measured 

between frame 1 and frame 2 are shown in Figure 9.b. The full flows after four iterations are 

shown in Figure 9.c. They were interpolated over the entire image plane for display purpose only. 

Figure 9.d shows the full flows at frame 4. 

The ideal flow near the fovea, according to the motion parameters used in the experiment, is 

given as follow; 

At frame 2 

At frame 3 

The actual flow obtained from the images is given as 

At frame 2 

At frame 3 



The flows were evaluated with respect to the normalized image plane (focal length = 1). The 

3-D motion parameters obtained from the above measurements are 

r At frame 2 

V = (31.91,22.69,35.23) mm/ f rame 

0 = (-0.6789,0.7865,0.1628) degree/ f rame 

p = -57.11 degrees, q = -12.02 degrees 

r At frame 3 

V = (39.62,28.60,39.41) mm/ frame 

0 = (-0.3312,0.3172,0.6979) degree/ f rame  

p = -53.48 degrees, q = -11.95 degrees 

The translational velocity reported above is the rescaled quantity with respect to the known 

distance. We suspect that the large portion of the error in the 3-D parameter estimates is due to 

the poor camera calibration. Notice that the solutions at frame 2 and at frame 3 are somewhat 

consistent, although they disagree with the input parameters. 

6 Concluding Remark 

We proposed an iterative algorithm for recovering a 2-D motion which would account for the 

transformation of one contour into another. The nearest point method was used for the normal 

flow estimation because it is provably accurate for small displacements and it leads to a bounded 

estimation error in any case. The least-squares procedure serves as a basic module and is iteratively 

applied to the normal flow estimates. The estimated value of the full flow is adjusted under the 

assumption of convected invariance of contour, and the estimated value of the full flow is projected 

onto the normal direction so as to estimate the normal flow more accurately. The entire process is 

repeated until the least-squares error no longer falls off significantly. We showed that the method 

converges to the solution under reasonably weak conditions: local affinity of motion and smoothness 

of the contour. 



The entire process may be viewed as a cooperative process in which inhibitory and excitatory 

mechanisms co-exist. Each flow vector is described locally by flow vectors in the form of poly- 

nomials, while being constrained to satisfy exact matching between contours. The inhibition and 

excitatory processes do not agree initially, but as the iteration progresses, they reach a point at 

which the disagreement is insignificant. The error was shown to vanish under suitable assumptions 

described in the paper. 



Figure 6: Recovering 2-D motion (synthetic images). (a) frame 1. (b) frame 2. (c) the ideal flow. 

(d) the normal flow measured. (e) the full flow recovered (0 iteration). (I) the full flow recovered 

(after three iterations). 



Figure 7: Recovering 2-D motion (red images). (a) frame 1. (b) frame 2. (c) full flow recovered 

(after three iterations). 



Figure 8: Image sequence used in the experiment (four frames are shown). (a) frame I. (b) frame 

2. (c) frame 3. (d) frame 4. 



Figure 9: Output obtained from the iterative method. (a) zerocrossing contours at  frame 1. (b) nor- 

mal flows measured along contours. (c) full flows recovered and interpolated (after four iterations). 

(d) full flows recovered and interpolated at frame 4. 
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Appendix A Proof of Theorem 1 

Let B(r)  be a circle centered at xo with radius r. For any xo on a smooth piece of contour, there 

exists a r l  > 0 such that any x E B(rl)  n I' is connected t o  xo by a smooth piece of contour. 

(Figure A.1.) Choose 0 < r2 < r l  and tl > 0 such that 

IT(t)x - xl 5 Ix - X O ~  - ~ 2 ,  V(x, t) E (I' - B(r1) n r) x [0, tl]. 

So T(t)x E B(r2) + x E B(rl)  for all t < tl,  i .e. ,  only those in B(r l )  may be transformed into 

B(7.2). 

Choose 0 < t2 5 t l  such that ITxo(t)-xol 5 7-2 for all t E [0, tz]. Then according to Equation (6), 

i ( t )  obtained by the nearest point estimation procedure must satisfy lEi:(t) - xol < r2, i.e i E B(r2). 

Therefore T-'(t)k E B(rl) ,  and T-'2 and xo are locally connected by a smooth piece of contour. 

Equivalently, x and Txo are also locally smoothly connected. So Equation (15) holds. If we choose 

0 < to 5 t2  such that all transformation parameters << 1, and KYO << 1, we have Equation (17) 

for t E [O,to]. Replacing xo, a21 and r; by the set of parameters defined by Equation (18) we get 

Equation (19). 

1) Only those points inside B(r l )  may be transformed into B(r2). 
2) xo is moving inside B(r2).  So Ei: and Txo are locally smoothly connected. 

Figure A.l: Proof of Theorem 1 



Appendix B Iterative Procedure - a Square Under 2-D Eu- 

clidean Motion 

In this Appendix we will make an explicit computation of the iterative 2-D motion recovery proce- 

dure for a square undergoes (1) translation and (2) rotation. 

I' in this case is a 2 by 2 square bounded by the lines x  = 1 ,x  = -1,y = 1  and y  = -1. (See 

Figure A.2). 

The length X of the I' is 8. The 2-D transformation parameter vector and the coefficient vector 

are 

So the gramian 

is non-singular. The least-squares solution for p is 

A . l  Pure translational case 

Suppose the true parameter vector is 

We assume Vx,Vy > 0. Figure A.3 shows both the original square I? and the transformed square 

rO. 



Figure A.2: I' - a square. 

Figure A.3: I', r0 and G,(x) 



By the nearest point estimation method we estimate the normal displacements from r to I 'O  as 

I 0 y = 1 ,  xE( - l )VX+VY--1 )  

vy y = -1, x € (-1,l)  

We can see that on part of the contour I' (drawn as thin lines in Figure A.3) the normal 

displacement can be measured exactly, while on the other part of the contour (drawn as thick lines 

in in Figure A.3) the estimated normal displacement is wrong. We can see that the decomposition 

of I' = I': u rt is 

r; = {AAII,BBII) 
r = r-I?;. 

with 

I X i  = 4 - 2(VX + V,) 

eO(x) = e:(x) = 0, x E r, 
= a(vx + v,) 

The relative length of I'! is 

,D is proportional to the translation, and the amount of error in rb is also proportional to the 

translation. 

The transformation parameter vector estimated from $Ao) is 

Using TO we can generate I'l as the dashed square in Figure A.4 



Figure A.4: I?, r1 and r0 

The procedure for calculating 6; and TI is same as that for calculating v: and TO, except that 

this time we are working on I' and I" instead of I' and rO. Since I'1 is much closer to r than r0 is, 

we obtain a better estimate at  this step 

The exact transformation from r to r1 is 

So the relative length of I't is " : P(VX + VY) - p2 - _ 
X 

- 
4 

i .e.  I'i (the thick lines in Figure A.3) is shorter than I'p. lei(x)l is also smaller than Jep(x)l. We 

can write out the motion at this step immediately: 



Therefore 

Continuing this iterative procedure we can get: 

converges t o  the true motion parameters quickly. 

A.2 Pure rotational case 

Suppose the true parameter vector is: 

We assume 0 < a << 1. 

Figure A.5 shows the both original square I' and the rotated square rO. 
Since the shape is symmetric, 

0 

xny - Y ~ x  

so we only need study Jtl(xn, - yn,)ds, where el is the right side of the square. 

On el we have: 



Figure A.5: Rotation case, I' and r0 

where 
cos a - sin a 

a = 
cos a + sin a ' 

While the true normal displacement on el is 

So if we decompose .ll = yg U yb, then 

I = l + a  

eg (x) = sin a (1 - cos a )y + 1 - (cos a )2 

= 1 - a  

eb(x) = s i n a ( l + c o s a ) y +  1 -cosa  + s i n a ( l - s i n a ) .  

Substituting a into the above equations and expanding in powers of a we get 



so the relative lengths are: 

and average errors over I?:, I?! respectively: 

Integrating ( m y  - yn,)8L0)(x) over el, 

where 

k = s i n a c o s a ,  

b = s ina (1  - s ina) ,  

c = cosa(1  - coscr). 

The least-squares solution for the rotation parameter a is 

Substituting for k,  a ,  b and , c and expanding in powers of a, 

Again we can see the error Eo is of second order in the transformation parameter a.  

As the iteration procedure goes on, the rotations estimated are: 



and 

I f & <  i, 
lim hi = a 
i+cc 

converges to the true value of the rotation angle. 



Appendix C On Convergence of the Iterative Method 

In order to make calculation tractable, let us assume that the transformation T is an affine trans- 

formation T x  = (I + A ) x  + b with A = {aij) and b = [b l ,  b2IT. Denote 

where p(T) E s6 is the parameter vector. Let llpll be the L, norm of p: 

By a straightforward calculation we have the following equations and inequalities for any two 

transformations TI = T(pl)  = {A1, bl} and T2 = T(p2) = {A2, b2): 

T1T2 = {Ai + A2 + A1A2, bl + b2 + A1b2) 

Tc1T2 = { ( I  + A1)-'(A2 - AI),  ( I  + A1)-l(b2 - b l )  

T ( P l +  ~ 2 )  = (A1 + A2, b l  + b2) 
(A.2) 

1 + 211~(TlT2)ll 2 (1 + 211~(Tl)ll) (1 + 211p(T2)Il) 

Therfore, if we define 

Tn = - Tn. 

Then 

By the definition of Ti, T = . T ~ - ~ T ,  = pi-lf;l~i, so 

Let 

Ei = ~ ( 8 )  - p(Ti) 

be the error vector at the ith step of the iterative procedure, we have 

Theorem 2 The iterative procedure converges to the true transformation if and only if 

lim;,, Ei = 0. 



Proof: Let {AE,bE) be the transformation corresponding to  E; according to Equation(A.1). 

Suppose Ti = {A,b), then f'i = {A+AE,b+  bE). By Equation (A.2), 

By using Equations (A.3) and (A.4), we have 

lim Ei = 0 e lim TF'~ ' ;  = TI lim pi = T. 
i+m 1'00 0'03 

In showing the convergence, we shall prove Ei goes zero as i -+ oo for the entire contour segment 

under consideration. Recalling that Corollary 1 in Section 3 is valid for each point, we need some 

sort of global anlysis. The question we are posing is the following: given a contour segment, 

determine the minimal motion under which the iteration converges. The argument proceeds much 

in the same philosophy as the proof procedure for the uniform convergence of a infinite series of 

functions within a certain interval. 

Suppose the contour has a t  least one corner or intersection. It is clear that there is no uniform 

p such that for all x E - N the first condition is satisfied. However if the contour is smooth 

enough, for example - all derivatives at its smooth points are uniformly bounded - then there is 

a uniform p such that the second condition holds. 

Definition 3 (Uniformity) 

A contour is uniform i f  there exists a constant p > 0 such that for any T E {Tlp(T) < pr}, the 

following two conditions are satisfied. 

1. For all x,x' f r - N which are locally smoothly connected, T x  and Tx' are also locally 

smoothly connected. 

2. For all x E r - N ,  i f  T x  and k are locally smoothly connected, then 

where k is a constant independent of x. 



For this type of contours, large error can occur only at  those points x which are not locally smoothly 

connected to T - ~ X .  For small enough T ,  this situation can only occur near a corner or an inter- 

section. 

For a given contour T under a given transformation T ,  define the maximum displacement as 

A straightforward calculation shows that there exists a constant Dr > 0 depending only on I' such 

that for any T, 

I Drlp(T?I ( A 4  

Define 

B ~ ( T )  = { X I  E r 1 I X  - X'I  < T I .  

For every x E I' - N, let r' E {r ') ,  be such that for every x' E B X ( r f ) ,  x and x' are locally smoothly 

connected. Define 
I px = sup r . 

T I E { T I ) X  

(A.7) 

Then B x ( p x )  is the maximal open ball in which all points are locally smoothly connected to x. 

We would like to show that if the point under consideration is sufficiently far away from singular 

points, T x  and x are locally connected. 

Lemma 1 Let I? be a uniform contour and let x E T - N .  If p, > 2dr (T) ,  then the true corre- 

spondence T x  and the estimate x are locally smoothly connected. 

Proof  : By Equation ( 6 )  

So x and TelZ are locally amoothly connected. By Definition 3, Tx and 12 are also locally 

smoothly connected. 

Definition 4 (n-junction) 

A point w E I' is a n-junction if w E N and there are n curves starting at w. 



By this definition, an intersection of two curves is a Cjunction, a corner is a 2-junction and an 

end point is a 1-junction. 

Define J to be the set J = {n-junction; n 2 2). 

Define C x ( r )  t o  be the boundary of B X ( r ) ,  

C x ( r )  = {X 'E  I ' I  Jx-x' I  = r ) .  

Define p for a subset I?' of I' 

~ ( r ' )  = mi? px .  
x€r 

where p, is as defined in Equation (A.7) .  

Denote the length of I" as X(I") .  

Let w E J be a n-junction. It is clear that there exists r ,  > 0 such that for any 0 < r 2 T w ,  

C w ( r )  contains exactly n points. We also have 

Definition 5 (Separability) 

We say an n-junction w E J is separable if there ezists r ,  such that 

2. There exists l,, 

The first condition prevents p(Cw(r))  from having infinitely many oscillations as r i 0 ,  and the 

second condition means that we can use rays to separate branches. 

Examples: 

1. A n-junction all of whose branches are rays is separable, since p(C(r ) )  = r tan a ,  where cr is 

the smallest angle between any two lines, and 

X ( 3 ( r ) )  nr n - - - 
P(C(r ) )  r tan cr tan a ' 



2. A 2-junction at the origin consisting of two branches {y = 0, x 2 0) and {y = x2, x 2 0) is 

not separable, since 
X(B(r)) 2r 2 7 4 0  - - - 00. 
p(C(r)) ' 7 - r 

3. A 2-junction at the origin consisting of two branches {x = 0, y 2 0) and {y = x sin $, x 1 0) 

is not separable, since the the latter branch has infinitely many oscillations near 0. 

Theorem 3 Let r be a uniform contour all of whose junctions are separable. Then there exists 

p > 0 such that for all T E {T I I)p(T)II 5 p ) ,  we can decompose I' as I' = rg (T)  r l  rb (T)  with 

where kl, k2 and k3 are constants. 

Proof : Since all junctions of r are separable, we can choose TO for all w E J such that for all 

r < TO, (i) if w is a n-junction, then Cw(r) contains n points; and (ii) Equations (A.lO) and 

(A.l l )  hold. Let 

I r = UWEJBW(TO), 

and 

d = p ( r  - r l )  

Let Dr be the constant as in Equation(A.6). Choose p > 0 such that 

d 
p = -  

2Dr' (A.14) 

Then for any T E {T I 11 p(T)II 5 p), choose for every w E J a rw(T) such that 

Let 



We shall show that p(I',(T)) > 2dr(T) .  Since I',(T) = (I' - I") U I"', where 

by Equations (A.13) and (A.14),  p(I'  - I?') = 2Drp  2 2Dr llp(T)II. By Equations (A.lO) 

P(I'") 2 P ( C ( r w ( T ) ) )  = 2Drllp(T)II. So 

Therefore by Lemma 1,  for every x E I',(T), Tx and li are locally smoothly connected. Since 

I' is uniform, there exists k2 = kr such that 

The length of r b ( T )  can be estimated by using Equation (A.9): 

i.e. kl = 2Dr CwEJ 1,. It is obvious that kg = 2Dr.  Thus we obtain Equation (A.12). . 
Corollary 2 Let I' be a uniform contour all of whose junctions are sepambb. Then there exists 

p > 0 such that, if at i th step of the iterative procedure we have Ilp(T;)ll < p, then the iterative 

procedure converges to the true transformation. 

Proof : By Theorem 3 there exists p' such that for all Ilp(T;)IJ < p' we can decompose I' = I'i n I'i 
with Equation (A.12) holding. Therefore by the error formula (Equation (27) )  the error E; 

of p ( Z )  after the least-squares procedure satisfies the inequality E; < k I I P ( ~ i ) l 1 2 .  

Choose p = min {i, then for all (Ip(Ti)(l < p, we have 

As in Equation (A.4) ,  we can calculate 



Therefore if we let io be the smallest i such that Equations (A.15) and (A.16) hold, then by 

induction, the equations are true for all i > io. So for all i > io. 

Thus lim;,, Ei = 0. By Theorem 2, the iterative procedure converges to the true transfor- 

mation. 
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