
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

August 1988

The Systolic/Cellular System Assembler: User's Guide The Systolic/Cellular System Assembler: User's Guide

Miriam A. Hartholz
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Miriam A. Hartholz, "The Systolic/Cellular System Assembler: User's Guide", . August 1988.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-39.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/737
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F737&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/737
mailto:repository@pobox.upenn.edu

The Systolic/Cellular System Assembler: User's Guide The Systolic/Cellular System Assembler: User's Guide

Abstract Abstract
As components are getting cheaper and smaller, computer systems are getting larger (in number of
components) and more complex. In the new age of parallel computing comes entirely new domains of
problems to solve. There are two ways to parallelize a problem. One is to restructure a known algorithm
so that independent parts run in parallel. The other method is to restructure the problem so that it fits well
onto parallel architectures. The Systolic/Cellular System is an array of processors which run in parallel. Its
architecture was designed to implement a particular algorithm for matrix manipulation very well. This
algorithm, called the Faddeev Algorithm, is well suited to solve a wide variety of operations such as matrix
inverse, matrix multiplication, and matrix addition. It can also be used to calculate more complex
problems such as the least squares problem and the inverse Jacobian. To efficiently implement this and
other algorithms, it is necessary to program as close as possible to the architecture. The obvious way to
do this is in machine code, but machine code is hard to read, tedious to write, and almost impossible to
debug. The next step is to write an Assembler, and give mnemonics to the various operations, and making
the system easier to program. This was the goal of my project. In this document you will find a user's
manual for an Assembler for the Systolic/Cellular System. In it, I have described the architecture, issues
involved in programming this machine, the input requirements of the Assembler, and a brief discussion on
the architecture and how it can be improved to make it an easier machine to program.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-39.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/737

https://repository.upenn.edu/cis_reports/737

THE SYSTOLlC/CELLULAR
SYSTEM ASSEMBLER:

USER'S GUIDE
Miriam A. Hartholz

MS-CIS-88-39
GRASP LAB 143

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 191 04

June 1988

Acknowledgements: This research was supported in part by NSF grants MlP-8714689,
MCS-8219196-CER, IR184-10413-A02 and U.S. Army grants DAA29-84-K-0061,
DAA29-84-9-0027.

UNIVERSITY OF PENNSYLVANIA

THE MOORE SCHOOL OF ELECTRICAL ENGINEERING

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

THE SYSTOLIC/CELLULAR SYSTEM ASSEMBLER: USER'S GUIDE

Miriam A. Hartholz

Philadelphia, Pennsylvania

August, 1988

A thesis presented to the Faculty of Engineering and Applied Science of the Uni-

versity of Pennsylvania in partial fulfillment of the requirements for the degree of

Master of Science in Engineering for graduate work in Electrical Engineering.

Dr. Richard Paul

Dr. Sohrab Rabii 7

Abstract
As components are getting cheaper and smaller, computer systems are getting

larger (in number of components) and more complex. In the new age of parallel
computing comes entirely new domains of problems to solve. There are two ways to
parallelize a problem. One is to restructure a known algorithm so that independent
parts run in parallel. The other method is to restructure the problem so that
it fits well onto parallel architectures. The Systolic/Cellular System is an array
of processors which run in parallel. Its architecture was designed to implement
a particular algorithm for matrix manipulation very well. This algorithm, called
the Faddeev Algorithm, is well suited to solve a wide variety of operations such as
matrix inverse, matrix multiplication, and matrix addition. It can also be used to
calculate more complex problems such as the least squares problem and the inverse
Jacobian. To efficiently implement this and other algorithms, it is necessary to
program as close as possible to the architecture. The obvious way to do this is
in machine code, but machine code is hard to read, tedious to write, and almost
impossible to debug. The next step is to write an Assembler, and give mnemonics
to the various operations, and making the system easier to program. This was the
goal of my project. In this document you will find a user's manual for an Assembler
for the Systolic/Cellular System. In it, I have described the architecture, issues
involved in programming this machine, the input requirements of the Assembler,
and a bricf discussion on the architecture and how it can be improved to make it
an easier machine to program.

Acknowledgements

I would like to give my sincere thanks to the following people for their help in

making this project possible:

Dr. Richard Paul: my advisor, for his advice, support, and trust.

Wojtek Przytula: of the research team at Hughes Research Laboratories

developing the system, for his time and patience in describing the architec-

ture of the processor, answering all my questions, and giving me feedback

on my ideas.

The members of the Hughes group at Penn: Yehong Zhang, Roberto Shi-

ronoshita, and Janez Funda for listening, for their input, and for their

moral support.

Finally, I would like to thank my family and friends for their moral support,

even though they had absolutely no idea what this project was about.

Table Of Contents
.. 1 Introduction 1

... 2 The Co-processor Description 3
.. 2.1 The Processor Array 3

.. 2.2 The Data Memory 6
.. 2.3 The Controller 6

... 2.4 The Processing Element 8
. 3 Programming the Co-processor 11

... 3.1 The Machine Instruction 11
... 3.1.1 Masking 12

............................... 3.1.2 External and Internal Processors 18
.. 3.1.3 System Operation Field 19

.. 3.2 Assembly Program File 19
.. 3.2.1 Queue Definitions 19

... 3.2.2 Mask Definitions 21
... 3.2.3 Program Body 21

. 3.3 Assembler's output file -22
. 3.4 Running the Assembler 24

. 3.5 Programming the Systolic/Cellular SYSTEM 24
. 4 Assembly Code: Opcodes -26

. 4.1 Regular Operation Codes 26
. 4.1.1 Addition 27 . 4.1.2 Division 33

................................ 4.1.3 Inter-Processor Communication 41
4.1.4 Inter-Processor Communication: With Memory Access 51

. 4.1.5 Local Memory StorageIRetrieval 55
. 4.1.6 Multiplication 57
.. 4.1.7 No-Operation 73

.. 4.1.8 Shifting 74
.. 4.1.9 Sorting 76

. 4.1.10 Subtraction 77
4.2 Registers .. 77

. 4.3 Masks 80
.. 4.4 Special Instructions 86

............................. 5 Programming Limitations due to Hardware 91
. 5.1 Architecture 91

. 5.2 Control 91
. 5.3 Processor Design and Hardware 92

. 5.4 Version I1 of the Systolic/Cellular System 93
. 6 Conclusion 95

Chapter 1

Introduction

The prototype of the Systolic/Cellular System is being developed at Hughes

Research Laboratories in Malibu California. It consists of the Systolic/Cellular

Co-processor, which is a programmable multiprocessor computer, connected to a

general purpose computer which will serve as the HOST. The Co-processor was

designed for digital signal processing and image processing applications [PRZ88],

but it will be used in the field of robotics to compute the Inverse Jacobian Matrix

necessary for computing joint coordinates for an experimental robot arm at the

University of Pennsylvania.

The Systolic/Cellular Co-processor can be programmed either directly in

machine code, or by using the Systolic/Cellular System Assembly language de-

scribed in this document. The SCS Cross-Assembler can be run on any UNIX1

compatible system then downloaded from the HOST to the Co-processor while the

Co-processor is in a HALT state.

Chapter two gives a general description of the machine's architecture in

order to give the programmer enough of a background to program the system. It

describes the system architecture down to the processing element's architecture.

Chapter three discusses how to program the system, describing the assembly code

file format, the Assembler directives, and the output file format. Chapter four

gives a detailed description of the opcodes, their functions and their machine code

UNIX is a trademark of Bell Laboratories.

equivalents. Chapter five talks about the architecture i:l general and how the current

architecture could be improved to simplify the programming task. Finally there is

the conclusion which discusses the general areas where the Assembler could use

some improvement.

The purpose of this document is to serve mainly as a reference manual for

programmers of the Systolic/Cellular System. Therefore, the reader will find some

issues are repeated quite frequently, especially those issues regarding the side effects

and limitations of the operations. This is so the user can look up an item and know

that all the relevant information about the operation is supplied locally.

Chapter 2
The Co-processor Description

This chapter gives a brief overview of the system architecture to give the

user sufficient background in order to program it. For greater detail, please refer to

[PRZ88]. The references for this chapter are [PRZ88] and [SHI88]. Some sentences

are copied directly from [PRZ88].

The Co-processor consists of three major parts, the Processor Array, the

Array Memory (also called Data Memory), and the Controller. See Figure 2.0.1.

The HOST can access the Controller to load the FIFOs and the program memory,

to read the status register, and to start and stop the Co-processor. The HOST

can access the WRITE port of the Array Memory to load and unload data. All

loading and unloading by the HOST must be executed when the Co-processor is in

the HALT state. The HOST has no direct access to the Processor Array at all.

2.1 The Processor Array

The Processor Array is a 16 x 16 array of identical custom processors2

connected as a mesh (nearest neighbor connections) with horizontal wrap-around.

See Figure 2.1.1. The processors are labeled by rows and columns; the top row

is row 1 and the leftmost column is column 0. The PEs in row 1 and row 16 are

connected to Da ta Memory (or the Array Memory). Row 1 has read only

memory access via the READ port and row 16 has write only memory access via

sometimes referred to in this document as processing e l emen t s or PEs

3

I HOST I

HOST BUS t
BUS INTERFACE c

COPROCESSOR BUS s
I DUAL-PORT ARRAY I I

MEMORY

t address I
data l I I

MEMORY

FIGURE 2.0.1 Systolic/Cellular System Diagram

the WRITE port. General data flow from memory through the Array and back

to memory is in a North to South direction, however within the Array itself, data

can flow northward, southward, eastward or westward.

The Array is controlled exclusively by the Controller. Each processor

receives its instructions, enableldisable information, and the system, multiplier,

and divider clocks from the Controller. Ther.e is no control logic in the processing

element.

m O M DATA MEMORY

TO DATA MEMORY

FIGURE 2.1.1 T h e Processor Array

The Array is divided into two sets of processors, External and Internal.

The External processors3 are those in column 1 of the Processor Array shown

in the shaded area of Figure 2.1.1. The PEs in columns 2-16 are the Internal

processors. Each set of processors receives different operation codes (opcodes) from

the Controller. These codes are found in different fields of the program instruction

enabling two sequences of instructions to run in parallel on the Array. These

sequences may be the same or different, but they are not independent. Both are

bound by the same system instructions, such as program flow, memory access and

masking. Masking enables the user to choose which processors will be enabled for

Sometimes referred to as Boundary processors in other documentation.

any given instruction, but not all effects of the program instruction can be disabled.

Masking is described in Sections 3.1.2 and 4.3 .

2.2 The Data Memory

The Data Memory has two ports, the WRITE (or TOP) port which

is accessed by the HOST and row 16 of the Processor Array, and the READ

(or BOTTOM) port which is accessed only by row 1 of the Processor Array.

The HOST can access Data Memory to load and unload data only when the Co-

processor is in HALT mode. The Array can access Data Memory only when the

Co-processor is in RUN mode. Associated with each port is an Address Counter

and an Address FIFO. Each Address FIFO can hold up to 512 addresses.

The Data Memory stores data in rows of 16 32-bit words and holds up

to 2048 rows of data. The system is designed for structured data programming.

The basic data structure is a queue of data rows. A queue is chosen by loading the

address of the head of the queue from the port's FIFO to its corresponding Address

Counter. The data is then accessed sequentially; the Address Counter automatically

increments or decrements the address depending on whether the queue is ascending

or descending. Another allowable data structure is a single row which is accessed

repeatedly. The type of data structure, ascending or descending queue or single

row is encoded in the two most significant bits of the address stored in the FIFO.

The FIFOs are not overwritten during program execution, so if the program is to

be used multiple times, the head pointers can be reset by the HOST to the first

item in the FIFO without reloading the entire FIFO from the HOST.

2.3 The Controller

The Controller is in charge of running and monitoring the Co-processor.

It receives signals from the HOST, reads selected bits from the program instruction,

and monitors some system flags. It maintains a status register which is accessible by

the HOST. This status registers tells the states of the FIFOs (full/empty/neither)

and operation mode of the Co-processor (RUNIHALT). The Controller maintains

the three global clocks, and operates the program sequencer.

For details on the Controller's interaction with the HOST, see [WOJ88].

From the SYSTEM FIELD of the program instruction (See Section 3.1)

the Controller determines whether to put the system into HALT state, to start

one or both fast clocks, to load an address counter, or to enable memory access.

The System Clock is an 8 MHz two-phased, nonoverlapping, asymmetric

clock. Its cycle, the instruction cycle, is a basic unit of the overall system operation.

The system clock is in continual operation during the power-on state of the Co-

processor.

Both the Multiplier Clock and the Divider Clock are two-phased,

nonoverlapping, asymmetric clocks, each controlled by a bit in the SYSTEM field

of the user program. The Multiplier Clock has a frequency of 22,MHz. In the

instruction cycle following the execution of an instruction whose MULTIPLY bit

is set, the Multiplier Clock starts, produces 17 cycles of pulses (the number nec-

essary to perform a multiplication operation), and then stops. The Divider Clock

has a frequency of 17 MHz. In the instruction cycle following the execution of

an instruction whose DIVIDE bit is set, the Divider Clock starts, produces 30

cycles of pulses (the number necessary to perform a division), and then stops.

The program sequencer maintains the program counter (PC), loads the next

program instruction into the instruction register, and sends the appropriate bits to

the Program Array. The PC is always'incremented unless a new address is loaded

from the Program FIFO. Program execution is started by the HOST loading the

starting address from the FIFO and then setting the system into RUN mode. When

an instruction with the STOP bit set is encountered, program execution stops and

the Co-processor is put into HALT mode. The address of this instruction remains

in the PC and the last instruction remains in the instruction register.

2.4 The Processing Element

All 256 PEs in the Array are identical. Each contains 24 static random

access 32-bit registers of local memory, four bidirectional 1 /0 ports, and seven

functional units; there are two busses to interconnect them all. See Figure 2.4.1.

There is no control logic in the Processing Element. The PEs are hard-wired and

are controlled by signals from the Controller. These signals include the System

Clock; the Opcode-one for each phase of the System Clock cycle; the appropriate

mask bits-determines whether the PE is enbled or not; the Multiplier Clock; and

the Divider Clock.

The two busses are labeled BUS A and BUS B. Of the 24 registers, eight

are connected to only BUS A, eight only to BUS B, and the rest are connected

to both busses. The seven functional units include two adders, two multipliers, a

sorter, a shifter and a divider. See Figure 2.4.1. The functional units implement

arithmetic operations which require two operands each. These operands are loaded

simultaneously, one via BUS A and the other via BUS B. The functional units can all

run simultaneously, but only one can be loaded at a time, therefore practically, only

those whose execution time is longer then a single cycle can run in parallel with

another functional unit in the same processor. For single cycle functional units,

execution is initiated as soon as the operands are loaded. For multi-cycle functional

units, execution is initiated when its fast clock starts. The results of the functional

units are stored in dynamic output registers. The Sorter and the Shifter each

have two results; one is stored in an output register connected to BUS A and the

other is stored in an output register connected to BUS B. The Divider outputs the

quotient to an output register connected to BUS A. The Adders output the sum

to one bus and the ones complement of the sum to the other bus.

FIGURE 2.4.1 Processing Element Diagram

Some arithmetic operations, i.e. multiplication and division, may require

the sequential use of two functional units to acquire the final result. Multiplication

requires use of the Multiplier then the Adder, so the output registers of the Wlulti-

pliers are connected directly to the corresponding Adders, the product (and its ones

complement) are available from the Adder outputs. Division may require its inputs

to be normalized before executing division, so the inputs can first be passed through

the Shifter, before being sent to the Divider. Therefore, the outputs of the ~hif ter

are connected directly to the Divider as well as to the busses. More details on the

functional units may be found in Chapter 4where the opcodes of these functions

are defined.

The functional units operate on 32-bit, fixed-point, signed values, where

the bit 31 (msb) is the sign bit, bit 30 is the integer bit, and bits 0-29 are the

fractional part. The format is as follows:

SBINT[.] F L S B

Where:

SB -(msb) sign bit (0 a positive number, 1 + a negative number).

INT -integer part of the number.

[.I -decimal point.

F -bits of the fractional part of the number.

LSB -least significant bit of the fractional part of the number.

These discrete values are 2-30's complement quantities which fall in the range -2

to 2 - 2-30.

Chapter 3
Programming the Co-processor

A program for the Systolic/Cellular System consists of four parts: the

machine code program; the contents of the program FIFO, for program control;

the contents of the two data memory port FIFOs, for data access control; and the

actual data. The Assembler will generate, the first three parts automatically from

the assembly program.4 Regular Instructions will generate machine instructions5

and Special Instructions will generate the FIFO's and set bits in the SYSTEM

FIELD of the machine instruction. These two types of instructions are described

in depth in the next chapter.

3.1 TheMachineInstruction

The machine instruction is a 112-bit binary value divided conceptually into

seven fields of 16 bits each. There are two Mask Fields, two fields for Internal

processor instructions, two fields for External processor instructions, and one field

for system control operations. The format of the machine instruction can be found

on the next three pages. Only 99 bits are actually used, unused bits are named

"X" . The bits are numbered from the least significant bit to the most as well as its

position in its 16-bit field. The machine instructions are divided into subfields. For

each Phase there is an 1 /0 part (4 bits) and a SOURCE-DESTINATION part (10

* In future versions, the Assembler should be able to generate a data file containing initialization
data.

machine instructions are also called program idstructions.

bits). When executing the instruction, only the SOURCE-DESTINATION part of

the processor instruction is affected by the mask.

3.1.1 Masking

It is not necessary for every processor to execute every instruction. The pro-

cessors are enabled by signals from the two mask fields of the machine instruction.

There are two types of masking modes available: row/column, and diagonal.

The two modes may not be combined in a single instruction. A single mask is valid

for both External and Internal processors during both Phases of the clock cycle.

Row/column masking enables the processors which lie on the intersection

of the selected rows and columns, where a 0 means selected. The row field consists

of bits 0-15 of the machine instruction and the column field consists of bits 16-31

of the machine instruction. For row/column masking, bit-43 (SEL D/RC) is set

to 0. See the first page of the machine instruction format. The rows are numbered

1 through 16 from top to bottom and the columns are numbered 1 through 16

from left to right, see Figure 3.1.1. Row/column masking mode allows the user

to enable rectangular regions on the array, as many as desired with one restriction:

ALL intersections of ALL the rows and columns selected are enabled. See Section

4.3 example 2.

Diagonal masking enables the processors which lie on the selected diago-

nals of the array, where a 0 means selected. The diagonal field consists of bits 0-30

of the machine instruction; bit 31 of the higher order mask field is not used. For

diagonal masking, bit-43 (SEL D / u) is set to 1. See the first page of the machine

instruction format. The diagonals run northwest to southeast and are numbered

1 through 30 from the northeast corner to the southwest corner, see Figure 3.1.2.

Diagonal masking mode allows the user to enable any combination of diagonal

bands of processors. See Section 4.3 example 3.

Instr Field Bit Subfield Field
Bit Bit Name
0 0 -- R l / D l ROW MASK
1 1 R2/D2 MASK
2 2 m/D3
3 3 u/D4
4 4 R5/D5
5 5 R6/D6
6 6 U/E
7 7 wD8
8 8 -- R9/D9
9 9 -- R10/D10
l o l o R11/D11
11 11 R12/D12
12 12 R13/D13
13 13 R14/D14
14 14 R151D15
15 15 R16/D16
16 0 CllD17 COLUMN
17 1 a/U MASK
18 2 C3/D19
19 3 C4lD20
2 0 4 C51D21
2 1 5 S;li/D22
22 6 C71D23
23 7 C81D24
24 8 C9/D25
25 9 C10ID26
26 10 Cll lD27
27 11 C12/D28
28 12 - C13/D29 -
29 13 C14lD30
30 14 C15lD31
3 1 15 &/x

X - stands for an unused bit.

Instr Field Bit Sub field Field
Bit Bit Name
32 0 S1 OP-CODE INTERNAL
33 1 S2 INSTRUCTION
34 2 S3 PHASE 1
35 3 S4
36 4 S5
3 7 5 Dl
38 6 D2
39 7 D3
40 8 D4
4 1 9 D5
42 10 X
43 11 SEL D / E
44 12 I/O I/O CODE

LS -
S 1 OP-CODE INTERNAL

D5
X -
X c?l 1 / 0 CODE

INSTRUCTION
PHASE 2

63 15 - LS
X - stands for an unused bit.

Instr Field Bit Subfield Field
Bit Bit Name
64 0 S1 OP-CODE EXTERNAL

(BOUNDARY)
INSTRUCTION
PHASE 1

1 /0 CODE

OP-CODE EXTERNAL
(BOUNDARY)
INSTRUCTION
PHASE 2

1 /0 CODE

9 5 15
X - stands for an unused bit.

Instr Field Bit Subfield Field
Bit Bit Name
96 0 STOP SYSTEM
97 1 DIVIDE OPERATION
98 2 MULTIPLY
99 3 LOAD PC
100 4 WRITE
101 5 LD WRITE ADDR
102 6 READ
103 7 LD READ ADDR
104 8 X
105 9 X
106 10 X
107 11 X
108 12 X
109 13 X
110 14 X
111 15 X
X - stands for an unused bit.

FIGURE 3.1.1 Rows and Columns of the Processor Array

FIGURE 3.1.2 Diagonals of the Processor Array

The masks do not effect every part of the machine instruction. Only ex-

ecution of the SOURCE-DESTINATION codes (for both Phases in both sets of

processors) is masked. The 110 instructions always execute in every processor in

the set. The fast clocks, when enabled, effect every processor in both sets. See

Sections 4.1.3 4.1.2 , and 4.1.6 on Inter-processor Communication, Division and

Multiplication and the NOTE in section 4.3 .

3.1.2 External and Internal Processors

The processors in the Array are divided into two sets. The External

processors (sometimes called Boundary processors in other documentation) consist

of the processors in column 1; the rest are called Internal processors. The two sets

have their own sequences of instructions, although the two sequences are not 100%

independent, both are effected by a single mask and by the actions initiated by bits

set in the SYSTEM field of the machine instruction. For example, if the mask is

such that only row 1 is enabled, then the top External processor will execute the

External instruction and the top row of Internal processors will execute the Internal

instruction. If a fast clock is started, it affects all processors in both sets. etc.

The instructions for each set are located in different fields of the program

instruction and may be different or the same. For Internal Instructions, the Phase

1 field consists of bits 32-47 and the Phase 2 field consists of bits 48-63. For

External Instructions, the Phase 1 field consists of bits 64-79 and the Phase 2 field

consists of bits 80-95. See pages two and three of the instruction format above. The

Phase fields can be further subdivided into subfields, the SOURCE-DESTINATION

opcode, bits 0-9 of the field and the 110 code, bits 12-15 of the field. The SOURCE-

DESTINATION codes control data transfers within the processor. Bits labeled S1

through S5 denote the source register with S1 being the least significant bit (lsb).

Bits labeled Dl through Dg denote the destination register or functional unit with

Dl being the lsb. The 110 code controls data transfer between processors, and

between processors and Memory.

3.1.3 System Operation Field

The 8 utilized bits in the SYSTEM field control interaction between differ-

ent parts of the Systolic/Cellular System. They consist of bits 96-103, where a 0

means enable the operation. The LOAD bits control loading the address and pro-

gram counters from the FIFOs; the READ and WRITE bits control memory access;

the MULTIPLY and DIVIDE bits start the respective fast clocks, and the STOP

bit places the Co-processor in HALT mode. See the fourth page of the instruction

format above.

3.2 Assembly Program File

From the Assembly Program, the Assembler must construct the machine

code program and the three fifos. The format of the Assembly Program is as follows:

Data Queue Definitions (mandatory)

Mask Definitions (optional)

Program Body (mandatory)

The Assembly Directive: END; (mandatory)

Comments may appear anywhere in the file. There are two types and

formats for comments. Comments may appear anywhere in the code (even within an

instruction) if it lies between curly brackets "" and ""- , it may extend over more than

one line of the file. Comments may also appear anywhere between a SEMICOLON

(the end-of-assembly-instruction symbol) and an end-of-line character (a jcri). The

user should take care not to use the SEMICOLON in the middle of an assembly

instruction.

3.2.1 Queue Definitions

The user must know where his data lies in memory in order to access it.

Currently, (May 1988) the Assembler generates memory addresses from the size of

the data queues defined. Future versions of the Assembler will require that the

user explicitly give the memory addresses, which will allow more flexibility in data

access as well as allowing more programs with different data to be resident in the

processor at any given time, and shared data between programs.

The format of queue definitions which is accepted by the current implemen-

tation is as follows:

DEFQUEUE QNAME SIZE

where QNAME is a user chosen alphanumeric string (beginning with a letter, and

where all letters are capitalized), and SIZE is a positive or negative integer # 0.

If SIZE has magnitude of 1, it is considered a single element data structure whose

address remains constant until the next one is loaded. If SIZE < 0 then the data

queue is a descending queue. If SIZE > 0 then the data queue is an ascending

queue.

The format of the future queue definition may look as follows:

DEFQUEUE QNAME STARTADDR ENDADDR VAL-

LIST

where STARTADDR and ENDADDR are actual memory addresses, STARTADDR

points to the head of the data queue and ENDADDR to its tail. If STARTADDR =

ENDADDR then the data structure is considered to be single element. Otherwise

the relationship between STARTADDR and ENDADDR determine the direction of

the queue. VALLIST will be an optional list of initialization data whose format is

currently undetermined. This data would be loaded to Data Memory every time

the program is loaded into the Co-processor. .

The starting address and the type of queue is stored in a symbol table with

20

the QNAME for reference later in the vrogram, when QNAME is used in READQ

and/or WRITE& instructions.

3.2.2 Mask Definitions

Due to possible frequent use of specific masks throughout a program, it was

decided to allow a user to associate a mask with an identifier and allow the identifier

to be used in the program body instead of the full mask -syntax. This construct

will also simplify the task of changing a mask if necessary. The format of the mask

definition is as follows:

DEFMASK MNAME MASK

where MNAME is an alphanumeric string as defined above, and MASK conforms

to the syntax described in Section 4.3 , (RList:CList:DList).

3.2.3 Program Body

The program body consists of a sequence of Instructions, where each In-

struction is followed by a SEMICOLON (;), this allows an Instruction to be spread

out over more than one line of the file, if desired. An Instruction can have one of

nine forms:

1 LABEL: EXT-OPCODE INT-OPCODE THEMASIC

2 LABEL: EXT-OPCODE INT-OPCODE

3 EXT-OPCODE INT-OPCODE THEMASK

4 EXT-OPCODE INT-OPCODE

5 LABEL: OPCODE THEMASIC

6 LABEL: OPCODE

7 OPCODE THEMASIC

8 OPCODE

9 SPECIAL-INSTRUCTION

LABEL is an alphanumeric string, and if present, must be followed by a

colon. EXT-OPCODE and INT-OPCODE refer to the opcodes for the External

and Internal processors respectively. THEMASK can be either a Mask Identifier as

defined at the beginning of the user file in a DEFMASK command, or a MASK as

described in Section 4.3. OPCODE can be used to signal SIMD mode, i.e. when the

External and Internal processors will execute the same instruction. Instructions 5-8

are shorthand notation for the special case of 1 4 where EXT-OPCODE is identical

to INT-OPCODE. The SPECIAL-INSTRUCTIONS are described in Section 4.4.

Instructions 1 through 8 above are classified as Regular Instructions and

instruction 9 is classified as a Special Instruction. The differences are described

in Chapter 4. One thing to note is that the Special Instruction does not take

either a LABEL or a Mask.

3.3 Assembler's output file

If assembly succeeds with no errors, then the Assembler outputs the gener-

ated code and the Label, Queue, and Mask symbol tables which can be useful when

running the code on the Simulator/Debugger [SHI88]. The output file format is as

follows:

Magic Number (16 bits) (LSB = MSB = 0078)

Length of Program in # of Machine Instrs (16 bits)

Program

Length of Program-FIFO (16 bits)

Program-FIFO

Length of Write Address-FIFO (16 bits)

Write Address-FIFO

Length of Read Address-FIFO (16 bits)

Read Address-FIFO

Data * not implemented yet.

Label Symbol Table

Queue Symbol Table

Mask Symbol Table

The Magic Number is used as a file ID; any input file to the Loader of

the Co-processor or to the Simulator/Debugger should begin with these two bytes

in the correct order. Since the VAX and the SUN have different byte ordering,

if the Magic Number is read in the reverse order, then it can be assumed that

the file was generated from an Assembler on the other machine. The Loader and

Simulator can check for this and swap the bytes on the relevant words if necessary.

The third and forth bytes together give the size of the Program, in number of

Machine Inst ructions (1 12-bit words).

The Program format is as follows:

Row Mask Fields (Program-Length x 16-bits)

Col Mask Fields (Program-Lengt h x 16-bits)

Internal Instruction f 1 Fields (Program-Length x 16-bits)

Internal Instruction f2 Fields (Program-Length x 16-bits)

External Instruction fl Fields (Program-Lengt h x 16-bits)

External Instruction f2 Fields (Program-Length x 16-bits)

System Operation Fields (Program-Length x 16-bits)

Each FIFO is listed in Head to Tail order.

Each Table is of the form:

Hash-value (8 bits)

Item-List

MARK (8 bit value i largest hash value)

Each item in an Item List contains an eight-bit string length, a string and

the value attributed to that string. For the Label and Queue Address Tables, the

value consists of a 16-bit address. For the Mask Table, the value consists of a

character depicting Mask type (8 bits), the Low Order (Row) Mask (16 bits) and

then the High Order (Column) Mask (16 bits). Every Item List is followed by

a MARK which is a number greater than the highest hash value. Each Table is

followed by another MARK.

The Loader to the Co-processor and the Simulator/Debugger will be de-

signed to read in this format.

3.4 Running the Assembler

To run the Systolic/Cellular System Cross-Assembler, you issue the com-

mand to the shell:

xscs filel [file21

where filel is the name of the input file and the optional file2 is the name to assign

to the output file. If file2 is riot specified, then the output file is named scs. exe.

Future versions of the Assembler will generate the symbol tables at the end

of output file only if it was run with a -g switch. The current Assembler (May 1988)

always outputs the tables.

3.5 Programming the Systolic/Cellular SYSTEM

When programming the Systolic/Cellular System the user needs more than

just the Co-processor program as described above. It is necessary to use an interface

program in the HOST.6 For a short simple program, this is simple; you need to

download the program, FIFOs, and data and upload the results when execution is

complete. But it is possible to run longer programs, programs greater than will fit

in program memory and/or with FIFOs that are too long. It is also possible to

run programs with more data than will fit in the Array Memory. To do this, the

To date this has not been implemented.

program must STOP in the middle and allow the HOST to load the Co-processor.

There should be a program that will do this automatically for the user, possibly

requiring extensions to the Assembler. However, the user should take care that if

the program will be overwritten, that the STOP does not occur within a loop and

that all necessary outputs of functional units are stored before halting the system.

Chapter 4

Assembly Code: Opcodes

Below is a list of the assembly codes recognized by the SCS cross-assembler.

The opcodes can be divided into 2 major categories:

Regular instructions: those which translate into one or more lines of machine code,7

These are listed in section 4.1.

Special instructions: those which only affect the system control field of the pro-

gram instruction. These are also sometimes referred to as

Control instructions. These are listed in section 4.4.

There are two types of registers, static and dynamic, described in section

4.2. Source registers and operands to Arithmetic operations may be of either type.

Destination registers on the other hand, may only be of the static type. Register

names with their corresponding opcodes are also listed in section 4.2.

Regular instructions may be masked so that only a specified set of the

processors execute the operation. The mask format is described in section 4.3.

4.1 Regular Operation Codes

There are three types of regular instructions: arithmetic operations; inter-

nal (to the processing element (PE)) memory storage; and communication between

processors.

'I Each line of machine code, a 112-bit binary value, is also called a program instruction or
a machine instruction. See Section 3 .1 .

An arithmetic operation is one that utilizes one of the functional uni ts of

a processing element. A functional unit takes 2 operands, either one via each bus,

or both from another functional unit, and outputs to registers accessible to one

or both busses and/or directly to another functional unit. These output registers

are dynamic, meaning that the values stored within decay with time. The values

stored in these dynamic registers are valid up to 5 cycles. See Section 4.2 for more

details. There are three types of arithmetic operations:

1. operations with no operands consisting mainly of stage 2 operations with

input from another functional unit ;

2. operations with 2 operands; and

3. operations with 4 operands (input into 2 functional units).

The other two types of operations involve data movement, inside the pro-

cessing element and outside, and are described in the appropriate subsections below.

There are two timing considerations; both are in terms of cycles. A cycle

or ins truct ion cycle refers to the time it takes for the co-processor to interpret one

112-bit machine instruction. An ins truct ion cycle is made up of 2 phases labeled

fl and fZ. During each phase, a different part of the operation is executed, thus

the code for each phase is situated in a different field of the machine instruction.

One timing consideration is the number of machine instructions into which a given

operation translates. This can be noted by the number of fl, f;! pairs there are in

the code description. Each fl, fi pair (i.e. machine instruction) is separated by a

heavy horizontal line. The other timing consideration is the time (in instruction

cycles) it takes to complete the execution of an operation and is noted for each

operation after the words Execution Cycles. This value is greater than or equal to

the number of machine instructions generated.

The codes are listed below in alphabetical order of function.

27

4.1.1 Addition

There are two types of addition available, single addition using Adder 2,

and double addition using both Adder 1 and Adder 2 on the same operands. The

advantage to double addition is that both the result and its one's complement are

accessible from both busses.

28

Multiplier 2 in the same processors must be stored in a static

register before executing the second stage of multiplication, else

the sum will be lost.

Double Addition

Mnemonic Code: ADDD (X,Y)

Execution Cycles: 1

Operands:

X any source register accessible by BUS A.

Y any source register accessible by BUS B .

Machine Code:

Results: available in the next cycle following the cycle in which the unit is loaded

SUM1 A Accessible from BUS A. The sum of the values stored at registers

X and Y. It is identical to the register named PROD2B, see section

4.1.6 on Multiplication.

SUM2B Accessible from BUS B. The sum of the values stored at registers

phase

f 2

fl

X and Y. It is identical to the register named PROD2B, see section

4.1.6 on Multiplication.

CSUMlB Accessible from BUS B. The ones complement of the sum of the

values stored at registers X and Y. It is identical to the register

named CPROD2A, see section 4.1.6 on Multiplication.

CSUM2A Accessible from BUS A. The ones complement of the sum of the

values stored at registers X and Y. It is identical to the-register

named CPROD2A, see section 4.1.6 on Multiplication.

Comments:

Moves the data stored in X via BUS A and Y via BUS B to

Adder 1 and Adder 2 whi~h perform the addition operation si-

multaneously in a single cycle. The sum from Adder 1 is stored in

1/0 code
(LS, RS, A/B, T/O')

1111
11 11

destination
(D534,- - ,Dl)

11111
1 1 0 1 0

source
(S534,. • - ,SI)

X
Y

the dynamic register SUM1 A and its one's complement in the dy-

namic register CSUMlB. The sum from Adder 2 is stored in the

dynamic register SUM2B and its one's complement in the dynamic

register CSUM2A.

NOTE:

Since the second stage of multiplication in Multiplier 1 and

Multiplier 2 use Adder 1 and Adder 2 respectively, SUM2B,

and CSUM2A get overwrit ten when executing a MULTS2 in the en-

abled processors, and SUM2B, CSUM2A, SUMlA, and CSUMlB

get overwritten when esecuting a MULTSD in the enabled proces-

sors. Therefore, any sum generated by an ADDD during execution

of multiplication in the same processors, must be stored in a static

register before executing the second stage of multiplication, else

the sum will be lost.

4.1.2 Division
/

The Divider requires its operands to be in a normalized format i.e. the

divisor (Input from BUS A) must be in the range 1 5 X < z . ~ To ensure the

correct format, the input data should pass through the ShifterS before being passed

to the Divider. This can be implemented in a two-stage division; the first stage

normalizes the divisor to its correct format, shifting the dividend simultaneously.

The second stage loads the normalized values directly from the Shifter and performs

the division. See DIVF and DIVS below. Alternatively, if the User knows that the

divisor is in the correct format, then the inputs may be loaded directly to the

Divider. See DIV below.

Division takes a single cycle to load the data but 10 cycles total to execute.

The result of this is that the quotient may not be accessed until the end of execution,

but other operations may run in the interim.

There is only a single Divider clock for both Internal and External pro-

cessors. For division to run on both sets of processors, the dividers must be started

simultaneously, because once the clock has started, another division may not com-

mence until the clock is free. Once the clock has started, the value stored in the

dynamic output register of the divider is affected, therefore the result of the old di-

vision must be used or saved in a static register before the next division commences,

else the value will be lost. The clock inputs to the processors are NOT masked,

this means that once the clock starts, EVERY processor's divider output will be

affected, internal and external, enabled and disabled.

See Section 2.4 on data type.

In other documentation, it is sometimes referred to as the Norrnalizer because of this func-
tion.

Division-Normalized Operands

Mnemonic Code: DIV (X,Y)

Execution Cycles: 10

Operands:

X any source register accessible by BUS A containing a value

greater than or equal to 1 and less than 2. The divisor.

Y any source register accessible by BUS B. The dividend.

Machine Code:

Enables the DIVIDE bit in the system field of the current instruc-

tion by setting bit 97 to 0.

phase

f 2

f 1

Results: available in the 10 th cycle following the cycle in which the unit is loaded

QUOTA The quotient of Y + X. Accessible from BUS A.

Comments:

Moves the (assumed normalized) data stored in X via BUS A

and the data stored in Y via BUS B to the Divider and starts

execution of division Y + X (by starting the Divider clock). After

10 cycles, the quotient is stored in the dynamic register QUOTA.

NOTE:

1/0 code
(LS, RS, Mi, I/O)

1 1 1 1
1111

There is only a single Divider clock for both Internal and Ex-

ternal processors. Thus once the clock has started, another division

may not commence, even in a different set of processors, until the

current one has been completed.

The Divider clock changes the value stored in QUOTA, from

its first pulse, therefore, the old value of QUOTA must be used or

. destination
(D5,D4,. . 9 1)

1 1 1 1 1
1 1 1 1 0

source
(S5IS4,. . 3 1)

X
Y

b

saved before the Divider clock is restarted (as well as before the

old value -decays).

The Divider clock is NOT masked, therefore the QUOTA reg-

isters in EVERY processor (internal and external, enabled and dis-

abled) is changed.

Division-Nan-Normalized Operands: Stage 1

Mnemonic Code: DIVF (X,Y)

Execution Cycles: 1

Operands:

X any source register accessible by BUS A. The divisor.

Y any source register accessible by BUS B. The dividend.

Machine Code:

Results: available in the next cycle following the cycle ih which the unit is loaded

SHIFTA The shifted value of X, normalized to be a value greater than or

equal to 1 and less than 2. Dynamic register accessible from BUS

A.

SHIFTB The shifted value of Y. Dynamic register accessible from BUS B.

The values stored in SHIFTA and SHIFTB are also directly ac-

cessible by the Divider.

Comments:

Moves the data stored in X via BUS A and the data stored in Y

via BUS B to the Shifter and executes normalization, by shifting

both values left until the X input falls in the range greater than

or equal to 1 and less than 2. The shifted X value is stored in

dynamic register SHIFTA, and the shifted Y value is stored in

dynamic register SHIFTB. Both SHIFTA and SHIFTB are also

connected directly to the Divider.

NOTE:

phase

f 2

f 1

A DIVF is usually followed (within 5 cycles) by a DIVS opera-

36

destination
(D 5 9 4 , . - 9 1 1

11111
1 1 1 0 1

I/O code
(LS, RS, A/B, I/O)

1111
1111

T

source
(S5,S4,. . . ,S1)

X
Y

tion. Examples:

DIVF (X,Y)

DIVS

or:

DIVF (X,Y)

NOP

NOP

NOP

NOP

DIVS

The NOPs above may be replaced by any operations that do not

involve the Shifter, else the values will be overwritten.

The outputs SHIFTA and SHIFTB are not independent, a single

access code accesses both values simultaneously. This is a hardware

or firmware restriction. A single code accessing these registers ties

up both busses. The limiting result of this is that when moving the

value of one of these outputs to a static register or as input to an-

other functional unit, there may not be any other data movement.

For example: (let n, m = 1,2, . . . ,7) .

The following are examples of valid operations:

MOV(SHIFTA,An:SHIFTB,Bn)

MOV(:SHIFTB,Bn)

MOV(SHIFTA,ABn:)

ADD2(SHIFTA,SHIFTB)

DIV(SHIFTA,SHIFTB) identical operation as DIVS.

The following are examples of invalid operations:

Divisioli-Non-Normalized Operands: Stage 2

Mnemonic Code: DIVS

Execution Cycles: 10

Operands:

Normalized operands come directly from dynamic output registers

of the Shifter.

Machine Code:

Enables the DIVIDE bit in the system field of the current instruc-

tion by setting bit 97 to 0.

Results: available in the 10 th cycle following the cycle in which the unit is loaded

QUOTA The quotient of Y t X, where X and Y are the inputs to the

Shifter in a previous SHIFT(X,Y) or DIVF(X,Y) command. Ac-

cessible from BUS A.

Comments:

Moves the data, the normalized dividend and divisor, stored in

the dynamic output register of the Shifter to the Divider and

starts execution of division (by starting the Divider clock). After

10 cycles, the quotient is stored in the dynamic register QUOTA.

Example:

DIVF (X,Y)

DIVS

NOP

NOP

NOP

phase

f 2

f 1
i

destination
(D534,. - ,Dl)

11110
11111

110 code
(LS, RS, A/B, I/O)

1111
1111

source
(S534,. . . 31)

i l l 1 1
1 1 1 1 1

NOP

NOP

NOP

NOP

NOP

NOP

MOV (QUOTA,A4:)

The NOPs above may be replaced by any operations that do not

involve the Divider or the register QUOTA. Once the Divider

has been loaded, the Shifter is available.

NOTE:

The Shift er must have been executed within 5 cycles previously

in order for Divider to have a reliable output.

There is only a single Divider clock for both Internal and Ex-

ternal processors. Thus once the clock has started, another division

may not commence, even in a different set of processors, until the

current one has been completed.

The Divider clock changes the value stored in QUOTA, from

its first pulse, therefore, the old value of QUOTA must be used or

saved before the Divider clock is restarted (as well as before the

old value decays).

The Divider clock is NOT masked, therefore the QUOTA reg-

isters in EVERY processor (internal and external, enabled and dis-

abled) is changed.

4.1.3 Inter-Processor Comnluilication

There are four types of inter-processor communication within the processor

array, East to West, North to South, South to North, and West to East. Because

of pin limitations, it is possible to physically move only 16 bits at a time between

processors, therefore, since the data is 32 bits long, 1 /0 requires execution of two

machine instructions. Execution is in two parts, moving data to and from the ports

and moving data between processors. The code for the former is located in the

source/destination parts of the fi and fi fields of the machine instruction, the latter

is located in the 110 parts. Due to complex issues regarding the 110 ports and the

difference in 1/0 code for communication with memory access and communication

without memory access, it was decided that inter-processor communication should

require use of a single instruction by the programmer.

The user decides which processors should receive data, and those are the

ones which are masked. GETE(S,D), for example, means each enabled processor

will receive the value stored in its east neighbor's register S and place it in its own

register D. Fkom start to finish this works as follows:

1. ALL processors move the data stored in register S (via either bus)g to their

WEST output port.

2. Within two cycles, data is moved from the WEST port of EACH processor

to the EAST port of its west neighbor.

3. The enabled processors move data stored in their EAST ports to the des-

tination register D (via either The other instructions, including com-

munication with memory access work in the same manner (but with differ-

ent ports).

The side effects of this implementation is that the mask is not applied to

The assembler determines which bus.

the first machine instruction generated. Thus if the External instruction is Com-

munication and the Internal is not, or vice versa, and the instruction is masked,

then the programmer should note that the first instruction generated for the non-

communication operation will be executed by all processors. If it translates to more

than one machine instruction, the second, etc. instructions will be executed by only

the enabled processors. For more details on this and other side effects, see the next

chapter on Limitations.

East To West Data Flow

Mnemonic Code: GETE (S,D)

Execution Cycles: 2

Parameters:

S any source register of the source processor accessible by either

BUS A or BUS B

D any static register of the destination processor accessible by

either BUS A or BUS B

Machine Code:

S via BUS A to West port and East port to D via BUS A:

S via BUS A to West port and East port to D via BUS B:

phase

f2

f 1
f2

f 1

S via BUS B to West port and East port to D via BUS A:

phase

f2

fl

f 2
f 1

b

1 /0 code
(LS, RS, A/B, T/O_)

1 0 0 0
0 0 1 0
0 1 1 0
1111

S via BUS B to West port and East port to D via BUS B:

43

1/0 code
(LS, RS, A/B7 I/O)

1 0 0 0
0 0 1 0
0 1 1 0
1111

phase

f2

fl

f2

f l

destination
(D5,D41.. 7D1)

1 0 0 1 0
11111

D
11111

source
(S59S41. . , S l)

S
11111
1 0 1 0 0
11111

destination
(D5,D4,. . 9 1)

1 0 0 1 0
11111
11111

D

1/0 code
(LS, RS, A D , I/O)

1 0 0 0
0 0 1 0
0 1 1 0
1111

source
(S534 , . - .,SI)

S
11111
1 0 1 1 0
11111

destination
(D 5 9 4 , . . . , D l)

1 0 0 0 0
11111

D
11 11 1

source
(S534 , . - - 3 1)

11111
S

1 0 1 0 0
11111 .

Comments:

phase

f 2

f l

f 2
f 1

All processors move the data stored in register S (via the appro-

priate bus) to their WEST output port. The data is passed from

every processor WEST output port to its west neighbor's EAST

input port. In the second cycle, the enabled processors pass the

data in their EAST input port to register D (via the appropriate

bus).

NOTE:

110 code
(LS, RS, A/B, I/O)

1 0 0 0
0 0 1 0
0 1 1 0
1 1 1 1

Only the second cycle instruction is generated with a mask, the

first is generated with ALL processors ENABLED. Thus the pro-

grammer must take care when executing I/O in one field of proces-

sors and some other operation in the other.

destination
(D534,. . . I D 1)
1 0 0 0 0
1 1 1 1 1
1 1 1 1 1
D

source
(s534,. - - $1)
1 1 1 1 1

S
1 0 1 1 0
1 1 1 1 1

North To South Data Flow

Mnemonic Code: GETN (S,D)

Execution Cycles: 2

Parameters:

X any source register of the source processor accessible by either

BUS A or BUS B

Y any static register of the destination processor accessible by

either BUS A or BUS B

Machine Code:

S via BUS A to South port and North port to D via BUS A:

S via BUS A to South port and North port to D via BUS B:

.

phase

f 2
f 1
f 2
f 1

S via BUS B to South port and North port to D via BUS A:

phase

f2
f 1
f 2

f 1 -

110 code
(LS, RS, a, I/O)

1 0 0 0
0 0 1 0
0 1 1 0
1111

S via BUS B to South port and North port to D via BUS B:

45

I/O code
(LS, RS, A l B , I I O)

1 0 0 0
0 0 1 0
0 1 1 0
1111

phase

f2
f 1

f2
f 1

destination
(Ds,D4,. . . , D l)

1 0 0 0 0
11111

D
11111

source
(S534 , . . - $1)

S
11111
1 0 1 1 0
1 1 1 1 1

destination
(DslD4,. . , D l)

1 0 0 0 0
11111
11111
D

I/O code
US, RS, A/B, I/O)

1 0 0 0
0 0 1 0
0 1 1 0
1111

source
(S5,S4,- . . 3 1)

S
11111
1 0 1 0 0
11111

destination
(D 5 9 4 , . . . 3 1)

1 0 0 1 0
11111

D
11111

L

source
(S57S41. . $1)

11111
S

1 0 1 1 0
1 1 1 1 1

Comments:

1 phase

All processors move the data stored in register S (via the ap-

propriate bus) to their SOUTH output port. The data is passed

from every processor's SOUTH output port to its south neighbor's

NORTH input port. In the second cycle, the enabled processors

pass the data in their NORTH input port to register D (via the

NOTE:

I I/O code I destination

appropriate bus).

source

Only the second cycle instruction is generated with a mask, the

f is t is generated with ALL processors ENABLED. Thus the pro-

grammer must take care when executing 1/0 in one field of proces-

sors and some other operation in the other.

If the programmer executes a GETN(S,D) in conjunction with

a memory access instruction, and the top and/or bottom proces-

sors corresponding to the GETN(S,D) instruction are not masked

out, then some unreliable data will be read from and/or written to

Memory in the corresponding columns.

South To North Data FIow

Mnemonic Code: GETS (S,D)

Execution Cycles: 2

Parameters:

X any source register of the source processor accessible by either

BUS A or BUS B

Y any static register of the destination processor accessible by

either BUS A or BUS B

Machine Code:

S via BUS A to North port and South port to D via BUS A:

S via BUS A to North port and South port to D via BUS B:

phase

f2

f l

f 2

f l

S via BUS B to North port and South port to D via BUS A:

I/O code
(I&, RS, G/B, I/O)

0 1 0 1
0 0 1 1
1 0 1 1
1111

f 2

f l

f2

f 1
1

S via BUS B to North port and South port to D via BUS B:

47

destination
(D ~ i D 4 7 . . . tD1)

1 0 1 1 0
11111

D
11111

1/0 code
(LS, RS, AIB, ID

0 1 0 1
0 0 1 1
1 0 1 1
1111

f2

f 1

f 2

f 1

source
(S57S4, . . . t S 1)

S
11111
1 0 0 0 0
11111

destination
(D s , D 4 , . . . , D l)

1 0 1 1 0
1 1 1 1 1
11111

D

1/0 code
(LA, RS, A/B, I/O)

0 1 0 1
0 0 11
1 0 1 1
1 1 1 1

source
(S s , S 4 , - .. ,S1)

S
1 1 1 1 1
1 0 0 1 0
11111

destination
(D 5 , D 4 , . . , D l)

1 0 1 0 0
11111

D
11111

source
(S s , s 4 , . . ,S1)

1 1 1 1 1
S

1 0 0 0 0
1 1 1 1 1 .

Comments:

All processors move the data stored in register S (via the ap-

propriate bus) to their NORTH output port. The data is passed

from every processor's NORTH output port to its north neighbor's

SOUTH input port. In the second cycle, the enabled processors

pass the data in their SOUTH input port to register D (via the

appropriate bus).

phase

f 2

fl
f 2

f 1

NOTE:

I/O code
(IS, RS, A / B 7 I/O)

0 1 0 1
0 0 1 1
1 0 1 1
1 1 1 1

destination
(D~rD41. . . ,Dl)
1 0 1 0 0
1 1 1 1 1
1 1 1 1 1

D

Only the second cycle instruction is generated with a mask, the

first is generated with ALL processors ENABLED. Thus the pro-

grammer must take care when executing 110 in one field of proces-

sors and some other operation in the other.

source
(S51s4,. . 31)
1 1 1 1 1

S
1 0 0 1 0
1 1 1 1 1 .

West To East Data Flow

Mnemonic Code: GETW (S,D)

Execution Cycles: 2

Parameters:

X any source register of the source processor accessible by either

BUS A or BUS B

Y any static register of the destination processor accessible by

either BUS A or BUS B

Machine Code:

S via BUS A to East port and West port to D via BUS A:

S via BUS A to East port and West port to D via BUS B:

phase

f 2
fl

f2

f 1

S via BUS B to East port and West port to D via BUS A:

destination
(D s , D ~ ~ - . - , D l)

1 0 1 0 0
11 11 1

D
11111

110 code
(LS, RS, A/B, I/O)

0 1 0 1
0 0 1 1
1 0 1 1
11 11

phase

f 2

f 1
f 2

f 1

S via BUS B to East port and West port to D via BUS B:

49

source
(S 5 3 4 , . . - 3 1)

S
11111
1 0 0 1 0
11111

I/O code
(LS, RS, A/B, T/O)

0 1 0 1
0 0 1 1
1 0 1 1
11 11

phase

f 2
f 1
f 2
f 1

b

destination
(D s , D 4 , . . . , D l)

1 0 1 0 0
11111
1 1 1 1 1

D

I/O code
(LS, RS, m, m

0 1 0 1
0 0 1 1
1 0 1 1
1111

source
t S 5 3 4 , . . , S 1)

S
11111
1 0 0 0 0
1 1 1 1 1

destination
(D 5 3 4 , . . . , D l)

1 0 1 1 0
1 1 1 1 1

D
1 1 1 1 1

source
(S 5 3 4 , . - 3 1)

11111
S

1 0 0 1 0
1 1 1 1 1

Comments:

phase

f 2

fl
f 2

f 1

All processors move the data stored in register S (via the appro-

priate bus) to their EAST output port. The data is passed from

every processor's EAST output port to its east neighbor's WEST

input port. In the second cycle, the enabled processors pass the

data in their WEST input port to register D (via the appropriate

bus).

NOTE:

1/0 code
(LS, IS, 4/B, I/O)

0 1 0 1
0 0 1 1
1 0 1 1
1111

Only the second cycle instruction is generated with a mask, the

first is generated with ALL processors ENABLED. Thus the pro-

graxnmer must take care when executing I/O in one field of proces-

sors and some other operation in the other.

destination
(D5,D41. . . , D l)

1 0 1 1 0
1 1 1 1 1
1 1 1 1 1

D

source
(s5 , s4 , . . $1)

1 1 1 1 1
S

1 0 0 0 0
1 1 1 1 1 -

4.1.4 Inter-Processor Communication: With Memory Access

The only link between the Processor Array and the "outside world," namely

the Host, is through Data Memory. The Processor Array is connected via two ports

to the Data Memory. The Read Port connects to the top row of the Array and

its sole function is to transfer data from Memory to the Array. The Write Port

connects to the bottom row of the Array and its sole function is to transfer data

from the Array to Memory. Either or both these operations occur in conjunction

with North to South data flow within the Array. See section 4.1.3. Since Memory

access takes 3 cycles to execute, the 1/0 codes for North to South data flow has

been stretched out to fill 3 cycles.

There are three possible instructions, Communication with a Read, Com-

munication with a Write, and Communication with both Read and Write. The

three differ only in which System Operation bits get set.

North To South Data Flow With Memory Access

Mnemonic Codes:

GETNRD (S,D)

GETNWT (S,D)

GETNRDWT (S,D)

Execution Cycles: 3

Parameters:

X any source register of the source processor accessible by either

BUS A or BUS B

Y any static register of the destination processor accessible by

either BUS A or BUS B

Machine Code:

S via BUS A to South port and North port to D via BUS A:

S via BUS A to South port and North port to D via BUS B:

phase

f 2

f 1

f 2

f 1
f 2

f 1

S via BUS B to South port and North port to 'D via BUS A:

I/O code
u, RS, A/B, I/O)

1 0 0 0
0 1 0 0
1111
1 0 1 0
0 1 1 0
11 11

phase

f 2

f l

f 2

f l

f 2

f 1

destination
(D5,D4,. . , D l)

1 0 0 0 0
11111
11111
11111

D
11111

110 code
(LS, RS, A/B, T/O)

1 0 0 0
0 1 0 0
1 1 1 1
1 0 1 0
0 1 1 0
1 1 1 1

source
(S57S4,. . . ,S1)

S
11111
11111
11111
1 0 1 1 0
11111

destination
(D534,. . . , D l)

1 0 0 0 0
1 1 1 1 1
11111
1 1 1 1 1
11111

D

source
(s ~ ~ S 4 , - • $1)

S
11111
1 1 1 1 1
11111
1 0 1 0 0
11111

S via BUS B to South port and North port to D via BUS B:

phase

f 2

f 1
f 2

f 1
f 2

f l

GETNRD Enables the READ bit in the System field of the above three

instructions by setting bit 102 to 0.

GETNWT Enables the WRITE bit in the System field of the above three

instructions by setting bit 100 to 0.

GETNRD Enables the READ and WRITE bits in the System field of the

above three instructions by setting bits 100 and 102 to 0.

Comments:

1 /0 code
(LS, RS, A/B, I/O)

1 0 0 0
0 1 0 0
1111
1 0 1 0
0 1 1 0
1111

All processors move the data stored in register S (via the appro-

priate bus) to their SOUTH output port. If the READ bit is set

(= 0), data is transferred from the location in Memory pointed to

by the Read Address Counter, to the NORTH input port of all the

processors in the top row of the array. Data is passed from every

processor's SOUTH output port to its south neighbor's NORTH in-

put port. If the WRITE bit .is set (= 0), data is transferred from

phase

f 2

f 1
f 2

f l

f 2

f l

the SOUTH output port of all the processors in the bottom row of

53

destination
(D5,D4,. . . , D l)

1 0 0 1 0
11111
11111
11111

D
11111

source
(S 5 3 4 , . . . 31)

11111
S

11111
1 1 1 1 1
1 0 1 0 0
1 1 1 1 1 .

1/0 code
(LS, RS, A/B, T/O)

1 0 0 0
0 1 0 0
1111
1 0 1 0
0 1 1 0
11 11

source
(S534 , . . . ,s1)

11111

S -.
11111
11111
1 0 1 1 0
11111

destination
(D51D4,. . ,Dl)

1 0 0 1 0
11111
11111
11111
11111

D

I

the array to Memory at the location pointed to by the Write Ad-

dress Counter. In the third cycle, the enabled processors pass the

data in their NORTH input port to register D (via the appropriate

bus).

NOTE:

Only the third cycle instruction is generated with a mask, the

first two are generated with ALL processors ENABLED. Thus the

programmer must take care when executing 1/0 in one field of

processors and some other operation in the other.

If the programmer executes a GETN(S,D) in conjunction with

a memory access instruction, and the top and/or bottom proces-

sors corresponding to the GETN(S,D) instruction are not masked

out, then some unreliable data will be read from and/or written to

Memory in the corresponding columns.

4.1.5 Local Memory Storage/Retrieval

Moving Data Between Registers

Mnemonic Code:

MOV(X,W:Y ,Z)

MOV(:Y,Z)

MOV(X,W:)

Execution Cycles: 1

Operands:

X any source register accessible by BUS A

W any static register accessible by BUS A

Y any source register accessible by BUS B

Z any static register accessible by BUS B

Machine Code:

Results: available in the next cycle following the cycle in which the unit is loaded

Register W contains the same data as register X.

Register Z contains the same data as register Y.

Comments:

Move the contents of X via BUS A to the static register W,

and/or move the contents of Y via BUS B to the static register Z.

NOTE:

phase

f 2

f 1

The NULL register - may be used in both the source and des-

tination positions. When used as a source, the contents of the

precharged bus is transferred; this is equivalent to loading a value

of - T 3 0 . AS a destination, the data from the source is not latched

55

I/O code ,

(LS, RS, A/B, I/O)
1 1 1 1
1 1 1 1

destination
(Ds,Dq,- - ,Dl

W
z

J

source .

(Ss,S4,. • . 3 1)

X
Y

anywhere. This is useful when storing the result of the Shifter

when only one result is desired.

MOV(:) and MOV(,-:-,-) are both valid and are equivalent to a

NOP.

4.1.6 Multiplication

Multiplication is implemented in two stages. In the first stage, a Multiplier

is loaded and the fast Multiplier Clock is started. After 6 cycles, the partial product

and the carry values are available. The full product is the sum of these values, so the

second stage of multiplication loads the partial product and carry into an Adder and

performs the addition. The product (and its ones complement) are available from

the Adder outputs, thus any previous Sum (and its compliment) are overwritten.

Each stage must be specified in the program. This allows other operations

(except another multiplication) to be executed in parallel with the Multiplier, even

in the same processor as the Multiplier. This also reminds the programmer that

the second stage takes place in a different functional unit, namely the Adder.

There are two Multipliers, Multiplier 1 and Multiplier 2. The partial

product and carry from Multiplier 1 are loaded directly into Adder 1, and the

partial product and carry from Multiplier 2 are loaded directly into Adder 2.

There are three types of multiplication available, single multiplication using Multi-

plier 1, single multiplication using Multiplier 2, and double multiplication of two

sets of operands using both multipliers. For double multiplication, both multipliers

are loaded before the Multiplier clock is started.

There are three different mnemonics for first stage of multiplication, but

only two for the second stage. The second stage for single multiplication in Mul-

tiplier l is the same as for double multiplication and affects both Adders. The

reason for this is that there is no machine code to operate Adder 1 independently

from Adder 2.

There is only a single Multiplier clock for both Multipliers in ALL pro-

cessors, Internal and External. For multiplication to run in both sets of processors,

the multipliers must be started simultaneously, because once the clock has started,

another multiplication may not commence until the clock is free. Once the clock

has started, the value stored in the dynamic output register of both multipliers are

affected, therefore the result of the old multiplication must be used or saved in a

static register before the next multiplication commences, else the value will be lost.

The clock inputs to the processors are NOT masked, this means that once the clock

starts, BOTH multipliers' outputs will be affected in ALL processors, internal and

external, enabled and disabled.

Single Multiplication in Multiplier 1: First Stage

Mnemonic Code: MULTFl (X,Y)

Execution Cycles: 6

Operands:

X any source register accessible by BUS A

Y any source register accessible by BUS B

machine code:

Enables the MULTIPLY bit in the system field of the current

instruction by setting bit 98 to 0.

Results: available in the 6 th cycle following the cycle in which the unit is loaded.

A partial product and a carry which are stored in dynamic

registers accessible directly by Adder 1. The partial product

and carry must be added in order to obtain the product.

Comments:

Moves the value stored in X via BUS A and the value stored in Y

via BUS B to Multiplier 1 and starts execution of multiplication

(by starting the Multiplier clock). After 6 cycles, the partial

product and carry values are stored in dynamic registers connected

directly to Adder 1. These values must be then added (See Second

stage multiplication) to obtain the product.

phase

f 2

t f 1

NOTE:

A MULTFl is usually followed by a MULTSD operation within

I/O code
(LS, RS, A/B, I/O)

1111
1111

5 cycles after the results of the multiplier are ready. Examples:

MULTFl (X,Y)

59

destination
(D5,D4,. . . ,Dl)

1 1 0 0 1
11111

source
(S 5 3 4 , . . . 3 1)

X
Y

NOP

NOP

NOP

NOP

NOP

MULTSD

or:

MULTFl (X,Y)

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

MULTSD

The NOPs above may be replaced by any operations that do not

involve multiplication.

There is only a single Multiplier clock for both Multipliers

in all processors, Internal and External. Once the clock has been

started, another multiplication may not commence, even a different

Multiplier, even in a different set of processors, until the current

execution has been completed.

The Multiplier clock changes the values stored in the output

registers of both Multipliers from its first pulse, therefore, the I

I

old values must be used (i.e. a MULTSD executed) before the
I

Multiplier clock is restarted (as well as before the old values I

I

decay) . 1

I

The Multiplier clock is NOT masked, therefore the output 1

I

registers of Both multipliers in EVERY processor (internal and
1

external, enabled and disabled) are changed.
I

Single Multiplication in Multiplier 2: First Stage

Mnemonic Code: MULTF2 (X,Y)

Execution Cycles: 6

Operands:

X any source register accessible by BUS A

Y any source register accessible by BUS B

machine code:

Enables the MULTIPLY bit in the system field of the current

instruction by setting bit 98 to 0.

Results: available in the 6 th cycle following the cycle in which the unit is loaded.

A partial product and a carry which are stored in dynamic

registers accessible directly by Adder 2. The partial product

and carry must be added in order to obtain the product.

Comments:

Moves the value stored in X via BUS A and the value stored in Y

via BUS B to Multiplier 2 and starts execution of multiplication

(by starting the Multiplier clock). After 6 cycles, the partial

product and carry values are stored in dynamic registers connected

directly to Adder 2. These values must be then added (See Second

stage multiplication) to obtain the product.

h

NOTE:

phase

f2

fl -

A MULTF2 is usually followed by a MULTS2 operation within

destination
(D57D4,. . 9 1)

1 1 0 1 1
1 1 1 1 1

1/0 code
(LS, RS, A/B, I/OI

1 1 1 1
1 1 1 1

5 cycles after the results of the multiplier are ready. Examples:

MULTF2 (X,Y)

62

source
(SgrS4,. - . ,S1)

X
Y

NOP

NOP

NOP

NOP

NOP

MULTS2

or:

MULTF2 (X,Y)

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

MULTS2

The NOPs above may be replaced by any operations that do not

involve multiplication.

There is only a single Multiplier clock for both Multipliers

in all processors, Internal and External. Once the clock has been

started, another multiplication may not commence, even a different

Multiplier, even in a different set of processors, until the current

execution has been completed.

The Multiplier clock changes the values stored in the output

registers of both Multipliers from its f i s t pulse, therefore, the

old values must be used (i.e. a MULTS2 executed) before the

Multiplier clock is restarted (as well as before the old values

decay) .
The Multiplier clock is NOT masked, therefore the output

registers of Both multipliers in EVERY processor (internal and

external, enabled and disabled) are changed.

Double Multiplication: First Stage

Mnemonic Code: MULTFD (X,Y:W,Z)

Execution Cycles: 7

Operands:

X any source register accessible by BUS A. Input to Multiplier 1.

Y any source register accessible by BUS B. Input to Multiplier 1.

W any source register accessible by BUS A. Input to Multiplier 2.

Z any source register accessible by BUS B. Input to Multiplier 2.

machine code:

Enables the MULTIPLY bit in the system field of the second

instruction generated by setting bit 98 to 0.

Results: available in the 7 th cycle following the cycle in which the f i s t unit is loaded.

The partial products and the carries which are stored in dy-

namic registers accessible directly by Adder 1 and Adder 2. The

partial product and carry must be added in order to obtain the

product .
Comments:

Moves the value stored in X via BUS A and the value stored in

Y via BUS B to Multiplier 1 in one cycle, then moves the value

stored in W via BUS A and the value stored in Z via BUS B to

Multiplier 2 and starts execution of multiplication (by starting

the Multiplier clock). After. 7 cycles from loading Multiplier 1,

the partial product i d carry values are stored in dynamic registers

source
(S534,. - . ts1)

X
Y
W
z

phase

f 2

f 1
f 2

f 1

1 / 0 code
(LS, RS, A/B, I/O)

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

destination
(D5D4,. . 91)
1 1 0 0 1
1 1 1 1 1
1 1 0 1 1
1 1 1 1 1

connected directly to Adder 1 and Adder 2 from Multiplier 1

and Multiplier 2 respectively. These values must be then added

(See Second stage multiplication) to obtain the product.

NOTE:

A MULTFD is usually followed by a MULTSD operation within

5 cycles after the results of the multiplier are ready. Examples:

MULTFD (X,Y)

NOP

NOP

NOP

NOP

NOP

MULTSD

or:

MULTFD (X,Y)

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

MULTSD

The NOPs above may be replaced by any operations that do not

66

involve multiplication.

There is only a single Multiplier clock for both Multipliers in

all processors, Internal and External, therefore the clock is started

after both Multipliers have been loaded. Once the clock has been

started, another multiplication may not commence, even in a dif-

ferent set of processors, until the current execution has been com-

plet ed.

The Multiplier clock changes the values stored in the output

registers of both Multipliers from its f is t pulse, therefore, the

old values must be used (i.e. a MULTSD executed) before the

Multiplier clock is restarted (as well as before the old values

decay).

The Multiplier clock is NOT masked, therefore the output

registers of Both multipliers in EVERY processor (internal and

external, enabled and disabled) are changed.

Single Multiplication in Multiplier 2: Second Stage

Mnemonic Code: MULTS2

Execution Cycles: 1

Operands:

None

machine code:
- - -

Results: available in the next cycle following the cycle in which t he unit is loaded

PROD2B Accessible from BUS B. The sum of the values stored at registers

X and Y. It is identical to the register named SUM2B, see section

4.1.1 on Addition.

CPROD2A Accessible from BUS A. The ones complement of the sum of the

values stored at registers X and Y. It is identical to the register

named CSUM2A, see section 4.1.1 on Addition.

Comments:

Move the partial product and carry, stored in the dynamic output

registers of Multiplier 2, to Adder 2 and perform the addition

operation. The sum from Adder 2 is stored in the dynamic reg-

ister PROD2B and its one's complement in the dynamic register

CPROD2A.

Example:

MULTF2 (X,Y)

NOP

NOP

NOP

source
(S534, . 3 1)

1 1 1 1 1
1 1 1 1 1

phase

f 2

f 1

1/0 code
(LS, RS, A/B, I/O)

1 1 1 1
1 1 1 1

destination
(D5,D4,. . $1)

1 1 1 0 0
1 1 1 1 1

NOP

NOP

MULTS2

MOV (:PROD2B ,B1)

The NOPs above may be replaced by any operations that do not

involve Multiplier 1 or Multiplier 2. Once Adder 2 has been

loaded (by a MULTS2 instruction), Multiplier 2 is available.

NOTE:

Multiplier 2 must have finished execution within 5 cycles prior

to calling MULTS2 in order for the product to be correct.

Single Multiplication in Multiplier 1: Second Stage

Double Multiplication: Second Stage

Mnemonic Code: MULTSD

Execution Cycles: 1

Operands:

None

machine code:

Results: available in the next cycle following the cycle in which t he unit is loaded

PRODlA Accessible from BUS A. The sum of the values stored at registers

X and Y. It is identical to the register named SUM2B, see section

phase

f 2

f 1

4.1.1 on Addition.

PROD2B -Accessible from BUS B. The sum of the values stored at registers

X and Y. It is identical to the register named SUMZB, see section

4.1.1 on Addition.

CPRODlB Accessible from BUS B. The ones complement of the sum of the

values stored at registers X and Y. It is identical to the register

named CSUM2A, see section 4.1.1 on Addition.

CPRODZA Accessible from BUS A. The ones complement of the sum of the

values stored at registers X and Y. It is identical to the register

named CSUM2A, see section 4.1.1 on Addition.

Comments:

Move the partial product and carry, stored in the dynamic out-

put registers of Multiplier 1. and Multiplier 2, to Adder 1 and

Adder 2 respectively and perform the addition operation simul-

70

1 /0 code
(LS, RS, A/B, I/O)

1111
1111

destination
(Ds,D4,. . - , D l)

1 1 0 1 0
11111

source
(S534 , . . ,S1)

11111
11111

taneously in a single cycle. The sum from Adder 1 is stored in

the dynamic register PRODlA and its one's complement in the

dynamic register CPRODlB. The sum from Adder 2 is stored in

the dynamic register PRODZB and its one's complement in the

dynamic register CPROD2A.

Examples:

MULTF1 (X,Y)

NOP

NOP

NOP

NOP

NOP

MULTSD

MOV (PRODlA,Al:)

MULTFD (X,Y:W,Z)

NOP

NOP

NOP

NOP

NOP

MULTSD

MOV (PROD lA,Al:PROD2B,Bl)

The NOPs above may be replaced by any operations that do not

involve Multiplier 1 or Multiplier 2. Once the Adders have been

loaded (by a MULTSD instruction), the Multipliers are available.

NOTE:

Multiplier 1 or both Multiplier 1 and Multiplier 2 must

have finished execution within 5 cycles prior to calling MULTSD

in order for the product(s) to be correct.

Although there is a first stage single multiplication using Mul-

tiplier l there is no single addition instruction for Adder l, so

the second stage must be executed in parallel with Adder 2. The

side effect is that the output registers of Adder 2 are overwritten.

4.1.7 No-Operation

As in other assembly codes, there is an operation which does nothing. It

is equivalent to "moving nothing to nowhere." It is useful to execute only internal

processors or only external processors. It is also useful to use up cycles while waiting

for an operation with a multi-cycle execution time to finish executing.

No-Operation

Mnemonic Code: NOP

Execution Cycles: 1

Operands:

None

Machine Code:

Results:

phase

f 2

fl

None

Comments:

110 code
(LS, RS, A/B, I/O)

1 1 1 1
1 1 1 1

No new operation initiated in the current cycle.

NOTE:

destination
(D5,D4,-. . ,Dl)
1 1 1 1 1
1 1 1 1 1

3

source
(Ss,S4,. - , S I)

1 1 1 1 1
1 1 1 1 1

4.1.8 Shifting

Shifting

Mnemonic Code: SHIFT (X,Y)

Execution Cycles: 1

Operands:

X any source register accessible by BUS A.

Y any source register accessible by BUS B.

Machine Code:
- -

Results: available in the next cycle following the cycle in which the unit is loaded

SHIFTA The shifted value of X, normalized to be a value greater than or

equal to 1 and less than 2. Dynamic register accessible from BUS

A.

SHIFTB The shifted value of Y. Dynamic register accessible from BUS B.

Both values stored in SHIFTA and SHIFTB are also stored in

dynamic registers accessible directly by the Divider.

Comments:

Moves the data stored in X via BUS A and the data stored in

Y via BUS B to the Sliifter and executes an arithmetic left shift,

by shifting both values until the X input falls in the range greater

than or equal to 1 and less than 2. To execute n shifts left on the

Y input, the X input should be greater than or equal to 2-" and

less than 2-("-'). The shifted X value is stored in dynamic register

SHIFTA as well as in a dynamic register connected to the Divider,

and the shifted Y value is stored in dynamic register SHIFTB as

source
(S534r. . . 3 1)

X
Y

destination
(D5rD4r. . rD1)

11111
11101

phase

f 2
fl

1/0 code
(LS, RS. e/B, I/O)

1111
1111

well as in a dynamic register connected to the Divider.

NOTE:

The outputs SHIFTA and SHIFTB are not independent, a single

access code accesses both values simultaneously. This is a hardware

or firmware restriction. A single code accessing these registers ties

up both busses. The limiting result of this is that when moving the

value of one of these outputs to a static register or as input to an-

other functional unit, there may not be any other data movement.

For example: (let n, m = 1,2,. . . ,7).

The following are examples of valid operations:

MOV(SHIFTA,An:SHIFTB,Bn)

MOV(:SHIFTB,Bn)

MOV(SHIFTA,ABn:)

ADD2(SHIFTA,SHIFTB)

DIV(SHIFTA,SHIFTB) identical operation as DIVS.

The following are examples of invalid operations:

MOV(SHIFTA,An:Bn,ABn)

MOV(An,Am:SHIFTB,ABn)

MULTSl(SHIFTA,SUMB2)

4.1.9 Sorting

Sorting or Comparing

Mnemonic Code: SORT (X,Y)

Execution Cycles: 1

Operands:

X any source register accessible by BUS A

.Y any source register accessible by BUS B

Machine Code:

Results: available in the next cycle following the cycle in which the unit is loaded

HIGHA The higher value of X and Y. Accessible from BUS A.

LOWB The lower value of X and Y. Accessible from BUS B.

Comments:

Moves the data stored in X via BUS A and Y via BUS B to the

Sorter which compares the two values. The greater (or higher)

value is stored in the dynamic register HIGHA, and the smaller (or

lower) value is stored in the dynamic register LOWB.

phase

f 2

fl

NOTE:

I/O code
(LS1 RS, A/B, LO)

1 1 1 1
1 1 1 1

destination
(Ds1D4,- . a P i)

1 1 1 1 1
1 1 0 0 0

source
(S5rS47. - rS1)

X
Y

4.1.10 Subtraction

Subtraction can be performed by using one of the two following sequences

of Additions. The examples are using Double Addition, but Single Addition may

also be used for Y - X, or for the second part of X - Y. For X via BUS A and Y

via BUS B:
Y - X :

ADDD(X,-)

X - Y :

4.2 Registers

There are two types of registers, static and dynamic. Local memory of

each processor consists of 24 static registers. Eight can be accessed solely via BUS

A, eight solely via BUS B, and eight via either bus. They are called static because

once a value is stored, it remains valid until it is over-written. The register names

and their machine codes are listed in the table of Figure 4.2.1. Static registers may

be used as either the source or the destination register (where Si stands for the

i t h bit of the source code and Di stands for the ith bit of the destination code).

The phase information tells which phase field to put the code. Registers placed in

phase f2 are transferred over BUS A and those placed in phase fi are transferred

over BUS B.

The NULL register can be used inn place of any static register. When

used as a source, the contents of the pre-charged bus is transferred to the des-

tination register or functional unit. This is equivalent to loading a -2-30. As a

destination, the data placed on the bus is not latched anywhere, thus it is function-

ally equivalent to a NOP operation on that bus. This is useful when storing the

result of a SHIFT when only one output is wanted, but the programmer wants an

explicit reminder that the other bus is not free (See Section 4.1.8 on Shifting).

Table of Static Registers

Register I Ss/Ds S4/D4 S3/D3 S2/D2 %/Dl (Phase
Bus A

Bus B
BO 0 1 0 0 0 I f 1

* The Null register. As source, reads bus whose lines are
pulled high. As destination, value is not latched to anything.

FIGURE 4.2.1 Static Registers

The outputs of the functional units are dynamic registers. They are called

dynamic because their values decay over time. The data in a dynamic output

register is valid for up to 5 cycles after being loaded; therefore, the programmer

should be careful to use or store the results of an arithmetic operation within this

time limit.

If the co-processor is stopped (i.e. the STOP instruction is executed), when

it is restarted, the old values in the dynamic registers are lost. The programmer

should be careful to store any necessary results before issuing the STOP instruction.

The names of the dynamic registers are listed in the table of Figure 4.2.2.

Please note that the "product" register names (PROD2A, etc.) are aliases for the

output registers of the Adders (named SUM2A, etc.). Also note the unusual case

of the Shifter output registers; that they must be accessed simultaneously, (and

may not be accessed individually). See Section 4.1.8 for more details.

Table of Dynamic Output Registers

Register I SS/DS s ~ / D ~ SQ/DQ S Z / D ~ S I / D ~ 1 Phase 1 Bus 1

Divider
QUOTA I 1 1 1 1 0 I f? 1 A

PRODlA

CSUMlB

CPRODlB

t
I , w - I I

Shift er * I

1 1 0 1 0
1 1 0 1 0

SHIFTB 1 1 1 0 1 I f l (B
Sorter

HIGHA I 1 1 0 0 0 I f, I A

I

I

f 2

fl

SHIFTA

* Shifter outputs are accessed only as a pair

A
B

1 1 0 1 0 1 f~

1 1 1 0 1 I f l I A

I " - I I

FIGURE 4.2.2 Dynamic Registers

B

LOWB 1 1 0 0 1 I f l I B

4.3 Masks

Masks can be used after any Regular Instruction to enable only a subset

of the PEs during execution of the given instruction. A single mask applies to

both external and internal processors, which evokes certain restrictions, see the

next chapter, on Limitations. A restriction to note is that when a Communication

operation is masked, the first line of machine code generated does not contain that

mask; see Section 4.1.1 and the chapter on Limitations. Masks may be predefined

at the beginning of the file, and symbolic names used in the program.

There are two types of masking ~ow/column masking and diagonal mask:

ing. Masked processors are enabled. The absence of the mask after a Regular

Instruction means all processors are enabled. The presence of a mask means the

listed processors are enabled; if the mask is empty, or incomplete (see below), then

no processors are enabled.

RowjColumn masking consists of a list of rows and a list of columns, The

processors in the array which lie on the intersection of the listed rows and columns

are enabled. The rows of the processor array are numbered from top to bottom, 1

through 16 (The top row, row 1, is connected to the Read port of Memory, and the

bottom row, row 16 is connected to the Write port of Memory). See Figure 4.3.1.

The columns are numbered from left to right, 1 through 16 (col 1 consists of the

External processors).

Diagonal masking consists of a list of diagonals. The processors which lie on

the listed diagonals are enabled. The diagonals lie slanting left i.e. from northwest

to southeast. They are numbered starting with the single processor diagonal on the

top left corner of the array and ending with the single processor diagonal on the

bottom right corner of the array, 1 through 31. Diagonal 16 is the main diagonal of

the array containing processors (i, i) for i = 1,2, . . . ,16. See Figure 4.3.1.

Masks can be either row/column OR diagonal, not both. Bit 43, SEL D / K

determines the type of mask.

Masking

Mnemonic Code: (R1ist:Clist:Dlist)

Machine Code:

In a machine instruction, bits 0-15 contain the Row Mask (bit

0 = Row 1,. . . , bit 15 = Row 16) or the low order Diagonal Mask

(bit 0 = Diag 1,. . . , bit 15 = Diag 16) , bits 16-31 contain t.he

Column Mask (bit 16 = Col 1,. . . , Bit 31 = CoI 16) or the high

order Diagonal Mask (bit 16 = Diag 17,. . . , bit 30 = Diag 91, and

bit 31 is unused), and bit 43 is the SEL D / u bit.

For a Row/Column mask: bit 43 = 0

For a Diagonal mask: bit 43 = 1

For the mask fields (bits 0-15 and 16-31) a 0 enables and a 1

disables. See Examples below.

Comments:

A mask consists of three fields within parentheses, the Row field, the

Column field and the Diagonal field. For a given mask, either both the

Row and Column fields may have values and the Diagonal field is empty,

or only the Diagonal field may have values, and the other fields are empty.

The Diagonal field has priority, meaning that if the Diagonal field has values

and one or both of the other two also have values, then the Diagonal values

become the mask and the other two are ignored. If the Diagonal field is

empty and one of the Row and Column fields are empty (an incomplete

mask), then the mask is still generated but the result is that no processors

will be enabled since no processors lie on an intersection. If all three fields

are empty, a mask is still generated, no processors are enabled.

The values within each field are a list of numbers and ranges of

numbers between 1 and 31. Element in the list are separated by

comma. An element can be a number or a range. A range is of the

form n-m, where n is the first value in the range and m is the last.

The list may be in any order (increasing, decreasing, mixed).

Examples:

A row/column mask enabling the top and bottom rows.

Translates to: bit 43 = 0

Column (msb,. . . Jsb) Row (msb,. . . ,lsb)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

A row/column mask enabling 4 rectangular regions of pro-

cessors. In the array below, o and b mean enabled and x means

disabled. It is impossible with this masking technique to simul-

taneously enable regions that don't share all rows and columns

specified; i.e. it is impossible to ONLY enable the processors below

labeled o without also enabling those labeled o.

Translates to: bit 43 = 0

Column (msb,. . . ,lsb) Row (msb,. . . ,lsb)

1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0

o x x x x o o o l 3 o o o x x x x
o x x x x o o ~ o o o ~ x x x x
o x x x x o o o o o o o x x x x
o x x x x o o o o o o o x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
o x x x x o 0 0 0 0 o o x x x x
o x x x x 0 o o o o o 0 x x x x
l 3 2 5 x x 0 0 0 0 0 0 0 x x x 2
o x x x x 0 0 0 0 0 0 0 x x x x

' ~ x x x x 0 0 0 0 0 0 0 x x x x
o x x x x o 0 o 0 o o o x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x

A diagonal mask enabling the 5 diagonals around the main

diagonal. In the array below, o means enabled and x means dis-

abled.

o o o x x x x x x x x x x x x x
0 o o 0 x x x x x x x x x x x x
o o o o o x x x x x x x x x x x
x 0 o o o o x x x x x x x x x x
x x o o o 0 o x x x x x x x x x
x x x 0 o o o o x x x x x x x x
x x x x o o o 0 o x x x x x x x
x x x x x o o o o o x x x x x x
x x x x x x o o 0 o o x x x x x
x x x x x x x o 0 o o o x x x x
x x x x x x x x 0 0 o o o x x x
x x x x x x x x x o 0 0 o o x x
x x x x x x x x x x 0 0 0 o 0 x
x x x x x x x x x x x o o o o o
x x x x x x x x x x x x 0 o o 0
x x x x x x x x x x x * x x O o O

Translates to: bit 43 = 1

Column (msb,. . . ,lsb) Row (msb,. . . Jsb)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

4 (:1,5-8,13:)

A row/column mask enabling NO processors.

Translates to: bit 43 = 0

Column (msb,. . . Jsb) Row (msb,. . . ,lsb)

1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 0 1111111111111111

NOTE:

A single mask applies for both External and Internal Processors

in a given instruction.

For a Row/Column mask, the number of distinct enabled regions

of processors is equal to the number of distinct regions enumerated

in the Row Field TIMES the number of distinct regions enumerated

in the Column Field. See Example 2 above-2 Row regions x 2

Column regions = 4 regions enabled.

Masks ONLY effect the Source-Destination parts of the instruc-

tion. 110 is not affected by the mask, neither is the system control

field. This means that 1 / 0 is executed by every processor specified

by the instruction (if 110 is in the External field, ALL External

processors send and receive from and to the specified ports. If

I/O is in the Internal Field, the ALL Internal processors send and

receive from and to the specified ports. This is one reason why

the ports were made transparent to the user. Similarly, the Multi-

ply and Divide clocks are activate the Multipliers and Dividers in

ALL processors (this time NO differentiation between Internal and

External, since both use the same clocks). Since the start of the

clock changes the value of the output registers of the corresponding

functional units, ALL outputs of ALL the Multipliers (Dividers),

Internal AND External, are affected when the Multiply (Divide)

clock is started, regardless of the mask.

4.4 Special Instructions

Special Instructions are those which only effect the System Field of the

machine instruction. The Assembler also uses information contained in them to

generate the program FIFO, and the two memory address FIFOs. Since the System

Field is not affected by the,mask, these instructions are not masked. As currently

implemented, Special Instructions, except for STOP, modify the System Field of

the previous instruction thus they may not be preceded by a label.

Co-processor Execution Control

Mnemonic Code: STOP

Operands:

none

Sets bit 96 STOP equal to 0.

Comments:

Generates a NOP instruction with the STOP bit set to 0. Dur-

ing execution, the co-processor is placed into HALT mode in the

current cycle. The co-processor can be put back into RUN mode

only by the HOST.

NOTE:

Be sure to store any necessary results of arithmetic operations

before generating the STOP instruction since the dynamic regis-

ters decay.

Program Flow Control

Mnemonic Code: LOOP N LABEL

Operands:

N The number of times to jump back to the instruction labeled LA-

BEL.

LABEL The label name given to the first instruction of the loop (must be a

regular instruction in the current implementation of the Assembler

(May 1988)). See Section 3.2.3 for how to define a label. The

program address associated with LABEL must be less than the

current program address.

Sets bit 99 LOAD P C equal to 0.

Comments:

The LOAD P C bit of the previous instruction is set to 0 and

the address associated with LABEL is entered N times into the

Program FIFO followed by the program address of the next reg-

ular instruction. When executing, the loop gets executed once,

then during the last cycle of the loop, the PC gets loaded from the

Program FIFO with LABEL instead of being incremented. This

occurs N times, after the N +lst traversal of the loop code, the

PC gets loaded with the address of the next instruction and the

program continues.

Example:
SORT(A1,Bl) ;

LABEL1: GETW(HIGHA,B2) ;
SORT(HIGHA,BZ) ;
LOOP 14 LAB1 .

LABEL2: MOV(HIGHA,ABO:);

The program segment above should store in each processors ABO

register the maximum of the values in registers A1 and B1 of all

processors in its own row. During Assembly time, the address

LABEL1 gets stored on the program FIFO 14 times followed by

the address LABEL2. The instructions GETW and the 2nd SORT

will be executed a total of 15 times.

NOTE:

There is NO comma between N and LABEL.

The instructions within the loop are executed N +1 times.

In the current implementation of the Assembler (May 1988),

there should be only Regular instructions within the loop, i.e.

no READQs or WRITEQs nor other LOOPS inside a loop. Future

versions of the Assembler should be able to handle single nested

loops as well as READQs and WRITEQs within the loop.

If READQs or WRITEQs are place after a LOOP with no Reg-

ular instruction in between, then it is as if they were placed within

the loop. The corresponding FIFOs will be popped N times. This

is incorrect programming since only a single value would have been

placed onto the FIFO. But, should the user want to execute the loop

on N +1 different data queues (one for each iteration of the loop)

then the user can precede 'the loop (in the instruction before the

LABEL) by a READQ and/or WRITEQ, AND follow the LOOP

instruction immediately by N READQs and/or N WRITEQs. This

technique is only valid for the current version of the Assembler

(May 1988) and may not work in future versions.

Memory Access Control

Mnemonic Code: READQ Qname

WRITEQ Qname

Operands:

Qname The name of the data queue which was defined at the beginning of

the program file. See Section 3.2.1 for details.

READQ: Sets bit 103 LD READ ADDR equal to 0.

WRITEQ: Sets bit 101 LD WRITE ADDR equal to 0.

Comments:

The READQ instruction tells the assembler to set the

LD READ ADDR bit to 0, and to enter the value of the previ-

ously defined Qname onto the Read Data Address FIFO.

The WRITEQ instruction tells the assembler to set the

LD WRITE ADDR bit to 0, and to enter the value of the pre-

viously defined Qnarne onto the Write Data Address FIFO.

This sets up the corresponding memory port to point to the

start of the next data queue the user wants to access. The Qname

is defined at the beginning of the user program file. The same data

queue may be used for either reading or writing or both (but not

simultaneously although this is not checked in the assembler).

NOTE:

In the current implementation of the Assembler (May 1988),

READQs and WRITEQs are not permitted inside a loop. Future

versions of the Assembler should be able to handle READQs and

WRITEQs within the loop.

If READQs or WRITEQs .are place after a LOOP instruction

with no Regular instruction in between, then it is as if they were

89

placed within the loop. The corresponding FIFOs will be popped

N times. This is incorrect programming since only a single value

would have been placed onto the FIFO. But, should the user want

to execute the loop on N +l different data queues (one for each

iteration of the loop) then the user can precede the loop (in the

instruction before the LABEL) by a READQ and/or WRITEQ,

AND follow the LOOP instruction immediately by N READQs

and/or N WRITEQs. This technique is only valid for the current

version of the Assembler (May 1988) and may not work in future

versions.

Chapter 5

Programming Limitations due to Hardware

There are many limitation the user must keep in mind while programming

the Systolic/Cellular System. These limitations fall into three categories, the first

category consists of those limitations due to system design and hardware. The

user must accept these limitations since they are an integral part of the current

version of the system. The second category is Assembly Language dependent. These

limitations were imposed as a compromise between maximizing the flexibility of the

user to program using as many levels of parallelism as possible while minimizing

the complexity of writing the programs. Should a user want absblute maximum

performance, the user should program directly in machine code, or try to optimize

the assembled code. The third category consist of those limitations imposed by the

Assembler in its current state (May 1988). These limitations should be eliminated

in future versions of the Assembler. The latter two categories have been covered in

previous chapters.

5.1 Architecture

The general architectural design of the Systolic/Cellular System allows for

very limited applications. Some of these limiting features are the unidirectional

memory access, and the division of processors into asymmetric sets, namely one

column and 15 columns. Most conceptual systolic designs I have seen have data

input from two sides of the processor array. By not having this feature, the Sys-

tolic/Cellular System will require much more time loading and positioning data.

5.2 Control

There are many features of the control mechanisms which place restrictions

on the programmer. One of these is the fact that a disabled processor is not totally

disabled. By disabling a processor, the user can only be assured that the 24 Static

Local Memory Registers will remain unchanged. Side effects of the 1 /0 execution

and Clock inputs make the 1/0 port and the Multiplier and Divider output registers

less than lOOare valid, since another operation, even from a different processor can

effect their values.

Another problem is due to the deterministic characteristic of machine exe-

cution. There is no data-dependent control at all, thus for example, there is no way

to determine if a divisor is equal to 0 nor a way to stop execution of division in a

given processor whose divisor is equal to 0, if the value is not known at coding time

and the processor masked disabled.

5.3 Processor Design and Hardware

Communication between Processors is limited due to packaging constraints.

The Processor chip has 100 pins thus it can support 2 32 bit ports or 4 16 bit

ports. Due to this, 1 /0 between nearest neighbors requires two cycles to execute.

Furthermore, the 110 code for data flow in a single direction is not unique, the

same code moves data from North to South as from East to West, and the same

code moves data from South to North as from West to East. This feature makes it

difficult for the programmer to use the 110 ports for storage since the values can

change due to side effects of another instruction.

Within the processor there are two busses, but only 8 of the internal reg-

isters have access to both busses. This imposes local data management on the

programmer.

Almost all the functional unit outputs can be accessed independently, ex-

92

cept for the Shifter output. This unit always outputs it A output register simul-

taneously with its B output register, tying up both busses. The result is that a

single output from the Shifter may not be used as input to another functional unit

directly. However, there is a positive side effect of this. If another register happens

to be placed on the BUS at the same time as the Shifter outputs, the result is a

bitwise AND of the values on BUS A.

The the functional units are designed for a fixed point data value whose

magnitude is less than two. This greatly limits the applications by requiring the

user to limit the vaIues of the data.

5.4 Version I1 of the Systolic/Cellular System

If the prototype of the Systolic/Cellular System (version I) proves to be suc-

cessful, a new and improved version will be developped. From the above discussion

we can suggest some areas for improvement. These would be:

Functional units that can handle floating point arithmetic, instead of

2-30's complement.

Faster Memory access to keep up with I/O.

Independent I/ 0 ports to simplify communications.

Masked fast clocks, so that the old results in disabled processors do not

get erased when enabled processors execute multiplication or division.

A more sophisticated program control to enable some level of data de-

pendent execution. Perhaps make the PE intelligent enough to be able to

set clear its own enable bit for the next instruction. This might be done by

having a comparison to some value or threshold and based on the result,

set or clear an internal enable bit. If a control bit from the Controller

says to use local control, then that enable bit gets ORed with the mask

bits from the Controller. If the control bit says use only global control,

then the local enable bit is ignored. This type of construct would be useful

to prevent division by zero and other illegal operations (such as those that

might cause and overflow etc.).

Independent access for the SHIFTA and SHIFTB output registers so that

functionally they become identical to any other output register.

Separate fast clocks for the External and Internal sets of processors. This

will enable greater parallelism and less dependence between the two instruc-

tion sequences.

The designers at Hughes have already many plans for improvements to the

Systolic/Cellular System. Many of the ideas stated above are included. The list of

changes for the next version of the System include:

Independent I/ 0

New Boundary (Internal) processor chips, different from the Internal pro-

cessor chips.

New floating point internal chips.

A new Boundary memory feeding into the array through column 1.

A new Controller.

etc.

Most of these intended improvements will answer many of the limit at ions

that have been discussed throughout this document. If implemented, they will

certainly enhance the machine by extending possible applications, simplify the As-

sembler (fewer checks to be made) and make the programmers job easier.

Chapter 6

Conclusion

This document described the programming issues relevant to the first ver-

sion of the Cross-Assembler for the Hughes Systolic/Cellular System. The Assem-

bler runs and assembles correct code. However, there are a few alterations and

enhancements that need to be implemented.

One major change that must occur in the assembly code will be in the

definition of a data queue. Currently, the user specifies the size and direction of

the queue and the Assembler generates the addresses. After much discussion it was

decided that the programmer should have more control over where the data queues

are positioned, so the new declaration will include a user specified address along

with some way to indicate queue direction, either be specification of a tail address,

or an explicit direction specification.

An enhancement to the assembly code will be to implement a nested loop

as well as to implement data queue specifications within loops (and in nested loops).

There are many fine points in programming this processor that the pro-

grammer must always keep in mind. One example is the decaying dynamic regis-

ters. Another is the extended execution times of multiplication and division. For

both cases, the user must keep track of the number of instruction cycles that have

gone by between initializing execution and accessing the results. The Assembler

should be enhanced to keep track of how many instructions ago an operation was

instigated when it sees its output register being accessed. If there is a discrepancy

between the time the data is valid and when it is accessed, then a warning should

be generated. Similarly, where there is an exception to a general rule, such as with

masking 1/0 commands, warnings should be generated if relevant (i.e. for an SIMD

mode instruction, a warning about the first cycle not being masked is irrelevant;

the same is true for the case where there is no mask specified).

In summary, there is still much work to be done to make this Assem-

bler optimal (in terms of code generated) and user friendly (in terms of debugging

tools). But with this tool, it is now possible to convert algorithms to run on the

Systolic/Cellular System into readable, and debuggable. programs.

REFERENCES

[HUG] Hughes Research Laboratories Faddeev Algorithm SLIDES

[KER78] Kernighan, Brian W., Ftitchie, Dennis M. The C Programming Language,

Prentice-Hall Software Series, 1978

[NAS84] Nash, J. G., Hansen, S. Modified Faddeev Algorithm for Matrix Mana'pula-

tion, Hughes Research Laboratories, Malibu, CA Aug. 1984

[NASa] Nash, J. G., Hansen, S. Modified Faddeev Algorithm for Concurrent Execu-

tion of Linear Algebraic Operations, Hughes Research Laboratories, Malibu,

CA Aug. 1984

[NASb] Nash, J. G., Linear Algebraic Processor, Hughes Research Laboratories,

Malibu, CA Aug. 1984

[NASc] Nash, J. G., et a1 Systolic/Cellular Processor, Hughes Research Laborato-

ries, Malibu, CA Aug. 1984

[PRZ85a] Przytula, Wojtek Inverse Jacobian Problem, Hughes Research Labora-

tories, Malibu, CA Nov. 1985

[PRZ85b] Przytula, Wojtek Assembler, Hughes Research Laboratories, Malibu, CA

Dec. 1985 DRAFT

[PRZ85c] Przytula, Wojtek Parallelism Versus Time For Inverse Jacobian, Hughes

Research Laboratories, Malibu, CA Dec. 1985

[PRZ86a] Przytula, Wojtek Assembly Code, Hughes Research Laboratories, Malibu,

CA Sept. 1986 UPDATE

[PRZ86b] Przytula, Woj tek Controller Notes , Hughes Research Laboratories, Mal-

ibu, CA Aug. 1986

[PRZ87] Przytula, Wojtek Assembler, Hughes Research Laboratories, Malibu, CA

Dec. 1987 DRAFT

[PRZ88] Przytula, Wojtek Systolic/CeElular S y s t e m of Hughes Research Labora-

tories, Hughes Research Laboratories, Malibu, CA Dec 1987, Mar 1, 1988,

Mar 28, 1988 DRAFTS

[PRZ] Przytula, Wojtek High Level Language Program for the M a i n Loop of

the Inverse-Jacobian Problem in Semi-Sequential mode, Hughes Research

Laboratories, Malibu, C A

[SHI88] Shironoshita, Roberto Systolic/Cellular Processor Simulation, Senior

Project, U. of Pennsylvania, Philadelphia, PA Apr 1988

[I Computer Science Division, Department of E.E. and C.S. Unix Pro-

grammer's Manual: Supplementary Documents University of California,

Berkeley, CA Mar 1984

	The Systolic/Cellular System Assembler: User's Guide
	Recommended Citation

	The Systolic/Cellular System Assembler: User's Guide
	Abstract
	Comments

	tmp.1195155463.pdf.B05Aa

