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Computational Models of Visual Hyperacuity

Abstract

The process of visual hyperacuity is described and analyzed in the terms of informative theory. It is
shown that in principle, the detection and representation of both luminance and edge features can be
performed with a precision commensurate with human abilities.

Algorithms are formulated in accord with the different representational methods, and are implemented as
distinct computer models, which are tested with vernier acuity tasks. The results indicate that edge
information, encoded either in the manner proposed by Marr and his col1eagucs (as zero-crossings in the
Laplacian of a Gaussian convolved with the image) or when encoded as a simple filtered difference
allows finer spatial localization than does the centroid of the intensity distribution.

In particular it is shown that to judge changes of relative positions with a precision of 0.1 sec arc in two
and three dimensions, it is sufficient to represent the displacement of an edge by the difference of two
Laplacian-Gaussian filters rather than by the difference between interpolated zero-crossings in them. This
method entails no loss of relative position information (sign), allows recovery of the magnitude of the
change, and provides significant economies of computation.
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ABSTRACT
The process of visual hyperacuity is described and analyzed in the terms of informatiox

theory. It is shown that in principle, the detection and representation of both luminance and

edge features can be performed with a precision commensurate with human abilitics.

Algorithms are formulated in accord with the differeat representational methods, and
are implemented as distinct computer models, which are tested with vernier acuity tasks. The
results indicate that edge information, encoded ecither in the manner proposed by Marr aad
his collcagues (as zero-crossings in the Laplacian of a Gaussian convelved with the image) or
when encoded as a simple filtered difference allows finer spatial localization than does the

centroid of the intensity distribution.

In particular it is shown that to judge changes of relative positions with a precision of 0.1
sec arc in two and three dimensioﬁs, it is sufficient to represent the displacement of an edge
by the difference of two Laplacian-Gaussian filters rather than by the difference between
intcrpolatéd zero-crossings in them. This method entails no loss of relative position informa-
tion (sign), allows rccovery of the magnitude of the change, and provides signifcaat

economies of computation.



ii

ACEKNOWLEDGEMENTS

This paper would never have been possible without the considerable assistance and ener-
gies of Dr. Kenneth Knoblauch. He has contributed many original ideas, mathematical rigor,

and his solid knowledge of the maeny 2spects of vision.

I thank Dr. Ruzena Bajcsy for her sound judgment, creative ideas, and her support and
guidance.

Peter Allen has always helped.

I am very grateful to Dr. Ell‘cn Hildreth and Dr. Roger Watt, who provided valuable cri-

ticisms of ecarlier drafis.



iii

TABLE OF CONTENTS

I. Introduction 1

II. Visual Acuity

1. Image Fermation and Quality Y3
2. Types of Acuity 4
3. The Factors Underlying Resolution 6
4. What Factors Underlie Localization? 9
II1. Hyperacuity as a Computational Problem
1. Different Leveis of Explanation 11
2. What Nceds to be Computed? 12
3. Computation Strategics 16
4. Representation of Position Information 20
5. Algorithms 32
6. Hardware Implementation 34
7. Summary s
IV. Implemeantation and Results
1. Implementation 37
2. Methods 38
3. Results 38
V. Discussion 45

Notes 47



L INTRODUCTION

One of the central issues in vision rescarch concerns spatial relations and location. The
human perceptual process of visual hyperacuity, the ability to perceive with extreme precision
spatial position information, both laterally and in depth (for example rezading a vernier), poses
some profound and as yet unanswered questions about how 2 visual system acquires and
represcents very fine-grained :spﬁial information.

These questions have traditionally been posed in the languages of psychclogy, psycho-
physics, and neurophysiclogy. In this paper they are asked in a different language; here they

are considered from “within the paradigm of information theory.

Such an approach is not new, nor is it suggested to supplaat traditional approackes, but
it does offer certain zdvantages. Foremost among these is the explicitness with which
hypotheses about how a system represents and processes precise spatial information can be for-
mulated and tested. Here, three such hypotheses are developed and implemented as computer

models, which are developed and presented as follows.

First, the various visual acuities are defined both in terms of different types of visual
tasks and in terms of thcir limiting physical and psychophysical principles. A difference of an
order of magnitude between the threshold limits of resclution and localizaticn is observed.

Second, the process of visual hyperacuity is expliciily cast ia a2 computational framework.
Viewing the process as a computational problem, questions about the nature, purpose, form
and implementation of computations performed upon visual input are discussed. Specific com-

putational mechanisms are developed and formulated as algorithins.

Third, the actual implementation of these algorithms using simulated data, and natural

data in two and three dimensions is described.

The last section intcrprets the results, compares them with the performance of the
human visual system, znd discusses implications both for theories of human hyperacuity and

for a number of computer vision issues.
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II. VISUAL ACUITY

Before the question of what mechanism is responsible for visual hyperacuity can be
raised, the process itself must be well defined. To do this requires an understanding of visual
acuity ia general, which is in turn impossible without first considering the physics and psycho-

physics of image formation, which is the subject of this section.

1. Image Formation and Quzliiy
Here we will only consider images formed by devices such as the eye and the camera,
which use a converging iens to focus an inverted real image on a surface behind the lens.

The image formation process is a conversion from a continuous function to a discrete
function, cffectively describing the image as samples at discrete points. We shali formally

describe this conversion with the delta function, which may be defined by:

0 whenx#0
8() = |» when x =0
+o0
J 8(x)dx=1

—on

This does not represent a function in the sense in which the word is used in znalysis (to stress
this fact Dirac called it an "improper function”), and the above integral is not a meaningful
quantity unti! some convention for interpreting it is declared. Herc (after Bracewell (1978)) it
is interpreted as the limit of a set of functions:

8()= lim 3,()

where

8.(x)= 0 otherwise

{n iflx1<1/2n

A continuous image may be multiplied by a two-dimensional “comb”, or array of delta func-
tions, to extrac: a discrete sample for cach delta function. After sampling an image may be
described as a discrete function f(x,y) giving the light intensity (gray-level) at each point (x,y)

on the surface behind the lens (image plane).
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A fundamental description of the qualiry of an image produced by any optical system is
the po‘irnt spread function, i.c., the distribution of light in the image plane of a point object.
This function can be regarded as the spatial probability distribution {in the image plane) of a
single photon emitted from a point source. FIGURE 1 illustrates a rcasonable estimate of the

point spread function of the ncrmal human eye in good fecus.

FIGURE 1.
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Point spread function of the normal human eye.

An alternative description of the quality of an image can be given, in the language of
electrical enginecring, by the modulation transfer function of the optical system. In 2 linear
system the point spread function can be derived from the (spatial) frequency response by
Fourier analysis, so the two are equivalent: Just as we characterize the quality of an amplifier
by the way it handles a train of pure sine wave inputs (where the output sine waves emerge as
sine waves with a change in amplitude and phase which depends upon their frequency), so do
we characterize the quality of an optical system by the way it takes a sinusoidal grating and
images it as a sinusoidal grating with a reduction in amplitude of modulation and a change in
phase. The plots of modulation and phase versus spatial frequency of sinusoidal gratings are
respectively called the modulatrion transfer and phase rransfer functions, and together they con-

tain the same information as the point spread function.

The significance of these functions lies in the fact that once cither is known, it is possi-
ble to predict what is present on the image plane by determining what the optics of a visual

system may have done to a target. Since we will not be using sinusoidal gratings, we here
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adopt the point spread function as our measure of the quality of an image.

2. Types of Acuity

There are many types and measures of visual acuity, but four subdivisions of this ficld
are traditionally drawn. Each presents visual acuity as a threshold which is mcasured in the
spatial domain; for example, the size of a feature in the visual field is changed until the sub-
ject can make a correct respomse. Urnless otherwise specified, we shall be concerned with

Sfoveal rather than perifoveal or peripheral acuitics in discussions of the human visual system.

The minimam visthle

The minimum visible refers to the minimum size necessary for a feature to be detected.
The kinds of tcsts used in experiments on the detection of small objects include: (a) bright
objects against a dark background, (b) dark objects against a bright background, and (c) low
contrast objects. Riggs (1965) indicates that this is primarily an iacremental luminance detec-

tion task.

Recognition

Recognition tasks require the subject to name the test object. This task is used in clinical
studies, in which wall charts and test plates commonly present progressively smaller printed
symbols to be recognized. The subject is then scored on the minimum width of line, gap, or

other characteristic of the object correctly identified.

Despite the popularity of this method, the results it gives arc difficult to interpret
theoretically and few cxperimental investigations of acuity have made use of symbols of this

sort.

The minimom resclvable

The minimum resolvable refers to the minimum size necessary for am internal
differentiation of an object to be made. (e.g., Is this a single or a double star? Is this an O or

a C?) The test abjects have in common the fact that cach single element of the pattern would
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be clearly identified if it were presented zlone.

Visual acuity, in this sense, is the reciprocal of the angular separation between two ele-
ments of the test pattern when the two images are resclved. This measure is comparable to
the "resolving power” of a camera or a telescope. The theoretical limit of this resolving power

is a function of the wavelength of the light and the diameter of the aperture (see Section 11.4).

Locailzation

Localization refers to the minimum detectable difference in the relative location of
objects. (e.8., Is the upper line to the right or left of the lower line? Is the upper line in front
of or in back of the lower line?) It is interesting to note that the human visual system is actu-

ally very poor at judging absolute distances in the absence of very strong cues.
Both vernier acuity and stercoacuity are commonly tested by the use of a straight line

broken in the middie. The task is to detect small displacements either laterally or in depth of

one line segment as shown in FIGURE 2.

FIGURE 2.

The task of localization as illustrated by vernier acuity.
(To be precise it must be noted that localization concerns shifts in the position of arbitrarily

large images, rather than images the minute size of hyperacuity thresholds).

This experiment yields very small thresholds. For example, Berry (1948) reports thres-

holds of about 2 seconds, and other observers report similar values. It should be noted that a
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2-second displacement of the test line amounts to about 0.01 mm scen at a distance of 1 meter!
The exact thresholds are influenced by the characteristics of the test object (including target

length, gap size, target orientaticn and target curvature) and the background.

Restriction of terms

Now that the types of acuity have been defined we shall restrict our attention to resolu-
tion and localization, since it has just been shown that they are the acuities which concern the
types of tasks in which we arc interested. It remains; to see what physical principles and per-
ceptual mechanisms account for these two acuities, what different processes might be engaged
in each of these tasks, and how the results for each compare. Resolution will be discussed

first.

3. The Factors Underlying Resolatlon

The threshold figure of one minute of arc for the human visual system has been widely
accepted for many years. For instance, Westheimer (1977) has found that, with practice on
the classical two-point test, an angular separation of about 1 minute of arc can be dis-
tinguished with 75% success. As before, threshold measurements are made in the domain of
space (distance), but because rctinal distances are most conveniently expressed in terms of

vicual angle, the units of seconds or minutes of arc are employed.

There are a large number of factors which must be considcred in determining the limits
of the resolution of an optical system, including (1) eye movements (2) contrast effects, 3
intensity effects, (4) stimulus duration, (5) state of adaptation, (6) the dimensions of the recep-

tor mosaic, and (7) aperture size.

Although the impact of each of the first five factors is siguificant, we shall assume that
conditions have been optimized with respect to them. So that under normal testing cir-
cumstances, namely constant daylight illumination, test objects of nearly 100 per cent contrast,

and no significant eye movements, these factors are not limiting.
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The dimensions of the receptor mosaic are significant to the extent that, given the unidi-
mensicnal nature of receptor output, there is no simple explanation for sceing something
placed, say, U7 of the way between the positicns of two receptors. The distance separating
two receptors must then be considered. In the human central fovea, where the inner segment
of a single cone covers 20 seconds of arc and the centers of cones are separated by about 20
seconds of arc, a cone {s (approximately) placed at each node and antinode of the highest spa-
tial frequency passed by the optics of the eye (Snydc; and Miller {1977)), which is onc minute
of arc. Thus the optical and recestor mosaic size factors converze on the same limit of one
minute. If the human receptor moszic were coarser, as it is in the parafovea, then it would be

the primary limit to the resolution achieved by the human eye.

The size of the aperture is an important and complex factor in resolution. A large aper-
ture allows more light cnergy to stimulate the receptors and diminishes the blur due to the
diffraction of light. A small aperture, on the other hand, diminishes the effects of spherical
and chromatic aberrations ia the lens. An ideal system would map object points into image

points rather than into a distribution such as given by the poiat spread function.

To determine the parameters of this distribution in a physically ideal optical system we
must find the absolute limit of resolution as given by the diffraction theory of light. This
establishes a lower bound on the spatial resolution of a visual system without aberrations.

We begin by considering Fraunhofer diffraction of a point scurce by circular apertures.
The projection of a circle is an ellipse, but results obtained from elliptical projected apertures

of small eccentricity will be quite similar to those from circular projected apertures. Without

loss of generality we assume that the aperture is circular.

In this case, the intensity of light energy in the image plane is (after Ford (1973)) given

by

¢y}

where a is the diameter of the aperture, A is the wavelength of light in air, and 0 is measured

I =1 sin(asin8/2)) ?
0 (asin®/2\)



in object space.
Since (sinx)/x - 1 as x - 0, Equation (1) gives I =17, at the central peak of the
diffraction pattern. The angle of the first minimum next to the central maximum is given by
A
6 =122—
> @
{with —;— << 1). FIGURE 3 shows a graph of I versus 0. Eighty-four percent of the tctal

area in this intensity pattern is in the first maximum, or Airy disk.

FIGURE 3.

1/L,

G:= A

s .
"8 (degrees)

Intensity in Fraunhofer diffraction pattern vs. angle of observaiion.

FIGURE 4 pictures several light distributions of two equally bright incoherent point
sources separatcd by 0. Rayleigh has suggested that two points are resolved when the center
of the Airy disk of one¢ falls exactly at the first zero of the second, i.c., when their angular
separation is 1.22-3— radians. Hence Equation (2) can be used as an expression of the resolving

limit of an optical system.

The normal, emmetropic human eye has a point spread function which appreximates the

Airy disk for a 23 mm aperture. Equation (2) then yields a value of almost exactly 1 minute

of arc at a wavelength of 555 om.



FIGURE 4.

Schematic illustration of light distributions when two point sources are presented with three
different angular separations. The depth of the dip determines the limits of resolution.
Westheimer (1976) points out that this is not an absclute limit, since resoiution is possi-
ble as long as the dip ("dimple”) between the pezks of the spread functions is detectable and
since it is only an approximation to identify the point spread function as an Airy disk rather
than some other function such as a Gaussian or exponeatial. If the sensitivity of the observer
is high then much smaller dips in the bivariate intensity distribution may be identified. Thus
the physical resolution limit of the eye may be less than the one minute of arc given by
Rayleigh's criterion, but not by a significant amount, especially when the aberrations prescnt‘

in a non-ideal system are considered.

This is an arbitrary description of resolution, in the sense that there are in principle no
limits on the detection of a minimum between two maxima in the light distributicn except
those imposed by noise. Despite its arbitrariness, it is reasonable and is consistent with

psychophysical evidence of the type Westheimer has presented.

4. What Factors Underlie Locailzetion?

Let us reconsider the case of a single point source. If it is so dim that only a singlz pho-
ton is absorbed by a given receptor, its location in object space can cnly be determined within

the bounds of the probability spread given by the point-spread fumction. With increasing
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intensity of the source, however, more and more photons will be absorbed, so that the shape
and position of the point-spread function will become more and more distinct. To borrow an
analogy from Westheimer (1976): "The situation may be likened to the scaitering onto a plane
of grains of sand that are fed through 2 funnel held some distance above the plane. A heapis
formed whose center can be determined with greater and greater precision as the quantity of

sand increases.”

When there exist two point sources so close together that their point- spread functions
overlap, there can be no discrimination of which photon originated in which point source.
This constitutes the bottom line of the diffraction limit of resolution. But diffraction, while
limiting the resolution of two point sources, docs not limit the localization of a single point
source. Once we arc no longer concerned whether there is one feature or two, the diffraction

limit does not apply.

Precision of localization then essentially becomes a problem of output comparison among
photoreceptors, in the sense that the question asked is “What is the relative position of the

feature?” rather than "Are there one or two features?”

As noted previously, localization thresholds in the detection of alignment errors (Is 'this
feature to the left or to the right, in front or behind?) have been reported to be as low as 2 or
3 seconds of arc. Thesc visual tasks have thresholds as much as a full order of magnitude
smaller than the threshold given by the diffraction theory of light. Further, these thresholds
are much finer than the sampling mosaic of the rctina, where cones in the fovea are separated

by at least 20 sec arc.

Westheimer (1975) has coined the term "hyperacuity” to emphasize this difference in
scale betwecen resolution and localization. Although the exact hyperacuity threshold values
are dependent upon the criterion and measurement techniques, the outstanding fact is that
these threshelds can not prima facie be reconciled with the diffraction limit of the eye. Given

this fact, a framework in which such a reconciliation can be made must be sought.
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I, HYPERACUITY AS A COMPUTATIONAL PROBLIM

The previous section has motivated iiie need for an caplanation of how a visual system
can make extremely fine judgments of relative position, judgments an crder of magnitude
more precise than those of absolute position. We shall pursue such an explznation from the
perspectives of computational and information theory. In his book Visicn David Marr (1982)
treats at length the form and nature of an adequate computaticnal theory, and there he sets

out some clear standards for a rigorous methodological approach.

1. Different Levels of Explanation

One of Marr’s central aims in Vision is to formulate rigorous computational theories of
various perceptual processes, theories which must specify why a perceptual process is under-
taken (what it is for) and how it proceeds (what it does, what it computes). Such a theory is
said to be computational because it provides an explanation of a perceptual process in terms of

the activity of an information processing or computing device. This device must be under-

stood on at least three different levels.

" At the top level, the performance of the device is characterized as a mapping from one
kind of information to another. The abstract propertics of this mapping are defined precisely,
and its appropriateness and efficacy for the task at hand arec demonstrated. The questions to
be answered by this top level iaclude: What is the goal of the computation? Why is it

appropriate? What is the logic of the strategy by which it can be carried out?

At the intcrmediate level, choices of a representation for the input and output of the
information processing device as well as the algorithms to be used to transform one into the
other are made. The questions raised at this level include: How can this computational
theory be implemented? What representation of the information will be employed? What

useful operations can be performed upon this representation?

At the bottom level, the details of how the representation and algorithms are physically

realized are at issuc. Questions raised at this level concern neurophysiology for the human
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visual system and machine architecture and organization for computer vision systems.

An explanation for any particular perceptual phenomenon can be provided at one of
these levels, but the important peoint is that no explanaticn is considered complete untii it
addresses the issues raised at each level. Accepting Marr’s criteria for an adequate explanation
of a perceptual process each of these explanatory levels will be considered from within the

context of hyperacuity.

2. What needs to be ccmputed?

From an information-processing point of view the level of computational theory is of
critical importance. For in trying to understand the nature of the computations that enable
visual hyperacuity, it is far easier to think in terms of the kind of computational problems that
must be solved than in terms of the complex ocular and neural hardware in which their solu-
tions arec implemented, just as it is easier to think in terms of the integers than in terms of sig-
nals propagating through AND-NOT circuits when trying to understand the process of addi-

tion. The question, now, is "What needs to be computed?” rather than "How?”

2.1. The goal of the cemputation

The evolutionary or etholegical significance of human visual hyperacuity is, of necessity,
a matter for speculation. But a very delicate sensitivity to changes in the foveal visual ficld
may have played the role of an carly-warning system, signalling danger in the form of
camouflaged predators ahead, or may alternatively have played the role of a sophisticated

prey-detection system in predators.

It is interesting to observe that quicker and more accurate judgment of position is an
accompaniment to more rapid locomotion. This relationship is consistent with the biological
facts that acuities are more highly developed in the most mobile animals, namely many birds
and some of the most active mammals, and are more developed in predators like hawks and
owls than in prey. It is also possible that hyperacuity developed along with stereopsis (for

which it is clearly useful), and was not particularly useful for vernier type tasks.
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At any rate, hyperacuity is a respoase to a chaage in location, and as such, implies a
judgment of relative position. For the huater, the item of interest is that of the difference
between the past and present positions of the prey. For a psychophysical experiment, the item
of interest is that of the diffcrence between the past and present positions of the target
stimuli.

The task, or goal of the computation, can be formulated more precisely by observing
that in both cases the situation is that of having a test target, where the task is to determine
whether or not the test target has been displaced between two views, or frames. Since the
frames are presented at different times, there must be a "memory mechanism” which can accu-
rately recall the location of the test target in the first frame. In a psychophysical experimen
this introduces a new random variable, for which a control must bz provided. One solution is
to provide a stationary :eference in both frames, where the the tazk is to identify the position
of the test target in a test frame relative to the position of the test target in the reference
frame. In this task, the position of the reference target need not be stored or recalled, and is
the same in both refercnce and test frames. The stimulus arrangement defining the task is

illustrated in FIGURE 2.

2.2. Ciiferent types of position

Clearly the test target in frames 1 and 2 may be related by any combination of transla-
tion, rotation, or deformation. This calls into question what exactly cur notion of position is.
It is clear that the parameters relevant to position judgments include offset, orientation and
shape, and it is equally clear that the capacity to identify *where something is’ is complex and

ambiguous until some metric is adopted.

One group of rescarchers approaches this issue by describing a single conceptual frame-
work (centour analysis) subsuming different mechanisms (for slepe and position}. From exper-
iments with blurred targets, Watt, Morgan and Ward (1983) conclude that there are two (and
possibly three or more) distinct mechanisms involved in vernier acuity. One is responsible for

the discrimination of absolute slope cues, and is employed in tasks requiring judgments of the
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shapes of curved lines (there may be a distinct mechanism operating on highly curved lines).

The second is sensitive to relative positional differences.

One statement of the difference between these two mechanisms (see Watt and Andrews
(1982) for a more precise account) is that the first makes use of position information along a
common longitudinal axis defined by the target (coaxial) (see FIGURE 5) while the second
uses only information orthogonal to the same axis (orthoaxial). Another intcrpfctation is that
the first mechanism concerns both deformations (changes in curvature) and rotations {changes
in slope) while the second concerns translations (changes in position per se). |

FIGURE 5.

longitudinal axis
. €= orthozxial ==P

coaxial

Since both slope and curvature are derivatives (mathematically and figuratively) of posi-
tion, the second mechanism appears to address the more primitive notion of position.
Parenthetically it is remarked that by deforming, the identity of the target itself is changing.
This is not strictly a change in position, i.e., it is not the same target in two different positions.

Similarly, a rotation is an angular displaccment, not strictly a spatial displacement.

Since we are interested in the more primitive notion and its relation to the first mechan-
ism, we can now definc ’relative position’ 2s the spatial displacement of a test target between

two frames relative to the longitudinal axis determined by the reference (stationary between

frames) and test targets.

2.3. Simplifications

In the above analysis a number of simplifications have been introduced which must be

made explicit.
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First, it is not specified when the computation is to be made. Perhaps the high-precision
information is always available and always computed; perhaps it is only available "on demand”.
Regardless, the focus here is on the process performing the computation, rather than on the

process(es) deciding if and when it is necessary.

Second, it has been assumed that the relevant stimuli in the two frames can be discrim-
inated from the irrelevant. In reality, there must be some kind of high-level mechanism which

selects the important parts of the frame to analyze. -

Third, the fact that the image moves over the receptor mosaic, either because of unin-
tended eye movements or because of failure to accurately track a moving object, presents
problems which are important and unresolved. But the topic of spatiotemporal determination
of position is beyond the scope of this paper.

Fourth, a topic which is not addressed here concerns the fact that in the h:xman visual
system the photoreceptors perform a log transformation of intensity, which may effect the
subsequent position measurement. It would be intcmstiﬁg to consider psychophysical experi-
ments which address this issue, and to experiment with images with and without such log

transformations (perhaps by using different digitizing devices).

These four simplifications make the rescarch more tractable without making it trivial. A
computational model which also acccunts for the unsimplified issues would certainly be richer,
but not more fundamental or profound with respect to furnishing an explanation of how high

precision relative positions can be reccvered by a visual system.

2.4. Summary

The goal of the computation is to determine whether or not a change in relative position
(in the narrow sense) exists. If so, in what direction (and possibly by how much)? The com-
putation can now be viewed as a transformation taking an input of two frames into an output
of a vector. Since this is a computation of fclativc position, the output need only be a unit

vector.
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3. Computation Strategies

Now that the answer to the question "What needs to be computed?” has been deter-
mined to be relative position, the logic of a strategy to make the computation must be exam-
ined. Two strategies will be discussed: the first based on the theory of mean lccal sign; the
second on interpolation. Other strategies are certainly possible. For any strategy, the impor-

taat question is whether it can correctly and effectively compute relative position.

3.1. Mean Local Sign

In 1899 Hering pointed out that a point on the rctina might actually be localized within
a region smaller than that of any single photoreceptor, since an "averaging process” could act
to fill the gaps between discrete photoreceptors. Hering’s account of this "averaging” relied
upon the assumption of an extremely regular spatial arrangement of cones in the retina. Even
though cones are arranged fairly regularly in the fovea due to their densc packing, Hering
could not explain how averaging occurred when stimuli did not fall precisely in a rigid pattern

on the cones, which modern histology shows are not perfcctly regularly spaced.

Aftcx; Andersen and Weymouth (1923) this hypothesis was elaborated as that of "mean
local sign®, in which localization is derived from a combination of samples taken along the
area or strip of receptors stimulated by the target. The local sign of cach receptor is presum-
ably cither on for stimulated or off for unstimulated. When on, a spatial value inherent in
the receptor which represents the whereabouts of that receptor is available to whatever

processes are interested.

Since the receptors are distributed randomly, in the long run equal numbers of them will
lic in all parts of the strip, and the center of the strip will represent the "center of gravity” of
all receptors stimulated. The average or mean of these receptors is therefore not restricted to
units such as inter-receptor distance or receptor diameter, but may be accurate to a small frac-

tion of these units,

Thus the average of the positions of the stimulated receptors is accurate to a higher pre-
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cision than any of the measures cntering into its formation; the overali estimate of position,
based on the combination of samples, will improve on any individual estimate. Thus the
overall precision of localization will be limited only by the number of samples and their vari-
ances, and in principle can be on the scale of hyperacuity, e.g., an order of magnitude better
than that of any sample. Relative position may then be accurately determined by computing
the vector corresponding to the difference of the mean local signs of the test target between

frames.

3.2. Iaterpolaticn

Since localization is an order of magnitude more accurate than resolution (Section II.S),
hyperacuity obviously demands that the visual system somechow estimate the optical image
lying between neighboring receptors. This estimation is analogous to the interpolation process
for drawing a continuous curve through a discrete set of data points in order to estimate the

value of a point lying between samples.

A continuous optical image is sampled at a set of discrete points by the photoreceptors
on a surface behind the lens. If these samples arc taken sufficiently close to each other, the
samples provide an accurate representation of the original centinuous image, to the extent
that that pattern can be reconstructed by interpolation. The limits on the 'closeniess’ of the
szmples are precisely expressed by the (Whittaker-Shannon) sampling theorem, which states
that a band-limited function g(x,y) can be recovercd exactly from a rectangular array of its
szampled values as long as g(x,y) contains no spatial frequencics greater than oae-half the sam-

pling frequency.

An optical system will not transmit spatial frequencies higher than w;, at which the

modulation transfer function is zero:

where A\ is the wavelength of light, f the focal length of the lens, and d the diameter of the

lens. A diffraction-limited optical system thus produces an image which is bandlimited, since
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the effect of the optics of the system is that of a low-pass spatial Elter with some cut-off fre-
quency, wy. In the human eye this limit is about 60 cycles per degzze of visual angle when the
pupil is at its smallest (about 2mm) in bright light, and lower valucs when the pupil is larger.
The signal must be lewpass filtered before sampling in order to avoid overlap of the sidelobes
in the Fourier spectrum (aliasing). Lowpass filtering afrer sampling cannot always avoid alias-
ing. Since a spatial cut-off frequency wy is guaranteed, to apply the sampling .thwtcm and to

guarantee that no information is lost we must insure that the distance between the samples

does not exceed the Nyquist limit El- at any sampling level (eg., photoreceptors, ganglion
0

cells, cortex, etc.). In particular this requires having a receptor at each node and antinode of
the highest spatial frequency passed by the optics-- a condition which is found approximately

in the central foveas of a number of animals (Snyder, 1979) where the sampling frequency is

120 cycles/degree.

When these conditions are satisfied the theorem guarantees that it is possible to recon-
struct the function from the set of samples using some process of filtration. What in the
transform domain is filtering amounts to interpolation in the function domain. The two are
equivalent; the original function may be reconstructed cither by spatial interpolation or by
spatial filtering. The effect of sampling is to replicate the original spectrum in an infinite

number of side lobes. Spatial interpolation is accomplished by filtering out all side lobes but

the central one, which is the original spectrum.

The classical spatial interpolation scheme employs the sinc function, but others may be

used, for example the circ function, and simple linear interpolation by the triangie function

. 1-Ix IxI<1
rri(x)=lg Ix1>1

An ideal spatial filtering scheme (corresponding to an infinite sum of sirc functions) employs a

filter with transfer function

p forlu, I<aey
R(w,)= 0 otherwise
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Whatever schemc is used it should be clear that, cnce the continuous function is recon-
structed, spatial lecations can be computed with an acbitrary accuracy. In principle, then, this
scheme allows the determination of localization finer than the sampling mosaic. By recon-
structing continuous functions from sampled functicns, picking 2 convenient point (on the tar-
get) and comparing its values in béth continucus functions, a judgment of relative position can

be made.

The difficulty with this scheme as presented is that there may be no way to implement
an ideal spatial filter such as the sinc function. In particular, the human visual system can
only approximate the sinc function (which extends infinitely in space), and the receptive field
corresponding to even a truncated approximation of this filter is likely to be very complex.
Onc alternative is to scarch for a filter which provides a good approximation to the exact
reconstruction which can be simply implemented. Another alternative is to reconstruct some
important feature of the image (or target) rather than the original continuous image function.

These alternatives will be explored in the next section.

3.3. Comparison

It has been shown that both computational strategies can in principle compute relative

position. The actual conditions under which the principles apply are summarized here.

The computation of mean local sign will have accuracy limited by the number of samples
and the blur introduced by the optics. This implies that if the light distribution is very narrow,
or if too small a region of the light distribution is sampled, accurate localization may not be
possible. The major computational costs are: collecting the local signs in both frames; comput-
ing the mecan in both frames; and computing the difference of the means. This is evidently a

very simple computation to perform.

Interpolation will fail if the sampling rate exceeds the Nyquist limit, i.c., if the distance
between the samples is twice that of the highest spatial frequency passed by the opticul system.

The major computational costs are in filtering in the transform domain {or alternatively, in
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applying an interpolation function in the function domain) and in selccting features of the

filtered image to which position may be assigned.

4. Representation of Pesition Information

The input to the process is two arrays of intensity values, which can be described by two
image functions (as in Scction I11.1). The output of the entire process is a judgment of relative
location: left, right, above, below, front, back (with respect to the axis of the target).
Effectively, this is the sign ( +, —, 0) of displaccﬁzcnt in a given direction. In addition, a
numerical quantity denoting the magnitude of position offscts may be derived. Thus the out-

put of the process can be completely specified as a vector.

The chcice of a representation for positien is important to the extent that it determines
what information is made explicit, and consequently, the ease and speed with which that
information can be accessed, and the types of operations which can be performed upon it. In
essence, this choice will determine the image features to which position is assigned. Two

representations are discussed, one for cach strategy of computation.

4.1. Luminance Features

Based on the theory of mean local sign, one obvious proposal is that location be assigned
to the "center of gravity”, or arithmetic mean, of the light distribution. By the centroid of

f(x,y) we mean the point (¥.5) which gives the ratio of the first moment to the area of f(x,y):

fx f (x)dx
[fGydx

or equivalently, the slope at the zero frequency component of the Fourier transform of the
distribution divided by the amplitude of the zero frequency component:
F (0)
2wi F(0)
Roughly speaking (¥.7) tells where a function is mainly concentrated; in statics (¥.5) is the

center of gravity of a bcam whose mass density is f(x,y). The representation should not be in

the frequency domain, however, because of the expense of performing the Fourier transform.
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Westheimer (1979) has provided a great deal of evidence consistent with this proposal.
In one experiment, Westheimer and McKee presented the observer with a stimulus composed
of two strips about 2.4’ wide and 6.4’ high, abutting vertically. Each strip was composed of 9
bands, 14" wide spaced 3" apart. Observers cannot resoive the bands. To each strip was added
a 10th band with the same characteristics as the others. The added bands could be either
vertically aligned (centers of gravity match) or not (center of gravity offset). According to
Westheimer and McKee the observers were not able to detect an inhomogeneity within either
strip, but were able to indicate at 75% correct when the center of gravity had shifted by on
average 4.7" While the centroid is not the only cue in the above distributions, the evidence is

very suggestive.

The representation of position by the centroid implies that a number of potentially
salient features of the intensity distribution are ignored, only the mean is extracted. In effect
this representation replaces the lines of the target with a single point. While some informa-
tion loss is inherent in such a transformation, the issue is whether position information is lost.
In principle the centroid of a function can be determined exactly, and because the centroid is
invariant under transiation no relative position information is lost, in the sense that any

change in the distribution will be reflected by a change in the mean.

Hence, the information loss can only introduced by the representation of the mean local
signs. More preciscly, the computed mean is a sample mean ¥, which is only an approximation
of the continuous mean w of the intensity population presented as a stimulus. The reliability
of ¥ as an estimate of w is often measured by the standard error of the mean, o/Va. How-
ever, this metric is based upon the Central Limit Theorem which requires that the samples be
independent. Given the structure in the image, the intensity samples are not independent. A
metric based on paired samples, which does not require independence, uses the Student-t dis-
tribution. However, this assumes that the intensity samples are drawn from a normal popula-
tion, and that the sample variance is known. Neither assumption is tenable in general.

Because the normality and variance of the intensity distribution are not known a priori, little
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statistical leverage on the accuracy of the approximation is readily available.

An upper bound on the error of the approximation of the area underneath the continu-

ous function using the rectangle rule is

E = tgngb-af
12

but tighter upper bounds can be derived. The intensity distribution is determined by the phy-
sical characteristics of the target. FIGURE 6 illustrates the distribution assuming a uniform
background, perfect contrast, a regular sampling fx;equcncy, and a homogeneous target. In
calculating the centroid, a computation of area underncath the distribution is performed. In
this ideal environment, the error in the discrete approximation A of the area A underneath

the continuous function is less than T, the sampling period.

If the edges are blurred, as they are by the optics, then the error is much smaller. As
shown in FIGURE 7, the area A closely approximates A, since the area discrepancies cancel
cach other, as A cither overestimates or underestimates A. Evaluating the accuracy of the
approximation depends critically upon the edge blur, which is given by the point spread func-
tion. Taking several spread functicns, TABLE 1 shows the magnitude of the errors when the
area A is calculated with a rectangular rule during the computation of the centroid. Clearly,

the error is smaller than 10% of T, as required by thie need for precise localization.

From both FIGURE 7 and TABLE 1 it is clear that sign information is preserved in all
cases except when cdges are not blurred at all. Thus it can be concluded that transforming
the lines of the target into a single point representing the centroid does not entail loss of
enough position information to curtail localization. Further, it is evident that the higher the
decay of the point spread function, the coarser the approximation of the sampled centroid to
the continuous centroid will be. Moreover, the conditions on the area over which information
is necessarily gathered for accurate localization are that it include a target at least one sam-
pling period wide, its blurred edges, and that the sampling region must be consistent between

frames.
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(2) Intensity distribution of idcalized target.
(b) Three continuous distributioas all fitting sample poirts.
Area A is computed using the rectangle rule. A may vary from
A.

A=hT 0<A<2hT IA-AI<hHT IA-AI<T,
since in high contrast h=1.

Psychophysical cxperiments have shown that more stringent conditions are imposed by

the human visual system. Westheimer and McKee have demonstrated that there is a region,

extending cither side of the target and parallel to its major axis, about 5 wide with a longitu-

dinal span of 30’, within which information for vernier judgments may be collected and

presumably summed to advantage. This area certainly meets the coaditions outlined above.

The mode and median of the light distribution are alternative metrics, but they are not

germane to the theory of mean local sign developed in Section 1I1.3.1, and are not as robust as

the mean in the face of small fluctuations.
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FIGURE 7.
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Area discrepancies cancel each other, allowing higher accuracy in determining centroid.

TABLE 1.

x exp(-x) human

00 0000000 0.600000
0.1 0002010 -001275
02 0.001068 -.000716
03 -.000885 0.000468
0.4 -001827 0001027
05 0.000182 -.000248
06 0002200 -001532
0.7 0.001266 -.000981
08 -000679 0.000194
09 -001615 0.000745
10 0000401 -.000540

TABLE 1 shows errors involved in discretely approximating the continuous centroid given two
kinds of edge blur (see Appendix 2 for precise definition of blurring functions). Error is
measured by C-C. C=continuous centroid  C =discrete centroid. Offset is measured in un-
its of inter-receptor distance. An offset of 0.7 units means that the light distribution has been
shifted 7/10 of the way to the next receptor. The third column illustrates that more edge blur
improves accuracy.

Another proposal is to assign location to the position of the most active receptor, that
is, to the peak of the light distribution. Andrews, Butcher and Buckley (1973) have shown
that by quantizing position in this manner, precision should be as good as, if not better than

that actually achieved by subjects. However, Watt and Morgan (1983} have rejected this
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model since their data demonstrate that the human visual system assigns location on the basis
of the entire light distribution, rather than just isolated local featurcs. Also, from a compuia-
tiona! viewpcint, peaks can be difficult to localize with high precision, particularly if the dis-

tribution is flat on top.

4.2, Edge Features

As discussed in Section III3.2 interpolation of the image function by filtering can
achieve exact reconstruction only when an ideal, coﬁxpletely bandpass filter is used. So rather
than interpolate the image function we consider interpolation of some important image
feature. Since it is difficult to imagine how a hyperacuity threshold can be observed in the
absence of detectable contours, this section will treat representing the spatial position of the

target by its contours, but is not as sensitive to blur.

In this case the only condition on the area over which position information is extracted
is that it include one part of the test target in both frames. This area is consistent with that

used in the centroid computation.

Zero Crossings

The first spatial derivative of an edge has a maximum, and the second derivative has a
zero-crossing at the point where the edge is located. Thus, the zero-crossings of the second
derivative correspond to locations of significant intensity discontinuities in the image, which in

turn correspond to physically significant featurcs such as edges.

Marr and his colleagues (Marr and Hildreth (1980), Crick, Marr and Poggio (1980)) have
suggested that an effective and eificient mechanism for encoding spatial contour information
is to smooth the sampled image and then detect points of inflection or zero-crossings in the

second derivative of the result.

Smoothing is important because a major difficulty with natural images is that changes in
intensity occur over a wide range of scales. It follows that one should consider separately the

changes occuring at different scales, since no single filter can be simultancously optimal at all
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scales. The fact that there appear to be bandpass (scaled) chancels in the human visual system
lends credence to this scheme. The scale of the filter is given by its Gaussian space comstant
(standard deviation) o. In this application , a small o be used, siace intensity changes over a

very small spatial area are to be detected.

Detecting edges thus requires convolving the discretely sampled image function with a
second order smoothing filter, for example the (isotropic) Laplacian of a Gaussian or the
difference of two Gaussians (or DOG, as suggested by Wilson and Bergen (1979)). The Lapla-

cian of a Gaussian is given by:

2
2 2 I,
2 I el P

vV G(r,0)= re
a
The shape of this filter has a center-surround structure which corresponds to the receptive

fields of some ncurons (see Section [I1.6).

* This filter is not necessarily being used as an interpolation function. In fact, because it is
not a bandpass filter of width one octave, it cannot provide an exact recenstruction (see FIG-
URE 8). But this filter does faithfully preserve the spatial frequencies at which intensity
discontinuities occur, assuming that o is appropriately chosen. An ideal filter contains those
frequencies present in the stimulus, but not their higher harmonics introduced by sampling. If
the bandwidth of the filter is tco broad, these higher harmonics will be inciuded, thus
interfering with the signal and reducing the accuracy with which it can be represented. Mor-
gan and Watt (1982) suggest that this is exactly the case for thc buman visual system. They
suggest that the DOG filier is adequate to explain the precision of interpolation found in their

psychophysical experiments and in particular that zero-crossing features are preserved.

Interpolation can be employed not with the explicit aim of reconstructing the image, but
to find with high precision some feature of the convolution profile. Of the stationary points in
this profile (peaks, troughs, zero-crossings) the latter are the casiest to localize, since the loca-
tion of a flat peak is hard to determine. Hildreth (1980) performed statistical experiments on

a wide variety of intensity profiles and compared the performance of different interpolation
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FIGURE 8.
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functions in positioning the zero-crossings: an ideal extended sinc function, a truncated sinc
function, a Gaussian, and a triangular function (linear interpolation). She found that the
stimuli typically used in hyperacuity experiments would not distinguish between the different
function:. She also points cut that the size of the support required for their computation is

lower for Gaussian and linear functions, which are very simple, Jocal functioas.

Once zero-crossings are found in both filtered images, to compare the diffarsnce in their
locations (their relative position) between the two filtered images, corresponding points in the
two frames must be matched, which introduces the correspondence problem. Alteraatively, a
mean zcro-crossing location may be calculated for each filtered image and the difference of
the means calculated. However this alternative introduces its own errors, as discussed with

respect to the centroid in the previous section.



Filtered Differences

To locate N zero-crossings, N interpolations must be performed, which can be computa-
tionally expensive. Along the same lines of the abeve unalysis we can use, not zero-crossings in
and of themselves, but the difference between contours of the test and reference targets, in

order to perform fewer interpolations.

Marr makes this point in Vision in discussing the neural implementation of stereo fusion,
but does not expound upon its significance for hyperacuity. In this approach the signals to be
combined by the difference operation originate in the test and reference targets, rather than
in the left and right eyes. The two signals and their differences are illustrated schematically
in FIGURE 9.

FIGURE 9.
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The sign of the slope at the zer-crossings in the difference of two signals A and B uniquely
determines the direction of position offset: right in (a) and left in (b).

From this diagram it is clear that the sign of the slope at either zero-crossing in the difference
uniquely determines the direction of position change in thé original signal (signal A). In
Marr’s terminology, this is equivalent to using spatial and temporal gradients to determine the
direction of movement of a zero-crossing (see his Figure 3-33). This amounts to detecting a

phase difference in the power spectra of the two images.
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There are four possible assignments of zero-crossing location: the pixels to the left and
the right of either (actua!)} zero-crossing, four altogether. In principle any one of these may
be chosen; in practice the difference should be evaluated at that zero-crossing which will least
degrade absolute position recovery and which requires the least scarching. The important

point is that oniy one zero-crossing need be found.

It should be noted that the phase of the original signals is important. If the signals occur
too far apart their differcace will be zero. If this is the case then Gaussian filters with a
larger o must be employed, which corresponds to searching for intensity differences over a
larger spatial region. Once a filter with o appropriate for the size of displacement is selected,

then the phase difference cannot be zero.

Marr goes on to note that for too closely occurring zero-crossings or for very different
contrasts in the two eyes, this mechanism can be unreliable. As our experiments show, how-
ever, zero-crossings probably do not occur too closely to invalidate the sign information,
although such crowding may distort absolute position information. Contrast effects have not

been explored.

Absolute position information may be encoded in cne of two ways, either in the slope of
the convolution signal at a particular zero- crossing, or in the height of the peaks and troughs.
These features may be cxtracted directly, or some indirect measure, for insiance the mmean of
the zero-crossings, may be used. Both approaches involve the introduction of further errors in
position information; because we are primarily interested in relative position, neither approach

is adopted here.

4.3. Comparison

For the centroid computation strategy there is little alternative to assigning position to a
single high-precision numerical quantity. This represents the centroid as a statistical feature
of the light distribution. This is clearly an efficient and convenieant representation, whose

form is dictated by the computation strategy.
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For the interpolation strategy, position can be represented either by zero-crossings in the
filtered images or simply by the difference between them. The former representation requires
the detection of all zero-crossings, which requires interpotation, 2nd that the difference in
2ero-crossing locations between the two filtered images be determined by matching. The latter
representation of positicn requires a simple difference operation and the detection of a single
zero-crossing in this difference and sa is considerably more efficient and economical than the

former, and is thus preferred.

In sum, the represcntations of position used by the two strategies are both high-precision
numerical quantities. However, they stand for very different features. For the centroid, it is
a statistical feature of the light distribution; for interpolation, it is the difference between two

filtered images evaluated at a single zero-crossing.

4.4. Depth Position

Now that several methods for representing position information in two dimensions have
been identified, we shall consider how any one of these methods can be extended to represent
locations in three dimensions. Again, because of the nature of hyperacuity tasks, we are con-

cerned with representations which will allow judgments of relarive depth.

Here attention is restricted to binocular depth cues, since cther depth cues (interposi-
tion, accomodation, shading, etc.) do not rely on position information per se. Stercopsis, the
perceptual process exploiting binocular information to determine the distance of points in the
visual field to the observer, involves the detection of differences in the images recorded by the
Icft and right eyes and using these differences to infer relative distance and surface orienta-
tion. These differences depend only upon position information, more precisely, such a
difference will be called a disparity, which refers to an angular difference in position of a

point imaged on the two eyes.

We shall consider a process akin, but not equivalent, to stereopsis. In this process the

relative judgments of two-dimensional positions, rather than disparities as defined above, are
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used to determine the sign of a change of position in depth--cither towards cr away from the

observer, either nearer or farther.

FIGURE 10.
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The Vieth-Muller horapter.

FIGURE 10 illustrates the geometrical construct called the (Vieth-Muller) horopter,
which is useful for explaining singlencess and doubleness of vision with two eyes. The points O
and O represent the optical nodes of the two eyes as well as their centers of rotation, and H
represents the horopter circle, the locus of object points which lie at the intersection of two
lines, one drawn from each retina through the nodal point. Muller maintained that singieness
of vision cxisted only when an object lay on the horopter circle. It now appears that single-

ness of vision exists for points lying sufficiently (within Panum’s fusional arca) close to the

horopter.

This construction of the horopter is oversimpliled (because the optical nodes and
centers of rotation may not coincide, and because the notion of corresponding retinal points is

not precise) but for our purposes it is sufficient, for we are not explicitly concerned with
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singleness or doubleness of visicn. In Figure 6 point y is fixated, and the projection 7 of z in
the left cye is to the left of 7, and 7 is to the right of y. Similarly, T is to the right of ¥, and £
is to the left of y. These differences in sign (leftness, rightness) are therefore in principle

sufficient to determine relative depth.
5. Algorithms

5.1. Centrold

ThLis computation is of the centroid of the light distribution as described in Section
I11.4.1. If f(x,y) denotes the intensity at the receptor at (x,y) then the (i.j)th central moment is

given by

m; =szl)'1f (xvy)
e
and the centroid by

-, My
7 Fy=(—2 0
F5) (MN,MN)

where mg is the total ‘'mass’ in the distribution.
Due to the nature of the vernier target, the area of the image over which the centroid
must be computed is consistent, i.c., it does not change with the naturc of the local intensity

distribution. This area mects thc conditions specified in II1.4.1.

Consider two distinct light distributions. These may be scparate either in space, for
example two abutting vertical lines, or in time, for example the same vertical line viewed on
two different occasions. If two ceatroids a=(¥.y) and B=(F.y) are computed for the two dis-
tributions, then a judgment of their relative positions can be formed on the basis of the
difference @ — B. Furthermore, the magnitude of this diffcrence may accurately indicate the

absolute spatial position offset.

5.2, Difference of Laplaclans of Gausslans

This computation is of the sign of the differcnce of the convolution of the light distribu-
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tion with the second derivative of a Gaussian evaluated at a particular zero-crossing. Azain
consider two distinct light distributions F, and F,. If the integral coordinate (x,y) is the first
zero-crossing in a row, and f;{(x,y) represents the inteasity at the receptor at (x,y), the sign of
the difference
VG 1(xy)=V 3G o(x )
will determine the dircction of position offset, as illustrated in FIGURE 9. Since V 2G isa
linear operator, a costly convolution can be saved by.evaluating
VI )~ Az )

A positive sign is interprcted as a shift to the right, and negative to the left. As previously
noted, (x,y) may be chosen from four alternatives; the first occurrence is here selected to
minimize searching. This choice may not allow the best recovery of absolute offset informa-

tion.

5.3. Depth Determinution

Let I;; denote an image where i € {Left,Right} and j € {1,2} (time 1 and time 2, or tar-
get region 1 and target region 2). Let §; = sgn(l;; — I;3), where the difference is computed by

any one of the three methods detailed above,

Then the movement in depth is determined by TABLE 2, where the sign of a position to

the left of the retinal position of the projection of a fixated point is by convention negative.

TABLE 2.
Sleft  Sright movement
- - none
- + towards viewer
+ - away from viewer
+ + nonc




6. Hardware implementation

We must now consider how the representations and algorithms discussed above might be
physically realized in the information-processing device. The physical realizations are fully
specified when the device employed is a digital computer. Consequently, the issuc of interest
is how the computat::ons are implemented in the hardware of the human visual system. Here

we shall provide a coarse and rather unoriginal treatment of this fascinating topic.

The neural image from the foveal region of the retina is represented by the outputs of X
and Y ganglion cells, which are neurons. Impulses from these cells are transmitted by the
optic nerves to the optic chiasma, where the optic nerves from the right and left eyes partially
decussate. The impulses then travel along fibers in the optic tracts to the lateral geniculate
nucleus (LGN); LGN cclls project by the visual radiation to various layers in area 4C of the
striate cortex (Brodmann's Area 17). Herc, as in the LGN, there appears to be point-to-point

correspondence betwecn specific regions and specific areas in the retina.

6.1. Centroid

A specific mechanism for accomplishing the centroid computation can pot yet be clearly
identified, but it is clear that it would differ greatly from those proposcd for interpolation
operations. Knoblauch {1983) has suggested a possible receptive field organization based on a
computation of the first moment divided by the area (see [I1.3.1), which relics on compressive

transformations (logarithms) and lateral inhibition (for subtraction) to calculaie the quotient,
The shape of the receptive field is given by the second derivative of a Gaussian {(center-
surround). Interestingly, this shape is quite broad spatially with respect to hyperacuity thres-

holds. A simulation shows that the receptive field produces a monotonic function of the posi-

tion of the centroid.

6.2. Interpolation

A biological zero-crossing detector might not really detect the zeros of the convolution

output, but could infer their presence and location from the activity occurring adjaceatly in
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the image. So a necural implementation of zero-crossing detection may not yield a position
measurement which corresponds precisely with the position of the ideal, theoretical zero-

crossing.

Marr and Hildreth (1979) and Marr, Poggio and Ullman (1979) have proposed physiologi-
cal schemes for how simple cells in the striate cortex may detect and represent oriented zero-
crossing segments. Similar mechanisms may perform a simple difference operation upon the

representation of the output of the DOG convolution.

Barlow (1979) and Crick (1980) suggested that, since therc are 30 to 100 times as many
granule cells per unit area in layer 4Cﬂ. as there are terminating optic radiation fibers, a
filtered version of the visual image passed from ganglion cells to LGN is reconstructed there
in a fine-grained version of the original. According to this view, the representation of the
visual data which is accessed by the process of hyperacuity is performed by granule cells in

layer 4CB of the striate cortex.

Whether this finer position information is always explicitly represented or is computed
only "on demand” (for example, using compiled "visual routices” as Ullman describes) is

unclear. In either case, the question of how this information is computed is still central.

7. Summary

The perceptual process of hyperacuity kas been treated as a computational problem,
Two different approaches have emerged both of which provide explanations of how relative
position judgments an order of magnitude more precise than absolute position judgments can
be made. The two computations both transform two input images into an output vector
representing their difference in relative position, which in a narrow sense is the spatial dis-

placement of a test target relative to an axis defined in terms of the target.

The centroid computation is based on the theory of mean local sign, which essentially
states that the center of gravity of a reasonable light distribution can be localized in units

finer than the receptor mosaic. The representation and algorithmic computation of the cen-
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troid are particularly simple, employing only simple arithmetic on high-precision numerical
quantities. A hardware implementation of this approach has not been clearly envisioned.
Overall, the centroid computation is simple and efficient, but depends critically upon the

nature and sampling of the light distribution in the original images, especially edge blur.

The difference of gaussians computation is based upon interpolation, which essentially
requires that the original images have their discretely sampled values *close’ together. This
requirement can be met by most diffraction-limited- visual systems, since the optics impose a
bandlimit on the spatial frequency of the images. The assignment of position to edge features
requires expensive filtering, but there are compelling arguments that the filtering is performed
for other rcasons as well. A hardware implementation of this computation is suggested, but
can not be considered complete. Overall, the difference of gaussians computation is more
expensive than the centroid, but is more robust with respect to the nature of the light distri-

bution.

Both approaches can be easily extended from two to three dimensions by using a stereo

_pair of images. Thus refative 3D positions can be computed with the tame accuracy as relative
2D positions.

This will suffice as a treatment of hyperacuity as a computational problem. Two theories

have been advanced; their virtues may now be discriminated empirically.
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IV. IMPLEMENTATION AND RESULTS

1. implementaticn

Synthetic images of a vernier target are constructed, in which the reference target is not
explicitly represented. In the first, the test target is represented as a bar whose edges are
blurred by a function given by Gubisch’s (1967) expression of the line-spread function of the
human eye in terms of the sum of a Gaussian distribution and an exponential decay function:

f () = 47e33 4 537 (g
Associating one cone with one pixel and assuming a regular receptor distribution, this gives a
spatial sampling rate of 39 sec arc/pixel, which is comparable to the spacing of cones in the

fovea, and thus comparable to the sampling rate of the human eye.

In a second target image, only the tip of the test target is cxplicitly represented, as a
"point” which is given by the point-spread function which is the two-dimensional extension of
the line-spread:

fxy) = 47 S 4 53 -9 D
The spatial sampling rate is the same as above. Results are the same for the point target as for

the bar target; for simplicity, we will discuss only the bar target.

There are obvious differences between this simulated data zid the real human retina.
The receptors in the simulation are square while cones arc round, and the receptors are
arranged in a highly regular square array, whilc the cones are arranged in a loosely structured
not necessarily square array. Nevertheless, with respect to the computation of relative posi-
tion, these differences are negligible, and present no obstacles to testing the two computa-

tional approaches.

An important issue is what method of fixation is employed, which poses the question of
how the ’'intercsting’ subimage is selected. The answer, in this implcmentation, i3 to employ a
priori knowledge of the nature and crientation of the target: it is assumed that the target is

two vertical line segments separated by at least one row of pixels. With this knowledge it is a
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simple matter to find the two line segments and to establish a window on the picture in the
area where the two lines abut. The same window is used for both algorithms, consistent with

the conditions specified in II1.4.

2. Methods

In addition to determining the overall accuracy of the two algorithms, the effect of tar-
get width and edge blur are investigated. It has repeatedly been shown that there is some
type of interaction betwcen 2 close contours (Flom (1963); Sullivan (1972); Westheimer and
Hauske (1975); Marr (1982, p. 154)); target width is clearly an important variable. As shown in
the discussion of the accuracy of the centroid computation, the degree of edge blur is also

significant.

A digitized synthetic image of a vernicr target is acquired, in which the diameter of the
bar and the blur of the edges are variable. FIGURE 11 illustrates the different blurring func-
tions used. The two algorithms for detecrmining location are then executed, and the ectual
and computed position offsets are recorded. Actual position is knowrn by construction of the

target.

Several experiments have been conducted using real data. The impoctance of using real
data is to demonstrate the practical feasibility of the suggested representation methods.
Because of errors introduced by measurement, and noise introduced by illumination, a
detailed analysis of these cxperiments is not presented. It will suffice to say that thresholds on
the order of those recorded for synthetic data have been measured, and that it is unlikely that
the results for natural data would differ significantly from those for simulated data except of

course for repeatability.

3. Results




FIGURE 11.

0.5 { .S 2 .5

Edge blurring functions.
Blurring functions:
f1(x)= delta(x)
£2(x)= 47e 37 4 53~
B(x)= 47187 4 53,4 .
Blur function f2 is the linc spread function of the human eye (Equation 1). Blur function f3
is similar in structure to £2 but has much slower decay.

Centroid

As illustrated in TABLE 3, target width has no significant effect upon the accuracy of
the computation of the centroid. Errors in the centroid computation do not vary significantly

as target width is varicd from 300 to 1.5 sec arc (10 pixels to 0.05 pixels).

Edge blur proves to be significant in the centroid computation; here it is evident that
larger blur improves the accuracy of the computation. The data is tabulated in TABLE 4 and

plotted in FIGURE 12.

The overall accuracy of the centroid computation is determined by using images with a
large diameter and edge blur as in the human eye. This corresponds to column 2 of TABLE 3
and column three of TABLE 4, and is replotted as FIGURE 13. The overall accuracy of the
centroid computation is on the order of 1 sec arc, since errors are considerably higher when

smaller offscts are used (not plotted).

The centroid algorithm exhibits linear behavior, which is significant because it means
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TABLE 3.
offset 300 200 100 30 10
0 0 0 0 0

0.001881 -004469 -004688 -005512 019512
0.008845 0.000336 0.002036 -004326 001958
0.001033 0.000786 0.002673 -003523  -.00465
0001903 0003144 0004406 0.004878  -.00468
0 0 0 0 0

EREE™°

Bar Width Table.

Offset and target width arec measured in seconds of arc. Columns represent error in centroid
computation given diameter of target, witk edges blurred with point spread function of human
eye. Error is the unnormalized quantity (actual-real), and is antisymmetric around offset of
30 sec arc. Error is 0 at this offset because the overestimates and underestimates in arca un-
derneath function exactly cancel (cf. FIGURE 7).

that absolute as well as relative position information can be extracted over the range of shifts
in position up to 30 sec arc. Overall, it has been shown that in the ideal case of a simulation,

the centroid provides enough information to make judgments of localization with an accuracy

commensurate with that exhibited by the human visual system.

Filtered Diffecrences

Varying target width and edge blur in the samc ways as discussed abeve, the filtered
difference methed showed no variability in accuracy. The direction of motion was determined
correctly for all offsets of magnitude greater than 1/1000 of a pixel, after which no motion at
all is detected. Thus this difference operation is clearly capable of determining position

changes far finer than those in the range of hyperacuity.

The behavior of the difference algorithm is more difficult to interpret when it is used to
recaver the absolute magnitude of the offset. The four different curves in FIGURE 14
represent the difference evaluated at the four possible positions which can be chesen as a
zero-crossing on any row of the image. There are four possible choices because there are two

changes in sign, and unless the change in sign falls preciscly on the center of a pixel, there
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TABLE 4.
offset f1 £2 f3
0 0.0 0.0 00
6 040 0001881 -003660
12 030 0.008845 -.003943
18 020 0001033 -002588
24 0.10 0001903 -0023
30 00 00 00

Offset is measured in seconds of arc. Errors calculated as in TABLE 3. Target is 300 sec arc
wide. Functions defined in FIGURE 11.
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" FIGURE 13
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As is evident from FIGURE 14 the best candidates for zero-crossings at which to evaiu-
ate the difference are the two which exkibit linear behavior over the rarge of shifts of -1 to 1
pixels ( 30 sec arc in either direction). The reason for the non-linear behavior of the other
two is not immediately obvious. At any rate, accurzte sign information is preserved and

extracted by this operation, and magnitude informatioa is available to an as yet unknown pre-
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FIGURE 14.
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V. DISCUSSION

This section briefly summarizes the results, which arc derived from a simulation of the

human visual system subjected to stimuli of the type presented in vernier acuity tasks.

It has been established that in principle at least two different methods are capable of
detecting and representing changes in position in the hyperacuity range of 2-5 sec arc. In the
simulation they have indeed allowed accurate judgments of changes in position on this scale,
but have also exhibited the capability to provide accurate judgments of the magnitude of the

changes in position.

The centroid computation has a precision on the order of 1 sec arc (/10 pixel), and is

’
adversely affected by diminishing degree of edge blur, but unaffected by target width. To this
extent, the nature of the intensity distribution is important, and the centroid computation is
expected to be less robust in the face of changes in the quality of the image. It is possible to

directly extract absolute as well as relative position information from the representation of the

centroid, which provides economy of storage and time.

The filtered difference computation is more expensive than the centroid, but has a
higher precision, on the order of .1 sec arc (1/100 pixe!). This precision is an order of magni-
tude better than that provided by the human visual system, at Icast for vernicr acuity tasks.
Judgments of relative motion are unaffected by degree of edge blur and target width; judg-
ments of absolute position do depend upon target width. Perhaps most significant is the
discovery of the savings in complexity afforded by the filtered difference representation of
edge features, without having to find zero-crossings. Our primary goal in further rescarch in
this area is to determine the accuracy of the recovery of absolute position information using

filtered differences alone.

Many applications of the kinds of processing discussed are possible. Extraction of high-
precision relative position information from relatively coarse data can be useful in graphics
(to defeat aliasing), in tool control, manipulator positioning, stereo matching, analysis of aerial

images, optical motion detectors, and many other tasks. The choice of which approach to take
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will depend upon the speed and accuracy requirements of the task, but both can provide

extremely fine spatial localization.

In conciusion, a computational treatment of the problem of extracting spatial position
information with an accuracy far finer than that afforded by relatively blunt optical instru-
ments, has shown that two different kinds of processing can in principle account for hyperacu-
ity thresholds. It is still unknown how the human visual system performs with such efficiency
and proficiency in these tasks, but it is the mystery of these small miracles which demands

further research on the nature of the spatial sense of the eye.
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