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An Adaptive Tracking Algorithm for Robotics and Computer Vision Application

Abstract

We provided a vision-controlled robotics manipulation system with a robust, accurate algorithm to predict
the translational motion of a 3-D object; hence, making it possible to continuously point the video camera
at the moving object. The real time video images are fed to a PVM-1 (a pyramid-based image processor)
for image processing and moving object detection. The measured object coordinates are continuously
fed to our algorithm for track smoothing and prediction. In this study, we examined several tracking
algorithms and adopted an optimal a - 8 filter for tracking purposes and the a - 3 -y filter as part of the
initialization procedure. The optimum gains for these 6lkm are based on the Tracking Index principle
which in its turn is based on the measurement noise variance and the object dynamics. We derived an
expression for the noise variance corresponding to our application. As for the object dynamics, we
developed an adaptive method (using the a - B -y filter mentioned above) for inferring object dynamics in
an iterative learning process that results in an accurate estimate of the Tracking Index. The accuracy of
our algorithm realizes that of the Kalman filter but is much simpler computationally.
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Abstract

We provided a vision-controlled robotics manipulation system with a robust, accurate
algorithm to predict the translational motion of a 3-D object; hence, making it possible
to continuously point the video camera at the moving object. The real time video images
are fed to a PVM-1 (a pyramid-based image processor) for image processing and moving
object detection. The measured object coordinates are continuously fed to our algorithm
for track smoothing and prediction. In this study, we examined several tracking algorithms
and adopted an optimal o — f filter for tracking purposes and the a — § — + filter as part of
the initialization procedure. The optimum gains for these filters are based on the Tracking
Index principle which in its turn is based on the measurement noise variance and the object
dynamics. We derived an expression for the noise variance corresponding to our application.
As for the object dynamics, we developed an adaptive method (using the a — 8 — ~ filter
mentioned above) for inferring object dynamics in an iterative learning process that results
in an accurate estimate of the Tracking Index. The accuracy of our algorithm realizes that

of the Kalman filter but is much simpler computationally.

ii



CHAPTER 1

Introduction and Background

A machine vision system is often considered as part of a larger system that interacts
with the environment. The input to such a system, is an image, or several images, while
its output is a description that must bear some relationship to what is being imaged and
must contain all the needed information to carry out a designated task. In other words, the
objective is not to obtain any description of what is imaged but one that allows us to take
an appropriate action. Since building a “universal® vision system is still at the early stages
of development, researchers have been addressing themselves to systems that perform a
particular task in a controlled environment or to modules that could eventually constitute

a general purpose system [1].

The work here is tied to one of those particular tasks, namely, real time analysis of images

in a dynamic environment. Under this category falls the topic of motion analysis,

It is known that there are two major obstacles in computing the 3-D parameters of
rigid motion from the retinal optical flow. One of these is the high dimensionality of the
parameter space; the other is the nonlinearity of the constraint equations. It has been shown
in [2] that these shortcomings may be eased by following two strategies. The first, and the
most important of these, is to employ tracking, thereby exploiting the temporal behavior
of a moving object. The second is to employ stereoscopic imaging. The results showed that
tracking the object of interest is advantageous in both monocular and binocular imaging

situations.



The use of a tracking filter is desirable under these circumstances in order to increase the
accuracy of the image- based measurements of the position and orientation of a 3-D moving
object. Our goal has been to find the most suitable tracking filter and tailor it to an existing
vigion-controlled robotics manipulation system that has the capability of performing object
detection in real time. This capability is provided mainly by the Pyramid preprocessor
[3], [4]. We will focus our attention here on tracking the translational motion of a 3-D
rigid object. Tracking and prediction of this motion can be used to continuously point the
video camera of the robotics system on the moving object. An extension to the problem of
tracking the rotational motion of the rigid object is straightforward. The following sections
give an overview of the Pyramid preprocessor and the existing moving-object detec.tion

algorithm.

1.1 The Pyramid Machine

The Pyramid Machine is a preprocessor dedicated to producing a multi-resolution repre-
sentation of an image; specifically, the “pyramid like” representation. Pyramids in general,
are data structures that provide successively condensed representations of the information
in the input image. According to [3] there is evidence that the human visual system uses
a form of multi- resolution representation which supports the concept that image process-
ing at multi-resolution levels is very efficient and robust. The most obvious advantage of
pyramid representations is that they provide a possibility for reducing the computational
cost of various image operations. Many basic image operations may be performed efficiently
within these pyramid structures. The first requirement for a multi-resolution image pro-
cessing system is that it be able to perform a pyramid transform such as the FSD (filter,
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subtract, and decimate transform), to decompose the original image into a set of different
resolutions. The Pyramid machine is capable of constructing a complete low or bandpass
pyramid from a 256 x 256 image in 1/30 of a second (one frame time). The present design
uses a single filter and decimate stage. During pyramid construction data is recirculated
through this module for each pyramid level. A separable, five tap filter is used in the pyra-
mid construction. The input data and output pyramid levels are represented with 8 bits

per pixel, while internal computations are performed with 16 bit arithmetic.

When the system is used as a video preprocessor, it continuously processes incoming
image data, transforming it to a more suitable representation for further processing such as
eliminating certain spatial frequency bands or computing local energy measures at different
scales, storing the results in a memory frame store. These results can be accessed simulta-
neously by the host computer for further processing. In this manner, the host processor (an
IBM RT in our case) is relieved from performing extensive computations. For example, for
a 256 x 256 pixel image, updated 30 times per second, the data rate is 2M pixels per second.
By representing the video image in a suitable format, the host can perform real time or
near real time image processing operations by selectively limiting the processing to 1000 to
20,000 pixels per second, rather than 2M pixels/second. This proved to be sufficient for
performing numerous image processing tasks, e.g. real time motion detection and tracking,

and course-fine pattern matching for robotics guidance [3].

1.2 The Existing Motlon Detection Algorithm

The tracking filter (that provides this system with prediction capability) uses an existing
motion detection program which detects object motion wherever it may occur within a large

3



field of view. The following is a brief description of how this is accomplished [4].

Let I(T') be the image frame at time 7. In the first step, a difference of two consecutive
images is obtained D(T') = I(T')— I(T —1). Difference values that are not zero indicate that
a change has occurred in the original sequence. In the second step, the difference image is
decomposed into spatial frequency bands through the construction of a Laplacian pyramid
(See Figure 1.1). A particular band pass level is then selected for further analysis. For
example, |Lo| could be chosen to generate a second series of low pass versions G»|Lo| where

n ranges from 1 to 4.

G4 which contains only 16 x 16 samples (and yet represents image changes corresponding
to that within the original image) is examined by the host. (It is yvorthwhile mmtioﬁng
that a typical high performance microcomputer (e.g., an IBM-RT) can examine only, onv
the order of, 16216 samples per one frame interval [4].) If a change is detected in Gy, the
host examines a 16 x 16 subarray of G3 centered on the change detected in G4. A detected
change within the new subimage directs the host to examine a 16 x 16 subarray of G2. This
procedure allows the system to rapidly home in on a small object anywhere within the field
of view, since G4, which is a 16 x 16 array, contains the entire field of view of the 256 x 256
original image, but a 16 x 16 subarray located in G covers only a small area of the original

image (4].

1.3 An Adaptlve Tracking Filter

We conducted a general study on the tracking filters and chose one of these filters for
our application. Among the filters that were examined are: The Kalman, Wiener, o — 8
and o — § — ~ filters, and the Two-Point Extrapolator. The criteria followed in our decision
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Figure 1.1  An FSD Pyramid Transform (from [3]).
Goo: The original image, represented by 256 x 256 array of pixels
Ghra: The low pass result where the frist index indicates the number
of filter steps, the second index indicates the decimation steps
F: A convolution with an FIR low pass filter
D: Decimate operation, every other row and column is discarded
to obtain Gn 4
L,: Bandpass or Laplace pyramid level obtained by subtracting two
consecutive Gaussian pyramid levels as shown



making will be discussed in the next chapter.

We adopted an optimal a — # filter for tracking purposes and the a — 2 — ~ filter as part
of the initialization procedure. The powerful performance of this filter (which realizes that
of the Kalman) lies in the method that produces the filter gain values. The derivation of the
optimum filter gains is based on the Tracking Index which is proportional to the position
uncertainty due to object accelerations to that due to measurement errors (in the detection

scheme) [5].

We derived an expression for the noise variance corresponding to our application. As for
the object dynamics, we developed an adaptive method (using the a — 8 -~ filter mentioned
previously) for inferring object dynamics in an iterative learning process that results in an

accurate estimate of the Tracking Index.

The work presented here was developed on an IBM AT'; and the results were tested using
the position data of the moving object obtained from files produced by the Pyramid/IBM-

RT system. The following chapters give a more detailed account of our work.



CHAPTER 2

Comparison of Tracking Algorithms

As we observe the position of a moving object over time using any kind of measuring
instrument (a video camera, radar, etc.), almost always, the observations are cluttered by
noise, errors and inaccuracies. The primary function of the tracking filter is to accept
the noisy position data at its input and provide smoothed object position and velocity
estimates at its output. These values are used for controlling the orientation and position
of the camera as well as predicting future object positions. In addition, the smoothed
position and velocity estimates can be used for track correlation and association purposes

in a multi-moving-object environment.

In smoothing and prediction, two sets of equations govern the whole technique. The first
set of equations is the differential equations which describe the process (object motion).
The second set relates the parameters being measured to those to be estimated [6]. In
addition, smoothing and prediction are related in a recursive manner, i.e. a predicted value
depends on the last smoothed value, and a smoothed value takes into account the last
predicted value. As an example, the prediction and smoothing relationships for an optimal
mean-square-error (MSE) estimation process (Kalman filter) for object tracking is given by
[51,[7}:

prediction:  Z(k + 1|k) = o2(k|k)

smoothing:  Z(k + 1]k + 1) = Z(k + 1|k) + K(k + 1)[2(k + 1) - hi(k + 1]k)]
6



where,
k = kth time interval
2(k + 1|k) = predicted state value at time k + 1
#(k|k) = smoothed state value estimate at time k&
#(k + 1|k + 1) = smoothed state value estimate at time & + 1
2(k + 1) = measured state value at time k + 1
K(k + 1) = gain value at time k + 1

¢ = state transition matrix h = 1 when z represents position, 0 when z represents velocity

or acceleration.

A state could be position, velocity, or acceleration. Here, the observation or measurement

is modeled by the actual object position plus an additive noise component:

z(k) = z(k) + n(k)

where the measurement noise uncertainty n(k) is assumed to be a zero-mean, white

stationary random process.

The problem then is narrowed down to obtaining the “best” estimate of Z(k|k). There
are two solutions for extracting the “best® smoothing estimate. The first, is the Least
Squares method, the other is the Minimum Variance method. Generally, the Least Squares
method (the one under consideration) takes a fitting function and fits it to the data. The
method calculates the residuals (differences between the observations and the fitting func-
tion), squares them, adds them, and produces a certain value. The Least Squares method
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in its most general form, then minimizes that value, for any arbitrary number of dimen-
sions. The Minimum Variance method is similar to least squares, but is more generalized.
Minimum Variance takes every observation and weights each precisely according to its mer-
its. For example, poor observations have a large variance while better observations have
a smaller variance. Typically, observations are weighted by the inverse of their variance,

hence poor observations are suppressed, while good observations are boosted relatively [6].

2.1 Comparison of Tracking Algorithms

A comparative study of five important real-time tracking filters was conducted in [8].

It compared these filters in tracking accuracy and computer requirements (memory and

execution time).

The filters considered in this study were: the Kalman filter, simplified Kalman filter,
a — [ filter, Wiener filter, and the two point extrapolator. The gain vectors of the first
three filters were assumed to be calculated in real time. The last two filters (Wiener and
two point extrapolator) were both examples of stored gain vectors. The following is a brief

overview of each filter.

In the Kalman filter, a model for measurement error has to be assumed as well as a
model of the object trajectory and the disturbance of the trajectory {8]. The Kalman filter
can in principle, utilize a wide variety of models for measurement noise and trajectory
disturbance; however, it is often assumed that these are described by white noise with zero
mean [9]. This becomes a requirement for the filter optimality and introduces the need to
have two augmented state variables in order to whiten the object maneuver and adapt it to
the theoretical framework necessary to make the filter optimal (8].
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If the maneuver is assumed to be white, no augmentation need be performed (resulting
in what is known as a simplified Kalman filter). Here it is assumed that the change in
velocity of the object is uncorrelated between samples, i.e. white. Furthermore, if this filter
were restricted to modeling the object path as a straight line and if the measurement noise
and maneuvering noise were modeled as white gaussian with zero mean, the Kalman filter
equations reduce to the Alpha-Beta filter equations with the parameter alpha and beta

computed sequentially by the Kalman filter procedure [9].

The Wiener filter differs from the Kalman filter in that its gain vector being equal to the
steady state gain vector of the regular Kalman filter and is calculated off-line and stored
in memory. This results in considerable computational savings in addition to making it
simpler than any of the preceding filters. Because it has constant 'gain, the Wiener filter
requires no auxiliary equations to be solved and requires very little computer memory.
This filter is adaptable to a variety of moving objects and can track both maneuvering and
nonmaneuvering moving objects well. This is because its gain is derived from the Kalman

filter, which accounts for the statistics of object maneuver directly [8].

The a-p filter comes in many different varieties. Some are designed to provide the best
transient following capability for a constant velocity object, while simultaneously providing
the best minimum variance estimate of position and velocity [10]. Other a-§ filters that
have been designed utilize the object maneuver statistics [11]. If the performance criterion
18 dynamic minimization of the total mean-squared filtering errors, the filter then takes
the form of the Kalman filter. If the design objective is to minimize the tracking errors
against a general class of trajectories, the corresponding a-# filter takes even a different
form [8]. The a-B filter considered in the simulation study (8] was designed to minimize the
mean-squared error in filtered (smoothed) position and velocity, under the assumption of a

9



constant velocity object motion.

All of the mentioned filters are recursive fading memory filters. The simplest type of
filters that can be implemented is the “almost memoryless® two point extrapolator. This
filter uses the last data point to determine object position and the last two data points to
determine object velocity. Because this filter is essentially memoryless, its performance in

tracking maneuvering and nonmaneuvering objects is quite as bad [8].

The result of the simulation study conducted in [8], showed that the most sophisticated fil-
ter, the Kalman filter, is the most accurate and the most costly to implement. Furthermore,
the Kalman filter, the simplified Kalman filter, and the Wiener filter generally performed
within 20 percent of each other (in terms of execution time and memory requirements). -The
a — # filter performed on the average about 50 percent worse than the Kalman filter wifh
the greatest degradation occurring for maneuvering objects. The two point extrapolator,

uniformly performed more than 70 percent worse than the Kalman filter.

As for implementation requirements, they increased in the following order: two point
extrapolator, Wiener filter, o — 3 filter, simplified Kalman filter, Kalman filter. The com-

plexity factor between successive filters was about two to one.

An attractive filter would be one that can achieve the performance of a Kalman filter,
both in the transient and steady state periods; yet be easily implementable in real time.
Also, it will be very desirable for such a filter to have the capability of tuning itself to the
sensor and moving object characteristics.

In addition to the optimal transient and steady state performance, we would like to have
a simple filter that can achieve this performance regardless of object dynamics. It is unde-

sirable to have solutions (for filter gains) that entail recursive relationships of considerable
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complexity; it would be ideal to obtain a closed form solution and eliminate the recursive
process altogether at least for the steady state (even if it were simple as in [12]), without
any degradation in performance. Nor would it be desirable to have a simple closed form
solution that can only provide optimal performance for a particularized object motion be-
havior (as in [11] where it is assumed that object accelerations are exponentially correlated,
and [10] where the results apply for constant velocity objects only). This means that in
order to reduce the implementation cost, it is desirable to have constant gain vectors. This

will result in considerable savings over filters that calculate the gain vectors in real time.

From the results of the simulation study, a probable filter that fits most of the above
descriptions would be the Wiener filter. However, the performance of this filter in- the
transient state is not optimal, because its off-line computed vector is the Kalman steady

state gain vector. Using the steady state gain in the transient state will give erroneous

predictions.

2.2 The Elected Filter

A recent study [5] provided optimum parameters for the a-g filter which results in op-
timum tracking in both the transient and the steady states. With these parameters, the
a-f filter achieves the performance of the Kalman filter without increasing its complexity

or implementation cost.

The above mentioned study introduced an optimal filtering solution for the object track-
ing problem which depends on a parameter defined as the “Tracking Index® which is pro-
portional to the position uncertainty due to object accelerations to that due to measurement
errors. Upon evaluating this parameter, the optimal transient and steady state gains are

11



specified. The filtering process is as follows [6]:

Prediction:
2(k + 1[k) = 2(k|k) + To(k[k)
v(k + 1|k) = v(k|k)
Smoothing:
z(k + 1]k + 1) = z(k + 1|k) + of2(k + 1) — z(k + 1{k)]
ok + 1k +1) = o(k+ 108) + la(k +1) ~ ok + 1]8)
where,

xz{k|k) is the position estimate at time interval k
v(k|k) is the velocity estimate at time interval k
z(k) is the noisy position measurement

a is the position tracking parameter

B is the velocity gain tracking parameter.

T is the sampling period

In modeling the object motion, a one dimensional, linear, time invariant, ideal model is

used:

s(k + 1) = ¢s(k) + Yw(k)

where s(k) is the moving object state vector at time k; ¢ is the state transition matrix;

w(k) is the unknown object maneuver/state transition matrix. ¢ is the acceleration state

12



transition matrix (for a second order model ¢ = [1T? T|T; for a third order model

¢ =[4T? T 1JT. A two state model which includes all possible maneuver accelerations
[5] is sufficient and will be considered hereon; that is

s(k) = [a(k) v(k)]"

The model in our application is based on the assumption that, without maneuvering (or
with smooth maneuvering in a small time interval), the moving object will generally follow

a straight line constant velocity trajectory.

The noisy object measurements are modeled by the actual position of the moving object

plus an additive noise component, i.e:

z(k) = hs(k) + n(k)

where for a two state model

h=[1 0]

and the measurement noise uncertainty is assumed to be a zero mean white stationary

process. The values of « and 3 are determined by the following parameters:
T: The sampling period.

0, : The measurement noise standard deviation which is determined from the object de-

tection scheme, i.e. the measurement process.

13



0. : The maneuvering accelerations standard deviation. This parameter is related to the

object dynamics.

A typical maneuverung accelerations probability density {7] is shown in Fig. 2.11In this
figure, A denotes the maximum acceleration which the object can have. Values of the
density between no maneuver (¢ = 0) and maximum maneuver (¢ = +A) are non zero
because the moving object may not be accelerating at the maximum rate. The object has
a probability P, of accelerating at this maximum level (either plus or minus), a probability
P of not accelerating at all, and an assumed uniform probability distribution of amplitude
(1=(2P, +P2))/2A of accelerating between ~A and +A. The acceleration variable, therefore

has zero mean and variance (A/3)(1 + 4P, — P,).

The tracking index is provided below in terms of the above parameters and also in terms
of the steady state gains a* and #* ; along with the corresponding optimal §* relationship.
As for the optimal o* relationship, it had to be derived and will be given in the following

chapter.

A=T2%0,[0n
_ ﬂ.2
A= 1-a*

The optimum transient filter gain parameters are based on following recursive approxi-
mations:

14
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Figure 2.1  Typical Probability Density of Object Acceleration.



a(k) = alk — 1) + Calo® ~ alk = 1), G =1-eV/bs

B(k) =Bk =1)+GplB* = Blk - 1); Gg=1-¢"'14s

where,
a(k) and B(k) are the gains for the present state
a(k —1) and A(k — 1) are the gains for the previous state
a* and §* are the steady state optimal gain values, as defined on the previous page.

K,, and Kjp are the first order time constants of the corresponding gain excursion from
its initial to its optimal steady state value. It has been shown in [5] that these time constants

are strictly a function of the tracking index.

However, [5] does not provide an expression for the relationship between the tracking
index and these time constants. It does, on the other hand, provide the graphs for the

normalized time constants vs log(AZ), as shown in Fig. 3.

Finally, it is worthwhile to note that for small a, the a — § relationship mentioned

previously approaches the classical relationship [§]:

p=0a?[(2-a)

When the filter parameters are adjusted according to the above equation, the filter pro-
vides the best transient following capability for a constant velocity object, while simul-
taneously providing the best minimum variance estimate of position and velocity of any

15



fixed parameter filter [10]. The following chapter will discuss implementation details of the

elected filter.
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CHAPTER 3

General Implementation of the Elected Algorithm

The a-8, a-f-7 filters, and the Two Point extrapolator have been implemented in the

simulation program. The equations for each filter are provided in Appendix I.

These three filters were implemented as an illustrative tool during our study. Then the
a-f filter was chosen to perform the tracking, while an a-f8-v filter was implemented in
the learning procedure devised for inferring the dynamics of the moving object and hence

optimizing the a-# filter used for the actual tracking.

The following sections will consider both filters since both are used by the simulation

program.

3.1 Filters Initialization

3.1.1 Galns Initialization

The tracking index, A, plays a major role in determining the transient and the steady
state gains of the a-8 and a-f- filters. It is a dimensionless parameter proportional to the
ratio of the position uncertainty due to object accelerations (maneuvers) and to that due
to detector measurement errors [5], i.e.

17



posstion uncertasnty due to acceleratson

tracking indez « — :
postiton measurement uncertainty

It is defined by three primary object tracking modeling parameters: track period (time
between position samples), object maneuverability (characterized by object accelerations),

and measurement noise [5):

T?0,

-
i

T, the track period always has a known value. As for determining o, and o,, one woﬂld
need to have an a priori knowledge of the detection mechanism and the object dynamics
respectively. Obtaining the values for these parameters will be discussed later on, but for
now we will assume that these values are available to us and hence we have a value for the
tracking index A. Once A is known, we are able to calculate the filter transient and steady

state gains.
Initially, the filters gains are assigned to the following values:

For the a-f filter:

a(0) =1

pl0) =1
For the a-3- filter:

18



a(0) =1
8O)=

7(0) = 2

These values were obtained from the initiation of the smoothing process (shown in the
following section).

The program then calculates the transient gains at each sampling interval until the op-

timum steady state value, corresponding to that gain, has been reached.

The transient gains for the gain parameters a, f, and 7 are based on the recursive

approximations that were given in Sec. 2.2 and are repeated here for convenience (with the

addition of the third state parameters, i.e. acceleration):

a(k) = Q(k - 1) + Gala' - Q(k - 1)]; Ga=1- e'llhﬂ
ﬂ(k) = ﬂ(k - l) + Gﬂ[ﬂ- - ﬂ(k - 1)], Gﬂ =1]1- e—l/kl

V) =(k=1)+ G,y —y(k-1)] G,=1- ¢!/t
where,
a(k), A(k), and (k) are the gains for the present state
a(k = 1), f(k - 1), and ~y are the gains for the previous state
a*, B*, and +* are the steady state optimal gain values.

ka, kg, and k., are the first order time constants of the corresponding gain excursion

19



from its initial to its optimal steady state value. It has been shown in [5] that these time
constants are strictly a function of the tracking index. However, [5] does not provide an
expression for the relationship between the tracking index and these time constants. It does,
on the other hand, provide the graphs for the normalized time constants versus log(A), as
shown in Figure 3.1. (The normalized time constant values were numerically approximated

by using the Kalman filtering process).

In order to make these graphical relationships available to the program, one could divide
the tracking index range into subranges and provide the normalized time constant values
for each subrange endpoints (nodes) and estimate the values within the subranges, through
interpolation. This is required because the program will need these time constant values to

calculate the gains, and it needs to do so for any tracking index value.

The most suitable interpolation method for this purpose is that of Cubic Splines [13}]. This
is one of the most common piecewise polynomial approximations. It uses cubic polynomials
to interpolate between each successive pair of nodes. There are several reasons for choosing

this type of interpolation, among them:

(1) The oscillatory nature of high degree polynomials used to approximate an arbitrary
function on a closed interval, and the fact that a function over a small portion of the interval
can include large fluctuations over the entire range, restrict their use when a smoother

approximation is desired.

(2) With a simple piecewise linear interpolation, there is no assurance of differentiability
at each of the subinterval endpoints, i.e., the interpolating function will not be smooth at
these points.
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(3) Since the cubic splines interpolation uses a cubic polynomial at the subintervals, it
will not only insure that the interpolant is continuously differentiable, but also that it has

a continuous second derivative on that interval.

A final note on Cubic Splines is that either one of the following set of boundary conditions
should be satisfied:

(1) Free boundary: The second derivative at the interval end pointsl are zero.

(2) Clamped boundary: The first derivative of the interpolant at these end points are

equal to the function first derivative at these points.
For simplicity, the free boundary condition has been used in the program.

Now, we describe the process of obtaining the optimum steady state gains. For the
a-f filter, the relationship between o and the tracking index had to be derived from the

following:

A2=T€2_a’ fP=22-a)-4/T-«

The derivation gives the following result (by eliminating 5):

o+ 2(A+8)a - 2(A+8) =0

which has the following solution:

_(A+8) , | [(RAEFR
=-—3 3 TR

21

A(A +8)



Y

Initialize:
obtain parameters
T) a.‘! a." a’l

as(0) = ay(0)
ﬂs(o = ﬂy(o)

i

Ay =T?0, [0,
Ay =T?0, [0,
Calculate o3, oy, 53, fy

Y

Obtain &, , ka,, kp,, kp,
using cubic spline interpolation procedure

Calculate transient gains for

. i C‘zsanﬁza ﬁ’ . )
gasn(k +1) = gain(k) + [1 = e~/ ksein][gain® — gain(k)]

k=k+1

(still in transient state)

gain = gan®

Figure 3.2  The a-8 Filter Gains Calculation Procedure.



The second solution will give @ < 0; therefore, it is ignored.

As for the a-8-4 filter, the relationship between o and the tracking index was derived

form:

£

a

2
A= 74'(1_7-_07’ B=22-a)-4/T=a, 7=

The derivation gives the following result (by eliminating # and ~):

a® + [%(A - 16))a® + [%(48 -A)e-8A=0
We solve the above equation numerically for o using the Newton Raphson method [13]
which gives the positive real root that we are seeking (which lies between 0 and 1.)

Fig. 3.2 shows a flow diagram for obtaining the filters gains.

3.1.2 Initiation of the Smoothing Process

Each filter uses a different initial value for the smoothed estimates; the procedure for

obtaining these values was shown in [5] to be MSE optimal.

The «-7 filter uses a two-point measurement process for the initial position and velocity

estimates:

£(0[0) = z(0)

o(0[0) = 7[2(0) - «(-1)]
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The a-p-7 filter uses a three-point measurement initiation process:

2(0[0) = 2(0)
o(0f0) = {32(0) - 22(~1) + 52(~2)]

a(000) = 755[#(0) = 22(~1) + 2(~2)]

where z(1) is the measured position at the ith sampling period.

3.2 Case Study Simulation model

A case study was used to aid us in the understanding of the filters behavior. It also aided
us in testing our developed techniques as in the case of the learning process, we developed,
to be used for determining o, of the moving object. When we chose the simulation model
for this purpose, we had two objectives in mind. The first was to have a model that tests
the robustness of each filter; the second was to have a model where the primary tracking
modeling parameters could be calculated in closed forms. The latter, helped us in perform-
ing the simulation under a controlled environment which is an important requirement for

testing the filters and developing other techniques.

The chosen simulation model consists of sinusoidal oscillations both in the X and Y
directions. The frequency of the Y oscillations was chosen to be an integral multiple of
that of the X direction. Therefore, the motion in the X-Y plane will be cyclic (forming
Lissajous patterns) with sinusoidal velocity and acceleration in each direction. This model
will test all three filters for maneuver following capability and prediction accuracy. Given
below are the model equations:
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z(t) = zain(wt)
y(t) = geos(mwt) m=1,2, -
where £ and § are the amplitude factors for z(t) and y(¢) respectively.
An approximation to the maneuvering standard deviation is given by [15]:

Oq. = 1 a = —l-wzfi
Gx \/fl z(t)lmaz \/2’

1 1 .
Tay = ﬁl“y(t)lmn = ﬁmzwzy
ie,itis 7‘5 of the maximum acceleration value. This is to be expected since the probabilitj
density function takes the form shown in Figure 3.3.

As for the sampling interval T, it could range from 20 to 50 samples of a full cycle of the

fastest sinusoid, i.e.

=1
=N

|~

T T, =%——  20<N,<50

2r
s MWy

=

The measurement noise which is assumed to be white gaussian, has a standard deviation

equal to a small fraction (g — g) of the maximum sinusoidal amplitude, i.e.

1

On, = W;:c, On , 50< N, <200

-
-
<>

Substituting the above values of T', 0,, and o, for the tracking index:
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Figure 3.3  Probability Density Function of the Acceleration in the Simulation
Model (where A is the maximum acceleration; from (15]).
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3.3 Simulation Results

To test which of the three filters has the best performance, we calculated the standard
deviation of the difference between the predicted and model values. Table 3.1 shows these
standard deviations for some of the runs. As expected, for this continuous acceleration

model, the a-3-7 filter had the error smallest standard deviation.

Except when the tracking index is relatively high, the program starts the filtering prt;cess
by implementing the transient gains. Had not this been done, the steady state value of a
(corresponding to a moderate-to-low tracking index), which in this case could be excessively
small, would have been used to perform the tracking during the transient state. The
latter would make it difficult for the filter to catch-up with the next measured position.
The transient gains in the initial state proved to be very useful since they provide larger
gain values (and then fall down to the optimum steady state values.) This means that
initially, it is more important to catch-up with the next position rather than to filter out
the noise. With each predicted position, the filter gains are further reduced (to allow for
more smoothing of the measured position and to get a better accuracy) until the steady

state value, corresponding to each gain, has been reached.

It was mentioned earlier that in our application, the moving object will not perform
severe maneuvers; thus, the superior maneuver following capability of the a-g-+ filter will
be somewhat wasted. This was one of the deciding factors for choosing the a- filter over the
a-f-~ filter. In addition, it was shown in [5] that the accuracy of the prediction/smoothing
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Two Point Extrapolator a-f Filter a-f-7 Filter

N, n N ] Os Oy Oy Oy 0. Oy
200 20 6.66, 9.06 2.44, 3.57 1.77, 2.33
30 3.93, 4.72 1.65, 2.05 1.44, 1.49
40 2.77, 3.01 1.34, 1.48 1.29, 1.40
100 20 6.84, 9.08 3.72, 4.63 3.56, 2.91
30 4.98, 5.05 2.72, 2.85 2.57, 2.24
40 3.45, 3.45 2.50, 2.19 2.12, 1.91
50 20 9.62, 9.52 5.13, 6.13 5.37, 4.85
30 7.29, 5.72 4.36, 4.15 3.51, 3.75
40 6.30, 4.19 3.42, 3.23 3.32, 2.51

Table 3.1 Error Standard deviations - predicted
position values form model position values.



process improves as o decreases. Since for a given A, the o-8 filter provides a smaller
optimum « than the one provided by the o-g-7 filter (for the same A - as can be seen from

Fig. 3.4), we preferred to use the a-§ filter.

In the next chapter we will discuss two major remaining points. The first is how we
provided the a-f filter with an adaptive learning capability. The second, is how this filter

was tailored for our application.
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Figure 3.4
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CHAPTER 4

Tailoring the Elected Algorithm to the PVM-1 Based

Robotics and Computer Vision System

In the previous chapter we assumed that the three fundamental ¢tracking modeling pa-
rameters 0,, 0y, and T were available to us and we deferred the discussion on how we obtain

these parameters to this chapter.

In order to make our filter practical to use, it would be necessary for us to provide the
filter with these parameters. Determining the first parameter, o,, depends entirely on the
moving object dynamics; the second parameter, ¢,, depends on the method that generates
the object position values. The third parameter, T, is simply the sampling period, i.e. the
time between successive position samples. This parameter is always known and in our case

it is the reciprocal of the frame rate (i.e., 4y sec).

The following sections will explain the procedures for obtaining the two parameters o,

and o,.

4.1 Determining o,

0, 18 a quantity that reflects the uncertainty of the moving object position due to its
accelerations. The degree of accelerations may vary from one moving object to another.
How do we determine o, for any moving object that might be of interest to us? The idea
of a “learning”® tracker evolved when we tried to answer this question. This means that
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prior to performing any tracking, an approximation to o, will be calculated off-line using
position data obtained as a typical test run. Then the a-g filter will use this value for future

tracking.

We begin our explanation of the process by introducing the underlying basic concepts
behind our method:

Let a be a random variable that could take any value in the range +A; where A is the
maximum acceleration that the moving object undergoes. Let us assume that we have N
consecutive position samples of the moving object. We can calculate the acceleration at

each point using the two preceding position points in addition to the current point, i.e.

i = pplalf) - 2a(i = 1) + (i - 2]

T is the sampling period
(s) is the position value at time interval s

Note that our notation z(s) represents a general position point value, not necessarily the
X-coordinate; i.e. z(s) implicitly indicates X or Y. o, is derived for both directions X and
Y; each has its corresponding o, i.e. 0,, and 0, . We will use the notation o, to represent
either direction.

The variance for this random variable is given by:
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07 = Elaf] - Efa;]*

which is estimated as:

1 &L, LA
Ggﬁmga;-(m;ai)

The resulting o, value would have been used to calculate the tracking index for the
tracking filter had it not been derived from the a; values, because the a; values were derived
from the unreliable noisy object position data. However this value could be used as an initial
approximation to the actual 0,. We can obtain a better approximation if we use a filtered

version of the noisy data points. Here, the a-8-v filter comes to play.

The a-§-+ filter is run iteratively with each iteration using the smoothed position values
that the filter calculated during the previous iteration. That is, at each iteration, the filter
produces the object position values had there been a lesser amount of noise present in the
data (than that present in the data of the previous iteration). The quality of filtering-out
the noise depends on the values of the filter gains, «, §, and 4. These gains are calculated
from the tracking index which in its turn is calculated from T', 0,, and o,. Let us assume
that o, is known at this point. We know the value of T and we have an initial approximation
to 0,. When the a-J3-7 filter is run on the noisy position data for the first time, it uses
the initial approximation of o, (which we derived above) to calculate an initial value of
the tracking index. Then it calculates the corresponding gain values and uses them to
calculate the predicted and smoothed position, velocity and acceleration values. For the
second iteration, the filter uses the smoothed acceleration values from the first iteration

to calculate a new improved approximation for ¢, and the process is repeated again. The
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next iteration will produce even better values because the newly calculated o, is a closer
approximation than its previous value. The whole process (see fig. 4.1) is repeated until

the newly calculated o, asymptotes to a value that is closest to the actual o,.

We tested the above procedure using the simulation model (discussed in the previous
chapter). The resulting o, was identical to the theoretically calculated value (as in sec

3.2) without the presence of noise. As we increased the noise level, the deviation from the

theoretical value increased.

4.2 Determining o,

oy is a measure of the level of the uncertainty in the object position due to certain errors
introduced during the position measurement process. Therefore, this quantity is entirely
dependent on the measurement method. In our case, we use the existing moving object
detection algorithm that was discussed in Chapter 1, to supply our tracking filter program
with the moving object position; hence, o, corresponds to the errors introduced in this

detection algorithm.

Recall that detecting the moving object may occur at any one of the five pyramid levels,
(once an object has been detected, the algorithm calculates the center of the object and
passes that as the position value). Each pyramid level has a corresponding 0,,. For example,
one does expect the noise level in the lower resolution image to be greater than that in a
higher resolution image. A sale assumption, (that was later proven to be correct), was that
the noise level increases by the same factor at which the image resolution decreases, e.g.
the noise level in a 32 x 32 resolution image is approximately 4 times that in the 128 x 128

resolution image. Then it is clear that once we obtain o, for any one of the pyramid levels,
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laitialize: .
calculste o from a test run position data pointa
n,it) = hylr(s) - 22(s = 1) + z{s - 2)
ay{s) = rlyls) - (i = 1) +y(1 - 2)
for 2 <1 €

"

calculate o,
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‘<The procedure for calculating the transient gain is-the same as that shown in Fig. 3.2
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_Figure 4.1  Calculation Procedure for o,



it will be a matter of trivial scaling that will provide us with o, for each level.

The measurement noise present in any of these levels is mainly due to quantization noise,

which is carried over to the calculation of the object center.

Let us consider o, for the 256 x 256 original image. We will perform our derivation for
a one-dimensional model since, in our case, 0, in the X-direction is identical to that in the

Y -direction.

Our model is shown in Fig. 4.2. Let L be the length of a stretched wire. Let z; and z»
be the position of the end points on the X-axis; and let 714 and zo4 be the positions of the
end points after quantization. Let ¢ be the difference between z, and z (i.e., z, = z + ¢€).
This is a random variable whose probability density function (pdf) is uniformly distributgd

between +4, where A is the quantization step (see Fig 4.2b).

We would like to derive an expression for o, based on the variance of the estimate of the
object center (here the center of the wire). Let ,, represent this quantity. We proceed as

follows:

4 = .’Bl!;—xg!
T1te1+22+¢é2 T+ T2 € +¢€
= 7 =2 3

Thus we can express £,, in terms of the actual center of the object with an additive error

factor £(¢; +¢2), ie.:

A € +¢€
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The expected value of Z,, is:

E{i"m} =E{zm} + E{¥}

=Zym +0
therefore,
varlin] = var{ 132 = 7102, +%
1
= 3[20?]
hence,
. 1 1.9
var|ty,] = 50? = EE{c }
a/2
=1 / 1.2y
2 -A/2 A
A2
Yy
This gives us the following result:
n A2
03, = var[im) = o7
and,
a‘ ot A
$m 2\/6
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Hence, the value of o, for the 256 x 256 original image is ﬁg, where A =1/256. As for
the other pyramid levels, o, is simply a 2" ~! multiple of that in the original image, where

n is the image level. That is, o, for the second pyramid level is 21\%; for the third level,

5‘{%; etc.

A final note is that if the moving object is being detected in the third level, for example,
our tracking algorithm uses the o, that corresponds to this level to calculate the tracking
index. It is a simple matter for the detection algorithm to pass the pyramid level value

since it is a known quantity.

These results were tested on position data files that the detection program produced
(from the Pyramid Machine - IBM RT setup). Our tracking algorithm performed best
when we used the proper oy, i.e., the one that corresponded to the pyramid level where the

object was detected.

A typical image frame, obtained by our system, is shown in Figure 4.3. This is the
original 256 x 256 image which is a part of a series of frames from which the position data
of the detected moving vehicle was obtained. For this particular frame, the proper o, is %
which corresponds to the fourth (last) pyramid level. The vehicle image can be detected

at this level because it occupies approximately two pixels out of 16 (in the fourth level), as

seen from Figure 4.3.






CHAPTER 5

Conclusion and Recommendations for

Future Work

We studies several tracking algorithms in order to provide a PVM1- based
robotics and computer vision system with an adaptive tracking capability. The
examined filters were: The Kalman, Wiener, a-8 and a-3-7 filters, and the Two
Point extrapolator. The decision criteria followed in choosing the appropriate
algorithm was based on two objectives. The first was to obtain high performance
accuracy in both transient and steady state track periods; the second was to

choose a tracking algorithm with low real-time implementation cost.

The comparative study led us to choosing an optimal a-5 filter that realizes
the accuracy of the Kalman fliter. The optimality of the adopted filter stems
from the method used in producing the filter gains. This method is based on the
“Tracking Index” parameter which is proportional to the ratio of uncertainties

due to object accelerations (0,) and that due to measurement noise (o,).

In order to determine o,, we developed an adaptive method for inferring
object dynamics in an iterative learning process. We used an a-p-v filter for
this purpose. The gain parameters of the latter filter are also determined by the
tracking index; hence performing optimum smoothing. The resulting smoothed
acceleration values are used to calculate the acceleration variance. The latter
calculation is an integral part of this learning process.
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As for 0,, we learned by examining the existing moving-object detection algo-
rithm, that the present measurement noise is mainly due to quantization effects.
Hence, we were able to derive an expression for 0, which inherently includes
the quantization noise effects as they are introduced through the detection al-

gorithm.

Having o, and o, as known quantities, we were able to use an algorithm as
simple as that of the a- j filter, without increasing its complexity and implemen-
tation cost, to realize the accuracy of the Kalman filter. In addition, providing
our system with an adaptive- learning tracker introduces the possibilities of

using it in numerous robotics and computer vision applications.
We recommend the following for future work:

1. Provide the a-p fllter with optimum on-line adaptive learning capability.
This is useful in multi-moving-object environment where a priori information

on the object dynamics is not available.

2. Extend the tracking algorithm to have the capability of tracking an ob-
Ject in a multi-moving-object environment. It has been shown in [16] that the
tracking index plays a major role in the probabilistic position data -to- moving

object assoclation problem.

3. Combine the tracking algorithm with feature extraction capability [17]
to single out a particular moving object out of the same assemblage of moving

objects.

4. Use the tracking algorithm in conjunction with binocular imaging to com-
pute the 3-D parameters of rigid motion.
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APPENDIX 1

Basic Equations of the Simulated Tracking Algorithms

(1) a-g Filter

Prediction:
z(k + 1|k) = z(k[k) + Tv(k|k)

v(k + 1[k) = v(k|k)

Correction:

z(k + 1|k +1) = z(k + 1|k) + a(k + D[z(k + 1) - 2(k + 1]§)]

ok + 1k +1) = ofk + 1k) + 280k + Dle(k +1) = z(k + 1)

(definitions will follow the a-p-~ filter equations)

(2) a-B-v Filter
Prediction:

z(k + 1[k) = z(k[k) + To(k|k) + %T"’a(klk)

v(k + 1|k) = v{k|k) + Ta(k|k)

a(k + 1|k) = a(k|k)




Correction:

z(k+ 1k +1) = z(k + 1]k) + a(k + 1)[z(k + 1) — z(k + 1]k)]
ok + 1k +1) = vlk + 1K) + £8(k+ ek +1) = z(k + 1)

a(k + 1k + 1) = a(klk) + (k+ 1)[2(k + 1) — z(k + 1{k))]

1
21
z(k|k) is the position estimate at time interval k
z{k + 1|k) is the position estimate at time interval k + 1 given k samples (measurements)
v(k|k) is the velocity estimate at time interval k
a(k|k) is the acceleration estimate at time interval k
a(k) is the position tracking parameter at time k
B(k) is the velocity tracking parameter at time k
¥(k) is the acceleration tracking parameter at time &k
T is the sampling period

z(k + 1) measured position at time k + 1

(3) Two-Point Extrapolator

Prediction:
z(k + 1|k) = z(k|k) + Tv(k|k)

v(k + 1]k) = v(k|k)
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Correction:

zk+1)k+1)=z2(k+1)

ok + 1k +1) = Zfe(k + 1) = 2(k)
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APPENDIX II

THE TRACKING PROGRAM
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PROGRAM track;

(¥ This program performs tracking by using a Two Point
Extrapolator, an Alpha-Beta Filter, or an Alpha-Beta-Gamma
Filter. The +tracking may be performed on variations of the

simulation model or on a binary file of position data points.
The adaptive-learning capability is also available as an
opticon. #*)

CONST
max length = 150; (% maximum number of data points for use as
' a fading memory filter. This limit is
for simulation purposes only.¥)
m color = 1;
pr color = 2}
model color = 3;

i* The following are constants related to the menu options. )

(* csme_opt for calculating maneuvering sigma estimate .¥*)

cmse_opt = 1;

(¥ catd opt for continuous acceleration tracking demo. %)

catd_opt = 2,

(¥ spopm_opt 1is for +tracking wusing series of positions
obtained by the Pyramid Machine. %)

spopm_opt = 3;

exit_opt = 4;

(¥ sigma n 0 is the quantization noise in the original 256x2586
image %)
sigma n 0 = 0.204;

TYFE
string type = stringll2};
array_type = arrayl{l..max_length] of real;

VAR
(¥ The following arrays store the filters gains for the x and
y directions. ¥)
gain %, gain_ y : array(2..3,1..3}] of array type.
gain_opt _x, gain_opt _y: arrayl[2..3,1..3] of real;
gain_type : arrayll..3] of string type;

(¥ The following arrays are used to indicate if a pariticular
gain of the fading memory filters has reached steady =ztale
or not. *)

steady state x,

steady state yv @ array[2..3,1..3]1 of boolean:

(¥ The ftollowing are first order time coanstants detfinad by
the filter gain excursion from its initial state Lo its
optimal state value. #*)

k taw _x : array[2..3,1..3] of real;

k taw y : arrayf{Z2..3,1..3] of real;

(¥ The following variables are satandard deviations for
maneuvering accelerations and measurement noise. ¥



sigma_a_x, sigma_a_y.

sigma n x, sigma_n_y @ real;

tracking index x, tracking index_y ' real,;

(¥ The following variable represents Lthe Tpyramid’ level
where the object is being detected. The value hoers  us
assigned by the used. Normally, however, this valuc will
be passed by the existing Motion Detection program. Yial 1d
values for this variable are 0. .4 %)

Pyramid level : integer;

(¥ The following are the measured, predicted, znd smoothed

object position and velocity for the x and y direclLions.

m Xx, my * array_type,

P.X, P_¥Y.

S X, S5_¥,

m v X, PV X, S _V X,

mvy, pv.y, s vy . array[{l..3] of array type;
S a X, p a _x,

s ay, p.ay @ array_tLype,

(¥ The following are the simulation model position wvalues.

model x, model y : array type;

(* T is the sampling interval between time k and k+1.

sampling factor reduces the sampling rate by tLhe am

specified by this variable. *)

T : real;

sampling factor : integer;

(¥ The following varliables are assoclated wilh
continuous acceleration +tracking demo, which uscs
simulation model. ¥)

X mag, y_mag : real;

w : real;

m : integer,;

n_sampling, n_measurement _noise : integer;

phase : real;

(¥ miscellaneous x)

k, ctr, ctrl, ctr2 : integer;
max_runs : integer;

s : string_type;

option : integer;

delay factor : integer;
filter option : integer;
ptsfile : file of char;

file name : stringl|l12];
num_otf _pts : integer;

{* Include the Cubic Spline interpolation procedure. ¥)

{$]l cs _extrap.past!

L

+)
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FUNCTION Gauss : real;

(¥ Returns a gaussian random variables by summing 12 samplos  of
uniformlly distributed random variable obtained from the
predefined Random function. )

Var
temp : real;
i : integer,
Begin (% gauss *)
temp = 0.0,
for 1 1= 1 to 12 do
temp = temp + random,
3auss :z temp -6.0;

End; (¥ gauss *)



PROCEDURE get_position(l: integer);

{¥ This procedure reads the the next object positicon valuc (x and
yv) from the specified file. Then it checks to goo 1L LL is 2
valid peint (based on how far the new position is trom fhe
previous one). It the point 1s invalid, Lhe:  procodure
calculates an  approximation to what the proper value  sheold
have been using linear interpolation. Note: Lhe Lirst  loop
skips sampling factor-1 points, in effect roeducing  the
sampling rate by sampling factor. *)

Const
pos dif tfactor = b;

Var
position_difference : integer;
temp_x, temp_y : char;

Begin (¥get_ position¥)
position difference :z pos_dif_factor ¥ sampling tactor;
tor ctr := 1 to sampling factor-1 do
read(ptsfile, temp _x, temp_y);
read({ptstile, temp_ x);
read(ptsfile, temp y):
if (1 > 2) then
begin
m %1} := ord(temp x);
m y[{l] := ord(temp_y);
if ((abs(m x[11 - m_x[1-1])) > position ditfterencer then
m_ x[(1] = 2¥%m_x[1-1] - m_x{1-2};
it ((abs(m yl[l] - m_y[{1-1])) > positicon ditterecnce) bthen
m_y(l] = Z¥m_y[1l-1} - m_y(1-2];

end
else
begin
m_x[1l} := ord(temp x};
m yll] := ord(temp_y);
end;

End; (*get position¥)



PRO

(*

VAR
%

1

CEDURE calc_sigma_a(first time : boolean),

This procedure calculates an estimate of the mancavering
standard deviation value. When first time 1is Lrue, Lhe
procedure uses position points data form a test run lile to
obtain the acceleration values. Otherwise, it will use the
smoothed acceleration values obtained via the alpha-betba-gamma
filter. #*)

X, VvV ¥ * array type,

um_a x, sum_ a y,

um squared a x, sum_squared _a vy : real;
integer;

junk file : text;

Beg

in (*calc sigma a¥)
sum a x = (;
sum a y = 0O,
sum_squared a_x = 0}
sum _squared a y = 0;
if (first _time) then
begin
1 = 1
for i = 1 to num_of pts do
get position(i);
for i := 3 to num of pts do
begin
v xf{i-1] = (m_x[i-1] - m x[i-2}:/T;
v x{1i] = (m_x[1] - m_x[i-1})-T;
5 a x{1-2] = (v_x[i]-v x{i-1]),T;
v yf{i-11 = (m_y[i-1] - m_y([i-2])/T;
v_yli] = (m_y[i] - m_y[i-1])/T;
s_a_yli-2] := (v_ylil-v_yli-1]})/T;
end;
end;
(¥ Calculate the estimate of +the maneuvering standard

deviation %)

tfor 1 := 1 to num_of pts-2 do
begin
sum_a_xX = sum_a _ x + s a x{i}:
sum_squared_a_x = sum_squared a x + sqris_a_x}il;
sum_a y ‘= sum a y + s_a vi{i];
sum_squared_a y = sum _squared_a y + sgris a y¥|il]}y;
end;
sigma_a x = sqrt{sum_sqguared a x/num_of pts -

sqQr(sum_a x./num ot pls)i;
sqrt(sum_squared a y/num_of pts
sgri{sum_a y/num of pls)).

sigma _a vy



End,;

writeln;
writeln( Estimated maneuvering standard deviation in

writeln('x direction is : ', sigma a x);

writeln;

writeln(’Estimated maneuvering standard deviation ia
writeln('y direction is: ', sigma a y}.

writeln:

reset(ptsfile);
(* calc _sigma ax)

Lhe'

Lhe!



PROCEDURE Get_option,

(¥ This procedure displays the menus and cbtains thoe soloecled
options. *)

Var
answer : char;

parameter @ integer;

Begin (#get option¥)

answer = 'y’

clrscr;

writeln(’1l. €Calculate an estimate of maneuvering standard
deviation’ ),

writeln(’ from a given test run. ');

writeln;

writeln(’2. Continueous acceleration tracking demo’ ).

writeln;

writeln(’3. Track using series of positions obtained by

the "3
writeln(' Pyremid machine’ };

writeln;
writeln(’4. Exit’);
writeln;
write(’Please Enter coption number: ’);
readln(option);
if (option = catd opt) then
begin
clrscr;
while (answer='y') or (answer='Y'}) do
begin
writeln(’ The following parameters have the following
values: ' );

writeln;

writeln(’ 1. X-Y frequency factor = ', m);

writeln; .

writeln{(’ 2. Radial frequency = ', w:b:3);

writeln;

writeln(’ 3. Phase difference = ', phase:b:3);

writeln;

writeln(’ 4. Number of samples of a full cycle of
the faster' o,

writeln(’ sinusoid = ’, n_sampling);

writeln;

writeln(® 5. "8NR" = ’, n_measurement ncise),

writeln;

writeln(’ 6. Display delay (ms) = ', delay ftaclor),

writeln;

write(’ Do you like to change any of the pacramcters

ty/urs 7y,

readln (answer);
while (answer='y’) or (answer="Y') do
begin
writeln,



write(’

Which parameter do you like to

readln(parameter);

writeln;

if (parameter=1) then
begin

end
else
if

write(’

(parameter=2)

X-Y
readln(m);

frequency factor =

then

begin

write(’
read(w);

Radial frequancy =

end

else

if (parameter=3)

then

begin
write( ’'Phase differconce
readln(phase);

end

else

writeln;

if (parameter=4) then

begin
write(’ Number of
samples

readln (n _sampling);

end

else

if (parameter=5) then
begin
write(’ "SNR" R

readln(n measuremeant

changs

R

")

noisa);

end
else
if =

(parameter 6817 Lhen
begin
write( ' Display

{ms

delay

I

readln(dclay factor);

end
else
writeln(’ Invalid

aopticon. ..

write('Do you like to change another

{y/n):

readln(answer);

end;
end;
end
else
begin

clrscr;



writeln,
write(’Please enter test-run file nam=: ',
readln(file name);
assign(ptsfile, file name);
writeln;
write(’How many measured points does the file contain?’),
readln(num ot ptsi};
reset(ptsfile);
writeln;
{¥ The following value will be normally passed by the
existing Motion Detection Program. +)

write( 'Enter The pyramid level at which the objsct was
deteooted: ')
readln(pyramid level);

clrser;
writeln(’ The following parameters have the tollowiog
values: '),
writeln;
writeln(’ 1. Sampling rate reduced by a luactor = ',
sampling factor);
writeln;
writeln(’ 2. Display delay (ms) = ', delay factor);
writeln;
write(’ Do you like to change any otf the parameters
biysn): 7,
readln (answer);
while (answer='y’) or (answer=’'Y’') do
begin
writeln;
write(’' Which paramster do you like to change
(1. .&) ")y
readln(parameter);
writeln;
if (parameter = 1) then
begin
write(’Reduce the sampling rate by
a factor of: ')
readln(sampling factor),
end
else
if (parameter = 2) then
begin
write(’'Display delay (msiz= ',
readln(delay_tftactor),
end
else
writeln(’Invalid option. .. });
writeln:
write(’'Do you like to change another

(y/n): ),
readlni{answer) .
end;
end;
if (option = cmse opt) then



begin
filter_option :=z= 3;
T =z 0.0333%sampling factor;
calc_sigma a(true);
end;

1f (option <> cmse_opt) then

begin
clrscr;
writeln;
writeln(’'Which of the following filters you would like
Loouse ¥ ')
writeln;

writeln(’1. Two point extrapolator’);
writeln('Z. Alpha-bata filter’);
writeln(’3. Alpha-beta-gamma filter’' );
writeln;, write(’Please enter option number: ';
readln(filter _option);
end;
End; (¥get option¥)



PROCEDURE calc_gains;

{¥ This procedure calculates the optimum steady sta
the Alpha-Beta, and Alpha-Beta-Gamma filters. +;

e guins  lor

Procedure calc alpha 2(t _i: real;
var opt _gain: real);

(¥ This procedure calculates the optimum steady state alphs ftor
the Alpha-Beta filter. #)
var
b: real;
root real;
begin (%calc alpha 2%)
b o= Q.25%(t i+8)y%t i
root iz 0.5%( b+sqrt(sqr(b)+4*b));
if (root>0) and (root<l) then
opt _gain := root;

end; (*calc alpha_2%)

Procedure calc alpha 3(t 1 : real;
var opt gain : real);

(¥ This procedure calculates the optimum steady state alpha lor
the Alpha-Beta-Gamma filter. The Newton-Raphson method is used
here for solving the cubic equation. %)

const

tol = 0.0001;
var

b, o, d: real;

pQ, p : real;

f p. £ d p : real;
temp: real;
continue: boolean;

begin (*calc alpha_ 3%)

b = 0.25%t _ikx(t_i-16);
c = 0. 25*t_1*(48 t_i);
d 1= -8%t_1i;
pd := O.b;
temp = sqr(p0);
continue := true;
while continue do
begin
temp := sqr(p0);
f_ p = pO*xtemp + b¥temp + c*pO + d;
f dp 1= 3ktemp + 2%b¥p0 + c;

p = p0- f p/f_d_p;
if (abs(p-pl)<tol) then

begin
opt _gain = p;
continue = false;

end



else
pO = p;
end;
end; (xcalc_alpa_ 3%)

Begin (*calc gainsx*)
if (filter option = 2) then

begin
calc_alpha 2(tracking_index x, gain opl x|2.,111;
gain opt_x{2,2] = 2 % (2 - gain opt_xl=.,1]) 4

¥ sqrt(l - gain opt x{2,11);

calc alpha 2(tracking index_y, gain _opt y|2.111

S

gain_opt y[2,2] = 2 %x (2 - gain opt _v[Z.,1})
¥ sqrt(l - gain opt 312,11},
end
else
begin
calc _alpha _3(tracking index _x, gain opt x|3,11);
gain_opt_x[3,2] = 2 ¥ (2 - gain_opt x13,1}) - 4
¥ sqrt(l - gain opt =x{3.11}1;
gain opt _x[3,3] := sqr(gain _opt _x[3,2])/

gain opt x{3.11;

calc_alpha 3(tracking_index_y, gain_opt_¥{3,1]);
gain_opt_y[3,2] = 2 *x (2 - gain _opt_y|[3.1]) - 4
* sqrt(l - gain opt yi{3,11);
sqr(gain_opt _v[3,21)/

gain _opt y[3,17;

gain_opt_y[3, 3]

end,;
writeln(;optimum alpha x = ’, gain opt x[filter option.1 |
thi 3
writeln('optimum alpha y = ', gain_OPt_Y[filterOptifn?ii
readln; :h:3);

End; (*calec_gainsx)



PROCEDURE initialize_filter;

{¥ This procedure calculates the

deviation and the tracking index. #*)

Const
In 10 = 2.30258;
Var
log _index x,
log index y : real;
i, i : integer;

Begin (% initialize filter *)

if (option=catd opt) then
begin

sigma _a_x

sigma_a_y

sigma_n_y
T := 6.

ol

end
else
begin
if (optionzspopm_opt
begin
write( ' Enter
the x
readln(sigma
writeln:
write(’Enter
the y

readln(sigma_

= 0.707*sqr(w)¥x _mag;
= 0.707*%sqgr(m*w)*y mag,
sigma n _x = x_mag/n_measurement nois<;
= y_mag/n_measurement noise;
83/(n_samplingxm¥w);

} then

maneuvering standard deviation
direction: ’);
La_x);

maneuvering standard devialbion
direction: ');
LAY )G

T := 0.0333%sampling factor;

end;

(¥* The standard deviation value of the

noise is (2 "pyramid level)xsigma n 0 +)

sigma n_x
sigma_n_y

end;

tracking index_ x
tracking index y

o

writeln(’Tracking index x =
writeln(’ Tracking_ index y =

exp(pyramid_level*ln(2))*¥sigma n 0;
sigma n_x;

sqr(T)*¥sigma_a x/sigma n x;
sqr(T)*sigma_a_y/sigma_n_y;

’

, tracking index x:5:3);
', tracking index _y:5:3);

if (filter option <> 1) then

begin

log_index_x := ln(sqr(tracking_index x)),1ln 10;

log index vy

In(sqr(tracking _index_y))/1ln_10;

maneuvering., aolse  sbundard

in

in

quantization



if (filter option=2) then

i = 2
else
i = 3;
for j = 1 to filter option do
begin
if (log index x > 0) then
steady state x{i,J] ‘= true
else
begin
steady state x[1.3] = talsc.
k taw _x{i,j] ‘= cs extrap(i-1,
gain typel i}, log index x);
end;
it (log index_ y > 0) then
steady_state_y([i,J] := true
else
begin
steady_state _y{i,j] = false;
k taw_y{i,J] = es _extrapti 1,
gain typel(jl, log index _y);
end;
end;

cale _gains;

gain_x{2,1,1] := 1.0; gain y[{2.1,1} := 1.0;
gain x[2,2,1] 1.0, gain_yl[2,2,1] = 1.0;
gain xf3.1,1} := 1.0, gain ¥{3,1,11 = 1.0;
gain x[3,2,1] = 1.5; gain y[3,2,1} = 1.5;
gain x{3,3,1] = 2.0; gain y{3,3,1] := 2.0;
end;
tfor 1i:= 1 to 3 do
begin
it {(option=catd opt) then
begin
model x[i] := x_mag X sin(wixT);
model _y[i] := y_mag * cos(m¥wki¥T+phase);
m_x[1] := model x[i] + sigma n % + Gauss;
m_y{il := model y{i] + sigma n y + Gauss;
end
else
if (optionz=spopm_opt) then
get_position(i);
end;

(¥ The following are the initial estimates of the Two FPolnt
extrapolator, Alpha-Beta, and Alpha Beta Gamma t{ilters,
respectively. %)



if (tfilter_ option=1) then
begin
s_x(1,1] =z m_x[37;
s_y[1,1] = m_y[3];
s v.x[1,1]) = (m_x[3]-m_x[2])/T;
s_v_yll,1] = (m_y[3}-m_y[2])/T;
and
else
if (filter_option=2) then
begin
s_x{2,11 = m_x[3];
s y[2,1] = m_y[3];
s.v_x[2,1] = (m_x[31-m x[2])/T:
s v.yl2,1) = (m_y[3)-m_y[2])/T;
end
else
begin
5 x[3,1) := m_x[37;
s_y[3,1] = m_y[3];
s_.v_x[3,1] = (3%km_x[3]-4%m x{2]+m _x[1])/(2%T);
s v.yl[3,1] = (3*m_y[3]-4%m_y[2)+m_y[1]),/(2¥T);
s_a_x[1] = (m_x[3]-2¥%m_x[2)+m_x[1]),/sqr(T);
4 s_a y[1l] := (m_y[3)-2%m_y{2]1+m_y[1]),/sqr(Tl;
end;

End; (*¥initialize filterx

)



PROCEDURE Calc_trans_gain(filter_id, gain_id : integer,

coordinate © char),

(* This procedure calculates the filter gains (alpha, bela, and
gamma)} during the transition period. It returns a true value
when the steady state, optimal gain value has been reached,
false otherwise. *)

Const

arror_ percentage = 0.1;
Begin (*¥calc trans gain¥)
if (coordinate = ’x’) then
begin
gain x{filter_id, gain_id,k] := gain_ x|{filter id,

gain id,k-11 + (l-exp(-1/k _taw _x[filter_ id.gain id]))
¥ {gain opt x[filter id,gain id] - gain x| filter id,
gain id,k-1]);
it (abs(100%x(gain_x[filter_id,gain_id k|
gain_opt x{filter_ id.gain idj)/
gain_opt _x{filter id,gain id]:
error percentagea) bhen

steady state x[filter id, gain id} = lrue;
end
else
begin
gain y{filter_id, gain_id.kl := gain y|[filter id,
gain_id,k-1] + (l-exp(-1/k taw _y[filter id,gain id}))
¥ (gain_opt v{filter id,gain id} - gain y[flilter id,
gain id,k-1]1;
if (abs(100%(gain y[filter id,gain _id, k|
gain_opt_y[filter id,gain id})/
gain_opt_y{filter_id,gain_id]) <
error_percentage) then
steady_state_y[filter_id, gain_id] := true;
end;

End; (*calc_trans_gaink)



PROCEDURE initialize;

Begin (¥ initialize *)
gain typell] : alpha’;
gain_typel2] ‘beta’,;
gain type{ 3] ’gamma’ ;
delay factor g,
m ‘= 2;

w = 6.28;

phase := 1.57;

n_sampling := 20;

n_measurement noise = 256;

sampling factor := 1;

x_mag := 1256;

y_mag := 75;

o N

get_option;
End; (% initialize *)

PROCEDURE add_measurement_noise;

(¥ This procedure adds noise to the ideal model

noise is white zero mean. %)

Begin
m_x[kl := model x[k] + sigma n x
m y[k] := model yfk] + sigma n_y

End;

location.

The



PROCEDURE predict_1(k:integer);

(¥ The prediction
Point Extrapolator. #*)

in this procedure is based on that of the

Begin (#predict 1%)

End;

p.x{1,k] = s
pyll, k] 1= s
p_v_x[1,k} :=
p_v_yll,k] :=

{¥predict 1x%)

x[1,k-1]1 + T¥s_v_x[1,k-

17
yl1,k-1] + T¥s v_y[1,k-17;

s v._x[1,k-173;
s v_y[1l,k-17;

PROCEDURE smooth_1(k: integer);

(¥ The smoothing
Point Extrapolator. %)

Begin (*¥smooth_1x%)

End;

S
S
s

3

“x[1, k] 1= m_
y[1.k] = m_
v x[1,k} :=
v yl1l,k] :=

(¥*smooth 1%)

in this procedure is based on that of the

x{k];

ylk];

(m_x[k]-m_x[k-11)/T;
(m_y{k]-m_y[k-11)/T;

Tyvae

Two



PROCEDURE predict_2(k:integer);

(¥ The predicition in this procedure is based on that <«f ‘the
Alpha-Beta Filter. ¥)

Begin (*predict_ 2%)
p x|2.,k) = s_x[2,k-1] + T*xs_v_x[2,k-1];
pyl2, k] :=

s yv[2,k-1] + T¥s_v yl[2,k-17;
p v x[2,k] := s v x[2.k-1];
pv.yl2, k] = s v yl2,k-1];

EaY

End; (*¥predict_ 2%)

PROCEDURE smooth_2(k:integer):

(¥ The smoothing in this procedure is based on that ot the Alpha-
Beta Filter. X)

Var
difference x : real;
difference_y : real;

Begin (*¥smmoth_2%)
difference x
difference_y
s_x[2,k]

= m_x{k] - p_x[2,k];
:px
s_yl2,k] := p_yl
= p
= p
)

m
m_ylk}] - p_y[2,k];

2,k}l + gain x[2,1,k]l*%difference x;

2,k]1 + gain_y{2,1,k}*difference_y;
v_x{2,k] + (gain_x[2,2,.k]}/T)kditference x;
v_y[2,k] + (gain_y{2,2,k]/T)*ditfercnce y;

s v_x[2,k]
s_v._yl2, k]
End; (#¥smooth_2%



PROCEDURE predict_3(k:integer);

(¥ The predicition in this filter is based on that of the Alpha
Beta-Gamma Filter. *)

Begin (¥predict 3%)

p . x{3,k]) :=z s x[3,k-1] + Txs_v_x[3,k-1] + O.hbtsgriTits =2 x|k-1];
p yv(3,kl = s y[3,k-11 + T¥s v_y[3,k-1] + O.5tsqr(T)its a yik 1];
p.v. x[3, k] = s v.x[{3,k-11 + Txs_a_x{k-1];
pv._yl3, k]l =z s v_y[3,k-1] + Txs_a_ylk-1};
p_,a x[k} = s_a_x[k-11;
p.a ylk] = s _a y[k-1];

End; (¥predict_3%)

PROCEDURE smooth_3(k:integer);

(¥ The smoothing in this filter is based on that of the Alpha-
Beta-Gamma Filter. )

Var
difference_x : real;
difference y : real;

Begin (*smooth 3%)

difference_x := m_x[k] - p_x[3.k];

difference y = m_yl[k] - p_v{3,k];

s_x[3,k} = p x[3,k] + gain_x[3,1.kl*difference x,

s v[3,k] = p y(3,k] + gain_y[3,1,k}*difference y,;

s v.x[3,k] = p_ v_x{3,k] + (gain_x[3,2,.k)j/T)*differcnce x;

s v.y[3,k] = p_v.yv[3,k] + (gain_y[3,2,k]/T)*ditference y;

s_a x[kl := p_a_x[k] + gain_x[3,3,k]/(2*sqr(T))+differecuce x;

s_a ytk] = p_a y[k] + gain_y[3,3,k]}/(2%sqr(T))¥difference y;
End; (*smmoth 3%)



PROCEDURE get_statistics(xl, yl, x2, y2 : array typz),

(¥ This procedure calculates the standard deviations of Lhe
predicted and model values in both the x and the y directions.
* )

Var
zzave X, zzave.y,
zave X, zave y @ real;
i : integer;
sigma_x, sigma y @ real,;
n : integer;

Begin (*get statisticsx¥)
if (option<> catd _opt) then

n := num_otf_pts
else
n = m¥n_sampling-1;
zzave _x = 0; zzave_y = 0;
zave x = (; zave y = 0;
for i = 2 to n do
begin
zave_x = gave_x + (x1[1i]-x2[1i]);
zave y = zave_y + (yl[i]-y2(i]l);
zzave_x = zzave_x + sqr(x1[i]-x2[i});
zzave y = zzave y + sar(yl(i]-y2{il]);
end;
zave X zave_x/n;

zave y = zave_y/n,

zzave X = zzave_x/n;

zzave_y = zzave_y/n;

sigma_x = sgqrt(zzave_x - sqr(zave_x));
sigma_y := sqrt(zzave_y - sqr(zave_y));
clrscr;

writeln;

writeln(' The following are the values of the standard
deviations of ’);

writeln;

writeln(’ the predicted and model position values:');

writeln; writeln;

writeln(’'Standard deviation in the x direction: ', sigma x
th1 3,

writeln;

writeln(’8tandard deviation in the y direction: ', sigma_y
-53)‘

readln;

clrscr;

End; (*get_statistics¥*)



PROCEDURE drawp(x_temp, y_temp '@ real;
color : integer);
Var
%X, ¥ : integer;

Begin (¥drawp*)
if (optionzcatd _opt) then

begin
¥ ‘= round(x_temp)+160;
vy = round(y_temp)+100;
end
else
begin
x = round{(2240%x_temp/255) - 950;
v = round(300%xy_temp/2685) - 100;
end;

draw(x-2, v, x+2, y, color);
draw(x, vy-2, x, y+2, color);
End; (¥drawp¥)



BEGIN (*Trackk)

initialize;
initialize filter:
while (option <> exit_opt) do

begin
if (option <> cmse_opt) then
begin
graphcolormode;
palette(2);
textcolor(2); write(’ R: predicted’ );
textcolor(3); write(’' y: model’);
textcolor(l); writeln(' G: measured’),
end;
if (option=catd_opt) then
max_runs := m¥n_sampling+l
else
max_runs := num_of_pts;
for k = 2 to max_runs do
begin

delay(delay_factor);
if (filter_ option=z=l) then
begin
predict_1(k);
drawp(p_x[1.k}, p y(l.k|, pr color);
end
else
if (filter option=2) then
begin
predict_2(k);
drawp(p_x[2,k], p_ylZ. k],
pr color);
end
else
begin
predict_3(k);
if (option <> cmse_cpt) then
drawp(p_x[3.k], p_yl3,k]J,
pr_color);
end;
delay(delay_factor),;

if (optionz=catd_opt) then

begin
model x{k] := x mag ¥ sin(wt(k+Z)1+T).
model y{k] := y_mag * cos(m¥wk(k+2)*
T+phase)
end
else

get position(k);
if (option = catd_opt) then
begin



drawp(model _x[k}, model ylk],

model color);
add measurement noise,
delay(delay_factor);
end;
drawp(m_x{k], m_y[k], m_color);
if (filter option <> 1) then
begin
if (filter_option=2) then
ctrl = 2
else
ctrl = 3;
for ctr?2 = 1 to filter option do
begin

gain x[ctrl,ctri, k] :=z=
gain _opt x|{etrl,ctr2];
gain_ylectrl,ctr2,k} :=
gain_opt_ylectrl,ctr2];
end; .
if not(steady_state x[ctrl,ctr2]) then
calec_trans _gain(ctrl,ctr2,’x’)
else
gain_x[ctrl,ctr2,k] := gain_opt_x{
ctrl,ctr2];
for ctr2 := 1 to filter option do
if not(steady_state ylctrl,ctrl])
then
calc_trans _gain{ctrl,ctr2,’y’)
else
gain _ylctrl,ctr2 k] :=
gain opt _ylctrl,ctri];
end;

if (filter_option=1) then
smooth _1(k)
else
if (filter_option=2) then
smooth 2(k)
else
smooth_3(k);
end;

readln;

if (option = catd _opt) then
get _statistics(model_x, model_y, p _x[filter option],
p_ylifilter opticn])
else
get _statistics(m_x, m_y, s_x[filter_option],
s _y[filter_option]);

it (option = catd_opt) then
get option



else

if (option = cmse_opt) then
begin
reset(ptsfile);

calc sigma_af{false);
initialize_filter;
option := exit_opt;

graphcolormode;
palette(2);
end;
If (option <> catd opt) then
close(ptsfile);
END. (*Trackx)
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