
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

11-16-2009

Model-Based Testing of GUI-Driven Applications
Vivien Chinnapongse
University of Pennsylvania, vichi@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Shaohui Wang
University of Pennsylvania, shaohui@cis.upenn.edu

Paul L. Jones
U.S. Food and Drug Administration, PaulL.Jones@fda.hhs.gov

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Graphics and Human Computer Interfaces Commons, and the Software Engineering
Commons

The Seventh IFIP WG 10.2 International Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS 2009), Newport
Beach, CA, USA, November 16-18, 2009.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/423
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Vivien Chinnapongse, Insup Lee, Oleg Sokolsky, Shaohui Wang, and Paul L. Jones, "Model-Based Testing of GUI-Driven
Applications", Lecture Notes in Computer Science: Software Technologies for Embedded and Ubiquitous Systems 5860, 203-214. November
2009. http://dx.doi.org/10.1007/978-3-642-10265-3_19

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76393553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F423&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F423&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F423&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F423&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=repository.upenn.edu%2Fcis_papers%2F423&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=repository.upenn.edu%2Fcis_papers%2F423&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=repository.upenn.edu%2Fcis_papers%2F423&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1007/978-3-642-10265-3_19
http://repository.upenn.edu/cis_papers/423
mailto:libraryrepository@pobox.upenn.edu

Model-Based Testing of GUI-Driven Applications

Abstract
While thorough testing of reactive systems is essential to ensure device safety, few testing methods center on
GUI-driven applications. In this paper we present one approach for the model-based testing of such systems.
Using the AHLTA-Mobile case study to demonstrate our approach, we first introduce a high-level method of
modeling the expected behavior of GUI-driven applications. We show how to use the NModel tool to
generate test cases from this model and present a way to execute these tests within the application,
highlighting the challenges of using an API-geared tool in a GUI-based setting. Finally we present the results
of our case study.

Keywords
model-based testing, gui-driven medical devices

Disciplines
Graphics and Human Computer Interfaces | Software Engineering

Comments
The Seventh IFIP WG 10.2 International Workshop on Software Technologies for Future Embedded and
Ubiquitous Systems (SEUS 2009), Newport Beach, CA, USA, November 16-18, 2009.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/423

http://repository.upenn.edu/cis_papers/423?utm_source=repository.upenn.edu%2Fcis_papers%2F423&utm_medium=PDF&utm_campaign=PDFCoverPages

Model-Based Testing of GUI-Driven

Applications⋆

Vivien Chinnapongse1 Insup Lee1 Oleg Sokolsky1 Shaohui Wang1

Paul L. Jones2

1 University of Pennsylvania
2 U.S. Food and Drug Administration

{vichi,lee,sokolsky,shaohui}@cis.upenn.edu PaulL.Jones@fda.hhs.gov

Abstract. While thorough testing of reactive systems is essential to
ensure device safety, few testing methods center on GUI-driven applica-
tions. In this paper we present one approach for the model-based testing
of such systems. Using the AHLTA-Mobile case study to demonstrate
our approach, we first introduce a high-level method of modeling the
expected behavior of GUI-driven applications. We show how to use the
NModel tool to generate test cases from this model and present a way
to execute these tests within the application, highlighting the challenges
of using an API-geared tool in a GUI-based setting. Finally we present
the results of our case study.

1 Introduction

Thorough testing of reactive systems is an active research area with a long
history. Reactive systems are primarily event-driven systems that operate by
continuously interacting with their environment, responding to received signals.
Operation of reactive systems is often safety- and life-critical. Rigorous develop-
ment and analysis techniques are required to ensure safe and correct operation
of such systems. In many safety-critical domains, for example in avionics and
medical device areas, government regulators certify or approve systems before
they can be used. In particular, the U.S. Food and Drug Administration (FDA)
approves medical devices for use in the United States.

An important class of reactive systems comprises systems interacting with
a human user. Such systems offer a user interface, through which the user can
send signals to the system and observe its responses. The user typically learns to
interact with the system by reading the user manual or through targeted training
sessions. In either case, the user forms a mental model of the system in his/her
head. This model is then used as a specification, against which operation of the
system is assessed. In this paper, we are interested in establishing conformance
between the system operation and user expectations. Conformance between the

⋆ This research has been supported in part by the FDA/TATRC grant MIPR-
6MRXMM6093 and NSF grants CNS-0509327 and CNS-0720703.

mental model and observable behavior of the system is important from differ-
ent perspectives. From the development perspective, it will help avoid usability
problems in the system. From the regulatory perspective, it may help to evaluate
necessary user training and instruction materials that accompany the device.

We concentrate on GUI-driven handheld devices as a particular case of user-
centric reactive systems. In the long-standing collaboration between experts at
the FDA and the high-confidence systems design group at Penn (e.g., [1,3]), we
have considered several medical devices that fall in this category. This paper has
been motivated by a recent case study, in which we analyze a point-of-injury data
entry device application called AHLTA-Mobile [2]. The Armed Forces Health
Longitudinal Tracking Application–Mobile (AHLTA-Mobile) is a point-of-care
handheld medical assistant developed by the Telemedicine and Advanced Tech-
nology Research Center (TATRC), approved for use by the FDA and deployed in
the U.S. Army. AHLTA-Mobile is a C# application on the Microsoft R© Windows
MobileTM platform. It assists medical personnel, deployed, on military bases, or
at military medical centers, with diagnosis and treatment of patients. Medical
personnel also use the solution to record patient clinical encounters and transmit
those records to a central data repository. AHLTA-Mobile provides users access
to service members’ complete medical records and offers advice for diagnosis and
treatment. It contains a set of question-and-answer examinations that evaluate
common battlefield injuries such as concussions. For the safety of patients it is
important that the device always functions correctly, because misdiagnosis and
incorrect treatment can cause serious harm.

For the purposes of this paper we are concerned with the correctness of a
subset of AHLTA-Mobile’s behavior, the Military Acute Concussion Evaluation
(MACE) module. MACE is a series of eight GUI screens, displaying forms to be
completed by the user. Seven of these screens, to which we refer as MACE 1 3

through MACE 7, are used to enter results of the user examination, while the
last screen, MACE Results, is used to enter diagnosis and offers the possibility
to save the results by entering them in a database. Relevant screens including
Start Screen, Resume Screen, No Unit, and Error are also sconsidered. The screens
are navigated by invoking the Next Screen button on each screen or the Previous

menu item in the Tools menu. In response to users invoking an action, the system
moves to a different screen or updates information on the current screen. Note
that the user can enter data into the appropriate fields on the screen, but cannot
modify user interface actions. This observation led us to represent the mental
model of the device as a state machine, in which states are identified with GUI
screens and transitions represent changing screens in response to invoking UI
elements. Each transition in such a state machine is labeled with the UI element
that effects the change. In our case study, we constructed the model manually
through the careful reading of the AHLTA-Mobile user manual [16]. We discuss
the model in more detail in Section 3.2. Of the 114,000 lines of C# code that

3 Throughout this paper we use a sans font for the names of GUI items. We use a
fixed-width font to identify model and source code elements.

comprise the AHLTA-Mobile application, MACE screen classes and auxiliary
classes contain approximately 6,000 lines of code.

Given the state-machine model of the system, we can pursue two approaches
to ascertain compliance of the system to its model. One is model-based testing,
where the model is used to generate a test suite, which is then applied to the
system implementation. Several tools are available for model-based testing of
software. In our case study, we used NModel [7] from Microsoft Research, one
of the few tools that target C# applications. The other alternative is to extract
a state-machine model from the application source code and compare it directly
to the mental model using a suitable notion of state machine equivalence or
preorder. Although it makes more thorough testing possible, this alternative is
much more challenging, and is one subject of our ongoing work.

The contributions of this paper are threefold. First, we present an approach
to capture behavioral models of GUI-driven handheld devices. We believe that
the high-level modeling approach we have applied to represent the mental model
of the AHLTA-Mobile device will be equally applicable to most devices in this
category. Second, we present lessons learned during model-based testing to the
AHLTA-Mobile case study. We discuss challenges we faced while applying the
NModel methodology in the GUI-based setting, and the ways in which we over-
came these challenges. Finally, we present results of the case study, which un-
covered inconsistencies between the device behavior and the desired behavior
described in the manual.

The paper is organized as follows: Section 2 describes the NModel framework
to be used in analyzing AHLTA-Mobile. Section 3 discusses the development of
a mental model, both as an extended finite state machine (EFSM) and as an
NModel model program. Section 4 explains the creation of a test harness to link
an implementation with test cases. The testing of the AHLTA-Mobile application
is described in Section 5. Section 6 discusses related research work. We conclude
our paper with a discussion of our contributions in Section 7.

2 Using NModel to Analyze MACE

Developed at Microsoft Research, the NModel [6,7] framework is a model-based
software testing and analysis tool for C# programs. NModel allows us to create a
formal model of an implementation’s expected behavior and determine through
model-based testing whether or not the implementation’s actual behavior and
the model are consistent. The open-source tool is freely available online at no
cost and there is a good level of support and documentation. No other tool
we discovered matched this description and we decided NModel would suit our
purposes reasonably well.

The NModel framework consists of the following components:

– a library for creating model programs, executable specifications for imple-
mentations,

– a model program viewer (mpv) for viewing model programs as finite-state
machines (FSMs),

– an offline test generator (otg), which performs link coverage of model pro-
grams to produce test cases, and

– a conformance tester (ct), which takes test cases and executes them within
the implementation. 4 This must be coupled to the implementation with a
test harness, called a stepper.

A diagram of the steps involved in testing implementations with NModel is
provided in Figure 1:

1. First, we take the specifications and/or the user manual and write a model
program using the NModel library. We can use this model program to gen-
erate a graphical FSM using mpv for a visual representation.

2. Then, we use otg to generate a test suite from the model program.

3. To test the implementation with the test suite, we first write a stepper to
couple the test cases described in the model program with the implementa-
tion.

4. Finally, we run ct with the test suite and the implementation coupled with
the stepper to check for consistency between the implementation and the
model. The output of ct is Success if the implementation is correct and
Failure otherwise.

specifications/user manual

manual generation

model program

model program viewer (mpv) offline test generator (otg) manual generation

graphical FSM test suite

conformance tester (ct)

stepper

output

implementation

Fig. 1. Testing implementations with NModel

4 ct can also generate test cases on the fly from a model program during test execution,
but this is not necessary and is therefore not discussed in this paper.

3 Creating the Mental Model

The first step of our process was to produce a mental model of MACE from
the AHLTA-Mobile user manual. The challenge in creating the model was to
find an adequate modeling approach that captures the user perception of the
application. Taken in its full complexity, the problem of user perception goes
well beyond the scope of the case study. However, after showing the AHLTA-
Mobile to several potential users, we concluded that the application can be
modeled as an extended finite state machine (EFSM), which has been long used
in model-based testing [5]. In the following, we give a brief definition of EFSM,
followed by the description of our modeling approach and a discussion of the
implementation of a given EFSM as a model program in NModel.

3.1 Extended Finite State Machines

Preliminaries. For a finite set of variables X = {x1, ..., xn}, each ranging over
the space of values O, a valuation is a function v : X → O that assigns to
each variable x its current value. The set of valuations of X is denoted V(X).
A predicate P over X is a boolean-valued function P : V(X) → {true, false}. A
valuation transformer T is a function T : V(X) → V(X).

An EFSM M is a tuple 〈Q,Σ,X,E, q0, v0〉, where Q is a set of states with the
designated initial state q0, Σ is a finite alphabet, X is a set of variables with the
initial valuation v0, and E is a transition relation. A transition t ∈ E is a tuple
〈q1, g, a, u, q2〉, where q1, q2 are the source and destination states of the transition,
respectively. The symbol a ∈ Σ is the event that triggers the transition. The
guard g is a predicate over the variables of M that states when the transition is
allowed to be taken. Finally, the update u is a valuation transformer that reflects
changes to variables when the transition occurs. For the purpose of this paper,
we represent each update as a sequence of assignments xi = fi(X).

A run of M is an alternating sequence (q0, v0)a1(q1, v1)a2... such that, for
each i, M has a transition 〈qi−1, gi, ai, ui, qi〉 such that gi(vi−1) = true and
vi = ui(vi−1). That is, in every step of the execution, a transition of M is taken
such that its guard is satisfied by the variable values in the source state and
the valuation after the transition is taken is updated according to the update
specified by the transition. The update occurs by performing assignments in
their syntactic order in ui.

3.2 EFSM Model for AHLTA-Mobile

The AHLTA-Mobile user manual uses two ways to convey the expected behavior
of the application to the user: first, it offers pictures of each GUI screen, and
second, it describes the actions that may be performed when a given screen is
displayed. With the exception of editing actions, the outcome of performing an
action is the new screen being displayed. We found it natural from the docu-
mentation to formulate the mental model as an EFSM that encompasses the

observable behavior of the system, identifying screens with states and actions
with transitions between the screens.

For this case study we focus on a subset of MACE’s behavior, capturing the
actions Resume and Suspend. The resulting EFSM is MAM = 〈QAM , ΣAM ,XAM ,

EAM ,StartScreen, v0〉, where

– QAM = {StartScreen,MACE1, . . . ,MACE7,MACEResults,ExamIndex,

ResumeScreen,NoUnit},
– ΣAM = {Edit, Next, Suspend, Resume, Select, Start, MACE},
– XAM = {Edited1, . . . , Edited7, EditedResults, Suspended, Selected,

UnitInfo}

EAM is visually represented in Figure 2, somewhat simplified for readability, and
v0 is discussed below.

In the EFSM model, states represent the following subset of AHLTA-Mobile
screens relevant to MACE. MACE is comprised of eight screen states, MACE

1 through MACE 7, and MACE Results. Each screen is a form that has to be
completed before the next may be displayed. The Start Screen is the initial
screen where the application begins after the user has logged in and a patient
has been selected. The Exam Index is a menu from which the user can navigate
to MACE, and the Resume Screen is a menu from which the user may resume a
suspended exam.

The alphabet of this EFSM consists of the following actions available within
MACE.

– Edit completes the required fields in the current screen.
– Next clicks Next to navigate to the next screen.
– Suspend clicks Suspend to suspend the evaluation.
– Resume clicks Resume to resume the evaluation.
– Select selects the appropriate exam to resume.
– Start clicks Exam Index on the initial screen.
– MACE clicks MACE within the Exam Index.

Each action would label a transition in the EFSM representation of the mental
model of MACE. Note that the Edit action is the only one that does not corre-
spond to the invocation of a particular user interface element. In our approach,
we do not model the contents of MACE forms. Instead, we capture only the fact
that some editing has to be performed before the user can move to the next
screen.

The variables of the EFSM model have been introduced to capture condi-
tional execution of user actions as specified in the user manual. For example, the
action Resume may only be executed from the Start Screen state if the value of
the boolean variable Suspended is false, indicating that the exam has been pre-
viously suspended. Other variables include UnitInfo, which indicates whether
unit information has been previously specified for the patient, Selected, which
indicates whether an exam has been selected in the Resume Screen state to re-
sume, and Edited1. . . EditedResults indicate whether the required fields in

the MACE screens MACE 1. . .MACE Results have been completed. Initial values
of Suspended, Selected, and Edited1. . . EditedResults are all false.We have
separately considered initial valuations with UnitInfo either true or false. The
reason for this is that the patient’s unit information is set in another part of the
AHLTA-Mobile system, which has been excluded from the case study.

Start Screen

Exam Index
!Suspended

Start

Resume ScreenSuspended
Resume

MACE 1

UnitInfo
MACE

Select
Selected = 1

Selected
Resume

Suspended = 0, Selected = 0

Suspend
Suspended = 1

!Edited1
Edit

Edited1 = 1

MACE 2

Edited1
Next

Suspend
Suspended = 1

!Edited2
Edit

Edited2 = 1

...
Edited2

Next

MACE 7

Suspend
Suspended = 1

!Edited7
Edit

Edited7 = 1

MACE Results

Edited7
Next

Edited MACE Results?
Save

Suspend
Suspended = 1

!EditedResults
Edit

EditedResults = 1

Edited6
Next

Fig. 2. Expected behavior the MACE exam

3.3 Model Program Representation of the Mental Model

After creating a formal representation of the mental model we needed to translate
it into a model program that could be used by NModel to test the AHLTA-
Mobile application. Model programs, executable specifications written in C#
using the NModel library, are action oriented. They define which actions in an
application may be taken in what circumstances.

A model program contains a set of variables that captures the state of the
model program, and a collection of methods that represent actions. For each
action a, the model program contains two methods, a() that represents the
action itself, and aEnabled() that, based on the current state of the model
program, determines whether a is enabled. The body of a() is a collection of
cases that update the variables of the model program when the action method is
invoked. Given an EFSM M = 〈Q,Σ,X,E, q0, v0〉 that defines states as screens,
we mechanically translate it into a model program as follows:

1. Declare the Model class, which references the System and NModel libraries.
2. Within Model, create all variables in X and initialize them according to v0.

Add the string variable current that stores the label of the current state
of M , initially q0.

3. For each a in Σ:
(a) Create an action skeleton:

[Action("a")]

static public void a() {}

static bool aEnabled() { return false; }

(b) For each t = 〈q, g, a, u, q′〉 in E:

i. Add the following lines to a():
if (current.Equals("q") && g)

{

current = "q’";

update(u);

}

where update(u) updates all variables according to u. Given our
sequential interpretation of u in the definition of EFSM, the assign-
ments of u can be syntactically transcribed into C# statements.

ii. Add the following line to the beginning of aEnabled():
if (current.Equals("q") && g) return true;

The described translation is mechanical and can be easily made automatic.
However, in the case study, we followed the described procedure manually. As
an example of this translation, consider the action MACE in Figure 3. The action
may be taken when the Exam Index screen is displayed and may lead to No Unit

or MACE 1 depending on the value of UnitInfo. This fragment of the EFSM
yields the model program shown below it.

Exam Index

No Unit
!UnitInfo
MACE

MACE 1

UnitInfo
MACE

[Action("MACE")]

static public void MACE()

{

if (unitinfo) current = "MACE 1";

else current = "No Unit";

}

static bool MACEEnabled()

{

return current.Equals("Exam Index");

}

Fig. 3. Representing the MACE() action in a model program

After writing the model program representation of the MACE mental model,
we used mpv to produce an FSM. We then used otg to automatically generate a
test suite for MACE.

4 Writing a Test Harness

NModel requires the use of a stepper, a test harness that invokes an instance
of the implementation to be tested and causes the appropriate actions to be

executed when invoked by ct. For simple applications, like the samples provided
on the NModel website[6], when ct requests for an action to be executed, the
stepper is written to simply call a corresponding method that exists within the
implementation. In AHLTA-Mobile this was not possible: our actions did not
directly correspond to single methods provided in the application but instead
to multiple methods triggered by user input events, like keystrokes and mouse
clicks.

Attempting to associate input actions with existing methods, like callbacks
for buttons, was problematic for a few reasons. Since callback methods are nor-
mally private, code needed to be modified in many places for them to be used; an
inelegant solution that presented many possibilities for errors to be introduced.
We also needed to know which instance of any object we were manipulating, re-
quiring further additions to the source code. This method also required detailed
knowledge about how the implementation worked, which was both tedious and,
as we found, unnecessary.

Instead of using callbacks and related methods in order to simulate actions,
we inserted actual keystroke and mouse click events into the application’s mes-
sage loop. We did this in AHLTA-Mobile by retrieving object handles from the
C# message loop within the application and sending our user input events di-
rectly to the appropriate handles via the message loop. This method allowed us
to add code in only one part of the application, making it simpler to work with
and reducing the opportunities to introduce errors into the application.

5 Testing AHLTA-Mobile

Once a stepper is written we can run ct with the coupled implementation and
stepper and the test suite generated by otg as arguments, as shown previously
in Figure 1.

Running the conformance tester quickly revealed an error: Suspending an
exam does not lead to the Start Screen as expected but instead to the Exam

Index. This resulted in a timeout, a function included in NModel in case an
implementation does not behave as expected and must be terminated. Since the
Start Screen and thus Resume button never appeared, it was never clicked and
no exam could be selected, causing the application to stall. The test trace that
caused the error is given below.

TestResult(0, Verdict("Failure"), "Action timed out",

Trace(

Test(0), Start(), MACE(), Suspend(), Resume(), Select()

)

)

6 Related Work

The use of state machines for specifying user interfaces has been explored as
early as mid-1980s in [17]. At that time, however, state machines were applied

to textual user interfaces, which are much simpler to model and analyze (for
example, they do not involve callbacks). With the advent of flexible, dynamically
modifiable GUI systems research in the human-computer interface (HCI) area
has focused primarily on dynamic aspects of GUI-based systems, where state
machines appear to be less useful. However, in the domain of GUI-driven hand-
held devices considered in our case study, EFSMs are quite appropriate and yield
high-level and accurate models of user expectations of the system.

Model-based testing of GUI programs is also explored in [9], where the au-
thors use randomized online testing instead of providing offline tests that achieve
transition coverage of the model. The paper presents a very different modeling
approach based on labeled transition systems with concurrency. The approach
involves two levels of models. A high-level model describes the various user-level
actions that may be performed. A user level action may require several GUI op-
erations, such as popping up a menu and then selecting an item in the menu. A
low-level model then describes how these actions are accomplished. We believe
that the approach of [9] is targeted towards systems with dynamically created
and manipulated GUI screens. In our case, their multi-level approach would be
an overkill.

Several other research works focus on different aspects of model-based testing.
[13] mentions the use of model based test case generation for fault detection, and
employs hierarchical predicate transition Petri Nets as a formalism. [18] discusses
and compares several testing methodologies toward open source software using
model based testing.

In [12], the authors present extensions to the Spec Explorer tool to automate
testing based on Spec# specifications. A GUI mapping tool allows the tester
to associate actions with physical objects that appear on the GUI display. The
tool generates C# code with methods that have the same signature as those
specified and actions are performed externally according to tests generated by
Spec Explorer. [14] specializes the task modelling notation to ConcurTaskTrees.

7 Conclusions and Discussion

In this paper we presented an approach for the behavioral modeling of GUI-
driven handheld devices. We illustrated how the NModel methodology can be
applied for the model-based testing of this class of devices. We discussed the
challenges we faced in applying this approach and our way of overcoming them.
Finally, we presented the results of our case study of the AHLTA-Mobile ap-
plication, demonstrating an inconsistency between the observed behavior and
the behavior described in the user manual. We believe that our approach is
applicable to most GUI-driven handheld devices, offering a viable method of
establishing conformance between system operation and user expectations for
these types of reactive systems.

While this work is an encouraging step forward, it is still far from the compre-
hensive methodology needed for the analysis of user-centric GUI-driven devices

that we envision. Several aspects of such a methodology remain open problems,
as discussed below.
Realistic mental models. In this paper, we constructed the mental model based
on the contents of a user manual. Clearly, perception of the appropriate use for a
device by a user is formed through other factors as well and can be quite different
from the literal representation of the user manual in formal notation [11,10]. Em-
pirically constructed mental models, capturing probabilistic information about
observed user behaviors, are used in testing literature under the name of usage
models or usage profiles [4]. A predictive way to construct such mental mod-
els is needed, especially for new kinds of devices. A practical mental modeling
methodology should build on both cognitive science and computer science.
Detecting and managing underspecification. A big part of the challenge in con-
structing mental models is that natural-language documents describing a system
are never complete and users interpret them by making assumptions based on
their knowledge and prior experience with similar systems. The problem here
is that these assumptions are so natural for the reader that it is often hard to
detect that an implicit assumption has been made.

Representation of alternatives would require us to apply a different mod-
eling and testing approach. A possible way to capture alternatives is to use
non-deterministic EFSMs, where different transitions labeled by the same sym-
bol would correspond to different alternatives. During testing, as long as the
implementation offers a behavior corresponding to one alternative, a test should
succeed. A slight complication here is the need to ensure consistency : if an al-
ternative has been resolved in some way during a test execution then later in
the same execution it has to be resolved the same way. We also will have to
rely on a different tool to generate and execute tests, since NModel operates on
input-deterministic model programs.
Soft vs. hard inputs. Many approaches to model-based testing require that the
model does not restrict the tester from performing an action. Technically, this
corresponds to the notions of weak input enabledness [15] or input complete-
ness [8]. In our case, this requirement should be relaxed, because the system
interacts with its environment via what we call soft inputs, such as GUI buttons
on the screen. Such a button may not be present on some screens, and in that
case the tester should actually be prevented from invoking that input.

References

1. R. Alur, D. Arney, E. L. Gunter, I. Lee, J. Lee, W. Nam, F. Pearce, S. Van Al-
bert, and J. Zhou. Formal specifications and analysis of the computer-assisted
resuscitation algorithm (CARA) infusion pump control system. Software Tools for
Technology Transfer, 5(4):308–319, 2004.

2. AHLTA-Mobile fact sheet. Medical Communications for Combat Casualty Care
Web Site. https://www.mc4.army.mil/AHLTA-Mobile.asp.

3. D. Arney, R. Jetley, P. Jones, I. Lee, and O. Sokolsky. Formal methods based
development of a PCA infusion pump reference model: the generic infusion pump
(GIP) project. In Joint Workshop on High-Confidence Medical Devices, Software

https://www.mc4.army.mil/AHLTA-Mobile.asp

and Systems and Medical Device Plug-and-Play Interoperability, pages 23–33, July
2007.

4. P. Brooks and A. M. Memon. Automated GUI testing guided by usage profiles.
In Proceedings of the 22nd IEEE International Conference on Automated Software
Engineering (ASE ’07), November 2007.

5. K.T. Cheng and A.S. Krishnakumar. Automatic functional test generation using
the extended finite state machine model. In Proceedings of the 30th international
conference on Design automation (DAC ’93), pages 86–91, June 1993.

6. Microsoft Corporation. NModel website, 2009.
http://www.codeplex.com/NModel.

7. J. Jacky, M. Veanes, C. Campbell, and W. Schulte. Model-based Software Testing
and Analysis with C#. Cambridge University Press, 2008.

8. C. Jard and T. Jéron. TGV: theory, principles and algorithms. a tool for the auto-
matic synthesis of conformance test cases for non-deterministic reactive systems.
Software Tools for Technology Transfer, 2004.

9. A. Kervinen, M. Maunumaa, T. Pääkkönen, and M. Katara. Model-based testing
through a GUI. In Formal Approaches to Software Testing. Springer, 2006.

10. P. Legrenzi and V. Girotto. Mental models in reasoning and decision making.
In A. Garnham and J. Oakhill, editors, Mental models in cognitive science, pages
95–118. 1996.

11. C. Lewis. A model of mental model construction. In Proceedings of the SIGCHI
conference on Human factors in computing systems (CHI ’86), pages 306–313,
1986.

12. A. Paiva, J. Faria, N. Tillmann, and R. Vidal. A model-to-implementation map-
ping tool for automated model-based GUI testing. Formal Methods and Software
Engineering, pages 450–464, 2005.

13. Hassan Reza, Sandeep Endapally, and Emanuel S. Grant. A model-based approach
for testing gui using hierarchical predicate transition nets. In ITNG, pages 366–370,
2007.

14. José L. Silva, José Creissac Campos, and Ana C. R. Paiva. Model-based user
interface testing with spec explorer and concurtasktrees. In Electronic Notes in
Theoretical Computer Science, volume 208, pages 77–93. 2008.

15. J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Soft-
ware - Concepts and Tools, 17(3):103–120, 1996.

16. U.S. Army Medical Research & Material Command, Mobile Computing Group,
Telemedicine and Advanced Technology Research Center, Fort Detrick, Maryland.
AHLTA-Mobile User Manual, v2.2.61.

17. A.I. Wasserman. Extending state transition diagrams for the specification
of human-computer interaction. IEEE Transactions on Software Engineering,
11(8):699–713, August 1985.

18. Qing Xie and Atif Memon. Model-based testing of community-driven driven open
source GUI applications. In 22nd International Conference on Software Mainte-
nance (ICSM’06), pages 145–154, 2006.

http://www.codeplex.com/NModel

	University of Pennsylvania
	ScholarlyCommons
	11-16-2009

	Model-Based Testing of GUI-Driven Applications
	Vivien Chinnapongse
	Insup Lee
	Oleg Sokolsky
	Shaohui Wang
	Paul L. Jones
	Recommended Citation

	Model-Based Testing of GUI-Driven Applications
	Abstract
	Keywords
	Disciplines
	Comments

	Model-Based Testing of GUI-Driven Applications
	Vivien Chinnapongse Insup Lee Oleg Sokolsky Shaohui Wang Paul L. Jones

