
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

January 1988 

An Adaptive Tracking Algorithm for Robotics and Computer An Adaptive Tracking Algorithm for Robotics and Computer 

Vision Application Vision Application 

Reem Bassam Safadi 
University of Pennsylvania 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 
Reem Bassam Safadi, "An Adaptive Tracking Algorithm for Robotics and Computer Vision Application", . 
January 1988. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-05. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/735 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F735&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/735
mailto:repository@pobox.upenn.edu


An Adaptive Tracking Algorithm for Robotics and Computer Vision Application An Adaptive Tracking Algorithm for Robotics and Computer Vision Application 

Abstract Abstract 
We provided a vision-controlled robotics manipulation system with a robust, accurate algorithm to predict 
the translational motion of a 3-D object; hence, making it possible to continuously point the video camera 
at the moving object. The real time video images are fed to a PVM-1 (a pyramid-based image processor) 
for image processing and moving object detection. The measured object coordinates are continuously 
fed to our algorithm for track smoothing and prediction. In this study, we examined several tracking 
algorithms and adopted an optimal α - β filter for tracking purposes and the α - β -γ filter as part of the 
initialization procedure. The optimum gains for these 6lkm are based on the Tracking Index principle 
which in its turn is based on the measurement noise variance and the object dynamics. We derived an 
expression for the noise variance corresponding to our application. As for the object dynamics, we 
developed an adaptive method (using the α - β -γ filter mentioned above) for inferring object dynamics in 
an iterative learning process that results in an accurate estimate of the Tracking Index. The accuracy of 
our algorithm realizes that of the Kalman filter but is much simpler computationally. 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-05. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/735 

https://repository.upenn.edu/cis_reports/735


AN ADAPTIVE TRACKING 
ALGORITHM FOR ROBlTlCS 

AND COMPUTER VISION 
APPLICATION 

Reem Bassam Safadi 

MS-CIS-88-05 
GRASP LAB 132 

Department of Computer and Information Science 
School of Engineering and Applied Science 

University of Pennsylvania 
Philadelphia, PA 191 04 

January 1988 

Acknowledgements: This research was supported in part by DARPA grant N00014-85- 
K-0807, NSF-CER grant MCS-8219196, USPS 104230-87-H-00011M-0195 and U.S. Army 
grants DAA29-84-K-0061, DAA29-84-9-0027. Any correspondence regarding this paper should 
be sent to Kwangyoen Wohn, GRASP LAB. 



UNIVERSITY OF PENNSYLVANIA 
THE MOORE SCHOOL OF ELECTRICAL ENGINEERING 

SCHOOL OF ENGINEERING AND APPLIED SCIENCE 

AN ADAPTIVE TRACKING ALGORITHM FOR 
ROBOTICS AND COMPUTER VISION 

APPLICATIONS 

Philadelphia, Pennsylvania 

December 1987 

A thesis presented to the Faculty of Engineering and Applied Science of the University of 
Pennsylvania in partial fulfillment of the requirements for the degree of Master of Science 
in Engineering for graduate work in Electrical Engineering. 

Dr. Kwangyoen lbohn, Supervisor 



Table of Contents 

Abtract .................................................................................................. iii 

Chapter 1 

Introduction and Background .......................................................... 1 

Chapter 2 

Compariaon of tracking Algorithms ...................................................... 6 

Chapter 3 

General Implementation of the Elected Algorithm .............................,., 17 

Chapter 4 

Tailoring the Elected Algorithm to the PVM1-Ba~ed 

Robotics and Computer Vision System .... . . .. . . . .. .. . .. . .. .. . . . . . . . .. .. . . . . . . . . 27 

Chapter 5 

Conclusion and Recommendatiom for Future Work ........................... ... 34 

References ...................................................................................................... 36 

Appendix I 

Basic EQuations of the Simulated W i n g  Algorithms ......................... 39 

Appendix I1 

The lkacking Program ...... ....... .. .............. .................. . . .  .......... . . . 42 



Abstract 

We provided a vision-controlled robotics manipulation system with a robust, accurate 

algorithm to predict the translational motion of a 3-D object; hence, makiig it posaible 

to continuously point the video camera at the moving object. The real time video images 

are fed to a PVM-1 (a pyramid-based image processor) for image processing and moving 

object detection. The measured object coordinates are continuously fed to our algorithm 

for track smoothing and prediction. In this study, we examined several tracking algorithms 

and adopted an optimal a - B filter for tracking purposes and the a - /I - 7 filter as part of 

the initialization procedure. The optimum gains for these 6lkm are based on the M i n g  

Index principle which in its turn is based on the measurement noise variance and the object 

dynamics. We derived an expression for the noise variance corresponding to our application. 

As for the object dynamics, we developed an adaptive method (using the a - /I - 7 filter 

mentioned above) for inferring object dynamics in an iterative learning process that results 

in an accurate estimate of the W m g  Index. The accuracy of our algorithm r e h  that 

of the Kalman filter but is much simpler computationally. 



CHAPTER 1 

Introduction and Background 

A machine vision system is often considered as part of a larger system that interacts 

with the environment. The input to such a system, is an image, or several images, while 

its output is a description that must bear some relationship to what is being imaged and 

must contain all the needed information to carry out a designated task. In other words, the 

objective is not to obtain any description of what is imaged but one that allows us to take 

an appropriate action. Since building a Wversal' vision system is still at the early stages 

of development, researchers have been addressing themselves to systems that perform a 

particular task in a controlled environment or to modules that could eventually constitute 

a generai purpose system [I]. 

The work here is tied to one of those particular t d a ,  namely, real time analysis of images 

in a dynamic environment. Under this category falls the topic of motion analysis. 

It is known that there are two major obgtacleer in computing the 3-D parameters of 

rigid motion from the retinal optical flow. One of these is the high dimensionality of the 

parameter space; the other is the nonlinearity of the constraint equatione. It has been shown 

in [2] that these ahortcominge may be eased by following two strategies. The h t ,  and the 

most important of these, ia to employ t r a c h i ,  thereby exploiting the temporal behavior 

of a moving object. The second ia to employ stereoscopic imaging. The results showed that 

tracking the object of interest is advantageous in both monocular and binocular imaging 

situations. 
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The use of a tracking filter is dasirable under these circumstances in order to increase the 

accuracy of the image- based measurements of the position and orientation of a 3- D moving 

object. Our goal has been to find the most suitable tracking filter and tailor it to an existing 

vision-controlled robotics manipulation system that has the capability of performing object 

detection in real time. Thia capability is provided mainly by the Pyramid preprocessor 

[3], [4]. We will focus our attention here on tracking the translational motion of a 3-D 

rigid object. Ttacking and prediction of this motion can be used to continuously point the 

video camera of the robotics system on the moving object. An extension to the problem of 

tracking the rotational motion of the rigid object is straightforward. The following sections 

give an overview of the Pyramid preprocessor and the existing moving-object detection 

algorithm. 

1.1 The Pyramid Machine 

The Pyramid Machine is a preprocessor dedicated to producing a multi-resolution repre- 

sentation of an image; specifically, the $yramid liken mpresentation. -ids in general, 

are data structuree that provide successively condensed represent ationa of the information 

in the input image. According to [3] there is evidence that the human visual system usea 

a form of multi- resolution representation wbkh supports the concept that image process- 

ing at multi-resolution levels is very efficient and robust. The most obvious advantage of 

pyramid representatiom is that they provide a poeeibility for reducing the computational 

cost of various image operations. Many basic image operations may be performed efficiently 

within these pyramid structures. The first requirement for a multi-mlution image pro- 

cesaing system is that it be able to perform a pyramid transform such ae the FSD (filter, 

2 



subtract, and decimate transform), to decompose the original image into a set of different 

reeolutions. The Pyramid machime is capable of constructing a complete low or bandpass 

pyramid from a 256 x 256 image in 1/30 of a second (one frame time). The present design 

uses a single filter and decimate stage. During pyramid conatmction data is recirculated 

through this module for each pyramid level. A separable, five tap filter is used in the pyra- 

mid construction. The input data and output pyramid levels are represented with 8 bits 

per pixel, while internal computations are performed with 16 bit arithmetic. 

When the system is used aa a video preprocessor, it continuously procerraes incoming 

image data, transforming it to a more suitable representation for further processing such as 

eliminating certain epatial frequency bands or computing local energy measures at different 

scales, storing the results in a memory frame store. These d t s  can be accessed simulta- 

neously by the host computer for further processing. In this manner, the hoat processor (an 

IBM RT in our case) is relieved from performing extensive computations. For example, for 

a 256 x 256 pixel image, updated 30 times per mend, the data rate is 2M pixels per second. 

By representing the video image in a suitable format, the hoat can perform real time or 

near real time image proceesing operations by selectively limiting the processing to 1000 to 

20,000 pixels per second, rather than 2M pixels/second. This proved to be sufficient for 

performing numerous image processing tasks, e.g. real time motion detection and tracking, 

and course-fine pattern matching for robotics guidance [3]. 

1.2 The W t i n g  Motion Detection Algorithm 

The tracking filter (that provides tbis system with prediction capability) usca an existing 

motion detection program which detects object motion wherever it may occur within a large 
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field of view. The following is a brief description of how this is accomplished 1.11. 

Let I(T) be the image frame at time T .  In the first step, a difference of two consecutive 

images is obtained D(T) = I(T) - I(T - 1). Difference values that are not zero indicate that 

a change has occurred in the original sequence. In the second step, the difference image is 

d e c o m p d  into spatial frequency bands through the conatmction of a Laplacian pyramid 

(See Figure 1.1). A particular band paee level is then selected for further analysis. For 

example, I& 1 could be chosen to generate a second series of low paes versions G, I Lo! where 

n ranges from 1 to 4. 

G4 which contains only 16 x 16 samples (and yet represents image changes correapondiig 

to that within the original image) is examined by the host. (It is worthwhile mentioning 

that a typical high performance microcomputer (e.g., an IBM-RT) can examine only, on 

the order of, 16x16 samples per one h e  interval [4].) If a change ia detected in G4, the 

host examinea a 16 x 16 subarray of GS centered on the change detected in G4. A detected 

change within the new subimage directs the host to examine a 16 x 16 subarray of G2. This 

procedure allows the system to rapidly home in on a small object anywhere within the field 

of view, since G4, which is a 16 x 16 array, contains the entire field of view of the 256 x 256 

original image, but a 16 x 16 subarray located in G1 covers only a small area of the original 

image [4]. 

1.3 An Adaptive Tkacking Filter 

We conducted a general study on the tracking filters and chm one of these filters for 

our application. Among the filters that were examined are: The Kalman, Wiener, rr - /3 

and a! - ,fl - 7 Elten, and the Two-Point Extrapolator. The criteria followed in our decision 
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F = FILTER 
D = DECIMATE 

Figure 1.1 An FSD Pyramid Tramform (from (31). 

Goo: The origin$ image, r t p m t e d  by 256 x 256 a m 9  of pixels 

G,,: The low psss resnit where the hiat index indicates the number 

of filter stepe, the second index indicates the decimation steps 

F: A convolution with an FIR low pam 6lter 

D: Decimate operation, every other row and cohunn is discarded 

to obtain G,+, 

L,: Ban* or Laplam pgramid kvel obtained by subtracting two 

consecutive Ganssian pyramid levela as ahown 



making will be discussed in the next chapter. 

We adopted an optimal a - B filter for tracking purposes and the a - 8 - 7 filter ae part 

of the initialieation procedure. The powerful performance of this filter (which redm that 

of the Kalman) liw in the method that produces the filter gain values. The derivation of the 

optimum filter gains is based on the k k i n g  Index which is proportional to the position 

uncertain$ due to object accelerations to that due to measurement errors (in the detection 

scheme) 151. 

We derived an expression for the noise variance corresponding to our application. As for 

the object dynamics, we developed an adaptive method (using the cr - 6 - 7 filter mentioned 

previously) for inferring object dynamics in an iterative learning process that reaultn in an 

accurate estimate of the Tracking Index. 

The work presented here was developed on an IBM AT; and the d t a  were tested using 

the position data of the moving object obtained from files produced by the Pyramid/IBM- 

RT system. The following chapters give a more detailed account of our work. 



CHAPTER 2 

Comparison of Tracklng Algorithms 

As we observe the position of a moving object over time using any kind of measuring 

instrument (a video camera, radar, etc.), almost always, the observations are cluttered by 

noise, errors and inacwies .  The primary function of the trackiig filter is to accept 

the noiey position data at its input and provide smoothed object position and velocity 

estimates at its output. These values are used for controlling the orientation and position 

of the camera as well as predicting future object poeitions. In addition, the smoothed 

position and velocity estimates can be used for track correlation and association purposes 

in a multi-moving-object environment. 

In smoothing and prediction, two set3 of equations govern the whole technique. The k t  

set of equations is the differential equations which describe the process (object motion). 

The second set relates the parameters being measured to those to be estimated (61. In 

addition, smoothing and prediction are related in a recursive manner, i.e. a predicted value 

depends on the last smoothed value, and a smoothed value t h  into account the last 

predicted d u e .  As an example, the prediction and smoothing relationships for an optimal 

mean-squareerror (MSE) estimation procesa (Kalman filter) for object tracking is given by 

l51,[71: 

prediction: 2(k + 1 lk) = #i(k lk) 

smoothing: 4(k + Ilk + 1) = 4(k + Ilk) + K(k + l)[z(k + 1) - h2(k + Ilk)] 
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where, 

k = kth time interval 

?(k + 11 k)  = predicted state value at time k + 1 

P(k lk )  = smoothed state value estimate at time k 

i ( k  + Ilk + 1) = smoothed state value estimate at time k + 1 

z(k + 1) = measured state value at time k + 1 

K(k + 1) = gain value at time k -t 1 

t$ = state transition matrix h = 1 when z represents pition, O when z represents velocity 

or acceleration. 

A state could be position, velocity, or acceleration. Here, the obeervation or measurement 

is modeled by the actual object position plus an additive noise component: 

where the measurement noise uncertainty n(k) ia assumed to be a zero-mean, white 

stationary random pmces8. 

The problem then is narrowed down to obtaining the "best* estimate of i ( k ( k ) .  There 

are two solutione for extracting the k t "  smoothmg estimate. The h t ,  is the Least 

Squares method, the other is the Minimum Variance method. Generally, the Least Squares 

method (the one under consideration) takes a fitting function and fits it to the data. The 

method calculates the residuals (differences between the obsewations and the fitting func- 

tion), squares them, ad& them, and produces a certain vdue. The Leaet Squares method 
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in its most general form, then minimizes that value, for any arbitrary number of dimen- 

sions. The Mimum Variance method is similar to least squares, but is more generalized. 

Minimum Variance take every o k m t i o n  and weights each precisely according to ite mer- 

its. For example, poor observations have a large variance while better observations have 

a smaller variance. Typically, observations are weighted by the inverse of their variance, 

hence poor obeervations are suppressed, while good observations are boosted relatively (61. 

2.1 Cornpartson of 'hacking Algorithms 

A comparative study of five important real-time tracking filters was conducted in 181. 

It compared these filters in tracking accuracy and computer requirements (memory and 

execution time). 

The filters considered in this study were: the Kalman filter, simplified Kalman filter, 

a - f i  filter, Wiener filter, and the two point extrapolator. The gain vectors of the firat 

three filters were assumed to be calculated in real time. The last two filters (Wiener and 

two point extrapolator) were both examples of stored gain vectors. The following is a brief 

overview of each filter. 

In the K h a n  filter, a model for measurement error has to be assumed as well as a 

model of the object trajectory and the disturbance of the trajectory (81. The Kalman filter 

can in principle, utilize a wide variety of modele for measurement noise and trajectory 

disturbance; however, it is often sssumed that theee are described by white noise with zero 

mean [9]. This becomes a requirement for the filter optimality and introdurn the need to 

have two augmented state variables in order to whiten the object maneuver and adapt it to 

the theoretical framework neceasay to make the filter optimal [8]. 
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If the maneuver is assumed to be white, no augmentation need be performed (resulting 

in what is known as a simpiified Kalman filter). Here it is assumed that the change in 

velocity of the object is uneorrelated between samples, i.e. white. Ruthermore, if thia filter 

were restricted to modeling the object path as a straight line and if the measurement noise 

and maneuvering noise were modeled as white gauasian with zero mean, the Kalman filter 

equations reduce to the Alpha-Beta filter equatiom with the parameter alpha and beta 

computed sequentially by the Kalman filter procedure [9]. 

The Wiener filter differs from the Kalman filter in that its gain vector being equal to the 

steady state gain vector of the regular K h a n  filter and is calculated off-line and stored 

in memory. This results in considerable computational savings in addition to makiig it 

simpler than any of the preceding filters. Because it has constant gain, the Wiener filter 

requires no auxiliary equations to be solved and requires very little computer memory. 

Thia filter is adaptable to a variety of moving objects and can track both maneuvering and 

nonmaneuvering moving objects well. This is because its gain is derived from the Kalman 

filter, which accounts for the statistics of object maneuver directly [8]. 

The a-8 filter coma in many different varieties. Some are deaigned to provide the beat 

transient following capability for a constant velocity object, while simultaneously providing 

the best minimum variance estimate of position and velocity [lo]. Other a-@ filters that 

have been designed utilize the object maneuver statistics [I 11. If the performance criterion 

ia dynamic minimieation of the total mean-squared filtering errors, the filter then takes 

the form of the Kalman filter. if the design objective is to minimize the tracking errors 

against a general class of trajectories, the corresponding a-8 filter takes even a different 

form [s]. The a-8 filter considered in the simulation study [8] was designed to minimize the 

mean-squared error in filtered (smoothed) position and velocity, under the assumption of a 
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constant velocity object motion. 

All of the mentioned filters are recursive fading memory filtera. The simplest type of 

filters that can be implemented is the 'almost memoryleas" two point extrapolator. This 

filter uses the last data point to determine object position and the last two data points to 

determine object velocity. Because this filter is essentially memoryless, its performance in 

tracking maneuvering and nonmaneuvering objecta is quite as bad 181. 

The result of the simulation study conducted in [8], showed that the most sophisticated fil- 

ter, the Kalman filter, is the m a t  accurate and the m a t  costly to implement. Furthermore, 

the Kalman filter, the simplified Kalman filter, and the Wiener filter generally performed 

within 20 percent of each other (in terms of execution time and memory requirements). The 

a - /3 filter performed on the average about 50 percent worse than the Kalman filter with 

the greatest degradation occurring for maneuvering objects. The two point extrapolator, 

uniformly performed more than 70 percent worse than the Kalman filter. 

As for implementation requirements, they increased in the following order: two point 

extrapolator, Wiener filter, a - @ filter, simplified K h a n  filter, Kalman filter. The com- 

plexity factor between successive filters was about two to one. 

An attractive filter would be one that can achieve the performance of a K h a n  filter, 

both in the transient and eteady state periods; yet be easily implementable in real time. 

Also, it will be very desirable for such a filter to have the capability of tuning itself to the 

sensor and moving object characteristics. 

In addition to the optimal transient and steady atate performance, we would like to have 

a simple filter that can achieve this performance regardless of object dynamics. It is unde- 

sirable to have solutions (for filter gains) that entail m i v e  relationahips of considerable 
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co~ltpkity; it would be ideal to obtain a closed form solution and eliminate the recursive 

process altogether at Ieast for the steady state (even if it were simple as in [12]), without 

any degradation in performance. Nor would it be desirable to have a simple closed form 

solution that can only provide optimal performance for a particularid object motion be- 

havior (as in (111 where it is assumed that object accelerations are exponentially correlated, 

and (101 where the results apply for constant velocity objects only). This means that in 

order to reduce the implementation cost, it is desirable to have constant gain vectors. This 

will result in considerable savings over 6lters that calculate the gain vectors in real time. 

h m  the results of the simulation study, a probable filter that fits most of the above 

descriptions would be the Wiener filter. However, the performance of this filter im the 

transient state is not optimal, because its off-line computed vector is the Kalman steady 

state gain vector. Using the steady state gain in the transient state will give erroneow 

predictions. 

2.2 The Elected Filter 

A recent study (51 provided optimum parametera for the a=@ filter which results in o p  

timum tracking in both the transient and the steady states. With these parameters, the 

a-8 filter achieves the performance of the Kalman filter without increasing its complexity 

or implementation cmt. 

The above mentioned study introduced an optimal filtering solution for the object track- 

ing problem which depends on a parameter dehed as the W.aclting Indexn which is pro- 

portional to the paition uncertainty due to object accelerations to &at due to measurement 

errors. Upon evaluating this parameter, the optimal transient and steady state gaina are 
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specified. The atering procesa is as follows 161: 

Prediction: 

Smoothing: 

where, 

z ( k l k )  is the position estimate at time interval k 

v(k1k) is the velocity estimate at time interval k 

z ( k )  is the noisy position measurement 

a is the position tracking parameter 

@ is the velocity gain tracking parameter. 

T is the sampling period 

In modeling the object motion, a one dimensional, linear, time invariant, ideal model is 

used: 

where a ( k )  is the moving object state vector at time k; 4 is the state transition matrix; 

w(k) is the unknown object maneuver/state transition matrix. 9 ia the acceleration state 
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transition matrix (for a second order model $ = [:TI TIT; for a third ordv model 

$ = [bT2 T 1IT. A two state model which includes all possible maneuver accelerations 

[5] is sufficient and will be considered hereon; that is 

The model in our application is based on the assumption that, without maneuvering (or 

with smooth maneuvering in a small time interval), the moving object will generally follow 

a straight line constant velocity trajectory. 

The noisy object measurements are modeled by the actual position of the moving object 

plus an additive noise component, i.e: 

where for a two state model 

and the measurement noise uncertainty is assumed to be a eero mean white stationary 

process. The values of a and @ are determined by the following parameters: 

T: The sampling period. 

a,, : The measurement noise standard deviation which is determined from the object de- 

tection scheme, i.e. the measurement process. 
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a, : The maneuvering accelerations standard deviation. This parameter is related to the 

object dynamics. 

A typical maneuverung accelerations probability density [7] is shown in Fig. 2.1h this 

figure, A denotes the maximum acceleration which the object can have. Values of the 

density between no maneuver (a = 0) and maximum maneuver (a = &A) are non zero 

because the moving object may not be accelerating at the maximum rate. The object has 

a probability PI of accelerating at thia mrurimum level (either plus or minus), a probability 

P2 of not accelerating at all, and an assumed uniform probability distribution of amplitude 

(1 - (2P1+ P2)) /2A of accelerating between -A and +A. The acceleration variable, therefore 

has zero mean and variance (A/3)(1 + 4P1 - P2). 

The tracking index ia provided below in term of the above parameters and also in terms 

of the steady state gains a' and ; along with the corresponding optimal j? relationship. 

As for the optimal a* relationship, it had to be derived and will be given in the following 

chapter. 

p* = 2(2 - a') - 4 @ 7  

The optimum transient Mter gain parametera are based on following recursive approxi- 

mations: 
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Figure 2.1 Typical Pmbabiity Demity of Object Acceleration. 



a ( k )  = o(k  - 1 )  + Ga[a* - ~ ( k  - l)]; Ga = 1 - e - l f k m  

@(k)  = b(k - 1 )  + G B ( T  - /3(k - I ) ] ;  Gp = 1 - e-'/ '~ 

where, 

cr(k) and B(k) are the gains for the present state 

a(k - 1 )  and B(k - 1) are the gains for the previous state 

a* and 8' are the steady state optimal gain values, ae defined on the previom page. 

K, + and Kg are the first order time constants of the corresponding gain excursion from 

it8 initial to its optimal steady state value. It has been shown in [5] that these time constants 

are strictly a function of the trackiig index. 

However, (51 does not provide an expression for the relationship between the tracking 

index and these time constante. It does, on the other hand, provide the graphs for the 

normalized time conatants vs log(A2), as shown in Fig. 3. 

Finally, it k worthwhile to note that for small a, the cr - @ relationship mentioned 

previously approaches the classical relationship [S]: 

When the filter parameters are adjusted according to the above equation, the filter pro- 

vides the best transient following capabiity for a constant velocity object, while simul- 

taneously providing the best minimum variance estimate of position and velocity of any 

15 



fixed parameter Wter [lo]. The following chapter will discuss implementation details of the 

elected filter. 



CHAPTER 3 

General Implementation of the Elected Algorithm 

The cr-8, a-@-7 filters, and the Two Point extrapolator have been implemented in the 

simulation program. The equations for each filter are provided in Appendix I. 

These three filters were implemented as an illustrative tool during our study. Then the 

a-@ filter was chosen to perform the tracking, while an a-8-7 filter was implemented in 

the learning procedure devised for inferring the dynamics of the moving object and hence 

optimizing the a-8 filter used for the actual tracking. 

The following sections will consider both IYters since both are used by the simulation 

P w w " l .  

3.1 Filters Initialization 

The t r d i  index, A, plays a major role in determining the transient and the steady 

state g a b  of the a-/? and a-b-7 filters. It is a dimensionless parameter proportional to the 

ratio of the position uncertainty due to object accelerations (maneuvers) and to that due 

to detector measurement errors [5], i.e. 
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position uncertainty due to acceleration 
tracking indez a 

position measurement uncertainty 

It ia defined by three primary object trackiig modeling parameters: track period (time 

bet ween position samples), object maneuverability (characterized by object accelerations), 

and measurement noise (51: 

T, the track period always has a known value. h for determining a, and a,, one would 

need to have an a priori knowledge of the defection mechanism and the object dynamics 

qectively. Obtaining the values for these parameters will be discussed later on, but for 

now we will assume that these values are available to ua and hence we have a value for the 

tracking index A. Once A is known, we are able to calculate the filter transient and steady 

state gains. 

Initially, the filters gains are assigned to the following values: 

For the a-b filter: 

For the a-8-7 filter: 



These values were obtained from the initiation of the smoothing process (shown in the 

following section). 

The program then calculates the transient gains at each sampling interval until the op- 

timum steady state value, corresponding to that gain, has been reached. 

The transient gains for the gain parametera a, @, and 7 are based on the reclvsive 

approximations that were given in Sec. 2.2 and are repeated here for convenience (with the 

addit ion of the third state parametens, i.e. acceleration): 

a(k) = a(k - 1) + Gala* - a(k - l)]; Gu = 1 - e-'ILa 

P(k) = P(k - 1) + G@[B' - B(k - I)]; Gp = 1 - e-"'~ 

7(k) = ~ ( k  - 1) + G,[y - ~ ( k  - l)]; G,  = 1 - e - ' / ' ~  

where, 

a(k), @(k), and 7(k) are the gains for the present state 

a(k - I),  @(k - I), and 7 are the gains for the previous state 

a*, B+, and 7' are the steady state optimal gain values. 

k, , ka, and k7 are the &st order time constants of the cormponding gain exmion 
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from its initial to its optimal steady state value. It has been shown in 151 that these time 

consfants are strictly a function of the tracking index. However, [5] does not provide an 

expmion for the relationship between the tracking index and these time constants. It does, 

on the other hand, provide the graphs for the normalid time constants versus log@),  as 

shown in Figure 3.1. (The normalized time constant values were numerically approximated 

by wing the KaIman filtering process). 

In order to make these graphical relationships available to the program, one could divide 

the t d i n g  index range into subranges and provide the normalized time constant values 

for each subrange endpoints (nodes) and estimate the values within the subranges, through 

interpolation. This is required because the program will need these time constant values to 

calculate the gains, and it needs to do so for any tracking index value. 

The most suit able interpolation method for this purpose is that of Cubic Splinea [13j. This 

is one of the most common piecewise polynomial approximations. It uscs cubic polynomials 

to interpolate between each successive pair of nodes. There are several reaa011s for choosing 

this type of interpolation, among them: 

(1) The oscillatory nature of hi$ degree polynomials used to approximate an arbitrary 

function on a closed interval, and the fact that a function over a small portion of the interval 

can include large fluctuations over the entire range, restrict their use when a smoother 

approximation is desired. 

(2) With a simple piecewise linear interpolation, there is no atmmnce of differentiability 

at each of the subinterval endpoints, i.e., the interpolating function will not be smooth at 

these points. 



Figure 3.18 Fimt-Order Time Constatfor a-@ Filter (hm 151). 

Figure 3.lb First-Order Time Constabfor cr-p- 7 Filter (from 151). 



(3) Since the cubic splines interpolation uses a cubic polynomial at the subintervals, it 

will not only insure that the interpolant is continuously differentiable, but also that it has 

a continuous second derivative on that interval. 

A final note on Cubic Splines is that either one of the following set of boundary conditions 

should be satisfied: 

(1) Free boundary: The second derivative at the interval end points are zero. 

(2) Clamped boundary: The k t  derivative of the interpolant at these end points are 

equal to the function first derivative at these points. 

For simplicity, the free boundary condition has been used in the program. 

Now, we d d b e  the process of obtaining the optimum steady etate gains. For the 

a-fl filter, the relationship between a and the tracking index had to be derived from the 

following: 

The derivation gives the following result (by eliminating p): 

which has the following solution: 



Initialize: 
obtain parameters 
T, a,,, a,,, a, 

k = O  

I 

I Cakulote tcantient gaina for I 

Fignre 3.2 The a-j3 Filter Gains Calculation Procedure. 



The second solution will give a < 0; therefore, it is ignored. 

As for the a-&r filter, the relationship between a and the tracking index was derived 

form: 

The derivation gives the following result (by eliminating and 7): 

We mhe the above equation numerically for a wing the Newton Raphson method [13] 

which givea the positive real root that we are seeking (which lies between 0 and 1.) 

Fig. 3.2 shows a flow diagram for obtaining the atens gains. 

3.1.2 Initiation of the Smoothing Procese 

Each filter uses a different initial value for the smoothed eetimatea; the procedure for 

obtaining heee values waa shown in (51 to be MSE optimal. 

The a-8 filter uses a two-point measurement process for the initial position and velocity 

estimates: 



The a-8-7 filter uses a threepoint measurement initiation process: 

where z(i) is the measured position at the ith sampling period. 

3.2 Case Study Simulation model 

A case study was used to aid us in the understanding of the filters behavior. It also aided 

us in testing our developed techniques as in the caee of the learning process, we developed, 

to be used for determining a, of the moving object. When we chose the simulation model 

for this purpoee, we had two objectives in mind. The first was to have a model that tests 

the robustness of each filter; the second was to have a model where the primary tracking 

modeling parameters could be calculated in closed forms. The latter, helped us in perform- 

ing the simulation under a controlled environment which is an important requirement for 

testing the filters and developing other techniques. 

The chosen simulation model consists of sinusoidal oscillations both in the X and Y 

directiom. The frequency of the Y millations was chowm to be an integral multiple of 

that of the X direction. Therefore, the motion in the X-Y plane will be cyclic (forming 

Liajous patterns) with sinusoidal velocity and acceleration in each direction. This model 

will test all three filters for maneuver following capability and prediction accuracy. Given 

below are the model equations: 
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where f and are the amplitude factore for z ( t )  and y(t )  respectively. 

An approximation to the maneuvering standard deviation is given by [IS]: 

i.e., it is ' of the maximum acceleration value. This is to be expected since the probability 3 
density function takes the form shown in Figure 3.3. 

As for the sampling interval T, it could range from 20 to 50 samples of a full cycle of the 

fastest sirmsoid, i.e. 

The measurement noise which is awumed to be white gauaaian, has a standard deviation 

equal to a small fnetion (A - $) of the maximum sinusoidal amplitude, i.e. 

Substituting the above d u e a  of T, a,, and a, for the tracking index: 
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Figure 3.3 Probability Density Function of the Acceleration in the Simulation 

Model (where A b the maximum acceleratirn, from [IS]). 



3.3 Simulation Resulta 

To test which of the three filters has the best performance, we calculated the standard 

deviation of the difference between the predicted and model dues .  Table 3.1 shows these 

standard deviations for some of the runs. As expected, for this continuous acceleration 

model, the a-8-7 Eilter had the e m r  smallest standard deviation. 

Except when the tracking index is relatively high, the program starts the filtering procees 

by implementing the transient gains. Had not this been done, the steady state value of or 

(corresponding to a moderate-blow tracking index), which in this case could be excessively 

small, would have been used to perform the tracking during the transient state. The 

latter would make it difficult for the filter to catch-up with the next measured position. 

The transient gains in the initial state proved to be very useful since they provide larger 

gain values (and then fall down to the optimum steady state dues.) Thb means that 

initially, it is more important to catch-up with the next position rather than to filter out 

the noise. With each predicted position, the filter gains are further reduced (to allow for 

more smoothing of the measured position and to get a better accuracy) until the steady 

state value, corresponding to each gain, has been reached. 

It was mentioned earlier that in our application, the moving object will not perform 

severe maneuvers; thus, the superior maneuver following capability of the cr-/3-7 filter will 

be somewhat wasted. This was one of the deciding factors for choosing the a-B filter over the 

a-8-7 6lter. In addition, it was shown in [5] that the accuracy of the prediction/smoothing 
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Two Point Ehtnpol;rtor a-p-7 Filter 

Table 3 . 1  Error Standard deviat ions  - predicted 
p o s i t i o n  values form model p o s i t i o n  values. 



process improves as a decreases. Since for a given A, the a-fl filter provides a smaller 

optimum a than the one provided by the a-@-7 filter (for the same A - as can be seen from 

Fig. 3.4), we preferred to use the a-j9 hlter. 

In the next chapter we will discuss two major remaining points. The first is how we 

provided the a-p filter with an adaptive learning capability. The second, is how this fitter 

was tailored for our application. 



F i y e  3.4 Optimal Position 'Ihckhg Gain a V e m  W i n g  

Index A (from [S]). 



CHAPTER 4 

'hiloring the Elected Algorithm to the PVM-1 B a d  

Robotice and Computer Vhion System 

In the previous chapter we wumed that the three fundamental tracking modeling pa- 

rameters a,, a,, and T were available to us and we deferred the discussion on how we obtain 

these parameters to this chapter. 

In order to make our filter practical to use, it would be necessary for us to provide the 

filter with these parameters. Determining the first parameter, a,, depends entirely on tihe 

moving object dynamics; the second parameter, a,, depends on the method that gene- 

the object position valuea. The third parameter, T, ia simply the sampling period, i.e. the 

time between mcceesive position samples. This paremeter is always known and in our case 

it is the reciprocal of the frame rate (i.e., & sec). 

The following sections will explain the procedures for obtaining the two parameten a, 

and a,. 

4.1 Determining a, 

a, is a quantity that reflects the uncertainty of the moving object position due to its 

acceleratiom. The degree of accelerations may vary from one moving object to another. 

How do we determine a, for any moving object that might be of intereat to us? The idea 

of a "learning" tracker evolved when we tried to answer this question. This means that 
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prior to performing any track'mg, an approximation to a, will be cdculated off-line using 

position data obtained as a typical test run. Then the cr-/3 filter will use this value for future 

tracking. 

We begin our explanation of the process by introducing the underlying basic concepts 

behind our method: 

Let a be a random variable that could take any value in the range f A; where A is the 

maximum acceleration that the moving object undergoes. Let us assume that we have N 

consecutive position samples of the moving object. We can calculate the acceleration at 

each point using the two preceding position points in addition to the current point, i.e. 

where 

T is the sampling period 

z(i)  is the poaition value at time interval i 

Note that our notation z(i) represents a general position point value, not necesrrarily the 

X-coordinate; i.e. s( i )  implicitly indicates X or Y. a, is derived for both directions X and 

Y; each has its corresponding a,, i.e. a,, and a,, . We will use the notation a, to represent 

either direction. 

The variance for this random variable is given by: 
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which is estimated as: 

The resuiting a, value would have been used to calculate the tracking index for the 

tracking filter had it not been derived from the a; values, because the a; values were derived 

from the unreliable noisy object position data. However this d u e  could be d as an initial 

approximation to the actual oa. We can obtain a better approximation if we use a &red 

version of the noisy data points. Here, the a-#?-7 filter comes to play. 

The a-fl-7 filter is run iteratively with each iteration using the smoothed position values 

that the filter calculated during the previous iteration, That is, at each iteration, the filter 

produces the object position values had there been a lesser amount of noise present in the 

data (than that present in the data of the previous iferation). The quality of filtering-out 

the noise depends on the values of the filter gains, a, j9, and 7. These gains are calculated 

from the tracking index which in its turn is calculated from T, a,, and a,. Let us assume 

that on is known at this point. We how the value of T and we have an initial approximation 

to v,. When the a-8-7 filter is run on the noisy position data for the hat time, it uses 

the initial approximation of a, (which we derived above) to calculate an initial value of 

the tracking index. Then it calculates the corresponding gain values and usea them to 

calculate the predicted and smoothed position, velocity and acceleration values, For the 

second iteration, the filter uses the smoothed acceleration values from the first iteration 

to calculate a new improved approximation for a, and the process is repeated again. The 
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next iteration will produce even better values because the newly cdculated a, is a closer 

approximation than its previous value. The whole proce-w (see fig. 4.1) is repeated until 

the newly calculated a, asymptotes to a d u e  that is closest to the actual 0,. 

We tested the above procedure using the simulation model (discwed in the previous 

chapter). The resulting a, was identical to the theoretically calculated value (as in sec 

3.2) without the presence of noise. As we increased the noise level, the deviation from the 

theoretical value increased. 

a, is a measure of the level of the uncertainty in the object position due to certain emm 

introduced during the p i t i o n  measurement proms. Therefore, this quantity is entirety 

dependent on the measurement method. In our case, we use the existing moving object 

detection algorithm that was discussed in Chapter 1, to supply our frackiig filter program 

with the moving object position; hence, u, corresponds to the errom introduced in this 

detection algorithm. 

Recall that detecting the moving object may occur at any one of the five pyramid levels, 

(once an object has been detected, the algorithm calculates the center of the object and 

passes that as the position value). Each pyramid level has a corresponding a,. For example, 

one does expect the noise level in the lower mlut ion image to be greater than that in a 

higher resolution image. A safe assumption, (that was later proven to be correct), was that 

the noise level increases by the same factor at which the image resolution decreases, e.g. 

the noise level in a 32 x 32 resolution image is approximately 4 times that in the 128 x 128 

resolution image. Then it is clear that once we obtain a, for any one of the pyramid levels, 
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it will be a matter of trivial scaling that will provide us with a, for each level. 

The measurement noise present in any of these levels is mainly due to quantization noise? 

which ie carried over to the calculation of the object center. 

Let us consider on for the 256 x 256 original image. We will perform our derivation for 

a one-dimensional model since, in our case, a, in the X-direction ia identical to that in the 

Y -direction. 

Our model is shown in Fig. 4.2. Let L be the length of a stretched wire. Let XI and xz 

be the p i t i o n  of the end points on the X-axie; and let z1, and 2~~ be the positions of the 

end points after quantization. Let c be the difference between x, and x (i.e., x, = x + c). 

This is a random variable whose probability denaity function (pdf) is uniformly distributed 

between +$, where A is the quantization step (see Fig 4.2b). 

We would like to derive an expression for on b a d  on the variance of the estimate of the 

object center (here the center of the wire). Let 6, represent this quantity. We proceed aa 

follows: 

Thus we can express &,,, in terms of the actual center of the object with an additive e m r  

factor i ( c l  + c2), i.e.: 



Figure 4.2a Mode1 Used in Calculating tbt -ion Noise. L Here i the 
A c t d  Length Before Qurntbg. 

Figure 4.2b P r o W i t y  Density bctim of the Quantization Noise. 



The expected d u e  of P, is: 

therefore, 

hence, 

Thia gives us the following result: 



Hence, the value of a, for the 256 x 256 original image is A where A = 1/256. As for SJg' 

the other pyramid levels, a, is simply a 2,'' multiple of that in the original image, where 

n is the image level. That is, a, for the second pyramid level is ; for the third level, % a; etc. 

A final note is that if the moving object is being detected in the third level, for example, 

our tracking algorithm uses the an that corregponds to this level to calculate the t d i g  

index. It is a simple matter for the detection algorithm to pass the pyramid level value 

since it is a known quantity. 

These results were tested on position data files that the detection program produced 

(from the Pyramid Machine - IBM R!I' setup). Our tracking algorithm performed best 

when we used the proper a,, , i.e., the one that corresponded to the pyramid level where the 

object was detected. 

A typical image frame, obtained by our syatem, is shown in Figure 4.3. This ia the 

original 256 x 256 image which is a part of a series of frames from which the position data 

of the detected moving vehicle was obtained. For this particular frame, the proper o. is a 
which corresponds to the fourth (last) pyramid level. The vehicle image can be detected 

at this level because it occupies approximately two pixels out of 16 (in the fourth level), as 

seen from Figure 4.3. 



Figure 4,3 A Single h e  h m  a Series of Fhunes Obtained by the 

Pyramid Macbhe (from whkh the poeition data of the 

detected moving vehicle waa obtained). 



CHAPTER 5 

Conclusion and Recommendations for 

Future Work 

We studies several tracking algorithms in order to provide a PVM1- based 

robotics and computer vieion system with an adaptive tracking capability. The 

examined fllters were: The Kalman, Wiener, a-B and a-8-7 filters, and the Two 

Point extrapolator. The decision criteria followed in chooslng the appropriate 

algorithm was based on two objectives. The flret was to obtain high performance 

accuracy in both transient and steady state track periode; the second was to 

chooee a tracking algorithm with low real-time implementat ion coet. 

The comparative etudy led us to chooeing an optimal a=@ fllter that realizes 

the accuracy of the Kalman alter. The optimallty of the adopted fllter stems 

from the method used in producing the filter gains. Thie method is based on the 

@Tracking Index" parameter which is proportional to the ratio of uncertainties 

due to object acceleration8 (a,) and that due to meaeurement nobe (a,). 

In order to determine a,, we developed an adaptive method for inferring 

object dynamics in an iterative learning procese. We ueed an a-8-7 filter for 

thb purpoee. The gain parameters of the latter filter are also determined by the 

tracking index; hence performing optimum smoothing. The reeulting smoothed 

acceleration values are used to calculate the acceleration variance. The latter 

calculation is an integral part of this learning proceea. 
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As for a,, we learned by examining the existing moving-object detection algo- 

rithm, that the present measurement noise is mainly due to quantization effecta. 

Hence, we were able to derive an expression for a, which inherently includw 

the quantization noise effects as they are introduced through the detection al- 

gorit hm. 

Having u, and 0, as known quantitiee, we were able to use an algorithm as 

eimple as that of the a- B fllter, without increaeing its complexity and implemen- 

tation cost, to realize the accuracy of the Kalman filter. In addition, providing 

our system with an adaptive- learning tracker introduces the poseibilitiea of 

using it in numerous robotics and computer vision applications. 

We recommend the following for hrture work: 

1. Provide the a-p fllter with optimum on-line adaptive learning capability. 

Thie is useful in mult i-mwing-object environment where a priori information 

on the object dynamics is not available. 

2. Extend the tracking algorithm to have the capability of tracking an ob- 

ject in a multi-moving-object environment. It has been shown in [la] that the 

tracking index plays a mdor role in the probabilistic poeition data -to- moving 

object association problem. 

3. Combine the tracking algorithm with feature extraction capability [17] 

to single out a particular moving object out of the eame aeeemblage of moving 

o bjects. 

4. Use the tracking algorithm in conjunction with binocular imaging to com- 

pute the 8-D parameters of rigid motion. 
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APPENDIX I 

Basic Equations of the Simulated Tracking Algorithms 

Prediction: 
z(k + 1Jk)  = z(k(k) + Tv(k(k) 

Correct ion: 

(definitions will follow the a-fl-7 filter equations) 

(2) a-8-7 Filter 

Predict ion: 



Correction: 

z ( k l k )  is the position estimate at time interval k 

x(k + Ilk)  is the position estimate at time interval k t 1 given k samples (measurements) 

v (k lk )  is the velocity estimate at time interval k 

a (k  lk) is the acceleration estimate at time interval k 

a ( k )  is the position tracking parameter at time k 

p ( k )  is the velocity tracking parameter at time k 

~ ( k )  is the acceleration tracking parsmeter at time k 

T is the sampling period 

z ( k  + 1) measured polsition at time k + 1 

(3) Two-Point Extrapolator 

Predict ion: 
x(k + l ( k )  = z ( k l k )  + Tv(k1k)  



Correction: 



APPENDM I1 

THE TRACKING PROGRAM 



PROGRAM t rack;  

I *  This program performs tracking by using a Two Point 
Extrapolator, an Alpha-Beta Filter, or an Alpha-Beta-Gamma 
Filter. The tracking may be performed on variations of the 
simulation model or on a binary file of position data points. 
The adaptive-learning capability is also available as an 
option. * 1 

(::(INST 
max length = 150; ( *  maximum number of data points for use as 

a fading memory filter. This limit is 
for simulation purposes only.+) 

m c o l o r  = 1 ;  
pr -color = 2; 
model color = 3; 

[ +  Tks following are i:onstants related to the menu o p t i ~ r i s  + )  

( *  csme-opt tor calculating maneuvering sigma estimal,c . k )  
cmse-opt = 1; 
( *  catd opt for continuous acceleration tracking d e r n ~ ~  * )  

catd opt = 2; 
( *  spopm-opt is for tracking using series of positions 

obtained by the Pyramid Machine. * )  
spopm-opt = 3 ; 
exit-opt = 4; 

( *  sigma-n 0 is the quantization noise in the  origirial 256x256 
image * 1 

sigma-n I) = 0.2C14; 

TYPE 
string - t , y p e  = stringll27 ; 
array-._type = array[l..max-length] of real; 

VAH. 
11 The following arrays store the filters gains f n r  t,ht? x and 
y directions. * )  

gain .x, gain_-y : array r2. . 3 , 1 .  .3 j of array -type; 
gain-opt--x, gain-opt - y :  array12. . 3 , 1 .  - 3  J of real ; 
gain--type : array[l . . 3  ] of string- type; 

( *  The following arrays are used to indiclte il a p-tri-if:~~l~ir 
gain of the fading memory filters has reached ste,-1Jy st;lC,e 
or not. * )  

steady _state _x, 
steady_state._y : array[Z..3,1..3] of boolean; 

( +. The following are first order time coristarits 1 r Ltj 

the filter gain excursion from its initial stat#-2 LCJ i t s  
optimal state value. * )  

k--taw -x : arrayL2.. 3 , l .  .3] of real; 
k t a w - y  : arrayf2..3,1..3] of real; 
( 6  The f~llowing variables are satandard devialions for 
maneuvering accelerations and measurement noisc. 4 )  



sigma-a-.x, sigma--a. y ,  
sigma_n.-x,  sigma-n-y : r e a l  ; 

t r a c k i n g - i n d e x - - x ,  t r ack ing- .  inde:~:- ;. : r e a l  ; 

c The f o l l o w i n g  v a r i a b l e  r e p r e s e n t s  C11e '~!;,)r . I I ~  i l l  1 t*\,rt;J 

where t h e  ob. ject  is be ing  d e t e c t e d .  Tht. v l l u ( .  I u:- 
a s s i g n e d  by t h e  u s e d .  Normally,  howcvcr,  t i  I I : r i  11 
be p a s s e d  by t h e  e x i s t i n g  Mcjtiun i k t e c t i o n  1 2 r t j g c - t n 1  t l  i z l  
v a l u e s  f o r  t h i s  v a r i a b l e  a r e  0 . . 4  k )  

Pyramid-- level  : i n t e g e r ;  

( k The t o l l o w i n g  a r e  t h e  measured ,  p r e d i c t e d ,  i smr-1 ]tiic<i 
ob. iec t  p o s i t i o n  and v e l o c i t y  f o r  t h e  x and y diret~l-it-lrla + ) 

m x, m y : a r r a y _ t y p e ;  
P. x, P - Y l  

s _ - x >  S-_Y ,  
m.-v-.x, p-v-x, s_-v _ x ,  
m v  .y ,  p v - y ,  s v  y : a r r a y r l .  . 3 ]  of a r r a y  t y p e ,  
s -a-x ,  p a  x ,  
s_ a.-Y,  p a  Y : a r r a y -  t y p e ;  

I The f o l l o w i n g  a r e  t h e  s i m u l a t i o n  model p o s i t . i o n  ~r:.ill,res. t 1 
model - x ,  model.-y : a r r a y - t y p e ;  

( *  T i s  t h e  sampl ing  i n t e r v a l  between t i m e  k and k t 1  'l'k~ E: 

s a m p l i n g - f a c t o r  r e d u c e s  t h e  sampl ing  r a t e  b y  Llle a r l $ - 8 t - i ~ i t -  

s p e c i f i e d  by t h i s  v a r i a b l e .  . # )  

T : r e a l ;  
sampl ing  -f a c t o r  : i n t e g e r ;  

( e  The f o l l o w i n g  v a r i a b l e s  arc E I S S C ~ C  i a t c d  rri L k i  Ill.. 
c o n t i n u o u s  a c c e l e r a t i o n  t r a c k i n g  demo, whi c : l ~  uses Liic 
s i m u l a t i ( > n  model .  * )  

x-_mag, y--mag : r e a l ;  
w : r e a l ;  
m : i n t e g e r ;  
n_-sampl ing ,  n--measurement.-noise : i n t e g e r ;  
phase : r e a l ;  

( *  m i s c e l l a n e o u s  * )  

k ,  c t r ,  c t r l ,  c t r 2  : i n t e g e r ;  
max-runs : i n t e g e r ;  
s : s t r i n g - t y p e ;  
o p t i o n  : i n t e g e r ;  
d e l a y - f a c t o r  : i n t e g e r ;  
f i l t e r - o p t i o n  : i n t e g e r ;  
p t s f i l e  : f i l e  of c h a r ;  
f i le . -name : s t r i n g l - 1 2 1 ;  
num. of - p t s  : i n t e g e r ;  

i:* I n c l u d e  t h e  Cubic S p l i n e  i n t e r p o l a t i o n  p r o c e d u r e .  t ,  

C$I c s - _ e x t r a p .  p a s  t 



FUNCTION Gauss : real; 
( Ret u rns  a gaussian rar~dom variables by summing 1 2  :;arnpl+-a ~ * t  

un i f  ormlly distributed random va r i ab l e  u b t a i r l s d  1 L.C,III t 11,. 

prede f i n e d  Random f u n c t i o n .  * 1 

V a r 
temp : real; 
i : i n t e g e r ;  

Begin  ( *  gauss * 1 
tcrr1p : = U . O ; 
f o r  i : =  1 to 1 2  do 

temp : =  temp + random; 
Gauss : =  temp - 6 . 0 ;  

E n d ;  (.* gauss -V 1 



PROCEDURE get-position( 1 :  i n t e g e r ) ;  

! t This procedure reads the the next, ~sb. iec t  p n i , i t i c ~ r l  \ . J ~ ~ . I I . .  ( s, IIIJ 
y) i r o m  the specified file. Then it, checks to  s,+.~. 1 I i L i :, -! 

valid point ( based (2n how kar the new p o s i t  it In i 5 i 1:. &in I IIS- .  
previous one I . If the point is inva Lid, I Glt F - L - ~ I C ~  L ~ I A ~ C  

r.al~i..~laies an approximation to what t11e prt)pr:r. v~ L I ~  2 L . k i (  ' { I  l d  
have been using linear int,erpolati~~n N,_tCc: t t t t ,  L i r~ t 1 * r . g &  

skips sampling factor-1 points, in e f f ec t  I i t . 1 ~ ~ 2  

sampling rate by sampling.-factor + ) 

Const 
pos-dit f l c t o r  = 5 ;  

v31- 

position_dif f erence : integer; 
temp-x, temp-_ y : char;  

Begin ! t get-_pc)sition4 ) 
position _difference : = pos-dif -f actor * sampling i a c t  ur; 
for ctr : =  1 to sampling-factor-1 do 

read(ptsf ile, temp-x, temp-y) ; 
read( p t s f  ile, temp-x) ; 
read(ptsfile, temp - y )  ; 
if (1 2) then 

b e g i n  
m - x [ l ]  : =  ord(temp..x); 
m-y[lJ : =  ord(temp-y); 
if ((abs(m .x[1] - m-x[l-11)) > position_dilt?,.r-nt~e I t h~_tn 

m-x[1] : =  2Km-x[1-I] - m-x[l-21; 
if ((abs(m_-y(l1 - m y[l-11)) > p o s i t i o n  c l i l  tcrl:r~l_t~r Lk~en 

m-y[1 J : = 2*m-y[1-1 j - m-y[1-2 J ;  
end 

else 
begin 

m--x r 11 : = ord  ( temp.-x ) ; 
m-y[L] : =  ord(temp-y); 

end ; 
End; ( +get -position*) 



PROCEDURE c a l c - s i g m a - a t f i r s t - t i m e  : b o o l e a n ) ;  

i k  T h i s  p r o c e d u r e  c a l c u l a t e s  an  e s t i m a t e  0 tl~..: m:irtc:~i*/l~ring 
s t a n d a r d  d e v i a t i o n  v a l u e .  When f i r s t  t i m e  is I t l ~ c  
p r o c e d u r e  u s e s  p o s i t i o n  p o i n t s  d a t a  form a t esL  riu 1 i l l 2  t . ~ )  
o b t n i r ~  t h e  a c c e l e r a t i o n  v a l u e s .  O t h e r w i s e ,  il.. w i l l  u:;t: t t l t ,  

smoothed a c c e l e r a t i o n  v a l u e s  o b t a i n e d  v i a  t h e  3 l p h a - h c L : ~ - g s ~ r ~ ~ r ~ a  
f i l t e r  t I 

VAR 
v x, v y : a r r a y  t y p e ;  
sum a x, sum. s_ y ,  
s u m  . squared  .a_.x, sum--squared-a -y : r e a l  ; 
i : i n t e g e r ;  
j unk  f i l e  : t e x t ;  

Begin (*talc sigma _a* ) 
sum a x : = 0 ; 
sum a y : =  0 ;  
sum-squared -a -x : = (3 ; 
sum - squared  a y : = 0 ; 
i f  ( f i r s t - t i m e )  t h e n  

beg in  
i :z 1; 
f o r  i : = 1 t o  num-of-_pts do 

ge t -  p o s i t i o n [ i )  ; 
f o r  i : =  3 t o  num o f - p t s  do 

beg in  
v_ x r i - I  1 : =  (m_.x[i-11 - m x l i - 2 1 ,  '1'; 
v - - x r i l  : = (m..x[i l  - m-x[ i -1  I 'I'; 
s -a x r i - 2 1  : =  ( v - x r i l - v - x r i - 1  I ),IT; 

v-y[i-I] : =  (m-y[i-11 - m-y[i-ZJj , : ' I ' ;  
v _ y [ i ]  : =  (m-y[i] - m-y[i-13 )/T; 
s-a--y[i-21 : =  ( v - y [ i ] - v - y r i - 1 J 1 / T ;  

end ; 
end ; 

f :i: C a l c u l a t e  t h e  e s t i m a t e  of t h e  man.euvering s t a r ~ d a r d  
d e v i a t i o n  * )  

f o r  i : = 1 t o  num.-of - p t s - 2  do 
b e g i n  

sum-a-x : = s urn_- a-- x + s -a -x j i ] ; 
sum-squared-a-x : = sum- squared-a_-x  + s g r  ( s- :i_ xl j 1 I ; 
sum.- a _  y : = sum-a-_y + s-a--y [ i J ; 
sum-squared-a-y : = sum _squared-a_  y + ~ q r (  ,.; _-i y 1 i j ! ; 

end ; 

s igma-  a-_x : = sqrtf sum-_syuared_.a-_x/r~um- of _ p t s  -- 
s q r ( s u m  a x'nurn Q L  ~ I S ) ) ;  

sigma -a-- y : = s q r t  (sum-squared ..a yJnum of - p t s  
s q r ( s u m - a  y/num of p t s )  1 ;  



w r i t , e l n ;  
w r i t e l n (  ' E s t i m a t e d  m a n e u v e r i n g  standard d e v i s t i c l i l  i n  Lh12 ' 1 ; 
w r i t e l n O x  d i r e c t i o n  i s  : ' s i g m a - a - x ) ;  
w r i t e  l n ;  
w r i t e l n [  'Estimated m a n e u v e r i n g  standard devia t i o r ~  i l l  t h u  ' ; 
w r i t e l n l  ' y d i r e c t i o n  i s :  ' , sigma a 5 7 )  ; 
w r i t s 1  n :  
reset(ptsf ile ) ; 

End; ( +  talc-sigma-a*) 



PROCEDURE Get-option; 

( r This  procedure displa;yrs the menus and ~ b t  3ir1s t h k i  : I c .  1 5 :  I !:,-I 
options. * I 

Var 
answer : char; 
parameter : integer; 

Begin ( % g e t  option*) 
answer : =  ' y ' ;  
clrscr; 
b l r i t e l n (  ' 1. Calculate an estimate of manel.lverit~c: 51 t  x t ~ c i x r ~ l  

dcvi s ~ t i  or! ' ) ; 
writ,eln( ' from a given test run. ' 1 ;  
writeln; 
writein( ' 2. (~ontinueous acceleration t rac l . ing dr?ni,-)' I , 
writeln; 
writeln( ' 3. Track using series of positior~s oLlt aic1~3t-l 1-11. 

t l 1 c :  ' , ; . 
writeln( ' Pyremid machine' ) ;  
writeln; 
writeln( '4. Exit' 1 ;  
writeln; 
write( 'Please Enter optZion number: ' ) ; 
readln(option); 
if (option = catd ~ p t )  then 

begin 
clrscr; 
while ( answer= ' y '  ) or (answer= ' Y '  k do 

begin 
writ-eln( ' The following parameters havo tlls 1 1 - 1 1  1 u : ~ i n g  

v a l u c s :  ' ) ; 
writeln; 
writeln(' 1. X-Y frequency factor = ' ,  m ) ;  
writeln; 
writeln(' 2 .  Radial frequency = ' ,  w:S:3), 
writeln; 
writeln(' 3. Phase difference = ' ,  phase:S::3); 
writeln; 
writeln(' 4. Number of samples of a fu1.L c.il:la vf 

the i -astcr '  i , 
writeln( ' sinusoid = ' , n- sampling ; 
writeln; 
writeln(' 5. "SNR" = ' , n-_measuremen t no i st3 ; 
writeln; 
writeln(' 6 .  Display delay (ms) = ' d e l a y  i : - t c C ~ - ~ r ) ;  
writeln; 
write(' Do you like to change any of the p A r - J n l c t t ~ r s  

( y , ; ~ l ) :  ' j ;  

readln ( answer t ; 
while (answer='y' ) or (answer='Y1 ) d(> 

beg in  
w r i t e l n ;  



write ( ' Which parameter d o  :y.l2~1 1 i k.t-. t 6 -  ' t i ing l ;  
I 1  ' 1 ,  

readln( parameter ) ; 
writeln; 
if (parameter=l) then 

b e g i n  
write( ' X-Y f reqi-xerlcy t ~ c :  t 1 . 1  t- - ' ) ; 
readln ( m) ; 

end 
else 

if (parameter=2) then 
begin 

write ( ' Radial f r e q u  i r l l  ,, = ' 1 , 
read( .w ; 

end 
else  

if (parameter=3) then 
begin 

write( ' Phase dif'-ff?rt-:rll~t;. = ' ; 
readln( phase ; 

end 
else 

if (parameter=4 ) then 
beg in  

write(' Number of 
samplus = ' ) ; 

readln (n-sampling ) ; 
end 

else 
if (parameter=5 ) t h e n  

begin 
write('"SNR" z ' I ,  
readln ( n - m e a s u r c n i c - . r ~ C  

c ~ ~ - ~ i . - , + >  ; 
end 

else 
if (parameter = 6 L1lt:n 

begin  
write( ' D i s p l a y  (1e.l sy 

( r n s j :  ' J ;  
readlr~( delay i at: t ~ ) r  ) ; 

end 
else 

writeln( ' I n v a l i d  
o p t i c ~ a  

writeln; 
w r i t e (  'Do you like to change anotht-.r 

I y , ' n ) :  ' 1 :  
readln(answer); 

end ; 
end ; 

end 
else  

begin 
c l r sc r ;  



writeln; 
write( 'Please e n t , e r  test-run file name :  1 ,  

readlnt f i l e  name I ; 
assign(ptsfile, file-name); 
writeln; 
write( ' How many measured points d~?-3s thl-: t i  L C  i'-'(.~ntairl" ' ) . 
readln(nrxn-of -pts ) ; 

reset(ptsfi1e); 
writeln; 
( t( The following value will be normally p s a a t = ~ ~ l  L,y Lilc 

existing Motion Detection Program. t ) 

write( 'Enter The pyramid level at w h i c h  tllc c~b,j~?c:t was 
d~ t l - . ' ,  t - t 2 < 1 :  ' ) ; 

readln(pyramid-level) ; 
clrscr; 
writeln( ' The following parametxrs tlsvf.: L i l t 2  icr.11 L I L J L I I ~  

va1ut:s: ' ) ; 
wr'iteln; 
writeln( ' 1 . Sampling rate reduced by -3 l '--l~_+tor = ' , 

sampling factor) ; 
writeln; 
writelno 2 .  Display delay (ms) = ' , cl(-:lsy fact-or); 
writeln; 
write( ' Do you like to change any of the psr3rneLcrs 

l - t ( y  r 1 j .  ) ;  
readln (answer); 
while (answerz'y') or tanswer='YY) do 

begin 
writeln; 
write ( ' Whirh parameter do you l i k . . \  t . r_ ,  i : k ~ ~ l l g ~  

( 1  2 ) :  ' 1 ;  
readln( parameter) ; 
writeln; 
if (parameter = 1) then 

begin 
write( 'Reduce the sampling ra te  b y  

a t a c t t ) r  ~ f '  : ' ) ; 
readln(samp1ing-fact0 

end 
else 

if (parameter = 2 )  then 
begin 

write( 'Display delay i nis ' I . 
readln(de1ay-f actor) , 

end 
else 

writeln( ' Invalid option. . . ' ) , 
writeln; 
write('Do you like to change ano the r  

(y/n): ' 1 ;  
readln(answer1; 

end ; 
end ; 
(option = cnise-opt) then 



begin 
filter-option : =  3 ;  
T : = 0.0:33:3*samplin.g .factor; 
calc- sigma pa( true) ; 

e n d ;  

if (option ( >  cmse--opt) t h e n  
begin  

clrscr ; 
writeln; 
writeln( 'Which of the f r3l lowing t'il tt,rs yt 1 1 1  ; I (  , ~ i  i d  1 i Lx: 

L l J  lJ,5L ' ) , 
writeln; 
writeln( ' 1 .  Two point extrapolator' 1 ; 
writ,eln('2. Alpha-bata filter' ) ;  

writeln('3. Alpha-beta-gamma filter'); 
writeln; write( 'Please enter o p t i o n  numt+;t:: ' I , 
readln(fi1ter-option); 

end ; 
End ; ( *get _ opt ion*  ) 



PROCEDURE calc-gains ; 

( * This procedure calculates the optimum stea4:v. s l 3 t 2 [ c  t ; - ~ i r l - ,  1 ,r 
the Alpha-Beta, and Alpha-Beta-Gamma f i l t e r s  t i 

Procedure calc-alpha-2(t-i: real; 
var opt -gain: real ; 

( This procedure calcu1~-tes the optimum steady 5 L:it t-  l i p l l ~  t , , L -  

the Alphs-Beta filter. .+ f 
var 

b: real; 
root : r e a l :  

begin i Wcalc alpha - 2 ' g  
b : =  0.25*(t i + 8 ) * t , _ i ;  
root : = 0.5-*( -b+sqrt(sqr(b )+4:kb) f ; 
if (root>O) and (roottl) then 

opt -gain : = root; 
end; t *talc alpha-2* ) 

Procedure calc. alpha_-3 { t--i : real ; 
var opt -gain : real ) ; 

( t' This procedure calculates the nptimum steady st-at.c -1.lpha lor 
the Alpha-Beta-Gamma filter . The Newton-Ftaphsor~ mc t l l ~ ~ ~ l  is t l s t c j  
here for solving the cubic equation. * )  

cons t, 
t o 1  = 0.0001; 

var 
b, c ,  d: real; 
p a ,  p : real; 
f __p ,  f .d p : real; 
temp: r e a l ;  
continue: boolean; 

begin (*talc.-alpha-3*) 
b : = 0.25*t-i*( t_i-16 ) ; 
c : =  0.25*t-i*(48-t-i); 
d : =  -8*t - i. 3 

p@ : =  0 . 5 ;  
temp : =  sqr(p0); 
continue : =  true; 
while continue do 

begin 
temp : =  sqr(p0); 
f-p : =  pO*temp + b*temp + c*pO + d; 
f -d-p : = 3*temp + 2*b*p0 + c ;  
P : =  PO- f..p/f-d-P; 
if (abs(p-pO)<tol) then 

begin 
opt.-gain : = p; 
continue : =  false; 

end 



e l s e  
po : -  p;  

end ; 
end  ; f 'tical c.- a lpa -3%)  

Eegirl ( %ale g a i n s *  1 
i f  ( f i l t e r  o p t i o n  = 2 )  t h e n  

begir l  
ca lc- -a  Lpha-2 ( t r a c k i n g - i n d e x  _x, g a i n  opL x 1 2 , l  1 ; 
g a i r l _ o p t _ x L 2 , 2 1  : =  2 *  ( 2  - g a i n - o p t - x l t : , l I )  4 

* s q r t ( 1  - g a i n  ctpt : - r ( l ; l , I l ~ ,  

calc -a lpha_  2 (  t racking- index- .y ,  g a i n -  o p t  j.. 1 2 , l  1 i , 
g a i n - o p t - y [ 2 , 2 J  : =  2 * ( 2  - gain opt-yl2,l)) - 

* s q r t ( 1  - g a i n - o p t - ; l Z , l  I ;  
end  

e l s e  
b e g i n  

calc--alpha.-3 ( t racking-- index. -x ,  g a i n  -opt  - xi 3 , l  1 ) ; 
g a i n _ o p t _ x r 3 , 2 ]  : = 2  :* ( 2 - gain-opt x /  3 , l  1 ) - 4 . 

+ s g r t  ( 1 - g a i n  cjpt :A( ' 3 , 1  1 1 ; 
ga in -op t - -x [3 ,3 ]  : = s q r ( g a i n -  o p t - x [  3 , Z  I 1 ,  

g a i n  opt  x [ 3 , l ] ;  

ca lc - -a lpha- -3  ( t r ack ing- index-y ,  gain-upt- i .  1 3 , 1  j ) ; 
gain.-opt- .y[3,21 : =  2 * ( 2  - g a i n - c 3 p t _ y l 3 , 1 ] )  - 4 

* sqrt(1 - g a i n  o p t _ y [ 3 , 1  1 ) ;  
gain--opt.-yC3, 31 : = s q r ( g a i n - - o p t - - y [ 3 , 2  1 I /  

g a i n - u p t - y l 3 , l l ;  
end ; 

w r i t e l n (  'optimum a l p h a  x  = ' , gain-opt -_x[f  i l t e r  _ + ~ p t i i , n ,  1 I 
: 5 : 3 , ;  

w r i t e l n (  ' optimum a l p h a  y  = ' , gain-opt.-y[ f i l t e r  o p t i  s r r ,  1 I 
: 5 :  :3 ,  ; 

r e a d l n  ; 
End ; t kca lc - -ga ins*  



PROCEDURE initialize-filter; 

( *  This procedure calculates the maneuvering, n(.$is-r:. A ~ I ~ J - A Y C ~  
deviation and the tracking index. f )  

Const 
In 10 = 2.30258; 

Var 
log.-index x , 
log-index-y : real; 
i, ,i : integer; 

Begin ( *  initialize-filter + )  

if (option=catd_opt) then 
begin 

sigma -a-x : = 0.707*sqr(wl *x-mag; 
sigma-a-y : =  0.707*sqr(m*w)*y.mag; 
sigma-n.-x : = x-mag/n-measurement-nr-7i~-~ ; 
sigma-n-y : =  y-mag/n-measurement-noise; 
T : =  6.283/(n-sampling*m*w); 

end 
else 

begin 
if (option=spopm-opt) then 

begin 
write( 'Enter maneuvering standard c lev i3 t  i ( > r l  in 

the x direction: ' ) ; 
read.Ln( sigrna_a-x ; 
writeln; 
write ( ' Enter maneuvering s t a n d a r ?  (3,-.J i - A (  i c - ~ r i  i n  

the y direction: ' ) ;  
readln( sigma-a_y 1 ; 

T : = 0.0333*sampling--factor; 
end ; 

{ *  The standard deviation value o f  the q n r i r ~ l  i ac~ t, i r l t l  

noise is (2*pyramid--1evel)xsigma-n -0 + 1 
sigma-n-x : = exp(pyramid--level*ln( 2 ) ).#sigma o C) ; 
s igma-n-y : = sigma--n-.x ; 

end; 

tracking_index-x : = sqr (T 1 *sigma-a-x/sigma--nnnnx; 
tracking_-index-y : = sqr(T) *sigma-a--y/sigma--n-y; 

if (filter-option < >  1) then 
begin 

log-index-x : = ln(sqr( tracking-.index-x ) ) , , '111 1 0  ; 

log-index-y : = In( sgr( tracking.-index- y 1 ) ; l r l  1 U  : 



if (filter_option=2) then 
i : =  '7 L 

else 
j. : =  3; 

for j : =  1 to filter option do 
begin 

if ( log index -x > 0 then 
steady-state x r  i , j 1 : = t r .u<-  

e l se  
begin 

steady-state_x[ i ,  ,j J :: f : i lZ,c .  
k-_taw-xli, j l  : =  c s  e x t r 2 p c  i - f  , 

gain -type I .i 1 , 1 i-+g i r~de :~  ) ; 
end ; 

if ( log -index. y > 0 ) then 
steady-state-y [ i , j 1 : = trus- 

else 
begin 

steady_state_y [ i , j 1 : L P s  l . = r : .  

k-taw-yui, jl : = cs -ex t r - ip t  i 1, 
gain type[.j\, Log i n d e x  y ) ;  

end ; 
end ; 

gain.-x[%,l,ll : =  1.0; gain_y[2,1,11 : =  1.0; 
gain-x[2,2,1] : =  1.0; gain-y[2,2,11 : =  1.0; 
gain-x[3,1,1] : =  1.0; gain--yr3,1,3.] : =  l . ( l ;  
gain--x[3,2,1] : =  1.5; gain--y[3,2,1') : =  I. 5 ;  
gain-.x[3,3,11 : =  2.0; gain-y[3,3,1) : =  2 . 0 ;  

e n d ;  

for i:= 1 to 3 do 
begin 

if (option=catd-opt) then 
begin 

model-x[ i J : = x_mag * sin( w*i:*T ) ; 
model-yti] : = y--mag * cos(m*w*i'KT+pllase) ; 
m-x[:i'l : =  model -x[il + sigma-n x E. Gauss; 
m-y[i] : =  model-yEi] + sigma-n_y t Gauss; 

end 
else 

if (option=spoprn-opt) then 
get-position(i); 

end ; 

( The following are the initial estimates #>f the T t ~ v  k ' c ~ i i l t  
extrapolator, Alpha-Beta, and Alpha-Beta (4nmmcl 1 i l  t i : r*s ,  
respectively. * )  



i f  t iiltcr-option=l ) t h e n  
beg in  

s-x[l,l] : =  m-xr3-j; 
s-yCl,Il : =  m-yr31; 
s-v-x[l.l] : = (m-x[3]-m_x[21 ) / T ;  
s-v-yC1,lI : =  Im-~(31-m y[2])/T; 

end 
else 

if ( f i l t e r _ o p t i o n = 2 )  then 
beg in  

s_x[2,1] : = m-x[3] ; 
s_yC2,11 : =  m _ y r 3 ] ;  
s - _ v - x [ 2 , 1 1  : =  (m-x[3]-m-x[21)/T: 
s . _ v - ~ [ 2 , 1 1  : = (rn-y131-m-_yr2 1 j , 'T; 

e n d  
else 

beg in  
s_xC3,11 : =  m.-x[3]; 
s-yr3,lj : =  m-y[3]; 
s-v-x[3,1-j : =  (3*m-x[3]-4~*m-x[2)+m-:.r[l J ) , / ( 2 + - T ) ;  
s-v-y[3,1] : = (3 *m-y [3 ] -4 *m-y [2 ]+m_y / l  11 i i i (  2 $ T ] i  
s-a--x[l) : = (m-x[3]-2*m-x[2]+m--x[I] ),/sqr(T 1 ;  
s-a-y[lI : =  (m-~[3]-2*m-~f2]+rn-y[l]), sqr('I'i; 

end ; 

End; ( * i n i t i a l i z e - f i l t e r : * )  



PROCEDURE Calc-trans-gain( f i l t e r - . i d ,  g a i n -  i d  : i n t  e,.gt:l , 
~ ; o f > r d i n ~ t . e  . ~ f h a r ) ;  

( *  T h i s  p rocedure  c a l c u l a t e s  t h e  f i l t e r  g a i n s  t alpha, tc Li.1, <iii:.l 
gamma 1 d u r i n g  t .he t . r a n s i t i o n  p e r i o d .  I t  r e t u r r t s  2 t . . r t . ~ e  ~ 3 l a c ~ : .  
when t h e  s t e a d y  s t a t e ,  o p t i m a l  g a i n  v a l u e  has  becr i  rc:a!:llcJ, 
f a l s e  o t h e r w i s e .  :%) 

Corlst 
e r r o r - p e r c e n t a g e  = 0 . 1 ;  

B o g i ~ ~  ( Xcalc  - t , rans-gain* ) 
i f  ( c o o r d i n a t e  = ' x ' )  t h e n  

beg in  
g a i n -  x [ f  i l t e r - - i d ,  g a i n - _ i d ,  k] : = gain--xl f i l  l,oc i l l ,  
g a i n - - i d ,  k-11 + ( 1 - e x p ( - l / k _ - t a w - x r f  i l t e r -  id, g ~ i n  i d  1 I I 
tr ( g a i n _ - o p t  - x [ f i l t e r - i d , g a i n _ _ i d l  - g a i n  t i l t c r  ill, 

g3iu id, k- 1 ] ) ; 
i f  (abs(100*(gain_x[filter__id,gain_id,kj - 

gain--opt  -xrf  i l t e r - - i d .  g a i n  i d  j I / 
gain-opt- filter i d , g a i n  i d ]  r . 

e r r  t L I Ll lcn  
s t e a d y - s t a t e  -x[ f  i l t e r -  i d ,  g a i n -  i d )  : = t r w 2 ;  

end 
e l s e  

beg in  
g a i n - y r f i l t e r - i d ,  g a i n - i d , k l  : =  g a i n - y [ f i l L + - ? r  i l l ,  
g a i n - - i d ,  k - l ]  + (1-exp(-l/k_-taw-y[filttr i 4 , g a i n  i d  1 r ) 

+- ( g a i n . - o p t _ y [ f i l t e r -  i d , g a i n  i d ]  - g a i n -  y 1 f i l t ~ l r  i d ,  
gilicl i d ,  k- 1 1 1 ; 

i f  ( a b s (  lOO*(gain-y[f i l t e r  _ i d ,  g a i n  _ i d ,  k ]  - 

g a i n _ o p t _ y [ f  i l t e r _ - i d ,  g a i n  i d ]  i i 
gain-opt-y [ f  i l t e r - i d ,  gain- . id I ) < 

e r r o r - p e r c e n t a g e )  t h e n  
s t e a d y -  s t a t e - y [ f  i l t e r - i d ,  g a i n - i d ]  : = LI-ue; 

end ; 
End ; ( f c a l c - _ t r a n s - g a i n *  ) 



PROCEDURE initialize; 

Begin ( *  initialize 
gain-type[l] : =  'alpha'; 
gain-type[2j : =  'beta'; 
gain-typeC31 : =  'gamma'; 
delay -fact.or : = 0; 
m : =  2 ;  
w : =  6 . 2 8 ;  
phase : = 1.57; 
n- sampling : = 20 ; 
n -measurement-.noise : - 256 ; 
sampling_f actor : = 1 ; 
x-mag : =  125; 
y .mag : -  75; 

get-option ; 
End; ( *  initialize ;+') 

PROCEDURE add-measurement-noise; 

( *  This procedure adds noise to the ideal model .Lr- , i tn t iun.  'I'he 
noise is white zero mean. * )  

Begin 
m-xlkl : = model.-x[k] + sigma.-n-x * Gai~ss ;  
m-_y[k] : model--yrkl + sigma-n-y :# Gauss; 

End ; 



PROCEDURE p r e d i c t - l ( k : i n t e ~ e r ) ;  

I f The p r e d i c t i o n  i n  t h i s  p r o c e d u r e  i s  based o n  t h i t  elf thz-: 'I'675-, 

P o i n t  E x t r a p a l a t o r .  * )  

Begin ( '*predict.-1.r: ) 
p _ - x [ l , k ]  : =  s _ - x [ l , k - 1 1  + T*s_v-x[l , k - 1 1 ;  
P ~ C l , k l  : =  s - - y [ l , k - l ]  + T * s  .v -y [ l ,k -11 ;  
p - v _ x l l ,  k l  : = s - -v -x [ l ,  k - l ]  ; 
P - v - Y I ~ , ~ ~  : =  s-v-y[ l ,k-11;  

E n d ;  ( * p r e d i c t - 1  r )  

PROCEDURE smooth- l (k :  i n t e g e r ) ;  

( *  The smoothing i n  t h i s  procedure i s  based  on tkial ,-)i t h e  Two 
P o i n t  E x t r a p o l a t o r .  * I  

Begin (*smuoth-1%) 
s - x [ l , k ]  : =  m-x[k]; 
s - y [ l , k l  : =  m - y [ k ] ;  
s - v - x l 1 , k I  : =  (m-x[k]-m-x[k-11 ) / T ;  
s - .v -yr l ,k ]  : -  (m-yCk1-m-y[k-l])/T; 

Ertd;  (*smooth-.l*) 



PROCEDURE predict_2(k:integer); 

( ' +  The predicition in this proc:edure is based on that L~ the 
Alpha-Beta Filter. * )  

Begin t +predict--:! r:)  
p - x i  2 ,  kl : = s-x[2, k-I] + T*s-v--x[2, k-I]; 
p_ YI  2 , k j  : =  s-y[2,k-I] + T*s-_v-y[2,k-ll; 
p - v - x [ 2 , k ]  : =  s-v-xr2,k-11; 
p _ v - - y l 2 , k l  : =  s-v-yr2, k-11; 

End ; ( rpred ic t - - 2 ' k  ) 

PROCEDURE smooth-2 (. k: integer) ; 

( *  The smoothing in t.his procedure is based on tha t ,  ,.)1' 1111;- A.lpl-la- 
Beta Filter. , # )  

Var 
dif f ererice.-.x : real ; 
difference-y : real; 

Begin (*smmoth-2r) 
difference-x : =  m-x[k] - p-x[2,k1; 
difference_y : =  m_y[k] - p-y[2,k]; 
s_x[2,kl : =  p-x12,kl + gain-x[Z,l,k]*difference x, 
s - y C 2 , k J  : =  p-yt2,kl + gain-y[2,1,k]*difference-y; 
s-v-x[2,kl : =  p-v-x[2,kl + (gain-x[2,2,k]/T)+differe11~:e x; 
s_v_yC2,kI : =  p-v-y[2,kl + (gain-y[Z,Z,k]/T)~ditf~r:~-~~r~~~; y ;  

End; (*smooth-2*) 



PROCEDURE predict_3(k:integer); 

( t- The predicition in this filter is based 011 I hx t t ht-: A l p h l  
Beta-Gamma Filter. 3 )  

Begin ( *predict -3*) 
p-xf.?,kJ : =  ~._~[3,k-ll + T*s-v_x[3,k-l1 + U . ! l t j q r ( ? ' , t s  -J x lk .  1 1 .  
~ - ~ [ 3 , k l  : =  s-y[3,k-l1 + T*s v-.y[3,k-Il + C ) . ~ + S ~ Y ( T ) + E  11 j ' 1J .q  11; 
p_v--xr3, kl : = s_v_-x[3,  k-I] + T*s--a_-x[k-l J ; 
F.-v-Y[Y ,kl : =  s_v_y[3,k--ll + T*s-a-y[k-I]; 
p-a-xrk] : =  s-2-x[k-l]; 
p _ a - y / k l  : =  s a y[k-11; 

End; ( *predict-3*) 

PROCEDURE smooth_3(k:integer); 

( *  The smoothing in this filter is based on that; of t,he Alpha- 
Beta-Gamma Filter. * )  

V a r  
difference-x : real; 
dif f erence-y : real; 

Begin ( *#smooth_3*) 
d i f f  erence_x : = m.-xlk] - y - x [ 3 ,  k] ; 
difference--y : = m-y[kl - p--y[3,kl; 
s - X I - 3 , k l  : =  p--x[3,kl + gain--xr3,l,kl*differenr.e_;,. 
s-yC3,kl : =  p-y[3,kl + gain--yC3,l,k]*differenc'cCy; 
s_-v -xr3,k] : =  p-v-x[3,k] + ( g a i n - - x [ 3 , 2 , k ] / T ) * d i f ~ c r c r 1 1 ~ c  :,; 
s - v - Y ~ ~ ,  kl : =  p-v-Y [3, k] + (gain-y[3,2, kJ/T) kditicrt- .n(. t . .  y ;  
s-a_-x[kl : = p-a--x[kl + gain--x[3, 3, k]/(Z*sqr(?') ) + d  i tLf~:r:?~ic+t3 x ;  
s-a-y[kl : -  p--a-y[k] + gain-y[3,3,k]/(2*sqr(T))*di~F'~~r~11~~~ 5,;  

End; ( Ksmmoth-3*) 



PROCEDURE get-statistics(x1, yl, x2, y2 : array_-typl;~; 

( : I :  This procedure calculates the standard d e v i a t i t - ! n s  1r.f the 
predicted and model values in both the x and the y dirir!: t . i l ~ a s .  
:*: ) 

Var 
zzave ._x, z zave_y, 
zave-.x, zave--y : real; 
i : integer; 
sigma-x, sigma-y : real; 
n : integer; 

Begin (,*get statistics*) 
if (option<> catd-opt) then 

n : = num- of ~ p t s  
else 

n : =  m*n.-sampling-1; 
zzave-x : =  0; zzave-y : =  0; 
zave_x : = 0; zave-y : =  0; 
for i : =  2 to n d a  

begin 
zave--x : =  zave-x + (xl[i]-x2Ci.l); 
save.-y : = zave-y + (yl[i]-y2[i]); 
zzave-x : =  zzave-x + sqr(xl[i]-x2ril); 
zzave--y : =  zzave-y + sqr(yl[i]-y2[ij); 

end; 
zave_x : = zave-x/n ; 
zave-y : =  zave-y/n; 
zzave._x : = zzave_-x/n; 
zzave_y : = zzave-y/n ; 

sigma-x : =  sqrt(zzave-x - sqr(zave_x)); 
sigma-y : =  sqrt(zzave-y - sqr(zave-y)); 
clrscr; 
writeln; 
writeln(' The following are the values of the standard 

deviations of ' ) ; 
writeln; 
writeln(' the predicted and model position values:' ) ;  

writeln; writeln; 
writeln('Standard deviation in the x direction: ' ,  :,igm:i_x 

: k t :  3 ) ;  
writeln; 
writeln( 'Standard deviation in the y directior~: ' , s ig rna-~ ,  

: 5 : : 3 , ) ;  
readln; 
clrscr; 

End; (*get-statistics*) 



PROCEDURE drawptx-temp, y-temp : real; 
color : integer); 

Var 
x ,  y : integer; 

Begin (*drawp*) 
if (option=catd.-opt ,)  t hen  

b e g i n  
x : = round(x_temp)+l60; 
y : =  round(y_temp)+100; 

end 
else 

begin 
x : =  round(2240Jcx--temp/255) - 950; 
y : =  round(300.%y_temp/255) - 100; 

end ; 

draw(x-2, y ,  x+2, y ,  color); 
drawtx, y-2, x, y + 2 ,  color); 

End;  ( *drawp* ) 



BEGIN (*Track*) 

initialize; 
initialize-filter; 
while (option < >  exit-.opt) do 

begin 
if (option <> cmse-opt) then 

begin 
graphcolormode; 
palette(2); 
textcolor(2 1 ; write( ' R: predic+tcdl 1 ; 
textcolor(3) ; write( ' y :  modcl ' ) ; 
textcolor( I ) ; writeln( ' t i :  rnc?asurt:l-l' 1 ; 

end ; 
if (option=catd-opt) then 

max-runs : =  man-sampling+l 
else 

max-runs : =  num-of-pts; 

for k : =  2 to max-runs do 
begin 

delay(de1ay-factor); 
if (filter_option=l) then 

begin 
predict-l(k); 
drawp(p-x[l,kl, p _ y [ l , k f ,  p r  color); 

end 
else 

if (filter_option=2) then 
begin 

predict_2(k); 
drawp(p--x12,kl, p-y12,kl, 

yr .colclr ) ; 
end 

else 
begin 

predict_3(k); 
if (option <'/ cmse-- opt 1 thcrl 

drawp(p_xC3,kl, p - y l . 3 , k I ,  
pr- '20lt~r ) ; 

end; 
delay(de1ay-factor); 

if (option=catd-opt) then 
begin 

model-x[k1 : = x--rnag t s i r i ( w t  (k+2 1 +TI ; 
model-y[k] : =  y mag * i : (ss(rn*wv(k+2)t  

'rt p ~ l ~ l ~ ~  ; 
end 

else 
get-position(k); 

if (option = catd--opt) then 
begin 



drawp(mode1-xrkl, ~ n v d c l  . y l  k l ,  
fn<Jdc 1 ~2 <-> 1 t-! I? ) ; 

add_measurement..noise ; 
delay(de1ay-factor); 

end ; 

if ( f  ilter_--option 0 1 ) than 
begirl  

if ( f ilter-option=2 ) t-lien 
ctrl : =  2 

else 
ctrl : =  3; 

for ctr:! : = 1 to f i l t -er  .op t  i c - ~ r ~  qlcl 
b e g i n  

gain_x[ctrl, ctr2, k j : = 
gain-opt xi ctrl , c t r 2  J ; 

gain_y[ctrl,ctr2,k] : =  
gain-opt-y [ctrl , ctrv ; 

end; 
if not(steady-state-x[ctr1,11:tr2]) then 

calc-trans-gain(ctrl,ctr2,'xJ ) 
else 

gain--x[ctrl, ctr2, k] : = gai n-opt-x[ 
ctrl,ctr2]; 

for ctr2 : = 1 to filter--option d(s 
if not ( steady--state--y I c:trl, c t r 2  J ) 
then 

calc-trans-gain~ctrl,~t~r2,~y'~ 
else 

gain_y[ctrl,ctr2,kl : =  
gain_opt-y j ctr1 ,ctr2); 

end ; 

if (filter-option=l) then 
smooth--1 I k ) 

else 
if (filter_option=2) then 

smooth-2 (k) 
else 

smooth-3 ( k) ; 
end ; 

readln; 

if (option = catd-opt) then 
get -s ta t i s t ics (mode1--x ,  model-y. p -x[f  ilter opticrnl , 

p _ y [ f  ilter-option 1 ) 

else 
get-statistics(m-x, m-y, s- filter-option], 

s-ylf ilter__option] ) ; 

i f  (option = catd-opt) then 
get.-opt ion 



else 
if (option cmse-opt) then 

begin 
reset(ptsfi1e); 
calc-sigma_a(f alse 1 ; 
initialize_f ilter; 
option : =  exit-opt; 

graphcolormode; 
palette(2); 

end; 
If (option C >  catd_opt) then 

close(ptsfi1e); 
END. (*Track*) 
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