
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1990

A Resource-Based Prioritized Bisimulation for Real-Time Systems A Resource-Based Prioritized Bisimulation for Real-Time Systems

Richard Gerber
University of Pennsylvania

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Richard Gerber and Insup Lee, "A Resource-Based Prioritized Bisimulation for Real-Time Systems", .
January 1990.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-69.
Revised Version.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/759
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F759&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports/560/
https://repository.upenn.edu/cis_reports/759
mailto:repository@pobox.upenn.edu

A Resource-Based Prioritized Bisimulation for Real-Time Systems A Resource-Based Prioritized Bisimulation for Real-Time Systems

Abstract Abstract
The behavior of concurrent, real-time systems can be specified using a process algebra called CCSR. The
underlying computation model of CCSR is resource-based, in which multiple resources execute
synchronously, while processes assigned to the same resource are interleaved according to their
priorities. CCSR allows the algebraic specification of timeouts, interrupts, periodic behaviors and
exceptions. This paper develops a natural treatment of preemption, which is based not only on priority,
but also on resource utilization and inter-resource synchronization. The preemption ordering leads to a
term equivalence based on strong bisimulation, which is also a congruence with respect to the operators.
Consequently the equivalence yields a compositional proof system, which is illustrated in the verification
of resource-sharing, producer-consumer problem.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-90-69. Revised Version.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/759

http://repository.upenn.edu/cis_reports/560/
https://repository.upenn.edu/cis_reports/759

A Resource -Based Prioritized Bisimulation
For Real-Time Systems

MS-CIS-90-69
GRASP LAB 235

Richard Gerber
Insup Lee

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

Revised
March 1992

A Resource-Based Prioritized Bisimulation for Real-Time

Systems*

Richard Gerber Insup Lee

Dept. of Computer Science Dept. of Computer and. Info. Science

University of Maryland University of Pennsylvania

College Park, MD 20742 Philadelphia, PA 191 04

rich@cs.umd.edu lee@cis.upenn.edu

January 30, 1992

- -

'This research was supported in part by ONR N00014-89-J-1131 and DARPAINSF CCR90-14621.

Jar1 uary 30, 1 992

Abs t r ac t

The behavior of concurrent, real-time systems can be specified using a process algebra

called CCSR. The underlying computation model of CCSR is resource-based, in which

multiple resources execute synchronously, while processes assigned to the same resource

are interleaved according to their priorities. CCSR allows the algebraic specification of

timeouts, interrupts, periodic behaviors and exceptions. This paper develops a natural

treatment of preemption, which is based not only on priority, but also on resource utilization

and inter-resource synchronization. The preemption ordering leads to a term equivalence

based on strong bisimulation, which is also a congruence with respect to the operators.

Consequently the equivalence yields a compositional proof system, which is illustrated in

the verification of resource-sharing, producer-consumer problem.

January 30, 1992

1 Introduction

The timing behavior of a real-time system depends not only on delays due to process syn-

chronization, but also on the availability of shared resources. Most current real-time models

adequately capture delays due to process synchronization; however, they abstract out resource-

specific details by assuming idealistic operating environments. On the other hand, scheduling

and resource allocation algorithms used for real-time systems ignore the effect of process syn-

chronization except for simple precedence relations between processes. What is needed is a

theory that combines the areas of formal specification and real-time scheduling, and thus, can

help us reason about systems that are sensitive to deadlines, process interaction and resource

availability.

Our approach to this problem is a process algebra called the Calculus for Communicating

Shared Resources, or CCSR. The CCSR computation model reflects a resource-based philos-

ophy regarding real-time concurrency. Within this approach, a real-time system is composed

of one or more resources, each of which is inherently sequential in nature. Thus, while many

processes may share a single resource, at any point in time, a resource only has the capacity

to execute a solitary event from one of the processes. This constraint quite naturally leads to

an interleaving notion of concurrency at the resource level of the system. A priority ordering

is used to arbitrate between simultaneous resource requests. At the system level, lock-step

parallelism occurs when a group of resources are executed simultaneously.

Strongly influenced by SCCS (Milner, 1983), CCSR is a process algebra that uses a syn-

chronous form of concurrency, and possesses a term equivalence based on a prioritized version

of strong bisimulation (Park, 1981). The development of the equivalence relation mandates

a treatment of preemption based not only on priority, but also on resource utilization and

inter-resource synchronization.

The challenge of suitably defining preemption can be illustrated by a small example. Con-

sider a process P, which is hosted on some resource r. Assume that during its first time unit

P may either execute a? and move to a state PI , execute b? and move to a state PI , or idle

and re-enable P. In the CCSR language, the process P is rendered as follows:

P kf {a?} : PI + {b?} : p2 + 0 : p

Also, assume a synchronization paradigm similar to that of CSP (Hoare, 1985); i.e., a? or

b? may execute if and only if there is a simultaneous occurrence of a! or b!, respectively. The

actual first execution of P depends heavily on the context in which it is placed. Factors include

whether the context offers either a!, b! or both events, the priorities of a?, b?, a! and b!, or

January 30, 1 992 7

whether P may be blocked by another process that requires its resource (in which case the idle

branch would be taken). In defining an adequate notion of preemption, we must consider all

of these factors.

As we show in this paper, our preemption ordering leads to several desirable properties,

not the least of which being an equivalence which is also a congruence. Based on these results,

we have developed a compositional proof system for CCSR, which facilitates the algebraic

verification of real-time systems.

The remainder of this paper is organized as follows. In Section 2 we develop our computa-

tion model. In Section 3 we introduce the CCSR language, and provide its informal semantics.

Then, in Section 4, we motivate our theoretical treatment of CCSR by presenting a real-ti~ne,

resource-sharing example whose correct temporal behavior depends on priority. In Section 5

we develop CCSR's semantic theory, which we use in Section 6 to present the proof system.

Then in Section 7 we return to our example, and prove its correctness with respect to our

proof system. In Section 8 we compare our approach to related research in the field, and in

Section 9 we conclude, and remark on the significance of this work.

2 The Computation Model

The basic unit of computation is the event, which is used to model both local resource execution

as well as inter-resource synchronization. When executed by a resource, each event consumes

exactly one time unit. We let C represent the universal set of events.

Since a system potentially consists of many resources, multiple events may occur at any

time throughout the course of its execution. We call such occurrences actions, and they are

represented by sets in P(C). As in SCCS (Milner, 1983), the passage of time is implicitly

captured by a sequence of actions, where one clock "tick" corresponds to the execution of

a single action. In general, we let the letters a, b and c range over the event set C, and the

letters A, B and C range over the action set P(C). Also, we let the letter $ range over renaming

functions on C; that is, $ E C -+ C. We overload notation and extend such functions to sets

in the usual way, where $(A) = {$(a) 1 a E A) .

Termination. The termination event, or "J", has the unique property that it is not "owned"

by any particular resource. In the spirit of CSP (Hoare, 1985), if J E A for some action A,

this means that the system executing A is capable of terminating. Also, J is a fixed point of

all event renaming functions 4 E C -+ C; i.e., for all such 6, d(J) = J.

January 30, 1992 8

Resources and Actions. We consider individual resources t o be inherently sequential in

nature. That is, a single resource is capable of synchronously executing actions that consist,

at most, of a single event. Actions that consist of multiple events must be formed by the

synchronous execution of multiple resources. We denote R to represent the set of resources

available to a system, and let i, j, and k range over R.

This notion of execution leads to a natural partition of C - {J) into mutually disjoint

subsets, each of which can be considered the set of events available to a single resource. For

all i in R we denote C; as the collection of events exclusively "owned" by resource i:

This type of alphabet partitioning is similar to that found in the I/O Automata model (Lynch

and Tuttle, 1988), where it is used to define a notion of fairness. However, here it is used to

help mandate our resource-induced mutual exclusion condition. As we have stated, a single

resource is capable of executing actions that consist of at most one event. Extrapolating this

principle to a system of concurrent resources, the CCSR action domain is defined as follows:

That is, an action executable by a CCSR term may consist of at most one event from each

component resource. Here, "p(C)" denotes the set of finite subsets of C, and ''ISI" denotes the

cardinality of a finite set "S".

For a given action A, we use the notation p(A) t o represent the set of resources that

execute the events in A: p(A) = {i E R I Ci n A # 8) . Note that since for all i, J $ Ci,

P(A) = P(A - {dl).

2.1 Priority

At any point in time many events may be competing for the ability to execute on a single

resource. We help arbitrate such competition through the use of a priority ordering over C.

There is a finite range of priorities a t which events may execute. Letting mp be the maximum

possible priority, we denote P R I = (0,. . . , mp) mV as the set of priorities available to events

in the system. Thus we can order the events in C by a priority mapping ir E C + PR1.l

Using n, we define the preorder "<.," that reflects the notion of priority over the domain

'As one the referees has pointed out, the theory of CCSR remains valid even if we assume that event-wise

priorities are partially ordered.

January 30, 1992

Figure 1: Example of the Priority Ordering, <,

V. For all A, B E D, A 5, B if and only if for all i in p(A) U p(B),

A n C ; = 0 v

(3a. A n C; = {a) A n(a) = 0) V

(3a3b. A n Ci = {a) A B n C; = {b) A n(a) 5 n(b))

Note that the first disjunct establishes that idling (i.e., the execution of no event) has the

lowest priority on every resource. Also, the second disjunct accounts for the possibility that

an event may have a priority of 0.

Based on this definition, we use the notation "A <, B" to represent that A has lower

priority than B; i.e., A 5, B and B $, A.

Example 2.1 Consider the events a , b, c and d, where

1. The resource mapping is: p({a, b)) = {rl) and p({c, d)) = (~ 2) .

2. The event-wise priority is: n(a) < n(b) and n(c) < ~ (d) ;

e.g., n(a) = 1, n(b) = 2, n(c) = 2 and n(d) = 3.

Then Figure 1 illustrates the ordering between the different feasible actions that can by formed

among these events. In the figure, the arrow "-" is transitive, as it represents the "<,"
relation. Thus the "8" action - denoting both resources in an idle state - has the lowest

priority, while the {b,d} action has the highest.

January 30, 1992

2.2 Synchronization

In CCSR, the lowest form of communication is accomplished through the simultaneous execu-

tion of synchronizing events. The model treats such synchronizing events as being statically

"bound" together by the various connections between system resources. To capture this prop-

erty we make use of what we call connection sets. A connection set is a set of events that exhibits

the "all or none" property of event synchronization: At time t , if any of the events in a given

connection set wish to execute, they all must execute. A familiar example of this concept can be

drawn from CSP (Hoare, 1978), where the alphabet of events is {cl!, cl?, c2!, c2?, c3!, c3?, . . .),
where "c;" is a channel, "c;!" is interpreted as a write action, and "c;?" is interpreted as a read

action. When a read and a write occur simultaneously on the same channel, the communication

is considered successful. The connection sets in such languages are simply {cl!, cl?), {c2!, c2?),

etc. More formally, a connection set is an equivalence class formed by the equivalence relation

"H".

Definition 2.1 H C x C is an equivalence relation, where a ~ b denotes that a is connected

to b. We use the notation connections(a) to represent the equivalence class (or connection set)

of a, and we stipulate that for all a E C, connections(a) E 'D.

The reason for this last constraint is straightforward. If a set of events is fully connected, it

should be able to execute, and therefore be in the action domain. We note that this generalized

notion of synchronization is similar to that found in Arnold (1982), in which a synchronized

behavior is a set of events that must be executed simultaneously.

Of course, if an event is used solely to model a resource's local computation, it need

not synchronize with any other event in the system. Such events occupy their own (singleton)

connection set. Also, the terminating event "$' belongs to its own connection set, as successful

termination does not require the explicit synchronization of resources.

We use the notation Connections(A) to assemble all of the connection sets represented in

A :

Connections(A) = U connections(a)
aE.4

Thus, a set A is fully synchronized if it can be fully decomposed into a set of the connection

sets (or it is empty). We use the predicate f ullsync(A) to represent this:

f ullsync(A) iff A = Connections(A)

Note that if A is fully synchronized, it requires no additional communicating partners. Ap-

pealing to the example of CSP, we would say that the action {a!, a?) is fully synchronized.

January 30, 1992 11

In the process of reasoning about a large system we often decompose it into smaller com-

ponents, and then attempt to reason about the components. For example, assume that such

a subsystem is hosted on a resource set I, and that the subsystem executes some action A

(i.e., p(A) E I) . When analyzing only the subsystem, we do not need to know that A is fully

synchronized - indeed, more system resources may be needed to achieve this result. Instead,

we wish to determine whether A is synchronized with respect to the resource set I ; that is,

whether s y n ~ (~) (A) holds, where

s y n ~ (~) (A) iff A = Connections(A) n (UiEI Ci U { J))

If s y n ~ (~) (A) holds, A cannot make any additional connections with the resources in I.

Finally, it is often convenient to decompose an action A into two parts: that which is fully

synchronized (or resolved), and that which is not (or still unresolved). To do this, we make

use of the following two definitions:

Again using the CSP-like notation, if A = {a!, a?, b!, b?, c!, d?), we have res(A) = {a!, a?, b!, b?)

and unres(A) = {c!, d?).

2.3 Priority-Canonical Events

In an unprioritized calculus such as SCCS (Milner, 1983), the idle action serves two distinctly

different functions. One is to denote pure idling; for example, the SCCS term 1 : (P x Q)

represents a process that idles for one time unit, and subsequently executes the term P x Q.

On the other hand, the idle can also denote the combined actions of two communicating

partners; e.g., the term (a : P) x (E : Q) is strongly equivalent to 1 : (P x Q); i.e., "pure" idling

and successful communication are represented in the same manner.

In a prioritized, resource-based algebra such as CCSR, it would be difficult to justify the

abstraction of either priority or resource usage. For example, assume that at time 1 the

process P executes the action { a ! , ~ ?) ; where fullsync({a!,a?}), n(a!) = 1, and n(a?) = 2;

with p({a!)) = {rl} and p({a?)) = (7-2).

Now assume that {a!,a?) could be abstracted from the behavior of P; that is, it could be

mapped to the idle action 0 while preserving the same resource untilization. But then another

process Q, concurrently running with P , could also utilize the resources r l and r2 at time

1. This would violate the defining principle of CCSR - that a resource may execute only one

January 30, 1992 12

event a t a time. For a similar reason we do not abstract priority information from a system's

behavior.

While we are constrained by these limitations, we may still "hide" an event up to its priority

and resource usage. Note that these factors naturally partition C-{ J) into equivalence classes;

that is, the events a and b are in the same class if and only if p({a)) = p({b)) and ~ (a) = ~ (b) .

In CCSR, we use the symbol "r:" to denote a canonical representative event from each class,

where T; is mapped to resource i and has priority n.

Consider the difference between the actions "8" and "{T:)." While 0 =, {T:), an execution

of 0 denotes that resource i (and, in fact, all other resources) have been released for use by

other processes. On the other hand, an occurrence of {r:} denotes that resource i is being

used. For example, if we were to hide some action {a), where a has a priority of 0 and is

hosted on resource i, the result would be (7:).

To implement this type of abstraction, we introduce a unique renaming function, +,, such

that if p({a)) = i and ~ (a) = n, then +,(a) = 7:. It follows that the T; are fixed-points

of priority renaming; that is, +,(r?) = T?. All such canonical representatives are local with

respect to their own resources; that is, they belong to their own connection sets.

3 The CCSR Language

The syntax of CCSR resembles, in some respects, that of SCCS. Let & represent the domain of

terms, and let E , F, G and H range over f. Additionally we assume an infinite set of free term

variables, F V , with X ranging over F V and f ree(E) representing the set of free variables in

the term E. Let P represent the domain of closed terms, which we call agents or alternatively,

processes, and let P, Q, R and S range over P. The following grammar defines the terms of

CCSR:

E := N I L I A : E I E + E I EzIIJE I E A : (E , E , E) ([E] ~ J E \A I f i r (X.E) I X

We note that a CCSR term does not define the structure of its computation model; e.g., the

resource set, the priority mapping and the connectivity relation. Rather, we consider the action

domain to be defined separately, and then a CCSR term inherits its characteristics. In Gerber

(1991) we describe an implementation of the language, in which a configuration schema is used

to define elements such as D, T and t..

While we give a semantics for our operators in subsequent sections, we briefly present some

motivation for them here. The term N I L corresponds to 0 in SCCS - it can execute no action

whatsoever. The Action operator, "A : E", has the following behavior. At the first time unit,

January 30, 1992 13

the action A is executed, proceeded by the term E. The Choice operator represents selection

- either of the terms can be chosen to execute, subject to the constraints of the environment.

For example, the term (A : E) + (B : F) may execute A and proceed to E, or it may execute

B and proceed to F.

The Parallel operator EIllJ F has two functions. It defines the resources that can be used

by the two terms, and also forces synchronization between them. Here, I C R is a set of the

resources allotted to E, and J R is a set of the resource allotted to F. In the case where

I n J # 0, E and F may be able to share certain resources. But as we have stated, such

resource-sharing must be interleaved.

The Scope construct EA: (F, G, H) binds the term E by a temporal scope (Lee and Gehlot,

1985), and it incorporates both the features of timeouts and interrupts. We call t the time

bound and B the termination control, where t E N + U {oo) (i.e., t is either a positive integer

or infinity), and B = { J) or B = 0.
While E is executing we say that the scope is active. The scope can be exited in a number

of ways, depending on the values of E , H , t and B. If E successfully terminates within time

t by executing "$', then F is initiated. Here, if B = { J), the transition from E to F will

retain its ability to signal termination, while if B = 0, the entire construct will terminate only

when F does.

There are two other ways in which the scope may be exited. If E fails to terminate within

t units, the "exception-handler" G is executed. Lastly, a t any time throughout the execution

of E, it may be interrupted by H, and the scope is then departed.

As an example of the Scope operator, consider the following specification: "Execute P for

a maximum of 100 time units. If P successfully terminates within that time, then terminate

the system. However, if P fails to finish within 100 time units, at time 101 start executing R.

At any time during the execution of P, allow interruption by an action {a?) which will halt

P , and initiate the interrupt-handler S." This system may be realized by the following term:

P A:", (NIL , R, {a?) : S).

Now consider this specification: "Execute P for a maximum of 100 time units. If P

successfully terminates within that time, "cancel" the termination and proceed to &. If P fails

to finish within 100 time units, at time 101 start executing R." This specification yields the
0

following term: P Aloe (Q, R, NIL).

We note that sequential composition may be realized by using the Scope operator. To

sequentially compose E and F, we may use this term: E & (F, NIL , NIL).

The Close operator, [Elr, denotes that the term E occupies exactly the resources represented

in the index I. In addition, Close produces a term that totally utilizes the resources in I; that

January 30, 1992

def
Producer1 = (S,({pl) : 62({intl!) : IDLE))) (N I L , Producerl, N IL)

def
Producer2 = (6 m ({ p 2) : 64({int2!) : IDLE))) A', (N I L , Producer2, N I L)

def
Consumer1 = 6,({intl?} : 6,({cl) : 6,({cl) : Consumerl)))

def
Consumer2 = 6, ({intz?} : 6,({c2) : boo({c2) : Consumer2)))

def
System = [(Producer1 (1) 1){q Producerz) {1 ,2))){3)

 consumer^ (31 11{3) Consumer2)]{1,2,3)

Figure 2: Producer-Consumer System

is, it prohibits further sharing of those resources. When we present the semantics of CCSR,

we shall show exactly what this means.

The Hiding operator E\A masks actions in E up to their resource usage and priority, in

that while the actions themselves are hidden, their priorities are still observable. The term

f i x (X .E) denotes recursion, allowing the specification of infinite behaviors.

4 An Example

We present a time-critical, Producer/Consumer example that illustrates the interrelationship

between resource-sharing and priority in CCSR. This example illustrates that in some real-time

applications, a system's correctness can hinge on the ability to implement priority.

The system is composed of four agents: Producerl, Producer2, Consumerl and Consumerz.

Also, there are three resources, which we call "resource I", "resource 2" and "resource 3";

Producerl is hosted on resource 1, Producer2 is hosted on resource 2, while Consumerl and

Consumerz share resource 3.

We use the following notation that facilitates a concise specification of our system.

I D L E ef 0 : I D L E

6 4 P) drf { I D L E i f t = O

P + 0 : St_ l (P) otherwise

The I D L E process executes indefinitely, without contributing any observable behavior. In

f i t(P), the initial action of P must execute within time t ; otherwise the process goes into an

January 30, 1992

Resources:

Resource 1: pl, inti! E C1
Resource 2: p2, intz! E Cz
Resource 3: inti?, intz?, cl , cz E Cg

Connection sets:

Inter-resource: {inti!, id l?) , {intz!, int2?)

Local: (~11 , (~21 , (~11, (~ 2)

Priorities:

Resource l:7r(pl) = 1, n(intl!) = 0
Resource 2:7r(p2) = 1, 7r(int2!) = 0

Resource 3:7r(cl) = 3, 7r(c2) = 3, 7r(intl?) = 2, r(int2?) = 1

Figure 3: System Resources, Connections and Priorities

idle state. The timeout value t may range over N U {co}, i.e., if t = co, the execution of P

may delay indefinitely.

The producer-consumer system is shown in Figure 2. Producerl describes a periodic pro-

cess, with a period of 6 time units. Within each period, the process decides when (or if) it

should enter its "production" phase. That is, it "produces" for 1 time unit by executing the

action {pl}. Then it attempts to interrupt Consumerl by executing the action {inti!). How-

ever, if the interrupt is not accepted within 2 time units, Producerl goes into an idle state.

If the interrupt is successful, the process idles for the remainder of the period. Producer2

resembles Producerl except for one fact: its interrupt must be accepted within 4 time units.

Consumerl waits indefinitely for Producerl to issue its interrupt. Then it goes into a

"digestion phase" for 2 time units, during which the action {cl) is executed. After the second

execution of {cl}, Consumerl is restarted. Consumerz is the dual of Consumerl, in that

int2? signals its consumption phase, and c2 marks its digestion phase.

The configuration of the system is shown in Figure 3. Note that ~ (i n t l !) = 0 and ~ (i n t ~ !) =

0; this means that the Consumers are solely responsible for "driving" the interrupts. Further,

since .rr(intl?) = 2 and n(int2?) = 1, resource 3 "prefers" inti? over int2?.

We informally state our correctness criterion as follows: During every six unit period, both

producers must produce, and both consumers must consume. In Section 7 we formalize this

property, and we use our set of laws to show that the system satisfies it.

January 30, 1992

5 An Operational Semantics

In this section we present an operational semantics for closed terms, in the style from Plotkin

(1981). We do this in two steps. First, we define a labeled transition system (&, +,D), which
A

is a relation +C & x V x E . We denote each member (E,A, F) of "+" as "E - F".

We call this transition system unconstrained, in that no priority arbitration is made between
A

actions. Thus, if E F is in "+", i t means that in a system without preemption

constraints, a term E may execute A and proceed to F. After presenting "+", we use it to

define a prioritized transition system (£, +,,V), which is sensitive to preemption. This two-

phased approach greatly simplifies the definition of "+,"; similar tactics have been used in the

treatment of CCS priority (Cleaveland and Hennessy, 1990), and the definition of a maximum

parallel semantics for Occam (Huizing, Gerth, and de Roever, 1987).

Throughout, we use the following notation. For a given set of resources I R, we let

C I represent the set Ui,, E;. Also, A * B = (A - { J)) U (B - { J}) U (A n B); that is, the

termination event "$' is an element of A t B if and only if i t is in both A and B.

5.1 Unconstrained Transition System

Figure 4 presents the unconstrained transition system, "-+" . The rules for Action, Choice

and Recursion are quite straightforward, as described in Section 3. The other rules, however,

require some additional explanation.

Parallel. The four side conditions define both the resource mapping and synchronization

constraints imposed on terms that operate in a concurrent fashion. The first two conditions

define the resources on which the terms El and E2 may execute. That is, A1 must be hosted on

the resources denoted by I, while A2 must be hosted on the resources denoted by J. Moreover,

the third condition stipulates that single resources may not execute more than one event at a

time.

The final condition defines our notion of inter-resource synchronization; that is, A1 and A2

may execute simultaneously if and only if they are connected in the following sense: If some

event a E A1 is connected to an event b E C J , then b must appear in A2, and vice versa. This

synchronization constraint is a generalized version of that found in CSP.

Scope. There are four rules for the Scope operator, corresponding to the four actions that
A

may be taken while a term E is bound by a temporal scope. Assume that E - E' with

J $! A, and that t > 1. In such a situation, the ScopeC law is used to keep the temporal scope

active; i.e., E' is bound by the scope with its time limit decremented to t - 1. On the other

hand if J E A and t > 1, ScopeE is used. In this case the scope is departed by executing

January 30, 1992

A
Action : A : E - E

A A
E - E' F - F1

ChoiceL : A ChoiceR : A
E + F - E l E + F - F '

Parallel :
A1 A2

El - Ei , E2 - Ei p(Al) c 1, p(A2) C J ,
A1*A2

El z I (J E ~ - E: I ~ ~ J E ; P (A I) n p(A2) = 0, s~nc(lu.T)(Al * A2)

A
E - E'

ScopeC : A
E A: (F , G , H) - E' A:-, (F , G , H)

(t > 1, J $ A)

A
E - El

ScopeE : A*B (t 2 1, JE A)
EA: (F ,G,H) - F

A
E - E'

ScopeT : A (t = 1, , / $ A)
EA: (F , G , H) -G

A
H - HI

Scope1 : A (t 2 1)
EA: (F , G , H) - H I

A
E - El

Close : A U (T - ~ ~)) (~ (4 G I)

[Elz - [E'lz

B
E - E1

Hiding : d ' h i d e (~) (~) (f ullsync(A), f ullsync(A n B))
E\A - E1\A

A
E[f i x (X . E) / X] - E'

Recursion : A

f i x (X.E) - E'

Figure 4: Unconstrained Transition System

January 30, 1992 18

A * B, at which time F is initiated. By the definition of "t", if B = 0, then A * B = A - { J).

That is, while E itself may terminate by executing A, the entire term will terminate when (or

if) F does. But if B = {J), then A * B = A. This means that the entire term may terminate

by executing A (recall the discussion in Section 3).
A

Now assume that E - E' such that J $ A, and that t = 1. Thus implies that the

ScopeT rule must be used ("T" is for timeout). Here, the scope has "timed out", and thus,

first A is executed, followed by the exception-handler G. Finally, the Scope1 rule shows that

the term H may interrupt at any time while the temporal scope is active.

Close. The Close operator assigns terms to occupy exactly the resource set denoted by the

index I. First, the action A may not utilize more than the resources in I ; otherwise it is not

admitted by the transition system. If the events in A utilize less than the set I , the action

is augmented with the canonical, 0-priority events from each of the unused resources (see

Section 2.3). For example, assume E executes an action A, and that there is some i E I such

that i 6 p(A). In [Elz, this gap is filled by including r: in A. Here we use the notation 7; to

represent all of the 0-priority events from the resource set J: = {T: I j E J).
Close serves two important, and interrelated functions in the specification of CCSR pro-

cesses. When a term E is embedded in a closed context such as [Elz, we ensure that there is

no further sharing of the resources in I ; that is, it excludes additional interleaving concurrency

on these resources. As we show in Section 5.3, this results in an increased amount of priority

arbitration, i.e., a small number of possible behaviors.

Hiding. Assume that E executes an action B , and that fullsync(A) and fullsync(A n B)

both hold. Then using the Hiding rule, E \A executes an action that reduces the events in

A n B to their "canonical77 priority representation, as described in Section 2.3. If A C C, we

construct the function 4 h i d e (~) as follows. For all a in C,

4 h i d e (~) (~) =
otherwise

Thus, +hide(A)(B) = (B - A) U &(B f l A); i.e., all of the events in B n A are mapped to their

corresponding "canonical" events.

The reason for this nonstandard hiding construction should be clear when viewed from the

perspective of resource usage. As an example, let a, b E C;, with {a} and {b} as connection

sets; i.e., both events are completely local to resource i. Now let E = {a} : N I L and F =
0

{b} : NIL. In a more "standard" definition of hiding, E\{a) - NIL\{a}. In other words,

all "a" is completely abstracted from the system behavior. But in this definition, we find
{ b)

that (E\{a)) {;) (I{;) F - (NIL\{a)) {;)(l{;) NIL. This would violate the resource-based

January 30, 1992 19

execution model, in that two events from resource i, b and a, would execute simultaneously.

A
Proposition 5.1 All terms in I are well-defined, in that if E E E and E - E', then

A E V.

The proof follows directly from the definition of the operators.

5.2 Preemption

The prioritized transition system is based on the notion of preemption, which unifies CCSR's

treatment of synchronization, resource-sharing, and priority. The definition of preemption

is straightforward. Let "+", called the preemption order, be a transitive, irreflexive, binary

relation on actions. Then for two actions A and B, if A 4 B, we can say that "A is preempted

by B". This means that in all real-time contexts, if a system can choose between executing

either A or B , it will execute B. In the terminology of our calculus this can be stated as

follows: The term (A : E) + (B : F) can be replaced by the term B : F if and only if A 4 B.

Since such a replacement must be valid for all possible contexts, the relation "4" must be

chosen rather judiciously. Of course, one such relation is a trivial one; that is, where A < B

never holds for any actions A and B. With this definition, no preemption would ever occur,

and would lead to an unprioritized calculus. Instead we wish to utilize our priority structure

as much as possible and to do this we must make use of both local resource priority decisions,

as well as synchronization constraints imposed by the environment.

Definition 5.1 For all A E V, B E D, A 5 B if and only if

The relation "5" defines a preorder over V, and we say A 4 B if A 5 B and B 2 A, i.e.,

p(A) = p(B) A unres(A) = unres(B) A res(A) <, res(B).

We can intuitively argue that "4" is a sound notion of preemption (Theorem 5.4 is a formal

statement of this fact). Assume that a term may execute either A or B (e.g., (A : E) + (B : F)).

First, if p(A) = p(B), contexts with resource constraints (such as Close and Parallel) will affect

both A and B in the same manner. Next, if unres(A) = unres(B) (that is, the unsynchronized

parts of A and B are identical), when the environment offers some event C, it will be able

to synchronize with A if and only if it can synchronize with B. Finally, since res(A) and

res(B) are hosted on the same resources and are fully synchronized, they will interact in an

identical manner with all environments. Thus if res(A) <, res(B), we may maximize our

priority arbitration and choose B over A.

January 30, 1992 20

We argue that any sound, nontrivial preemption order must make use of the three ingre-

dients represented in Definition 5.1: resource utilization, synchronization, and priority. While

omitting one or more of these factors may yield a more straightforward definition for "4")

the result will generate an unsound semantics. In the following examples we show some sim-

ple, albeit poor choices for "<". They are "poor" because they allow us to replace a term

(A : E) + (B : F) with B : F , without accounting for the influence of certain contexts in which

the term may appear. That is, in some contexts we may indeed be able to replace one term

for the other, while in others we may not. This deficiency leads to a proof system that is not

compositional.

Example 5.1 Assume that "<" is "greedy" in the following sense. Each resource makes its

own preemption decisions, and excludes environmental effects in such decisions; further, any

event a E C; such that n(a) > 0 can preempt idle time on resource i. In other words, A 4 B

if and only if A <, B.

Using an example, we can easily show why this preemption order fails in the context of

resource sharing. Let a,b E El, with n(a) = 1 and ~ (b) = 1. Let a and b occupy their own

connection sets; that is, they are local to resource 1. Now consider the term, in which the two

constituent terms must be interleaved on resource 1:

At the first time unit, the left hand side may execute either "{a)" or "8", while the right hand

side must execute "{b)". However, both a and b are mapped to the same resource, and thus,

they may not be simultaneously executed at the first time unit. Since both constituent terms

must execute some action at time 1, the left hand side must execute "0" to accommodate the

execution of "{b)". In other words, at time 1, "{b)" is executed when they are composed in

parallel.

But according to this preemption order, we have 0 < {a) and thus, {a) : N I L can be

substituted for ({a) : N I L) + (0 : NIL). However, the following term is not capable of

executing any action at time 1:

Example 5.2 As a modest improvement, assume that A 4 B if and only if both P(A) = p(B)

and A <, B. Let a!,b E El, a? E Cz, with n(a!) = 1, n(b) = 2 and n(a?) = 1. Further, let

January 30, 1992

there be two connection sets: {a?, a!) and {b). Consider the following term:

(({a!) : NIL) + ({b) : NIL)){1}11{2}({a?) : NIL)

Here, synchronization is forced between "a!" and "a?" and thus, the term may only execute

"{a!, a?)" at the first time unit. But since {a!) 4 {b), the above term should be equivalent to:

However, when "{a?)" is executed by resource 2, it must synchronize with "{a!)" when com-

bined with resource 1. Because only {b) is offered, the term is equivalent to NIL. Since this

preemption order neglects all synchronization information, i t is clearly a poor choice.

Example 5.3 To take a safer approach, assume that "4" is defined as follows:

A 4 B if and only if p(A) = p(B) A f ullsync(A) A f ullsync(B) A A <, B

Let a,b E El, c? E C2, with n(a) = 1, n(b) = 2 and n(c?) = 1. Assume that fullsync({a}) and

f ullsync({b)) both hold; that is, they are local to resource 1. Also, assume that f ullsync({c?))

does not hold; that is, it is not local to resource 2. But let connections(c?) n El = 0. This

means that since no connections of "c?" reside on resource 1, {c?) may be executed as if it

were local t o resource 2. Now consider the following term:

Since the left hand side may execute either {a) or {b), while the right hand side executes {c?),

at the first time unit we may either observe {a, c?) or {b, c?). And because neither action is

fully synchronized, {a, c?) ,4 {b, c?).

However, it is true that {a) 4 {b), and thus, the following term should exhibit the same

behavior as that above:

({b) : NIL){l}ll{2}({c?l : N I L)

But they are not identical, since this term may execute only {b,c?) a t the first time unit. So

we must conclude that again our choice for "4" was incorrect.

5.3 Prioritized Transition System

Now we define the transition system (&, +,,V), grounded in our notion of preemption.

Definition 5.2 The labeled transition system (&, +,,V) is a relation -t,c f x V x C and is
A

defined as follows: (E , A, El) E-t, (or E -, El) if:

January 30, 1992

A
1. E - El, and

A'
2. For all A' E V, EN E Z such that E ----+ E", A + A'.

Example 5.4 Consider the term E !Zf ({a!, a?) : NIL)+({b!, b?) : NIL) , where p({a!, b!)) = i

and p({a?, b?)) = { j) . Now assume that ~ (a !) < n(b!), ~ (a ?) < ~ (b ?) , and further, that both

{a!, a?) and {b!, b?) are connection sets. Then {a!, a?) 4 {b!, b?). While E has two initial
{b!,b?)

transitions under "+", there is only one prioritized transition: E -, NIL.

Example 5.5 Consider the term E %f ({a) : NIL) f (0 : E) , where p({a)) = i, with

fullsync({a}) and w(a) = 1. That is, E is the term that indefinitely idles before execut-

ing {a}. And although 0 <, {a), it is not true that 0 4 {a}. As we showed in 5.2, E may be

interleaved with another term that must initially use resource i (see 5.1). Thus "+," admits

two initial actions for E, {a) and 0.
However, there are also times when we know that E is to be the sole resident of resource i.

In such a case we want E to initially execute {a), since the only other alternative is to idle at

a lower priority. To achieve this effect we close E with respect to resource i. Note that under

"+" there are two potential initial actions - {a) and {r:). But since {r:} 4 {a), there is only

one initial action under "+,," which is {a}. Thus, when we know that a resource is not going

to be utilized further, we can employ the Close operator to increase the degree of preemption.

Clearly we cannot characterize the prioritized semantics by naively substituting "+," for

"+" in the structured transition rules (Figure 4). If this were the case "+" and "-+," would

describe the same relation, which they do not. Definition 5.2 and Example 5.4 adequately

serve to illustrate that "+," is properly contained in "+." Nonetheless, the following theorem

demonstrates that "+," is sufficiently well-behaved, in that any prioritized transition is derived

strictly from other prioritized transitions. The proof is quite detailed, and is presented in

Appendix A.

A
Theorem 5.1 Let E, F E £ such that E -, E'. Then the following properties hold:

B A A
2. If F - F' is a premise of a rule that derives E - El, then F -, F'.

The next result shows that "4" is progress-preserving, in that for a given transition
A A A'

E - E', either E -, E', or there is some preempting transition E - E", with

January 30, 1992 23

A'
A 4 A', such that E -, EN. This is an important fact, for it demonstrates that preemp-

tion, by itself, cannot produce deadlock in a system.

A
Theorem 5.2 If there is an A E 2) and E, E' E E such that E - El, then there exist

A'
A' E V, E" E C such that E ----4, E" with A 5 A'.

Proof: Assume that the conclusion is false. Then, setting A. = A and inductively applying
A i

Definition 5.2, we see that V i E N, i > 0, there exist A; E V, Ei E C such that E - E: with

A;-1 4 A;. So we have the infinite chain over 2): A. 4 A1 4 A2 4 . . ., and by Definition 5.1,

However, note that Vi, j E N, p(A;) = p(Aj), and thus Vi, j E N, p(res(Ai)) = p(res(Ai)).

Further, since every A E V is finite, p(res(A)) is finite. Thus there are finitely many distinct

priorities on sets using the resources in p(res(A)): Jp(res(A))l(mp + 1) to be exact. So such

infinite, strictly increasing chains cannot exist.

5.4 Bisimulation and Priority Equivalence

Equivalence between processes is based on the concept of strong bisimulation (Park, 1981),

which is defined as follows:

Definition 5.3 For a given transition system (I , +,D), the symmetric relation r C (P, P)

is a strong bisimulation if, for (P, Q) E r and A E V,

A A
1. if P e P' then, for some Q', Q + Q' and (PI, Q') E r , and

A A
2. if Q + Q' then, for some PI, P + P' and (P', Q') E r.

We let "N" denote unconstrained strong equivalence, or the largest such bisimulation with

respect t o the transition system (C, +,V). Relying on the well-known theory found in Milner

(1989), "N" exists, is an equivalence relation over P, and is a congruence with respect to

the CCSR operators. Similarly, we denote " N ~ " as the largest strong bisimulation over the

transition system (1, +,, V), and we call it prioritized strong equivalence. Again we can state

without proof that "N," exists, and that it is an equivalence relation over %'.

It should be apparent that " N ~ " defines a coarser equivalence than "N". First, the preemp-

tive nature of "+," ensures that the two relations are not identical, for example, consider the

term E in Example 5.4. While E wT {b!,b?) : NIL, the equivalence certainly does not hold

under "N". But as the next theorem shows, any distinction made by " N ~ " will be preserved

by "N" .

January 30, 1 992 24

Theorem 5.3 Let P,Q E P and assume P is strongly equivalent to Q under the transition

system (&, +, D), (that is, P - Q). Then P wa Q.

Proof: We need only show that the relation "-" is a bisimulation on the transition system
A A

(&, -t,,D). Assume P - Q, and let P -, PI. By Definition 5.2, P - PI. Since
A

P N Q, there is some Q' E P such that Q - Q' with P' - Q'. Thus we must prove that
A A'

Q ----in Q'. If this is false, there is some A' E 'D, Q" E P such that Q - Q" and A 4 A'.
A'

But since P - Q, there is also some P" E P such that P - P", which is a contradiction.
A A

Similarly, if Q -, Q', then for some PI, P -, P' with P' N Q'.

Note that Definition 5.3 gives meaning to "-," for the domain of agents. However, using

the standard technique, we can easily extend "-," to terms with free variables.

Definition 5.4 For terms E and F, let f r ee (E) & {XI,. . . , Xn) and f r e e (F) C {XI,. . . , X,).

Then E N, F if, for all agents PI,. . . , Pn E P, EIPl/X1,. . . , Pn/Xn] -, FIPl/X1,. . . , Pn/Xn].

The next theorem states that "-," forms a congruence over the CCSR operators.

Theorem 5.4 Prioritized strong equivalence is a congruence with respect to the CCSR oper-

ators. That is, i f E -, F, we have:

Proof: It suffices to prove cases (1)-(6) for agents; Definition 5.4 makes the generalization

to terms straightforward. In Appendix B we present the proofs for cases (I) , (2a), (3a), (4a),

(5) and (6); case (2b) is identical to (2a), case (3b) is identical to (3a), and cases (4b)-(4d)

are similar to case (4a). In these proofs we often make use of the fact that "N," is the largest

prioritized bisimulation over "+,". Thus, to show that PI -, P2, it suffices to establish any

bisimulation r such that (PI, P2) E r. Since r CwT, PI -, P2.

January 30, 1992 25

As for case (7), we limit ourselves to proving equivalence for terms where free(E) U

f ree(F) g {X). To show that f ix(X.E) wn f ix(X.F) we establish their bisimilarity up

to "wZ7', and we use the standard technique of transition induction. Again, the details of the

proof are in Appendix B.

We now turn briefly to the existence and uniqueness of recursive terms.

Theorem 5.5 For any term E, f ix(X.E) wn E[fix(X.E)/X]; that is, f ix(X.E) satisfies the

recursive equation X wn E.

Proof: By Theorem 5.3, i t suffices to show that fix(X.E) N E[f ix(X.E)/X]. But this
A

result follows directly from the definition of Recursion, since fix(X.E) - E' if and only
A

if E[fix(X.E)/X] - E'.

Theorem 5.6 Let E be a term such that X is guarded in E. Then for F , G E f , if F wn

E[F/X] and G N~ E[G/X], then F w, G.

Proof: As in the proof of Theorem 5.4(7), we limit ourselves the case where f ree(E) C_ {X) ,
and establish that r = {(H[F/X], H[G/X]) I free(H) C {X)) is a bisimulation up to " N ~ . ~ '

The details of the proof are similar to that of Theorem 5.4(7), and we omit them here.

6 An Axiomatization of CCSR

The axioms in the CCSR proof system, A, are enumerated in Figure 5. We claim that A, (aug-

mented with standard laws for substitution), is sound with respect to prioritized equivalence.

Theorem 6.1 For any terms E, F E f , if A I- E = F , then P wn Q.

Proof: It suffices to present proofs for agents, since equality is preserved by substitution. So

for each axiom P = Q in A, we construct a bisimulation to show that P wn Q. For selected

cases, see Appendix C.

Note that the language is fully distributive, in that all of the operators distribute over

Choice. Using this fact we can derive the Expansion Law, that serves to unite several of the

Choice and Parallel laws. Let I be an index set representing terms, such that for each i E I,

there is some corresponding term E;. If I = {il,. . . , in), because of Choice(4) we are able to

neglect parentheses and use the following notation:

and where &a Ei 'kf NIL.

January 30, 1992 26

Choice(1) E + N I L = E

Choice(2) E + E = E

Choice(3) E + F = F + E

Choice(4) (E + F) + G = E + (F + G)

Choice(5) (A : E) + (B : F) = B : F if A 4 B

P z u (~) Erll j N I L = NIL

Pu(2) EIIIJF = F J I J I E

Par(3) (EIIIJ F) (I u j) I I ~ G = E I ~ ~ (~ ~ ~) (F J I I K G) i f I fl J = 0, J fl I< = 0 , I n I(= 0

Par(4) EIIIJ (F + G) = (EIIIJ F) + (E r l l ~ G)

Par(5) (A : E) I I J J (B : F) =

(A * B) : (E I ~ ~ J F) i f ~ (A) c I , P (B) ~ J ,

{ NIL
p(A) P (B) = 0, S Y ~ C (I U J) (A * B)

otherwise

Scope(1) N I L A: (F, G , H) = H

Scope(2) (El + E2) A: (F , G, H) = (El A: (F, G , H)) + (E2 A: (F , G, H))

{
(A * B : F) + H i f , / ~ A

Scope(3) (A : E) A: (F, G , H) = (A : (E A:-, (F, G, H))) + H i f J $! A and t > 1
(A : G) + H otherwise

Close(1) [N I L I I = N I L

Close(2) [E + FIX = [El I + [F]I

(A U (3' - 7zA))) : [EII if p(A) C I Close(3) [A : E] , = { N I L otherwise

close(4) [[E I I I J = { [E] j i f I S J
N I L otherwise

Hide(1) NIL\B = NIL

Hide(2) (E + F)\B = E\B + F\B

Hide(3) (A : E) \ B = 4hide(~)(A) : (E\B) if fullsYnc(A fl B) { NIL otherwise

Figure 5 : The Axiom System, A

January 30, 1992 27

Theorem 6.2 (Expansion Law) Let K and L be finite index sets such that for all k E I<,

1 E L, Ak : Ek E & and Bl : fi E &. Then

Proof: Immediate from Choice(l),(4) and Par(1),(4),(5).

Theorem 6.3 For any finite agents P, Q E P, if P N~ Q, then A k P = Q.

Proof: Using A, P and Q can be transformed into @ and Q, respectively, where both and

Q are in prioritized normal form (PNF). A term R is in PNF if R = CkEK Ck : Rk, where

1) for all k , l E K, Ck + Cl, and 2) each Rk is in PNF. We note that Choice(5) is the key to

enforcing property 1); that is, whenever there are k , l E K with Ck 4 Cl, we may invoke the

law to eliminate Ck : Rk.

So assume that P = CieI Ai : Pi and Q zEJ B j : Qj. The remainder of the proof

follows by induction on the maximum depth of P and Q. If the maximum depth is 0 then P z
A

Q = NIL, and we are done. Otherwise, if P -, PI, then for some i E I, A : PI r Ai : Pi.
A

And since P N~ Q, Q -, Q1. SO for some j E J, A : Q' - Bj : Qj. Further, Pi N, Qj, SO

by induction, A k P; = Qj; thus, A I- A; : Pi = Bj : Qj. So for all i E I, there is some j E J

such that A I- Ai : Pi = Bj : Qj, and by a similar argument the converse is true as well. So

by using Choice(2) to eliminate redundancies, and Choice(3) to regroup terms, it follows that

~t P = Q .

7 Example, Revisited

In this section we use our proof rules to demonstrate the correctness of the example from

Section 4. In Figure 6 we again show the producer-consumer system, along with some auxiliary

definitions which simplify the proof.

Our objective is to use the axiom system to prove the following:

AI - System = {P1,P2,r$):T

A I- T = [{intl!,intl?) : {cl) : {cl) : {int2!,int2?) : {c2) : {pl,p2,c2) : T](1,2,3)

We present a sketch of the proof in Figure 7. Steps (S1)-(S4) are derived by Scope(2) and

Scope(3). In particular we take advantage of the fact that Scope distributes over Choice, as

characterized by Scope(2). Using these results, we derive step (S5) by Theorem 6.2, Close(2)

January 30, 1992

def
Producerl - (S,({pl) : S2({int l !) : I D L E))) (N I L , Producerl, N I L)

def
Producer2 = (S,({p2} : S4({int2!) : I D L E))) (N I L , Producer2, N I L)

def
Consumerl - S,({intl?) : S,({cl) : S,({cl) : Consumerl)))

def
Consumer2 = 6,({int2?) : 6,({c2) : 6,({c2) : Consumerz)))

def
System - [(Producer1 (1) ll{2] Producer2) {1 ,2} ll{3}

(Consumer1 {3)Il{s} Consumer2)]{1,2 ,3]

def
Pi - (S2({ in t l !) : I D L E)) 4 (N I L , Producerl, N I L)

def Pi' = (S,({pl) : S2({int1!} : I D L E))) n(S (N I L , Producerl, N I L)

def Pi - (b4({int2!) : I D L E)) A*~ (N I L , Producer2, N I L)

def
PT = (6,({pz} : S4({int2!) : I D L E))) d5 (N I L , Producer2, N I L)

C: gf Sm ({ c ~ } : S,({C~) : Consumerl))

def C i - 6, ({ c2) : 6, ({ c2) : Consumerz))

s sf (p i { 1 } 1 1 { 2) pi) {1,2}11{3) (Consumer1 {3}11{3} consumer21

T [S]{1,2,3}

Figure 6: Producer-Consumer System with Auxiliary Definitions

January 30, 1992 29

(S2) Producerz = ({pa) : Pi) + (0 : P;)

(S3) Consumer1 = ({ in t i?) : C i) + (0 : Consumerl)

(S7) [S]{1,2,3} = { i n t l ! , i n t l ? , r t) : [((I D L E A ~ (N I L , P ~ ~ ~ U C ~ ~ ~ , N I L)) { ~ ~ ~ ~ ~ ~)
(b3({int2!} : I D L E)) a', (N I L , Producers, N I L)) { 1 , 2 } (({ 3 }

(Ci (3) 11{3) Consumerz)]{i,z,3}
+ { in t2! , in t2? ,r f } : [((s l ({ in t l !) : I D L E)) A\ (N I L , Producerl, N I L) ~ 1 1 1 1 ~ 2 1

I D L E A",NIL, ~ r o d u c e r z , NIL)) t1,2}1(t3}

(Consumer1 {3} 11{3) Ci)I{i,z,3}
+ { T ~ , T ~ , ~) : [((~ ~ ({ ~ ~ ~ ~ !) : I D L E)) A ' , (N I L , P ~ ~ ~ ~ ~ ~ ~ ~ , N I L) ~ ~ ~ ~ ~ ~ ~ ~

(63({int2!) : I D L E)) A: (N I L , Producerz, N I L)) { 1 , 2 } 1 1 { 3 1
(Consumer1 13))1{3) C0n~umer2)]{1,2,3))

(58) [s]{l,2,3} = { in t l ! , in t l? , T;} : [((I D L E A: (N I L , Producerl, N I L)) {1}11{2)

(b3({int2!} : I D L E)) A: (N I L , Producer2, N I L)) (I t 3 }
(C: {3}11{3) Cons~merz)l{ l ,2 ,3)

(S10) [S]{1,2,3} = {intl!, intl?,.rt) : { ~ 1 , ~ ; , ~ ; 2 0) : {~1,~10,72")

: { in tz ! , intz?, r f) : {CZ , 72, $ 2 0) : {p i , ~ 2 , ~ 2) : [[S]{i,z,3) l { i , z , 3)

Figure 7 : Sketch of Equivalence Proof

January 30, 1992 30

and Close(3). In step (S6) we invoke Choice(5), which allows the first branch of the Choice to

preempt the three others.

We arrive at step (S7) in the manner of (S1)-(S5), by applying Scope(2), Scope(3), Theo-

rem 6.2, Close(2) and Close(3). In step (S8) we again apply Choice(5)) which allows the first

alternative to preempt both the second and the third.

There is a leap between steps (S8) and (S9), in which the System is "flattened out."

However, the procedure is similar to that used between steps (Sl) and (S8), and we omit

the intermediate steps for the sake of brevity. Step (S10) is the result of applying Close(4) to

[S]{1,2,3). Finally step (S11) is derived by six applications of Close(3), as well as by substituting

T for [S](1,2,3). By Theorem 5.6,

and thus, System w n {P1,P2,~$} : T . This shows that the system is able to meet its produc-

tion/consumption every cycle.

The importance of preemption elimination (law Choice(5)) cannot be underestimated here.

A simple way to illustrate this is to set n(intl?) to 1, and thus to give int2? the same priority as

that of inti?. In this case, the choice in step (S7) between {inti!, inti?, 720) and {int2!, int2?, ry}

becomes nondeterministic. And if the branch corresponding to {kt2!, int2?, r f) is taken c2 will

execute for 2 time units, during which the execution of inti? will be blocked. But since the

deadline for inti! will have expired, Consumerl will not get the opportunity to consume during

that period. In fact, we can prove that

A F System = {pl ,p2, T:} : T'

A t- T' = [{intl!,intl?} : {cl} : {cl} : {int2!,int2?} : {c2} : {pl,p2,c2) : T'

+ { i n t ~ ! , i n t ~ ? } : {CZ} : {CZ) : 0 : 0 : {PI, PZ) : T'](1,2,3)

That is, Consumerl may starve completely. Of course, in a semantics without preemption

(e.g., under the "+" transition system), there would be many more such nondeterministic

choices; in fact, the system could idle indefinitely.

We end this section with an observation on the complexity of equivalence proofs. As with

most proof systems of this type, exponential blow-up is a t times unavoidable. This is especially

true when manipulating terms where preemption-elimination cannot take place; e.g., in agents

where all events have the same priority. However, in priority-intensive systems such as our

example, a natural tactic seems to arise: whenever axiom Choice(5) can be used, it should be

used.

January 30, 1992

8 Related Work in the Semantics of Priority

Previous research has, with varying success, treated some issues of the priority problem. There

has been a spate of effort directed toward defining models for concurrency based on "maxi-

mum parallelism;" e.g., Salwicki and Miildner (1981), F'rancez, Lehmann, and Pnueli (1984),

Janicki et. al. (1986) and Koymans et. aI. (1988). In these models, if processes are ready to

communicate, they will communicate. Thus maximum parallelism incorporates a rather lim-

ited, bi-level priority scheme, where non-idle events always take precedence over idle events,

and contention between non-idle events is resolved nondeterministically. These models share

a common deficiency, in that they assume unlimited availability of resources: To enforce the

constraint of "no unnecessary idling," each process is mapped to its own, dedicated proces-

sor. A maximum parallelism semantics could easily be obtained in CCSR, where we would set

~ (a) = 1 for every a E C, retain 0 as the action with lowest priority.

In Baeten, Bergstra and Klop (1987), the notion of priority is added to a finite subset of

ACP without the presence of T-events. This is accomplished by the introduction of a partial

order over actions, ">", as well as a priority operator, "0." As an example, if a > b, then

Thus in the parlance of CCSR, we would say that a preempts b. In this light, a "0-free" agent

P would be interpreted under "+", whereas O(P) would be interpreted using "+,". One

major difference between this work and CCSR is that preemption is "greedy" in the sense

of Example 5.1. That is, in general O(P) I O(Q) does not have the same meaning as O(P I Q),

where I represents parallel composition. The reason for this fact is that the priority of the

synchronous action, "alb," does not depend on the priorities of its two constituent actions, "a"

and "b."

An interesting result from Baeten, Bergstra, and Klop is that the axioms needed to charac-

terize 0 cannot be added to ACP's unprioritized axiom systems, and remain sound with respect

to a ready or failure semantics. Instead, the finer-grained ready-trace semantics is introduced

to give meaning to prioritized processes.

A bi-level priority semantics for CCS is treated in Cleaveland and Hennessy (1990), in

which events are divided into two subsets: those of low priority (e.g., T, a , b), and those of high

priority (e.g., I,&,@. Events may synchronize only with inverses of the same priority, which

limits the range of priorities to a two-element, total order, as opposed to a partial ordering

which we treat in CCSR. When synchronization occurs between two unprioritized events (e.g.,

a and E) , the result is the unprioritized T. Similarly, when a and 3 synchronize, the result

January 30, 1992 32

is 1. This 1-event is the only preemptive action, which gives rise to a limited version of our

Choice(5) law: for any unprioritized a,

We note that this treatment can be subsumed by the CCSR model, by (1) assigning each

event a priority of either 0 or 1, and (2) ensuring that connected events have the same priority.

In fact, the treatment of priority in CCSR can be considered an extension to the work in

Cleaveland and Hennessy, whose ideas contributed to the development of our model.

In Camilleri and Winskel (1991), CCS is extended with a prioritized choice operator. Akin

to Occam's PRI ALT, this construct selects the input event of highest priority. In the termi-

nology of CCSR, this notion of priority can be described by the following two restrictions: each

connection set has two elements, and only one of these elements has a non-zero priority. Also

concentrating on Occam, Barrett (1990) provides a prioritized semantics within the context of

CSP. He proceeds to show that in certain contexts, the introduction of priority can preclude the

necessity for fairness assumptions (this should also be apparent from our Producer-Consumer

example). Again, the emphasis in this work is on guards at the receiving end of a channel. In

CCSR we treat the more general problem of priority conflicts; e.g., where ~ (a ?) > ~ (b ?) but

~ (b !) > ~ (a !) .

Janicki (1987) gives a prioritized semantics for programs written in the COSY language. A

priority ordering on events is introduced, "<", which has an interpretation similar to that of

CCSR's preemption order on actions. That is, whenever there is a choice between executing

a and b, and when a < b, the program defers to b. Given this notion of priority, Janicki

demonstrates that inadequacy of a standard partial ordering interpretation for COSY path

expressions. For example, while a program may possess an initial execution such as {a,c},

it does not follow that the same program can initially execute the action {c} (i.e., the set of

executions may not be prefix-closed). To remedy this problem, Janicki introduces a semantics

based on "multiple firing sequences," in which {a,c} has a different interpretation from both

{a}{c} and {c}{a}. This semantics adequately captures the notion of priority in COSY, at

the cost of introducing finer-grained definition of equivalence. (Note that Baeten, Bergstra

and Klop make a similar adjustment to accommodate prioritized behaviors.) Finally, Janicki

shows that while the standard, partially-ordered "vector firing sequences" are not adequate

in the general case, this semantics is sufficient for verifying some very useful properties; e.g.,

deadlock-freedom.

Okulicka (1990) attacks this problem in a different manner, by defining a priority relation

that maintains a prefix-closed semantics for COSY programs. The technique is based on

January 30, 1992 33

the decomposition of a priority relation into "elementary" relations, which are subsets of the

original relations. The main result is that if each of these subrelations leads to a prefix-closed

semantics, the original relation does as well.

It is interesting to note that while CCSR and COSY started from opposite places, both

models converged on the interrelationship between time and priority. In the case of CCSR, our

early investigations made it clear that an untimed, partially-ordered semantics was insufficient

to capture many real-time behaviors. Thus we adapted a discrete-time, step-sequence seman-

tics. Then, to capture the flavor of a real-time scheduler, we introduced a notion of priority to

arbitrate between executions such as {a){c} and-{a,c). On the other hand, the introduction of

the priority ordering in COSY mandated that these executions be given a different interpreta-

tion. This distinction led to Janicki's multiple firing sequences, which, in a sense, is a real-time

semantics! This subtle interrelationship between priority and time was informally discussed in

Lamport (1984), in which it is debated whether there is justification for introducing priority

into time-independent contexts, such as those defined by an interleaving semantics.

An alternative to Janicki's approach is taken in Best and Koutny (1992), in which the

authors present a Petri net, C, with a priority relation, p on its transitions. Here, the objective

is to preserve the partially ordered semantics, without resolving to a step-sequence solution.

Instead of restricting the type of concurrency permitted, the net itself is transformed, by intro-

ducing new places, arcs and transitions. In this manner, the anomalies inherent in prioritized

interleaving semantics can be avoided.

Finally, Hooman (1991) investigates the issue of shared resources; in this sense, the goals of

his work are closely related to ours. His real-time language and computation model derive from

the earlier work of Koymans et. al. (1988). However, he goes much further, by developing two

logics for the purpose of verification. One is a temporal extension to the classical Hoare triple

paradigm, while the other is a metric-space extension to temporal logic. In this regard, the

proof techniques are quite different from our own, which are based on syntactic transformations.

9 Conclusion

We have presented a real-time, resource-based process algebra called CCSR. The CCSR syntax

includes primitive constructs to express essential real-time functionality, among which are

timeouts, interrupts, periodic behaviors and exceptions. Further, there is a single parallel

operator that can be used to express both interleaving at the resource level, and lock-step

parallelism at the system level.

CCSR's proof system derives from a term equivalence based on strong bisimulation, which

January 30, 1992 34

incorporates a notion of preemption based on priority, synchronization and resource utiliza-

tion. This prioritized equivalence is also a congruence (Theorem 5.4), which leads to the

compositionality of our proof system. Thus we can prove correctness for a real-time system by

modularly reasoning about its subsystems, the usefulness of which was shown in Section 7.

This work can serve as a departure point for several areas of research. For example, it

may be argued that strong bisimulation yields an equivalence that is too fine-grained; that is,

i t distinguishes between processes that may, in fact, behave identically in most "reasonable"

operating environments. Perhaps there are weaker notions of equivalence that can also ade-

quately characterize both resource constraints and priority. While observational congruence

(Milner, 1989) suggests itself as a candidate, it fails to quantify the passage of time in an

appropriate manner. Of more help may be a semantics based on a testing preorder (DeNicola

and Hennessy, 1983), which would also result in a notion of process containment. Yet it is not

immediately clear how a testing equivalence can be extended to accommodate the interaction

between priority, resource utilization and synchronization.

Also of interest is a more general axiomatization of the operators; in particular, perhaps d

can be extended to accommodate a limited class of recursion. In (Milner, 1989a), observational

congruence is axiomatized for finite state, CCS terms. If a similar ,technique could be used for

CCSR terms, it would significantly enhance the applicability of the proof system.

Acknowledgements

We gratefully acknowledge the anonymous referees, whose comments significantly con-

tributed to the quality of this paper. We are particularly indebted to referee A, who directed

us to a substantial body of related work on the semantics of priority.

January 30, 1992 35

A Proof of Theorem 5.1

Property 1 is obvious from Definition 5.2; that is, the transition relation "+," is a subset

of "+". Property 2, however, requires a thorough case analysis over the structure of CCSR

terms.

Case 1: E = El + E2 for some E1,E2 E £. Then either ChoiceL or ChoiceR may have
A A

been the derivation rule used; that is, either El - E' or Eg - El. Without loss
A

of generality, assume that the former is true. If we do not have that El -, El, then
A'

there is some A' E D, EN E & such that El - EN, with A 4 A'. But then by ChoiceL,
A' A

El + E2 - El', which violates the fact that E -, E'.

Case 2: E = El .7E2. Then only the Parallel rule may be used, which implies that E' is of

the form E: Ei for some E:, E i E 27. Further, there are A1, A2 E 2) such that A = Al * AS,

A 1 A2
We must prove that El -, E: and E2 -, Ei. To the contrary, assume it is false

A 1 A;
that El -, E:. Then there is a A; E D and Ey E C such that El - EF with A1 < A;.

By definition 5.1, p(Ai) = p(A1), and thus, p(Ai) C I ; as well as p(Ai) n p(A2) = 0. And

since unres(Ai) = unres(A1) and s y n ~ (~ ~ ~) (A ~ * A2), we also have that ~ync(~,,~)(A; * A2).
A: +A2

But these are exactly the side conditions required for El 11 E2 - E; I(J E i . Now, since

.r.es(Ai) >, res(Al), we have that

Also, p(Al * A2) = p(Ai * A2) and unres(A1 * A2) = unres(Ai * Az), so (A1 * A2) 4 (A: * A2).
A 1

But this contradicts our original assumption. So, El -, E: and by a similar argument,
A2

E2 -?r Ei.
Case 3: E = El A: (E2, E3, E4) for some El, E2, E3, E4 E &. The proof is similar to case 1.

Case 4: E = F \ C for some F E &, C E B(C). Then the Hiding rule is the only one that
A

can derive F \ C - El, where E' must be of the form F1\C for some F' E f. By the
B

premises of the rule, there exist some B E 2) such that F - F', and further, fullsync(C),

f ullsync(B fl C) and A = 4 h i d e (~) (B) -

January 30, 1992 36

B
What we must prove is that F -, F'. To contradict, assume there exist B' E V ,

B ' $ h i d e (~) (B ')
F" E C such that B 4 B' and F - FN. We shall proceed to show that F \ C -
F1'\C. Now, we know that fullsync(B n C) holds; thus unres(B) n C = 0. Since by defini-

tion 5.1, unres(B1) = unres(B), to show fullsync(B1 n C) holds we only need to show that

f ullsync(res(B1) fl C) holds. But,

and thus, fullsync(res(B1) n C) holds. Line (1) follows from the definition of "res", line (2)

follows directly from the definition of "Connections", while line (3) distributes the intersection

across the unions. Line (4) uses the fact that connectivity is an equivalence relation, and

thus, connection sets are mutually disjoint. Thus, because C = Connections(C), if there is

some b E res(B1) such that connections(b) n C # 0, then connections(b) 5 C. And since

b E connections(b), b E (res(B1) n C holds as well. Lines (5) and (6) are simply restatements

of line (4).
A'

Now letting A' = g5hide(C)(B'), we have satisfied the conditions for the transition F \ C -
F1'\C. Since unres(B) fl C = 8 , by the definition of 6hide(c) , unres(A) = unres(B). Similarly,

unres(A1) = unres(B1) and thus, unres(A) = unres(A1). Finally, since $hide(C) preserves

both resources and priority, A 4 A'. But this contradicts our original assumption.

Case 5: E = [FII, where F E & and I C_ R. Then the only action rule that applies is Close,
B

which implies there are F' E C, B E D such that F - F' and A = B U (q - I,qB,).
B

We must show that F -, F'. To contradict, assume that there exists B' E D, F" E &
B '

such that B 4 B' and F - F". Then by definition 5.1, p(B) = p(B1), unres(B) =

unres(B1) and res(B) <, res(B1).

Now since p(B) c I and p(B) = p(B1), we have p(B') I. Thus by the Close rule,
A'

[FII - [F"II, where A' = B'U (p - T(Bi)) . We shall proceed to show that A 4 A'. First

note that p(A) = p(A1) = I. Also, since ip-T(B, is fully synchronized, unres(A) = unres(B);

similarly, unres(A1) = unres(B1), and thus unres(A) = unres(A1). Finally,

res(A) = res(B) U - T (B) , and

res(A1) = res(B1) U - T(,.,.

January 30, 1992 3 7

But because - T(B) = - T(B,), and since res(8) <, res(B1), we have shown that

res(A) <, res(A1). But this means that A 4 A', contradicting the original assumption that
A B

[FII -, [F1II. So, F - F'.
A

Case 6: E = f iz(X.F) for some F E C. Then F[fix(X.F)/X] - E' is the sole premise
A

that derives the inference fix(X.F) - El. So assume there are F' E £, B E 2) such that
B B

A 4 B and F[fix(X.F)/X] - F'. But then fix(X.F) - F', which contradicts the
A

fact that fix(X.F) -, El.

B Proof of Theorem 5.4

Proof o f Theo rem 5.4(1): We claim that

is a strong bisimulation on (C, +,,V). Since "w," is the largest bisimulation, if r satisfies

Definition 5.3, then r Cw, and thus, r =w,.

By the definition of "N,", if (P,Q) EN,, they are bisimilar. So assume that there exists

(A : P, A : Q) E r such that P w, Q. Properties 1 and 2 of Definition 5.3 follow directly from
A A

that fact that i) A : P -, P is the only transition possible for A : P, ii) A : Q -, Q

is the only transition possible for A : Q and iii) P w a Q.

Proof o f T h e o r e m 5.4(2a): We claim that

is a strong bisimulation on (f , +, , V).

Trivially, by the definition of "w,", if (P,Q) EN,, they are bisimilar. So assume that there

exists (P + R, Q + R) E r such that P w, Q. TO prove property 1 of definition 5.3, assume

A
(t) P + R -, $1

A A
By Theorem 5.1, either P -, S1 or R -, S1.

A
Case 1: Let P -, S1. Since P N, Q, i t follows that there exists some S2 E P such

A A
that Q -, S2 with S1 -J, S2. Thus we must show that Q + R -, S2, and the proof

of property 1 will be complete for this case. For the sake of contradiction, assume there exist
A' A

A' E V , S3 E P such that A 4 A' and Q + R - S3. Since Q -, S2, it is impossible that
A' A' A'

Q - S3; thus we must have R - 5'3. But then P+ R - S3, which contradicts (t).
A A

Case 2: Let R -, S1. This implies, by the ChoiceR rule, that Q + R - S1. So it
A

remains to be shown that Q + R -, S1. On the contrary, assume that there exist A' E D,

January 30, 1992 38

A' A
S2 E P such that A 4 A' and Q + R - S2. Since R -, Sl, it is impossible that

A' A'
R - SP, SO it must be true that Q - S2. By Theorem 5.2, there exist A" E V, S3 E P

A"
such that Q - S3 with A' 5 AN; i.e. A 4 AN. SO, since P N, Q, there is some Sq E P

A" A" A"
such that P -, Sq. It follows that P - Sq, and by the ChoiceL rule, P+ R - S4,

which contradicts (t).

This completes the proof of property 1 of 5.3. A symmetric argument shows that r adheres

to property 2; thus r is a bisimulation.

Proof of Theorem 5.4(3a): We claim that r = {(PzI(jR,QzII j R) I P N, Q A R E P) is

a strong bisimulation on (C, +,, 23). By definition, (PzII j R, Q j R) is in r. To prove that r

satisfies property 1 of definition 5.3, assume there exist P', R' E P, A E 2) such that

A
It suffices to show that for some Q', Qzl l jR -, Q'zIIjR' and that P' N, Q'. Then by

-41 A2
Theorem 5.1 we have that P -, P' and R -, R', where p(A1) C I, p(A2) C J and

A = Al *A2.
AI

Now because P N, Q, we have that Q -, Q', with P' N, Q'. TO finish showing that
A

r enjoys property 1 of definition 5.3, we must prove that Q j R -, Q'zI(JR'. Obviously

part 1 of definition 5.2 is satisfied, so assume part 2 is violated. That is, assume there is some
A'

A' E V, Q",RN E P such that QzlljR - Q"zIIjR" with A 4 A'. Then by Theorem 5.2,
A"

we know there exist some A" E V, Q"', R'" E P such that Q j R ----), Q"'zII j RN' with

A' 5 A", and hence A 4 AN.
A:'

Again invoking Theorem 5.1, there are A?, A; such that A" = Ay * A; with Q -, Q1",
A; A :'

and R -, R"'. And since P N, Q, there is also some P"' E P such that P - P'". But
A"

this implies that Pzll j R - P"'zII j R'" with A < A", again contradicting our assumption
A

(t). So Qzll j R -, QfZII j R' and the proof of property 1 is complete. By a symmetric

argument, r satisfies property 2 in definition 5.3, and so r is a bisimulation.

Proof of Theorem 5.4(4a): We show that

is a strong bisimulation, where IdE is the syntactic identity relation.

Assume that (UI, U2) E r . Certainly if (Ul, U2) E IdE, Ul and U2 are bisimilar. So

consider the case where Ul = P A: (R, S,T), U2 = Q A: (R, S, T), and further, assume that
A

Ul -, Ui for some A E V , Ul E P.

Case 1: The ScopeC rule was used to derive the transition. That is, there is some P' E P
A

such that P - PI, with t > 1, J $ A, and with Ui = P' (R, S,T). By Theorem 5.1,

January 30, 1992 39

A
we have that P -, P', and since P N, Q, we know there is some Q' E P such that

A A
Q -, Q'. This allows us t o use the same ScopeC rule to derive that U2 -----t Ui, where

U; = Q' A:-, (R, S,T). And since (U;, U;) E r , it remains t o be shown that the transition is
A

prioritized; i.e., that U2 -, U;.
A'

However, assume that there is some A' E V, U[E P such that U2 - Ul, with A < A'.

Certainly the ScopeC or ScopeT rules could be used to derive this transition, as it would be
A'

necessary t o have that Q - Q" for some Q" E P. This would be a violation of the fact
A

that Q -, Q'. If the transition were derived by the ScopeE rule, there would be some
A'

A" E V, Q" E P such that Q - Q", and that A' = A" * B. But recall that B = 0 or { J),

and thus, p(A") = p(A1), unres(AU) = unres(At), and res(AN) = p res(At). And this means
A

that A 4 A", which would again contradict the fact that Q -, Q'. Finally, if the ScopeI

rule were the one to derive the transition, it would imply that there is some T' E P such that
A' A'

T - TI. However, this would mean that Ul - TI, which would be a violation of our
A

initial assumption that Ul -, Ui.

Cases 2-4: The ScopeE, ScopeT, or ScopeI rules were used to derive the transition. The

proofs for are all similar to that of Case 1, except for the fact that (Ui, Ui) E IdE.

Before proving case (5), we require the following lemma.

Lemma B.l Assume there exist A E P(C), C E V, P, P' E P such that fullsync(A),
C B

fullsync(C fl A) and P -, P'. Then P \ A -, P'\A, where B = dhide(A)(C).
C C

Proof: First, since P -----t, PI, it follows that P - PI. Thus by the Hiding rule,
B

P \ A --+ Pt\A. To show that B is maximal with respect to "+", assume there exists some
B '

B' E 27, R E P such that B + B' and P \A - R. Again employing the Hiding rule, we

know that R is of the form PU\A for some P" E P. Further, there is some C' E V such the
C'

P - PI, fulksync(C1 n A) and B' = dhide(A)(C').

Since q5hide(A) neither shrinks or add resources, and since, by definition 5.1, p(B) = p(B1),

we have that p(C) = p(C'). Also by definition 5.1, unres(B) = unres(B1). Now, since

fullsync(C n A), we are guaranteed that unres(C) n A = 0, and thus by the definition of

q5hide(A), unres(C) = unres(B). Similarly, unres(C1) = unres(B1), and so, unres(C) =

unres(C'). Finally, since dhide(A) preserves priority, C I p C', which means that C < C'. But

this contradicts the assumptions of the lemma.

Proof of Theorem 5.4(5): We shall proceed to show that

January 30, 1992 40

is a strong, prioritized bisimulation. To prove property 1 of definition 5.3, assume there exist

B E V, R E P such that
B

P\A -, R

By Theorem 5.1, there exist C E V, P' E p such that R = P'\A, B = 4hide(A)(C), with
C

P -, PI. Further, by the Hiding rule, we have that f ullsync(A) and fullsync(C fl A).
C

Since P N, Q, there exists some Q' E P such that Q ----+, Q' with P' N, Q'. SO
B

by Lemma B.l, Q\A -, Qf\A, and the proof of property 1 is complete. A symmetric

argument shows that r satisfies property 2 of definition 5.3.

P roo f o f T h e o r e m 5.4(6): We shall show that

is a strong prioritized bisimulation. To show that r satisfies property 1 of definition 5.3, assume

that there exist A E V, R E P such that

Then by Theorem 5.1, there are B E V , P' E P such that R = [PfII, and A = B U (3' - Z B ,) .
. .

B
Since P N, Q, there exists some Q1 E P such that Q -, Q' with P' N, Q'. TO finish the

A
proof of property 1, we must show that [QII -, [Q1II.

A
Certainly [QII - [QfII by the Close rule, so assume A is not maximal. That is, let

A'
there be some A' E V, R' E P such that A < A' and [QII ---+ R'. By Theorem 5.2,

A "

there are A" E V, R" E P such that [Q] -, R" with A' 5 A"; i.e., with A 4 A". So,
B"

by Theorem 5.1, there exist B1' E V, Q" E P such that R" = [Q1'II, Q -, &I1, and

B "

But again, since P N, Q, there is some PI' E P such that P -, P". Since this implies
B " A"

that P - PN, by the Close rule, [PII - [P"II, which contradicts (t). So the proof of

property 1 of definition 5.3 is complete, and property 2 is proved by symmetrically.

P roo f o f T h e o r e m 5.4(7): We show that

is a prioritized bisimulation up to "N,". The result then follows by taking G - X . So we

prove by induction on transition inference that

A
1. Whenever G[f ix(X.E)/X] -, PI, 3Q1, &'I E P such that

A
G[fix(X.F)/X] -, Q" with Q' Nn Q" and (P',Qf) E r.

January 30, 1992

A
2. Whenever G[fix(X.F)/X] -, Q', 3P1, P" E P such that

A
G[fix(X.E)/X] -, P" with P' N, P" and (PI, Q') E T .

To prove that direction 1 holds, assume that (G[fix(X.E)/X],G[fix(X.F)/X]) E T and fur-
A

ther, that G[f ix(X.E)/X] -, PI. We perform a case analysis on some possible forms that

G may take (we omit the simpler cases).
A

Case 1: G = X . So, fix(X.E) -, PI. So by the Recursion rule and Theorem 5.1,
A

E[f ix(X.E)/X] -, P'. Since this is a shorter inference, by induction we have that 3Q1, Q"
A

such that E[fix(X.F)/X] -, Q", with Q' N, QN and (P1,Q') E T . But since E N, F, by
A

Definition 5.4 3Q'" such that F[fix(X.F)/X] -, Q'", with Q'" N, Q". Thus Q'" N, 4'.
A A

Then by again employing the Recursion rule, fix(X.F) - Q"'. But f ix(X.F) -, Q'"

as well, since any derivative of f ix(X.F) is also a derivative of F[f ix(X.F)/X].

Case 2: G G GIzII jG2 . Since substitution distributes over Parallel composition, we have
A

that Gl [f ix(X.E)/X] zIIJG2[f ix(X.E)/X] -, PI. By the Parallel rule and Theorem 5.1,
A1 A2

there are A1,A2 E V , Pi, Pi E P such that Gl[fix(X.E)/X] -, P:, G2[fix(X.E)/X] -,
Pi, with A = A1 * A2 and P' = Piz((j Pi. Further, A1 and A2 obey the side conditions of the

rule.

Since both of these transitions are derived by shorter inference, by induction we have

Q', , Q?, Q',, Q',' such that

A
So, Gl [f ix(X.F)/X] jG2[f ix(X.F)/X] - Qyr((jQ','. Also, since parallel composition

preserves "N," (parts (3a)-(3b) above), we have that QyzI(jQ',' N n Qi I J J J Q ~ . And since

substitution distributes over composition, it follows that (Pi Z I J J P i , Q: ZI~JQ' ,) E T .
A

So we must show that Gl[fix(X.F)/X] z J (j G2[fix(X.F)/X] ----+, Q;IIIIJQ;. Assume

the contrary, i.e., there are A' E 'D, Qy, Q y E P such that

with A 4 A'. Then by Theorem 5.2, we know there exist some A" E 'D, QY, Q y E P such that
A"

Gl[fix(X.F)/X]IIIJG2[fix(X.F)/X] -, Q y I I I j Q y , with A 4 A' 4 A". Then by the
A i'

Parallel rule and Theorem 5.1, there are A:, A$ E V such that GI [f ix(X.F)/X] -, Qy,
A:'

G2[fix(X.F)/X] -, Q',N', with A" = A; * A:.

January 30, 1992 42

Further, since these transitions are derived by shorter inference we can invoke the induction

hypothesis to claim there are Pr, Pr, P;, Pr
A:'

GI [f ix(X.E)/X] -, Pf Pf N, Pr (P r , Qljll) E r
A;'

G2[fix(X.E)/X] -, P; P; -J, Pr (P r , Q y) E r

A"
But then by the Parallel rule, GI [f ix(X.E)/X] 111 j G2[f ix(X.E)/X] - PFIII J P;; but

since A 4 A", this contradicts our original assumption.
A

Case 3: G = fix(Y.H), where Y # X . So (fix(Y.H))[fix(X.E)/X] -, PI. Since Y

does not occur in E, we manipulate substitutions to get that

Then by the Recursion rule and Theorem 5.1, we have that

A
Again rearranging substitutions, it follows that (H [f ix(Y.H)/Y])[f ix(X.E)/X] -, P'.

So employing the induction hypothesis, there are Q1, Q" such that

with Q' -, Q" and (PI, Q') E r. Manipulating substitutions in the opposite direction, we have

A
(H[f ix(X.F)/X])[f ix(Y.(H[f ix (X.F) /X])) /] -, Q".

A
So by Recursion (and an argument similar to case I), fix(Y.(H[fix(X.F)/X])) -, Q".

A
Finally we manipulate substitutions t o derive that (f ix(Y.H))[f ix(X.F)/X] -, Q". Kl

C Proof of Theorem 6.1

Within the proof of Theorem 6.1 we make use of the following notation: For any set A C,

AJ means A U { J).

J Lemma C.l For any I E R, if s y n ~ (~) (A) , then for any I' C I, ~ y n c (~ ~) (A n XI,).
J Proof: By the definition of sync(^), A = Connections(A) n Cz . So, since I' I ,

January 30, 1992 43

J J J We must show that A n B$ = Connections(A n XI.) n Ex.. To do so, assume that a E A n CI..
J J J But then a E Connections(A n c$), and since a E XI., a E Connections(A n Cp) n CIl. To

J prove the "2" part, assume that a E Connections(A n Er') n c$. Since

J J we have that a E Connections(A) n CIl, and thus, a E A fl Ex,.

Proof of Par(3): We claim that

is a strong bisimulation on (I, +, 2)). To prove that r satisfies property 1 of definition 5.3,

assume there exist PI, Q', R' E P, A E D such that

By the definition of Parallel composition we have that:

A I AJ AK
($) P - PI, Q - Q', R - R'

where p(Ar) & I, ~ (A J) 5 J , p(AK) C_ K, and A = AI * AJ * AK. Also, we know that
J s y n ~ (~ ~ ~ , ~) (A) , and thus by by lemma C.l, ~ y n c (~ , ~) ((A ~ * AJ * Ah') n CJUK). But since I,

J and Ii are mutually disjoint,

It is easy to verify that sync(juK)(AI * AJ) holds if and only if sync(juK)((AI * A J) - { J))
A J*AK

holds. Thus, with ($), we have that Q j (IKR - QtJIIKR'. Also, with ($), as well as the

fact that s y n ~ (~ ~ ~ ~ ~) (A) , we find that:

A
It remains to be shown that P I I I (J~~) (Q jIIK R) -n P'III(JUK) (&I jIIK R1). TO the con-

trary, assume there is some A' € D, P",Q", R" E P , such that A + A' and

But then, by the same argument as that above,

January 30, 1992

which contradicts (i). Finally, since

the proof of property 1 is complete. By a symmetric argument, r satisfies property 2 in

definition 5.3, and so r is a bisimulation.

Proof of Par(4): We claim that

is a strong, prioritized bisimulation, where I d E is the identity relation on CCSR terms. Ob-

viously I d E is such a bisimulation; thus to show that r satisfies property 1 of Definition 5.3,

assume there exist P', S E P, A E 2) such that

A 1 A2
Then there are A1 C CI, Aq C C j such that P -, PI, Q + R - S , and A = Al * Az.

Az -42
So by the Choice rules, either Q - S or R - S.

Without loss of generality, assume the former case. By applying the Parallel rule, we have
A

P J Q ----f P'zll J S, and by applying the ChoiceL rule,

A
So we must show that (PzII JQ) + (PzllJR) -, PtzIIJS. TO contradict, assume there are

P", St E P, A' E 2) such that A 4 A' and

A' A'
But by the Choice rules, either P z J J J Q - P"IIJJSt or P z l l ~ R - P"zIIJS'. Again

without loss of generality, assume the latter case. Then there are A: C CI, A', C j such
A: A; Ab

that P - P" and R - S'. By the ChoiceR rule, Q + R - S', and thus by the
A'

Parallel rule, Pz I (j (Q + R) - P"zIIJS'. But this contradicts (t), and so (PzIIJQ) +
A

(PzIIJR) -, P'IIIJS. Since (P ' r l l~S , P'zIIJS) E I d & C r , the proof of property 1 is

complete.

The proof of property 2 is similar.

Proof of Hide(2): We show that

is a strong prioritized bisimulation. We shall prove that r satisfies property 1 of definition 5.3;

the proof for property 2 is similar.

January 30, 1992 45

Since IdE is a bisimulation, to show that T satisfies property 1, assume there exist R E P ,

A E cD such that
A

(t) (P+Q)\B-=R

By the Hiding rule, we know that R is of the form S \ B for some S E P. Also, there exists
C

some C E 2) such that P + Q - S, fullsync(C n B) and that A = 4hide(B)(C). Thus
C C

by the Choice rules, either P - S or Q - S. Without loss of generality, assume the
A

former case. Then once again applying the Hiding rule, we have that P \ B - S\B. So by
A

the ChoiceL rule, P \ B + Q \ B - S\B, or equivalently,

A
We must show that P \ B + Q\B -, R. To contradict, assume there are A' E 'D, R' E P,

A' A'
such that A 4 A' and P \ B + Q \ B - R'. By the Choice rules, either P \ B - R' or

A'
& \ B - R'.

Assume the first case is true (the proof for the second case is equivalent). By the Hiding rule,
Ci

R' is of the form S'\B for some St E P. Further, there is some C' E 'D such that P - S'
Ci

with fullsync(C'nB) and A' = +hide(B)(C'). Then by the ChoiceL rule; P + Q - St, and by
A' A

the Hiding rule, (P + Q)\B - Sr\B. But this contradicts (t), and so, P\B + Q\B -,
R. Since (R, R) E T , the proof of property 1 is complete.

January 30, 1992

References

ARNOLD, A. (1982), Synchronized behaviours of processes and rational relations, Acta Infor-

matica 17, 21-29.

BAETEN, J., BERGSTRA, J., A N D KLOP, J. (1987), Ready-trace semantics for concrete

process algebra with a priority operator, Computer Journal 30, 6, 498-506.

BARRETT, G. (1990), The semantics of priority and fairness in Occam, in "Proc. of 5th Int.

Conf. Math. Foundations of Programming Semantics," Lecture Notes in Comput. Sci.

Vol. 442, Springer-Verlag, Berlin.

BEST, E., A N D KOUTNY, M. (1992), Petri net semantics of priority systems, Theoretical

Computer Science (to appear).

CAMILLERI, J., A N D WINSKEL, G. (1991), CCS with priority choice, in "Proc. of IEEE

Symposium on Logic in Computer Science," IEEE Computer Society Press, Los Alamitos.

CLEAVELAND, R., A N D HENNESSY, M. (1990), Priorities in process algebras, Information

and Computation 87, 58-77.

FRANCEZ, N., LEHMANN, D., A N D PNUELI , A. (1984), A linear history semantics for dis-

tributed programming, Theoretical Computer Science 32, 25-46.

GERBER, R. (1991), "Communicating Shared Resources: A Model for Distributed Real-Time

Systems," PhD thesis, Department of Computer and Information Science, University of

Pennsylvania.

HOARE, C. (1978), Communicating sequential processes, Communications of the ACM 21,

NO. 8, 666-676.

HOARE, C. (1985), "Communicating Sequential Processes," Prentice-Hall, Englewood Cliffs.

HOOM A N , J. (199 I), "Specification and Compositional Verification of Real-Time Systems ,"
PhD thesis, Eindhoven University of Technology.

HUIZING, C., GERTH, R., A N D D E ROEVER, W. (1987), Full abstraction of a denotational

semantics for real-time concurrency, in "Proc. 1 4 ~ ~ ACM Symposium on Principles of

Programming Languages," pp. 223-237, ACM Press, New York.

JANICKI, R . (1987), A formal semantics of concurrent systems with a priority relation, Acta

Informatica 24, 33-55.

January 30, 1992 47

JANICKI, R., LAUER, P., KOUTNY, M., AND DEVILLERS, R. (1986), Concurrent and maxi-

mally concurrent evolution of nonsequential systems, Theoretical Computer Science 43,

213-238.

KOYMANS, R., SHYAMASUNDAR, R., D E ROEVER, W., GERTH, R., A N D ARUN-KUMAR, S.

(1988), Compositional semantics for real-time distributed computing, Information and

Computation 70, 210-256.

LAMPORT, L. (1984), What it means for a concurrent program to satisfy a specification:

why no one has specified priority, in "3rd ACM Symposium on Principles of Distributed

Computing," ACM Press, New York.

LEE, I., A N D GEHLOT, V. (1985), Language constructs for distributed real-time program-

ming, in "Proc. IEEE Real-Time Systems Symposium," IEEE Computer Society Press,

Los Alamitos.

LYNCH, N., A N D TUTTLE, M. (1988), "An Introduction to Input/Output Automata," Tech.

Rep. MIT/LCS/TM-373, Laboratory for Computer Science, Massachusetts Institute of

Technology.

MILNER, R. (1980), "A Calculus for Communicating Systems," Lecture Notes in Comput.

Sci. Vol. 92, Springer-Verlag, Berlin.

MILNER, R. (1983), Calculi for synchrony and asynchrony, Theoretical Computer Science 2 5 ,

267-310.

MILNER, R. (1989) "Communication and Concurrency," Prentice-Hall, Englewood Cliffs.

MILNER, R. (1989a) A complete axiomatisation for observational congruence of finite-state

behaviors, Information and Computation 81, 227-247.

DENICOLA, R., A N D HENNESSY, M. (1983), Testing equivalences for processes, in "Proc. of

Int. Conf. on Automata, Languages and Programming," Lecture Notes in Comput. Sci.

Vol. 154, pp. 548-560, Springer-Verlag, Berlin.

OKULICKA, F. (1990), On priority in cosy, Theoretical Computer Science 74, 199-216.

PARK, D. (1981), Concurrency and automata on infinite sequences, in "Proceedings, 5th GI

Conference," Lecture Notes in Comput. Sci. Vol. 104, Springer-Verlag, Berlin.

PLOTKIN, G. (1981), "A Structural Approach to Operational Semantics," Tech. Rep. DAIMI

FN-19, Computer Science Dept., Aarhus University.

January 30, 1992 48 .

SALWICKI, A., A N D M ~ L D N E R , T. (1981), On the algorithmic properties of concurrent pro-

grams, in "Proceedings of Logic of Programs," Lecture Notes in Comput. Sci. Vol. 125,

Springer-Verlag, Berlin.

	A Resource-Based Prioritized Bisimulation for Real-Time Systems
	Recommended Citation

	A Resource-Based Prioritized Bisimulation for Real-Time Systems
	Abstract
	Comments

	tmp.1196283599.pdf.VN6zn

