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Abstract 

In this article we describe an algorithm for robot localization using visual landmarks. 
This algorithm determines both the correspondence between observed landmarks (in this 
case vertical edges in the environment) and a pre-loaded map, and the location of the robot 
from those correspondences. The primary advantages of this algorithm are its use of a 
single geometric tolerance to describe observation error, its ability to recognize ambiguous 
sets of correspondences, its ability to compute bounds on the error in localization, and fast 
performance. The current version of the algorithm has been implemented and tested on a 
mobile robot system. In several hundred trials the algorithm has never failed, and computes 
location accurate to within a centimeter in less than half a second. 
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1 Introduction 

A core problem in robotics is the determination of the location (sometimes referred t o  as the 
pose) of a mobile robot in its environment using passively acquired sensor data. This process, 
often referred to  as localization, is a basic operation which must be successfully carried out in 
complex environments using imprecise, contaminated data. For these reasons a solution to  the 
localization problem must be 

Tolerant of errors in measurements. 

Tolerant of falsely detected features or landmarks. 

Simple enough t o  perform quickly and efficiently. 

Furthermore. the solution should have a low fundamental complexity so that good performance 
can be maintained over a wide.range of situations. 

We can break the localization problem into two distinct but closely related subproblems: 

1. Establishment of the correspondence between sensor observations and known landmarks 
in the surrounding environment. 

2. Determination of robot - location relative to an external, fixed coordinate frame using rec- 
ognized landmarks. 

In addition to providing information required for establishing the pose of the robot, the solution 
to  the first problem may provide useful information for planning or navigation. For instance. 
the landmarks may correspond to  a door or other opening which must be navigated. or they 
may indicate a docking site or other task-relevant structure. 

The localization problem must be solved in two modes: static and dynamic. In the static 
case. the system is presented with sensory data. must determine a labeling for this data, and 
then. from this information, compute its pose in the world coordinate frame. In dynamic mode. 
it may be assumed that the system has solved both problems in a previous step, and that the 
new situation is a slight perturbation of the previous situation. This ''temporal coherence'' 
provides a constraint which, when properly exploited, can make a solution to the dynamic 
problem simpler and more reliable than a solution to the static problem. There are several 
experimental and commercially available systems which are able to accomplish static and/or 
dynamic localization. For example, [I<rishnamurthy e t a . . ,  19881 uses structured light, sonar, 
and active and passive vision t o  recognize landmarks on walls, ceilings, and other surfaces in 
the environment. [LYarnecke, 1987; Crowley, 1989; Leonard & Durrant-Whyte, 19891 determine 
the position of a robot relative to  a stored map from sonar data. However, as these examples 
indicate, most commercial and many experimental systems depend on some type of artificial 
"beacons" in the environment and/or employ active or intrusive sensing. 

It is our goal t o  employ non-intrusive sensing, in this case vision, to solve the localization 
problem in typical. unaltered indoor environments. Examples of solutions to  the static problem 
using visual data  include [Sugihara, 1988; Krotkov, 1989al while solutions in the dynamic case 
include [Ayache & Faugeras, 1987; Chatila & Moutarlier, 19891. We note, however, that  most 
solutions to the dynamic problem inherently assume a "good" prior solution and expect only 
small perturbations from this prior solution. If a good prior solution does not exist, the methods 



cited above can fail, and moreover it is difficult to automatically detect when such failures occur. 
Thus, static localization is normally required to  provide an initial solution and is therefore 
fundamental to the solution of the dynamic case. 

In this article we describe: 

a The development of simple methods for determining datallandmark correspondences and 
robot location which 

- Can be implemented in real time (the current version requires less than 0.5 seconds 
for a solution to  recognize landmarks and localize the robot). 

- Treats errors using tolerances, thereby avoiding the difficult issues surrounding the 
time-series modeling required to  employ statistical techniques. 

- Computes both robot location and a geometric, worse-case accuracy. 

- Determines when ambiguities arise which make it impossible to  solve the problem. 

The presentation of simulated and real tests of these methods which indicate that it is 
very robust to observation error and geometric ambiguity. 

r The extension of our results for the static localization problem to the dynamic localization 
problem. 

In addition, we describe how these algorithms have been integrated into a working mobile robot 
navigation system. Finally, we note that many of the ideas and methods developed in this article 
are, in fact, independent of vision and could be used with other sensing equipment. 

In the next section we formulate the localization problem precisely. Following that, we 
present our solution and analyze its complexity as well as its limitations. In the fourth section 
we describe a mobile robot system and present the results of several simulations and experimental 
trials. In the final section we discuss our results and describe a set of problems that we plan to 
address in future research. 

2 Problem Formulation 

Following Krotkov and Sugihara, let pl ,pz, .  . . p ,  denote the positions of fixed landmarks or 
beacons expressed in a fixed two-dimensional world coordinate system W. Let r = (x, y, 0) 
parameterize the location of a local robot coordinate system R with respect to W. We assume 
that the robot is equipped with a camera system capable of taking stereo images. Let o = (ol, or) 
denote the horizontal position of a vertical edge in two camera images which we label lLleft" 
and "right", and let 01,02,. . . ,om denote a series of these observations. We will model the 
imaging of points by the camera in a coordinate system C using a linear spatial transformation 
CTw = =TRRTW followed by a nonlinear imaging transformation I ( . )  which computes both the 
left and right image locations. Unless otherwise noted, all positional quantities (including robot 
location) will be expressed in millimeters and all angles will be expressed in degrees. 

A correspondence between an observation o and a world point p is a tuple X = ( o , p ) ,  and 
a labeling A is a set of such correspondences. A labeling is consistent if each observation is in 
correspondence with no more than one feature in the world coordinate frame. 

Ifre now precisely formulate the localization problem: 



Problem 0: Given n points pl,p2,. . . ,p,, in a world coordinate system and m observations 
ol,02,. . . , om taken a t  two camera positions with known relative relationship, determine if there 
is a unique, consistent labeling A and fixed pose I' such that o = I(CTwp) for all (o,p) E A. 

This problem is formulated for the ideal case where the observation of landmarks is error free. 
In practice we must be prepared to accommodate errors in edge localization as well as culling 
observations which have no corresponding landmark in the map. To accommodate the former we 
will introduce an observation tolerance, c, indicating that the matching criteria must be unique 
and satisfiable up to this tolerance. This modification leads to the following reformulation of 
the ideal problem as two separate subproblems: 

Problem 1: Given n points p l , p ~ , .  . . , p, in a world coordinate system and m observations 
01 ,02 , .  . . , O, taken at two camera positions with known relative relationship, determine if there 
is a unique, consistent labeling A so that for some fixed location I', 

for all (o;,p;) E A. 

Problem 2: Given a labeling A as described above, determine the complete set of robot 
positions, P, consistent with A. 

We note this problem formulation differs from Krotkov's and Sugihara's in that we assume 
information from two camera positions with known relative relationship. This allows us to 
explicitly compute depth. Furthermore, we explicitly include observation error and observation 
of non-landmark points in our problem formulation. 

3 Our Solution 

Our approach to the problem is to transform both observed data and stored map points into 
a representation that is invariant to translation and rotation and thereby permits direct com- 
parison of observed and stored entities. The original motivation for this approach came from 
[Richter, 19861 where the labeling of star fields was done from sighting data. The idea of invari- 
ant transformation is quite general and appears in many vision applications. It is the basis of 
the well-known Hough transform techniques for parameter determination, though our algorithm 
should not be confused with Hough-based methods as we do not quantize the parameter space 
or make explicit use of accumulation techniques. 

In overview, we first note that any three non-colinear points in the plane determine a triangle 
with three angles a, p, 7 and three sides L, R, B of length I ,  r ,  b, respectively (see Figure 1). These 
six values are translation and rotation invariant, and therefore independent of the coordinate 
frame in which the points are expressed. Hence, comparison of these quantities for three points 
expressed in the world frame with the corresponding values for three points expressed in the 
camera frame can be employed to determine if the two clusters of points lie in the same geometric 
configuration relative to one another. Furthermore, we can incorporate tolerances on lengths and 
angles based on a given observation error tolerance and thereby make the comparison tolerant 
to observation errors. 

Thus, an algorithm for determining the solution to Problem 1 is to store a list of angles and 
distances between the points in a map of the environment. At runtime. for every combination 



Figure 1: Our triangle labeling conventions. 

of three stereo da ta  pairs, we can compute the same quantities and compare the network of 
observed points. now encoded as intervals on angles and distances, with the pre-stored map. 
From this comparison, we can determine all possible correspondences between observed and 
stored points up to the specified observation error. Given a set of matched points, we can 
determine robot location and use the tolerance on observation to compute an error bound on 
that localization. 

We now describe the complete matching process in detail. 

3.1 Computing Correspondences 

Imaging Model and Calibration Our camera system, due to the nature of its use, requires 
a very wide field of view and consequently the lens suffers from significant distortion effects. 
Thus. rather than using the simple pin-hole imaging model, we include a second-order distortion 
component [Lenz & Tsai. 19881. The imaging process can be subdivided into four steps: 

1. the geometric transformation e = CTwp depending on six parameters describing the spatial 
transform T ,  , 

2. the perspective t.ransformation of the point e = (z,? y,, 2,) into undistorted image coordi- 
nates 

depending on the focal length f and baseline b, 

3. the mapping of (u,, v,) into the radially distorted point (ud,  vd) depending on the distortion 
coefficient K :  

2 
['t" = I + % / - -  

[:: ] ; n2 = U; + v:. 

4. Conversion from the image coordinates (ud,vd) to pixel coordinates (u, v) depending on 
image center (c,, c,) and scale factors (s,, s,): 



The camera is mounted on a sliding platform. For simplicity, we assume that the camera 
mounting is attached so that the camera x-axis is parallel to the slider direction of motion. In 
this case, the transform CTR describes the camera at the slider origin, and slider motions only 
require adjustment of the x translation parameter by an offset b given by the slider controller. 

We take the focal length of the camera to be that given by the manufacturer and the baseline 
is assumed to be supplied by the slider controller, so the camera calibration process involves the 
determination of 6 + 1 + 4 = 11 parameters.1 This calibration is carried out by observing several 
(approximately 20) points at known positions on two different planes with the robot positioned 
at the origin of the world coordinate system. Performing a nonlinear least squares regression on 
the observed data yields the 11 required parameters, and since the robot is aligned with with 
the world coordinate system, the 6 transformation parameters can be taken to describe CTR. 

In the sequel. the previously mentioned function I(p) is assumed to perform steps 2 through 
4 on p using baseline parameters 0 and b and return the u components of the two resulting image 
coordinate vectors. 

Stereo-Based Posi t ion Determinat ion fVe now reduce the imaging geometry to 2 dimen- 
sions by assuming that vertical edges are imaged at a fixed height y, = 0 corresponding to the 
scan line v = c,. 

Let or = (u ,  v)' be the imaging of a vertical edge at the slider origin and o' = (u,v)' be 
the imaging of the same vertical edge at a distance b from the origin. We first invert (3)  to get 
distorted image coordina@s (ud, vd). \Ve then invert (2) 

to compute the distortion-corrected image coordinates (u,, v,)' and (u,, u,)'. Using (1) we can 
now compute the (planar) location e = (,-,,x,) of an observed point in the camera coordinate 
system as: 

Now, recall that we assume to know a priori tolerances on observation errors. Examining 
the above equation we see that, under the assumption that image distortion is locally constant, 
perturbing u: and u i  yields a diamond-like area defined by the four points computed from all 
combinations of u: & E and ufi k E [Solina. 1985: Matthies & Shafer, 19871. The region enclosed 
by this polytope, which we will refer to as a stereo region, contains all possible locations for the 
observed point up to sensing error. We note that, in principle, we could perform the same analysis 
with other parameters such as the distortion coefficient or the baseline, thereby accounting for 
other sensor inaccuracies. In practice, we have found a single tolerance on observation error to 
suffice. 

Transformation T o  Triangles For any three given points, p;,pj, and pk, define L = pi - pj, 
R = pk - pj, and B = pk - pi. Then we can form the six vector of lengths and angles describing 

'In practice, we in fact use two separate distortion coefficients for both z and y directions, however the values 
tend to agree closely enough that one value suffices. 



the triangle as 

In the ideal case. this is a redundant description as a triangle is determined by any combination 
of three values including a t  least one length. 

There is a family of triangles consistent with any given triplet of stereo regions. Due to 
the nonlinearities and couplings among the variables of the above transformations, there is no 
simple description of the set of angles and lengths consistent with three stereo regions. Instead, 
we convert stereo regions into independent intervals on each of the six angles and lengths of the 
associated triangle. The formation of independent intervals results in a loss of information (we 
neglect couplings among the equations), however by now using all six equations we reduce this 
loss through redundancy. 

Given two regions a and b, the maximum possible distance between points in a and points 
in b occurs on the vertices defining the regions. The minimum possible distance also occurs a t  
vertices except when a perpendicular to a segment of one region can be made to  pass through a 
vertex of the other region. In this case the shortest distance is given by this perpendicular. To 
solve for minimum distance let bk be a vertex of region b and a; and a j ,  j # i be two adjacent 
vertices of region a. The minimum distance between the point bk and the line through a; and 
a j  is given by: 

bk + a; 
min jibk - (ai  + X(aj - n;))ll with solution X = 

x \ / a j  - ai]12- 

If X falls between 0 and 1, we take the minimum distance corresponding to that  value of 
A, otherwise we take llbk - ail\ if X < 0 and l(bk - a j J J ,  otherwise. In summary, to  compute 
the maximum distance between regions we consider all combinations of vertices of a and b (4  
* 4 operations) and take the largest. To compute minimum distance we compute the above 
expression for all combinations of vertices taken from a and segments taken b and vice versa ( 4  
* 4 * 2 operations), and take the minimum of those values. 

Given three stereo regions a, b and c, the minimum angle between a -  b and c- b occurs a t  the 
extreme points of all three regions,2 while the maximum angle sometimes occurs a t  the extreme 
points and sometimes occurs by choosing two vertices of a and c and a point along a segment 
forming the region b. Let a; and cj be vertices of regions a and c respectively, and bk and bl be 
two adjacent vertices of region 6. Define sl = a; - (bk + X(bl - bk)) and s 2  = cj - (bk + X(br - bk)). 
Then, the latter maximization problem is 

S1 ' S2 maxcos-' (,, ) min S1 ' S2 

X s1ll11.2 11 11~1 lllls2ll' 

the above equivalence holding for interior angles. 
Due t o  the complexity of the closed-form solution for this minimization we use an  approx- 

imation to  compute maximal angle. For regions a. b, and c with the angle situated a t  6, ive 

2The only exception is when a single line passes through all three regions. a case which is easy to check for. 



compute the angle between the vertices of a and c for each endpoint and midpoint of the seg- 
ments comprising b (4*4*8 evaluations). We then take the maximum and minimum of these 
d u e s  for the upper and lower bounds on angle, respectively. In practice, this approximation is 
quite accurate. 

By carrying out these computations for stereo regions a ,  b,  and c, we can compute a closed 
interval SaTb,  = [Si,b,c, S:,,,c] consisting of six components. Three points pi, pj, and pr are 
consistent with regions a ,  b and c if Si,j,k E SaVblc. 

Henceforth, boldface type will be used to distinguish between point values and interval 
quantities as in the above expression. 

Searching For Matches  Each interval of lengths and angles computed from observed data 
will be consistent with some collection of triangles computed from map points. The crucial point 
of designing a good algorithm is to make the search for these matches as fast as possible. 

Our algorithm for determining possible correspondences works as follows: 

Initialization: 

For each unique grouping3 of map points, compute (the point) SiJ,k and add it to a list 
M. Call the final length of this list q. 

Let Mj,i denote the ith element of the j th  vector in M. For each element Mj, j = 1 , .  . . ,q 
and i, i = 1. . . 6 ,  add the pair (j, Mj,;) to a list L i .  

Sort the elements of each L' on the second (value) component yielding six lists of pairs of 
indices and values sorted on value. 

Runt ime:  For each triplet of observed stereo pairs o,, ob, o,, 

a Compute (the interval) Sa,b,c = [ I , u ]  encoding the permissible range of the six triangle 
parameters for the given tolerance E. 

For each coordinate i = 1,. . . , 6  

- Find the first index r such that the value field of L i - ,  is smaller than 1;. 
- Find the first index s such that the value field of L:+, is larger than ui. 

- For each (kj,vj) = L)., r 5 j 5 s, mark Mk, as found. 

For each S i , j , k  E M that has been marked six times, add ((oa7pi), (ob,pj), (oc,pk)) to A  

This algorithm computes a set of triplets of matched pairs. Some combinations of these 
triplets are consistent in their assignment of observed points to world points, and some are not. 
We partition the set of all matches into maximally consistent categories A l , A z . .  . A ,  A. For 
example, we may have the following triplets of matches: 

3Triangles tha t  are  merely a permutation of map points indices pi, p,, p k  corresponding to a relabeling of the 
triangle axes is redundant. 



We can see that  the matches in Az and in A3 are not consistent with those in Al, and that  
A1 contains the maximal number of possible matches (4 matching triangles). In general, if IA;l 
is larger than IAj 1, for all j # i, then we would intuitively expect that  A; contains the correct 
correspondences. More specifically, if we assume that all correct matches will be found (which 
they will be if c is correctly chosen), then there are two possibilities for error: 

1. All detected features correspond t o  landmarks. In this case, multiple consistent sets of 
matches indicate a structural ambiguity in the map a t  the given error tolerance level. How- 
ever, the set of correct correspondences can be no smaller than the set of correspondences 
for some structurally equivalent set of points. 

2. Some detected features have no corresponding landmark. In this case, the number of 
correctly corresponding triples can be exceeded by the number of incorrectly corresponding 
triples only if there are n observed points. n - k of which are "true" points and k of which 
are false, and there is a structure in the world such that m of the "true" points together 
with j of the "false" points can be placed in correspondence. and m + j > n - k. 

Practically speaking, for maps with an even distribution of landmarks, the likelihood of the 
latter occurrence is very very small. In practice, we have never seen such a case occur. The 
former case is also seldom a problem except when the observed points are far away (> 4 meters). 
In this case, the stereo calculation uncertainty becomes very large, and each triplet of stereo 
points can match many map triplets leading to  a large A with many multiple matches. 

In order to  be more tolerant of features which do not actually correspond to  landmarks, we 
count the number of times a landmark is placed in correspondence with an observed point. If 
this count does not exceed t = 50% of the expected number of correspondences based on the 
number of detected features, then that landmark and all associated correspondences are removed 
from 11. In the example above, the landmark ps occurs in only one triple, though we expect four 
matches from four observed stripes. Consequently this match and thereby the entire category 
.I3 can be removed. The category A2 must be a structural ambiguity which. as expected, is 
dominated by Al which is the correct correspondence. 

Though heuristic, the threshold t is a very weak criterion. Later we will discuss other 
methods for disambiguating matches which reduce our reliance on t. 

3.2 Determining Robot Position From Matched Points 

Our first approach to determining robot pose was to  carry out a non-linear least-squares regres- 
sion based on the imaging equation: 

where r l  is the consistent labeling computed from the observed data and CTw depends on the 
robot pose I? through CTR. This regression is carried out using a standard Levenberg-Marquardt 
gradient descent algorithm [Press et al., 19861. We choose an initial point which is close to the 
true point by simply examining the geometry of the observed points and choosing an orientation 
angle which is approximately correct. The method generally yields an  answer within a second. 

This approach is unsatisfying because it gives no direct. quantitative indication of the possible 
errors in robot positioning relative to imaging geometry and observation error. To supply this 
we have developed a purely geometric solution for pose determination which is consistent with 



our correspondence solution. As noted by Krotkov [1989b], this is a very difficult task to do 
precisely as the expression given above is a complex, coupled, nonlinear equation. Our approach 
is t o  approximate the true solution set P (as defined in Problem 2 of Section 2) by an interval 
on I' which must contain that set. 

Given two observed points e; and e j  corresponding to pi and pj in the world coordinate 
system, we can compute robot position by: 

1. Determining the orientations of the segment between p; and pj and the corresponding 
segment between e; and ej. 

2. Determining the rotation that makes the segments parallel. 

3. Determining the translation that causes the endpoints of the rotated segments to overlap. 

This procedure wiil yield the robot pose. Moreover, if we examine the extreme values of the 
above quantities on the stereo regions. we can calculate the extreme values of computed position. 

We first determine the angle interval consistent with step 1 above. To do this, the maximal 
and minimal angles consistent with stereo regions a; and a j  occur when a segment of length 
d = lip; - pjll is placed such that one endpoint falls on a vertex a; of region a; and the other 
falls on a segment ( b k  - bj) of region a j  or the dual case. We can determine this intersection by 
solving the equation: 

- 
If we define t = b j  - a; and s = bk - bj, then the above equation yields a quadratic with two 

solutions for A. The consistent solutions are those A such that A E [ O , l ] .  Defining T = pj - p;, 
for any consistent solution, we compute the angle of the observed line, the line in the world, and 
their difference as 

For each pair of matched stereo regions, a; and a j ,  we can compute up to  32 (2  * 4 * 4) 
values of 8, and then form the minimal interval OiYj  containing all 32 values. We then carry out 
this computation for all pairs of corresponding points and take the intersection of the computed 
intervals yielding: 

Given a stereo region surrounding a;, we can easily compute a bounding interval with com- 
ponents s; and t ;  for that region. Then by using interval arithmetic [Moore, 1966; hlefeld & 
Herzberger, 19831, we calculate the intervals on robot translation as: 

where pi = (pi.,, pi.,) is the match for region a ,  
If we have m matched pairs. we compute 



We note that if the observation errors are stochastic, we can take multiple samples of the 
same scene, and further reduce the size of these intervals by intersection across observations. In 
the absence of approximation error, and assuming independence of observation, the size of these 
intervals will tend toward zero in the limit. In Section 4 we will return to  this point. 

3.3 Analysis of the Solution 

The offline portion of the algorithm consumes O(n3 log(n)) time to compute and sort all triangle 
parameters. However, this is only done once and stored as a compiled table with space O ( n 3 )  
which is read in a t  runtime. 

At runtime. the search for the lower point of an interval takes O(log(n)). The worst case 
of the marking phase would be if all map triangles are consistent with an observed triangle, 
yielding O(n3) marking operations. Thus, the worst case complexity is O(m(n3 + log(n))). In 
practice, by keeping information about the minimal and maximal marked values, the marking 
and scanning can be done very efficiently and are never carried out over the entire array. We 
speculate that a more sophisticated set intersection algorithm could reduce this complexity. We 
also note that the correspondences for each triangle computed from observed data could be 
computed in parallel with nearly linear speedup in the number of processing elements. 

The algorithm we use to partition n matched triangles is 0 ( n 2 ) .  In the worst case, this 
becomes combinatorial, however this limiting case is never reached. Normally n < 60. 

The determination of robot location requires, in the worst case, O(m2) computations to 
determine 8' and O(m2) computations to determine position. 

Our implementation of this algorithm on a Sun IV yields the following timing figures on 
the various algorithm components when processing five observed landmarks with 40 stored 
landmarks: 

Position Determination 0.07 sec 

For 25 observed landmarks, the correspondence timing drops to under .066 seconds. The above 
does not include least squares position determination which consumes approximately 0.5 seconds. 
We expect that the timings could be improved by at least a factor of two through analysis and 
optimization of the algorithms. 

3.4 Comparison with Related Work 

The algorithm we have presented can be used to  determine all  possible consistent interpretations 
of the data, and can find all robot locations consistent with observation. Moreover, it does 
this without using any statistical information about the error in observation and without any 



prior information. The complexity figures we have cited are comparable with those of Krotkov 
(O(mn4)) and Sugihara (O(n3 log(n)) and O(n3) depending on space requirements). 

Recently, there have been several proposals for solving the locaiization problem using sta- 
tistical methods [Ayache & Faugeras, 1988; Leonard & Durrant-Whyte, 1989; Crowley, 1989; 
Chatila & Moutarlier, 19891. Most of these methods use prior knowledge about location and 
knowledge about system dynamics to predict what information should be observed, and to es- 
tablish a threshold on maximal deviation from these predictions. Examination of the methods 
used, however, reveals that a good starting estimate is required to  "bootstrap" the system. Our 
method can produce this starting estimate. 

Given a system dynamic description of the form = F(I't, V), where V is some bounded 
error, then we can lift F to an interwl function [Alefeld & Herzberger, 19831 and project the 
current localization interval magnified by additional dynamic uncertainties into a new frame. All 
poses computed by the algorithm in the new state must be consistent with this projection. This 
provides both a running check on correspondence and localization solutions as well as allowing 
the combination of information over time. Hence, by adding this dynamic description we can 
also solve the localization problem in the dynamic case. Furthermore, this effectively eliminates 
our reliance on the the threshold t for dropping false matches. 

4 Experimental Results 

We have implemented and tested the above algorithms on a mobile robot system under devel- 
opment at the Fraunhofer Institute - IITB and the University of Karlsruhe in Karlsruhe, West 
Germany. In this section, we describe the system hardware and present the results of both 
simulation and experimental trials. 

4.1 System Description 

The system consists of a CCD-camera (resolution 780 by 580 pixels with an 8mm objective) 
mounted on a controllable slider (positioning precision to 0.02mm). The slider mounted on the 
Karlsruhe mobile robot (KAMRO) [Rembold, 19881. The camera is connected to the VISTA 
real-time image processing system [Paul e t  al., 19881. This system is in turn connected to an 
ethernet, and sends information about images (the positions of vertical stripes) to a Sun IV 
computer ." 

The camera was calibrated using the procedure described in the previous section. In justifi- 
cation of our second order model, we note the distortion coefficient for this lens was calculated 
to  range between -0.094 and -0.1112. Without this coefficient, the error in stereo calculation 
is equivalent to an observation error of several pixels. If we were to account for this error by 
using a larger tolerance, the number of false matches would grow too large, thereby leading to  
ambiguous matches in many cases. If we neglect this error, the distortion of edges near the edge 
of the camera results in the rejection of matches which are correct. 

Our stereo solution uses the notion of image continuity [Moravec, 1979; Baker & Bolles, 
19881 to follow the path of a vertical stripe from left to right as the slider moves a pre-set 
distance. The VISTA system allows the frame-rate acquisition of small image slices taken with 
the slider in motion, and processes the resulting "band picture." This picture is processed 
with a low-pass (smoothing) and high-pass (differentiation) operator followed by a non-maximal 

*Sun is a trademark of Sun Inc. 



Figure 2: The University of Karlsruhe robot KAMRO with the slider stereo apparatus. 

Figure 3: "Band picture" image processing steps. Left, the actual scene; middle, the "band 
picture"; and right, the processed image. 



Figure 4: Two example data histograms showing the frequency distribution of the horizontal 
position of vertical stripes in an image. 

suppression leading to  a binary picture. A line is fit to contiguous patches of pixels, and from 
this line we calculate the coordinates of intersection with the upper and lower edges of the 
picture. In Figure 3 we show a "typical" scene, the resulting "band picture," and the filtered 
and thresholded picture. 

The error in observation was determined by taking several time series of data and looking 
at  the data spread. We z s u m e  the error is symmetrically distributed about the "true" value, 
and therefore read the required tolerance directly from the histogram. Figure 4 shows two 
representative frequency histograms of x (vertical) position in the picture. In dl cases, the 
error was up to and including one half pixel. The effects of the slider maximal error of 0.02mm 
considered to  act on a point observed at a distance of one meter lead to  a 0.02 pixel error in 
picture coordinates. Finally, instead of finding maximal angles, we approximate by checking 
all corners and midpoints of diamonds. In order to ensure that all possible matches are found, 
we must inflate the observation factor slightly. We therefore adopt a tolerance of 0.55 pixels 
for the combined effects of quantization, approximation error, and slider positioning error. We 
note that, though we have not decorrelated and tested the data, the series appear to be neither 
Gaussian nor identically distributed as many of the previously cited methods assume. 

In Figure 5 we show the environment (and its landmarks) in which all experiments take place. 
It consists of 2 rooms with vertical stripes formed by the edges of doors, tables, and desks. There 
are several large open areas with no vertical structure upon which we have introduced artificial 
black stripes. Both experiments and simulations will be with respect to  this environment. 

4.2 Simulation Tests 

We have performed several simulation tests of the above-described algorithm to test its robust- 
ness against errors in setting the observation error parameter E. In general, the performance 
of the algorithm can vary greatly depending on the geometry of the observed points. Here we 
detail two representative cases. The first case shows the "typical" behavior of the algorithm, 
and the second was chosen to demonstrate its performance in adverse circumstances. 

Simulation 1: The robot position was chosen randomly from the interval x = 560 * 100, 
y = 20 f 100. 8 = -26 f 2 (random position 1 of Figure 5). At each position, we simulated 
observing the points (drawn slightly larger) in the viewing cone of the robot from this position 
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Figure 5:  A map of the navigation testing area. The small circles indicated landmarks used by 
the robot. 

Figure 6: A graph of the number of corresponding points from two simulations. 



Figure 7: The time evolution of the maximal error in robot localization matched points, z 
component (left) and y component (right). 

under uniformly varying error in the range of f 0.55 pixels. For each case we computed the 
number of matched points and then calculated its ratio with the ideal number of matched 
points. In Figure 6, the left graph shows the mean of this ratio as a function of the tolerance E 

used in the algorithm. We observe that choosing the tolerance in a range of 0.15 pixels about 
the correct value leads a match ratio within 5% of optimal (1.0). Moreover, the correspondence 
was correctly solved in all cases up to 6 = 1.3, more that 200% of the correct value. 

Simulation 2: The robot position was chosen randomly from the interval x = 2500 f 100, 
y = -200 f 100, 8 = 90 f 2 (random position 2 of Figure 5). At each position, we simulated 
observing the points (drawn larger) within the viewing cone of the robot in this position under 
uniformly varying error in the range of f 0.55 pixels. In Figure 6 we again graph the mean of 
the ratio between the number of found and the number of ideal correspondences as a function of 
the tolerance E .  In this case, due to the large distance from the observed points and structural 
ambiguities in the stored map, we see that even the nearly correct value of E = 0.5 leads to 4.7 
times more matches found than are actually possible in the ideal cases. We note, however, that 
even with this explosive growth the correct correspondence was found for all values of 6 up to 0.8. 
By slightly modifying the stored map (removing some ambiguities) the correct correspondence 
was found up to E = 1.1. 

Our conclusion from these tests is that the exact choice of E is not crucial to good algo- 
rithm performance, although choosing the smallest value known to be correct will improve its 
performance in marginal cases. 

If the errors in observation across time are stochastic and independent, then continued ob- 
servation of the same scene will drive the maximal error in positioning (the size of the tolerance 
intervals on the position parameters) toward zero. Figure 7 shows the rate of convergence over 
time when observing a typical scene with observation error distributed uniformly in the range 
[-0.5,0.5]. 



Figure 8: Position convergence with real data. 

4.3 Experiments With Real Data 

A typical picture taken in the test room may contain from zero to approximately seven observed 
vertical edges. In practice, we have never seen more than seven detected edges in a picture. If 
the number of observed edges is less than three, then the algorithm cannot be run (we require 
a minimum of three points to describe a triangle), and, unless the observed points are very 
close (within about a meter), we in fact require a minimum of four observed stripes to provide 
some redundancy. If the robot does not see a scene with four stripes, there is an error-handling 
procedure which rotates the robot a small amount and takes another picture. This process 
continues until a satisfactory picture (and in fact a unique correspondence) is found. On the 
average, we find the pictures contain five vertical edges, zero or one of which is a "false" stripe. 

Experiment 1: With the robot in a static position, we continually sample and compute 
correspondence and position. TiVe have tested this program very thoroughly (several hundred 
trials), and the correspondence component has almost never failed. For comparison purposes, 
Figure 8 shows the rate of convergence of the intervals toward a single point. For this single trial, 
we see that the initial localization accuracy is consistent with simulation, though the convergence 
is much faster than average for this trial. This experiment was carried out to  1000 observations, 
however the accuracy was not reduced after the 86th observation. The final accuracy of the 
solution was 0.5 millimeters in z position, 3.3 millimeters in y position, and 0.07 degrees of 
orientation. Hand measurements verified that the systematic error in location estimation was 
less than one centimeter. 

We believe that the rate of convergence of this trial is somewhat exceptional as, by examing- 
ing the histograms of the data, we see that the error is somewhat centrally distributed. Thus, 
we would expect the average rate of convergence to  be somewhat slower than that given by the 
simulation. 

Experiment 2: We have tested the complete system at point to point navigation in the 
two rooms we have shown. In particular. to move from room to room requires navigating the 



door opening which requires a positioning precision of 0.5 cm (we use least squares to choose 
the exact positioning point for these trials.) This particular path has been tested well over 100 
times without failure. 

In these trials we also use the notion of projecting the current position modified by robot 
motion and additional robot uncertainty. This allows us to introduce an additiond constraint 
into the correspondence solution, namely that the newly computed position from correspondence 
must overlap the projection of the previous position. In our experience, with this modification 
the algorithm has never failed to find the correct correspondence. 

The robot has never failed to reach the goal position, suggesting that the error in positioning 
is less than 0.5 cm. This was again confirmed by comparison of hand measurements of robot 
position to computed robot position. 

5 Discussion and Future Work 

We have presented interval-based algorithms for solving the problem of determining the cor- 
respondence between observed and previously stored points, and the problem of determining 
bounds on robot location from matched landmarks. We see the novel points of these algorithms 
as : 

Depending on only two parameters, the observation tolerance c and the match tolerance 
t .  - 

Real-time (less t&an a half a second) for solution to both problems from raw camera images. 

a The computation of quantitative, conservative bounds on localization error. 

Furthermore, we have discussed how the solution to the static localization problem can be used 
to solve the dynamic localization problem. 

We see these methods as competitive with the widely-published Kalman filter-based methods 
in terms of simplicity and execution time. Moreover, we do not rely on any statistical assump- 
tions about the data  except for the rate of interval reduction. Examination of our camera data 
suggests that any type of strong distributional assumptions would be difficult to support. 

The computation of solution sets is, we believe, an important approach to robotics problems. 
That is, rather than computing a single point, or a single point with some type of (often heuristic) 
figure of merit, we compute the complete set of possible solutions modulo, of course, having 
sufficiently conservative observation uncertainty intervals. In practice, we have found the latter 
much simpler to determine than the statistical parameters required for methods such as the 
Kalman filter. Previous work [Hager, 1990aI describes more advanced tolerance-based computing 
methods. Current work [Hager, 1990bI makes significant advances on these methods. 

In the next phase of our work, we plan to mount a second camera on the robot and use 
feature tracking to support continuous stereo. The methods presented above will be used to 
locate features and solve the static localization problem. Thereafter, landmarks will be tracked 
and a running location estimate will be computed. We expect to test both Kalman filter and 
interval-based methods for accuracy and suitability. 

Furthermore, we plan to investigate some aspects of "active" vision. For example: 

a If the correspondence cannot be solved and localization accuracy becomes unacceptable. 
then we can enlarge the stereo baseline. This will improve accuracy, though at the cost of 



having fewer landmarks common to both images. A wider baseline also complicates the 
feature tracking. 

When high localization accuracy is needed, a longer baseline allows a more accurate lo- 
calization t o  be computed. Additionally, slowing the robot motion increases the effective 
sampling rate and thereby increases the accuracy of localization. 

During the next months we plan to  formalize and investigate solution to these problems using 
decision-theoretic methods [Berger, 19851. 
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