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Model-Based Programming of Modular Robots

Abstract

Modular robots are a powerful concept for robotics. A modular robot consists of many individual modules so
it can adjust its configuration to the problem. However, the fact that a modular robot consists of many
individual modules makes it a highly distributed, highly concurrent real-time system, which are notoriously
hard to program. In this work, we present our programming framework for writing control applications for
modular robots. The framework includes a toolset that allows a model-based programing approach for control
application of modular robots with code generation and verification. The framework is characterized by the
following three features. First, it provides a complex programming model that is based on standard finite state
machines extended in syntax and semantics to support communication, variables, and actions. Second, the
framework provides compositionality at the hardware and at the software level and allows building the
modular robot and its control application from small building blocks. And third, the framework supports
formal verification of the control application to aid the gait and task developer in identifying problems and
bugs before the deployment and testing on the physical robot.
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Abstract

Modular robots are a powerful concept for robotics. A
modular robot consists of many individual modules so
it can adjust its configuration to the problem. How-
ever, the fact that a modular robot consists of many in-
dividual modules makes it a highly distributed, highly
concurrent real-time system, which are notoriously hard
to program. In this work, we present our programming
framework for writing control applications for modular
robots. The framework includes a toolset that allows a
model-based programing approach for control application
of modular robots with code generation and verification.
The framework is characterized by the following three fea-
tures. First, it provides a complex programming model
that is based on standard finite state machines extended
in syntax and semantics to support communication, vari-
ables, and actions. Second, the framework provides com-
positionality at the hardware and at the software level
and allows building the modular robot and its control
application from small building blocks. And third, the
framework supports formal verification of the control ap-
plication to aid the gait and task developer in identifying
problems and bugs before the deployment and testing on
the physical robot.

1 Introduction

Modular robots are a powerful concept for robotics, be-
cause they adjust the tool to the problem and not the
problem to the tool. A modular robot consists of many,
possibly thousands, of modules that arrange themselves
to form different shapes and collaborate to solve a specific
task. For example, when it needs to go through a pipe
it can use a snake shape and when it needs to scan the
environment it can form a small tower with the sensors
at the top of the tower. Figure 1 shows a CAD drawing

Figure 1: A robot built from four CKBot modules.

of a modular robot built from four CKBot modules [14].

A modular robot is difficult to program because first,
it needs to decide on what tool it wants to transform
to—the tool means what shape and structure—and sec-
ond, the modules must execute the right control program
for the chosen tool. Writing the right control program
for a single configuration is difficult by itself, because
as one modular robot consists of possibly thousands of
modules, together they form a massively distributed em-
bedded real-time system. This work concentrates on the
problem of how to program the control application given
a robot configuration with its structure and its shape.

A number of related approaches exist for programming
modular robots. The most basic form is a centralized con-
trol application executed on a workstation that remotely
controls the modular robot as has been implemented in
the early works of MTRAN [7] and PolyBot [3]. Gait ta-
bles [3] are two-dimensional tables in which each column
represents a module state over time and each row repre-
sents a complete state of the modular robot with all its
modules at a specific point in time. At run time, the mod-
ular robot executes the gait table one row after the other



and, for example, sets the motor angles on the individual
modules accordingly. This behavior only allows program-
ming stateless gaits, meaning that the gait cannot behave
differently depending on some internal or external state,
because the gait table offers no means of implementing
branches. Phase Automata [19] and additional infrastruc-
ture [18] implement a finite state machine with phase off-
sets where each module executes the automaton using its
offset but without verification support. Similar to Phase
Automata are the mechanisms of specifying cyclic actions
for each module [16] and hormone-based control [13]. Fi-
nally, TOTA [12] abstracts modules and programs at the
level of context-aware tuples that can propagate through
the network and can be applied to programming modular
robots [11].

Our approach differs from related work in three key fea-
tures. First, it provides a complex programming model
based on standard finite state machines that have been
extended in syntax and semantics to support synchronous
and asynchronous communication, variables, and actions.
Second, our approach provides compositionality at the
hardware and at the software level. And third, our ap-
proach supports formal verification as a means to ease gait
development. Once the developer specifies the state ma-
chines controlling the modular robot, he can use several
verification tools to check the application for properties
such as absence of deadlocks, continual physical move-
ment, and motor position constraints in specific states.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces our model and our assumptions. Sec-
tion 3 describes our programming framework with steps
for the configuration design, control application develop-
ment, the verification, the code generation, and the code
integration with the runtime system. Section 4 evaluates
our programming framework, and Section 5 closes the pa-
per with our conclusions and future work.

2 Model and Assumptions

A modular robot consists of a number of individual mod-
ules which form the robot body. A robot configura-
tion consists of a topology graph, the robots’ body, and
its structure. A topology graph is an undirected graph
where the vertices are modules and the edges between
vertices specify a physical and logical connection between
two modules. The physical connection is established via
screws that hold the two modules together. The logi-
cal connection is established via a bus connection that is
shared by all linked modules and a point-to-point connec-
tion between two adjacent modules. The structure of a
modular robot specifies for each connection the orienta-
tion of the modules and connections. The control applica-
tion steering the motor is a distributed real-time program

Idea for a new
task or gait

Deploy and Design robot Develop
run gait configuration ontrol prograr

T

Integrate prgm. Generate code
and run time for ctrl program|

Figure 2: The development process for a new gait using
our programming approach.

Verify
ontrol program

which consists of a set of periodic, preemptible tasks.
Tasks communicate with other tasks locally via shared
variables and remotely via channels, which have logical
identifiers. All channels are mapped onto one shared
communication medium. Tasks read and write their data
from and to a shared variable space exclusively. Tasks
run on processors, which are connected by a shared com-
munication medium. Processors communicate with each
other exclusively via the medium; particularly, we assume
that there is no shared memory. We assume that time is
given in discrete units. The communication medium pro-
vides a reliable broadcast service (a common assumption
for such systems); therefore, either all processors receive
a message or none of them do.

3 The Development Process

Figure 2 shows the development process for a new task or
gait. The first step towards a new gait is for the developer
to design a robot configuration that includes the topol-
ogy graph, the body, and the structure. Then she devel-
ops the control program consisting of one or more state
machines. The control program is already tailored to the
robot configuration. Once the program is finished, the
task developer can check the control program for proper-
ties such as deadlocks and continued motion. If the pro-
gram fails the verification stage, then the developer will
adapt the control application to make it pass. If the pro-
gram passes the verification stage, then the developer can
generate C code from the control application. The gen-
erated code is then integrated into the runtime systems
executed by the modules, where one module can host one
or more state machines. After the integration state, the
compiled runtime systems are deployed on the modules
and the developer can run the gait. If she is unsatisfied
with the gait and wants to refine it, then she can return
to the initial design phase.
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Figure 3: The configuration for the skate gait.

3.1 Robot Configuration Design

For our work, we use the CKBot modular robot devel-
oped at the University of Pennsylvania. Each module can
be connected to another module at four locations (front,
rear, right, left) with two different angles (straight, at
zero degrees, and tilted at ninety degrees). An individ-
ual module hosts a microprocessor, a hobby servo, a bus
communication interface, and an extension slot for ad-
ditional sensor and actuators. The microprocessor is a
PIC18F2680; the important specifications for this work
are its 64KB program memory, about 3KB of RAM for
data storage, 1IKB of EEPROM, four timer modules (two
8bit and two 16bit), and its ECAN module. The chip
is driven by a 20MHz oscillator, so the single instruction
speed is 50ns which results in a computation power of
5MIPS. The hobby servo drives a rotary axis with 180
degrees of freedom. It has a duty cycle of 18ms. Modules
can communicate via broadcast on the CAN bus. One
of the modules will have a battery pack mounted on its
connection interface to provide power to the whole mod-
ular robot. For further details on the hardware platform,
see [14].

The running example for this paper is the skate gait.
The idea is that the modular robot has a board with
passive wheels and uses a foot formed by modules to
push the board forward. The robot body consists of
four modules (see Figure 3); two standard ones (labeled
Spine and Foot) and two modules (labeled AxisOne
and AxisTwo) with passive wheels mounted on each
side. The robot topology is a graph with its vertex
set containing all four modules and its edge set contain-
ing the edges (AxisOne, Spine), (Spine, AxisTwo), and
(AzisTwo, Spine). Finally, the robot’s structure specifies
that all edges are connected at a zero degree angle. From
left to right, the module AzisOne and AzisTwo have pas-
sive wheels mounted on each side. The second module
from the left, Spine, acts as spacer between the two wheels
and forms the robot’s spine. Finally, the fourth module
from the left, Foot, realizes the foot pushing the robot
forward.

The intuition for the gait is shown in three subfigures
of Figure 4. When the Spine module contracts, then the
Foot module touches the ground. After it touches the
ground, the module Foot performs a kick that pushes
the robot forward. Simultaneously, the Spine module
stretches to allow the foot to prepare for the next kick.
The passive wheels allow the robot to scoot forward once
it gained momentum from the kick.

3.2 Control Application Development

In the development stage, the task developer takes the
robot configuration and specifies the control application
for a gait using state machines. The language for specify-
ing these state machines is EFSM (extended finite state
machines). The EFSM language is designed to be a simple
way of representing state machines. An EFSM consists of
a set of states connected by transitions. Transitions must
have a guard condition and may also be tagged with a
set of actions which are performed when the transition
is taken. Two or more state machines can communicate
via communication channels. Communication channels
in EFSM systems may be synchronous or asynchronous,
with any finite size buffer, may pass values, and may be
blocking or non-blocking. For complete details, including
a grammar for the language and full description of the
semantics, see [1].

The EFSM system for the skate gait is depicted in Fig-
ure 5. It consists of three state machines: gait controller,
foot controller, and spine controller. The three machines
communicate using the channels 'foot’ and ’spine’. Each
EFSM in the system has a number of states, shown as
rounded boxes with the state’s name inside. Transitions
are represented as lines between states and are labeled
with a guard, an arrow, and a (possibly empty) set of ac-
tions. EFSMs wait in a state until an outgoing transition
becomes enabled, meaning that the guard of at least one
transition becomes true. Then, they switch to the desti-
nation state of the transition and perform the transition’s
actions. The EFSMs represent the high-level behavior of
system components. Low-level behavior is implemented
in the runtime system presented in Section 3.6.1.

3.3 Verification of the Control Applica-
tion

In the verification stage, the task developer takes the
specified control application and checks it for properties
such as deadlocks. This verification aids and speeds up
the development, because it allows the developer to iden-
tify bugs in the control application before he generates
the code, deploys it on the robot, and runs the gait.

For verification, the EFSM toolset supports automatic



(a) Kicked: foot kicked, spine stretched.

(b) FootReady: foot in position.

(c¢) SpineReady: crouched, foot on ground.

Figure 4: The movement of the skate gait.

tick == 5 —
spine!-20

SpineReady

(a) The skate gait controller.

tick:=0

tick ==7 —
foot!75, spine!0, tick:=0

foot?x — motor:=x

FootState

(b) The foot controller.

spine?x — motor:=x

SpineState

(c) The spine controller.

Figure 5: The state machines for the skate gait.

translation into the input formats of Spin [6] and UP-
PAAL [9]. We also translate guards into DIMACS for-
mat so we can use boolean satisfiability checkers to test
for determinism and totality.

3.3.1 Checking with SAT Solvers

Boolean satisfiability checkers, or SAT solvers, are tools
which take a boolean formula over a set of variables and
decide if there is some assignment of values to variables
which makes the formula true. The EFSM toolset in-
cludes code from the SAT4J project!, and supports trans-
forming guards into boolean formulas it can check. This
allows us to easily check EFSMs for nondeterminism and
totality. The toolset also supports exporting the formu-
las in DIMACS format so that other SAT solvers can be
used.

An EFSM is nondeterministic if there exists some state
with two or more outgoing transitions which may be en-
abled at the same time. We check for nondeterminism by
finding the set of guard conditions g1, gs,..., g, for the
transitions from each state, and then checking that the

1 Available from www.sat4j.org

expression g; A g; is unsatisfiable for any i < j <= n.
The check is performed by feeding the expression into a
boolean satisfiability checker, for instance ZCHAFF. The
input format for ZCHAFF (and most other SAT solvers)
is DIMACS, which is a syntax for expressions in conjunc-
tive normal form (CNF). In order to use ZCHAFF to
check these expressions, we must first convert the guards
into CNF. For full details of how the conversion is done,
see [1].

Another property we can check for is totality, or com-
pleteness. This is a way of saying that the system
does not get stuck. That is, at each state S with out-
going transitions ty,%s,...,t, and corresponding guards
1,92, - -, gn, the property (g1 Vga V...V g,) — T holds.

3.3.2 Translating the Model for Spin

Spin is a popular model checking program which uses
the input language Promela. The translator allows the
user to convert an EFSM system into Promela code. We
use Spin to check some properties which we cannot check
using UPPAAL such as “The module Foot will always
move”. The translator currently supports EFSM systems
which use synchronization channels only. Spin supports
all of the operators used in guards and actions, so trans-
lating these is simply a matter of making slight changes
to syntax.

3.3.3 Translating the Model for UPPAAL

The EFSM toolset also contains a translator which can
convert EFSM systems into UPPAAL. UPPAAL supports
only synchronous channels, so any value passing must
take place through shared variables.

The UPPAAL translation of the skate gait system must
use shared variables to pass values instead of using value
passing channels. The semantics of UPPAAL’s shared
variables, without any synchronization, match the seman-
tics of communications channels in the implementation.
In the UPPAAL model for the skate gait system, the
channels foot and spine become shared variables with the
same name.



3.4 Verifying the Skate Gait

We check a variety of properties of the EFSM system of
the skate gait. Many of these, such as deadlock, could be
checked using either Spin or UPPAAL. Other properties
cannot be stated in CTL and thus require Spin.

For our skate gait, we check the following properties:

e Determinism and totality. We used the checks
described above to check that the EFSMs were de-
terministic and total.

e Absence of dead locks. The absence of deadlocks
can be shown with either tool. We used UPPAAL to
check the property AG(!deadlock).

¢ Absence of livelocks. Livelocks [5] occur when the
system has an infinite execution path where it never
waits for input. This system trivially does not have
any livelocks since every transition checks whether
the tick variable is equal to a different number. In
general, checking for livelocks will require a set of
formulas tailored to the specific state machine being
considered. Spin allows marking states with accep-
tance labels to assert that they may not be part of
an infinite loop, which is useful for this check.

e All states are reachable. Every state in the model
should be reachable. Unreachable states usually in-
dicate an error in programming. These can be found
by checking that E'F( gait.stateName ) for each state
in the system.

e Foot will always move. The module Foot should
always move back and forth. Using Spin, we can
check this with the property AF foot == —90 &&
AF foot 75. We also check that the vari-
able foot is —90 until it becomes 75 and vice versa
AG(foot == —90 U foot == 75). Together, these
properties ensure that the variable foot will change
between these two values (and only these two values)
infinitely often, and as the module Foot uses the vari-
able foot as its motor value, it will always move back
and forth.

e Spine will always move. This is very similar to
checking that the foot will always move, and the for-
mulae are essentially the same.

e Foot does not brake. We want to ensure that the
module Foot will not drag while the robot is rolling
forward, as this would quickly stop it. The gait con-
troller state machine waits in state Kicked for three
seconds while the robot rolls. If the module Foot is
always raised (i.e., the angular value is greater than
a threshold) while the gait controller is in this state,

then the foot never drags. We check this property
using UPPAAL and AG(gait.kicked imply gait.foot
==T75).

e Are foot and spine always ready before the
kick? We want to ensure that the modules Foot
and Spine are both in the correct position before the
kick happens. This can be done in UPPAAL using
the property AG(gait.spineready imply gait.foot ==
—90 and gait.spine == —20).

e The robot will always try to move forward.
Since we have shown that the Foot and Spine
will always move, if we show that the movements
are coordinated in the right way then we can
claim that the robot will always try to move for-
ward. We used the following three formulas in UP-
PAAL: AG(gait.kicked imply (gait.foot == 75 and
gait.spine == 0)) AG(gait.footready imply (gait.foot

—90 and gait.spine== 0)) AG(gait.spineready

imply (gait.foot == —90 and gait.spine== —20))

3.5 Code Generation

Our toolset currently supports generating Java and C
code, but for the modular robots we only use C code.
During code generation, the programmer has the oppor-
tunity to link input and output variables to functions
defined in a code library. These functions are written
by the programmer and do low-level tasks. This allows
the EFSM to treat low-level tasks as abstract statements
which can be filled in by the code generator.

Code generation results in one program per EFSM.
Each program is split into a header file and a code file.
The header file contains all the global channel definitions
used for communication between multiple state machines.
We also generate a code segment from the EFSM. The
generated source code is split into two parts. In the first
part, the code declares all necessary variables for the state
machine. The variables may have local or global scope.
Variables with global scope are, for example, the current
state or variables declared in the state machine. Variables
with local scope are basically auxiliary variables such as
transition_taken.

In the second part, the code realizes the state machine
which takes the form of a series of if statements, sur-
rounded by an outside while loop. We chose to imple-
ment run-to-completion semantics, which means that the
state machine is allowed to continue taking transitions as
long as it can, until it reaches a state where no transi-
tions are enabled. Listing 1 shows the generated code for
the gait controller specified in Figure 5. The first part
declares the local variables currentState, tick, and transi-
tion_taken. This is followed by the code for the state ma-
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chine where the while loop realizes the run-to-completion
semantics with the variable transition_taken. Each time a
transition is taken, this variable is set to one and the loop
runs again. Inside a transition, the generated code imple-
ments what has been specified in the EFSM. For exam-
ple between Lines 11 and 13, the state machine switches
from state FootReady to state SpineReady and transmits
a message with the contents 20 on channel SPINE. It
also updates the variable currentState, and declares that
a transition has been taken.

If no transition is taken, then the while loop exists and
the program will wait for the next OS tick. At this time,
the program will rerun the generated code and take tran-
sitions.

// local wariable declaration
static INT8U currentState = 2;
static INT8U tick = O0;

auto INT8U transition_taken=1;

// state machine
while (transition_taken) {
transition_taken = O0;
if ((currentState == 2) && (tick == 5)) {

PRETRANSITIONHOOK ;
sendMessage ( SPINE,
currentState = 3;
transition_taken = 1;
POSTTRANSITIONHOOK;

—20, sizeof (INT16S) );

if ((currentState == 3) && (tick = 7)) {
PRETRANSITIONHOOK ;
sendMessage ( FOOT, 75, sizeof (INT16S) );
sendMessage ( SPINE, O, sizeof (INT16S) );
tick = 0;
currentState = 1;
transition_taken = 1;
POSTTRANSITIONHOOK ;

if ((currentState == 1) && (tick == 3)) {
PRETRANSITIONHOOK ;
sendMessage ( FOOT,
currentState = 2;
transition_taken = 1;
POSTTRANSITIONHOOK ;

—90, sizeof (INT16S) );

Listing 1: C code generated from gait.efsm.

There are two ways that implementation-specific de-
tails are introduced into generated code. These are
through mapping from variables to library code functions
as mentioned before, and through the transition hooks.
The system uses two transition hooks: PRETRANSI-
TIONHOOK and POSTTRANSITIONHOOK. These are
pieces of code which are defined in the code library and
inlined by the compiler. PRETRANSITIONHOOK is in-
serted into each if statement after the if condition has
been met but before any actions are done. POSTTRAN-
SITIONHOOK is placed after all of the actions have fin-
ished and the current state has been updated. These
hooks can be used, for example, to change the run-to-
completion semantics to one-transition-per-tick semantics

EFSM

Generate
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Figure 6: Overview of the integration process.

where the POSTTRANSITIONHOOK introduces a break
statement. Another frequent usage is to introduce debug
code that takes a snapshot of important system variables
and stores them in the EEPROM.

3.6 Code Integration

In the code integration stage, the task developer in-
tegrates the code segments generated from the EFSM
system into the runtime system and thereby produces
runnable programs for each module. Figure 6 provides
an overview of the integration stage. First, the developer
generates code from the EFSM system. This results in
many header and code files. Second, the developer inte-
grates state machines and the runtime system into one
specific runtime system per module. And finally, the de-
veloper compiles the run times and deploys them on the
modules.

3.6.1 Runtime System

The robot control application is a concurrent, highly dis-
tributed real-time application with the following require-
ments for the runtime system.

e Precise temporal control. The robot’s actuators
need to be controlled precisely so dynamic gaits such
as rolling or swinging motion can be realized accu-
rately. Also, the robot’s sensors need to be sampled
and converted precisely so the developer can predict
the robot’s behavior as he programs it.

e Preserve state machine semantics. The task de-
veloper specifies a set of state machines that describe
the robot’s behavior. These state machines have spe-
cific semantics as described in Section 3.2. When the



run time executes the code that is generated from
these state machines, it must run the code in a way
that preserves the state machine’s semantics. Other-
wise, the implementation might have different prop-
erties than the specification and this renders the ver-
ification useless.

Compositionality. A task developer can assign
more than one state machine to a single module,
meaning that that module’s runtime is composed of
multiple state machines that execute concurrently.
As this module executes these state machines, it
must preserve the original properties of each state
machine, otherwise it again renders the verification
useless.

Our runtime system for modular robots meets all
three requirements. For practical reasons, we check the
whole system for schedulability once using rate monotonic
scheduling after it has been composed, instead of using a
compositional approach as suggested in [15]. The system
consists of four major components: the module control
application implemented as a set of tasks, the variable
space, the RoboVM, and the transceiver. The module
control program exists on each module, and it can be-
have differently on each of them. The program consists
of multiple tasks that run concurrently.

The wvariable space represents a variable storage that
can be accessed via a set/get interface. The variable
space stores for each variable a set of tuples (z,val,ts)
where x identifies the variable, val specifies the numeri-
cal value assigned to the variable, and ts is a time stamp
specifying the point in time at which the particular value
becomes valid. The variable space can store multiples
of those tuples for a single variable. Whenever it han-
dles a request that reads a variable value, it updates the
tuples and removes those that are dispensable. A tuple
(x,val, ts) becomes dispensable if there exists another tu-
ple (z,val’,ts’) where ts’ > ts and now > ts’ where now
represent the current clock value. The set function adds
a tuple (x,val,ts) to the storage and has the signature
set(id,val,ts) where id identifies the variable, val is the
new value, and ts is a time stamp specifying the point
in time when the value becomes valid. The get function
returns the value that most recently became valid given
a particular time stamp and has the signature get(id, ts)
where id identifies the variable and ts specifies a time
stamp. If no value is valid at the timestamp ts, then a
default value is returned. We assume that an invocation
of the get function never reads an already dispensed value,
meaning that the parameter ts is never smaller than the
current clock value. And we assume that all stored tuples
(x,val,ts) and (x,val’,ts) with the same variable identi-
fier x and the same validity time stamp ts also have the

7

same value, thus, val = val’. These two assumptions
do not restrict the system in any way, because the tasks
access the variables using a macro that fills in the lo-
cal clock value for ts, which monotonically increases over
time, and at most one task writes a variable while several
other tasks may read it. The variable space is similar to
the operation of the variable space described in [2, 8].

The RoboVM coordinates the tasks’ release schedule
and handles channel communication. Tasks are recurrent
and they are released in periodic intervals. The RoboVM
releases the tasks based on their specified frequency. This
frequency is the tick as shown in Section 3.5. Tasks can
use channels to communicate with tasks running on re-
mote modules. To transmit a message on the channel, the
task executes the function sendMessage(channelld, value,
size) where channellD identifies the channel, value gives
the value to be transmitted, and size gives the storage size
of the value. The RoboVM receives the message request,
annotates the message with a validity time stamp, and
passes it to the CAN transceiver. It calculates the validity
time stamp based on the execution frequency of the task
sending the message. The validity time stamp is stored
as a relative time. On the receiving side, the RoboVM
unpacks the message, translates the relative time into a
local absolute time, and invokes the set function in the
variable space. The sending RoboVM also adds a storage
tuple to the local variable space similar to the receiving
RoboVM.

The Transceiver handles message transmission and re-
ception. It implements an event triggered approach,
where whenever a new CAN message becomes available,
it hands the message to the RoboVM for further process-
ing. Whenever the RoboVM wants to transmit a message,
it queues this message in the transceiver’s output queue
from which the transceiver continually dequeues messages
and places them in the CAN send buffer as this buffer be-
comes empty.

3.6.2 Single and Compositional Integration

An EFSM system consists of potentially many state ma-
chines and during the code generation process each state
machine is translated into one header and one code seg-
ment. To build a functioning system, these segments
must be integrated, made an executable, and then de-
ployed on the robot hardware modules. There are two
interesting cases to be considered for the integration: run-
ning exactly one state machine on one module and run-
ning more than one state machine on one module. We
first consider the first case and then elaborate on the sec-
ond one.

Integrating a single state machine for a module is
straightforward. The runtime portion provides task skele-



tons which are tasks without any functionality in them.
The generated code segments are ANSI-C compliant, so
they can be inserted into the task skeleton via a pre-
processor directive and without any manual intervention.
The generated header segment is included right before
the task skeleton, and the code segment is included in-
side the task skeleton. The task has to be registered in
the RoboVM with its execution frequency, that is the tick
time has to be declared.

Integrating multiple state machines into the run time
for one module is also straightforward, but requires an
additional step. Each state machine uses its own task
skeleton, and the generated code segments for one state
machine are integrated as mentioned above. Then each
task is individually registered in the RoboVM and each
task declares its execution frequency. Additionally, the
developer has to assign a priority to each task. We use
rate monotonic scheduling, meaning that the tasks with
the highest execution frequency get the highest priority.

To guarantee compositionality, we have to consider
compositionality in the value and the resource domain.
In the value domain, the variable space provides compo-
sitionality, because even if a task finishes early, its out-
put values do not become valid until its deadline, which
equals its next release. It therefore enforces semantics
that have been shown to provide compositionality in [4].
In the resource domain, for simplicity reasons, we check
the composed systems once and not as we compose it.
For each state machine in the composed run time, we
extract the longest possible path and get the execution
time of that path using the Microchip simulator. Then,
we plug the values into the schedulability condition for
rate-monotonic scheduling [10] >°" % <nx(¥2-1),
and check whether the system is schedulable. However, at
the current level of complexity of our programmed tasks,
it is unlikely to run into a schedulability problem. The ex-
ecution time for the state machines has to be slow enough
for the motor to stabilize at the new angle value, which is
about 700ms between motor angle updates. See Section 4
for more details on this.

4 Evaluation

Evaluating a programming framework is difficult per se,
because only its usage over time shows whether the frame-
work is really successful. However, we are convinced that
we set the basis for a successful programming framework
for the following reasons. First, the toolset and the run-
time system are fully implemented and run on the target
platform. We can easily program tasks for the modular
robot, develop new gaits, and in most cases create the
executable for a module by pushing a few buttons.

Second, the programming framework requires little un-
derstanding of the hardware platform as it provides high-
level abstractions. For example, a task developer pro-
gramming a new gait uses channels to model communica-
tion in the state machines. The code generator then cre-
ates code for these channels that handles the CAN com-
munication registers, and receives and sends messages.

Third, the overhead introduced by the runtime system
in terms of memory and execution time is sufficiently low
to run complex state machines with potentially many,
computationally intensive transitions per tick and many
variables. We measured the computational overhead us-
ing the stop watch and the execution cycle counter built
into the MPLAB simulator. The computation time of
switching from one task to another is 999.2us which result
from 503.2us in the runtime system, 230us from the oper-
ating system kernel, and two context switches with each
133us. Theoretically, the fastest execution rate is 1KHz,
however, such a task may not have more than sixteen as-
sembly instructions and all maskable interrupts should be
turned off. Otherwise, this task will still be running at
its next release. For more details on the measurements
see [17]. This computation overhead is acceptable, be-
cause tasks in the modular robot are much slower that
1KHz. For example the motor driver runs at a frequency
of 55Hz, and tasks executing a state machine may not
execute faster than with a frequency of 1.4Hz, because
it takes the motor about 700ms to stabilize after a 180
degree turn. Regarding memory overhead, the runtime
system uses 15.745 bytes of program memory and 1.376
bytes of data memory. The data memory is mainly for
the large stacks (256 bytes) for the four tasks: RoboVM,
transceiver, and two task skeletons for state machines.
We require large task stacks, because our CAN library
stores messages contents in the current active task’s stack
space. So, the data memory overhead introduced by the
runtime without the stacks is 376 bytes. Regardless,
whether with or without large stack sizes, the runtime
system fits conveniently on the microprocessor and leaves
enough memory for the control application.

5 Conclusion

A modular robot consists of many individual modules
that communicate, interact, and together solve a prob-
lem. The control application for such a robot is a highly
distributed, highly concurrent real-time application, be-
cause of the high number of modules, the number of con-
current processes in the system, and the physical interac-
tion through actuators and sensors.

In this work, we presented a model-based approach for
writing control applications for modular robots. The cen-
ter piece is our programming framework that is character-



ized by three features. First, it provides an intuitive pro-
gramming model based on extended finite state machines.
It supports standard state machines and also synchronous
and asynchronous communication, variables, and actions.
Second, the framework provides compositionality at the
software and at the hardware level, which allows one to
write complex control applications composed from small
building blocks. And third, the framework supports for-
mal verification to aid the developer and speed up the de-
velopment process, because certain bugs can be detected
early in the development cycle.

The aim for the work was to develop an easy-to-use,
tool-oriented programming framework for writing control
applications for modular robots. The toolset and the run-
time system have been implemented and the whole sys-
tem works and runs. We believe that our system meets
the goal for the following reasons: First, we can program
complex control application using the well known notion
of state machines, which make it easy to learn and to be-
come a task developer. And second, the runtime system
introduces a low enough overhead to allow the developer
to program complex state machines with many transitions
and many local variables.

The presented programming framework is still an ini-
tial step towards better high-level language support for
programming modular robots. We plan to explore more
higher-level languages from which we can generate state
machines as input to our framework.
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