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Abs t r ac t  

The behavior of concurrent, real-time systems can be specified using a process algebra 

called CCSR. The underlying computation model of CCSR is resource-based, in which 

multiple resources execute synchronously, while processes assigned to the same resource 

are interleaved according to their priorities. CCSR allows the algebraic specification of 

timeouts, interrupts, periodic behaviors and exceptions. This paper develops a natural 

treatment of preemption, which is based not only on priority, but also on resource utilization 

and inter-resource synchronization. The preemption ordering leads to  a term equivalence 

based on strong bisimulation, which is also a congruence with respect to the operators. 

Consequently the equivalence yields a compositional proof system, which is illustrated in 

the verification of resource-sharing, producer-consumer problem. 
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1 Introduction 

The timing behavior of a real-time system depends not only on delays due to  process syn- 

chronization, but also on the availability of shared resources. Most current real-time models 

adequately capture delays due to process synchronization; however, they abstract out resource- 

specific details by assuming idealistic operating environments. On the other hand, scheduling 

and resource allocation algorithms used for real-time systems ignore the effect of process syn- 

chronization except for simple precedence relations between processes. What is needed is a 

theory that combines the areas of formal specification and real-time scheduling, and thus, can 

help us reason about systems that are sensitive to  deadlines, process interaction and resource 

availability. 

Our approach to this problem is a process algebra called the Calculus for Communicating 

Shared Resources, or CCSR. The CCSR computation model reflects a resource-based philos- 

ophy regarding real-time concurrency. Within this approach, a real-time system is composed 

of one or more resources, each of which is inherently sequential in nature. Thus, while many 

processes may share a single resource, at any point in time, a resource only has the capacity 

to execute a solitary event from one of the processes. This constraint quite naturally leads to 

an interleaving notion of concurrency at the resource level of the system. A priority ordering 

is used to arbitrate between simultaneous resource requests. At the system level, lock-step 

parallelism occurs when a group of resources are executed simultaneously. 

Strongly influenced by SCCS (Milner, 1983), CCSR is a process algebra that uses a syn- 

chronous form of concurrency, and possesses a term equivalence based on a prioritized version 

of strong bisimulation (Park, 1981). The development of the equivalence relation mandates 

a treatment of preemption based not only on priority, but also on resource utilization and 

inter-resource synchronization. 

The challenge of suitably defining preemption can be illustrated by a small example. Con- 

sider a process P, which is hosted on some resource r. Assume that during its first time unit 

P may either execute a?  and move to  a state PI ,  execute b? and move to  a state PI ,  or idle 

and re-enable P. In the CCSR language, the process P is rendered as follows: 

P kf {a?} : PI + {b?} : p2 + 0 : p 

Also, assume a synchronization paradigm similar to  that of CSP (Hoare, 1985); i.e., a?  or 

b? may execute if and only if there is a simultaneous occurrence of a! or b!, respectively. The 

actual first execution of P depends heavily on the context in which it is placed. Factors include 

whether the context offers either a!, b! or both events, the priorities of a?,  b?, a! and b!, or 
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whether P may be blocked by another process that requires its resource (in which case the idle 

branch would be taken). In defining an adequate notion of preemption, we must consider all 

of these factors. 

As we show in this paper, our preemption ordering leads to  several desirable properties, 

not the least of which being an equivalence which is also a congruence. Based on these results, 

we have developed a compositional proof system for CCSR, which facilitates the algebraic 

verification of real-time systems. 

The remainder of this paper is organized as follows. In Section 2 we develop our computa- 

tion model. In Section 3 we introduce the CCSR language, and provide its informal semantics. 

Then, in Section 4, we motivate our theoretical treatment of CCSR by presenting a real-ti~ne, 

resource-sharing example whose correct temporal behavior depends on priority. In Section 5 

we develop CCSR's semantic theory, which we use in Section 6 to  present the proof system. 

Then in Section 7 we return to our example, and prove its correctness with respect to our 

proof system. In Section 8 we compare our approach to related research in the field, and in 

Section 9 we conclude, and remark on the significance of this work. 

2 The Computation Model 

The basic unit of computation is the event, which is used to model both local resource execution 

as well as inter-resource synchronization. When executed by a resource, each event consumes 

exactly one time unit. We let C represent the universal set of events. 

Since a system potentially consists of many resources, multiple events may occur at any 

time throughout the course of its execution. We call such occurrences actions, and they are 

represented by sets in P(C). As in SCCS (Milner, 1983), the passage of time is implicitly 

captured by a sequence of actions, where one clock "tick" corresponds to the execution of 

a single action. In general, we let the letters a,  b and c range over the event set C, and the 

letters A, B and C range over the action set P(C). Also, we let the letter $ range over renaming 

functions on C; that is, $ E C -+ C. We overload notation and extend such functions to sets 

in the usual way, where $(A) = {$(a) 1 a E A ) .  

Termination. The termination event, or "J", has the unique property that it is not "owned" 

by any particular resource. In the spirit of CSP (Hoare, 1985), if J E A for some action A, 

this means that the system executing A is capable of terminating. Also, J is a fixed point of 

all event renaming functions 4 E C -+ C; i.e., for all such 6, d(J) = J. 
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Resources and Actions. We consider individual resources t o  be inherently sequential in 

nature. That is, a single resource is capable of synchronously executing actions that consist, 

at most, of a single event. Actions that consist of multiple events must be formed by the 

synchronous execution of multiple resources. We denote R to represent the set of resources 

available to  a system, and let i, j, and k range over R. 

This notion of execution leads to a natural partition of C - {J )  into mutually disjoint 

subsets, each of which can be considered the set of events available to  a single resource. For 

all i in R we denote C; as the collection of events exclusively "owned" by resource i: 

This type of alphabet partitioning is similar to that found in the I/O Automata model (Lynch 

and Tuttle, 1988), where it is used to define a notion of fairness. However, here it is used to 

help mandate our resource-induced mutual exclusion condition. As we have stated, a single 

resource is capable of executing actions that consist of at most one event. Extrapolating this 

principle to a system of concurrent resources, the CCSR action domain is defined as follows: 

That is, an action executable by a CCSR term may consist of at most one event from each 

component resource. Here, "p(C)" denotes the set of finite subsets of C, and ''ISI" denotes the 

cardinality of a finite set "S". 

For a given action A, we use the notation p(A) t o  represent the set of resources that 

execute the events in A: p(A) = {i E R I Ci n A # 8 ) .  Note that since for all i, J $ Ci, 

P(A) = P(A - {dl).  

2.1 Priority 

At any point in time many events may be competing for the ability to  execute on a single 

resource. We help arbitrate such competition through the use of a priority ordering over C. 

There is a finite range of priorities a t  which events may execute. Letting mp be the maximum 

possible priority, we denote P R I  = (0,. . . , mp) mV as the set of priorities available to  events 

in the system. Thus we can order the events in C by a priority mapping ir E C + PR1.l 

Using n, we define the preorder "<.," that reflects the notion of priority over the domain 

'As one the referees has pointed out, the theory of CCSR remains valid even if we assume that event-wise 

priorities are partially ordered. 
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Figure 1: Example of the Priority Ordering, <, 

V. For all A, B E D, A 5, B if and only if for all i in p(A) U p(B), 

A n C ; = 0 v  

(3a. A n C; = {a) A n(a) = 0) V 

(3a3b. A n Ci = {a) A B n C; = {b) A n(a) 5 n(b)) 

Note that the first disjunct establishes that idling (i.e., the execution of no event) has the 

lowest priority on every resource. Also, the second disjunct accounts for the possibility that 

an event may have a priority of 0. 

Based on this definition, we use the notation "A <, B" to represent that A has lower 

priority than B; i.e., A 5, B and B $, A. 

Example 2.1 Consider the events a ,  b, c and d, where 

1. The resource mapping is: p({a, b)) = {rl) and p({c, d)) = ( ~ 2 ) .  

2. The event-wise priority is: n(a) < n(b) and n(c) < ~ ( d ) ;  

e.g., n(a) = 1, n(b) = 2, n(c) = 2 and n(d) = 3. 

Then Figure 1 illustrates the ordering between the different feasible actions that can by formed 

among these events. In the figure, the arrow "-" is transitive, as it represents the "<," 
relation. Thus the "8" action - denoting both resources in an idle state - has the lowest 

priority, while the {b,d} action has the highest. 
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2.2 Synchronization 

In CCSR, the lowest form of communication is accomplished through the simultaneous execu- 

tion of synchronizing events. The model treats such synchronizing events as being statically 

"bound" together by the various connections between system resources. To capture this prop- 

erty we make use of what we call connection sets. A connection set is a set of events that exhibits 

the "all or none" property of event synchronization: At time t ,  if any of the events in a given 

connection set wish to  execute, they all must execute. A familiar example of this concept can be 

drawn from CSP (Hoare, 1978), where the alphabet of events is {cl!, cl?, c2!, c2?, c3!, c3?, . . .), 
where "c;" is a channel, "c;!" is interpreted as a write action, and "c;?" is interpreted as a read 

action. When a read and a write occur simultaneously on the same channel, the communication 

is considered successful. The connection sets in such languages are simply {cl!, cl?), {c2!, c2?), 

etc. More formally, a connection set is an equivalence class formed by the equivalence relation 

"H". 

Definition 2.1 H C x C is an equivalence relation, where a ~ b  denotes that a is connected 

to b. We use the notation connections(a) to represent the equivalence class (or connection set) 

of a, and we stipulate that for all a E C, connections(a) E 'D. 

The reason for this last constraint is straightforward. If a set of events is fully connected, it 

should be able to  execute, and therefore be in the action domain. We note that this generalized 

notion of synchronization is similar to that found in Arnold (1982), in which a synchronized 

behavior is a set of events that must be executed simultaneously. 

Of course, if an event is used solely to model a resource's local computation, it need 

not synchronize with any other event in the system. Such events occupy their own (singleton) 

connection set. Also, the terminating event "$' belongs to its own connection set, as successful 

termination does not require the explicit synchronization of resources. 

We use the notation Connections(A) to  assemble all of the connection sets represented in 

A : 

Connections(A) = U connections(a) 
aE.4 

Thus, a set A is fully synchronized if it can be fully decomposed into a set of the connection 

sets (or it is empty). We use the predicate f ullsync(A) to represent this: 

f ullsync(A) iff A = Connections(A) 

Note that if A is fully synchronized, it requires no additional communicating partners. Ap- 

pealing to  the example of CSP, we would say that the action {a!, a?) is fully synchronized. 
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In the process of reasoning about a large system we often decompose it into smaller com- 

ponents, and then attempt to  reason about the components. For example, assume that such 

a subsystem is hosted on a resource set I, and that the subsystem executes some action A 

(i.e., p(A) E I ) .  When analyzing only the subsystem, we do not need to know that A is fully 

synchronized - indeed, more system resources may be needed to  achieve this result. Instead, 

we wish to  determine whether A is synchronized with respect to the resource set I ;  that is, 

whether s y n ~ ( ~ ) ( A )  holds, where 

s y n ~ ( ~ ) ( A )  iff A = Connections(A) n (UiEI Ci U { J))  

If s y n ~ ( ~ ) ( A )  holds, A cannot make any additional connections with the resources in I. 

Finally, it is often convenient to  decompose an action A into two parts: that which is fully 

synchronized (or resolved), and that which is not (or still unresolved). To do this, we make 

use of the following two definitions: 

Again using the CSP-like notation, if A = {a!, a?,  b!, b?, c!, d?), we have res(A) = {a!, a?,  b!, b?) 

and unres(A) = {c!, d?). 

2.3 Priority-Canonical Events 

In an unprioritized calculus such as SCCS (Milner, 1983), the idle action serves two distinctly 

different functions. One is to denote pure idling; for example, the SCCS term 1 : ( P  x Q) 

represents a process that idles for one time unit, and subsequently executes the term P x Q. 

On the other hand, the idle can also denote the combined actions of two communicating 

partners; e.g., the term ( a  : P )  x ( E  : Q )  is strongly equivalent to  1 : ( P  x Q); i.e., "pure" idling 

and successful communication are represented in the same manner. 

In a prioritized, resource-based algebra such as CCSR, it would be difficult to justify the 

abstraction of either priority or resource usage. For example, assume that at time 1 the 

process P executes the action { a ! , ~ ? ) ;  where fullsync({a!,a?}), n(a!) = 1, and n(a?) = 2; 

with p({a!)) = {rl} and p({a?)) = (7-2). 

Now assume that {a!,a?) could be abstracted from the behavior of P; that is, it could be 

mapped to the idle action 0 while preserving the same resource untilization. But then another 

process Q, concurrently running with P ,  could also utilize the resources r l  and r2 at time 

1. This would violate the defining principle of CCSR - that a resource may execute only one 
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event a t  a time. For a similar reason we do not abstract priority information from a system's 

behavior. 

While we are constrained by these limitations, we may still "hide" an event up to  its priority 

and resource usage. Note that these factors naturally partition C-{ J) into equivalence classes; 

that is, the events a and b are in the same class if and only if p({a)) = p({b)) and ~ ( a )  = ~ ( b ) .  

In CCSR, we use the symbol "r:" to denote a canonical representative event from each class, 

where T; is mapped to resource i and has priority n. 

Consider the difference between the actions "8" and "{T:)." While 0 =, {T:), an execution 

of 0 denotes that resource i (and, in fact, all other resources) have been released for use by 

other processes. On the other hand, an occurrence of {r:} denotes that resource i is being 

used. For example, if we were to hide some action {a), where a has a priority of 0 and is 

hosted on resource i, the result would be (7:). 

To implement this type of abstraction, we introduce a unique renaming function, +,, such 

that if p({a)) = i and ~ ( a )  = n, then +,(a) = 7:. It follows that the T; are fixed-points 

of priority renaming; that is, +,(r?) = T?. All such canonical representatives are local with 

respect to their own resources; that is, they belong to  their own connection sets. 

3 The CCSR Language 

The syntax of CCSR resembles, in some respects, that of SCCS. Let & represent the domain of 

terms, and let E ,  F, G and H range over f. Additionally we assume an infinite set of free term 

variables, F V ,  with X ranging over F V  and f ree(E) representing the set of free variables in 

the term E. Let P represent the domain of closed terms, which we call agents or alternatively, 

processes, and let P, Q, R and S range over P. The following grammar defines the terms of 

CCSR: 

E := N I L  I A : E  I E + E  I EzIIJE I E A : ( E , E , E ) ( [ E ] ~ J  E \A  I f i r (X.E)  I X  

We note that a CCSR term does not define the structure of its computation model; e.g., the 

resource set, the priority mapping and the connectivity relation. Rather, we consider the action 

domain to  be defined separately, and then a CCSR term inherits its characteristics. In Gerber 

(1991) we describe an implementation of the language, in which a configuration schema is used 

to  define elements such as D, T and t.. 

While we give a semantics for our operators in subsequent sections, we briefly present some 

motivation for them here. The term N I L  corresponds to  0 in SCCS - it can execute no action 

whatsoever. The Action operator, "A : E", has the following behavior. At the first time unit, 
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the action A is executed, proceeded by the term E. The Choice operator represents selection 

- either of the terms can be chosen to  execute, subject to the constraints of the environment. 

For example, the term ( A  : E )  + (B : F) may execute A and proceed to E, or it may execute 

B and proceed to  F. 

The Parallel operator EIllJ F has two functions. It defines the resources that can be used 

by the two terms, and also forces synchronization between them. Here, I C R is a set of the 

resources allotted to E, and J R is a set of the resource allotted to F. In the case where 

I n J # 0, E and F may be able to  share certain resources. But as we have stated, such 

resource-sharing must be interleaved. 

The Scope construct EA: (F, G, H )  binds the term E by a temporal scope (Lee and Gehlot, 

1985), and it  incorporates both the features of timeouts and interrupts. We call t the time 

bound and B the termination control, where t E N +  U {oo)  (i.e., t is either a positive integer 

or infinity), and B = { J) or B = 0. 
While E is executing we say that the scope is active. The scope can be exited in a number 

of ways, depending on the values of E ,  H ,  t and B. If E successfully terminates within time 

t by executing "$', then F is initiated. Here, if B = { J), the transition from E to F will 

retain its ability to  signal termination, while if B = 0, the entire construct will terminate only 

when F does. 

There are two other ways in which the scope may be exited. If E fails to terminate within 

t units, the "exception-handler" G is executed. Lastly, a t  any time throughout the execution 

of E, it may be interrupted by H, and the scope is then departed. 

As an example of the Scope operator, consider the following specification: "Execute P for 

a maximum of 100 time units. If P successfully terminates within that time, then terminate 

the system. However, if P fails to finish within 100 time units, at time 101 start executing R. 

At any time during the execution of P, allow interruption by an action {a?) which will halt 

P ,  and initiate the interrupt-handler S." This system may be realized by the following term: 

P  A:", (NIL ,  R, {a? )  : S). 

Now consider this specification: "Execute P for a maximum of 100 time units. If P 

successfully terminates within that time, "cancel" the termination and proceed to  &. If P  fails 

to finish within 100 time units, at time 101 start executing R." This specification yields the 
0 

following term: P Aloe (Q, R, NIL).  

We note that sequential composition may be realized by using the Scope operator. To 

sequentially compose E and F, we may use this term: E & (F, NIL ,  NIL).  

The Close operator, [Elr, denotes that the term E occupies exactly the resources represented 

in the index I. In addition, Close produces a term that totally utilizes the resources in I; that 
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def 
Producer1 = (S,({pl) : 62({intl!) : IDLE)))  ( N I L ,  Producerl, N IL )  

def 
Producer2 = ( 6 m ( { p 2 )  : 64({int2!) : IDLE)))  A', ( N I L ,  Producer2, N I L )  

def 
Consumer1 = 6,({intl?} : 6,({cl) : 6,({cl) : Consumerl))) 

def 
Consumer2 = 6,  ({intz?} : 6,({c2) : boo({c2) : Consumer2))) 

def 
System = [ (Producer1 ( 1 )  1){q Producerz) {1 ,2 )  ) ){3)  

  consumer^ (31 11{3) Consumer2) ]{1,2,3) 

Figure 2: Producer-Consumer System 

is, it prohibits further sharing of those resources. When we present the semantics of CCSR, 

we shall show exactly what this means. 

The Hiding operator E\A masks actions in E up to their resource usage and priority, in 

that while the actions themselves are hidden, their priorities are still observable. The term 

f i x (X .E)  denotes recursion, allowing the specification of infinite behaviors. 

4 An Example 

We present a time-critical, Producer/Consumer example that illustrates the interrelationship 

between resource-sharing and priority in CCSR. This example illustrates that in some real-time 

applications, a system's correctness can hinge on the ability to  implement priority. 

The system is composed of four agents: Producerl, Producer2, Consumerl and Consumerz. 

Also, there are three resources, which we call "resource I", "resource 2" and "resource 3"; 

Producerl is hosted on resource 1, Producer2 is hosted on resource 2, while Consumerl and 

Consumerz share resource 3. 

We use the following notation that facilitates a concise specification of our system. 

I D L E  ef 0 :  I D L E  

6 4 P )  drf { I D L E  i f t = O  

P + 0 : St_ l (P)  otherwise 

The I D L E  process executes indefinitely, without contributing any observable behavior. In 

f i t(P),  the initial action of P must execute within time t ;  otherwise the process goes into an 
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Resources: 

Resource 1: pl, inti! E C1 
Resource 2: p2, intz! E Cz 
Resource 3: inti?, intz?, cl ,  cz E Cg 

Connection sets: 

Inter-resource: {inti!, id l? ) ,  {intz!, int2?) 

Local: (~11 ,  (~21 ,  (~11, ( ~ 2 )  

Priorities: 

Resource l:7r(pl) = 1, n(intl!) = 0 
Resource 2:7r(p2) = 1, 7r(int2!) = 0 

Resource 3:7r(cl) = 3, 7r(c2) = 3, 7r(intl?) = 2, r(int2?) = 1 

Figure 3: System Resources, Connections and Priorities 

idle state. The timeout value t may range over N U {co}, i.e., if t = co, the execution of P 

may delay indefinitely. 

The producer-consumer system is shown in Figure 2. Producerl describes a periodic pro- 

cess, with a period of 6 time units. Within each period, the process decides when (or if) it 

should enter its "production" phase. That is, it "produces" for 1 time unit by executing the 

action {pl}. Then it attempts to interrupt Consumerl by executing the action {inti!). How- 

ever, if the interrupt is not accepted within 2 time units, Producerl goes into an idle state. 

If the interrupt is successful, the process idles for the remainder of the period. Producer2 

resembles Producerl except for one fact: its interrupt must be accepted within 4 time units. 

Consumerl waits indefinitely for Producerl to  issue its interrupt. Then it goes into a 

"digestion phase" for 2 time units, during which the action {cl) is executed. After the second 

execution of {cl}, Consumerl is restarted. Consumerz is the dual of Consumerl, in that 

int2? signals its consumption phase, and c2 marks its digestion phase. 

The configuration of the system is shown in Figure 3. Note that ~ ( i n t l ! )  = 0 and ~ ( i n t ~ ! )  = 

0; this means that the Consumers are solely responsible for "driving" the interrupts. Further, 

since .rr(intl?) = 2 and n(int2?) = 1, resource 3 "prefers" inti? over int2?. 

We informally state our correctness criterion as follows: During every six unit period, both 

producers must produce, and both consumers must consume. In Section 7 we formalize this 

property, and we use our set of laws to show that the system satisfies it. 
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5 An Operational Semantics 

In this section we present an operational semantics for closed terms, in the style from Plotkin 

(1981). We do this in two steps. First, we define a labeled transition system (&, +,D), which 
A 

is a relation +C & x V x E .  We denote each member (E,A,  F) of "+" as "E - F". 

We call this transition system unconstrained, in that no priority arbitration is made between 
A 

actions. Thus, if E F is in "+", i t  means that in a system without preemption 

constraints, a term E may execute A and proceed to  F. After presenting "+", we use it to 

define a prioritized transition system (£, +,,V), which is sensitive to preemption. This two- 

phased approach greatly simplifies the definition of "+,"; similar tactics have been used in the 

treatment of CCS priority (Cleaveland and Hennessy, 1990), and the definition of a maximum 

parallel semantics for Occam (Huizing, Gerth, and de Roever, 1987). 

Throughout, we use the following notation. For a given set of resources I R, we let 

C I  represent the set Ui,, E;. Also, A * B = (A - { J)) U (B - { J}) U (A n B); that is, the 

termination event "$' is an element of A t B if and only if i t  is in both A and B. 

5.1 Unconstrained Transition System 

Figure 4 presents the unconstrained transition system, "-+" . The rules for Action, Choice 

and Recursion are quite straightforward, as described in Section 3. The other rules, however, 

require some additional explanation. 

Parallel. The four side conditions define both the resource mapping and synchronization 

constraints imposed on terms that operate in a concurrent fashion. The first two conditions 

define the resources on which the terms El and E2 may execute. That is, A1 must be hosted on 

the resources denoted by I, while A2 must be hosted on the resources denoted by J. Moreover, 

the third condition stipulates that single resources may not execute more than one event at a 

time. 

The final condition defines our notion of inter-resource synchronization; that is, A1 and A2 

may execute simultaneously if and only if they are connected in the following sense: If some 

event a E A1 is connected to an event b E C J ,  then b must appear in A2, and vice versa. This 

synchronization constraint is a generalized version of that found in CSP. 

Scope. There are four rules for the Scope operator, corresponding to the four actions that 
A 

may be taken while a term E is bound by a temporal scope. Assume that E - E' with 

J $! A, and that t > 1. In such a situation, the ScopeC law is used to keep the temporal scope 

active; i.e., E' is bound by the scope with its time limit decremented to t - 1. On the other 

hand if J E A and t > 1, ScopeE is used. In this case the scope is departed by executing 
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A 
Action : A  : E  - E  

A A  
E  - E' F  - F1 

ChoiceL : A ChoiceR : A  
E + F - E l  E + F - F '  

Parallel : 
A1 A2 

El - Ei ,  E2 - Ei p(Al) c 1, p(A2) C J ,  
A1*A2 

El z I ( J E ~  - E: I ~ ~ J E ;  P ( A I )  n p(A2) = 0, s~nc(lu.T)(Al * A2) 

A  
E - E' 

ScopeC : A 
E  A: ( F ,  G ,  H )  - E' A:-, (F ,  G ,  H )  

( t >  1, J $ A )  

A  
E  - El 

ScopeE : A*B ( t  2 1, JE A)  
EA: (F ,G,H) -  F 

A  
E  - E' 

ScopeT : A ( t  = 1, , / $ A )  
EA: ( F , G , H )  -G 

A 
H  - HI 

Scope1 : A ( t  2 1) 
EA: ( F , G , H )  - H I  

A  
E  - El 

Close : A U ( T - ~ ~ ) )  ( ~ ( 4  G I )  

[Elz - [E'lz 

B  
E  - E1 

Hiding : d ' h i d e ( ~ ) ( ~ )  ( f  ullsync(A), f ullsync(A n B ) )  
E\A - E1\A 

A  
E[f  i x ( X . E ) / X ]  - E' 

Recursion : A 

f i x (X.E)  - E' 

Figure 4: Unconstrained Transition System 
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A * B,  at  which time F is initiated. By the definition of "t", if B = 0, then A * B = A - { J). 

That is, while E itself may terminate by executing A, the entire term will terminate when (or 

if) F does. But if B = {J), then A * B = A. This means that the entire term may terminate 

by executing A (recall the discussion in Section 3). 
A 

Now assume that E - E' such that J $ A, and that t = 1. Thus implies that the 

ScopeT rule must be used ("T" is for timeout). Here, the scope has "timed out", and thus, 

first A is executed, followed by the exception-handler G. Finally, the Scope1 rule shows that 

the term H may interrupt at any time while the temporal scope is active. 

Close. The Close operator assigns terms to  occupy exactly the resource set denoted by the 

index I. First, the action A may not utilize more than the resources in I ;  otherwise it is not 

admitted by the transition system. If the events in A utilize less than the set I ,  the action 

is augmented with the canonical, 0-priority events from each of the unused resources (see 

Section 2.3). For example, assume E executes an action A, and that there is some i E I such 

that i 6 p(A). In [Elz, this gap is filled by including r: in A. Here we use the notation 7; to 

represent all of the 0-priority events from the resource set J: = {T: I j E J). 
Close serves two important, and interrelated functions in the specification of CCSR pro- 

cesses. When a term E is embedded in a closed context such as [Elz, we ensure that there is 

no further sharing of the resources in I ;  that is, it excludes additional interleaving concurrency 

on these resources. As we show in Section 5.3, this results in an increased amount of priority 

arbitration, i.e., a small number of possible behaviors. 

Hiding. Assume that E executes an action B ,  and that fullsync(A) and fullsync(A n B) 

both hold. Then using the Hiding rule, E \A  executes an action that reduces the events in 

A n B to their "canonical77 priority representation, as described in Section 2.3. If A C C, we 

construct the function 4 h i d e ( ~ )  as follows. For all a in C, 

4 h i d e ( ~ ) ( ~ )  = 
otherwise 

Thus, +hide(A)(B) = ( B  - A)  U &(B f l  A); i.e., all of the events in B n A are mapped to their 

corresponding "canonical" events. 

The reason for this nonstandard hiding construction should be clear when viewed from the 

perspective of resource usage. As an example, let a, b E C;, with {a} and {b} as connection 

sets; i.e., both events are completely local to  resource i. Now let E = {a} : N I L  and F = 
0 

{b} : NIL.  In a more "standard" definition of hiding, E\{a) - NIL\{a}. In other words, 

all "a" is completely abstracted from the system behavior. But in this definition, we find 
{ b )  

that (E\{a)) {;) (I{;) F - (NIL\{a)) {;)(l{;) NIL.  This would violate the resource-based 
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execution model, in that two events from resource i, b and a,  would execute simultaneously. 

A 
Proposition 5.1 All terms in I are well-defined, in that if E E E and E - E', then 

A E V. 

The proof follows directly from the definition of the operators. 

5.2 Preemption 

The prioritized transition system is based on the notion of preemption, which unifies CCSR's 

treatment of synchronization, resource-sharing, and priority. The definition of preemption 

is straightforward. Let "+", called the preemption order, be a transitive, irreflexive, binary 

relation on actions. Then for two actions A and B,  if A 4 B, we can say that "A is preempted 

by B". This means that in all real-time contexts, if a system can choose between executing 

either A or B ,  it will execute B. In the terminology of our calculus this can be stated as 

follows: The term (A : E) + ( B  : F )  can be replaced by the term B : F if and only if A 4 B. 

Since such a replacement must be valid for all possible contexts, the relation "4" must be 

chosen rather judiciously. Of course, one such relation is a trivial one; that is, where A < B 

never holds for any actions A and B.  With this definition, no preemption would ever occur, 

and would lead to an unprioritized calculus. Instead we wish to  utilize our priority structure 

as much as possible and to do this we must make use of both local resource priority decisions, 

as well as synchronization constraints imposed by the environment. 

Definition 5.1 For all A E V, B E D, A 5 B if and only if 

The relation "5" defines a preorder over V, and we say A 4 B if A 5 B and B 2 A, i.e., 

p(A) = p(B) A unres(A) = unres(B) A res(A) <, res(B). 

We can intuitively argue that "4" is a sound notion of preemption (Theorem 5.4 is a formal 

statement of this fact). Assume that a term may execute either A or B (e.g., (A : E ) + ( B  : F)). 

First, if p(A) = p(B), contexts with resource constraints (such as Close and Parallel) will affect 

both A and B in the same manner. Next, if unres(A) = unres(B) (that is, the unsynchronized 

parts of A and B are identical), when the environment offers some event C, it will be able 

to synchronize with A if and only if it can synchronize with B. Finally, since res(A) and 

res(B) are hosted on the same resources and are fully synchronized, they will interact in an 

identical manner with all environments. Thus if res(A) <, res(B), we may maximize our 

priority arbitration and choose B over A. 
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We argue that any sound, nontrivial preemption order must make use of the three ingre- 

dients represented in Definition 5.1: resource utilization, synchronization, and priority. While 

omitting one or more of these factors may yield a more straightforward definition for "4") 

the result will generate an unsound semantics. In the following examples we show some sim- 

ple, albeit poor choices for "<". They are "poor" because they allow us to replace a term 

(A : E) + (B : F )  with B : F ,  without accounting for the influence of certain contexts in which 

the term may appear. That is, in some contexts we may indeed be able to  replace one term 

for the other, while in others we may not. This deficiency leads to a proof system that is not 

compositional. 

Example 5.1 Assume that "<" is "greedy" in the following sense. Each resource makes its 

own preemption decisions, and excludes environmental effects in such decisions; further, any 

event a E C; such that n(a) > 0 can preempt idle time on resource i. In other words, A 4 B 

if and only if A <, B. 

Using an example, we can easily show why this preemption order fails in the context of 

resource sharing. Let a,b E El, with n(a) = 1 and ~ ( b )  = 1. Let a and b occupy their own 

connection sets; that is, they are local to resource 1. Now consider the term, in which the two 

constituent terms must be interleaved on resource 1: 

At the first time unit, the left hand side may execute either "{a)" or "8", while the right hand 

side must execute "{b)". However, both a and b are mapped to the same resource, and thus, 

they may not be simultaneously executed at the first time unit. Since both constituent terms 

must execute some action at time 1, the left hand side must execute "0" to accommodate the 

execution of "{b)". In other words, at time 1, "{b)" is executed when they are composed in 

parallel. 

But according to this preemption order, we have 0 < {a) and thus, {a) : N I L  can be 

substituted for ({a) : N I L )  + (0 : NIL). However, the following term is not capable of 

executing any action at time 1: 

Example 5.2 As a modest improvement, assume that A 4 B if and only if both P(A) = p(B) 

and A <, B. Let a!,b E El, a?  E Cz, with n(a!) = 1, n(b) = 2 and n(a?) = 1. Further, let 
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there be two connection sets: {a?, a!) and {b). Consider the following term: 

(({a!) : NIL)  + ({b) : NIL)){1}11{2}({a?) : NIL)  

Here, synchronization is forced between "a!" and "a?" and thus, the term may only execute 

"{a!, a?)" at the first time unit. But since {a!) 4 {b), the above term should be equivalent to: 

However, when "{a?)" is executed by resource 2, it must synchronize with "{a!)" when com- 

bined with resource 1. Because only {b) is offered, the term is equivalent to NIL.  Since this 

preemption order neglects all synchronization information, i t  is clearly a poor choice. 

Example 5.3 To take a safer approach, assume that "4" is defined as follows: 

A 4 B if and only if p(A) = p(B) A f ullsync(A) A f ullsync(B) A A <, B 

Let a,b E El, c? E C2, with n(a) = 1, n(b) = 2 and n(c?) = 1. Assume that fullsync({a}) and 

f ullsync({b)) both hold; that is, they are local to resource 1. Also, assume that f ullsync({c?)) 

does not hold; that is, it is not local to resource 2. But let connections(c?) n El = 0. This 

means that since no connections of "c?" reside on resource 1, {c?) may be executed as if it 

were local t o  resource 2. Now consider the following term: 

Since the left hand side may execute either {a) or {b), while the right hand side executes {c?), 

at the first time unit we may either observe {a, c?) or {b, c?). And because neither action is 

fully synchronized, {a, c?) ,4 {b, c?). 

However, it is true that {a) 4 {b), and thus, the following term should exhibit the same 

behavior as that above: 

({b) : NIL){l}ll{2}({c?l : N I L )  

But they are not identical, since this term may execute only {b,c?) a t  the first time unit. So 

we must conclude that again our choice for "4" was incorrect. 

5.3 Prioritized Transition System 

Now we define the transition system (&, +,,V), grounded in our notion of preemption. 

Definition 5.2 The labeled transition system (&, +,,V) is a relation -t,c f x V x C and is 
A 

defined as follows: (E ,  A, El) E-t, (or E -, El) if: 
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A 
1. E - El, and 

A' 
2. For all A' E V, EN E Z such that E ----+ E", A + A'. 

Example 5.4 Consider the term E !Zf ({a!, a?) : NIL)+({b!, b?) : NIL) ,  where p({a!, b!)) = i 

and p({a?, b?)) = { j ) .  Now assume that ~ ( a ! )  < n(b!), ~ ( a ? )  < ~ ( b ? ) ,  and further, that both 

{a!, a?) and {b!, b?) are connection sets. Then {a!, a?)  4 {b!, b?). While E has two initial 
{b!,b?) 

transitions under "+", there is only one prioritized transition: E -, NIL.  

Example 5.5 Consider the term E %f ({a) : NIL)  f (0 : E ) ,  where p({a)) = i, with 

fullsync({a}) and w(a) = 1. That is, E is the term that indefinitely idles before execut- 

ing {a}. And although 0 <, {a), it is not true that 0 4 {a}. As we showed in 5.2, E may be 

interleaved with another term that must initially use resource i (see 5.1). Thus "+," admits 

two initial actions for E, {a) and 0. 
However, there are also times when we know that E is to  be the sole resident of resource i. 

In such a case we want E to initially execute {a), since the only other alternative is to  idle at 

a lower priority. To achieve this effect we close E with respect to resource i. Note that under 

"+" there are two potential initial actions - {a) and {r:). But since {r:} 4 {a), there is only 

one initial action under "+,," which is {a}. Thus, when we know that a resource is not going 

to  be utilized further, we can employ the Close operator to  increase the degree of preemption. 

Clearly we cannot characterize the prioritized semantics by naively substituting "+," for 

"+" in the structured transition rules (Figure 4). If this were the case "+" and "-+," would 

describe the same relation, which they do not. Definition 5.2 and Example 5.4 adequately 

serve to illustrate that "+," is properly contained in "+." Nonetheless, the following theorem 

demonstrates that "+," is sufficiently well-behaved, in that any prioritized transition is derived 

strictly from other prioritized transitions. The proof is quite detailed, and is presented in 

Appendix A. 

A 
Theorem 5.1 Let E, F E £ such that E -, E'. Then the following properties hold: 

B A A 
2. If F - F' is a premise of a rule that derives E - El, then F -, F'. 

The next result shows that "4" is progress-preserving, in that for a given transition 
A A A' 

E - E', either E -, E', or there is some preempting transition E - E", with 
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A' 
A 4 A', such that E -, EN. This is an important fact, for it demonstrates that preemp- 

tion, by itself, cannot produce deadlock in a system. 

A 
Theorem 5.2 If there is an A E 2) and E, E' E E such that E - El, then there exist 

A' 
A' E V, E" E C such that E ----4, E" with A 5 A'. 

Proof: Assume that the conclusion is false. Then, setting A. = A and inductively applying 
A i 

Definition 5.2, we see that V i E N, i > 0, there exist A; E V, Ei E C such that E - E: with 

A;-1 4 A;. So we have the infinite chain over 2): A. 4 A1 4 A2 4 . . ., and by Definition 5.1, 

However, note that Vi, j E N, p(A;) = p(Aj), and thus Vi, j E N, p(res(Ai)) = p(res(Ai)). 

Further, since every A E V is finite, p(res(A)) is finite. Thus there are finitely many distinct 

priorities on sets using the resources in p(res(A)): Jp(res(A))l(mp + 1) to  be exact. So such 

infinite, strictly increasing chains cannot exist. 

5.4 Bisimulation and Priority Equivalence 

Equivalence between processes is based on the concept of strong bisimulation (Park, 1981), 

which is defined as follows: 

Definition 5.3 For a given transition system (I ,  +,D), the symmetric relation r C (P, P) 

is a strong bisimulation if, for (P, Q) E r and A E V, 

A A 
1. if P e P' then, for some Q', Q + Q' and (PI, Q') E r ,  and 

A A 
2. if Q + Q' then, for some PI, P + P' and (P', Q') E r. 

We let "N" denote unconstrained strong equivalence, or the largest such bisimulation with 

respect t o  the transition system (C, +,V). Relying on the well-known theory found in Milner 

(1989), "N" exists, is an equivalence relation over P,  and is a congruence with respect to 

the CCSR operators. Similarly, we denote " N ~ "  as the largest strong bisimulation over the 

transition system (1, +,, V), and we call it prioritized strong equivalence. Again we can state 

without proof that "N," exists, and that it is an equivalence relation over %'. 

It should be apparent that " N ~ "  defines a coarser equivalence than "N". First, the preemp- 

tive nature of "+," ensures that the two relations are not identical, for example, consider the 

term E in Example 5.4. While E wT {b!,b?) : NIL, the equivalence certainly does not hold 

under "N". But as the next theorem shows, any distinction made by " N ~ "  will be preserved 

by "N" . 
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Theorem 5.3 Let P,Q E P and assume P is strongly equivalent to  Q under the transition 

system (&, +, D), (that is, P - Q). Then P wa Q. 

Proof: We need only show that the relation "-" is a bisimulation on the transition system 
A A 

(&, -t,,D). Assume P - Q, and let P -, PI. By Definition 5.2, P - PI. Since 
A 

P N Q, there is some Q' E P such that Q - Q' with P' - Q'. Thus we must prove that 
A A' 

Q ----in Q'. If this is false, there is some A' E 'D, Q" E P such that Q - Q" and A 4 A'. 
A' 

But since P - Q, there is also some P" E P such that P - P", which is a contradiction. 
A A 

Similarly, if Q -, Q', then for some PI, P -, P' with P' N Q'. 

Note that Definition 5.3 gives meaning to  "-," for the domain of agents. However, using 

the standard technique, we can easily extend "-," to terms with free variables. 

Definition 5.4 For terms E and F, let f r ee (E)  & {XI,. . . , Xn) and f r e e ( F )  C {XI,.  . . , X,). 

Then E N, F if, for all agents PI,. . . , Pn E P, EIPl/X1,. . . , Pn/Xn] -, FIPl/X1,. . . , Pn/Xn]. 

The next theorem states that "-," forms a congruence over the CCSR operators. 

Theorem 5.4 Prioritized strong equivalence is a congruence with respect to the CCSR oper- 

ators. That is, i f  E -, F, we have: 

Proof: It suffices to  prove cases (1)-(6) for agents; Definition 5.4 makes the generalization 

to terms straightforward. In Appendix B we present the proofs for cases (I) ,  (2a), (3a), (4a), 

(5) and (6); case (2b) is identical to (2a), case (3b) is identical to  (3a), and cases (4b)-(4d) 

are similar to  case (4a). In these proofs we often make use of the fact that "N," is the largest 

prioritized bisimulation over "+,". Thus, to  show that PI -, P2, it suffices to establish any 

bisimulation r such that (PI, P2) E r. Since r CwT, PI -, P2. 
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As for case (7), we limit ourselves to  proving equivalence for terms where free(E) U 

f ree(F) g {X). To show that f ix(X.E) wn f ix(X.F) we establish their bisimilarity up 

to  "wZ7', and we use the standard technique of transition induction. Again, the details of the 

proof are in Appendix B. 

We now turn briefly to  the existence and uniqueness of recursive terms. 

Theorem 5.5 For any term E, f ix(X.E) wn E[fix(X.E)/X]; that is, f ix(X.E) satisfies the 

recursive equation X wn E. 

Proof: By Theorem 5.3, i t  suffices to show that fix(X.E) N E[f ix(X.E)/X]. But this 
A 

result follows directly from the definition of Recursion, since fix(X.E) - E' if and only 
A 

if E[fix(X.E)/X] - E'. 

Theorem 5.6 Let E be a term such that X is guarded in E. Then for F , G  E f ,  if F wn 

E[F/X]  and G N~ E[G/X], then F w, G. 

Proof: As in the proof of Theorem 5.4(7), we limit ourselves the case where f ree(E) C_ {X) , 
and establish that r = {(H[F/X], H[G/X]) I free(H) C {X)) is a bisimulation up to  " N ~ . ~ '  

The details of the proof are similar to that of Theorem 5.4(7), and we omit them here. 

6 An Axiomatization of CCSR 

The axioms in the CCSR proof system, A, are enumerated in Figure 5. We claim that A, (aug- 

mented with standard laws for substitution), is sound with respect to prioritized equivalence. 

Theorem 6.1 For any terms E, F E f ,  if A I- E = F ,  then P wn Q. 

Proof: It suffices to present proofs for agents, since equality is preserved by substitution. So 

for each axiom P = Q in A, we construct a bisimulation to show that P wn Q. For selected 

cases, see Appendix C. 

Note that the language is fully distributive, in that all of the operators distribute over 

Choice. Using this fact we can derive the Expansion Law, that serves to  unite several of the 

Choice and Parallel laws. Let I be an index set representing terms, such that for each i E I, 

there is some corresponding term E;. If I = {il,. . . , in),  because of Choice(4) we are able to 

neglect parentheses and use the following notation: 

and where &a Ei 'kf NIL.  
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Choice(1) E + N I L  = E 

Choice(2) E + E = E 

Choice(3) E + F = F + E 

Choice(4) ( E  + F )  + G = E + ( F  + G )  

Choice(5) ( A  : E )  + ( B  : F )  = B : F if  A 4 B 

P z u ( ~ )  Erll j N I L  = NIL  

Pu(2)  EIIIJF = F J I J I E  

Par(3) (EIIIJ F ) ( I u j ) I I ~ G  = E I ~ ~ ( ~ ~ ~ ) ( F J I I K G )  i f  I fl J = 0, J fl I< = 0 ,  I n  I( = 0 

Par(4) EIIIJ ( F  + G )  = (EIIIJ F )  + ( E r l l ~ G )  

Par(5) ( A : E ) I I J J ( B : F ) =  

( A * B ) : ( E I ~ ~ J F )  i f ~ ( A ) c I ,  P ( B ) ~ J ,  

{ NIL  
p(A) P (B)  = 0, S Y ~ C ( I U J ) ( A  * B )  

otherwise 

Scope(1) N I L  A: (F, G ,  H )  = H 

Scope(2) (El + E2) A: (F ,  G,  H )  = (El A: (F,  G ,  H ) )  + (E2 A: (F ,  G,  H ) )  

{ 
( A * B : F ) + H  i f , / ~ A  

Scope(3) ( A  : E )  A: (F, G ,  H )  = ( A  : ( E  A:-, (F,  G,  H) ) )  + H i f  J $! A and t > 1 
( A : G ) + H  otherwise 

Close(1) [ N I L I I = N I L  

Close(2) [E + FIX = [El I + [F]I 

( A  U (3' - 7zA))) : [EII if p(A) C I Close(3) [ A : E ] , = {  N I L  otherwise 

close(4) [ [ E I I I J  = { [E] j  i f  I S  J 
N I L  otherwise 

Hide(1) NIL\B = NIL  

Hide(2) ( E  + F)\B = E\B + F\B 

Hide(3) ( A : E ) \ B =  4hide(~)(A) : (E\B) if fullsYnc(A fl B )  { NIL  otherwise 

Figure 5 :  The Axiom System, A 
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Theorem 6.2 (Expansion Law) Let K and L be finite index sets such that for all k E I<, 

1 E L, Ak : Ek E & and Bl : fi  E &. Then 

Proof: Immediate from Choice(l),(4) and Par(1),(4),(5). 

Theorem 6.3 For any finite agents P, Q E P,  if P N~ Q, then A k P = Q. 

Proof: Using A, P and Q can be transformed into @ and Q, respectively, where both and 

Q are in prioritized normal form (PNF). A term R is in PNF if R = CkEK Ck : Rk, where 

1) for all k , l  E K, Ck + Cl, and 2) each Rk is in PNF. We note that Choice(5) is the key to 

enforcing property 1); that is, whenever there are k , l  E K with Ck 4 Cl, we may invoke the 

law to eliminate Ck : Rk. 

So assume that P = CieI Ai : Pi and Q zEJ B j  : Qj. The remainder of the proof 

follows by induction on the maximum depth of P and Q. If the maximum depth is 0 then P z 
A 

Q = NIL, and we are done. Otherwise, if P -, PI, then for some i E I, A : PI r Ai : Pi. 
A 

And since P N~ Q, Q -, Q1. SO for some j E J, A : Q' - Bj  : Qj. Further, Pi N, Qj,  SO 

by induction, A k P; = Qj; thus, A I- A; : Pi = Bj  : Qj. So for all i E I, there is some j E J 

such that A I- Ai : Pi = Bj  : Qj, and by a similar argument the converse is true as well. So 

by using Choice(2) to  eliminate redundancies, and Choice(3) to regroup terms, it follows that 

~t P = Q .  

7 Example, Revisited 

In this section we use our proof rules to demonstrate the correctness of the example from 

Section 4. In Figure 6 we again show the producer-consumer system, along with some auxiliary 

definitions which simplify the proof. 

Our objective is to use the axiom system to prove the following: 

AI -  System = {P1,P2,r$):T 

A I- T = [ {intl!,intl?) : {cl) : {cl) : {int2!,int2?) : {c2) : {pl,p2,c2) : T ](1,2,3) 

We present a sketch of the proof in Figure 7. Steps (S1)-(S4) are derived by Scope(2) and 

Scope(3). In particular we take advantage of the fact that Scope distributes over Choice, as 

characterized by Scope(2). Using these results, we derive step (S5) by Theorem 6.2, Close(2) 
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def 
Producerl - (S,({pl) : S2({int l !)  : I D L E ) ) )  ( N I L ,  Producerl, N I L )  

def 
Producer2 = (S,({p2} : S4({int2!) : I D L E ) ) )  ( N I L ,  Producer2, N I L )  

def 
Consumerl - S,({intl?) : S,({cl) : S,({cl) : Consumerl)))  

def 
Consumer2 = 6,({int2?) : 6,({c2) : 6,({c2) : Consumerz))) 

def 
System - [ (Producer1 ( 1 )  ll{2] Producer2) {1 ,2}  ll{3} 

(Consumer1 {3)Il{s} Consumer2) ]{1,2 ,3]  

def 
Pi - (S2({ in t l ! )  : I D L E ) )  4 ( N I L ,  Producerl, N I L )  

def Pi' = (S,({pl) : S2({int1!} : I D L E ) ) )  n(S ( N I L ,  Producerl, N I L )  

def Pi - (b4({int2!)  : I D L E ) )  A*~ ( N I L ,  Producer2, N I L )  

def 
PT = (6,({pz} : S4({int2!) : I D L E ) ) )  d5 ( N I L ,  Producer2, N I L )  

C: gf Sm ( { c ~ }  : S,({C~) : Consumerl)) 

def C i  - 6, ( { c2 )  : 6, ( { c2 )  : Consumerz)) 

s sf ( p i  { 1 } 1 1 { 2 )  pi) {1,2}11{3) (Consumer1 {3}11{3}  consumer21 

T [S]{1,2,3} 

Figure 6: Producer-Consumer System with Auxiliary Definitions 
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(S2)  Producerz = ( {pa )  : Pi)  + (0 : P;) 

(S3)  Consumer1 = ({ in t i?)  : C i )  + (0 : Consumerl) 

(S7)  [S]{1,2,3} = { i n t l ! , i n t l ? , r t ) :  [ ( ( I D L E A ~ ( N I L , P ~ ~ ~ U C ~ ~ ~ , N I L ) ) { ~ ~ ~ ~ ~ ~ )  
(b3({int2!} : I D L E ) )  a', ( N I L ,  Producers, N I L ) )  { 1 , 2 } ( ( { 3 }  

(Ci  ( 3 )  11{3) Consumerz)]{i,z,3} 
+ { in t2! , in t2? ,r f }  : [ ( ( s l ( { in t l ! )  : I D L E ) )  A\ ( N I L ,  Producerl, N I L )  ~ 1 1 1 1 ~ 2 1  

I D L E  A",NIL, ~ r o d u c e r z ,  NIL)) t1,2}1(t3} 

(Consumer1 {3}  11{3) Ci)I{i,z,3} 
+ { T ~ , T ~ , ~ ) : [ ( ( ~ ~ ( { ~ ~ ~ ~ ! ) : I D L E ) ) A ' , ( N I L , P ~ ~ ~ ~ ~ ~ ~ ~ , N I L ) ~ ~ ~ ~ ~ ~ ~ ~  

(63({int2!) : I D L E ) )  A: ( N I L ,  Producerz, N I L ) )  { 1 , 2 } 1 1 { 3 1  
(Consumer1 13) )1{3) C0n~umer2)]{1,2,3)) 

(58) [s]{l,2,3} = { in t l ! , in t l? ,  T;} : [ ( ( I D L E  A: ( N I L ,  Producerl, N I L ) )  {1}11{2)  

(b3({int2!} : I D L E ) )  A: ( N I L ,  Producer2, N I L ) )  ( I t 3 }  
(C: {3}11{3) Cons~merz)l{ l ,2 ,3)  

(S10) [S]{1,2,3} = {intl!, intl?,.rt) : { ~ 1 , ~ ; , ~ ; 2 0 )  : {~1,~10,72") 

: { in tz ! ,  intz?, r f )  : {CZ ,  72, $ 2 0 )  : {p i ,  ~ 2 ,  ~ 2 )  : [ [S]{i,z,3) l { i , z , 3 )  

Figure 7 :  Sketch of Equivalence Proof 
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and Close(3). In step (S6) we invoke Choice(5), which allows the first branch of the Choice to 

preempt the three others. 

We arrive at  step (S7) in the manner of (S1)-(S5), by applying Scope(2), Scope(3), Theo- 

rem 6.2, Close(2) and Close(3). In step (S8) we again apply Choice(5)) which allows the first 

alternative to  preempt both the second and the third. 

There is a leap between steps (S8) and (S9), in which the System is "flattened out." 

However, the procedure is similar to that used between steps (Sl) and (S8), and we omit 

the intermediate steps for the sake of brevity. Step (S10) is the result of applying Close(4) to 

[S]{1,2,3). Finally step (S11) is derived by six applications of Close(3), as well as by substituting 

T for [S](1,2,3). By Theorem 5.6, 

and thus, System w n  {P1,P2,~$} : T .  This shows that the system is able to  meet its produc- 

tion/consumption every cycle. 

The importance of preemption elimination (law Choice(5)) cannot be underestimated here. 

A simple way to  illustrate this is to  set n(intl?) to 1, and thus to  give int2? the same priority as 

that of inti?. In this case, the choice in step (S7) between {inti!, inti?, 720) and {int2!, int2?, ry} 

becomes nondeterministic. And if the branch corresponding to  {kt2!,  int2?, r f )  is taken c2 will 

execute for 2 time units, during which the execution of inti? will be blocked. But since the 

deadline for inti! will have expired, Consumerl will not get the opportunity to consume during 

that period. In fact, we can prove that 

A F System = {pl ,p2, T:} : T' 

A t- T' = [ {intl!,intl?} : {cl} : {cl} : {int2!,int2?} : {c2} : {pl,p2,c2) : T' 

+ { i n t ~ ! , i n t ~ ? }  : {CZ} : {CZ) : 0 : 0 : {PI, PZ) : T' ](1,2,3) 

That is, Consumerl may starve completely. Of course, in a semantics without preemption 

(e.g., under the "+" transition system), there would be many more such nondeterministic 

choices; in fact, the system could idle indefinitely. 

We end this section with an observation on the complexity of equivalence proofs. As with 

most proof systems of this type, exponential blow-up is a t  times unavoidable. This is especially 

true when manipulating terms where preemption-elimination cannot take place; e.g., in agents 

where all events have the same priority. However, in priority-intensive systems such as our 

example, a natural tactic seems to  arise: whenever axiom Choice(5) can be used, it should be 

used. 
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8 Related Work in the Semantics of Priority 

Previous research has, with varying success, treated some issues of the priority problem. There 

has been a spate of effort directed toward defining models for concurrency based on "maxi- 

mum parallelism;" e.g., Salwicki and Miildner (1981), F'rancez, Lehmann, and Pnueli (1984), 

Janicki et. al. (1986) and Koymans et. aI. (1988). In these models, if processes are ready to 

communicate, they will communicate. Thus maximum parallelism incorporates a rather lim- 

ited, bi-level priority scheme, where non-idle events always take precedence over idle events, 

and contention between non-idle events is resolved nondeterministically. These models share 

a common deficiency, in that they assume unlimited availability of resources: To enforce the 

constraint of "no unnecessary idling," each process is mapped to its own, dedicated proces- 

sor. A maximum parallelism semantics could easily be obtained in CCSR, where we would set 

~ ( a )  = 1 for every a E C, retain 0 as the action with lowest priority. 

In Baeten, Bergstra and Klop (1987), the notion of priority is added to a finite subset of 

ACP without the presence of T-events. This is accomplished by the introduction of a partial 

order over actions, ">", as well as a priority operator, "0." As an example, if a > b, then 

Thus in the parlance of CCSR, we would say that a preempts b. In this light, a "0-free" agent 

P would be interpreted under "+", whereas O(P) would be interpreted using "+,". One 

major difference between this work and CCSR is that preemption is "greedy" in the sense 

of Example 5.1. That is, in general O(P) I O(Q) does not have the same meaning as O(P I Q),  

where I represents parallel composition. The reason for this fact is that the priority of the 

synchronous action, "alb," does not depend on the priorities of its two constituent actions, "a" 

and "b." 

An interesting result from Baeten, Bergstra, and Klop is that the axioms needed to charac- 

terize 0 cannot be added to  ACP's unprioritized axiom systems, and remain sound with respect 

to  a ready or failure semantics. Instead, the finer-grained ready-trace semantics is introduced 

to  give meaning to  prioritized processes. 

A bi-level priority semantics for CCS is treated in Cleaveland and Hennessy (1990), in 

which events are divided into two subsets: those of low priority (e.g., T, a ,  b), and those of high 

priority (e.g., I,&,@. Events may synchronize only with inverses of the same priority, which 

limits the range of priorities to  a two-element, total order, as opposed to a partial ordering 

which we treat in CCSR. When synchronization occurs between two unprioritized events (e.g., 

a and E ) ,  the result is the unprioritized T. Similarly, when a and 3 synchronize, the result 
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is 1. This 1-event is the only preemptive action, which gives rise to  a limited version of our 

Choice(5) law: for any unprioritized a,  

We note that this treatment can be subsumed by the CCSR model, by (1) assigning each 

event a priority of either 0 or 1, and (2) ensuring that connected events have the same priority. 

In fact, the treatment of priority in CCSR can be considered an extension to the work in 

Cleaveland and Hennessy, whose ideas contributed to  the development of our model. 

In Camilleri and Winskel (1991), CCS is extended with a prioritized choice operator. Akin 

to  Occam's PRI ALT, this construct selects the input event of highest priority. In the termi- 

nology of CCSR, this notion of priority can be described by the following two restrictions: each 

connection set has two elements, and only one of these elements has a non-zero priority. Also 

concentrating on Occam, Barrett (1990) provides a prioritized semantics within the context of 

CSP. He proceeds to  show that in certain contexts, the introduction of priority can preclude the 

necessity for fairness assumptions (this should also be apparent from our Producer-Consumer 

example). Again, the emphasis in this work is on guards at the receiving end of a channel. In 

CCSR we treat the more general problem of priority conflicts; e.g., where ~ ( a ? )  > ~ ( b ? )  but 

~ ( b ! )  > ~ ( a ! ) .  

Janicki (1987) gives a prioritized semantics for programs written in the COSY language. A 

priority ordering on events is introduced, "<", which has an interpretation similar to  that of 

CCSR's preemption order on actions. That is, whenever there is a choice between executing 

a and b, and when a < b, the program defers to b. Given this notion of priority, Janicki 

demonstrates that inadequacy of a standard partial ordering interpretation for COSY path 

expressions. For example, while a program may possess an initial execution such as {a,c}, 

it does not follow that the same program can initially execute the action {c} (i.e., the set of 

executions may not be prefix-closed). To remedy this problem, Janicki introduces a semantics 

based on "multiple firing sequences," in which {a,c} has a different interpretation from both 

{a}{c} and {c}{a}. This semantics adequately captures the notion of priority in COSY, at 

the cost of introducing finer-grained definition of equivalence. (Note that Baeten, Bergstra 

and Klop make a similar adjustment to accommodate prioritized behaviors.) Finally, Janicki 

shows that while the standard, partially-ordered "vector firing sequences" are not adequate 

in the general case, this semantics is sufficient for verifying some very useful properties; e.g., 

deadlock-freedom. 

Okulicka (1990) attacks this problem in a different manner, by defining a priority relation 

that maintains a prefix-closed semantics for COSY programs. The technique is based on 
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the decomposition of a priority relation into "elementary" relations, which are subsets of the 

original relations. The main result is that if each of these subrelations leads to  a prefix-closed 

semantics, the original relation does as well. 

It is interesting to note that while CCSR and COSY started from opposite places, both 

models converged on the interrelationship between time and priority. In the case of CCSR, our 

early investigations made it clear that an untimed, partially-ordered semantics was insufficient 

to capture many real-time behaviors. Thus we adapted a discrete-time, step-sequence seman- 

tics. Then, to  capture the flavor of a real-time scheduler, we introduced a notion of priority to 

arbitrate between executions such as {a){c} and-{a,c). On the other hand, the introduction of 

the priority ordering in COSY mandated that these executions be given a different interpreta- 

tion. This distinction led to Janicki's multiple firing sequences, which, in a sense, is a real-time 

semantics! This subtle interrelationship between priority and time was informally discussed in 

Lamport (1984), in which it is debated whether there is justification for introducing priority 

into time-independent contexts, such as those defined by an interleaving semantics. 

An alternative to  Janicki's approach is taken in Best and Koutny (1992), in which the 

authors present a Petri net, C, with a priority relation, p on its transitions. Here, the objective 

is to preserve the partially ordered semantics, without resolving to  a step-sequence solution. 

Instead of restricting the type of concurrency permitted, the net itself is transformed, by intro- 

ducing new places, arcs and transitions. In this manner, the anomalies inherent in prioritized 

interleaving semantics can be avoided. 

Finally, Hooman (1991) investigates the issue of shared resources; in this sense, the goals of 

his work are closely related to ours. His real-time language and computation model derive from 

the earlier work of Koymans et. al. (1988). However, he goes much further, by developing two 

logics for the purpose of verification. One is a temporal extension to  the classical Hoare triple 

paradigm, while the other is a metric-space extension to temporal logic. In this regard, the 

proof techniques are quite different from our own, which are based on syntactic transformations. 

9 Conclusion 

We have presented a real-time, resource-based process algebra called CCSR. The CCSR syntax 

includes primitive constructs to express essential real-time functionality, among which are 

timeouts, interrupts, periodic behaviors and exceptions. Further, there is a single parallel 

operator that can be used to express both interleaving at  the resource level, and lock-step 

parallelism at  the system level. 

CCSR's proof system derives from a term equivalence based on strong bisimulation, which 
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incorporates a notion of preemption based on priority, synchronization and resource utiliza- 

tion. This prioritized equivalence is also a congruence (Theorem 5.4), which leads to the 

compositionality of our proof system. Thus we can prove correctness for a real-time system by 

modularly reasoning about its subsystems, the usefulness of which was shown in Section 7. 

This work can serve as a departure point for several areas of research. For example, it 

may be argued that strong bisimulation yields an equivalence that is too fine-grained; that is, 

i t  distinguishes between processes that may, in fact, behave identically in most "reasonable" 

operating environments. Perhaps there are weaker notions of equivalence that can also ade- 

quately characterize both resource constraints and priority. While observational congruence 

(Milner, 1989) suggests itself as a candidate, it fails to  quantify the passage of time in an 

appropriate manner. Of more help may be a semantics based on a testing preorder (DeNicola 

and Hennessy, 1983), which would also result in a notion of process containment. Yet it is not 

immediately clear how a testing equivalence can be extended to accommodate the interaction 

between priority, resource utilization and synchronization. 

Also of interest is a more general axiomatization of the operators; in particular, perhaps d 

can be extended to  accommodate a limited class of recursion. In (Milner, 1989a), observational 

congruence is axiomatized for finite state, CCS terms. If a similar ,technique could be used for 

CCSR terms, it would significantly enhance the applicability of the proof system. 
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A Proof of Theorem 5.1 

Property 1 is obvious from Definition 5.2; that is, the transition relation "+," is a subset 

of "+". Property 2, however, requires a thorough case analysis over the structure of CCSR 

terms. 

Case 1: E = El + E2 for some E1,E2 E £. Then either ChoiceL or ChoiceR may have 
A A 

been the derivation rule used; that is, either El - E' or Eg - El. Without loss 
A 

of generality, assume that the former is true. If we do not have that El -, El, then 
A' 

there is some A' E D, EN E & such that El - EN, with A 4 A'. But then by ChoiceL, 
A' A 

El + E2 - El', which violates the fact that E -, E'. 

Case 2: E = El .7E2. Then only the Parallel rule may be used, which implies that E' is of 

the form E: Ei for some E:, E i  E 27. Further, there are A1, A2 E 2) such that A = Al * AS, 

A 1 A2 
We must prove that El -, E: and E2 -, Ei. To the contrary, assume it is false 

A 1 A; 
that El -, E:. Then there is a A; E D and Ey E C such that El - EF with A1 < A;. 

By definition 5.1, p(Ai) = p(A1), and thus, p(Ai) C I ;  as well as p(Ai) n p(A2) = 0. And 

since unres(Ai) = unres(A1) and s y n ~ ( ~ ~ ~ ) ( A ~  * A2), we also have that ~ync(~,,~)(A; * A2). 
A: +A2 

But these are exactly the side conditions required for El 11 E2 - E; I( J E i  . Now, since 

.r.es(Ai) >, res(Al), we have that 

Also, p(Al * A2) = p(Ai * A2) and unres(A1 * A2) = unres(Ai * Az), so (A1 * A2) 4 (A: * A2). 
A 1 

But this contradicts our original assumption. So, El -, E: and by a similar argument, 
A2 

E2 -?r Ei. 
Case 3: E = El A: (E2, E3, E4) for some El, E2,  E3, E4 E &. The proof is similar to case 1. 

Case 4: E = F \ C  for some F E &, C E B(C). Then the Hiding rule is the only one that 
A 

can derive F \ C  - El, where E' must be of the form F1\C for some F' E f. By the 
B 

premises of the rule, there exist some B E 2) such that F - F', and further, fullsync(C), 

f ullsync(B fl C)  and A = 4 h i d e ( ~ ) ( B ) -  
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B 
What we must prove is that F -, F'. To contradict, assume there exist B' E V ,  

B ' $ h i d e ( ~ ) ( B ' )  
F" E C such that B 4 B' and F - FN. We shall proceed to show that F \ C  - 
F1'\C. Now, we know that fullsync(B n C )  holds; thus unres(B) n C = 0. Since by defini- 

tion 5.1, unres(B1) = unres(B), to show fullsync(B1 n C)  holds we only need to  show that 

f ullsync(res(B1) fl C )  holds. But, 

and thus, fullsync(res(B1) n C)  holds. Line (1) follows from the definition of "res", line (2) 

follows directly from the definition of "Connections", while line (3) distributes the intersection 

across the unions. Line (4) uses the fact that connectivity is an equivalence relation, and 

thus, connection sets are mutually disjoint. Thus, because C = Connections(C), if there is 

some b E res(B1) such that connections(b) n C # 0, then connections(b) 5 C. And since 

b E connections(b), b E (res(B1) n C holds as well. Lines (5) and (6) are simply restatements 

of line (4). 
A' 

Now letting A' = g5hide(C)(B'), we have satisfied the conditions for the transition F \ C  - 
F1'\C. Since unres(B) fl C = 8 ,  by the definition of 6hide(c ) ,  unres(A) = unres(B). Similarly, 

unres(A1) = unres(B1) and thus, unres(A) = unres(A1). Finally, since $hide(C) preserves 

both resources and priority, A 4 A'. But this contradicts our original assumption. 

Case 5: E = [FII, where F E & and I C_ R. Then the only action rule that applies is Close, 
B 

which implies there are F' E C, B E D such that F - F' and A = B U (q - I,qB,). 
B 

We must show that F -, F'. To contradict, assume that there exists B' E D, F" E & 
B ' 

such that B 4 B' and F - F". Then by definition 5.1, p(B) = p(B1), unres(B) = 

unres(B1) and res(B) <, res(B1). 

Now since p(B) c I and p(B) = p(B1), we have p(B') I. Thus by the Close rule, 
A' 

[FII - [F"II, where A' = B'U ( p  - T(Bi) ) .  We shall proceed to show that A 4 A'. First 

note that p(A) = p(A1) = I. Also, since ip-T(B, is fully synchronized, unres(A) = unres(B); 

similarly, unres(A1) = unres(B1), and thus unres(A) = unres(A1). Finally, 

res(A) = res(B) U - T ( B ) ,  and 

res(A1) = res(B1) U - T(,.,. 
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But because - T(B) = - T(B,),  and since res(8)  <, res(B1), we have shown that 

res(A) <, res(A1). But this means that A 4 A', contradicting the original assumption that 
A B 

[FII -, [F1II. So, F - F'. 
A 

Case  6: E = f iz(X.F)  for some F E C. Then F[fix(X.F)/X] - E' is the sole premise 
A 

that derives the inference fix(X.F) - El. So assume there are F' E £, B E 2) such that 
B B 

A 4 B and F[fix(X.F)/X] - F'. But then fix(X.F) - F', which contradicts the 
A 

fact that fix(X.F) -, El. 

B Proof of Theorem 5.4 

Proof  o f  Theo rem 5.4(1): We claim that 

is a strong bisimulation on (C, +,,V). Since "w," is the largest bisimulation, if r satisfies 

Definition 5.3, then r Cw, and thus, r =w,. 

By the definition of "N,", if (P,Q) EN,, they are bisimilar. So assume that there exists 

(A : P, A : Q) E r such that P w, Q. Properties 1 and 2 of Definition 5.3 follow directly from 
A A 

that fact that i) A : P -, P is the only transition possible for A : P, ii) A : Q -, Q 

is the only transition possible for A : Q and iii) P w a  Q. 

Proof  o f  T h e o r e m  5.4(2a): We claim that 

is a strong bisimulation on (f , +, , V). 

Trivially, by the definition of "w,", if (P,Q) EN,, they are bisimilar. So assume that there 

exists ( P  + R, Q + R) E r such that P w, Q. TO prove property 1 of definition 5.3, assume 

A 
(t) P + R -, $1 

A A 
By Theorem 5.1, either P -, S1 or R -, S1. 

A 
Case  1: Let P -, S1. Since P N, Q, i t  follows that there exists some S2 E P such 

A A 
that Q -, S2 with S1 -J, S2. Thus we must show that Q + R -, S2, and the proof 

of property 1 will be complete for this case. For the sake of contradiction, assume there exist 
A' A 

A' E V ,  S3 E P such that A 4 A' and Q + R  - S3. Since Q -, S2, it is impossible that 
A' A' A' 

Q - S3; thus we must have R - 5'3. But then P+  R - S3, which contradicts (t). 
A A 

Case  2: Let R -, S1. This implies, by the ChoiceR rule, that Q + R - S1. So it 
A 

remains to  be shown that Q + R -, S1. On the contrary, assume that there exist A' E D, 



January 30, 1992 38 

A' A 
S2 E P such that A 4 A' and Q + R - S2. Since R -, Sl, it is impossible that 

A' A' 
R - SP, SO it must be true that Q - S2. By Theorem 5.2, there exist A" E V, S3 E P 

A" 
such that Q - S3 with A' 5 AN; i.e. A 4 AN. SO, since P N, Q, there is some Sq E P 

A" A" A" 
such that P -, Sq. It follows that P - Sq, and by the ChoiceL rule, P+ R - S4, 

which contradicts (t). 

This completes the proof of property 1 of 5.3. A symmetric argument shows that r adheres 

to property 2; thus r is a bisimulation. 

Proof of Theorem 5.4(3a): We claim that r = {(PzI(jR,QzII j R )  I P N, Q A R E P )  is 

a strong bisimulation on (C, +,, 23). By definition, (PzII j R, Q j R) is in r. To prove that r 

satisfies property 1 of definition 5.3, assume there exist P', R' E P, A E 2) such that 

A 
It suffices to show that for some Q', Qzl l jR -, Q'zIIjR' and that P' N, Q'. Then by 

-41 A2 
Theorem 5.1 we have that P -, P' and R -, R', where p(A1) C I, p(A2) C J and 

A = Al *A2. 
AI 

Now because P N, Q, we have that Q -, Q', with P' N, Q'. TO finish showing that 
A 

r enjoys property 1 of definition 5.3, we must prove that Q j R -, Q'zI(JR'. Obviously 

part 1 of definition 5.2 is satisfied, so assume part 2 is violated. That is, assume there is some 
A' 

A' E V, Q",RN E P such that QzlljR - Q"zIIjR" with A 4 A'. Then by Theorem 5.2, 
A" 

we know there exist some A" E V, Q"', R'" E P such that Q j R ----), Q"'zII j RN' with 

A' 5 A", and hence A 4 AN. 
A:' 

Again invoking Theorem 5.1, there are A?, A; such that A" = Ay * A; with Q -, Q1", 
A; A :' 

and R -, R"'. And since P N, Q, there is also some P"' E P such that P - P'". But 
A" 

this implies that Pzll j R - P"'zII j R'" with A < A", again contradicting our assumption 
A 

(t). So Qzll j R -, QfZII j R' and the proof of property 1 is complete. By a symmetric 

argument, r satisfies property 2 in definition 5.3, and so r is a bisimulation. 

Proof of Theorem 5.4(4a): We show that 

is a strong bisimulation, where IdE is the syntactic identity relation. 

Assume that (UI, U2) E r .  Certainly if (Ul, U2) E IdE, Ul and U2 are bisimilar. So 

consider the case where Ul = P A: (R, S,T),  U2 = Q A: (R, S, T), and further, assume that 
A 

Ul -, Ui for some A E V ,  Ul E P. 

Case 1: The ScopeC rule was used to derive the transition. That is, there is some P' E P 
A 

such that P - PI, with t > 1, J $ A, and with Ui = P' (R, S,T). By Theorem 5.1, 
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A 
we have that P -, P', and since P N, Q, we know there is some Q' E P such that 

A A 
Q -, Q'. This allows us t o  use the same ScopeC rule to  derive that U2 -----t Ui, where 

U; = Q' A:-, (R, S,T).  And since (U;, U;) E r ,  it remains t o  be shown that the transition is 
A 

prioritized; i.e., that U2 -, U;. 
A' 

However, assume that there is some A' E V, U[ E P such that U2 - Ul, with A < A'. 

Certainly the ScopeC or ScopeT rules could be used to  derive this transition, as it would be 
A' 

necessary t o  have that Q - Q" for some Q" E P. This would be a violation of the fact 
A 

that Q -, Q'. If the transition were derived by the ScopeE rule, there would be some 
A' 

A" E V, Q" E P such that Q - Q", and that A' = A" * B. But recall that B = 0 or { J),  

and thus, p(A") = p(A1), unres(AU) = unres(At), and res(AN) = p  res(At). And this means 
A 

that A 4 A", which would again contradict the fact that Q -, Q'. Finally, if the ScopeI 

rule were the one to  derive the transition, it would imply that there is some T' E P such that 
A' A' 

T - TI. However, this would mean that Ul - TI, which would be a violation of our 
A 

initial assumption that Ul -, Ui. 

Cases 2-4: The ScopeE, ScopeT, or ScopeI rules were used to derive the transition. The 

proofs for are all similar to  that of Case 1, except for the fact that (Ui, Ui) E IdE. 

Before proving case (5), we require the following lemma. 

Lemma B.l Assume there exist A E P(C), C E V, P, P' E P such that fullsync(A), 
C B 

fullsync(C fl A) and P -, P'. Then P \ A  -, P'\A, where B = dhide(A)(C). 
C C 

Proof: First, since P -----t, PI, it follows that P - PI. Thus by the Hiding rule, 
B 

P \ A  --+ Pt\A. To show that B is maximal with respect to  "+", assume there exists some 
B ' 

B' E 27, R E P such that B + B' and P \A  - R. Again employing the Hiding rule, we 

know that R is of the form PU\A for some P" E P. Further, there is some C' E V such the 
C' 

P - PI, fulksync(C1 n A) and B' = dhide(A)(C'). 

Since q5hide(A) neither shrinks or add resources, and since, by definition 5.1, p(B) = p(B1), 

we have that p(C) = p(C'). Also by definition 5.1, unres(B) = unres(B1). Now, since 

fullsync(C n A), we are guaranteed that unres(C) n A = 0, and thus by the definition of 

q5hide(A), unres(C) = unres(B). Similarly, unres(C1) = unres(B1), and so, unres(C) = 

unres(C'). Finally, since dhide(A) preserves priority, C I p  C', which means that C < C'. But 

this contradicts the assumptions of the lemma. 

Proof of Theorem 5.4(5): We shall proceed to show that 
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is a strong, prioritized bisimulation. To prove property 1 of definition 5.3, assume there exist 

B E V, R E P such that 
B 

P\A -, R 

By Theorem 5.1, there exist C E V, P' E p such that R = P'\A, B = 4hide(A)(C), with 
C 

P -, PI. Further, by the Hiding rule, we have that f ullsync(A) and fullsync(C fl A). 
C 

Since P N, Q, there exists some Q' E P such that Q ----+, Q' with P' N, Q'. SO 
B 

by Lemma B.l, Q\A -, Qf\A, and the proof of property 1 is complete. A symmetric 

argument shows that r satisfies property 2 of definition 5.3. 

P roo f  o f  T h e o r e m  5.4(6): We shall show that 

is a strong prioritized bisimulation. To show that r satisfies property 1 of definition 5.3, assume 

that there exist A E V, R E P such that 

Then by Theorem 5.1, there are B E V ,  P' E P such that R = [PfII, and A = B U (3'  - Z B , ) .  
. . 

B 
Since P N, Q, there exists some Q1 E P such that Q -, Q' with P' N, Q'. TO finish the 

A  
proof of property 1, we must show that [QII -, [Q1II. 

A 
Certainly [QII - [QfII by the Close rule, so assume A is not maximal. That is, let 

A' 
there be some A' E V, R' E P such that A < A' and [QII ---+ R'. By Theorem 5.2, 

A  " 

there are A" E V, R" E P such that [Q] -, R" with A' 5 A"; i.e., with A 4 A". So, 
B" 

by Theorem 5.1, there exist B1' E V, Q" E P such that R" = [Q1'II, Q -, &I1, and 

B  " 

But again, since P N, Q, there is some PI' E P such that P -, P". Since this implies 
B  " A" 

that P - PN, by the Close rule, [PII - [P"II, which contradicts (t). So the proof of 

property 1 of definition 5.3 is complete, and property 2 is proved by symmetrically. 

P roo f  o f  T h e o r e m  5.4(7): We show that 

is a prioritized bisimulation up to "N,". The result then follows by taking G - X .  So we 

prove by induction on transition inference that 

A  
1. Whenever G[f ix(X.E)/X] -, PI, 3Q1, &'I E P such that 

A 
G[fix(X.F)/X] -, Q" with Q' Nn Q" and (P',Qf) E r. 
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A 
2. Whenever G[fix(X.F)/X] -, Q', 3P1, P" E P such that 

A 
G[fix(X.E)/X] -, P" with P' N, P" and (PI, Q') E T .  

To prove that direction 1 holds, assume that (G[fix(X.E)/X],G[fix(X.F)/X]) E T and fur- 
A 

ther, that G[ f ix(X.E)/X] -, PI. We perform a case analysis on some possible forms that 

G may take (we omit the simpler cases). 
A 

Case 1: G = X .  So, fix(X.E) -, PI. So by the Recursion rule and Theorem 5.1, 
A 

E[f ix(X.E)/X] -, P'. Since this is a shorter inference, by induction we have that 3Q1, Q" 
A 

such that E[fix(X.F)/X] -, Q", with Q' N, QN and (P1,Q') E T .  But since E N, F, by 
A 

Definition 5.4 3Q'" such that F[fix(X.F)/X] -, Q'", with Q'" N, Q". Thus Q'" N, 4'. 
A A 

Then by again employing the Recursion rule, fix(X.F) - Q"'. But f ix(X.F)  -, Q'" 

as well, since any derivative of f ix(X.F) is also a derivative of F[ f ix(X.F)/X]. 

Case 2: G G GIzII jG2 .  Since substitution distributes over Parallel composition, we have 
A 

that Gl [ f ix(X.E)/X] zIIJG2[f ix(X.E)/X] -, PI. By the Parallel rule and Theorem 5.1, 
A1 A2 

there are A1,A2 E V ,  Pi, Pi E P such that Gl[fix(X.E)/X] -, P:, G2[fix(X.E)/X] -, 
Pi, with A = A1 * A2 and P' = Piz((j Pi. Further, A1 and A2 obey the side conditions of the 

rule. 

Since both of these transitions are derived by shorter inference, by induction we have 

Q', , Q?, Q',, Q',' such that 

A 
So, Gl [f ix(X.F)/X] jG2[f ix(X.F)/X] - Qyr(( jQ','. Also, since parallel composition 

preserves "N," (parts (3a)-(3b) above), we have that QyzI(jQ',' N n  Qi I J J J Q ~ .  And since 

substitution distributes over composition, it follows that (Pi  Z I J J  P i ,  Q: ZI~JQ' , )  E T .  
A 

So we must show that Gl[fix(X.F)/X] z J ( j  G2[fix(X.F)/X] ----+, Q;IIIIJQ;. Assume 

the contrary, i.e., there are A' E 'D, Qy,  Q y  E P such that 

with A 4 A'. Then by Theorem 5.2, we know there exist some A" E 'D, QY, Q y  E P such that 
A" 

Gl[fix(X.F)/X]IIIJG2[fix(X.F)/X] -, Q y I I I j Q y ,  with A 4 A' 4 A". Then by the 
A i' 

Parallel rule and Theorem 5.1, there are A:, A$ E V such that GI [f ix(X.F)/X] -, Qy, 
A:' 

G2[fix(X.F)/X] -, Q',N', with A" = A; * A:. 
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Further, since these transitions are derived by shorter inference we can invoke the induction 

hypothesis to claim there are Pr, Pr, P;, Pr 
A:' 

GI [f ix(X.E)/X] -, Pf Pf N, Pr ( P r ,  Qljll) E r 
A;' 

G2[fix(X.E)/X] -, P; P; -J, Pr ( P r ,  Q y )  E r 

A" 
But then by the Parallel rule, GI [f ix(X.E)/X] 111 j G2[f ix(X.E)/X] - PFIII J P;; but 

since A 4 A", this contradicts our original assumption. 
A 

Case 3: G = fix(Y.H), where Y # X .  So (fix(Y.H))[fix(X.E)/X] -, PI. Since Y 

does not occur in E, we manipulate substitutions to  get that 

Then by the Recursion rule and Theorem 5.1, we have that 

A 
Again rearranging substitutions, it follows that (H [f ix(Y.H)/Y])[ f ix(X.E)/X] -, P'. 

So employing the induction hypothesis, there are Q1, Q" such that 

with Q' -, Q" and (PI, Q') E r. Manipulating substitutions in the opposite direction, we have 

A 
(H[f ix(X.F)/X])[f ix(Y.(H[f ix (X.F) /X]) ) / ]  -, Q". 

A 
So by Recursion (and an argument similar to case I), fix(Y.(H[fix(X.F)/X])) -, Q". 

A 
Finally we manipulate substitutions t o  derive that (f ix(Y.H))[f ix(X.F)/X] -, Q". Kl 

C Proof of Theorem 6.1 

Within the proof of Theorem 6.1 we make use of the following notation: For any set A C, 

AJ means A U { J). 

J Lemma C.l  For any I E R, if s y n ~ ( ~ ) ( A ) ,  then for any I' C I, ~ y n c ( ~ ~ ) ( A  n XI,). 
J Proof: By the definition of  sync(^), A = Connections(A) n Cz . So, since I' I ,  



January 30, 1992 43 

J J J We must show that A n B$ = Connections(A n XI.) n Ex.. To do so, assume that a E A n CI.. 
J J J But then a E Connections(A n c$), and since a E XI., a E Connections(A n Cp) n CIl. To 

J prove the "2" part, assume that a E Connections(A n Er') n c$. Since 

J J we have that a E Connections(A) n CIl, and thus, a E A fl Ex,. 

Proof of Par(3): We claim that 

is a strong bisimulation on (I, +, 2)). To prove that r satisfies property 1 of definition 5.3, 

assume there exist PI, Q', R' E P,  A E D such that 

By the definition of Parallel composition we have that: 

A I AJ AK 
($) P - PI, Q - Q', R - R' 

where p(Ar) & I, ~ ( A J )  5 J ,  p(AK) C_ K, and A = AI * AJ * AK. Also, we know that 
J s y n ~ ( ~ ~ ~ , ~ ) ( A ) ,  and thus by by lemma C.l, ~ y n c ( ~ , ~ ) ( ( A ~  * AJ * Ah') n CJUK). But since I, 

J and Ii are mutually disjoint, 

It is easy to  verify that sync( juK)(AI * AJ) holds if and only if sync( juK)((AI * A J)  - { J))  
A J*AK 

holds. Thus, with ($), we have that Q j ( IKR - QtJIIKR'. Also, with ($), as well as the 

fact that s y n ~ ( ~ ~ ~ ~ ~ ) ( A ) ,  we find that: 

A 
It remains to be shown that P I I I ( J~~)  (Q jIIK R) -n P'III(JUK) (&I jIIK R1). TO the con- 

trary, assume there is some A' € D, P",Q", R" E P ,  such that A + A' and 

But then, by the same argument as that above, 
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which contradicts (i). Finally, since 

the proof of property 1 is complete. By a symmetric argument, r  satisfies property 2 in 

definition 5.3, and so r  is a bisimulation. 

Proof of Par(4): We claim that 

is a strong, prioritized bisimulation, where I d E  is the identity relation on CCSR terms. Ob- 

viously I d E  is such a bisimulation; thus to show that r  satisfies property 1 of Definition 5.3, 

assume there exist P', S E P, A E 2) such that 

A 1 A2 
Then there are A1 C CI, Aq C C j  such that P -, PI, Q + R - S ,  and A = Al * Az. 

Az -42 
So by the Choice rules, either Q - S or R - S. 

Without loss of generality, assume the former case. By applying the Parallel rule, we have 
A 

P J Q ----f P'zll J S, and by applying the ChoiceL rule, 

A 
So we must show that (PzII JQ)  + (PzllJR) -, PtzIIJS. TO contradict, assume there are 

P", St E P, A' E 2) such that A 4 A' and 

A' A' 
But by the Choice rules, either P z J J J Q  - P"IIJJSt or P z l l ~ R  - P"zIIJS'. Again 

without loss of generality, assume the latter case. Then there are A: C CI, A', C j  such 
A: A; Ab 

that P - P" and R - S'. By the ChoiceR rule, Q + R - S', and thus by the 
A' 

Parallel rule, Pz I ( j (Q  + R) - P"zIIJS'. But this contradicts (t), and so (PzIIJQ) + 
A 

(PzIIJR) -, P'IIIJS. Since (P ' r l l~S ,  P'zIIJS) E I d &  C r ,  the proof of property 1 is 

complete. 

The proof of property 2 is similar. 

Proof of Hide(2): We show that 

is a strong prioritized bisimulation. We shall prove that r  satisfies property 1 of definition 5.3; 

the proof for property 2 is similar. 
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Since IdE is a bisimulation, to  show that T satisfies property 1, assume there exist R E P ,  

A E cD such that 
A 

(t) (P+Q)\B-=R 

By the Hiding rule, we know that R is of the form S \ B  for some S E P. Also, there exists 
C 

some C E 2) such that P + Q - S, fullsync(C n B )  and that A = 4hide(B)(C). Thus 
C C 

by the Choice rules, either P - S or Q - S. Without loss of generality, assume the 
A 

former case. Then once again applying the Hiding rule, we have that P \ B  - S\B.  So by 
A 

the ChoiceL rule, P \ B  + Q \ B  - S\B,  or equivalently, 

A 
We must show that P \ B  + Q\B -, R. To contradict, assume there are A' E 'D, R' E P, 

A' A' 
such that A 4 A' and P \ B  + Q \ B  - R'. By the Choice rules, either P \ B  - R' or 

A' 
& \ B  - R'. 

Assume the first case is true (the proof for the second case is equivalent). By the Hiding rule, 
Ci 

R' is of the form S'\B for some St E P. Further, there is some C' E 'D such that P - S' 
Ci  

with fullsync(C'nB) and A' = +hide(B)(C'). Then by the ChoiceL rule; P + Q  - St,  and by 
A' A 

the Hiding rule, ( P  + Q)\B - Sr\B.  But this contradicts (t), and so, P\B + Q\B -, 
R. Since (R, R) E T ,  the proof of property 1 is complete. 
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