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Abstract 
As components are getting cheaper and smaller, computer systems are getting 

larger (in number of components) and more complex. In the new age of parallel 
computing comes entirely new domains of problems to solve. There are two ways to 
parallelize a problem. One is to restructure a known algorithm so that independent 
parts run in parallel. The other method is to restructure the problem so that 
it fits well onto parallel architectures. The Systolic/Cellular System is an array 
of processors which run in parallel. Its architecture was designed to implement 
a particular algorithm for matrix manipulation very well. This algorithm, called 
the Faddeev Algorithm, is well suited to solve a wide variety of operations such as 
matrix inverse, matrix multiplication, and matrix addition. It can also be used to 
calculate more complex problems such as the least squares problem and the inverse 
Jacobian. To efficiently implement this and other algorithms, it is necessary to 
program as close as possible to the architecture. The obvious way to do this is 
in machine code, but machine code is hard to read, tedious to write, and almost 
impossible to debug. The next step is to write an Assembler, and give mnemonics 
to the various operations, and making the system easier to program. This was the 
goal of my project. In this document you will find a user's manual for an Assembler 
for the Systolic/Cellular System. In it, I have described the architecture, issues 
involved in programming this machine, the input requirements of the Assembler, 
and a bricf discussion on the architecture and how it can be improved to make it 
an easier machine to program. 
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Chapter 1 

Introduction 

The prototype of the Systolic/Cellular System is being developed at Hughes 

Research Laboratories in Malibu California. It consists of the Systolic/Cellular 

Co-processor, which is a programmable multiprocessor computer, connected to a 

general purpose computer which will serve as the HOST. The Co-processor was 

designed for digital signal processing and image processing applications [PRZ88], 

but it will be used in the field of robotics to compute the Inverse Jacobian Matrix 

necessary for computing joint coordinates for an experimental robot arm at the 

University of Pennsylvania. 

The Systolic/Cellular Co-processor can be programmed either directly in 

machine code, or by using the Systolic/Cellular System Assembly language de- 

scribed in this document. The SCS Cross-Assembler can be run on any UNIX1 

compatible system then downloaded from the HOST to the Co-processor while the 

Co-processor is in a HALT state. 

Chapter two gives a general description of the machine's architecture in 

order to give the programmer enough of a background to program the system. It 

describes the system architecture down to the processing element's architecture. 

Chapter three discusses how to program the system, describing the assembly code 

file format, the Assembler directives, and the output file format. Chapter four 

gives a detailed description of the opcodes, their functions and their machine code 

UNIX is a trademark of Bell Laboratories. 



equivalents. Chapter five talks about the architecture i:l general and how the current 

architecture could be improved to simplify the programming task. Finally there is 

the conclusion which discusses the general areas where the Assembler could use 

some improvement. 

The purpose of this document is to serve mainly as a reference manual for 

programmers of the Systolic/Cellular System. Therefore, the reader will find some 

issues are repeated quite frequently, especially those issues regarding the side effects 

and limitations of the operations. This is so the user can look up an item and know 

that all the relevant information about the operation is supplied locally. 



Chapter 2 
The Co-processor Description 

This chapter gives a brief overview of the system architecture to give the 

user sufficient background in order to program it. For greater detail, please refer to 

[PRZ88]. The references for this chapter are [PRZ88] and [SHI88]. Some sentences 

are copied directly from [PRZ88]. 

The Co-processor consists of three major parts, the Processor Array, the 

Array Memory (also called Data Memory), and the Controller. See Figure 2.0.1. 

The HOST can access the Controller to load the FIFOs and the program memory, 

to read the status register, and to start and stop the Co-processor. The HOST 

can access the WRITE port of the Array Memory to load and unload data. All 

loading and unloading by the HOST must be executed when the Co-processor is in 

the HALT state. The HOST has no direct access to the Processor Array at all. 

2.1 The Processor Array 

The Processor Array is a 16 x 16 array of identical custom processors2 

connected as a mesh (nearest neighbor connections) with horizontal wrap-around. 

See Figure 2.1.1. The processors are labeled by rows and columns; the top row 

is row 1 and the leftmost column is column 0. The PEs in row 1 and row 16 are 

connected to Da ta  Memory (or the Array Memory). Row 1 has read only 

memory access via the READ port  and row 16 has write only memory access via 

sometimes referred to in this document as processing e l emen t s  or PEs 

3 
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FIGURE 2.0.1 Systolic/Cellular System Diagram 

the WRITE port. General data flow from memory through the Array and back 

to memory is in a North to South direction, however within the Array itself, data 

can flow northward, southward, eastward or westward. 

The Array is controlled exclusively by the Controller. Each processor 

receives its instructions, enableldisable information, and the system, multiplier, 

and divider clocks from the Controller. Ther.e is no control logic in the processing 

element. 
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FIGURE 2.1.1 T h e  Processor Array 

The Array is divided into two sets of processors, External and Internal. 

The External processors3 are those in column 1 of the Processor Array shown 

in the shaded area of Figure 2.1.1. The PEs in columns 2-16 are the Internal 

processors. Each set of processors receives different operation codes (opcodes) from 

the Controller. These codes are found in different fields of the program instruction 

enabling two sequences of instructions to run in parallel on the Array. These 

sequences may be the same or different, but they are not independent. Both are 

bound by the same system instructions, such as program flow, memory access and 

masking. Masking enables the user to choose which processors will be enabled for 

Sometimes referred to as Boundary processors in other documentation. 



any given instruction, but not all effects of the program instruction can be disabled. 

Masking is described in Sections 3.1.2 and 4.3 . 

2.2 The Data Memory 

The Data Memory has two ports, the WRITE (or TOP) port which 

is accessed by the HOST and row 16 of the Processor Array, and the READ 

(or BOTTOM) port which is accessed only by row 1 of the Processor Array. 

The HOST can access Data Memory to load and unload data only when the Co- 

processor is in HALT mode. The Array can access Data Memory only when the 

Co-processor is in RUN mode. Associated with each port is an Address Counter 

and an Address FIFO. Each Address FIFO can hold up to 512 addresses. 

The Data Memory stores data in rows of 16 32-bit words and holds up 

to 2048 rows of data. The system is designed for structured data programming. 

The basic data structure is a queue of data rows. A queue is chosen by loading the 

address of the head of the queue from the port's FIFO to its corresponding Address 

Counter. The data is then accessed sequentially; the Address Counter automatically 

increments or decrements the address depending on whether the queue is ascending 

or descending. Another allowable data structure is a single row which is accessed 

repeatedly. The type of data structure, ascending or descending queue or single 

row is encoded in the two most significant bits of the address stored in the FIFO. 

The FIFOs are not overwritten during program execution, so if the program is to 

be used multiple times, the head pointers can be reset by the HOST to the first 

item in the FIFO without reloading the entire FIFO from the HOST. 

2.3 The Controller 

The Controller is in charge of running and monitoring the Co-processor. 

It receives signals from the HOST, reads selected bits from the program instruction, 

and monitors some system flags. It maintains a status register which is accessible by 



the HOST. This status registers tells the states of the FIFOs (full/empty/neither) 

and operation mode of the Co-processor (RUNIHALT). The Controller maintains 

the three global clocks, and operates the program sequencer. 

For details on the Controller's interaction with the HOST, see [WOJ88]. 

From the SYSTEM FIELD of the program instruction (See Section 3.1) 

the Controller determines whether to put the system into HALT state, to start 

one or both fast clocks, to load an address counter, or to enable memory access. 

The System Clock is an 8 MHz two-phased, nonoverlapping, asymmetric 

clock. Its cycle, the instruction cycle, is a basic unit of the overall system operation. 

The system clock is in continual operation during the power-on state of the Co- 

processor. 

Both the Multiplier Clock and the Divider Clock are two-phased, 

nonoverlapping, asymmetric clocks, each controlled by a bit in the SYSTEM field 

of the user program. The Multiplier Clock has a frequency of 22,MHz. In the 

instruction cycle following the execution of an instruction whose MULTIPLY bit 

is set, the Multiplier Clock starts, produces 17 cycles of pulses (the number nec- 

essary to perform a multiplication operation), and then stops. The Divider Clock 

has a frequency of 17 MHz. In the instruction cycle following the execution of 

an instruction whose DIVIDE bit is set, the Divider Clock starts, produces 30 

cycles of pulses (the number necessary to perform a division), and then stops. 

The program sequencer maintains the program counter (PC), loads the next 

program instruction into the instruction register, and sends the appropriate bits to 

the Program Array. The PC is always'incremented unless a new address is loaded 

from the Program FIFO. Program execution is started by the HOST loading the 

starting address from the FIFO and then setting the system into RUN mode. When 

an instruction with the STOP bit set is encountered, program execution stops and 

the Co-processor is put into HALT mode. The address of this instruction remains 



in the PC and the last instruction remains in the instruction register. 

2.4 The Processing Element 

All 256 PEs in the Array are identical. Each contains 24 static random 

access 32-bit registers of local memory, four bidirectional 1 /0  ports, and seven 

functional units; there are two busses to interconnect them all. See Figure 2.4.1. 

There is no control logic in the Processing Element. The PEs are hard-wired and 

are controlled by signals from the Controller. These signals include the System 

Clock; the Opcode-one for each phase of the System Clock cycle; the appropriate 

mask bits-determines whether the PE is enbled or not; the Multiplier Clock; and 

the Divider Clock. 

The two busses are labeled BUS A and BUS B. Of the 24 registers, eight 

are connected to only BUS A, eight only to BUS B, and the rest are connected 

to both busses. The seven functional units include two adders, two multipliers, a 

sorter, a shifter and a divider. See Figure 2.4.1. The functional units implement 

arithmetic operations which require two operands each. These operands are loaded 

simultaneously, one via BUS A and the other via BUS B. The functional units can all 

run simultaneously, but only one can be loaded at a time, therefore practically, only 

those whose execution time is longer then a single cycle can run in parallel with 

another functional unit in the same processor. For single cycle functional units, 

execution is initiated as soon as the operands are loaded. For multi-cycle functional 

units, execution is initiated when its fast clock starts. The results of the functional 

units are stored in dynamic output registers. The Sorter and the Shifter each 

have two results; one is stored in an output register connected to BUS A and the 

other is stored in an output register connected to BUS B. The Divider outputs the 

quotient to an output register connected to BUS A. The Adders output the sum 

to one bus and the ones complement of the sum to the other bus. 



FIGURE 2.4.1 Processing Element Diagram 

Some arithmetic operations, i.e. multiplication and division, may require 

the sequential use of two functional units to acquire the final result. Multiplication 

requires use of the Multiplier then the Adder, so the output registers of the Wlulti- 

pliers are connected directly to the corresponding Adders, the product (and its ones 

complement) are available from the Adder outputs. Division may require its inputs 

to be normalized before executing division, so the inputs can first be passed through 

the Shifter, before being sent to the Divider. Therefore, the outputs of the ~hif ter  



are connected directly to the Divider as well as to the busses. More details on the 

functional units may be found in Chapter 4where the opcodes of these functions 

are defined. 

The functional units operate on 32-bit, fixed-point, signed values, where 

the bit 31 (msb) is the sign bit, bit 30 is the integer bit, and bits 0-29 are the 

fractional part. The format is as follows: 

SBINT[.]  F F F F F F F F F F F F F F F F F F F F F F F F F F F F F L S B  

Where: 

SB -(msb) sign bit (0 a positive number, 1 + a negative number). 

INT -integer part of the number. 

[.I -decimal point. 

F -bits of the fractional part of the number. 

LSB -least significant bit of the fractional part of the number. 

These discrete values are 2-30's complement quantities which fall in the range -2 

to 2 - 2-30. 



Chapter 3 
Programming the Co-processor 

A program for the Systolic/Cellular System consists of four parts: the 

machine code program; the contents of the program FIFO, for program control; 

the contents of the two data memory port FIFOs, for data access control; and the 

actual data. The Assembler will generate, the first three parts automatically from 

the assembly program.4 Regular Instructions will generate machine instructions5 

and Special Instructions will generate the FIFO's and set bits in the SYSTEM 

FIELD of the machine instruction. These two types of instructions are described 

in depth in the next chapter. 

3.1 TheMachineInstruction 

The machine instruction is a 112-bit binary value divided conceptually into 

seven fields of 16 bits each. There are two Mask Fields, two fields for Internal 

processor instructions, two fields for External processor instructions, and one field 

for system control operations. The format of the machine instruction can be found 

on the next three pages. Only 99 bits are actually used, unused bits are named 

"X" . The bits are numbered from the least significant bit to the most as well as its 

position in its 16-bit field. The machine instructions are divided into subfields. For 

each Phase there is an 1 /0  part (4 bits) and a SOURCE-DESTINATION part (10 

* In future versions, the Assembler should be able to generate a data file containing initialization 
data. 

machine instructions are also called program idstructions. 



bits). When executing the instruction, only the SOURCE-DESTINATION part of 

the processor instruction is affected by the mask. 

3.1.1 Masking 

It is not necessary for every processor to execute every instruction. The pro- 

cessors are enabled by signals from the two mask fields of the machine instruction. 

There are two types of masking modes available: row/column, and diagonal. 

The two modes may not be combined in a single instruction. A single mask is valid 

for both External and Internal processors during both Phases of the clock cycle. 

Row/column masking enables the processors which lie on the intersection 

of the selected rows and columns, where a 0 means selected. The row field consists 

of bits 0-15 of the machine instruction and the column field consists of bits 16-31 

of the machine instruction. For row/column masking, bit-43 (SEL D/RC) is set 

to 0. See the first page of the machine instruction format. The rows are numbered 

1 through 16 from top to bottom and the columns are numbered 1 through 16 

from left to right, see Figure 3.1.1. Row/column masking mode allows the user 

to enable rectangular regions on the array, as many as desired with one restriction: 

ALL intersections of ALL the rows and columns selected are enabled. See Section 

4.3 example 2. 

Diagonal masking enables the processors which lie on the selected diago- 

nals of the array, where a 0 means selected. The diagonal field consists of bits 0-30 

of the machine instruction; bit 31 of the higher order mask field is not used. For 

diagonal masking, bit-43 (SEL D / u )  is set to 1. See the first page of the machine 

instruction format. The diagonals run northwest to southeast and are numbered 

1 through 30 from the northeast corner to the southwest corner, see Figure 3.1.2. 

Diagonal masking mode allows the user to enable any combination of diagonal 

bands of processors. See Section 4.3 example 3. 



Instr Field Bit Subfield Field 
Bit Bit Name 
0 0 -- R l / D l  ROW MASK 
1 1 R2/D2 MASK 
2 2 m/D3 
3 3 u/D4 
4 4 R5/D5 
5 5 R6/D6 
6 6 U/E 
7 7 wD8 
8 8 -- R9/D9 
9 9 -- R10/D10 
l o  l o  R11/D11 
11 11 R12/D12 
12 12 R13/D13 
13 13 R14/D14 
14 14 R151D15 
15 15 R16/D16 
16 0 CllD17 COLUMN 
17 1 a/U MASK 
18 2 C3/D19 
19 3 C4lD20 
2 0 4 C51D21 
2 1 5 S;li/D22 
22 6 C71D23 
23 7 C81D24 
24 8 C9/D25 
25 9 C10ID26 
26 10 Cll lD27 
27 11 C12/D28 
28 12 - C13/D29 - 
29 13 C14lD30 
30 14 C15lD31 
3 1 15 &/x 

X - stands for an unused bit. 



Instr Field Bit Sub field Field 
Bit Bit Name 
32 0 S1 OP-CODE INTERNAL 
33 1 S2 INSTRUCTION 
34 2 S3 PHASE 1 
35 3 S4 
36 4 S5 
3 7 5 Dl 
38 6 D2 
39 7 D3 
40 8 D4 
4 1 9 D5 
42 10 X 
43 11 SEL D / E  
44 12 I/O I/O CODE 

LS - 
S 1 OP-CODE INTERNAL 

D5 
X - 
X c?l 1 / 0  CODE 

INSTRUCTION 
PHASE 2 

63 15 - LS 
X - stands for an unused bit. 



Instr Field Bit Subfield Field 
Bit Bit Name 
64 0 S1 OP-CODE EXTERNAL 

(BOUNDARY) 
INSTRUCTION 
PHASE 1 

1 /0  CODE 

OP-CODE EXTERNAL 
(BOUNDARY) 
INSTRUCTION 
PHASE 2 

1 /0  CODE 

9 5 15 
X - stands for an unused bit. 



Instr Field Bit Subfield Field 
Bit Bit Name 
96 0 STOP SYSTEM 
97 1 DIVIDE OPERATION 
98 2 MULTIPLY 
99 3 LOAD PC 
100 4 WRITE 
101 5 LD WRITE ADDR 
102 6 READ 
103 7 LD READ ADDR 
104 8 X 
105 9 X 
106 10 X 
107 11 X 
108 12 X 
109 13 X 
110 14 X 
111 15 X 
X - stands for an unused bit. 



FIGURE 3.1.1 Rows and Columns of the Processor Array 

FIGURE 3.1.2 Diagonals of the Processor Array 



The masks do not effect every part of the machine instruction. Only ex- 

ecution of the SOURCE-DESTINATION codes (for both Phases in both sets of 

processors) is masked. The 110 instructions always execute in every processor in 

the set. The fast clocks, when enabled, effect every processor in both sets. See 

Sections 4.1.3 4.1.2 , and 4.1.6 on Inter-processor Communication, Division and 

Multiplication and the NOTE in section 4.3 . 

3.1.2 External and Internal Processors 

The processors in the Array are divided into two sets. The External 

processors (sometimes called Boundary processors in other documentation) consist 

of the processors in column 1; the rest are called Internal processors. The two sets 

have their own sequences of instructions, although the two sequences are not 100% 

independent, both are effected by a single mask and by the actions initiated by bits 

set in the SYSTEM field of the machine instruction. For example, if the mask is 

such that only row 1 is enabled, then the top External processor will execute the 

External instruction and the top row of Internal processors will execute the Internal 

instruction. If a fast clock is started, it affects all processors in both sets. etc. 

The instructions for each set are located in different fields of the program 

instruction and may be different or the same. For Internal Instructions, the Phase 

1 field consists of bits 32-47 and the Phase 2 field consists of bits 48-63. For 

External Instructions, the Phase 1 field consists of bits 64-79 and the Phase 2 field 

consists of bits 80-95. See pages two and three of the instruction format above. The 

Phase fields can be further subdivided into subfields, the SOURCE-DESTINATION 

opcode, bits 0-9 of the field and the 110 code, bits 12-15 of the field. The SOURCE- 

DESTINATION codes control data transfers within the processor. Bits labeled S1 

through S5 denote the source register with S1 being the least significant bit (lsb). 

Bits labeled Dl through Dg denote the destination register or functional unit with 



Dl being the lsb. The 110 code controls data transfer between processors, and 

between processors and Memory. 

3.1.3 System Operation Field 

The 8 utilized bits in the SYSTEM field control interaction between differ- 

ent parts of the Systolic/Cellular System. They consist of bits 96-103, where a 0 

means enable the operation. The LOAD bits control loading the address and pro- 

gram counters from the FIFOs; the READ and WRITE bits control memory access; 

the MULTIPLY and DIVIDE bits start the respective fast clocks, and the STOP 

bit places the Co-processor in HALT mode. See the fourth page of the instruction 

format above. 

3.2 Assembly Program File 

From the Assembly Program, the Assembler must construct the machine 

code program and the three fifos. The format of the Assembly Program is as follows: 

Data Queue Definitions (mandatory) 

Mask Definitions (optional) 

Program Body (mandatory) 

The Assembly Directive: END; (mandatory) 

Comments may appear anywhere in the file. There are two types and 

formats for comments. Comments may appear anywhere in the code (even within an 

instruction) if it lies between curly brackets "" and ""- , it may extend over more than 

one line of the file. Comments may also appear anywhere between a SEMICOLON 

(the end-of-assembly-instruction symbol) and an end-of-line character (a  jcri). The 

user should take care not to use the SEMICOLON in the middle of an assembly 

instruction. 



3.2.1 Queue Definitions 

The user must know where his data lies in memory in order to access it. 

Currently, (May 1988) the Assembler generates memory addresses from the size of 

the data queues defined. Future versions of the Assembler will require that the 

user explicitly give the memory addresses, which will allow more flexibility in data 

access as well as allowing more programs with different data to be resident in the 

processor at any given time, and shared data between programs. 

The format of queue definitions which is accepted by the current implemen- 

tation is as follows: 

DEFQUEUE QNAME SIZE 

where QNAME is a user chosen alphanumeric string (beginning with a letter, and 

where all letters are capitalized), and SIZE is a positive or negative integer # 0. 

If SIZE has magnitude of 1, it is considered a single element data structure whose 

address remains constant until the next one is loaded. If SIZE < 0 then the data 

queue is a descending queue. If SIZE > 0 then the data queue is an ascending 

queue. 

The format of the future queue definition may look as follows: 

DEFQUEUE QNAME STARTADDR ENDADDR VAL- 

LIST 

where STARTADDR and ENDADDR are actual memory addresses, STARTADDR 

points to the head of the data queue and ENDADDR to its tail. If STARTADDR = 

ENDADDR then the data structure is considered to be single element. Otherwise 

the relationship between STARTADDR and ENDADDR determine the direction of 

the queue. VALLIST will be an optional list of initialization data whose format is 

currently undetermined. This data would be loaded to Data Memory every time 

the program is loaded into the Co-processor. . 

The starting address and the type of queue is stored in a symbol table with 
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the QNAME for reference later in the vrogram, when QNAME is used in READQ 

and/or WRITE& instructions. 

3.2.2 Mask Definitions 

Due to possible frequent use of specific masks throughout a program, it was 

decided to allow a user to associate a mask with an identifier and allow the identifier 

to be used in the program body instead of the full mask -syntax. This construct 

will also simplify the task of changing a mask if necessary. The format of the mask 

definition is as follows: 

DEFMASK MNAME MASK 

where MNAME is an alphanumeric string as defined above, and MASK conforms 

to the syntax described in Section 4.3 , (RList:CList:DList). 

3.2.3 Program Body 

The program body consists of a sequence of Instructions, where each In- 

struction is followed by a SEMICOLON (;), this allows an Instruction to be spread 

out over more than one line of the file, if desired. An Instruction can have one of 

nine forms: 

1 LABEL: EXT-OPCODE INT-OPCODE THEMASIC 

2 LABEL: EXT-OPCODE INT-OPCODE 

3 EXT-OPCODE INT-OPCODE THEMASK 

4 EXT-OPCODE INT-OPCODE 

5 LABEL: OPCODE THEMASIC 

6 LABEL: OPCODE 

7 OPCODE THEMASIC 

8 OPCODE 

9 SPECIAL-INSTRUCTION 



LABEL is an alphanumeric string, and if present, must be followed by a 

colon. EXT-OPCODE and INT-OPCODE refer to the opcodes for the External 

and Internal processors respectively. THEMASK can be either a Mask Identifier as 

defined at the beginning of the user file in a DEFMASK command, or a MASK as 

described in Section 4.3.  OPCODE can be used to signal SIMD mode, i.e. when the 

External and Internal processors will execute the same instruction. Instructions 5-8 

are shorthand notation for the special case of 1 4  where EXT-OPCODE is identical 

to INT-OPCODE. The SPECIAL-INSTRUCTIONS are described in Section 4.4. 

Instructions 1 through 8 above are classified as Regular Instructions and 

instruction 9 is classified as a Special Instruction. The differences are described 

in Chapter 4. One thing to note is that the Special Instruction does not take 

either a LABEL or a Mask. 

3.3 Assembler's output file 

If assembly succeeds with no errors, then the Assembler outputs the gener- 

ated code and the Label, Queue, and Mask symbol tables which can be useful when 

running the code on the Simulator/Debugger [SHI88]. The output file format is as 

follows: 

Magic Number (16 bits) (LSB = MSB = 0078) 

Length of Program in # of Machine Instrs (16 bits) 

Program 

Length of Program-FIFO (16 bits) 

Program-FIFO 

Length of Write Address-FIFO (16 bits) 

Write Address-FIFO 

Length of Read Address-FIFO (16 bits) 

Read Address-FIFO 



Data * not implemented yet. 

Label Symbol Table 

Queue Symbol Table 

Mask Symbol Table 

The Magic Number is used as a file ID; any input file to the Loader of 

the Co-processor or to the Simulator/Debugger should begin with these two bytes 

in the correct order. Since the VAX and the SUN have different byte ordering, 

if the Magic Number is read in the reverse order, then it can be assumed that 

the file was generated from an Assembler on the other machine. The Loader and 

Simulator can check for this and swap the bytes on the relevant words if necessary. 

The third and forth bytes together give the size of the Program, in number of 

Machine Inst ructions (1 12-bit words). 

The Program format is as follows: 

Row Mask Fields (Program-Length x 16-bits) 

Col Mask Fields (Program-Lengt h x 16-bits) 

Internal Instruction f 1 Fields (Program-Length x 16-bits) 

Internal Instruction f2 Fields (Program-Length x 16-bits) 

External Instruction fl Fields (Program-Lengt h x 16-bits) 

External Instruction f2 Fields (Program-Length x 16-bits) 

System Operation Fields (Program-Length x 16-bits) 

Each FIFO is listed in Head to Tail order. 

Each Table is of the form: 

Hash-value (8 bits) 

Item-List 

MARK (8 bit value i largest hash value) 

Each item in an Item List contains an eight-bit string length, a string and 

the value attributed to that string. For the Label and Queue Address Tables, the 



value consists of a 16-bit address. For the Mask Table, the value consists of a 

character depicting Mask type (8 bits), the Low Order (Row) Mask (16 bits) and 

then the High Order (Column) Mask (16 bits). Every Item List is followed by 

a MARK which is a number greater than the highest hash value. Each Table is 

followed by another MARK. 

The Loader to the Co-processor and the Simulator/Debugger will be de- 

signed to read in this format. 

3.4 Running the Assembler 

To run the Systolic/Cellular System Cross-Assembler, you issue the com- 

mand to the shell: 

xscs filel [file21 

where filel is the name of the input file and the optional file2 is the name to assign 

to the output file. If file2 is riot specified, then the output file is named scs. exe. 

Future versions of the Assembler will generate the symbol tables at the end 

of output file only if it was run with a -g switch. The current Assembler (May 1988) 

always outputs the tables. 

3.5 Programming the Systolic/Cellular SYSTEM 

When programming the Systolic/Cellular System the user needs more than 

just the Co-processor program as described above. It is necessary to use an interface 

program in the HOST.6 For a short simple program, this is simple; you need to 

download the program, FIFOs, and data and upload the results when execution is 

complete. But it is possible to run longer programs, programs greater than will fit 

in program memory and/or with FIFOs that are too long. It is also possible to 

run programs with more data than will fit in the Array Memory. To do this, the 

To date this has not been implemented. 



program must STOP in the middle and allow the HOST to load the Co-processor. 

There should be a program that will do this automatically for the user, possibly 

requiring extensions to the Assembler. However, the user should take care that if 

the program will be overwritten, that the STOP does not occur within a loop and 

that all necessary outputs of functional units are stored before halting the system. 



Chapter 4 

Assembly Code: Opcodes 

Below is a list of the assembly codes recognized by the SCS cross-assembler. 

The opcodes can be divided into 2 major categories: 

Regular instructions: those which translate into one or more lines of machine code,7 

These are listed in section 4.1. 

Special instructions: those which only affect the system control field of the pro- 

gram instruction. These are also sometimes referred to as 

Control instructions. These are listed in section 4.4. 

There are two types of registers, static and dynamic, described in section 

4.2. Source registers and operands to Arithmetic operations may be of either type. 

Destination registers on the other hand, may only be of the static type. Register 

names with their corresponding opcodes are also listed in section 4.2. 

Regular instructions may be masked so that only a specified set of the 

processors execute the operation. The mask format is described in section 4.3. 

4.1 Regular Operation Codes 

There are three types of regular instructions: arithmetic operations; inter- 

nal (to the processing element (PE)) memory storage; and communication between 

processors. 

'I Each line of machine code, a 112-bit binary value, is also called a program instruction or 
a machine instruction. See Section 3 .1 .  



An arithmetic operation is one that utilizes one of the functional uni ts  of 

a processing element. A functional unit takes 2 operands, either one via each bus, 

or both from another functional unit, and outputs to registers accessible to one 

or both busses and/or directly to another functional unit. These output registers 

are dynamic, meaning that the values stored within decay with time. The values 

stored in these dynamic registers are valid up to 5 cycles. See Section 4.2 for more 

details. There are three types of arithmetic operations: 

1. operations with no operands consisting mainly of stage 2 operations with 

input from another functional unit ; 

2. operations with 2 operands; and 

3. operations with 4 operands (input into 2 functional units). 

The other two types of operations involve data movement, inside the pro- 

cessing element and outside, and are described in the appropriate subsections below. 

There are two timing considerations; both are in terms of cycles. A cycle 

or ins truct ion  cycle refers to the time it takes for the co-processor to interpret one 

112-bit machine instruction. An ins truct ion  cycle is made up of 2 phases labeled 

fl and fZ. During each phase, a different part of the operation is executed, thus 

the code for each phase is situated in a different field of the machine instruction. 

One timing consideration is the number of machine instructions into which a given 

operation translates. This can be noted by the number of fl, f;! pairs there are in 

the code description. Each fl, fi pair (i.e. machine instruction) is separated by a 

heavy horizontal line. The other timing consideration is the time (in instruction 

cycles) it takes to complete the execution of an operation and is noted for each 

operation after the words Execution Cycles. This value is greater than or equal to 

the number of machine instructions generated. 

The codes are listed below in alphabetical order of function. 
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4.1.1 Addition 

There are two types of addition available, single addition using Adder 2, 

and double addition using both Adder 1 and Adder 2 on the same operands. The 

advantage to double addition is that both the result and its one's complement are 

accessible from both busses. 
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Multiplier 2 in the same processors must be stored in a static 

register before executing the second stage of multiplication, else 

the sum will be lost. 



Double Addition 

Mnemonic Code: ADDD (X,Y) 

Execution Cycles: 1 

Operands: 

X any source register accessible by BUS A. 

Y any source register accessible by BUS B . 

Machine Code: 

Results: available in the next cycle following the cycle in which the unit is loaded 

SUM1 A Accessible from BUS A. The sum of the values stored at registers 

X and Y. It is identical to the register named PROD2B, see section 

4.1.6 on Multiplication. 

SUM2B Accessible from BUS B. The sum of the values stored at registers 

phase 

f 2  

fl 

X and Y. It is identical to the register named PROD2B, see section 

4.1.6 on Multiplication. 

CSUMlB Accessible from BUS B. The ones complement of the sum of the 

values stored at registers X and Y. It is identical to the register 

named CPROD2A, see section 4.1.6 on Multiplication. 

CSUM2A Accessible from BUS A. The ones complement of the sum of the 

values stored at registers X and Y. It is identical to the-register 

named CPROD2A, see section 4.1.6 on Multiplication. 

Comments: 

Moves the data stored in X via BUS A and Y via BUS B to 

Adder 1 and Adder 2 whi~h  perform the addition operation si- 

multaneously in a single cycle. The sum from Adder 1 is stored in 

1/0 code 
(LS, RS, A/B, T/O') 

1111 
11 11 

destination 
(D534,- - ,Dl) 

11111  
1 1 0 1 0  

source 
(S534,. • - ,SI) 

X 
Y 



the dynamic register SUM1 A and its one's complement in the dy- 

namic register CSUMlB. The sum from Adder 2 is stored in the 

dynamic register SUM2B and its one's complement in the dynamic 

register CSUM2A. 

NOTE: 

Since the second stage of multiplication in Multiplier 1 and 

Multiplier 2 use Adder 1 and Adder 2 respectively, SUM2B, 

and CSUM2A get overwrit ten when executing a MULTS2 in the en- 

abled processors, and SUM2B, CSUM2A, SUMlA, and CSUMlB 

get overwritten when esecuting a MULTSD in the enabled proces- 

sors. Therefore, any sum generated by an ADDD during execution 

of multiplication in the same processors, must be stored in a static 

register before executing the second stage of multiplication, else 

the sum will be lost. 



4.1.2 Division 
/ 

The Divider requires its operands to be in a normalized format i.e. the 

divisor (Input from BUS A) must be in the range 1 5 X < z . ~  To ensure the 

correct format, the input data should pass through the ShifterS before being passed 

to the Divider. This can be implemented in a two-stage division; the first stage 

normalizes the divisor to its correct format, shifting the dividend simultaneously. 

The second stage loads the normalized values directly from the Shifter and performs 

the division. See DIVF and DIVS below. Alternatively, if the User knows that the 

divisor is in the correct format, then the inputs may be loaded directly to the 

Divider. See DIV below. 

Division takes a single cycle to load the data but 10 cycles total to execute. 

The result of this is that the quotient may not be accessed until the end of execution, 

but other operations may run in the interim. 

There is only a single Divider clock for both Internal and External pro- 

cessors. For division to run on both sets of processors, the dividers must be started 

simultaneously, because once the clock has started, another division may not com- 

mence until the clock is free. Once the clock has started, the value stored in the 

dynamic output register of the divider is affected, therefore the result of the old di- 

vision must be used or saved in a static register before the next division commences, 

else the value will be lost. The clock inputs to the processors are NOT masked, 

this means that once the clock starts, EVERY processor's divider output will be 

affected, internal and external, enabled and disabled. 

See Section 2.4 on data type. 

In other documentation, it is sometimes referred to as the Norrnalizer because of this func- 
tion. 



Division-Normalized Operands 

Mnemonic Code: DIV (X,Y) 

Execution Cycles: 10 

Operands: 

X any source register accessible by BUS A containing a value 

greater than or equal to 1 and less than 2. The divisor. 

Y any source register accessible by BUS B. The dividend. 

Machine Code: 

Enables the DIVIDE bit in the system field of the current instruc- 

tion by setting bit 97 to 0. 

phase 

f 2  

f 1 

Results: available in the 10 th cycle following the cycle in which the unit is loaded 

QUOTA The quotient of Y + X. Accessible from BUS A. 

Comments: 

Moves the (assumed normalized) data stored in X via BUS A 

and the data stored in Y via BUS B to the Divider and starts 

execution of division Y + X (by starting the Divider clock). After 

10 cycles, the quotient is stored in the dynamic register QUOTA. 

NOTE: 

1/0  code 
(LS, RS, Mi, I/O) 

1 1 1 1  
1111  

There is only a single Divider clock for both Internal and Ex- 

ternal processors. Thus once the clock has started, another division 

may not commence, even in a different set of processors, until the 

current one has been completed. 

The Divider clock changes the value stored in QUOTA, from 

its first pulse, therefore, the old value of QUOTA must be used or 

. destination 
(D5,D4,. . 9 1 )  

1 1 1 1 1  
1 1 1 1 0  

source 
(S5IS4,. . 3 1 )  

X 
Y 

b 



saved before the Divider clock is restarted (as well as before the 

old value -decays). 

The Divider clock is NOT masked, therefore the QUOTA reg- 

isters in EVERY processor (internal and external, enabled and dis- 

abled) is changed. 



Division-Nan-Normalized Operands: Stage 1 

Mnemonic Code: DIVF (X,Y) 

Execution Cycles: 1 

Operands: 

X any source register accessible by BUS A. The divisor. 

Y any source register accessible by BUS B. The dividend. 

Machine Code: 

Results: available in the next cycle following the cycle ih which the unit is loaded 

SHIFTA The shifted value of X, normalized to be a value greater than or 

equal to 1 and less than 2. Dynamic register accessible from BUS 

A. 

SHIFTB The shifted value of Y. Dynamic register accessible from BUS B. 

The values stored in SHIFTA and SHIFTB are also directly ac- 

cessible by the Divider. 

Comments: 

Moves the data stored in X via BUS A and the data stored in Y 

via BUS B to the Shifter and executes normalization, by shifting 

both values left until the X input falls in the range greater than 

or equal to 1 and less than 2. The shifted X value is stored in 

dynamic register SHIFTA, and the shifted Y value is stored in 

dynamic register SHIFTB. Both SHIFTA and SHIFTB are also 

connected directly to the Divider. 

NOTE: 

phase 

f 2 

f 1 

A DIVF is usually followed (within 5 cycles) by a DIVS opera- 
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destination 
( D 5 9 4 , .  - 9 1  1 

11111 
1 1 1 0 1  

I/O code 
(LS, RS, A/B, I/O) 

1111 
1111 

T 

source 
(S5,S4,. . . ,S1) 

X 
Y 



tion. Examples: 

DIVF (X,Y) 

DIVS 

or: 

DIVF (X,Y) 

NOP 

NOP 

NOP 

NOP 

DIVS 

The NOPs above may be replaced by any operations that do not 

involve the Shifter, else the values will be overwritten. 

The outputs SHIFTA and SHIFTB are not independent, a single 

access code accesses both values simultaneously. This is a hardware 

or firmware restriction. A single code accessing these registers ties 

up both busses. The limiting result of this is that when moving the 

value of one of these outputs to a static register or as input to an- 

other functional unit, there may not be any other data movement. 

For example: (let n, m = 1,2, . . . ,7) .  

The following are examples of valid operations: 

MOV(SHIFTA,An:SHIFTB,Bn) 

MOV(:SHIFTB,Bn) 

MOV(SHIFTA,ABn:) 

ADD2(SHIFTA,SHIFTB) 

DIV(SHIFTA,SHIFTB) identical operation as DIVS. 

The following are examples of invalid operations: 





Divisioli-Non-Normalized Operands: Stage 2 

Mnemonic Code: DIVS 

Execution Cycles: 10 

Operands: 

Normalized operands come directly from dynamic output registers 

of the Shifter. 

Machine Code: 

Enables the DIVIDE bit in the system field of the current instruc- 

tion by setting bit 97 to 0. 

Results: available in the 10 th cycle following the cycle in which the unit is loaded 

QUOTA The quotient of Y t X, where X and Y are the inputs to the 

Shifter in a previous SHIFT(X,Y) or DIVF(X,Y) command. Ac- 

cessible from BUS A. 

Comments: 

Moves the data, the normalized dividend and divisor, stored in 

the dynamic output register of the Shifter to the Divider and 

starts execution of division (by starting the Divider clock). After 

10 cycles, the quotient is stored in the dynamic register QUOTA. 

Example: 

DIVF (X,Y) 

DIVS 

NOP 

NOP 

NOP 

phase 

f 2  

f 1 
i 

destination 
(D534,. - ,Dl) 

11110  
11111 

110 code 
(LS, RS, A/B, I/O) 

1111  
1111 

source 
(S534,. . . 31) 

i l l 1 1  
1 1 1 1 1  



NOP 

NOP 

NOP 

NOP 

NOP 

NOP 

MOV (QUOTA,A4:) 

The NOPs above may be replaced by any operations that do not 

involve the Divider or the register QUOTA. Once the Divider 

has been loaded, the Shifter is available. 

NOTE: 

The Shift er must have been executed within 5 cycles previously 

in order for Divider to have a reliable output. 

There is only a single Divider clock for both Internal and Ex- 

ternal processors. Thus once the clock has started, another division 

may not commence, even in a different set of processors, until the 

current one has been completed. 

The Divider clock changes the value stored in QUOTA, from 

its first pulse, therefore, the old value of QUOTA must be used or 

saved before the Divider clock is restarted (as well as before the 

old value decays). 

The Divider clock is NOT masked, therefore the QUOTA reg- 

isters in EVERY processor (internal and external, enabled and dis- 

abled) is changed. 



4.1.3 Inter-Processor Comnluilication 

There are four types of inter-processor communication within the processor 

array, East to West, North to South, South to North, and West to East. Because 

of pin limitations, it is possible to physically move only 16 bits at a time between 

processors, therefore, since the data is 32 bits long, 1 /0  requires execution of two 

machine instructions. Execution is in two parts, moving data to and from the ports 

and moving data between processors. The code for the former is located in the 

source/destination parts of the fi and fi fields of the machine instruction, the latter 

is located in the 110 parts. Due to complex issues regarding the 110 ports and the 

difference in 1/0 code for communication with memory access and communication 

without memory access, it was decided that inter-processor communication should 

require use of a single instruction by the programmer. 

The user decides which processors should receive data, and those are the 

ones which are masked. GETE(S,D), for example, means each enabled processor 

will receive the value stored in its east neighbor's register S and place it in its own 

register D. Fkom start to finish this works as follows: 

1. ALL processors move the data stored in register S (via either bus)g to their 

WEST output port. 

2. Within two cycles, data is moved from the WEST port of EACH processor 

to the EAST port of its west neighbor. 

3. The enabled processors move data stored in their EAST ports to the des- 

tination register D (via either The other instructions, including com- 

munication with memory access work in the same manner (but with differ- 

ent ports). 

The side effects of this implementation is that the mask is not applied to 

The assembler determines which bus. 



the first machine instruction generated. Thus if the External instruction is Com- 

munication and the Internal is not, or vice versa, and the instruction is masked, 

then the programmer should note that the first instruction generated for the non- 

communication operation will be executed by all processors. If it translates to more 

than one machine instruction, the second, etc. instructions will be executed by only 

the enabled processors. For more details on this and other side effects, see the next 

chapter on Limitations. 



East To West Data Flow 

Mnemonic Code: GETE (S,D) 

Execution Cycles: 2 

Parameters: 

S any source register of the source processor accessible by either 

BUS A or BUS B 

D any static register of the destination processor accessible by 

either BUS A or BUS B 

Machine Code: 

S via BUS A to West port and East port to D via BUS A: 

S via BUS A to West port and East port to D via BUS B: 

phase 

f2 

f 1  
f2 

f 1  

S via BUS B to West port and East port to D via BUS A: 

phase 

f2 

fl 

f 2  
f 1 

b 

1 /0  code 
(LS, RS, A/B, T/O_) 

1 0 0 0  
0 0 1 0  
0 1 1 0  
1111 

S via BUS B to West port and East port to D via BUS B: 
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1/0 code 
(LS, RS, A/B7 I/O) 

1 0 0 0  
0 0 1 0  
0 1 1 0  
1111 

phase 

f2 

fl 

f2 

f l  

destination 
(D5,D41.. 7D1) 

1 0 0 1 0  
11111 

D 
11111 

source 
(S59S41. . , S l )  

S 
11111 
1 0 1 0 0  
11111 

destination 
(D5,D4,. . 9 1 )  

1 0 0 1 0  
11111 
11111 

D 

1/0 code 
(LS, RS, A D ,  I/O) 

1 0 0 0  
0 0 1 0  
0 1 1 0  
1111 

source 
(S534 , .  - .,SI) 

S 
11111 
1 0 1 1 0  
11111 

destination 
( D 5 9 4 , .  . . , D l )  

1 0 0 0 0  
11111 

D 
11 11 1 

source 
(S534 , .  - - 3 1 )  

11111 
S 

1 0 1 0 0  
11111 . 



Comments: 

phase 

f 2  

f l  

f 2 
f 1  

All processors move the data stored in register S (via the appro- 

priate bus) to their WEST output port. The data is passed from 

every processor WEST output port to its west neighbor's EAST 

input port. In the second cycle, the enabled processors pass the 

data in their EAST input port to register D (via the appropriate 

bus). 

NOTE: 

110 code 
(LS, RS, A/B, I/O) 

1 0 0 0  
0 0 1 0  
0 1 1 0  
1 1 1 1  

Only the second cycle instruction is generated with a mask, the 

first is generated with ALL processors ENABLED. Thus the pro- 

grammer must take care when executing I/O in one field of proces- 

sors and some other operation in the other. 

destination 
(D534,. . . I D 1 )  
1 0 0 0 0  
1 1 1 1 1  
1 1 1 1 1  
D 

source 
(s534,. - - $1) 
1 1 1 1 1  

S 
1 0 1 1 0  
1 1 1 1 1  



North To South Data Flow 

Mnemonic Code: GETN (S,D) 

Execution Cycles: 2 

Parameters: 

X any source register of the source processor accessible by either 

BUS A or BUS B 

Y any static register of the destination processor accessible by 

either BUS A or BUS B 

Machine Code: 

S via BUS A to South port and North port to D via BUS A: 

S via BUS A to South port and North port to D via BUS B: 

. 

phase 

f 2 
f  1 
f  2 
f 1 

S via BUS B to South port and North port to D via BUS A: 

phase 

f2 
f 1 
f 2  

f  1 - 

110 code 
(LS, RS, a, I/O) 

1 0 0 0  
0 0 1 0  
0 1 1 0  
1111  

S via BUS B to South port and North port to D via BUS B: 

45 

I/O code 
(LS, RS, A l B ,  I I O )  

1 0 0 0  
0 0 1 0  
0 1 1 0  
1111 

phase 

f2 
f 1 

f2 
f 1 

destination 
(Ds,D4,.  . . , D l )  

1 0 0 0 0  
11111  

D 
11111  

source 
(S534 , .  . - $1) 

S 
11111  
1 0 1 1 0  
1 1 1 1 1  

destination 
(DslD4,.  . , D l )  

1 0 0 0 0  
11111  
11111  
D 

I/O code 
US, RS, A/B, I/O) 

1 0 0 0  
0 0 1 0  
0 1 1 0  
1111  

source 
(S5,S4,- .  . 3 1 )  

S 
11111  
1 0 1 0 0  
11111  

destination 
( D 5 9 4 , .  . . 3 1 )  

1 0 0 1 0  
11111  

D 
11111  

L 

source 
(S57S41. . $1) 

11111 
S 

1 0 1 1 0  
1 1 1 1 1  



Comments: 

1 phase 

All processors move the data stored in register S (via the ap- 

propriate bus) to their SOUTH output port. The data is passed 

from every processor's SOUTH output port to its south neighbor's 

NORTH input port. In the second cycle, the enabled processors 

pass the data in their NORTH input port to register D (via the 

NOTE: 

I I/O code I destination 

appropriate bus). 

source 

Only the second cycle instruction is generated with a mask, the 

f is t  is generated with ALL processors ENABLED. Thus the pro- 

grammer must take care when executing 1/0 in one field of proces- 

sors and some other operation in the other. 

If the programmer executes a GETN(S,D) in conjunction with 

a memory access instruction, and the top and/or bottom proces- 

sors corresponding to the GETN(S,D) instruction are not masked 

out, then some unreliable data will be read from and/or written to 

Memory in the corresponding columns. 



South To North Data FIow 

Mnemonic Code: GETS (S,D) 

Execution Cycles: 2 

Parameters: 

X any source register of the source processor accessible by either 

BUS A or BUS B 

Y any static register of the destination processor accessible by 

either BUS A or BUS B 

Machine Code: 

S via BUS A to North port and South port to D via BUS A: 

S via BUS A to North port and South port to D via BUS B: 

phase 

f2  

f l  

f 2  

f l  

S via BUS B to North port and South port to D via BUS A: 

I/O code 
(I&, RS, G/B,  I/O) 

0  1 0  1 
0 0 1 1  
1 0 1 1  
1111  

f 2  

f l  

f2  

f 1  
1 

S via BUS B to North port and South port to D via BUS B: 
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destination 
( D ~ i D 4 7 .  . . tD1)  

1 0 1 1 0  
11111  

D 
11111  

1/0 code 
(LS, RS,  AIB,  ID 

0 1 0 1  
0 0 1 1  
1 0 1 1  
1111  

f2  

f 1  

f 2  

f 1  

source 
(S57S4, .  . . t S 1 )  

S 
11111 
1 0 0 0 0  
11111 

destination 
( D s , D 4 , .  . . , D l )  

1 0 1 1 0  
1 1 1 1 1  
11111  

D 

1/0 code 
(LA, RS, A/B, I/O) 

0 1 0 1  
0 0  11  
1 0 1 1  
1 1 1 1  

source 
( S s , S 4 , -  .. ,S1)  

S 
1 1 1 1 1  
1 0 0 1 0  
11111  

destination 
( D 5 , D 4 , . .  , D l )  

1 0 1 0 0  
11111  

D 
11111  

source 
( S s , s 4 , .  . ,S1)  

1 1 1 1 1  
S 

1 0 0 0 0  
1 1 1 1 1  . 



Comments: 

All processors move the data stored in register S (via the ap- 

propriate bus) to their NORTH output port. The data is passed 

from every processor's NORTH output port to its north neighbor's 

SOUTH input port. In the second cycle, the enabled processors 

pass the data in their SOUTH input port to register D (via the 

appropriate bus). 

phase 

f 2 

fl 
f 2  

f 1 

NOTE: 

I/O code 
(IS, RS, A / B 7  I/O) 

0 1 0 1  
0 0 1 1  
1 0 1 1  
1 1 1 1  

destination 
(D~rD41. .  . ,Dl) 
1 0 1 0 0  
1 1 1 1 1  
1 1 1 1 1  

D 

Only the second cycle instruction is generated with a mask, the 

first is generated with ALL processors ENABLED. Thus the pro- 

grammer must take care when executing 110 in one field of proces- 

sors and some other operation in the other. 

source 
(S51s4,. . 31) 
1 1 1 1 1  

S 
1 0 0 1 0  
1 1 1 1 1  . 



West To East Data Flow 

Mnemonic Code: GETW (S,D) 

Execution Cycles: 2 

Parameters: 

X any source register of the source processor accessible by either 

BUS A or BUS B 

Y any static register of the destination processor accessible by 

either BUS A or BUS B 

Machine Code: 

S via BUS A to East port and West port to D via BUS A: 

S via BUS A to East port and West port to D via BUS B: 

phase 

f 2  
fl  

f2  

f 1 

S via BUS B to East port and West port to D via BUS A: 

destination 
( D s , D ~ ~ -  . - , D l )  

1 0 1 0 0  
11  11 1 

D 
11111 

110 code 
(LS, RS, A/B, I/O) 

0 1 0 1  
0 0 1 1  
1 0 1 1  
11  11 

phase 

f 2  

f 1 
f 2  

f 1 

S via BUS B to East port and West port to D via BUS B: 
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source 
( S 5 3 4 , .  . - 3 1 )  

S 
11111 
1 0 0 1 0  
11111 

I/O code 
(LS, RS, A/B, T/O) 

0 1 0 1  
0 0 1 1  
1 0 1 1  
11  11 

phase 

f 2  
f 1 
f 2  
f 1  

b 

destination 
( D s , D 4 , .  . . , D l )  

1 0 1 0 0  
11111  
1 1 1 1 1  

D 

I/O code 
(LS, RS, m, m 

0 1 0 1  
0 0 1 1  
1 0 1 1  
1111  

source 
t S 5 3 4 , .  . , S 1 )  

S 
11111  
1 0 0 0 0  
1 1 1 1 1  

destination 
( D 5 3 4 , .  . . , D l )  

1 0 1 1 0  
1 1 1 1 1  

D 
1 1 1 1 1  

source 
( S 5 3 4 , .  - 3 1 )  

11111  
S 

1 0 0 1 0  
1 1 1 1 1  



Comments: 

phase 

f 2 

fl 
f 2 

f 1 

All processors move the data stored in register S (via the appro- 

priate bus) to their EAST output port. The data is passed from 

every processor's EAST output port to its east neighbor's WEST 

input port. In the second cycle, the enabled processors pass the 

data in their WEST input port to register D (via the appropriate 

bus). 

NOTE: 

1/0 code 
(LS, IS, 4/B, I/O) 

0 1 0 1  
0 0 1 1  
1 0 1 1  
1111 

Only the second cycle instruction is generated with a mask, the 

first is generated with ALL processors ENABLED. Thus the pro- 

graxnmer must take care when executing I/O in one field of proces- 

sors and some other operation in the other. 

destination 
(D5,D41. . . , D l )  

1 0 1 1 0  
1 1 1 1 1  
1 1 1 1 1  

D 

source 
( s5 , s4 , .  . $1) 

1 1 1 1 1  
S 

1 0 0 0 0  
1 1 1 1 1  - 



4.1.4 Inter-Processor Communication: With Memory Access 

The only link between the Processor Array and the "outside world," namely 

the Host, is through Data Memory. The Processor Array is connected via two ports 

to the Data Memory. The Read Port connects to the top row of the Array and 

its sole function is to transfer data from Memory to the Array. The Write Port 

connects to the bottom row of the Array and its sole function is to transfer data 

from the Array to Memory. Either or both these operations occur in conjunction 

with North to South data flow within the Array. See section 4.1.3. Since Memory 

access takes 3 cycles to execute, the 1/0 codes for North to South data flow has 

been stretched out to fill 3 cycles. 

There are three possible instructions, Communication with a Read, Com- 

munication with a Write, and Communication with both Read and Write. The 

three differ only in which System Operation bits get set. 



North To South Data Flow With Memory Access 

Mnemonic Codes: 

GETNRD (S,D) 

GETNWT (S,D) 

GETNRDWT (S,D) 

Execution Cycles: 3 

Parameters: 

X any source register of the source processor accessible by either 

BUS A or BUS B 

Y any static register of the destination processor accessible by 

either BUS A or BUS B 

Machine Code: 

S via BUS A to South port and North port to D via BUS A: 

S via BUS A to South port and North port to D via BUS B: 

phase 

f 2  

f 1 

f 2 

f 1 
f 2  

f 1 

S via BUS B to South port and North port to 'D via BUS A: 

I/O code 
u, RS, A/B, I/O) 

1 0 0 0  
0 1 0 0  
1111  
1 0 1 0  
0 1 1 0  
11  11  

phase 

f 2  

f l  

f 2  

f l  

f 2  

f 1 

destination 
(D5,D4,. . , D l )  

1 0  0  0  0  
11111 
11111 
11111  

D 
11111 

110 code 
(LS, RS, A/B, T/O) 

1 0 0 0  
0 1 0 0  
1 1 1 1  
1 0  1 0  
0 1 1 0  
1 1 1 1  

source 
(S57S4,. . . ,S1) 

S 
11111  
11111  
11111  
1 0 1 1 0  
11111 

destination 
(D534,. . . , D l )  

1 0 0 0 0  
1 1 1 1 1  
11111  
1 1 1 1 1  
11111  

D 

source 
( s ~ ~ S 4 , -  • $1) 

S 
11111  
1 1 1 1 1  
11111  
1 0 1 0 0  
11111  



S via BUS B to South port and North port to D via BUS B: 

phase 

f 2  

f 1 
f 2  

f 1 
f 2  

f l  

GETNRD Enables the READ bit in the System field of the above three 

instructions by setting bit 102 to 0. 

GETNWT Enables the WRITE bit in the System field of the above three 

instructions by setting bit 100 to 0. 

GETNRD Enables the READ and WRITE bits in the System field of the 

above three instructions by setting bits 100 and 102 to 0. 

Comments: 

1 /0  code 
(LS, RS, A/B, I/O) 

1 0 0 0  
0 1 0 0  
1111 
1 0 1 0  
0 1 1 0  
1111  

All processors move the data stored in register S (via the appro- 

priate bus) to their SOUTH output port. If the READ bit is set 

(= 0), data is transferred from the location in Memory pointed to 

by the Read Address Counter, to the NORTH input port of all the 

processors in the top row of the array. Data is passed from every 

processor's SOUTH output port to its south neighbor's NORTH in- 

put port. If the WRITE bit .is set (= 0), data is transferred from 

phase 

f 2  

f 1  
f 2  

f l  

f 2  

f l  

the SOUTH output port of all the processors in the bottom row of 
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destination 
(D5,D4,. . . , D l )  

1 0 0 1 0  
11111  
11111 
11111 

D 
11111 

source 
( S 5 3 4 , .  . . 31) 

11111  
S 

11111  
1 1 1 1 1  
1 0 1 0 0  
1 1 1 1 1  . 

1/0  code 
(LS, RS, A/B, T/O) 

1 0 0 0  
0 1 0 0  
1111 
1 0 1 0  
0 1 1 0  
11  11  

source 
(S534 , .  . . ,s1) 

11111 

S -. 
11111  
11111  
1 0 1 1 0  
11111  

destination 
(D51D4,. . ,Dl) 

1 0 0 1 0  
11111  
11111  
11111  
11111  

D 

I 



the array to Memory at the location pointed to by the Write Ad- 

dress Counter. In the third cycle, the enabled processors pass the 

data in their NORTH input port to register D (via the appropriate 

bus). 

NOTE: 

Only the third cycle instruction is generated with a mask, the 

first two are generated with ALL processors ENABLED. Thus the 

programmer must take care when executing 1/0  in one field of 

processors and some other operation in the other. 

If the programmer executes a GETN(S,D) in conjunction with 

a memory access instruction, and the top and/or bottom proces- 

sors corresponding to the GETN(S,D) instruction are not masked 

out, then some unreliable data will be read from and/or written to 

Memory in the corresponding columns. 



4.1.5 Local Memory Storage/Retrieval 

Moving Data Between Registers 

Mnemonic Code: 

MOV(X,W:Y ,Z) 

MOV(:Y,Z) 

MOV(X,W:) 

Execution Cycles: 1 

Operands: 

X any source register accessible by BUS A 

W any static register accessible by BUS A 

Y any source register accessible by BUS B 

Z any static register accessible by BUS B 

Machine Code: 

Results: available in the next cycle following the cycle in which the unit is loaded 

Register W contains the same data as register X. 

Register Z contains the same data as register Y. 

Comments: 

Move the contents of X via BUS A to the static register W, 

and/or move the contents of Y via BUS B to the static register Z. 

NOTE: 

phase 

f 2  

f 1 

The NULL register - may be used in both the source and des- 

tination positions. When used as a source, the contents of the 

precharged bus is transferred; this is equivalent to loading a value 

of - T 3 0 .  AS a destination, the data from the source is not latched 
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I/O code , 

(LS, RS, A/B, I/O) 
1 1 1 1  
1 1  1 1  

destination 
(Ds,Dq,- - ,Dl  

W 
z 

J 

source . 

(Ss,S4,. • . 3 1 )  

X 
Y 



anywhere. This is useful when storing the result of the Shifter 

when only one result is desired. 

MOV(:) and MOV(,-:-,-) are both valid and are equivalent to a 

NOP. 



4.1.6 Multiplication 

Multiplication is implemented in two stages. In the first stage, a Multiplier 

is loaded and the fast Multiplier Clock is started. After 6 cycles, the partial product 

and the carry values are available. The full product is the sum of these values, so the 

second stage of multiplication loads the partial product and carry into an Adder and 

performs the addition. The product (and its ones complement) are available from 

the Adder outputs, thus any previous Sum (and its compliment) are overwritten. 

Each stage must be specified in the program. This allows other operations 

(except another multiplication) to be executed in parallel with the Multiplier, even 

in the same processor as the Multiplier. This also reminds the programmer that 

the second stage takes place in a different functional unit, namely the Adder. 

There are two Multipliers, Multiplier 1 and Multiplier 2. The partial 

product and carry from Multiplier 1 are loaded directly into Adder 1,  and the 

partial product and carry from Multiplier 2 are loaded directly into Adder 2. 

There are three types of multiplication available, single multiplication using Multi- 

plier 1, single multiplication using Multiplier 2, and double multiplication of two 

sets of operands using both multipliers. For double multiplication, both multipliers 

are loaded before the Multiplier clock is started. 

There are three different mnemonics for first stage of multiplication, but 

only two for the second stage. The second stage for single multiplication in Mul- 

tiplier l is the same as for double multiplication and affects both Adders. The 

reason for this is that there is no machine code to operate Adder 1 independently 

from Adder  2. 

There is only a single Multiplier clock for both Multipliers in ALL pro- 

cessors, Internal and External. For multiplication to run in both sets of processors, 

the multipliers must be started simultaneously, because once the clock has started, 

another multiplication may not commence until the clock is free. Once the clock 



has started, the value stored in the dynamic output register of both multipliers are 

affected, therefore the result of the old multiplication must be used or saved in a 

static register before the next multiplication commences, else the value will be lost. 

The clock inputs to the processors are NOT masked, this means that once the clock 

starts, BOTH multipliers' outputs will be affected in ALL processors, internal and 

external, enabled and disabled. 



Single Multiplication in Multiplier 1: First Stage 

Mnemonic Code: MULTFl (X,Y) 

Execution Cycles: 6 

Operands: 

X any source register accessible by BUS A 

Y any source register accessible by BUS B 

machine code: 

Enables the MULTIPLY bit in the system field of the current 

instruction by setting bit 98 to 0. 

Results: available in the 6 th cycle following the cycle in which the unit is loaded. 

A partial product and a carry which are stored in dynamic 

registers accessible directly by Adder 1. The partial product 

and carry must be added in order to obtain the product. 

Comments: 

Moves the value stored in X via BUS A and the value stored in Y 

via BUS B to Multiplier 1 and starts execution of multiplication 

(by starting the Multiplier clock). After 6 cycles, the partial 

product and carry values are stored in dynamic registers connected 

directly to Adder 1. These values must be then added (See Second 

stage multiplication) to obtain the product. 

phase 

f 2  

t f 1 

NOTE: 

A MULTFl is usually followed by a MULTSD operation within 

I/O code 
(LS, RS, A/B, I/O) 

1111  
1111  

5 cycles after the results of the multiplier are ready. Examples: 

MULTFl (X,Y) 
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destination 
(D5,D4,. . . ,Dl)  

1 1 0 0 1  
11111  

source 
( S 5 3 4 , .  . . 3 1 )  

X 
Y 



NOP 

NOP 

NOP 

NOP 

NOP 

MULTSD 

or: 

MULTFl (X,Y) 

NOP 

NOP 

NOP 

NOP 

NOP 

NOP 

NOP 

NOP 

NOP 

MULTSD 

The NOPs above may be replaced by any operations that do not 

involve multiplication. 

There is only a single Multiplier clock for both Multipliers 

in all processors, Internal and External. Once the clock has been 

started, another multiplication may not commence, even a different 

Multiplier, even in a different set of processors, until the current 

execution has been completed. 

The Multiplier clock changes the values stored in the output 



registers of both Multipliers from its first pulse, therefore, the I 

I 

old values must be used (i.e. a MULTSD executed) before the 
I 

Multiplier clock is restarted (as well as before the old values I 

I 

decay ) . 1 

I 

The Multiplier clock is NOT masked, therefore the output 1 

I 

registers of Both multipliers in EVERY processor (internal and 
1 

external, enabled and disabled) are changed. 
I 



Single Multiplication in Multiplier 2: First Stage 

Mnemonic Code: MULTF2 (X,Y) 

Execution Cycles: 6 

Operands: 

X any source register accessible by BUS A 

Y any source register accessible by BUS B 

machine code: 

Enables the MULTIPLY bit in the system field of the current 

instruction by setting bit 98 to 0. 

Results: available in the 6 th cycle following the cycle in which the unit is loaded. 

A partial product and a carry which are stored in dynamic 

registers accessible directly by Adder 2. The partial product 

and carry must be added in order to obtain the product. 

Comments: 

Moves the value stored in X via BUS A and the value stored in Y 

via BUS B to Multiplier 2 and starts execution of multiplication 

(by starting the Multiplier clock). After 6 cycles, the partial 

product and carry values are stored in dynamic registers connected 

directly to Adder 2. These values must be then added (See Second 

stage multiplication) to obtain the product. 

h 

NOTE: 

phase 

f2 

fl - 

A MULTF2 is usually followed by a MULTS2 operation within 

destination 
(D57D4,. . 9 1 )  

1 1 0 1 1  
1 1 1 1 1  

1/0 code 
(LS, RS, A/B, I/OI 

1 1  1 1  
1 1 1 1  

5 cycles after the results of the multiplier are ready. Examples: 

MULTF2 (X,Y) 
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source 
(SgrS4,. - . ,S1 )  

X 
Y 



NOP 

NOP 

NOP 

NOP 

NOP 

MULTS2 

or: 

MULTF2 (X,Y) 

NOP 

NOP 

NOP 

NOP 

NOP 

NOP 

NOP 

NOP 

NOP 

MULTS2 

The NOPs above may be replaced by any operations that do not 

involve multiplication. 

There is only a single Multiplier clock for both Multipliers 

in all processors, Internal and External. Once the clock has been 

started, another multiplication may not commence, even a different 

Multiplier, even in a different set of processors, until the current 

execution has been completed. 

The Multiplier clock changes the values stored in the output 



registers of both Multipliers from its f i s t  pulse, therefore, the 

old values must be used (i.e. a MULTS2 executed) before the 

Multiplier clock is restarted (as well as before the old values 

decay ) . 
The Multiplier clock is NOT masked, therefore the output 

registers of Both multipliers in EVERY processor (internal and 

external, enabled and disabled) are changed. 



Double Multiplication: First Stage 

Mnemonic Code: MULTFD (X,Y:W,Z) 

Execution Cycles: 7 

Operands: 

X any source register accessible by BUS A. Input to Multiplier 1. 

Y any source register accessible by BUS B. Input to Multiplier 1. 

W any source register accessible by BUS A. Input to Multiplier 2. 

Z any source register accessible by BUS B. Input to Multiplier 2. 

machine code: 

Enables the MULTIPLY bit in the system field of the second 

instruction generated by setting bit 98 to 0. 

Results: available in the 7 th cycle following the cycle in which the f i s t  unit is loaded. 

The partial products and the carries which are stored in dy- 

namic registers accessible directly by Adder 1 and Adder 2. The 

partial product and carry must be added in order to obtain the 

product . 
Comments: 

Moves the value stored in X via BUS A and the value stored in 

Y via BUS B to Multiplier 1 in one cycle, then moves the value 

stored in W via BUS A and the value stored in Z via BUS B to 

Multiplier 2 and starts execution of multiplication (by starting 

the Multiplier clock). After. 7 cycles from loading Multiplier 1, 

the partial product i d  carry values are stored in dynamic registers 

source 
(S534,. - . ts1) 

X 
Y 
W 
z 

phase 

f 2  

f 1 
f 2  

f 1 

1 / 0  code 
(LS, RS, A/B, I/O) 

1 1 1 1  
1 1 1 1  
1 1 1 1  
1 1 1 1  

destination 
(D5D4,. . 91) 
1 1 0 0 1  
1 1 1 1 1  
1 1 0 1 1  
1 1  1 1  1  



connected directly to Adder 1 and Adder 2 from Multiplier 1 

and Multiplier 2 respectively. These values must be then added 

(See Second stage multiplication) to obtain the product. 

NOTE: 

A MULTFD is usually followed by a MULTSD operation within 

5 cycles after the results of the multiplier are ready. Examples: 

MULTFD (X,Y) 

NOP 

NOP 

NOP 

NOP 

NOP 

MULTSD 

or: 

MULTFD (X,Y) 

NOP 

NOP 

NOP 

NOP 

NOP 

NOP 

NOP 

NOP 

NOP 

MULTSD 

The NOPs above may be replaced by any operations that do not 
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involve multiplication. 

There is only a single Multiplier clock for both Multipliers in 

all processors, Internal and External, therefore the clock is started 

after both Multipliers have been loaded. Once the clock has been 

started, another multiplication may not commence, even in a dif- 

ferent set of processors, until the current execution has been com- 

plet ed. 

The Multiplier clock changes the values stored in the output 

registers of both Multipliers from its f is t  pulse, therefore, the 

old values must be used (i.e. a MULTSD executed) before the 

Multiplier clock is restarted (as well as before the old values 

decay). 

The Multiplier clock is NOT masked, therefore the output 

registers of Both multipliers in EVERY processor (internal and 

external, enabled and disabled) are changed. 



Single Multiplication in Multiplier 2: Second Stage 

Mnemonic Code: MULTS2 

Execution Cycles: 1 

Operands: 

None 

machine code: 
- - -  

Results: available in the next cycle following the cycle in which t he unit is loaded 

PROD2B Accessible from BUS B. The sum of the values stored at registers 

X and Y. It is identical to the register named SUM2B, see section 

4.1.1 on Addition. 

CPROD2A Accessible from BUS A. The ones complement of the sum of the 

values stored at registers X and Y. It is identical to the register 

named CSUM2A, see section 4.1.1 on Addition. 

Comments: 

Move the partial product and carry, stored in the dynamic output 

registers of Multiplier 2, to Adder 2 and perform the addition 

operation. The sum from Adder 2 is stored in the dynamic reg- 

ister PROD2B and its one's complement in the dynamic register 

CPROD2A. 

Example: 

MULTF2 (X,Y) 

NOP 

NOP 

NOP 

source 
(S534, .  3 1 )  

1 1 1 1 1  
1 1 1 1 1  

phase 

f 2  

f 1 

1/0 code 
(LS, RS, A/B, I/O) 

1 1  1 1  
1 1 1 1  

destination 
(D5,D4,. . $1) 

1 1 1 0 0  
1 1 1 1 1  



NOP 

NOP 

MULTS2 

MOV (:PROD2B ,B1) 

The NOPs above may be replaced by any operations that do not 

involve Multiplier 1 or Multiplier 2. Once Adder 2 has been 

loaded (by a MULTS2 instruction), Multiplier 2 is available. 

NOTE: 

Multiplier 2 must have finished execution within 5 cycles prior 

to calling MULTS2 in order for the product to be correct. 



Single Multiplication in Multiplier 1: Second Stage 

Double Multiplication: Second Stage 

Mnemonic Code: MULTSD 

Execution Cycles: 1 

Operands: 

None 

machine code: 

Results: available in the next cycle following the cycle in which t he unit is loaded 

PRODlA Accessible from BUS A. The sum of the values stored at registers 

X and Y. It is identical to the register named SUM2B, see section 

phase 

f 2  

f 1 

4.1.1 on Addition. 

PROD2B -Accessible from BUS B. The sum of the values stored at registers 

X and Y. It is identical to the register named SUMZB, see section 

4.1.1 on Addition. 

CPRODlB Accessible from BUS B. The ones complement of the sum of the 

values stored at registers X and Y. It is identical to the register 

named CSUM2A, see section 4.1.1 on Addition. 

CPRODZA Accessible from BUS A. The ones complement of the sum of the 

values stored at registers X and Y. It is identical to the register 

named CSUM2A, see section 4.1.1 on Addition. 

Comments: 

Move the partial product and carry, stored in the dynamic out- 

put registers of Multiplier 1. and Multiplier 2, to Adder 1 and 

Adder 2 respectively and perform the addition operation simul- 
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1 /0  code 
(LS, RS, A/B, I/O) 

1111 
1111  

destination 
(Ds,D4,. . - , D l )  

1 1 0 1 0  
11111 

source 
(S534 , .  . ,S1) 

11111 
11111  



taneously in a single cycle. The sum from Adder 1 is stored in 

the dynamic register PRODlA and its one's complement in the 

dynamic register CPRODlB. The sum from Adder 2 is stored in 

the dynamic register PRODZB and its one's complement in the 

dynamic register CPROD2A. 

Examples: 

MULTF1 (X,Y) 

NOP 

NOP 

NOP 

NOP 

NOP 

MULTSD 

MOV (PRODlA,Al:) 

MULTFD (X,Y:W,Z) 

NOP 

NOP 

NOP 

NOP 

NOP 

MULTSD 

MOV (PROD lA,Al:PROD2B,Bl) 

The NOPs above may be replaced by any operations that do not 

involve Multiplier 1 or Multiplier 2. Once the Adders have been 

loaded (by a MULTSD instruction), the Multipliers are available. 



NOTE: 

Multiplier 1 or both Multiplier 1 and Multiplier 2 must 

have finished execution within 5 cycles prior to calling MULTSD 

in order for the product(s) to be correct. 

Although there is a first stage single multiplication using Mul- 

tiplier l there is no single addition instruction for Adder l, so 

the second stage must be executed in parallel with Adder 2. The 

side effect is that the output registers of Adder 2 are overwritten. 



4.1.7 No-Operation 

As in other assembly codes, there is an operation which does nothing. It 

is equivalent to "moving nothing to nowhere." It is useful to execute only internal 

processors or only external processors. It is also useful to use up cycles while waiting 

for an operation with a multi-cycle execution time to finish executing. 

No-Operation 

Mnemonic Code: NOP 

Execution Cycles: 1 

Operands: 

None 

Machine Code: 

Results: 

phase 

f 2  

fl 

None 

Comments: 

110 code 
(LS, RS, A/B, I/O) 

1 1 1 1  
1 1  1 1  

No new operation initiated in the current cycle. 

NOTE: 

destination 
(D5,D4,-. . ,Dl) 
1 1 1 1 1  
1 1 1 1 1  

3 

source 
(Ss,S4,. - , S I )  

1 1 1 1 1  
1 1 1 1 1  



4.1.8 Shifting 

Shifting 

Mnemonic Code: SHIFT  (X,Y) 

Execution Cycles: 1 

Operands: 

X any source register accessible by BUS A. 

Y any source register accessible by BUS B. 

Machine Code: 
- - 

Results: available in the next cycle following the cycle in which the unit is loaded 

SHIFTA The shifted value of X, normalized to be a value greater than or 

equal to 1 and less than 2. Dynamic register accessible from BUS 

A. 

SHIFTB The shifted value of Y. Dynamic register accessible from BUS B. 

Both values stored in SHIFTA and SHIFTB are also stored in 

dynamic registers accessible directly by the Divider. 

Comments: 

Moves the data stored in X via BUS A and the data stored in 

Y via BUS B to the Sliifter and executes an arithmetic left shift, 

by shifting both values until the X input falls in the range greater 

than or equal to 1 and less than 2. To execute n shifts left on the 

Y input, the X input should be greater than or equal to 2-" and 

less than 2-("-'). The shifted X value is stored in dynamic register 

SHIFTA as well as in a dynamic register connected to the Divider, 

and the shifted Y value is stored in dynamic register SHIFTB as 

source 
(S534r. . . 3 1 )  

X 
Y 

destination 
(D5rD4r. . rD1) 

11111 
11101 

phase 

f 2 
fl 

1/0 code 
(LS, RS. e/B, I/O) 

1111 
1111 



well as in a dynamic register connected to the Divider. 

NOTE: 

The outputs SHIFTA and SHIFTB are not independent, a single 

access code accesses both values simultaneously. This is a hardware 

or firmware restriction. A single code accessing these registers ties 

up both busses. The limiting result of this is that when moving the 

value of one of these outputs to a static register or as input to an- 

other functional unit, there may not be any other data movement. 

For example: (let n, m = 1,2,. . . ,7). 

The following are examples of valid operations: 

MOV(SHIFTA,An:SHIFTB,Bn) 

MOV(:SHIFTB,Bn) 

MOV(SHIFTA,ABn:) 

ADD2(SHIFTA,SHIFTB) 

DIV(SHIFTA,SHIFTB) identical operation as DIVS. 

The following are examples of invalid operations: 

MOV(SHIFTA,An:Bn,ABn) 

MOV(An,Am:SHIFTB,ABn) 

MULTSl(SHIFTA,SUMB2) 



4.1.9 Sorting 

Sorting or Comparing 

Mnemonic Code: SORT (X,Y) 

Execution Cycles: 1 

Operands: 

X any source register accessible by BUS A 

.Y any source register accessible by BUS B 

Machine Code: 

Results: available in the next cycle following the cycle in which the unit is loaded 

HIGHA The higher value of X and Y. Accessible from BUS A. 

LOWB The lower value of X and Y. Accessible from BUS B. 

Comments: 

Moves the data stored in X via BUS A and Y via BUS B to the 

Sorter which compares the two values. The greater (or higher) 

value is stored in the dynamic register HIGHA, and the smaller (or 

lower) value is stored in the dynamic register LOWB. 

phase 

f 2 

fl 

NOTE: 

I/O code 
(LS1 RS, A/B, LO) 

1 1 1 1  
1 1 1 1  

destination 
(Ds1D4,- .  a P i )  

1 1 1 1 1  
1 1 0 0 0  

source 
(S5rS47. - rS1) 

X 
Y 



4.1.10 Subtraction 

Subtraction can be performed by using one of the two following sequences 

of Additions. The examples are using Double Addition, but Single Addition may 

also be used for Y - X, or for the second part of X - Y. For X via BUS A and Y 

via BUS B: 
Y - X :  

ADDD(X,-) 

X - Y :  

4.2 Registers 

There are two types of registers, static and dynamic. Local memory of 

each processor consists of 24 static registers. Eight can be accessed solely via BUS 

A, eight solely via BUS B, and eight via either bus. They are called static because 

once a value is stored, it remains valid until it is over-written. The register names 

and their machine codes are listed in the table of Figure 4.2.1. Static registers may 

be used as either the source or the destination register (where Si stands for the 

i t h  bit of the source code and Di stands for the ith bit of the destination code). 

The phase information tells which phase field to put the code. Registers placed in 

phase f2 are transferred over BUS A and those placed in phase fi are transferred 

over BUS B. 

The NULL register can be used inn place of any static register. When 

used as a source, the contents of the pre-charged bus is transferred to the des- 

tination register or functional unit. This is equivalent to loading a -2-30. As a 

destination, the data placed on the bus is not latched anywhere, thus it is function- 

ally equivalent to a NOP operation on that bus. This is useful when storing the 

result of a SHIFT when only one output is wanted, but the programmer wants an 

explicit reminder that the other bus is not free (See Section 4.1.8 on Shifting). 



Table of Static Registers 

Register I Ss/Ds S4/D4 S3/D3 S2/D2 %/Dl ( Phase 
Bus A 

Bus B 
BO 0 1 0 0 0 I f 1 

* The Null register. As source, reads bus whose lines are 
pulled high. As destination, value is not latched to anything. 

FIGURE 4.2.1 Static Registers 

The outputs of the functional units are dynamic registers. They are called 

dynamic because their values decay over time. The data in a dynamic output 

register is valid for up to 5 cycles after being loaded; therefore, the programmer 

should be careful to use or store the results of an arithmetic operation within this 



time limit. 

If the co-processor is stopped (i.e. the STOP instruction is executed), when 

it is restarted, the old values in the dynamic registers are lost. The programmer 

should be careful to store any necessary results before issuing the STOP instruction. 

The names of the dynamic registers are listed in the table of Figure 4.2.2. 

Please note that the "product" register names (PROD2A, etc.) are aliases for the 

output registers of the Adders (named SUM2A, etc.). Also note the unusual case 

of the Shifter output registers; that they must be accessed simultaneously, (and 

may not be accessed individually). See Section 4.1.8 for more details. 

Table of Dynamic Output Registers 

Register I SS/DS s ~ / D ~  SQ/DQ S Z / D ~  S I / D ~  1 Phase 1 Bus 1 

Divider 
QUOTA I 1 1  1  1  0 I f? 1 A 

PRODlA 

CSUMlB 

CPRODlB 

t 
I , w -  I I 

Shift er * I 

1 1  0 1  0 
1 1  0 1  0 

SHIFTB 1 1  1  0 1  I f l  ( B 
Sorter 

HIGHA I 1 1  0 0 0 I f, I A 

I 

I 

f 2  

fl 

SHIFTA 

* Shifter outputs are accessed only as a pair 

A 
B 

1 1  0 1  0 1 f~ 

1 1  1  0 1 I f l  I A 

I " -  I I 

FIGURE 4.2.2 Dynamic Registers 

B 

LOWB 1 1  0 0 1  I f l  I B 



4.3 Masks 

Masks can be used after any Regular Instruction to enable only a subset 

of the PEs during execution of the given instruction. A single mask applies to 

both external and internal processors, which evokes certain restrictions, see the 

next chapter, on Limitations. A restriction to note is that when a Communication 

operation is masked, the first line of machine code generated does not contain that 

mask; see Section 4.1.1 and the chapter on Limitations. Masks may be predefined 

at the beginning of the file, and symbolic names used in the program. 

There are two types of masking ~ow/column masking and diagonal mask: 

ing. Masked processors are enabled. The absence of the mask after a Regular 

Instruction means all processors are enabled. The presence of a mask means the 

listed processors are enabled; if the mask is empty, or incomplete (see below), then 

no processors are enabled. 

RowjColumn masking consists of a list of rows and a list of columns, The 

processors in the array which lie on the intersection of the listed rows and columns 

are enabled. The rows of the processor array are numbered from top to bottom, 1 

through 16 (The top row, row 1, is connected to the Read port of Memory, and the 

bottom row, row 16 is connected to the Write port of Memory). See Figure 4.3.1. 

The columns are numbered from left to right, 1 through 16 (col 1 consists of the 

External processors). 

Diagonal masking consists of a list of diagonals. The processors which lie on 

the listed diagonals are enabled. The diagonals lie slanting left i.e. from northwest 

to southeast. They are numbered starting with the single processor diagonal on the 

top left corner of the array and ending with the single processor diagonal on the 

bottom right corner of the array, 1 through 31. Diagonal 16 is the main diagonal of 

the array containing processors (i, i) for i = 1,2, . . . ,16. See Figure 4.3.1. 

Masks can be either row/column OR diagonal, not both. Bit 43, SEL D / K  



determines the type of mask. 

Masking 

Mnemonic Code: (R1ist:Clist:Dlist) 

Machine Code: 

In a machine instruction, bits 0-15 contain the Row Mask (bit 

0 = Row 1,. . . , bit 15 = Row 16) or the low order Diagonal Mask 

(bit 0 = Diag 1,. . . , bit 15 = Diag 16) , bits 16-31 contain t.he 

Column Mask (bit 16 = Col 1,. . . , Bit 31 = CoI 16) or the high 

order Diagonal Mask (bit 16 = Diag 17,. . . , bit 30 = Diag 91, and 

bit 31 is unused), and bit 43 is the SEL D / u  bit. 

For a Row/Column mask: bit 43 = 0 

For a Diagonal mask: bit 43 = 1 

For the mask fields (bits 0-15 and 16-31) a 0 enables and a 1 

disables. See Examples below. 

Comments: 

A mask consists of three fields within parentheses, the Row field, the 

Column field and the Diagonal field. For a given mask, either both the 

Row and Column fields may have values and the Diagonal field is empty, 

or only the Diagonal field may have values, and the other fields are empty. 

The Diagonal field has priority, meaning that if the Diagonal field has values 

and one or both of the other two also have values, then the Diagonal values 

become the mask and the other two are ignored. If the Diagonal field is 

empty and one of the Row and Column fields are empty (an incomplete 

mask), then the mask is still generated but the result is that no processors 

will be enabled since no processors lie on an intersection. If all three fields 

are empty, a mask is still generated, no processors are enabled. 

The values within each field are a list of numbers and ranges of 



numbers between 1 and 31. Element in the list are separated by 

comma. An element can be a number or a range. A range is of the 

form n-m, where n is the first value in the range and m is the last. 

The list may be in any order (increasing, decreasing, mixed). 

Examples: 

A row/column mask enabling the top and bottom rows. 

Translates to: bit 43 = 0  

Column (msb,. . . Jsb) Row (msb,. . . ,lsb) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0  

A row/column mask enabling 4 rectangular regions of pro- 

cessors. In the array below, o and b mean enabled and x means 

disabled. It is impossible with this masking technique to simul- 

taneously enable regions that don't share all rows and columns 

specified; i.e. it is impossible to ONLY enable the processors below 

labeled o without also enabling those labeled o. 

Translates to: bit 43 = 0  

Column (msb,. . . ,lsb) Row (msb,. . . ,lsb) 

1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0  1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0  



o x x x x o o o l 3 o o o x x x x  
o x x x x o o ~ o o o ~ x x x x  
o x x x x o o o o o o o x x x x  
o x x x x o o o o o o o x x x x  
x x x x x x x x x x x x x x x x  
x x x x x x x x x x x x x x x x  
x x x x x x x x x x x x x x x x  
x x x x x x x x x x x x x x x x  
o x x x x o 0 0 0 0 o o x x x x  
o x x x x 0 o o o o o 0 x x x x  
l 3 2 5 x x 0 0 0 0 0 0 0 x x x 2  
o x x x x 0 0 0 0 0 0 0 x x x x  

' ~ x x x x 0 0 0 0 0 0 0 x x x x  
o x x x x o 0 o 0 o o o x x x x  
x x x x x x x x x x x x x x x x  
x x x x x x x x x x x x x x x x  

A diagonal mask enabling the 5 diagonals around the main 

diagonal. In the array below, o means enabled and x  means dis- 

abled. 

o o o x x x x x x x x x x x x x  
0 o o 0 x x x x x x x x x x x x  
o o o o o x x x x x x x x x x x  
x 0 o o o o x x x x x x x x x x  
x x o o o 0 o x x x x x x x x x  
x x x 0 o o o o x x x x x x x x  
x x x x o o o 0 o x x x x x x x  
x x x x x o o o o o x x x x x x  
x x x x x x o o 0 o o x x x x x  
x x x x x x x o 0 o o o x x x x  
x x x x x x x x 0 0 o o o x x x  
x x x x x x x x x o 0 0 o o x x  
x x x x x x x x x x 0 0 0 o 0 x  
x x x x x x x x x x x o o o o o  
x x x x x x x x x x x x 0 o o 0  
x x x x x x x x x x x * x x O o O  

Translates to: bit 43 = 1 



Column (msb,. . . ,lsb) Row (msb,. . . Jsb) 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0  0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1  

4 (:1,5-8,13:) 

A row/column mask enabling NO processors. 

Translates to: bit 43 = 0  

Column (msb,. . . Jsb) Row (msb,. . . ,lsb) 

1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 0  1111111111111111  

NOTE: 

A single mask applies for both External and Internal Processors 

in a given instruction. 

For a Row/Column mask, the number of distinct enabled regions 

of processors is equal to the number of distinct regions enumerated 

in the Row Field TIMES the number of distinct regions enumerated 

in the Column Field. See Example 2 above-2 Row regions x 2 

Column regions = 4 regions enabled. 

Masks ONLY effect the Source-Destination parts of the instruc- 

tion. 110 is not affected by the mask, neither is the system control 

field. This means that 1 / 0  is executed by every processor specified 

by the instruction (if 110 is in the External field, ALL External 

processors send and receive from and to the specified ports. If 

I/O is in the Internal Field, the ALL Internal processors send and 

receive from and to the specified ports. This is one reason why 

the ports were made transparent to the user. Similarly, the Multi- 

ply and Divide clocks are activate the Multipliers and Dividers in 

ALL processors (this time NO differentiation between Internal and 

External, since both use the same clocks). Since the start of the 

clock changes the value of the output registers of the corresponding 



functional units, ALL outputs of ALL the Multipliers (Dividers), 

Internal AND External, are affected when the Multiply (Divide) 

clock is started, regardless of the mask. 



4.4 Special Instructions 

Special Instructions are those which only effect the System Field of the 

machine instruction. The Assembler also uses information contained in them to 

generate the program FIFO, and the two memory address FIFOs. Since the System 

Field is not affected by the,mask, these instructions are not masked. As currently 

implemented, Special Instructions, except for STOP, modify the System Field of 

the previous instruction thus they may not be preceded by a label. 

Co-processor Execution Control 

Mnemonic Code: STOP 

Operands: 

none 

Sets bit 96 STOP equal to 0. 

Comments: 

Generates a NOP instruction with the STOP bit set to 0. Dur- 

ing execution, the co-processor is placed into HALT mode in the 

current cycle. The co-processor can be put back into RUN mode 

only by the HOST. 

NOTE: 

Be sure to store any necessary results of arithmetic operations 

before generating the STOP instruction since the dynamic regis- 

ters decay. 



Program Flow Control 

Mnemonic Code: LOOP N LABEL 

Operands: 

N The number of times to jump back to the instruction labeled LA- 

BEL. 

LABEL The label name given to the first instruction of the loop (must be a 

regular instruction in the current implementation of the Assembler 

(May 1988)). See Section 3.2.3 for how to define a label. The 

program address associated with LABEL must be less than the 

current program address. 

Sets bit 99 LOAD P C  equal to 0. 

Comments: 

The LOAD P C  bit of the previous instruction is set to 0 and 

the address associated with LABEL is entered N times into the 

Program FIFO followed by the program address of the next reg- 

ular instruction. When executing, the loop gets executed once, 

then during the last cycle of the loop, the PC gets loaded from the 

Program FIFO with LABEL instead of being incremented. This 

occurs N times, after the N +lst traversal of the loop code, the 

PC gets loaded with the address of the next instruction and the 

program continues. 

Example: 
SORT(A1,Bl) ; 

LABEL1: GETW(HIGHA,B2) ; 
SORT(HIGHA,BZ) ; 
LOOP 14 LAB1 . 

LABEL2: MOV(HIGHA,ABO:); 

The program segment above should store in each processors ABO 

register the maximum of the values in registers A1 and B1 of all 



processors in its own row. During Assembly time, the address 

LABEL1 gets stored on the program FIFO 14 times followed by 

the address LABEL2. The instructions GETW and the 2nd SORT 

will be executed a total of 15 times. 

NOTE: 

There is NO comma between N and LABEL. 

The instructions within the loop are executed N +1 times. 

In the current implementation of the Assembler (May 1988), 

there should be only Regular instructions within the loop, i.e. 

no READQs or WRITEQs nor other LOOPS inside a loop. Future 

versions of the Assembler should be able to handle single nested 

loops as well as READQs and WRITEQs within the loop. 

If READQs or WRITEQs are place after a LOOP with no Reg- 

ular instruction in between, then it is as if they were placed within 

the loop. The corresponding FIFOs will be popped N times. This 

is incorrect programming since only a single value would have been 

placed onto the FIFO. But, should the user want to execute the loop 

on N +1 different data queues (one for each iteration of the loop) 

then the user can precede 'the loop (in the instruction before the 

LABEL) by a READQ and/or WRITEQ, AND follow the LOOP 

instruction immediately by N READQs and/or N WRITEQs. This 

technique is only valid for the current version of the Assembler 

(May 1988) and may not work in future versions. 



Memory Access Control 

Mnemonic Code: READQ Qname 

WRITEQ Qname 

Operands: 

Qname The name of the data queue which was defined at the beginning of 

the program file. See Section 3.2.1 for details. 

READQ: Sets bit 103 LD READ ADDR equal to 0. 

WRITEQ: Sets bit 101 LD WRITE ADDR equal to 0. 

Comments: 

The READQ instruction tells the assembler to set the 

LD READ ADDR bit to 0, and to enter the value of the previ- 

ously defined Qname onto the Read Data Address FIFO. 

The WRITEQ instruction tells the assembler to set the 

LD WRITE ADDR bit to 0, and to enter the value of the pre- 

viously defined Qnarne onto the Write Data Address FIFO. 

This sets up the corresponding memory port to point to the 

start of the next data queue the user wants to access. The Qname 

is defined at the beginning of the user program file. The same data 

queue may be used for either reading or writing or both (but not 

simultaneously although this is not checked in the assembler). 

NOTE: 

In the current implementation of the Assembler (May 1988), 

READQs and WRITEQs are not permitted inside a loop. Future 

versions of the Assembler should be able to handle READQs and 

WRITEQs within the loop. 

If READQs or WRITEQs .are place after a LOOP instruction 

with no Regular instruction in between, then it is as if they were 
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placed within the loop. The corresponding FIFOs will be popped 

N times. This is incorrect programming since only a single value 

would have been placed onto the FIFO. But, should the user want 

to execute the loop on N +l different data queues (one for each 

iteration of the loop) then the user can precede the loop (in the 

instruction before the LABEL) by a READQ and/or WRITEQ, 

AND follow the LOOP instruction immediately by N READQs 

and/or N WRITEQs. This technique is only valid for the current 

version of the Assembler (May 1988) and may not work in future 

versions. 



Chapter 5 

Programming Limitations due to Hardware 

There are many limitation the user must keep in mind while programming 

the Systolic/Cellular System. These limitations fall into three categories, the first 

category consists of those limitations due to system design and hardware. The 

user must accept these limitations since they are an integral part of the current 

version of the system. The second category is Assembly Language dependent. These 

limitations were imposed as a compromise between maximizing the flexibility of the 

user to program using as many levels of parallelism as possible while minimizing 

the complexity of writing the programs. Should a user want absblute maximum 

performance, the user should program directly in machine code, or try to optimize 

the assembled code. The third category consist of those limitations imposed by the 

Assembler in its current state (May 1988). These limitations should be eliminated 

in future versions of the Assembler. The latter two categories have been covered in 

previous chapters. 

5.1 Architecture 

The general architectural design of the Systolic/Cellular System allows for 

very limited applications. Some of these limiting features are the unidirectional 

memory access, and the division of processors into asymmetric sets, namely one 

column and 15 columns. Most conceptual systolic designs I have seen have data 

input from two sides of the processor array. By not having this feature, the Sys- 

tolic/Cellular System will require much more time loading and positioning data. 



5.2 Control 

There are many features of the control mechanisms which place restrictions 

on the programmer. One of these is the fact that a disabled processor is not totally 

disabled. By disabling a processor, the user can only be assured that the 24 Static 

Local Memory Registers will remain unchanged. Side effects of the 1 /0  execution 

and Clock inputs make the 1/0 port and the Multiplier and Divider output registers 

less than lOOare valid, since another operation, even from a different processor can 

effect their values. 

Another problem is due to the deterministic characteristic of machine exe- 

cution. There is no data-dependent control at all, thus for example, there is no way 

to determine if a divisor is equal to 0 nor a way to stop execution of division in a 

given processor whose divisor is equal to 0, if the value is not known at coding time 

and the processor masked disabled. 

5.3 Processor Design and Hardware 

Communication between Processors is limited due to packaging constraints. 

The Processor chip has 100 pins thus it can support 2 32 bit ports or 4 16 bit 

ports. Due to this, 1 /0  between nearest neighbors requires two cycles to execute. 

Furthermore, the 110 code for data flow in a single direction is not unique, the 

same code moves data from North to South as from East to West, and the same 

code moves data from South to North as from West to East. This feature makes it 

difficult for the programmer to use the 110 ports for storage since the values can 

change due to side effects of another instruction. 

Within the processor there are two busses, but only 8 of the internal reg- 

isters have access to both busses. This imposes local data management on the 

programmer. 

Almost all the functional unit outputs can be accessed independently, ex- 

92 



cept for the Shifter output. This unit always outputs it A output register simul- 

taneously with its B output register, tying up both busses. The result is that a 

single output from the Shifter may not be used as input to another functional unit 

directly. However, there is a positive side effect of this. If another register happens 

to be placed on the BUS at the same time as the Shifter outputs, the result is a 

bitwise AND of the values on BUS A. 

The the functional units are designed for a fixed point data value whose 

magnitude is less than two. This greatly limits the applications by requiring the 

user to limit the vaIues of the data. 

5.4 Version I1 of the Systolic/Cellular System 

If the prototype of the Systolic/Cellular System (version I) proves to be suc- 

cessful, a new and improved version will be developped. From the above discussion 

we can suggest some areas for improvement. These would be: 

Functional units that can handle floating point arithmetic, instead of 

2-30's complement. 

Faster Memory access to keep up with I/O. 

Independent I/ 0 ports to simplify communications. 

Masked fast clocks, so that the old results in disabled processors do not 

get erased when enabled processors execute multiplication or division. 

A more sophisticated program control to enable some level of data de- 

pendent execution. Perhaps make the PE intelligent enough to be able to 

set clear its own enable bit for the next instruction. This might be done by 

having a comparison to some value or threshold and based on the result, 

set or clear an internal enable bit. If a control bit from the Controller 

says to use local control, then that enable bit gets ORed with the mask 

bits from the Controller. If the control bit says use only global control, 



then the local enable bit is ignored. This type of construct would be useful 

to prevent division by zero and other illegal operations (such as those that 

might cause and overflow etc.). 

Independent access for the SHIFTA and SHIFTB output registers so that 

functionally they become identical to any other output register. 

Separate fast clocks for the External and Internal sets of processors. This 

will enable greater parallelism and less dependence between the two instruc- 

tion sequences. 

The designers at Hughes have already many plans for improvements to the 

Systolic/Cellular System. Many of the ideas stated above are included. The list of 

changes for the next version of the System include: 

Independent I/ 0 

New Boundary (Internal) processor chips, different from the Internal pro- 

cessor chips. 

New floating point internal chips. 

A new Boundary memory feeding into the array through column 1. 

A new Controller. 

etc. 

Most of these intended improvements will answer many of the limit at ions 

that have been discussed throughout this document. If implemented, they will 

certainly enhance the machine by extending possible applications, simplify the As- 

sembler (fewer checks to be made) and make the programmers job easier. 



Chapter 6 

Conclusion 

This document described the programming issues relevant to the first ver- 

sion of the Cross-Assembler for the Hughes Systolic/Cellular System. The Assem- 

bler runs and assembles correct code. However, there are a few alterations and 

enhancements that need to be implemented. 

One major change that must occur in the assembly code will be in the 

definition of a data queue. Currently, the user specifies the size and direction of 

the queue and the Assembler generates the addresses. After much discussion it was 

decided that the programmer should have more control over where the data queues 

are positioned, so the new declaration will include a user specified address along 

with some way to indicate queue direction, either be specification of a tail address, 

or an explicit direction specification. 

An enhancement to the assembly code will be to implement a nested loop 

as well as to implement data queue specifications within loops (and in nested loops). 

There are many fine points in programming this processor that the pro- 

grammer must always keep in mind. One example is the decaying dynamic regis- 

ters. Another is the extended execution times of multiplication and division. For 

both cases, the user must keep track of the number of instruction cycles that have 

gone by between initializing execution and accessing the results. The Assembler 

should be enhanced to keep track of how many instructions ago an operation was 

instigated when it sees its output register being accessed. If there is a discrepancy 

between the time the data is valid and when it is accessed, then a warning should 



be generated. Similarly, where there is an exception to a general rule, such as with 

masking 1/0 commands, warnings should be generated if relevant (i.e. for an SIMD 

mode instruction, a warning about the first cycle not being masked is irrelevant; 

the same is true for the case where there is no mask specified). 

In summary, there is still much work to be done to make this Assem- 

bler optimal (in terms of code generated) and user friendly (in terms of debugging 

tools). But with this tool, it is now possible to convert algorithms to run on the 

Systolic/Cellular System into readable, and debuggable. programs. 
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