
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

9-1-2010

Generating Reliable Code from Hybrid-Systems
Models
Madhukar Anand
Cisco Systems

Sebastian Fischmeister
University of Waterloo, sfischme@uwaterloo.ca

Yerang Hur
Posdata America R&D Center

Jesung Kim
The MathWorks

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/435
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Madhukar Anand, Sebastian Fischmeister, Yerang Hur, Jesung Kim, and Insup Lee, "Generating Reliable Code from Hybrid-Systems
Models", IEEE Transactions on Computers 59(9), 1281-1294. September 2010. http://dx.doi.org/10.1109/TC.2010.84

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76393569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F435&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F435&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F435&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F435&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/TC.2010.84
http://repository.upenn.edu/cis_papers/435
mailto:libraryrepository@pobox.upenn.edu

Generating Reliable Code from Hybrid-Systems Models

Abstract
Hybrid systems have emerged as an appropriate formalism to model embedded systems as they capture the
theme of continuous dynamics with discrete control. Under this paradigm, distributed embedded systems can
be modeled as a network of communicating hybrid automata. Several techniques for code generation from
these models have also been proposed and commercially implemented. Providing formal guarantees of the
generated code with respect to the model, however, has turned out to be a hard problem. While the model is
set in continuous time with concurrent execution and instantaneous switching, the code running on an
inherently discrete platform, can be affected by the sampling interval, round-off errors, and communication
delays between the sensor, controller, and actuators. Consequently, semantic differences between the model
and its code can arise with potentially different system behavior. This paper proposes a criterion for faithful
implementation of the hybrid-systems model with a focus on its switching semantics. We discuss different
techniques to ensure a faithful implementation of the model, and test the feasibility of our concepts by
implementing a model heater system. In this heater case study, we successfully eliminate all fault transitions
and, thereby, generate code with correct behavior complying with the specification.

Keywords
Formal languages, software engineering

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/435

http://repository.upenn.edu/cis_papers/435?utm_source=repository.upenn.edu%2Fcis_papers%2F435&utm_medium=PDF&utm_campaign=PDFCoverPages

Generating Reliable Code from
Hybrid-Systems Models

Madhukar Anand, Sebastian Fischmeister, Member, IEEE, Yerang Hur, Member, IEEE,

Jesung Kim, Member, IEEE, and Insup Lee, Fellow, IEEE

Abstract—Hybrid systems have emerged as an appropriate formalism to model embedded systems as they capture the theme of

continuous dynamics with discrete control. Under this paradigm, distributed embedded systems can be modeled as a network of

communicating hybrid automata. Several techniques for code generation from these models have also been proposed and

commercially implemented. Providing formal guarantees of the generated code with respect to the model, however, has turned out to

be a hard problem. While the model is set in continuous time with concurrent execution and instantaneous switching, the code running

on an inherently discrete platform, can be affected by the sampling interval, round-off errors, and communication delays between the

sensor, controller, and actuators. Consequently, semantic differences between the model and its code can arise with potentially

different system behavior. This paper proposes a criterion for faithful implementation of the hybrid-systems model with a focus on its

switching semantics. We discuss different techniques to ensure a faithful implementation of the model, and test the feasibility of our

concepts by implementing a model heater system. In this heater case study, we successfully eliminate all fault transitions and, thereby,

generate code with correct behavior complying with the specification.

Index Terms—Formal languages, software engineering.

Ç

1 INTRODUCTION

MODERN real-time embedded systems are complex,

distributed, feature-rich applications. For example, a

car incorporates 30 to 60 microcontroller units [1], [2] and

desired functionality includes automatic parking, automatic

car coordination, and automatic collision avoidance. The

development of such functionality is time consuming and
difficult, since faults in the temporal or value domain may

lead to system failures, which in turn can lead to catastrophes

with possibly human losses. Model-based development of

real-time embedded systems promises to simplify and

accelerate the implementation process. This is because of

its promises such as formal guarantees and code generation.

Several mathematical models such as Timed Automata [3],

Hybrid Systems [4], and State charts [5] have been success-
fully applied to such systems.

1.1 Modeling with Hybrid Systems

Hybrid systems are an appropriate modeling paradigm for

embedded control software, because it can be used to specify

continuous change of the system state as well as discrete

transition of states [6], [7].
Traditionally, control theory and related fields have

addressed the problem of designing robust control laws to

ensure optimal performance of processes with continuous

dynamics. While this is important, control-theory-based

approach does not consider the problem of implementing

the control laws in software and associated problems

involving concurrency and communication. The computer

science perspective, on the other hand, is that of a discrete

world, largely ignoring the physics of the environment

(continuous variables) the embedded system is dealing with

and consequently, unable to provide safety and perfor-

mance guarantees of the system. Hybrid-systems approach

combines aspects of these two approaches and is, therefore,

better at modeling embedded systems.
Benefits of hybrid-systems modeling are significantly

enhanced, if code is generated automatically from the

model such that the correspondence between the model and

the code is precisely understood. Code generation from

hybrid-systems models eventually involves assigning a rate

by which the continuous state evolves. In such a discretized

hybrid-systems model, the state changes in a discrete

manner according to the rate typically assigned by the

model designer. Further, the concurrency of the model is

broken in distributed implementations where delays in

updates can result in semantic differences. Realizing a

faithful implementation of the model, therefore, involves

addressing all of these issues.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 9, SEPTEMBER 2010 1281

. M. Anand is with the Cisco Systems, 425 East Tasman Drive, San Jose,
CA 95134. E-mail: anandmkr@cisco.com.

. S. Fischmeister is with the Department of Electrical and Computer
Engineering, University of Waterloo, 200 University Avenue West,
Waterloo, ON N2L 3G1, Canada. E-mail: sfischme@uwaterloo.ca.

. Y. Hur is with the Posdata America R&D Center, 2350 Mission College
Blvd, #703, Santa Clara, CA 95054. E-mail: yehur@posdata-usa.com.

. J. Kim is with The MathWorks, 3 Apple Hill Dr., Natick, MA 01760.
E-mail: Jesung.Kim@mathworks.com.

. I. Lee is with the Department of Computer and Information Science, School
of Engineering and Applied Science, University of Pennsylvania, Levine
Hall, Room 602, 3330 Walnut Street, Philadelphia, PA 19104-6389.
E-mail: lee@cis.upenn.edu.

Manuscript received 27 May 2009; accepted 3 Nov. 2009; published online
8 Apr. 2010.
Recommended for acceptance by S. Shukla.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2009-05-0231.
Digital Object Identifier no. 10.1109/TC.2010.84.

0018-9340/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Consider the following vehicle coordination problem
(adapted from MoBIES Vehicle-Vehicle Automotive OEP
Problem [8]) as an example of a hybrid-systems model:

Example 1 (Vehicle Coordination). Consider the example of

vehicle coordination where there are two vehicles. The

first vehicle is a leader. It follows the dynamics depicted

as agentA1 in Fig. 1. x1 denotes the distance of leader from

the baseline, v1, its velocity. The dynamics of the leader

are determined by the control function u. The second

vehicle trails the leader and maintains a safe distance

from it as described in the figure by agent A2. Its distance

from the baseline is given by x2 and velocity by v2. If it is

closer than dmin from the leader, it will slow down with a

rate _v2 ¼ �1 and if it is farther than dmax, it will accelerate

with a rate _v2 ¼ 1. The invariant in state q1 is x1 � x2 2
½dmin ��; dmax þ ��, in q2 is x1 � x2 � dmin � �, and in q3 is

x1 � x2 � dmax þ �, where � is the tolerance parameter.

1.2 Problem Statement and Contributions

One problem of code generation for hybrid systems is that

the generated code must faithfully implement the hybrid-

systems model. This means that transitions in the software

state machine should occur according to the hybrid-

systems model. Thus, transitions that only occur in the

software but not in the model (i.e., faulty transitions) or

transitions that only occur in the model but not in the

software (i.e., missed transitions) are undesired and should

be prevented. This work integrates previous efforts in

reliable and faithful code generation [4], [9], [10], [11] by

providing a uniform representation with better elucidation

of all the introduced concepts, including code snippets,

and an example case study.
We introduce a technique called instrumentation of

guards to prevent faulty mode transitions but at the same
introduce no missed transitions. Instrumentation shrinks
the guard so that the transition is made safe (not faulty but
not missed). It is related to the hysteresis technique used in
many control systems. Like hysteresis, it too uses a higher
threshold when switching from below and a lower thresh-
old when switching from above, so that transitions are not
made erroneously. However, instrumentation does not
prevent oscillations in the controller. It is definitely possible
that an instrumented system exhibits oscillations. For such
systems, it may become essential to use hysteresis in
addition to instrumentation.

This work contributes through the following elements:

. We introduce the problem of reliable code genera-
tion with respect to switching discrepancies (Sec-
tions 2.1-2.3).

. We present techniques to eliminate the faulty
transitions in code (Section 3.1).

. We develop a sufficient condition to check for
missed transitions (Section 3.2).

. We illustrate the introduced techniques on an
example heater system model (Section 4).

1.3 Introduction to CHARON

This section introduces CHARON [12], a tool for modular
specification of interacting hybrid systems based on the
notions of agent and mode. For hierarchical description of
the system architecture, CHARON provides the operations
of instantiation, hiding, and parallel composition on agents,
which can be used to build a complex agent from other
agents. The discrete and continuous behaviors of an agent
are described using modes. For hierarchical description of
the behavior of an agent, CHARON supports the operations
of instantiation and nesting of modes. Furthermore, features
such as weak preemption, history retention, and externally
defined Java functions facilitate the description of complex
discrete behavior. Continuous behavior can be specified
using differential as well as algebraic equations and
invariants restricting the flow spaces, all of which can be
declared at various levels of the hierarchy. The modular
structure of the language is not merely syntactic, but also
reflected in the semantics so that it can be exploited during
analysis. The key features of CHARON include:

Architectural hierarchy. The building block for describ-
ing the system architecture is an agent that communicates
with its environment via shared variables and also commu-
nication channels. The language supports the operations of
composition of agents for concurrency, hiding of variables
for information encapsulation, and instantiation of agents
for reuse.

Behavioral hierarchy. The building block for describing
a flow of control inside an atomic agent is a mode. A mode
is basically a hierarchical state machine, that is, a mode can
have submodes and transitions connecting them. Variables
can be declared locally inside any mode with standard
scoping rules for visibility. Modes can be connected to each
other through well-defined entry and exit points. The
instantiation of modes so that the same mode definition can
be reused in multiple contexts. Finally, to support excep-
tions, the language allows group transitions from default
exit points that are applicable to all enclosing modes and to
support history retention, the language allows default entry
transitions that restore the local state within a mode from
the most recent exit.

Discrete and continuous variable updates. Discrete
updates are specified by guarded actions labeling transi-
tions connecting the modes. Such updates correspond to
mode switching, and are allowed to modify variables
through assignment statements. Variables in CHARON can
be declared as type analog, and they flow continuously
during the continuous updates that model passage of time.
The evolution of analog variables can be constrained in

1282 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 9, SEPTEMBER 2010

Fig. 1. A system with two agents.

three ways: differential equations (e.g., by equations such as
_x ¼ fðx; uÞ), algebraic equations (e.g., by equations such as
y ¼ gðx; uÞ), and invariants (e.g., x� y < c) which limit the
allowed durations of flows. Such constraints can be
declared at different levels of the mode hierarchy.

Example 2. The following code snippet shows how CHARON

model of the obstacle avoidance controller from Exam-
ple 1. The controller has three locations labeled Con-
stantVel, Accel, and Decel. The two continuous variables
are velocity (v) and position (x). The mode TopMode
captures the entire model. This mode is composed of the
three submodes. The code for one such submode,
ConstantVel, is also given below. The rate of change of
position and velocity are captured by specifying the
differential equation associated with it (_x ¼ v, and _v ¼ 0).
The guard G1 of Fig. 1 is encoded as the condition SuðxÞ.

Listing 1. CHARON code snippet for the vehicle controller

of Example 1.

mode TopMode (real x1, real v1){

write analog x,v;

mode q1 ¼ ConstantVel();

mode q2 ¼ AccelðÞ;
mode q3 ¼ Decel();

trans from default to q1 when true

do{x ¼ x1; v ¼ v1;}

trans from q1 to q2 when (SuðxÞ ¼ true) do {}

trans from q2 to q1 when (SuðxÞ ¼ false) do {}

. . .

}

mode ConstantVel()

{
write analog real x; v;

diff {dðxÞ ¼¼ v; dðvÞ ¼¼ 0}

invSuðxÞ ¼ true

}

1.4 Related Work

Model-based automatic code generation has been an
extensive research initiative in recent years and already
successfully applied in industry [13]. Commercial modeling
tools such as RationalRose [14], TargetLink [15], and
SIMULINK [16] also support code generation and address
the effect of errors in the code. However, their concerns are
largely limited to numerical errors occurring each step
during simulation, and the effect of such errors on discrete
behavior is not addressed rigorously. Synchronous lan-
guages for reactive systems, such as STATECHARTS [5],
ESTEREL [17], and LUSTRE [18], [19] also support code
generation. However, they do not explicitly support
continuous time modeling. SHIFT [20] is a language for
hybrid automata that also supports code generation, but it
concentrates on dynamic networks.

Model-based development of embedded systems is also
promoted by other projects with orthogonal concerns:
Ptolemy supports integration of heterogeneous models of
computation [21] and GME supports metamodeling for
development of domain-specific modeling languages [22].

Girard et al. [23] also consider hybrid-systems modeling of
embedded applications; however, their focus is on verifica-
tion of safety properties and not code generation. There also
exist other efforts toward model-driven development of
embedded software from models other than hybrid systems
[24]. In a closely related work, Stauner [25] discusses at
length, the discrete refinement of hybrid automata, consider-
ing implementation effects such as sampling errors and its
impact on verification.

2 TECHNIQUES FOR GENERATING RELIABLE CODE

2.1 Model and Overview

Formally, a hybrid model consists of a real vector x denoting

the continuous state, a finite set of discrete states P that

associates x with a differential equation _x ¼ fpðxÞ, for each

p 2 P , and a set of transitions E � P � P . The continuous

state x evolves according to the differential equation _x ¼
fpðxÞ when the current discrete state is p. When the current

discrete state is changed from p to p0, x is optionally reset to

a new value Rðx; p; p0Þ defined by a map R : IRn � P �
P ! IRn, and continues evolution in accordance with a new

differential equation _x ¼ fp0 ðxÞ associated with p0. To control

the discrete behavior, discrete transitions can be guarded by

predicates over x. That is, a set Gððp; p0ÞÞ � IRn for each

ðp; p0Þ 2 E specifies the necessary condition on the contin-

uous state that the transition ðp; p0Þ can be taken. Note that a

discrete transition is not necessarily taken immediately even

if the guard is true. To enforce a transition, an invariant set

IðpÞ � IRn is associated for each p 2 P to specify the

condition that the discrete state can stay in p (that is, the

condition that x will follow _x ¼ fpðxÞ). An outgoing transi-

tion should be taken before the continuous state goes out of

the invariant set.
This framework assumes that there is a network of

hybrid automata (called agents) communicating via a set of
shared variables. A single agent is denoted by A ¼ ðA;SV Þ
where A is the hybrid model of the agent, and SV is the set
of shared variables. A system of communicating hybrid
agents is represented by the tuple C ¼ hðA;SV Þ1; . . . ;

ðA;SV Þni. Every s 2 SV is assumed to be updated by a
unique agent, and that it follows rectangular dynamics, i.e.,
_s 2 ½L1;L2�, L1, L2 2 QQ n f0g. Such rectangular automata
are of practical significance, as hybrid systems with very
general dynamics can be locally approximated arbitrarily
closely using rectangular dynamics [26]. Further, the guard
and invariants are assumed to be conjunction of rectangular
sets on variables (e.g., g ¼

V
i xi 2 ½lxi ; uxi �). The guards are

also assumed to be such that at most one of them is enabled
at a time. Implementation of the continuous model involves
assigning a suitable sampling rate to every agent.

Definition 1 (Discrete Communicating Hybrid Automata

(DCHA)). Given a system of communicating hybrid agents

C, and a relative period of update of variables �, � 2 ZZþ, the

discretized system of communicating agents (DCHA) is

given by D ¼ hðA;SV ; �Þ1; . . . ; ðA;SV ; �Þni, such that

gcdð�1; . . . ; �nÞ ¼ 1.

ANAND ET AL.: GENERATING RELIABLE CODE FROM HYBRID-SYSTEMS MODELS 1283

DCHA is the model of code that is implemented on actual
platforms. Therefore, the guarantees of execution are pro-
vided with reference to this model. In the definition of DCHA
(Definition 1), we have restricted the period of updates of
different agents to be relatively prime. This restriction is not
necessary, but has been used to keep the model of automaton
distinct from its implementation. In fact, we associate this
period of update for an agent with an absolute time interval of
update in the code that implements the model.

For a rigorous definition of system of communicating
agents and their semantics, the reader is referred to [9].
When the discretized model is mapped to a real-time task in
the code-generation environment, each agent is assigned a
period of execution.

Definition 2 (Code). The code implementing a DCHAD is given
by the tuple K ¼ hðA;SV ; clk; h; �Þ0; . . . ; ðA;SV clk; h; �Þni,
where clk 2 IRþ represents the physical time, � represents the
local copy of the shared variables, hið¼ k�iÞ is the actual period
of evaluation, which is a multiple of the relative period �i.

The definition of platform consists of a mapping
between the model and the node that executes the code
corresponding to that model, the communication delay
involved, and a quantum of execution supported at each
node. The quantum is defined by how often a computation
can be performed on any node.

Definition 3 (Platform). A platform P is defined as the tuple
hN ;M; �; �i, where N is a system of nodes,M : A ! N is a
function that maps an agent to a node on which it is to be
executed, � is a map that takes agents as input and returns the
upper bound on communication delay between the two agents
in A,1 and � 2 IRþ is the baseline period, i.e., the quanta of the
period of execution of any agent.

2.2 Code Generation Procedure from
Hybrid-System Models

This section gives a brief overview of the procedure of code
generation from hybrid models. The translation of contin-
uous behavior specified by differential and algebraic
equations is presented first, and then the translation of
discrete actions specified by guarded transitions. Later in
the section, the issue of discrepancy between the model and
the generated code is discussed along with real-time
resource concerns and choice of correctness criteria [4], [9].

A differential equation of the form of _x ¼ fðxÞ specifies
continuous change of variable x at the rate specified as
the first derivative fðxÞ of x with respect to time (i.e.,
dx=dt ¼ fðxÞ). Continuous change of a variable can be
simulated by stepwise update of the variable based on a
numerical method that computes an approximate value of
the variable after a discrete time step (e.g., Runge-Kutta
method [27]). The simplest numerical method is the one
known as Euler’s method, which projects the value of the
variable at the next time step through linear extrapolation.
For example, a differential equation _x ¼ 2 is translated into
an assignment statement x :¼ xþ 2� h, where h is the step
size. In fact, no more sophisticated method is necessary if
the right-hand side of the differential equation is a constant.

Once the differential equations are solved, algebraic
equations are evaluated to reflect the change due to
differential equations. The general form of algebraic equa-
tions is y ¼ gðxÞ. An algebraic equation can be implemented
by an assignment statement of the same form. That is, an
algebraic equation y ¼ gðxÞ is simply translated into an
assignment of the form y :¼ gðxÞ.

Discrete actions of hybrid automata specify instantaneous
switching of system dynamics and optional reset of vari-
ables. Discrete actions are specified by transitions between
positions, where each position defines different dynamics.
The transition has a guard that specifies the necessary
condition for the transition to be taken, and may have
optional assignments to variables that are performed at the
moment when the transition is taken. When a transition is
taken, differential and algebraic equations defined in the
source position become no longer active, and those defined
in the destination position take effect immediately.

The guard in the hybrid-system model enables or disables
a transition, rather than immediately triggering a transition in
hybrid-systems models. This means that enabled transitions
may be taken delayed as long as the invariant is satisfied.
Conceptually, transitions are nondeterministic in the model,
and the implementation determines exactly when a transition
is taken. An obvious policy is an urgent transition policy
where a transition is taken as soon as the guard evaluates true.
An instrumentation [9] transition policy is one that enforces
transitions to be taken some time � after the transition is
enabled, but no later than � before the transition is disabled.
Yet another possibility is to enforce a transition once it is
enabled. Such a policy is called an eager transition policy. In
other words, an eager transition policy implies that an
enabled transition is always taken, whereas the original
hybrid-system model does not mandate this. Note that the
urgent transition policy is an eager transition policy. The
instrumented transition policy is an eager transition policy if
the instrumented guard set is a nonempty set. The different
types of transition policies are illustrated in Fig. 2 for a two-
dimensional state space. In the example, invariant and guard
sets are rectangular sets. The invariant is the outer rectangle,
followed by the shaded region which is the guard set. The
instrumented guard is the region inside the dashed rectangle
(innermost rectangle). The trajectory of the hybrid system is
shown in bold (_x ¼ f1ðxÞ). The various dotted lines from this
trajectory represent the different times at which transition to

1284 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 9, SEPTEMBER 2010

1. We assume that the communication delay is symmetric between two
agents.

Fig. 2. Different types of transition policies [10].

a different state can be taken. In the next state, the system
follows the dotted trajectory representing equation _x ¼ f2ðxÞ.

This work only considers an eager transition policy.

2.3 Issues in Reliable Code Generation

Typically, the code generator translates a hybrid-systems
model into a set of functions that can be invoked periodically
by the underlying runtime system to simulate the original
model. Intuitively, as the period gets close to zero, the
behavior of the generated code will get close to the model.
However, it is generally not guaranteed that the discrepancy
will be bounded by using a smaller period due to the discrete
nature of hybrid systems. For example, small errors in solving
the differential equations numerically may lead to a discrete
state change that should otherwise not occur, resulting in an
entirely different trace thereafter. Thus, validation of the
generated code against the originating model is essential for
model-based code generation paradigm.

In this work, we propose a framework for automatic
code generation and validation for hybrid-systems models
to distributed execution environment. Our framework
combines and extends previously proposed techniques [9],
[28]. In our framework, the code is generated and validated
against hybrid-systems models in three steps as illustrated
in Fig. 3. First, the model is analyzed whether a transition
that is not possible in the model may occur when it is
translated into code according to the user assigned update
frequency. To prevent such faulty transitions, the model is
instrumented such that transitions are taken conservatively
considering errors due to discreteness of the code. Second,
the instrumented model is analyzed to check whether a
transition may be missed. In this stage, each transition is
analyzed whether it is enabled long enough compared to
the user assigned update frequency. Finally, the instru-
mented model is fed into the code generator to produce the
code. The workflow described in Fig. 3 reflects a translation
of the model to the code. Conceptually, this translation
progresses from the hybrid-systems model defined in
continuous time to the code that runs in a distributed
discrete environment. At each stage of the code generation
process shown in Fig. 3, there is a successive relaxation of
behavioral semantics. Hence, it is essential to carefully
analyze and identify criteria for a faithful implementation of
the model. This is the principal focus of this paper.

There are a number of issues that need to be addressed to
provide guarantees in the generated code. The focus here is
on preventing switching discrepancies. The continuous
semantics of the model are implemented in the code with
the help of numerical methods which introduce an error
due to discretization in addition to the round-off and
truncation errors on target platforms. These errors along
with the order of scheduling of the reads may cause a
transition to be falsely enabled. If such a faulty transition is

taken, the dynamics of the system may be completely
different from the intended model. The example below
highlights such a possibility.

Example 3 (Faulty Transition). Consider the vehicle co-
ordination system in Example 1. We will describe a
working scenario where the delay in communication of
variables causes the system to make a faulty transition.2

Let us say that the relative period of update for agents A1

and A2 be ð5; 3Þ and the actual periods of updates be 0:1 s
and 0:06 s, respectively. Also, let u ¼ 2, dmin ¼ 0:1, and
dmax ¼ 0:5, and initial positions of vehicles be x0

1 ¼ 0:3072
and x0

2 ¼ 0:2, from the baseline, initial velocities v0
1 ¼ 0,

v0
2 ¼ 0, �ðA1; A2Þ ¼ �ðA2; A1Þ ¼ 0:03 s, and the current

states of agents be q0 and q2.
More formally, let the system of agents be executed on

two nodes N1 and N2. Then, the agents are given by
ðA1; fx1; x2g; clk; 5; fx1ðA1Þ; x2ðA1ÞgÞ a n d ðA2; fx1; x2g;
clk; 3; fx1ðA2Þ; x2ðA2ÞgÞwhile the implementation is given
by hfN1; N2g; fðA1; N1Þ; ðA2; N2ÞgðððA1; A2Þ; 0:03Þ; ððA2;
A1Þ; 0:03ÞÞ; 0:02i, respectively. In the definition, clk is a
clock representing the physical time of the system. Table 1
shows a potential run of the system. The table shows the
value of variable xi on agent Aj at times 0:06 s, 0:1 s, and
0:12 s. As the value of the variable could be different on
different agents (due to communication delays), we
describe the local values by the notation xiðAjÞ. In this
run, at time 0.12, the difference between vehicles is
0:3172� 0:2072 ¼ 0:11ð>0:1Þ, but the estimated distance
at A2 is 0:3072� 0:2072 ¼ 0:0956 < 0:1. Due to this
discrepancy, the agent A2 makes a faulty transition to q3.

Aside from faulty transitions, implementations of hybrid-
system models are also vulnerable to missed transitions.
Insufficient sampling rates, choice of scheduling of reads,
etc., may cause a transition to be missed. Missing some
transitions may cause the system to end up in a erroneous
state. This is illustrated with an example below.

Example 4. Consider the system in Example 1. Consider that
the system model is as specified in Example 3, but with
actual periods of update to be ð0:25 s; 0:15 sÞ. Also, let
dmin ¼ 0:25, dmax ¼ 0:5, and the control parameter u ¼ 0.
x1 ¼ 0:48, v1 ¼ 5, and v2 ¼ 4:5 at t ¼ 0:15, and the current
state ofA2 be q2. Further, let d ¼ x1 � x2 and _d ¼ _x1 � _x2 2
½0:45; 0:5�. The guard G4 is then the condition d 2 ð0:25;
0:5Þ. On instrumentation, the guard becomes d 2 ð0:25þ
0:1� 0:5; 0:5� 0:1� 0:5Þ ¼ ð0:3; 0:45Þ as the maximum
skew is 0.1, and L2 ¼ 0:5. A partial run of the system is
shown in Table 2. Although instrumenting the guards
ensures that there are no faulty transitions now, the
transition from q2 to q1 is missed in the run. At
time t ¼ 0:3 s, the agent A2 instead transits to q3.

ANAND ET AL.: GENERATING RELIABLE CODE FROM HYBRID-SYSTEMS MODELS 1285

2. It must be mentioned that this is merely an illustrative example, and
the values here are for the sake of the example.

Fig. 3. Workflow of our framework [10].

TABLE 1
A Run with Faulty Transition

In providing guarantees of faithful implementation, it is
desired to have no faulty or missed transitions [10] from the
point of view of switching, and errors in variables are
bounded from the perspective of dynamics. A scheduling-
independent guarantee that the global state of the code be
consistent with that of the model is yet another objective.
The following definition formally captures this idea.

Definition 4 (Faithful Implementation). Let V C be the set
of all variables and �x be the maximum bound on the error
of a variable x. Given a trace of states of the code K of
model Dhq0; q1; . . .i, at physical time stamps hclk0; clk1; . . .i,
where qi ¼ ðqA1

; . . . ; qAn
Þi, if, 8i,

1. 8x 2 V C; xD � xKj j < �x, where xK and xD represent
the value of variable in the code and the model,
respectively.

2. 8j : qK ¼ qD or qK ¼ q0D where qK is the state of the
code, qD and q0D are the projection of the state of the
model onto the code for agent Ai at logical times lti
(corresponding to clki) and lti þ hj, respectively.

Then, K is said to be a faithful implementation of D. If the code
satisfies condition 1, then it is said to be bounded numerical
error implementation.

Condition 1 states that the error in continuous variables
is bounded. Condition 2 states that the state of the code
of agent Aj at any given time, corresponds to either the
corresponding logical state in the model or corresponds to
the next logical state. This tolerance is given because the
exact time of scheduling is not specified and if the agent has
finished execution for that period, its logical state will
reflect the next logical state. However, this is a rather strong
criteria to enforce in time-delayed systems where the delays
could be different for every agent and even within an agent,
the delay in taking a transition can vary based on the
communication delay with the agent updating the variables
in the guard. For example, in one mode, an agent could
depend on x that arrives 0:0001 s late and in another mode,
it could depend on y that arrives 0:0002 s later. Therefore,
the criteria is relaxed by requiring that code enters the state
of the model no later than the maximum possible delay.
Formally, we can state the following:

Definition 5 (Relative Faithful Implementation). Let V C be
the set of all variables and �x be the maximum bound on the
error of a variable x. Given a trace of states of the code K for an
agent Aj, hq0; q1; . . .i, at physical time stamps hclk0; clk1; . . .i,
if, 8clk,

1. 8x 2 V C; xDðltÞ � xKðltÞj j < �x, where xK and xD
represent the value of variable in the code and the
model, respectively, and lt, the logical time in the code.

2. 8j : qK ¼ qD; qK ¼ q0D, or 9q0K : q0K ¼ qD, where qK is
the state of the code, qD, q0D, are the projection of the state
of the model onto the code for agentAi at logical times lti
(corresponding to clki) and lti þ hj, respectively. q0K is
the state of the code at a time t < lti þ �j þ ’þ hj,
where �l ¼ maxl�ði; lÞ and’ is the maximum skew due
to different rates of updates.

Then, code for Aj is said to be a relative faithful implementa-
tion. If 8j, Aj is a relative faithful implementation, then K is a
relative faithful implementation of D.

As in Definition 4, Condition 1 states that the error in
continuous variables is bounded. Condition 2 states that the
state of the code of agent Aj at any given time, corresponds
to either the corresponding logical state in the model or
corresponds to the next logical state (similar to Condition 2
of Definition 4). Further, if the state of the code is not one of
these, then this must be due to the communication delay
and skew, so the state of the model is entered within
time t < lti þ �j þ ’þ hj. This is because, all the updates to
variables would reach an agent in within time lti þ �j þ ’.
At that point, if the agent has not yet been scheduled for the
cycle, it will take the transition during that cycle. If it has
already been scheduled, then the transition will be taken in
the next cycle.

Example 5. Consider the transitions of a hybrid-system
model and two implementations as described in Fig. 4.
The run records transitions between four states labeled
q0, q1, q2, and q3. The run of the model is shown in Fig. 4a.
The dashed vertical line represents the sampling periods,
i.e., times at which the discrete implementation updates
the variables and states. Implementation in Fig. 4b is a
faithful implementation, as the state of the implementa-
tion match those of the model at the sampling periods.
Assuming the maximum skew and communication delay
is half the sampling period, Fig. 4c is a relative faithful
implementation of the model, as the transitions in the
implementation are taken at the next sampling period
where the updated values of variables are available.

1286 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 9, SEPTEMBER 2010

TABLE 2
A Run with Missed Transition

Fig. 4. An example hybrid-system model and its implementations.

3 ADDRESSING THE ISSUES IN RELIABLE CODE

GENERATION

Note that even if we use the relaxed notion of correctness,
validation of correct implementation is still nontrivial. The
reasons include the following:

. Only a small class of differential equations can be
solved exactly. For most cases, numerical methods
yield an approximate solution. Hence, obtaining
numerical bounds on error is often not possible.
Errors due to numerical integration of differential
equations are, thus, generally analyzed and repre-
sented by the O notation, and a constant error bound
can be rarely analyzed, if not impossible. The problem
is even more complex when we consider switching of
differential equations and the precision of the floating-
point unit.

. A transition that must be taken to satisfy the invariant
may be missed because the transition condition is not
evaluated frequently enough.

We believe that a general solution that addresses all the
problems in the general hybrid systems is unlikely to exist,
because a general solution for a constant error bound of
numerical integration is not known. However, for some
limited class of hybrid systems (e.g., linear hybrid systems),
a constant error bound can be easily obtained. We have
addressed some issues related to sampling in previous
work (see [29]), but have not integrated all of them into this
framework.

In the remainder of this section, we focus on techniques
to identify and address switching related issues in reliable
code generation of hybrid-system models.

3.1 Preventing Faulty Transitions

Faulty transition is a transition that is taken in the code but
is not possible in the model. It occurs either because the
transition was taken on the basis of an older value of the
variable or because of numerical errors in the variables.

Definition 6 (Faulty Transition). Let p0; . . . pn be a sequence of
positions in the trace of the code. ðpn�1; pnÞ is a faulty
transition if p0; p1; . . . ; pn�1 is a valid sequence of positions in
the model, but p0; p1; . . . ; pn is not.

Static instrumentation was introduced by Hur et al. [9] as
an approach to prevent faulty transitions. The idea there
was to instrument the guards and the invariants with
maximum possible error in variables and switch conserva-
tively. Once the guards and the invariants have been
instrumented, the code generated from D can be assured
of no faulty transitions. Though this approach has the
advantage that guarantees can be given statically, there is a
trade-off associated with this conservative switching. Since
the guard and invariant sets are shrunk, the probability of
not taking a transition increases. Yet another disadvantage
is that it is not always possible to determine this error bound
beforehand as with most differential equations, it is only
possible to get a local estimate of error which is only
available at runtime. Therefore, in this work, we introduce a
technique to dynamically instrument the guards and
invariants based on the runtime estimates of errors. The
main advantage of this approach, as opposed to static

instrumentation, is that it shrinks the guard and invariant
sets by a smaller amount, and thereby reducing the risk of
missed transitions.

Errors in variables could be due to numerical errors in
solving the differential equations, or are timing-induced due
to the different rates of execution of the agents. The
numerical errors introduced during the solution of differ-
ential equations are of the two types: the truncation error
due to truncations in Taylor series expansions and the
round-off error due to a finite precision of real numbers in
the computer. Both the truncation error and the round-off
errors are accumulated from during the integration process
and can be quite dominant sources of numerical error as the
number of integration steps increases. Determining the error
bounds for these errors accurately is hard. While computing
the exact or close enough bounds is difficult and tricky,
computing approximate error estimates, at least within an
order of magnitude is possible. For ordinary differential
equations, classical methods like Runge-Kutta method [27]
can be used to compute the order of error bound given the
step size of simulation. This is a harder proposition for a
system of differential and algebraic equations (see [30] for
some details). For the purposes of instrumenting the guards,
a technique for bounding the numerical errors has been
presented by Hur et al. [31]. In this work, we assume that
reliable bounds for numerical errors have been computed a
priori.

As mentioned above, the other source of error in
variables is timing-induced, i.e., due to the different rates
of execution of the agents. This can be estimated from the
maximum delay in communication between the agents. The
communication delay itself is obtained by monitoring and
the maximum skew, ’ (from Definition 5).

Once we have computed the bounds on numerical
errors, we can define guard and invariant set instrumenta-
tion as follows:

Definition 7 (Instrumentation). Let p be a state of agent Aj

with EAj
ðpÞ being the set of discrete transitions, and the

interval under consideration be ½lt; ltþ��. If the guard set
g 2 GAj

ðeÞ, e 2 EAj
is of the form, g ¼

V
i xi 2 ½lxi ; uxi �, the

invariant IAj
ðpÞ ¼

V
i xi 2 ½l0xi ; u

0
xi
�, ’ and � compute the

skew and delay between the agents, then, the instrumented
guards and invariant are given by,

ginst ¼
^
i

xi 2
�
lxi þ �p;xi þL2xi

	xi ; uxi � �p;xi � L2xi
	xi
�
ð1Þ

Iinst ¼
^
i

xi 2
�
l0xi þ �p;xi þL2xi

	xi ; u
0
xi
� �p;xi � L2xi

	xi
�
ð2Þ

where 	xi ¼ ’ðAi;AjÞ þ �ðAi;AjÞ, xi is updated by agent Ai,
with _xi 2 ½L1xi

;L2xi
�, and �p;xi is the round-off and truncation

error in xi in the state p.

Example 6. Consider the system in Example 3 in the time
interval [0, 1]. If d ¼ x1 � x2, then, _d ¼ _x1 � _x2 ¼ t. Since
t 2 ½0:05; 1�, _d 2 ½0:05; 1�. Now, given �ðA1; A2Þ ¼ 0:03,
skew at t ¼ 0:12 as 0.02, and assuming the bound on
round-off and truncation errors is 0.001, the transition
guard, x1 � x2 � 0:1 upon instrumentation becomes x1 �
x2 � ð0:1� 0:001� 1 � ð0:02þ 0:03ÞÞ ¼ x1 � x2 � 0:049
which prevents the faulty transition at t ¼ 0:12.

ANAND ET AL.: GENERATING RELIABLE CODE FROM HYBRID-SYSTEMS MODELS 1287

The theorem below formally states that instrumentation

prevents faulty transitions.

Theorem 1. Let the code K of the model D be implemented on a

distributed platform. Let for every agent Aj, p be the current

state with IAj
ðpÞ the set of invariants in that state, and GAj

ðeÞ
the set of guards. If 8G 2 GAj

ðeÞ that evaluate to true, and 8x,

G is instrumented as given in Definition 2 then there will be

no faulty transitions.

Proof (Sketch). The essential idea behind instrumentation is

to reflect the effect of numerical errors and synchroniza-

tion errors in the generated code to the invariants and

guards of each position. The theorem is proved by

showing that the resulting hybrid automata produce a

sound trace on discrete transition steps. This proof is

accomplished, in turn, by proving each of the following

statements:

1. [9, Lemma 1] Every run of a system of DCHA has
an equivalent run in the originating system of
hybrid-system automata if in the originating
system the dynamics do not change (insensitive)
in between the sampling interval. The following
definition captures the measure of insensitivity
more formally.

Definition 8 (h-Insensitivity [9, Definition 13]). Given a

communicating hybrid automata A, the invariant IxðpÞ
corresponding to a position p and a continuous variable x is

said to be insensitive if every x is such that xðtÞ 2 IxðpÞ (i.e., x

satisfies its invariant), xðtþ hÞ ¼ xðtÞ þ
R tþh
t FpðxÞdt 2

IxðpÞ implies xðtþ 	Þ ¼ xðtÞ þ
R tþ	
t FpðxÞdt 2 IxðpÞ for all

	 2 ½0; h�, where F is the derivative of x, and xðtÞ denotes the

valuation of x at time t. When all invariants are h-insensitive,

then the hybrid automata A is said to be h-insensitive. If every

model A is h-insensitive, then we say that the system of

communicating hybrid automata C is h-insensitive.

1. [9, Theorem 1] Given a communicating hybrid
automata A, and its corresponding instrumented
automata B, assuming that A is hB-insensitive, then
B always produces a safe run, i.e., a run that is
always included in that of A.

2. [9, Theorem 2] Given a system of communicating
hybrid automata C ¼ hðA; SV Þ1; . . . ; ðA; SV Þni and
their corresponding instrumented versions C ¼
hðB; SV Þ1; . . . ; ðB; SV Þni, such that the automata Bj
is hBj insensitive, then, every run of the system of
communicating hybrid automata is included in that
of the originating system.

For a formal treatment of the model, the statements,
and the proofs, we refer the reader to the work by Choi,
Hur, and others [9], [32], [33]. tu
Notice that in Example 6, the instrumentation reduces

the guard interval substantially. It is possible that with
the shrinking of the guard set, the transition is missed
completely. The next section will analyze and derive a
condition to check for missed transitions and possibly avoid
them by higher sampling.

3.2 Preventing Missed Transitions

Missed transitions are transitions that are enabled in the
model but not taken in the code. They occur either because
the guard is not evaluated sufficiently or scheduling
affected the order of evaluation.

Definition 9 (Missed Transition). Let p0; . . . pn be a sequence

of positions in a terminated trace of the code, i.e., pn ¼? ,

where ? denotes a state that violates the invariant. There is a

missed transition at pn�1, if p0; p1; . . . ; pn�1 is a valid

sequence of positions in the model, but p0; p1; . . . ; pn is not.

In general, a transition will not be missed, if it stays
enabled long enough to be detected. The theorem below
gives a sufficient condition to prevent missed transitions.

Theorem 2 [10]. Let the code K of the model D be implemented

on a distributed platform, hj be the period of sampling in agent

Aj. Let I be an instrumented invariant in a state and g ¼V
i xi 2 ½lxi ; uxi �; g � I represent the instrumented guard of a

transition in that state. If lt represents the current logical time

at Aj, xiðltÞ the current estimate of xi at Aj, and if Txi are

defined as,

TxiðkÞ ¼

ltþ lxi�xiðltÞ
Lkxi

þ 	max; ltþ
uxi�xiðltÞ
Lkxi

þ 	min
h i

;

if ðxiðltÞ < lxiÞ; _xi > 0;

ltþ uxi�xiðltÞ
Lkxi

þ 	max; ltþ
lxi�xiðltÞ
Lkxi

þ 	min
h i

;

if ðxiðltÞ > uxiÞ; _xi < 0;

8>>>><
>>>>:

then, the transition will not be missed if,

\
i

\
k¼1;2

TxiðkÞ
 !�����

����� � 2hj

where 	min ¼ ’min þ �, 	max ¼ ’max þ � between agents Ai

and Aj, then, the transition will be detected and will not be

missed if they are taken as soon as enabled.

Proof (Sketch). The proof of the theorem is sketched in two
parts. First, a condition on the overlap of guard and
invariant that will allow detection of the enabling of the
transition is derived. Then, given that the guard is of the
form g ¼

V
i xi 2 ½lxi ; uxi �, a sufficient condition to meet

this overlap, based on the periods of execution of agents
is presented.

To prove the first statement, consider a task-period

set � ¼ fð
i; hiÞg1 � i � n. Each task
i is treated as a

periodic task with period hi executing in a distributed
environment. Let the execution time of
i be �i and this is

scheduled to run every hi time units. Note that �i here

includes both execution time and also perhaps commu-

nication delay associated. Also, the time used here is in

the reference frame at the processor executing task
i.

Therefore, in the worst case,
i might be scheduled at

time jhi and a guard might be enabled (in the code,

perhaps on a different processor) immediately after that,
i.e., at time jhi þ �, � > 0 and be detected only when
i
is next scheduled to run which may be as late as

ðjþ 2Þhi � �i. Since eager switching is assumed, this

transition will be taken at ðjþ 2Þhi � �i. Thus, if a guard is

not enabled at ðjþ 2Þhi � �i, it will go undetected and this

1288 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 9, SEPTEMBER 2010

will result in a missed transition. Hence, the guard should

stay enabled for at least ððjþ 2Þhi � �iÞ � ðkhi þ �Þ ¼
2hi � �i � � time units. Since � is arbitrary, to be safe, it

should stay enabled in the code for 2hi time units so that

the transition is not missed. This is illustrated in Fig. 5.

Now, consider the guard set g ¼
V
i xi 2 ½lxi ; uxi �. Let the

current logical time be lt and current values of variables at
agent Aj given by xiðltÞ. Consider the case where xiðltÞ <
lxi and xiðltÞ > 0, the argument for the case where xiðltÞ >
uxi and xiðltÞ < 0 is similar. Since _xi 2 ½L1xi

;L2xi
�, _xi can

utmost grow as L2xi
. The guard on xi, (½lxi ; uxi �) will then

be enabled for the time interval

T2 ¼ ltþ lxi � xiðltÞL2xi

þ 	max; ltþ
uxi � xiðltÞ
L2xi

þ 	min

" #
;

assuming that in the worst case, the notification for

enabling of the guard gets to Aj in time 	max and the

notification for exiting comes at 	min. This is true because

xi is continuous and the guards are assumed to be

disjoint in time; otherwise, there could be resets and the

dynamics of xi would be different. Similarly, if _xi grows

as slow as L1xi
�, then, it will be enabled for the time

interval of

T1 ¼ ½ltþ
lxi � xiðltÞ
L1xi

þ 	max; ltþ
uxi � xiðltÞ
L1xi

þ 	min�:

Therefore, if T1 \ T2 6¼ ;, then it represents the time

interval for which guard on xi will be enabled. Hence,

considering the time interval for each of the xis, the time

interval when the guard will definitely be true. From the

above arguments, one can conclude that a condition in

Theorem 2 gives a sufficient condition for preventing

missed transitions, if the transitions are taken as soon as

they are detected. tu
The example below illustrates a case where a transition is

missed when the sufficient condition is not met.

Example 7. Consider the case of Example 4. As a quick

check, if the system evolves as fast as 0.5, then

T2 ¼ð
0:48� 0:45

0:5
þ 0:1;

0:48� 0:3

0:5
þ 0:05Þ ¼ ð0:16; 0:41Þ:

Similarly,

T1 ¼ ð
0:48� 0:45

0:45
þ 0:1;

0:48� 0:3

0:45
þ 0:05Þ ¼ ð0:167; 0:45Þ:

kT1 \ T2k ¼ 0:243 6� 2ð0:15Þ does not satisfy the sufficient

condition for preventing missed transitions. However, if

the period of execution is chosen to be 0.12, it can be seen
that the transition will not be missed.

Theorems 1 and 2 give us a sufficient condition to ensure

a relative faithful implementation that is recorded in the

following result:

Theorem 3. Let the code K of the model D be implemented on a

distributed platform. If in the code for every agent Ai, every

G 2 GAj
is dynamically instrumented as per Definition 7, every

guard and the corresponding invariant satisfy the condition of

overlap in Theorem 2, and all variables inK have bounded error,

then, K is a relative faithful implementation of D.

Proof. For code K to have a relative faithful implementation,

it has to meet the two criteria outlined in Definition 5. IfK
has bounded error for each variable, then it meets the first

condition in the definition.

Further, if K is implementing a dynamically instru-

mented model with the bounds as per Definition 7,

there will be no faulty transitions in the model. If the

instrumented model satisfies the conditions of overlap

between the guard and the invariant in Theorem 2, there
will be no missed transitions because of shrunk instru-

mented guards. This fact, along with the instrumented

transition policy being an urgent transition policy will

ensure that all enabled transitions will be taken.

With no faulty or missed transitions, the code K will

maintain the state of the model D once each transition is

taken. Consider the second condition of Definition 5. If all

updates have been received by the time the guard and
invariants are evaluated, then the implementation will

progress into the next state before the model (i.e., qK ¼ q0D
of Definition 5). Otherwise, all the updates will arrive

within �j ¼ maxi�ði; jÞ þ ’ after they have been updated.

If the agent has not been scheduled for that cycle, the

transition will be taken in that cycle itself, and it has

already been scheduled, then the transition will be taken

next time the agent is scheduled to execute.3 In either case,
we have, the time of transition in the code t is such that t <

lti þ �j þ ’þ hj. Therefore, 9q0K : q0K ¼ qD of Definition 5.

From these observations, it follows that K is a relative

faithful implementation of the model D. tu
To conclude this section, we would like to add that, the

result on missed transitions is only useful to detect whether

an instrumented guard can still allow for transitions out of a

state. This by itself does not ensure any liveness property of

the system. It is the eager transition policy, i.e., forcing the

code to take the transition as soon as a guard is enabled,

that enforces liveness of the system.

4 CASE STUDY: HEATER MODEL IN CHARON

As a case study to illustrate the framework introduced,

consider the heater benchmark controller as described in [34]

with three rooms and one heater where the three rooms

communicate their temperature to the heater. The tempera-

ture of a room depends on other rooms, the outside

ANAND ET AL.: GENERATING RELIABLE CODE FROM HYBRID-SYSTEMS MODELS 1289

3. Note that, the above result assumes that the assumption that at most
one transition is enabled still holds after the guards are instrumented.

Fig. 5. Worst case scenario.

temperature, and on whether the heater is present in the

room. The heater is controlled by a typical thermostat, i.e., it

is switched on if the temperature is below a certain threshold,

and off if it is beyond a higher threshold. When the

temperature in any room falls below a certain desired level,

it may get a heater, provided the temperature in that room is

significantly higher. The desired objective is to maintain all

the three rooms within the comfortable temperature range. A

heater is moved from room j to room i if 1) room i has no

heater, 2) xi � get, and 3) xj � xi � dif where get and dif are

constants and can differ for each room.

The hybrid-systems model for heater is described in Fig. 6.

In the model, xi is the temperature in each room and ai;j, bi, ci
are control parameters. The heat exchange between rooms i

and j is assumed to be symmetric, i.e., ai;j ¼ aj;i. Each room

has upper and lower thresholds oni and offi, respectively.

The heater controller is simulated as a distributed system.

Each room has a temperature sensor that broadcasts its

temperature according to the schedule. Since the network

communication introduces delays, the current temperature

in Room i is denoted as real temperature xi and the last

temperature which has been reported to the controller as the

used temperature x0i. The error bound is the absolute difference

between xi and x0i.

4.1 Implementation in CHARON

The implementation in CHARON includes the following

parts: the environment with the three rooms, the heater

controller, and the tree schedule. The environment with the

three rooms is modeled as specified in Fig. 6.

Listing 2. Part of the CHARON code for Room 1.
1 mode HeatedMode1(real u, real heatVal) {

write analog real x1;

read analog real x2, x3, h;

diff{dðx1Þ ¼¼ �0:9 	 x1þ 0:5 	 x2þ 0:4 	 uþ heatVal}

}

6

mode UnheatedMode1(real u) {

write analog real x1;

read analog real x2, h;

diff{dðx1Þ ¼¼ �0:9 	 x1þ 0:5 	 x2þ 0:4 	 u}

11 }

It is a straightforward implementation, and Listing 2
shows the two modes, heated and unheated, of the

CHARON code for Room 1. The variable u is initialized
with 4, and the variable heatV al is initialized with 6. Rooms
turn the heater off at a temperature of 25.

The heater controller also directly follows from the
specification given in Fig. 6. However, it is important that
the controller does not operate on the real temperature xi but
instead operates on the used temperature x0i. The transceiver
updates the used temperature as it receives new data sent by
the sensors. Listing 3 shows part of the CHARON code for
the heater control. It reads the values x0i represented as
xi_used. The values for the variables thld and dif are
initialized with 10 and 1, respectively.

Listing 3. Part of the CHARON code for the heater control.

mode TopModeHeater (real thld, real dif){

read analog real x1_used, x2_used,x3_used;

write analog real h;

4 . . .

trans from default to q1 when true do{h ¼ 1;}

trans from q1 to q2 when ((x2 used < ¼ thld) &&

(x1_used-x2_used)>¼ dif) do {h ¼ 2; . . . }

trans from q1 to q3 when ((x3_used <¼ thld) &&

9 (x1_used-x3_used)>¼ dif) do {h ¼ 3; . . . }

trans from q2 to q3 when ((x3_used <¼ thld) &&
(x2_used-x3_used)>¼ dif) do {h=3; . . . }

. . . }

Finally, the third part is the transceiver. The schedule is
implemented in a round robin fashion, and it assigns x0i ¼ xi
if its xi’s slot.

Listing 4. Part of the CHARON code for the tree schedule.
mode CommChannel(real sl_len, real thld, real

dif) {

write analog real x1_used, x2_used, x3_used,

dec;

3 read analog real x1, x2, x3, h;

private analog real tclk, clk;

. . .

trans from default to reset when true

8 do {tclk ¼ clk;dec ¼ 0; }

trans from reset to r1 when

((tclk < ðclk-slot lenght)))

do {tclk ¼ clk; x1 used ¼ x1; dec ¼ 0; }

trans from r1 to r2 when

13 ((tclk < ðclk-slot length)))

do {tclk ¼ clk;x2 used ¼ x2;}

trans from r2 to reset when

((tclk < ðclk� slot length)))

do {tclk ¼ clk; x3 used ¼ x3; dec ¼ 1; }

diff {dðclockÞ ¼¼ 1:0}

. . . }

4.2 Faulty Transitions and Instrumentation

Listing 4 shows part of the CHARON code for our
implementation of the schedule. The agent reads the real
temperatures xi and writes the used temperature values x0i.
Depending on the switching logic, it updates different values.

Listing 5 describes the detection of faulty transitions in
the system. The listing shows one particular transition

1290 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 9, SEPTEMBER 2010

Fig. 6. Hybrid-Systems model for the Room Heater Thermostat.

where the heater moves from Room 1 to Room 2. The

transitions are named q1q2ok and q1q2faulty. The transition

q1q2ok is a valid transition, because the guard condition

holds on both, the used values x0i and the real values xi. The

transition q1q2faulty is a faulty transition, because the guard

condition holds only for the values x0i but not for the values

xi. The evaluation simply counts the number of times the

system takes a transition with the suffix “faulty.”

Listing 5. Detecting faulty transitions in the heater.

. . .

trans q1q2ok from q1 to q2 when (

((x2_used <¼ thld) &&

(x1_used-x2_used)>¼ dif) &&

((x2 <¼ thld) && ðx1� x2Þ >¼ dif))

5)do {h ¼ 2; . . . }

trans q1q2faulty from q1 to q2 when (

((x2_used <¼ thld) && (x1_used-x2_used)

>¼ dif) &&

!((x2 <¼ thld) && (x1-x2)>¼ dif))

10) do {h ¼ 2;. . . }

. . .

Listing 6 describes the procedure for instrumenting

guards. For both transitions, the safety margin is added by

shrinking the guard condition. For the threshold value, instr_t

is subtracted, and for the difference, instr_d added. The

simulations are then rerun and the number of times which the

system takes a transition with the suffix “faulty” is counted.

Listing 6. Guard instrumentation of the heater.

. . .

trans q1q2ok from q1 to q2 when (

((x2 used <¼ (thld-instr_t)) &&

4 (x1_used-x2_used)>¼ ðdifþinstr d)) &&

((x2 <¼ thld) && ðx1� x2Þ >¼ dif))

) do{h ¼ 2; . . . }

trans q1q2faulty from q1 to q2 when (

9 ((x2 used <¼ ðthld-instr t)) &&

(x1_used-x2_used)>¼ ðdifþinstr d)) &&

!((x2 <¼ thld) && ðx1� x2Þ >¼ dif))

ANAND ET AL.: GENERATING RELIABLE CODE FROM HYBRID-SYSTEMS MODELS 1291

Fig. 7. Heater simulation.

) do {h=2; . . . }

. . .

4.3 Evaluation

Fig. 7a shows the results of simulating the hybrid-systems

model with uninstrumented control. The figure consists of

two general parts: the temperature display of the rooms

and the control status. The three top parts show the real

temperature of each room over the time of the simulation.

Each room was initialized with a temperature of 26. With

reference to the model in Fig. 6, the values of get, dif, on,

and off are 15, 2, 25, and 26. The bottom part shows the

status of the heater over the time of the simulation. Only

one heater was used with the condition that it can only

be in one room at any given time. The heater starts off in

Room 1 and it initially stays there, because all rooms are

above the threshold value. Then, it starts switching between

different rooms to heat them as necessary.
However, the uninstrumented control can result in faulty

transitions. The faulty transition typically occurs when the

heater starts heating up one room that is close, but below

the threshold. In the switching condition, the control might

still use a value where the heater is still below the threshold,

while in reality, it is already above the threshold. Fig. 8

shows the number of observed faulty transitions on 10,000

simulation steps.
Once, the guard conditions are instrumented with the

value of 10 for the threshold and the difference, there are no

more faulty transitions (hence, no equivalent to Fig. 8 for

this case). Fig. 7b shows the instrumented version of the

heater control. It clearly shows that in this case the price of a

correct implementation is a tardier control. To our surprise,

the controller never directly heats Room 2. This room, sitting

in between rooms 1 and 3, gets heated indirectly through the

heat transfer (loss) of Room 1 and Room 3. Choosing

different starting conditions cause the heater to move to all

rooms, however, we found this setting to be a more

interesting one, because it demonstrates that faulty transi-

tions can lead to a very different behavior.

5 CONCLUSIONS

Hybrid-systems-based design is a promising yet challen-
ging approach for producing reliable embedded software.
Providing formal guarantees is difficult due to the semantic
differences between the model and the code arising as a
result of discretization and communication delays.

This paper has presented an approach to guarantee
faithful switching semantics that involves preventing
missed and faulty transitions. In contrast to related and
prior work, this work has defined a notion of relative faithful
implementation for systems. A runtime instrumentation
technique to prevent faulty transitions has been proposed
and a sufficient condition to prevent missed transitions in
the generated code has been identified. These concepts have
been illustrated via an implementation of a model heater
system. In the future, the focus will be to fully integrating the
infrastructure into the CHARON development environment
and provide comprehensive techniques to detect missed
transitions in the code at runtime.

In conclusion, we discuss some aspects of the techniques
introduced here, and their applicability to large-scale real-
world systems. First off, is the issue of scalability. The work
here mainly focuses on preventing faulty transitions and
detecting missed transitions. The main requirement for
instrumentation is the bounds on the errors, which depends
on the system at hand and might be tricky. However,
Instrumentation itself is a fast operation. Checking missed
transitions depends on computing the intersection of sets,
which may be hard for complex sets. This could potentially be
the only performance bottleneck of this framework. How-
ever, it must be noted that there exist techniques for efficient
computation of the intersection (see [35]) and the procedure is
performed offline, and therefore, it is only a one-time cost.

The abstractions for platform and code consider only the
basic of all the actual implementation effects and make
several assumptions. These effects can potentially weaken
some of the results presented in this work (e.g., instrumenta-
tion bounds). However, we do expect that similar techniques
would be sufficient to handle these aspects of real-world
implementations. The aim of this work is to establish a sound
theory at categorizing some of the implementation effects.
More artifacts of the implementation can be incorporated
into the model as deemed necessary.

Instrumentation can cause tardier control as shown in the
case study. We consider this a positive result as it provides
motivation to study optimization and trade-offs between
incorrect implementation (missed or faulty transitions) and
faster controller response. It is not part of this framework to
characterize this trade-off, since our motivation was to
produce a sound implementation of a given model.

Finally, the faithful implementation criteria introduced in
this work may not be enough to enforce a strict correlation
between the model and its implementation, especially when
one considers the introduced tardiness. There have been a
number of metrics introduced in literature (e.g., [36], [38])
that relate to approximating continuous systems. Currently,
many of these metrics have yet to be fully extended to
hybrid systems. We expect that metrics developed for
hybrid systems could be incorporated into our framework.

1292 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 9, SEPTEMBER 2010

Fig. 8. Faulty transitions in the heater simulation with uninstrumented

guards.

ACKNOWLEDGMENTS

This research was supported in part by NSF CNS-083452,

NSF CNS-0720703, NSF CNS-0720518, NSF CNS-0931239,

NSERC DG 357121-2008, and ORF RE03-045.

REFERENCES

[1] N. Martin, “Lock Who’s Talking: Motorola’s c.d. Team,” Lock-
Smart Online Article, Nov. 1998.

[2] R.N. Charette, “This Car Runs on Code,” IEEE Spectrum, Feb. 2009.
[3] R. Alur and D.L. Dill, “A Theory of Timed Automata,” Theoretical

Computer Science, vol. 126, no. 2, pp. 183-235, Apr. 1994.
[4] R. Alur, F. Ivancic, J. Kim, I. Lee, and O. Sokolsky,

“Generating Embedded Software from Hierarchical Hybrid
Models,” SIGPLAN Notices, vol. 38, no. 7, pp. 171-182, 2003.

[5] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,”
Science of Computer Programming, vol. 8, pp. 231-274, 1987.

[6] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X.
Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The Algorithmic
Analysis of Hybrid Systems,” Theoretical Computer Science,
vol. 138, pp. 3-34, 1995.

[7] O. Maler, Z. Manna, and A. Pnueli, “From Timed to Hybrid
Systems,” Proc. Research and Education in Concurrent Systems (REX)
Workshop, Real-Time: Theory in Practice, 1991.

[8] F. Ivancic, “Report on Verification of the Mobies Vehicle-
Vehicle Automotive Oep Problem,” http://citeseer.ist.psu.edu/
ivancic02report.html, 2002.

[9] Y. Hur, J. Kim, I. Lee, and J.-Y. Choi, “Sound Code Generation
from Communicating Hybrid Models,” Proc. Int’l Workshop Hybrid
Systems: Computation and Control (HSCC), pp. 432-447, 2004.

[10] M. Anand, J. Kim, and I. Lee, “Code Generation from Hybrid
Systems Models for Distributed Embedded Systems,” Proc. IEEE
Int’l Symp. Object-Oriented Real-Time Distributed Computing
(ISORC), pp. 166-173, 2005.

[11] M. Anand, S. Fischmeister, J. Kim, and I. Lee, “Distributed-Code
Generation from Hybrid Systems Models for Time-Delayed
Multirate Systems,” Proc. Fifth ACM Int’l Conf. Embedded Software
(EMSOFT ’05), pp. 210-213, 2005.

[12] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee, “Modular
Specification of Hybrid Systems in CHARON,” Proc. Int’l Work-
shop Hybrid Systems: Computation and Control (HSCC), http://
citeseer.ist.psu.edu/article/alur00modular.html, pp. 6-19, 2000.

[13] P. Traverse, I. Lacaze, and J. Souyris, “Airbus Fly-By-Wire: A Total
Approach to Dependability,” Proc. IFIP World Congress, pp. 191-
212, 2004.

[14] “Rational Rose,” IBM, http://www-306.ibm.com/software/
awdtools/developer/rose/, 2010.

[15] TargetLink, http://www.dspaceinc.com/ww/en/inc/home/
products/sw/pcgs/targetli.cfm, 2010.

[16] “Simulink,” The MathWorks, http://www.mathworks.com/
products/simulink/, 2010.

[17] G. Berry, The Foundations of Esterel. MIT Press, http://citeseer.
ist.psu.edu/62412.html, 2000.

[18] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The
Synchronous Dataflow Programming Language Lustre,” Proc.
IEEE, vol. 79, no. 9, pp. 1305-1320, Sept. 1991.

[19] N. Halbwachs and P. Raymond, “A Tutorial of Lustre,” http://
citeseer.ist.psu.edu/halbwachs01tutorial.html, 2009.

[20] A. Deshpande, A. Göllu, and P. Varaiya, “SHIFT: A Formalism
and a Programming Language for Dynamic Networks of Hybrid
Automata,” Hybrid Systems IV, Springer, 1996.

[21] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Luvig, S. Neuendorffer,
S. Sachs, and Y. Xiong, “Taming Heterogeneity—The Ptolemy
Approach,” Proc. IEEE, vol. 91, no. 1, pp. 127-144, Jan. 2003.

[22] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-
Integrated Development of Embedded Software,” Proc. IEEE,
vol. 91, no. 1, pp. 145-164, Jan. 2003.

[23] A.R. Girard, A.S. Howell, and J.K. Hedrick, “Model-Driven
Hybrid and Embedded Software for Automotive Applications,”
Proc. Second RTAS Workshop Model-Driven Embedded Systems
(MoDES ’04), 2004.

[24] B. Shah, R. Dennison, and J. Gray, “A Model-Driven Approach for
Generating Embedded Robot Navigation Control Software,” Proc.
42nd Ann. Southeast Regional Conf. (ACM-SE 42), pp. 332-335, 2004.

[25] T. Stauner, “Discrete-Time Refinement of Hybrid Automata,”
Proc. Fifth Int’l Workshop Hybrid Systems: Computation and Control
(HSCC ’02), pp. 407-420, 2002.

[26] T.A. Henzinger and P.H. Ho, “Algorithmic Analysis of Nonlinear
Hybrid Systems,” Proc. Seventh Int’l Conf. Computer Aided Verifica-
tion, P. Wolper, ed., vol. 939, pp. 225-238, http://citeseer.ist.
psu.edu/henzinger96algorithmic.html, 1995.

[27] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing,
second ed. Cambridge University Press, 1999.

[28] R. Alur, F. Ivancic, J. Kim, I. Lee, and O. Sokolsky, “Generating
Embedded Software from Hierarchical Hybrid Models,” Proc.
ACM SIGPLAN Conf. Programming Language Design and Implemen-
tation (PLDI ’03), 2003.

[29] M. Anand, J. Kim, S. Fischmeister, and I. Lee, “Generating Sound
and Resource-Aware Code from Hybrid System Models,” Model-
Driven Development of Reliable Automotive Services, pp. 48-66, 2008.

[30] K.E. Brenan, S.L. Campbell, and L.R. Petzold, Numerical
Solution of Initial-Value Problems in Differential-Algebraic Equa-
tions, second ed. SIAM, 1996.

[31] Y. Hur, J.-H. Sim, J. Kim, and J.-Y. Choi, “Ensuring Sound
Numerical Simulation of Hybrid Automata,” J. Computing Science
and Eng., vol. 3, no. 2, pp. 73-87, June 2009.

[32] J.-Y. Choi, Y. Hur, and I. Lee, “IHA: Ensuring Sound Numerical
Simulation of Hybrid Automata,” Technical Report MS-CIS-03-06,
Univ. of Pennsylvania, 2003.

[33] J.-Y. Choi, Y. Hur, J. Kim, and I. Lee, “Sound Synchroniza-
tion of Communicating Hybrid Automata,” Technical Report
MS-CIS-03-30, Univ. of Pennsylvania, 2003.

[34] A. Fehnker and F. Ivancic, “Benchmarks for Hybrid Systems
Verification,” Proc. Int’l Workshop Hybrid Systems: Computation
and Control (HSCC), pp. 326-341, http://citeseer.ist.psu.edu/
fehnker04benchmarks.html, 2004.

[35] G.E. Blelloch and M. Reid-Miller, “Fast Set Operations Using
Treaps,” Proc. 10th Ann. ACM Symp. Parallel Algorithms and
Architectures (SPAA ’98), pp. 16-26, 1998.

[36] A.A. Julius and G.J. Pappas, “Approxi-
mate Equivalence and Approximate Syn-
chronization of Metric Transit ion
Systems,” Proc. 44th IEEE Conf. Decision
and Control, Dec. 2006.

[37] C. Kossentini and P. Caspi, “Approxima-
tion, Sampling and Voting in Hybrid
Computing Systems,” Proc. Int’l Workshop
Hybrid Systems: Computation and Control
(HSCC ’06), 2006.

Madhukar Anand received the BS and MS degrees in mathematics and
computing from the Indian Institute of Technology (IIT), Kharagpur, and
the PhD degree in computer and information science from the University

of Pennsylvania in 2008. From Fall of 2008, he is
working with the Data Center Routing Team at
Cisco Systems. His research interests include
real-time and embedded systems, networked
embedded systems, data center networking,
formal methods, hybrid systems, and wireless
sensor networks. Among other awards, he has
won the Institute Silver Medal for academic
excellence from IIT Kharagpur.

Sebastian Fischmeister received the Dipl-Ing degree in computer
science from Vienna University of Technology, Austria, in 2000, and the
PhD degree in computer science from the University of Salzburg,
Austria, in December 2002. He is an assistant professor with the
Department of Electrical and Computer Engineering at the University of
Waterloo in Canada. His primary research interests include software
technology and distributed systems for real-time embedded systems. He
is a member of the IEEE.

ANAND ET AL.: GENERATING RELIABLE CODE FROM HYBRID-SYSTEMS MODELS 1293

Yerang Hur received the BS, MS and PhD degrees at Seoul National
University, Korea, and the University of Pennsylvania, respectively. His
specialties include design of embedded software, radio resource
management and power saving method for wireless broadband
communication systems, QoS architecture for real-time systems, parallel
and distributed simulation, and design of high-assurance computer
systems. At the University of Pennsylvania, he was an architect of
CHARON toolset developed for embedded system design. In 2004, he
joined Posdata America R&D Center, where he has designed the MAC
layer and developed algorithms for one of the first certified mobile
WiMAX base stations in the world. Also, he has served as the leader of
the various subteams in the Technical Working Group of WiMAX Forum
since 2006 and was awarded the WiMAX Forum president individual
contribution award in 2007. He has contributed to IEEE 802.16e and
IEEE 802.16m standards as well with more than 100 official submissions
from 2005 to 2009, and currently working on design of 4G broadband
communication systems including LTE systems and mobile WiMAX
Release 2.0 systems. He is a member of the IEEE.

Jesung Kim received the BS, MS, and PhD
degrees in computer engineering from Seoul
National University, Korea, in 1991, 1993, and
1998, respectively. He is a senior team leader
at The MathWorks. Before joining The Math-
Works, he was a postdoctoral researcher at the
University of Pennsylvania from 2002 to 2005,
and at Seoul National University from 2000 to
2002. From 1998 to 2000, he worked for
Hyundai Electronics as a research engineer.

His research interests include model-based design, embedded sys-
tems, and computer system architecture. He is a member of the IEEE.

Insup Lee received the BS degree in mathe-
matics from the University of North Carolina,
Chapel Hill, in 1977, and the PhD degree in
computer science from the University of
Wisconsin, Madison, in 1983. He is the Cecilia
Fitler Moore Professor of computer and in-
formation science and the director of PRECISE
Center at the University of Pennsylvania. His
research interests include real-time systems,
embedded systems, formal methods and tools,

medical device systems, cyber-physical systems, and software
engineering. The theme of his research activities has been to assure
and improve the correctness, safety, and timeliness of real-time
embedded systems. He has published widely and received the best
paper award in RTSS 2003 with Insik Shin on compositional
schedulability analysis. He was a chair of the IEEE Computer Society
Technical Committee on Real-Time Systems (2003-2004) and an
IEEE CS Distinguished Visitor Speaker (2004-2006). He has served
on many program committees and chaired several international
conferences and workshops, and also on various steering commit-
tees, including the Steering Committee on CPS Week, Embedded
Systems Week, and Runtime Verification. He has served on the
editorial boards of several scientific journals, including the IEEE
Transactions on Computers, the Formal Methods in System Design,
and the Real-Time Systems Journal. He is a founding co-editor-in-
chief of the KIISE Journal of Computing Science and Engineering
since Sept 2007. He was a member of Technical Advisory Group
(TAG) of President’s Council of Advisors on Science and Technology
(PCAST) Networking and Information Technology (NIT). He received
the IEEE TC-RTS Technical Achievement Award in 2008. He is a
fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1294 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 9, SEPTEMBER 2010

	University of Pennsylvania
	ScholarlyCommons
	9-1-2010

	Generating Reliable Code from Hybrid-Systems Models
	Madhukar Anand
	Sebastian Fischmeister
	Yerang Hur
	Jesung Kim
	Insup Lee
	Recommended Citation

	Generating Reliable Code from Hybrid-Systems Models
	Abstract
	Keywords

	untitled

