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Abstract  

This paper studies control problems of sampled data systems which are subject to random sample 
rate variations and delays. Due to the rapid growth of the use of computers more and more systems are 
controlled digitally. Complex systems such as space telerobotic systems require the integration of a number 
of sub-systems at different hierarchical levels. While many sub-systems may run on a single processor, some 
sub-systems require their own processor or processors. The sub-systems are integrated into functioning 
systems through communications. Communication between processes sharing a single processor are also 
subject to random delays due to memory management and interrupt latency. Communications between 
processors involve random delays due to network access and to data collisions. Furthermore, all control 
processes involve delays due to causal factors in measuring devices and to signal processing. 

Traditionally, sampling rates are chosen to meet the worst case communication delay. Such a strategy 
is wasteful as the processors are then idle a great proportion of the time; sample rates are not as high 
as possible resulting in poor performance or in the over specification of control processors; there is the 
possibility of missing data no matter how low the sample rate is picked. 

Randomly sampled systems have been studied since later 19503, however, results on this subject are 
very limited and they are not applicable to practical systems. This paper studies asymptotical stability 
with probability one for randomly sampled multi-dimensional linear systems. A sufficient condition for 
the stability is obtained. This condition is so simple that it can be applied to practical systems. A design 
procedure is also shown. 

These results are applied to robot control systems using PD controllers with a feedforward term, com- 
puted torque controllers or simple computed torque controllers. The effectiveness of the method is demon- 
strated by simulations. 
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Chapter 1 

Introduction 

Robots today have developed beyond the single processor controlled manipulator whose only interaction 
with the outside world is by means of a small number of binary inputs and outputs. Robots now comprise 
planning and execution systems, multiple manipulators, stereo vision systems, dense range finders, tactile 
sensors, etc. These sensors and actuators are typically realized in terms of single or multiple processor 
systems and their integration into functioning robotic systems is a subject of current research in a number 
of laboratories. Any form of such integration must be based on communications, both for sending control 
sequences and collecting measurement data. While the use of large virtual memories have been proposed 
as a solution, this form of communication is undesirable due to hardware conformity, timing and loading 
constraints, lack of communications control, the need to link many modules into a single monolithic system, 
etc. A more attractive communication scheme is based on some form of local area network in which 
hardware conformity is minimized, timing constraints are virtually eliminated, communications may be 
monitored and controlled, individual systems may be developed and modified separately, etc. Another 
important consideration is the replacement of a multi-conductor bus, with severe timing and loading 
constraints, with a network requiring only a single conductor which may even be disconnected while the 
system is running. 

While all control processes involve delay, causal delay in measurement devices, signal processing, etc., 
multi-process computer systems involve additional variable delays: interrupt latency, priority scheduling, 
conditional branching, etc. Local area networks complicate the delay problem with addition delays due 
to network access and collisions. These delays affect system performance and stability. Designs for such 
systems must be based on a control theory which includes not only delay elements but elements which have 
delays with a statistical distribution. 

A sampled-data system in which the sarnple..rate is random is called a randomly sampled system. The 
papers dealing with randomly sampled control systems are not so many. The subject was first addressed 
by Kalman (1957) [lo]. In his paper, bounded-input bounded-output stability problems were discussed 
for randomly sampled systerns in terms of the second moment of the output. Kalman (1962) [ l l]  later 
discussed optimal regulation problems of randomly varying discrete time linear systems which include 
randomly sampled systems. Leneman (1968) [IS] studied a single-input single-output randomly sampled 
first order systems and derived a condition for the second moment stability. Kushner and Tobias (1969) 
[14] studied an autonomous linear system with linear or nonlinear feedback. Using a stochastic Ljapunov 
function, they obtained conditions for the stability with probability one and the s-th moment stability for 
one dimensional systems. They also derived a condition which is sufficient for the stability with probability 
one and is necessary and sufficient for the second moment stability for multi-dimensional systems. Assuming 
statistical independence among the sampling rates and signals, Dannenberg and Melsa (1975) [S] obtained 



the equation of the expectation of the state and the output and investigated the stability in the first moment. 
In 1982, Koning [12] studied infinite horizon optimal control problems of linear discrete time systems with 
stochastic parameters. He showed that if the system is second moment stabilizable and second moment 
observable, then the optimal problem has a unique solution and the closed system is second moment stable. 
He applied this result to stationary optimal control problems of randomly sampled control systems with 
long-term average integral criteria and investigated the influence of random sampling on the criterion value 
by means of simple examples [13]. He pointed out that random sampling may increase or decrease the 
st ability. 

Randomness of sampling operation occurs when: 

(a) measurements are interrupted randomly by others [7]; 

(b) the system does not use a constant sampling interval and executes routine tasks such as measuring, 
calculation, output and pre-calculation repeatedly without any waiting period; 

(c) the controllers are interrupted randomly by other controllers or have to wait to access global memory 
in the network. 

For case (a), we can apply a Bernoulli distribution for the probability of the failure of the measurement 
a t  each sampling rate [7]. For case (b), the randomness is due to conditional branches, mainly contained 
in the program, and it is subject to a normal distribution with a small variance or to a shifted waiting 
distribution1 with a small average arrival time. For case (c), there are two phases and a combination of 
two distributions may be reasonable. In a usual operating situation, the sampling interval may be subject 
to a very narrow distributions such as case (b) but sometimes the controller may have to wait for a rather 
long time compared to the other case when controllers must exchange their information, access to global 
memory, and so on. Then the sampling intervals would be subject to a normal distribution with a small 
variance with probability E and a shifted waiting distribution with a rather large average arrival time with 
probability 1 - 6, where E is called the hit probability. 

This paper studies the stability of randomly sampled systems in relation to the random sampling 
processes and addresses the communication network requirement in terms of system control performance. 
Though Kalman [lo], Kushner et al. [14] and Koning [12] have obtained necessary and sufficient conditions 
for the stability in the second moment, it is not so easy to apply these conditions to practical systems. 
This paper studies asymptotic stability with probability one and gives a necessary and sufficient condition 
for one-dimensional systems and a sufficient condition for multi-dimensional systems. These conditions are 
easy to verify for given sampling distributions and are thus applicable to practical systems. 

It is clear from the study of randomly sampled systems that the distribution of random sampling 
processes, the characteristic of communication networks, has a decisive influence on the stability and 
performance of robotic systems. In addition,'.the results of this paper provide a theoretical basis for 
designing communication networks for hierarchically distributed control systems such as the NASA/NBS 
Telerobot Control System Architecture [I]. 

In the next chapter, we discuss the stability problem for linear time invariant systems. First of all, the 
asymptotical stability with probability one is defined and a necessary and sufficient condition is given for 
one-dimensional linear time-invariant randomly sampled systems. Next, the results are extended to multi- 
dimensional linear time-invariant randomly sampled systems and a sufficient condition is also obtained. 
In Chapter 3, the stability of a randomly sampled robot control system is considered. By linerizing 
the system equation and the controller equation along the desired trajectory, linear time-variant randomly 
sampled system are derived and the stability is discussed under a PD controller with a feedforward term, a 

'here a *hibed waiting distribution means that the sampling interval = constant interval + a random variable which is 
subject to a waiting distribution. 



computed torque controller, and a simple computed torque controller, respectively. In Chater 4, the results 
given in Chater 3 are applied to PUMA 260. First of all, the linerlized dynamic equation is obtained by a 
Lisp program. Next, the stability is discussed for the cases of a computed torque controller and a simple 
computed torque controller. Conclusions are given in Chapter 5. 



Chapter 2 

Linear Time Invariant Control 
Systems 

In this section, we define the asymptotically stability with probability one for a linear randomly sampled 
controls systems, and obtain a necessary and sufficient condition for one-dimensional systems. A sufficient 
condition is given for multi-dimensional systems and a design procedure of feedback gains is also discussed. 

2.1 Definition of Stability 

Consider a linear time-invariant control system 

where x is an n-dimensional state vector, u an r-dimensional control vector, and A and B are n x n and 
n x r matrices, respectively. For this system, we apply a constant state feedback input 

from t = t k  to t = tk+l (=  t k  + Ah) ,  where K is an r x n matrix. Then ~ ( t ~ + ~ )  is given as follows. 

where 
@(Ak) = exp(AAk) 

and 

Sampling interval At is assumed to be subject to a same distribution for all k and, Ai and Aj( i  # j) 
are statistically independent of each other. For simplicity, we write Eq. (2.3) as follows 

The stability of a randomly sampled control system Eq. (2.4) is defined as follows. 



Definition 1 (Stability) The randomly sampled system Eq. (2.4) is asymptotically stable if for any 
positive E and p,  there exits some integer N such that 

Prob[lIzkll > &I < P ,  for k > N 

for any xo, or alternatively 

lim xk = 0, with probability one for any xo. 
k-00 

2.2 One-Dimensional System 

In this section, the asymptotic stability defined above is discussed for one-dimensional systems 

where n = 1 and r = 1. We define following notations: 

E[w] : expectation of random variable w 

V[w] : variance of random variable w 

and assume that 
v[log(lr(A)l)l < 03 

and 
~ [ ( 1 o g ( l r ( ~ > l ) ) ~ l  < 

The following theorem is used in the proof of the next proposition. 

Theorem 1 (Berry-Esseen Theorem) [18] Consider a sequence X I ,  x2, . . - of independent random vari- 
ables such that 

E[zi] = 0, ~ [ z f ]  = a?, E[Z;] < cu?. 

We form the sum 

Then the distribution of x converses to the normal distribution in the following sense: 

where f(x) and g ( z )  are the distribution functions of x and the normal random variable z with zero mean 
and unit variance. 

Then the following proposition holds. 

Proposition 1 (One-Dimensional System) Under Assumptions (2.6) and (2.7), one-dimensional ran- 
domly sampled system (2.5) is asymptotically stable with probability one if and only i f  



< proof > 
Assuming xo # 0 without loss of generality, from Eq. (2.4) we have 

From the statistical independence of Ai's and Thebysheff's inequality [19], the following equation is de- 
duced. 

for any E and any k, where E and V stand for E[log(lI'(A)l)] and Vpog(lr(A)l)] respectively. 
(i) Sufficiency. Now suppose that E < 0 and set E equal to -E/2. Then we have 

10g(lzk/~01) > -kE/2, for any k with probability less that or equal to -& 
This shows that for any positive numbers E and p, 

lim xk = 0, with probability one. 
k-oc) 

(ii) Necessity. For the case of E > 0 ,  if we use E = E/2, then we have 

log(lfa/~ol) > t E / 2 ,  for any k with probability larger than 1 - 6 
This means that 

lim lxkl = oo, with probability one. 
k-oo 

For the case of E = 0,  from Theorem 1, Assumptions (2.6), and (2.7), we have 

where 

Therefore we have 

Since 

if we use E = 1x01 and p = 0.3, then we can find out k > N for any N such that 

0 

Note that Assumption (2.7) was used ony in the case of E = 0  of Necessity part. 



Now defining 

then we have the following corollary. 

Corollary 1 (Bernoulli, Uniform, and Mixed Uniform Distributions) 

i. If the sampling mte A is subject to a Bernoulli distribution where A = a with probability p and A = P 
with probability q = 1 - p ,  then the one-dimensional randomly sampled system (2.5) is asymptotically 
stable with probability one, if and only if 

ii. If the sampling mte A is subject to a uniform distribution U[a, PI, then the system is asymptotically 
stable with probability one, if 

s(P)  - 9(ff) < 0. 

iii. If the sampling rate A is subject to U[a,P] with probability a and to  U[y, 61 with probability 1 - E ,  then 
the system is asymptotically stable with probability one, if 

< proof > 

i. For the Bernoulli distribution, the expectation is given as follows. 

Assumptions (2.6) and (2.7) are not satisfied only if r ( a )  = 0 or r(P) = 0. Here we assume that 
r ( a )  = 0. In this case, we have always Epog(lI'(A)l)] < 0 and 

Prob[)zkl # 01 = q k ,  for any xo # 0. 

Hence the system is asymptotically stable, and the condition is necessary and sufficient. 

ii. Next we consider of the uniform distribution. For this case, the expectation is given by the following 
equation. 

Therefore the condition in the corollary implies that the expectation is negative. 

From Eq. (2.3), we have 
K 

r(A) = exp{AA) + z(exp{AA) - 1). 

Therefore log(lI'(A)l) is upper bounded for the uniform distribution. If r (A)  # 0 for all A E [a, PI, 
then the logarithm is also lower bounded and Assumptions (2.6) and (2.7) are satisfied. Hence the 
corollary is true. 



Now we assume that r (A)  = 0 for some A E [a,/3]. Since r(A)  is a monotone function, it has only 
one root A* a t  most. We approximate r(A) by the following I?<(&) for a small positive number <. 

&(A) = { Ir(A)l A E [a, All U [A21 PI 
Ir(A1)l A E [All  A21 

where 

and consider a autonomous random coefficient system: 

Then we can find out some < > 0 such that E[~o~(F<(A))]  < 0, because of the continuity of r(A).  
Assumptions (2.6) and (2.7) are satisfied for this < and the autonomous system is asymptotically 
stable with probability one. At the same time, we have 

l x k l  I lzklr for any k = 0,1,2, . . .. 

Therefore the one-dimensional system is also asymptotically stable with probability one. 

iii. For the mixed uniform distribution, the proof is trivial from the above proof for the uniform distribution. 

0 

Example 1 (Bernoulli Distr ibution) W e  consider the stability of the following simple system: 

Then is given as follows: 
r = 1 - A .  

First of all, we assume that the sampling interval A subjects to  a Bernoulli probability distribution as 
follows; 

with probability p 
A = {  i.. with probalility q 

where q = 1 - p. Then the stability condition is 

Remarks: 

Eq. (2.14) gives intuitive understanding of the proposition. Namely, for large k, we can expect k x p 
times occurrences of Ai = cr and k x q times of Ai = p. Therefore Eq. (2.14) is a necessary and 
sufficient condition for the asymptotic stabiIity. 



Kushner and Tobias [14] obtained a sufficient condition for E[(x(k)('] - 0 and Ix(k)l -+ 0 with 
probability one as follows: 

E[I1 - A/'] < 1. (2.15) 

This equation implies if -0.5 < P < 2.5 for a = p = q = 0.5, then Iz(k)l -+ 0 with probability one. 
On the other hand, Eq. (2.14) obtains -1 < f l  < 3 for the same situation. 

Example 2 (Uniform Distribution) Next we assume that A subjects to a uniform probability distribu- 
tion U[a,p]. The probability density function is given as follows: 

W e  define a function g(A) as follows: 

then the asymptotic stability condition is given as follows: 

The graph of g(A) is shown in Fig. 2.1. From this graph, we can obtain the maximum P for given 
a that makes the system stable. For ezample, if a = 0.5 then P must be less than 3.86 to maintain the 
stability. Fig. 2.2 shows a simulation for U[0.5, 3.51. 

Remarks: 

I' is stable if and only if A < 2 in usual sense. Therefore the unstability for A E (2,3.5] is compensated 
by the stability for A E [0.5, 21. 

There are upper bounds for both a and P, respectively. Namely, if P is larger than 4.59, then the 
system is unstable for any a,and if a becomes larger than 2, System (2.12) is always unstable for any 
P. 
From Eq. (2.15), we define ~ K ( A )  as follows: 

gK(A) is also drawn in Fig. 2.1. It shows that the system is asymptotically stable if A E U[0.5,3.32], 
while this system is asymptotically stable if A E U[0.5,3.86]. 

If System (2.12) is asymptotically stable for [a, P] for u = -z, then the system is also asymptotically 
stable for [a/K,P/K] when we use u = -Kz instead of u = -x .  This implies that there exists K 
for any a and fl  which stabilizes the system. 
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(0.5, -0.15) 

Figure 2.1: function g 

Figure 2.2: Simulation 



2.3 Mult i-Dimensional Systems 

In this subsection, we derive a sufficient condition for the multi-dimensional randomly sampled system Eq. 
(2.1) under the input Eq. (2.2). 

A sufficient condition for the stability can be obtained from Prop. 1 using an appropriate matrix norm 
instead of the absolute value operation, for example 

where I?' is the conjugate transformed matrix and X,,(r) denotes the maximum eigenvalue of the matrix 
r. Note, however, that while the stability of the system (2.1) or (2.3) is invariant under the equivalent 
transformation of the state variables, the matrix norm depends on the transformation 

This fact is taken into account in the following proposition which gives a sufficient condition for the 
asymptotical stability with probability one of multi-dimensional systems. 

Proposition 2 (Sufficient Condition) A randomly sampled control system (2.1) is asymptotically stable 
if there ezists a non-singular matriz  T such that 

and 
vPog(llT-'~(A>TlI>l < 02. 

The proof is similar to the Sufficiency part of the proof of Prop. 1 except that we must use 

instead of Eq. (2.8) in the proof of Prop. 1. Therefore we will omit it here. The next example shows that 
Conditions (2.21) and (2.22) are not necessary. 

Note that for any n x n matrix r and any E > 0, there exits an n x n non-singular matrix T such that ' 

while we always have 
IIT-lrTJ1 2 IArnaz(r)l. 

Therefore if the sampling interval is constant, Prop. 2 gives a necessary and sufficient condition for the 
asymptotical stability of the system. 

Example 3 Let's consider the stabilify of the random varying autonomous system as follows: 

and assume = with probability p or rl with probability q = 1 - p, where 

After transfonning r into s Jordan canonical form using TI , use = diag.{l, 6,. . . ,6"-' ) where -5 is a sufficient small 
positive number depending on c. T is given as TI T2 



and 

and a > 0. 
Note thai = I?: = 0. This means that xk # 0 for some t o  if and only if 

Therefore 
1 - 2(pq)k/2  if k is even, 

xk = 0 for any x0 with probability l - ( p q ) ( k - 1 ) / 2  i f k  is odd. 

Clearly the system is asymptotically stable for any p, q and a.  
Now we apply Prop. 2 to this system. If we use the following matrix: 

then we have 
EDog(Ilrll)l = 1% a + ( P  - 9 )  1% 6. 

This equation implies that when a < 1, the system is asymptotically stable for any p and q by setting 6 = 1 
and when a 2 1,  we can select an appropriate 6 for which the ezpectation becomes negative i f  p # q. Hence 
the system is asymptotically stable if p # q or p # 112. 

It is  easily to  show that the system is asymptotically stable in the first moment if and only if a2pq < 1 [5] 
and in the second moment if and only if a4pq < 1 ['I]. Therefore neither the stability in  the first moment 
nor the one in  the second moment implies the condition of Prop. 2, while it gives the nearest condition 
among of them for this example. 

We have the following corollary. 

Corollary 2 The multi-dimensional randomly sampled system (2.1) with n # r is asymptotically stable 
with probability one, if there exist a positive number c such that f ( A )  = 0 for A > c and 

where f ( A )  is the distribution fvnction of sampling intervals. 

< proof > 
For the multi-dimensional system, Condition (2.22) is not satisfied only if 

However this is impossible because @(A) is a nonsingular matrix, while @ ( A ) K  is not so for any A if n # r. 
Therefore Condition (2.22) is always satisfied. < end of proof > 

Also defining 

we have the following corollary from Coro. 2. 



Corollary 3 (Bernoulli, Uniform, and Mixed Uniform Distributions) 

i. If the sampling rate A is subject to a Bernoulli distribution where A = a with probability p and A = P 
with probability q = 1 - p,  then the mutli-dimensional randomly sampled system (2.1) with n # r is 
asympiotically stable with probability one, i f  

ii. If the sampling rate A is subject to a uniform distribution U[a,P], then the system is asymptotically 
stable with probability one, if 

g(P) - s ( a )  < 0. 

iii. If the sampling rate A is subject to U[a,P] with probability E and to U[y, 61 with probability 1 - E ,  then 
the system is asymptotically stable with probability one, if 

This corollary is trivial from Prop. 2 and Coro. 2. 

2.4 Design of Feedback Gains 

In the above, we discussed the stability of randomly sampled control systems assuming that the feedback 
gain K was given. In this section, we discuss the design procedure to select the feedback gain K and matrix 
T to make the system stable. 

If a continuous time system 
x ( t )  = A x ( t )  + B u ( t )  (2.28) 

is controllable, it is well known that the discretized system 

is also controllable for almost any sampling interval A [3]. We can then assign poles {Xi,  i = 1 , 2 , .  . . , n) to 
the system (2.29) using an appropriate state feedback with probability one if the poles {Xi )  are symmetric 
with respect to the real axis. So far, a lot of pole assignment algorithms are proposed. Among them, 
Hikita's pole assignment algorithm[8] is very convenient for us because it gives us not only the feedback 
gain K but also the transformation matrix T which we can use to check the stability by using Prop. 2. 
Hence we modify it as follows: 

[Algorithm] 

s t ep  (i) For a given {Xi} ,  find the r-dimensional vectors { t i }  where i = 1,2 , .  . . , n which make 
the matriz T (A)  = [vl : . . : v,] non-singular with vi 's being defined by the following 
equations, in which O = @ ( A )  and @ = @ ( A ) .  

i f  X i  is a real number, then 

if X i  and Xi+l are conjugate complez numbers ai f jpi ,  then 



where 

s t e p  (ii) Feedback gain K is given as follows. 

It is easy to  show that if X i  is a real number 

and if Xi, Xi+l = a; f jp i ,  

This implies 
~\T-'(A)I'(A)T(A)[~ = ~( I? (A) ) .  

Hence we can use matrices T(A) and K(A) to  check the stability. 

2.5 T w o  Dimensional Systems 

We view a robot manipulator as a component of a large system, such as a space station. The robot controller 
communicates with the other components of the system to  achieve cooperative actions. Communication 
between components is considered to  have a longer delay than that within a component. We assume that 
robot controller has an inner feedback loop which compensates the nonlinearity of manipulator dynamics 
and operates independently of the other part of the system. The robot dynamic system together with the 
inner feedback loop becomes a linear system. It is feasible to treat the robot manipulator subsystem as a 
linear system when integrating and communicating with the other components. For example, if we use the 
nonlinear feedback controller developed in [2], we have r (=DOE' of manipulator) decoupled two-dimensional 
linear systems 

where x(t) = (ei(t), ei(t)) is the error vector for the i-th component of outputs and u(t) is the corresponding 
input for this component of outputs. If the task'is specified in joint space (the joint space control), the i-th 
component of output is simply the displacement of the i-th joint and the error vector is composed of the 
joint position error and joint velocity error. This system also can be used as an approximation subsystem of 
a robot manipulator which is controlled by a randomly sampled computed torque controller or a randomly 
sampled simple computed torque controller as shown in the next chapter, where the i-th component of out 
put is the joint position error and joint error, precisely. 

We now study the asymptotical stability of this system under the random sampling rate. The corre- 
sponding discrete time system is easily obtained for a sampling interval A as follows. 

We apply the algorithm given above t o  this system directly. Then we have the following proposition. 



Figure 2.3: function y(0, l )  and g(0, 1) 

Propos i t ion  3 ( P D  Control ler)  Assume that {A,} = {X1,X2) where X1 # X2, then we have 

T(A) = - t lA( l  + x ~ )  - t2A( i  + A ~ )  ] 
2<1(1- Ai) 2<2(1- Xi) ' 

and 

when 0 = A/A. 

The proof is obtained by direct calculation. This proposition implies that the function y(A, A) is the 
same as the function y (0 , l )  if we use K(A) = (kP/A2, k , / 8 )  instead of K(1) = (kpr k,). Therefore we 
have g(A, A) = ~ ~ ( 0 ~ 1 )  for the same K(A). This fact is very useful to design the feedback gain. This will 
be shown by examples. 

Fig. 2.3 shows y(B, 1) and g(0, l )  for X1 = 0.4 and X2 = 0.7, where we have 

-0.759 -0.943 K ( l )  = -(0.18,0.81), and T ( l )  = [ 0.651 0.333 

and ti was used to make the norm of column vectors of T matrix be equal to one. 

2.5.1 Bernoulli Distribution 

Let's assume that the sampling interval is subject to Bernoulli distribution, i.e. A = a with probability p 
and A = /3 with probalility q, where a < /3, 0 5 p 5 1, and q = 1 - p. The sufficient stability condition is 
given as follows. 

w(a /A1  1) + ~ Y ( P / &  1) < 0. (2.40) 

Note that if A > /3/1.96(= A*) then the system is asymptotically stable for any a because y(0 , l )  < 0 for 
any 0 5 1.96. But we are generally interested in the smallest A because it gives us the fastest response. 



Fig. 2.3 shows that the function y(O, 1) reaches the minimum value -0.417 at  0 = 1.35. Let B* be the 
point which satisfies the following equation. 

Then it is clear that A must be greater than A,,,(= P[O') for Eq. (2.40). 
A suitable value of A can be found from the range A,i, < A < A* by a trial-and-error method using 

Fig. 2.3 or Table 2.1 which gives pairs of ( O 1 , O z )  such that y(O1,l) = y(Bz,l). 

(i) Calculate a = - ( q / p ) y ( ~ / ~ ,  1). 

(ii) Find {el, 82) such that y(O1, 1) = y(02, 1) 5 a using Fig. 2.3 or Table 2.1. 

(iii) Check O1 < a / ~  < 02. If so, calculate K(A). If not so, go back to  step (i) with another A. 

For example, if cu = 10 msec, ,f3 = 30 msec, and p = 0.75, then O* is about 3.64 and A,,, = 8.24 msec, 
while A* = 15.3 msec. If we select A = 11 msec then ;y(i)/;\, 1) = -0.278 and a/6 = 0.91. Therefore 
we can try the 6-th row of Table. 2.1, and we have O1 = 0.84 < 0.91 < O2 = 1.68. Hence the system is 
asymptotically stable for K = -(1488,73.64). 

2.5.2 Uniform Distribution 

Now assume that A is subject to a uniform distribution U[a, PI. The sufficient condition of the asymptotical 
stability with probability one is given as follows: 

The function g(8, l )  has its minimum value at  8 = 1.96. Now we define A* = P119.6 and A,,, = P12.89. 
If A 2 A*, then the above sufficient condition is satisfied for any a. Therefore the system is asymptotically 
stable if A 2 A*. On the other hand, if A 5 A,,,, then the above condition is not satisfied for any a. 

Table 2.1 also gives pairs of (83, 04) and the ratio 03/04 such that g(03, 1) = g(04, 1). If there is a pair 
{03,64) such that a lp  > 03/04, then the system is asymptotically stable for the K(A) where A = alO3. 
Therefor we can determine A easily using this table as follows: 

(i) Calculate a = alp. 

(ii) Find a pair {03,e4) in the Table 2.1 such that a > 03/04. 

(5)  Calculate A = a/03 and K(A). 

Now assume that a = 10 msec and p = 30 msec, then we have A* = 15.3 msec, A,;, = 10.38 msec, 
and a/P = 113 > 0.273 in the Table 2.1. Therefore we can use a / ~  = 0.75 and A = 13.33 rnsec. 
Hence the system is asymptotically stable with K = -(1065,62.31) if fi  < 36.7 msec. Table 2.2 shows 
the IAE (Integration of Absolute value of the Error) for fifty random streams with the initial condition 
x(0) = (1.0, o ) ~ .  The table shows that when P 2 40rnsec, the STD (STanderd Deviation) and the maximum 
values of IAE for the velocity error e , ( t )  become very large compared to the cases where P 5 35msec. This 
means that the system is still stable but there is a large vibration in the response for A 2 40 msec. It is 
interesting since A selected above assures the asymptotically stability for ,B < 36.7 msec. 
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Figure 2.4: Simulations for Bernoulli Distribution, Uniform Distribution and Mixed Uniform Distribution 

2.5.3 Mixed Uniform Distribution 

Next we assume that A is subject to a uniform distribution U[a, P] with probability E and to Ub, v] with 
probability 1 - E .  The sufficient condition is given as follows: 

Though the selection of A becomes a little difficult, we can use the following procedure to estimate an 
appropriate A: 

(i) Define 6 = ( a  + P)/2.0, p = ( p  + u)/2.0, p = E, and q = 1 - p. 

(ii) Determine A using the procedure in Exam. 1 for cr = a and ,/3 = P. 
(iii) Check the condition. If satisfied, calculate K (A). If not, try another value for A. 

Now assume that A is subject to U[5msec, 15rnsecl with probability E = 0.75 and to U[20msec, 40msecI 
with probability 0.25. Then we have Ci = 10 msec, = 30 msec, p = 0.75, and q = 0.25. If we use 
A = 11 msec from the result of Exam. 1, then we have E = -0.04 < 0. Therefore the system is 
asymptotically stable for the same K = -(1488., 73.64). 

Fig. 2.4 shows the simulations of z ( t )  for three cases discussed above where x(0) = (1.0, o ) ~ .  

2.6 PID Controller and PD Controller with One Step Delay 

Here a PID controller and a PD controller with one step delay for a random sampled system are discussed. 

2.6.1 PID Controller 

We consider a linear time-constant control system 



Table 2.1: d l ,  d2 ,d3, and e4 

Table 2.2: IAE for U[10 rnsec, P rnsec] 

where d and y ( t )  are an n-dimensional constant disturbance and an r-dimensional output vector, respec- 
tively. We assume that this system is controllable and observable. Then a continuous-time PID controller 
is given as follows: 

i ( t )  = y - y ( t )  (2 .43)  

u ( t )  = K l z ( t )  + K z r ( t ) ,  (2 .44)  

where 9 is an r-dimensional constant reference vector. It is well known that if and only if 

there exist feedback gains K 1  and K 2  such that x ( t )  - 9 as t  - co for any z(O), ij and d [3]. 
Now we consider a randomly sampled system controlled by a PID controller as follows: 

xk+i = @ ( A k ) x k  + g ( A k ) ~ k  + d (2.46)  
yk = Cxk  (2.47)  

~ t + l  = z k  + (9 - ~ k ) ,  (2 .48)  
u = K I Z L  + K z z ~ ,  (2 .49)  

Then we have 



where 

&(A,) = [ & ] 1 

K = [K1 Kz] .  

Now we assume that Condition (2.45) is satisfied, then it is easy to show that for almost all Ak,  

det [ @(Ak) - In ] f 0 -C 0 

is satisfied, too. This implies that System (2.50) is controllable for almost all At .  Hence we can apply the 
algorithm described in Section 2.4 to choose feedback gain K and transformation matrix T for which the 
randomly sampled system becomes asymptotically stable with probability one. Then we have 

1(xk+1 - zkI1 + 0, or zk + y as k --+ oo with probability one. (2.53) 

For twedimensional system (2.37), we have 

where we assumed C = [l 01. By applying the algorithm in Section 2.4, we have following proposition: 

Proposition 4 (PID Controller) Let ~ ( i . 0 )  and ~ ( 1 . 0 )  be given by the algorithm i n  Section 2.4 for 
edended system (2.50) by using A = 1. If we use the algorithm for a A, then we have 

and 
?(A, A) = ?(A/A, 1.0) 

where 
?(A, A) = ~ O ~ ( I I T - ~ ( A ) { ~ ( A )  + . ~ (A)K(A)}T(A)II ) ,  

ti and ki are the i-th row vector of F(l.0) and the i-th element of I?(l.0), respectively. 

The proof is given by direct calculation. Therefore we can use the similar procedures to ones described in 
above section to determine the appropriate A for given sampling interval distribution. 

Example 4 Fig. 2.5 shows the y(A, 1.0) and g(A, 1.0) for {A,} = {0.95,0.7,0.4} and 

The feedback gain is K(l.O) = [-0.221, -0.840,0.009]. Note that y(A, 1.0) becomes positive for small 
A. This is  due to  the change of the direction of eigen vectors. For A E U[10 msec, 30 msec], we have 
A = 14.29 msec and 

Fig. 2.6 shows a simulation for z o  = 0 and $ = 1.0. Disturbance d = ( 0 . 0 , 1 . 0 ) ~  is applied to  continuous 
t ime system (2.42). The result shows a smooth convergence into y. 



2.6.2 PD Controller with One Step Delay 
If uk is calculated using not zk but xk-1, then we have a one step delay controller. This is common 
situation for Robot controllers. A simple way to compensate the delay for constant sampling time system 
is to use a controller as follows: 

uk = K(@(A)zk-1 + *(A)uk-1). (2.55) 

Here we consider the stability of the system controlled by the above controller under random sampling 
intervals. Namely, we use a PD controller with one step delay as follows: 

where K(A) is determined using the algorithm in Section 2.4 for a A. Of course, T(A) is also determined 
at the same time. Then we have following extended equation: 

If we use 

where 6 is a small real number, then we have 

where @ = @(A),* = ~ ( A ) , K  = K(A),T = T(A) and r = + QK. &,*, and i' are corresponding 
matrices for A = A, respectively. Therefore we can check the stability of the system using matrix T(A). 

For the two-dimensional systems such as Eq. (2.37), we have proposition as follows: 

Proposition 5 (PD Controller with One Step Delay) For two-dimensional system (2.37), we have 

where 

The proof is also straightforward. 

Example 5 Fig. 2.7 shows y(A, 1.0) and g ( A ,  1.0) for {Xi) = {0.95,0.90) and 6 = 0.005. Then me have 
K(I.0) = -[0.0050,0.1478] and 

We must use eigenvalues near to 1 + j O  in order to get a wide minus zone of function y(A, 1.0) and this 
results in rather small feedback gain K(1.0). Now assume that usually the controller works every 5 msec 
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Figure 2.5: ?(A, 1.0) and g(A, 1.0) for PID Controller 

with probability 0.9 but it must sometimes wait for from 10 msec to 20msec with probability 0.1. Then the 
system is asymptotically stable i f  

g(20 msec, A) - g(10 msec, A) 
0.9 * 7 ( 5  msec, A) + 0.1 * 

10 msec < 0 ,  

or 

O.' * * { g ( 2 ~  msec /6 ,1 .0 )  - g(10 m s e c / A ,  1.0)). 0.9 * 7 ( 5  m s e c / ~ ,  1.0) + - 
10 msec 

If we use A = 2.5 msec, it is shown that the above inequality is satisfied and we have 

Fig. 2.8 shows a simulation for zo = ( 1 ,  o)*. This figure also shows the smooth and rapid convergence to 
zero state. 



Figure 2.6: simulation for PID Controller 

Figure 2.7: 7(A, 1.0) and g(A, 1.0) for PD Controller with One Step Delay 



Figure 2.8: Simulation for PD Controller with One Step Delay 



Chapter 3 

Robot Manipulators 

In this chapter, we consider the asymptotical stability with probability one of randomly sampled robot 
systems. Dynamic equations of robot systems are usually described by non-linear functions and controllers 
also have non-linearity. Therefore, first of all, these equations are linearized along desired trajectories to 
time-variant multi-dimensional linear systems and, next, the results given above are applied to them. 

Here we consider three kinds of controllers: 

PD controllers with feedforward terms [16], 

Conputed Torque Controllers [20] [17], 

Simple Computed Torque Controller, 

and discuss their effectiveness under the random sampling situation. 

3.1 Stability Condition 

In this section we will consider the stability of randomly sampled robot control systems. The dynamic 
equation of a robot and the equation of a controller are given as follows. 

where x( t )  and uk are the state vector and the input vector of the robot, respectively. f and h are smooth 
non-linear functions. We assume that a planned trajectory { Z ( t )  : to  5 t )  is given and also assume that 

Then using the following variables 



and linearizing the above equations around the trajectory, we have 

where 

d(t) is a disturbance due to using sampling controllers for the system and it is omitted from the system 
equation in the following discussion of the stability. 

6z(tk+1) can be calculated for a given 6z(tk) and 6uk as follows: 

6z(tk+1) = @(tk+ll tk)sz(tk) + Q(tk+l1tk)6uk* 

where @(tk+l,tk) is the unique solution of 

and \E(tk+l,tk) is given by 

By substituting bur. of Eq. (3.8) into the above equation, we have 

where 
F(tk, Ak) = @(tk+l,tk) + *(tk+l, tk)Ck. 

We now define a random variable y for any non-singular matrix T as follows. 

y(tk1 Ak) = ' log(ll~-'r(tk, Ak)T11). (3.11) 

Note that y(tk, Ah) is a function of A,, . - a ,  A,, therefore y(tk, At)  and y(tk+r, Ak+() are not independent 
of each other, even though we have assumed that At's are in this paper. On the other hand, we have 

for any tk 2 t o .  This denotes that the effects of Ai, i = 0, . . . , k - 1 are not accumulated on y(tk, At), and 
we can expect y(tk, Ak)  and y(tk+{, A,) to become independent statistically as 1 increases. 

We now introduce some definitions. 



Definition 2 (weak correlation) The robot system is  weakly correlated along the trajectory { Z ( t )  : t o  < 
t ) ,  if there ezists an integer L such that 

for k = 0,1,2,. and integer 1 > L ,  where Cor[a ,  b] means the correlation coeficient between random 
variables a and b and tk+i = tk + Ak + . . - + Ak+l-l. 

Definition 3 The randomly sampled robot system is asymptotically stable with probability one along the 
trajectory {Z.(t) : to 5 t ) ,  i f  

Prob[ lim llbx(tk)ll = 01 = 1 
k-oo 

for any bz ( t0 ) .  

We then have the following proposition. 

Proposition 6 (Stability of Robot Manipulator) Assume that the robot system is weakly correlated 
along the trajectory { f ( t )  : to 5 t ) .  The  robot system is asymptotically stable with probability one along the 
trajectory , if  there ezist two numbers a and p < 0 such that 

for any t 2 t o ,  where E[alb] i s  the conditional ezpectation of a given b. 

< proof > 
From Eq. (3.10), we have 

Therefore 

Note that 

for i < j. Now define zk as follows. 

then we have 



where yj = y( t i ,  Aj) and we used (Cov[yi,  y j ]  1 5 J ~ o v [ ~ i ] ~ o v [ ~ ~ ]  5 a2 where Cov[yi ,  y j ]  is the covariance 
of yi and yj. This means that V [ z k ]  -+ 0 as k -. co, and by Tchebycheff's inequality we have 

Hence we have 
log( l l~- '6x( tk) l I )  -+ -oo 

with probability one for any xo as k + oo. 
Note that the condition of the above proposition does not depend on to  at all. Therefore if the propo- 

sition holds, we have 

with probability one for any 6x(tb),  (tb 2 t o ) ,  where t i  = tb + Ab + . . . + A:-, . 
We now define 

then we have the following proposition. 

Proposition 7 (Bernoulli, Uniform, and Mixed Uniform Distributions) Assume that the robot sys- 
tem is weakly correlated along the trajectory { Z ( t )  : t o  5 t ) ,  and 

for any t 2 to .  

i. If  the sampling rate A is subject to a Bernoulli distribution where A = cr with probability p and 4 = P 
with probability q = 1 - p, then the randomly sampled robot system is asymptotically stable along the 
trajectory with probability one, if there ezists a negative number p such that 

for any t 2 to.  

ii. If the sampling rate A is subject to a uniform distribution U [ a , P ] ,  then the system is asymptotically 
stable with probability one, if there ezists a negative number p such that 

for any t > to. 

iii. If the sampling rate A is subject to U [ a ,  P] with probability E and to U [ y ,  61 un'th probability 1 - E ,  then 
the system is asymptotically stable with probability one, i f  there exists a negative number p such that 

for any t 2 to .  

In practical situation, the dimensions of the state vector and the input vector of robot systems are 
different (n = 2r, in general), the trajectory is defined in a finite time interval [ t o , t f ] t f  - to < co and the 
sampling intervals have a finite upper limit. We have the following corollary for such case. 



Corollary 4 If the dimensions of the state vector and the input vector of the robot system are different, 
the trajectory is defined in a finite time interval [to,tj] (tr - to  < CO) and there is  a positive number c such 
that f (A) = 0 for ant A > c, then there exists a finite number a such that 

where for any t E [to,tr]. 

< proof > 
We denote set [to,tj] x [O,c] as 7 in this proof. Clearly 7 is a closed set in a usual phase. Therefore 

there is an upper bound a such that IlT-'I'(t,A)T11 < a for all ( t ,A)  E 7 because of continuity of the 
function. 

Just same as multi-dimensional time-invariant system, 7(t,  A) becomes infinite only if 

@(t + A, t)  is nonsingular for any (t, A) while \k(t + A, t )K  is not so for any (t ,  A)  if n # r. Therefore 
IIT-'r(t, A)Tll # 0 for any ( t ,  A) E 7 = [to, t,] x [0, c]. If there is a sequence of pair (ti, A,), i = 1,2 ,3  .. . 
such that I(T-'r(ti, Ai)T1l -. 0 as i + 00, there is a accumulating point (t,, A,) which belongs to 7 
because the set is closed. This implies r(t,, A,) = 0 and contradicts the fact shown above. Hence there is 
a lower bound b > 0 such that IIT-'r(t, A)TII > b. Therefore we have 

3.2 Linearized Systems, Controllers and Matrix T 
The typical dynamic equation of a robot manipulator is given as follows: 

where r is the joint force/torque vector, q the joint variable vector, and M, C,  B, and G correspond 
to the inertia tensor, the centrifugal and Coriolis force, the viscous friction, and the gravitational force, 
respectively. Coulomb forces are omitted because we consider the linearization of the equation here. 

Then the robot dynamic equation (3.15) is linearized along a trajectory {q(t), <(t), t(t)} at t k  as follows. 

where 



A? = M(q(t)), and partial deviatives are calculated at (Q(t), i(t),  G(t)). 
6uk is obtained for a PD controller with a feedforward term, a computed torque controller, and a simple 

computed torque controller, respectively, as follows: 
( i )  A PD controller with a feedfonuard term 
The control law is expressed as follows. 

where Kp and K, are the proportional and differential gains respectively. Then we have the linearized 
equation for the input as follows. 

where 

(ii) A computed toque controller 
The control law is expressed as follows. 

where 
d;(tk) = t(tk) + Kp(q(tk) - ~ ( t k ) )  + Kv(h(tk) - q(tk)) 

and Kp and K, are the proportional and differential gains, respectively. 
For this input, we have 

where 
C k  = [aR/aq - M ~ K ~  aR/aQ - M~K, ]  

~k = M(q(tk)), and partial deviatives are calculated at (g(tk), i(tk), G(tk)). 
(iii) A simple computed torque controller 
If we use 

uk = R(q(tk), h(tk), ii'(tk)) 
or 

= Mk{Kp(Q(tk) - q(tk)) + Kv(6(tk) - P(tk))) + G k  

then we have 

where 
Ck = - M~ [KP K,] . 

Now, a method to determine matrices K,, K, and T is to use the algorithm shown in the above section 
for a multi-dimensional linear randomly sampled system. Namely: 

step(i) Select an appropriate time instance i 2 to and a sampling interval A ,and calculate matrices ~ ( 0 ,  
B(i) ,  @(i + A, I!) and \k(i + A, I!). 



step@) Choose appropriate eigenvalues Xi 's and vectors ti 's. 

step@) Determine a feedback gain K and matrix T using algorithm given in Section 2.4 

s tep( iv)  Determine matrices K p  and K ,  as follows. 

For a PD controller with a feedforward term, 

for a computed torque controller, 

and for a simple computed torque controller, 

where A2(@ and ~ ~ ( i )  a n  the lower half sub-matrices of ~ ( 6  and ~ ( i ) ,  respectively. 

s t ep (v )  Check the stability using Props. 6 or 7. 

3.3 Examples 

In this section we apply the result given above to a simple three dof robot "ROBOTEC" shown in Fig. 3.1. 
The dynamic equation is given as follows. 

where 

Si = ~ i n ( q i ) ,  Sij = ~ i n ( q i  + q j )  and so on. The Coulomb friction is omitted here. Typical parameters are 
given in Table. 3.1. Note the gear ratio is 1 : 8 so that the dynamics of actuators does not dominate the 
robot dynamics. Here we set ml, mz, m s ,  bl ,  b2, and b3 to be zero t o  show the effect of the dynamic forces 
more clearly. 

Now the desired trajectory was assumed to be a straight line segment in Cartesian space connecting 
(lOcm, 10cm, Ocm) at t o  = O.Osec and ( l o c m ,  -lOcm, 10cm) at t ,  = l.0sec. The velocity and acceleration 
are determined using 5th order polynomials. We used i = 0.5[sec] and A = IOmsec, respectively, and 



selected {0.7,0.7,0.7,0.4,0.4,0.4) and 100[13 : 13] for eigenvalues {Xi) and [ti], respectively. Then matrices 
Kp and K, were calculated as follows. For the PD controller 

for the computed torque controller 

for the simple computed torque controller 

Figs. 3.2, 3.3 and 3.4 show 
A 

at  t = 0.05,0.25,0.5,0.75,0.95[sec] for the PD controller, the computed torque controller and the simple 
computed torque controller, respectively. 

The following simulations were performed. At the initial time to  = 0, the robot hand was located at 
( l lcm, l lcm,  lcm). Fifteen streams of random variables were used to generate sampling interval A's for 
each distributions and the worst examples are shown in the figures. 

There is no a and P such that g(t,P) < g(t ,a)  except at  t = 0.5sec in Fig. 3.2. This means that 
the characteristics of the system varies so widely that the PD controller may not be able to stabilize 
the system except in the vicinity o f t  = 0.5sec for any [&,PI. In fact, the system is not stable for 
A E U[5msec1 30msec] although the system is stable for a constant sampling rate A = l0msec. 

Fig. 3.3 of g(t, A) is almost same for all t for the computed torque controller. This means that the 
characteristics are almost same for all t and the system is asymptotically stable along the trajectory 
if A E U[5msec1 30msec], for example. The simulation is shown in Fig. 3.5, where Ex, Ey and 
Ez are the errors from the desired trajectory in Cartesian space for the random sampling rate A 
U[Smsec,3Omsec]. Fig. 3.6 shows the simulation for A E U[5msec140msec]. The system still 
remains stable, but there exist large vibrations around t = 0.4sec. The system is unstable for 
A E U[5msec145msec] for almost all random streams. From Fig. 3.3, we have: (i) if P < 33msec, 
there is an a such that the robot system is asymptotically stable, (ii) if CY < 2lmsec, there is a P for 
which the system is asymptotically stable. 

Fig. 3.4 for the simple computed torque shows the intermediate properties of the graphics for above 
two controllers. The characteristics change but not so widely that we can find stable distributions 
for all t .  Figs. 3.7 and 3.8 show the error trajectories for the random rate A E U[5msec,25msec] 
and A E U[5msec14Omsec], respectively. There are large vibrations around t = 0.4sec in the latter 
figure which is almost same as one for the computed torque controller. The system is also unstable 
for A E U[5msec1 45msecl for almost all random streams. From Fig. 3.4, we have: (i) if P < 28msec, 
there is an a such that the robot system is asymptotically stable, (ii) if a < lgmsec, there is a P for 
which the system is asymptotically stable. 



Figure 3.1: ROBOTEC 

Table 3.2 shows expectations and standard variations of correlation coefficients btween y( tk ,  Ab) and 
y(tk+r, Ak+i) for k = 30 and 1 = 1,5 ,10,20,  where Ak E U[5msec,30msec] .  Five sets of 200 samples 
were calculated for each case. The correlation coefficients are all small even for a pair of y(t30,  A30) and 
~ ( t ~ ~ ,  A31). Therefore we can assume that thesk 7's are independent random variables one another. 



Figure 3.2: g x 1000 of PD Controller 

Table 3.1: Parameters of ROBOTEC 



Figure 3.4: g x 1000 of Simple Computed Torque Controller 
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Figure 3.5: Computed Torque Controller - U[5msec ,  30msecI 

Table 3.2: Expectations and Standard Deviations of Correlation Coefficients 



Figure 3.6: Computed Torque Controller - U[5msec, 40msecI 

Figure 3.7: Simple Computed Torque Controller - U[5msec, 25msecJ 
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Figure 3.8: Simple Computed Torque Controller - U[Smsec, 40msec] 



Chapter 4 

Control of PUMA 260 under 
Random Sampling Intervals 

In this chapter, we apply the results given so far to the control of PUMA 260 Robot Manipulator. 
Corke [4] developed a new control system MMCS (Modular Motor Control System) which contains 2- 

axis control boards inserted into IBM PC bus and an adapter to connect to a high performance workstation 
computer(SUN 3). The controller supports up to 16 axes and can be used to control various motor units 
including robot manipulators, hand systems, camera mounts and tables. Control boards have a common 
clock and interrupt the host computer to calculate their input signals. This facility makes it possible to keep 
the sampling interval constant. The servo software in the kernel of the host computer supports position 
feedback and velocity feedback controls of each joint with a programmable digital filter and a Coulomb 
friction compensator. However if we wish to control the torques of motors directly through MMCS, then 
the control algorithm must be run in a user process and its scheduling cannot be guaranteed, with possibly 
consequences for unstable and non-smooth control, at the present stage of MMCS. This is unavoidable 
under a Unix machine. Therefore, in this chapter, we apply the results given above for random sampling 
intervals in order to control PUMA 260 with MMCS. 

When we discussed the control problems of a tw~dimensional linear control system in Section 2.5, we 
expected that we would be able to apply the results to robot manipulators which were controlled with a 
randomly sampled controller. In the following , first of all, the distribution of sampling intervals are mea- 
sured and are approximated by a mixed uniform distribution. Next, feedback gains and a transformation 
matrix are calculated for the twedimensional system using the algorithm given in Section 2.5. Finally, the 
stability is checked for the case where we use the same feedback gains to control PUMA 260 by SUN 3. 
To do so, linearized dynamic equation of PUMA 260 is generated automatically by a Lisp program. Some 
simulation results are also shown. 

4.1 Control Scheme and Distribution of Sampling Intervals 

If we use a simple computed torque controller, then inputs uk are calculated by 

where CL(q) is a Coulomb friction force term, and 



Here the trajectory is assumed such that the hand is directed to downward and moves along a circle 
with the radius of 10 cm at the center of (25 cm, 0 cm, 0 cm) in the horizontal plane keeping the constant 
pose with respect to the shoulder coordinate system of PUMA 260. It  rounds the circle in t r  sec, namely 

Due to the randomness of the sampling intervals, we cannot identify the current time by counting the 
numbers on iterations and we must rely on function "clock()" to calculate the desired trajectory. The 
resolution of the function is 16.666 msec. Therefore we prepared a table of desired joint angles, angular 
velocities, and angular accelerations for each 16.666 msec from the above trajectory. This also means that 
we cannot measure the histogram of sampling intervals of Eq. (4.1) by "clock()" precisely. 

For PUMA 260, we use following control strategy: 

MMCS interrupts SUN 3 every 1 msec and sends out current commands to motor drivers. Viscous 
and Coulomb friction are compensated in this level. This also means that the states of joints ( which 
contain current angles and angular velocities of them ) are updated each 1 msec. 

The controller reads the current state information from MMCS, calculates Eq. (4.1), and writes the 
command values u(t) on MMCS repeatedly. 

Now we assume that the output of "clock()" changes at tco, tcl , t cz , .  , where (tck+l-tck = 16.666msec) 
and that the i-th sampling interval begins at ti E (tck,tck+l], and ends at  ti+l E [ t c k + , , t ~ k + ~ + ~ )  (see Fig. 
4.1). Then the "clock()" changes n-times in the sampling interval. We define this event as En, namely, 

En  : Event where "clock()" changes n-times in a sampling interval. 

Now we assume that 

The starting times of sampling intervals after the latest clock change ( yi = ti - tck ) are subject to 
uniform distribution U[O, 16.666 msec] and statistically independent not only of each other but also 
of sampling intervals. ' 

Then we have following proposition: 

Proposition 8 (Probability of Event En)  

and for n > 0 

where Pn = Prob(E,], h = 16.666 msec, and f (A) is the probability density function of sampling intervals. 
Furthermore we have 

n 

'Generally, this assumption is not true for control systems. Usually, y, and y,+l have a positive correlation if the deviation 
of sampling intervals are not so large. Nevertheless we assume this because of simplicity. 

4 1 



Figure 4.1: Event En 

< proof > 
Here we consider for the case of n > 0 only because the case of n = 0 will be trivial from it. 
We assume that the i-the sampling interval starts y after the latest tck and continues A seconds. Then 

it is clear that if A < (n - l )h  or A 5 (n + l)h then we have Prob[En] = 0. Next, if (n  - 1)h 5 A < nh 
then y 2 nh - A must be satisfied. Therefore, by the assumption on random variable y, the probability 
for the case where sampling intervals are contained in ( A ,  A + dA) is 

On the other hand, if nh 5 A < (n + 1)  then y must be less than ( n  + l )h  - A. Therefore we have 

for the same small segment. Since these events are exclusive each other, we have 

Substructing the integral variables appropriately, we have first half part of the proposition. This equation 
can also be verified easily using characteristic functions. 

Now we have 
2h 

hP1 = Lh A f ( A ) d ~  + /h (2h - A) f (A)dA.  

Here we assume next equation: 



then we can easily show that 

Therefore for any n > 0, 

This inequality means the proposition is true. 0 
The histogram of event En were measured five times for one minute using SUN 3 and the results are 

shown in Table 4.1.~ We have five independent conditions ( Pn(n = 0,1,2,3,4)  ). Therefore we can use 
five parameters t o  specify the distribution of sampling intervals. Note that the expectation of sampling 
times is determined by Pi only and does not depend on f (A)  at all. This means that we cannot use the 
expectation to  identify it. 

Since we do not any information about the distribution of sampling intervals, it is reasonable to use a 
distribution as simple as possible. Hence we assume it as follows: 

(1) A = a with probability p l .  

(2) A is subject to 

U[h, 2h] with probability p2, 
U[2h1 3h] with probability ps, 
U[3h, 4h] with probability p4. 

(1) corresponds to  the normal situation and (2) to  the case where some delay occurs due to, for example, 
interrupt latencies. By applying Prop. 8 to this distribution, we have 

These simultaneous equations can be solved easily and we have 

pi  = 0.918845 
p2 = 0.080298 
p3 = 0.000784 
p4 = 0.000070 
a = 2.147 msec 

Of course, the distribution of sampling intervals varies depending on the number of login users and the quality of jobs. 
Therefore several data were gathered at different chances. Data were very similar to each other for this system since Sun 
3 system in GRASP LAB. of Univ. of Penn. is devoted to a relatively restrictive purpose (to develop a control system of 
PUMA 260) and only a few people usually login it . 



Table 4.1: Histogram of En 

Table 4.2: Simulation of En 

E3 
3 
11 
8 
0 
2 

4.8 
0.43 x10q3 

E2 
451 
458 
460 
467 
442 

455.6 
0.0405 

However there is a problem. If we use values given above, the expectation of sampling intervals becomes 
4.017msec and it is less than the measured value 5.34rnsec. To adjust this difference, we used a = 3.587msec 
instead of 2.147 msec. 

Simulation were done using this distribution. The results are given in Table 4.2. The mean and 
probabilities of event E2, E3, and E4 are very near the original data, while probabilities of Eo and El are 
different. This is because of the periodicity of the sampling times. The sampling intervals have same value 
(3.587 msec) with probability 0.9 and yi has a positive correlation each other. This distribution is still 
useful since it gives worse situation than the actual. Therefore we use this distribution to determine the 
feedback gains of Eq. (4.1) in the following section. 

E4 

0 
0 
2 
0 
0 

0.4 
0.35 x I O - ~  

E4 

0 
0 
1 
0 
0 

0.2 
0.18 x ~ O - ~  

4.2 Feedback Gains and Stability 

Eo 
9120 
8985 
8974 
8992 
8907 

8995.6 
0.8005 

No. of Iterations 
11376 
11190 
11214 
11285 
11124 

11237.8 
1 .O 

Trial 
1 
2 
3 
4 
5 

Means 
Rate 

E3 
2 
1 
4 
4 
6 

3.4 
0.30 x 

In order to apply the results given so far, we must derive a linearized equation of PUMA 260 along a 
reference trajectory, which requires a lot of times and the task is so cumbersome and complicated that we 
would not be able to do without lots of mistakes. To avoid this formidable business, a Lisp program is 
developed which automatically generates a linearized robot dynamic equation in a C program. The detail 
is given in Appendix A. 

El 
1802 
1736 
1170 
1826 
1773 

1781.4 
0.1585 

Time[sec] 
60.014 
60.014 
60.014 
60.014 
60.014 
60.014 
0.00534 

Stream 
1 
2 
3 
4 
5 

Means 
Rate 

4.2.1 PD Controller 

Eo 
7846 
8227 
8081 
8118 
8081 

8070.2 
0.7209 

First of all, the expectations of function y were calculated under distribution (4.8) for the two-dimensional 
system of Section 2.5 with a PD controller. The results are shown in Table 4.3. From this table, we 

Time[sec] 
60.016 
60.008 
60.016 
60.008 
60.029 
60.016 

0.00536 

El 
2631 
2727 
2661 
2710 
2658 

2677.4 
0.2391 

No. of Iterations 
10961 
11390 
11209 
11271 
11207 

11195.6 
1 .O 

E2 
482 
435 
462 
439 
462 

456.0 
0.0407 



Table 4.3: A and Expectation of y function 

A[msec ]  
15.0 
16.0 
17.0 
17.5 
18.0 
19.0 
20.0 

use A = 17.5 msec  because it gives the minimum expectation and we can expect the fastest convergence. 
Feedback gain matrices K p  and K v  of controllers and transformation matrix T to check the stability were 
given by Prop. 3 and Eq. (2.39) as follows: 

expectation 
-0.0749 
-0.0771 
-0.0782 
-0.0783 
-0.0782 
-0.0775 
-0.0763 

where Diag{x) is a six-dimensional diagonal matrix with the same diagonal element I. Figs. 4.2, 4 . 3 ,  and 
4.4 show y functions of PUMA 260 calculated at the positions of 0 ,72 ,144 ,216 ,  and 288 deg for 0.2 ,0 .5  
and I rps .  The dot line shows y function for the two-dimensional system. y functions of PUMA 260 are 
very similar to each other in spite of the difference of the position and velocity. It is also shown that the 
expectation of y functions for PUMA 260 will be larger a little than that of the two-dimensional system, 
but it may be still negative. In fact, Table 4.4 shows that the expectations of 7 function for PUMA 260 
are negative for all positions and velocities. Therefore PUMA 260 is asymptotically stable with probability 
one. 

Figs. 4.5 -- 4.8 show simulation results for Stream 3 in Table 4.2.  Fig. 4.5 shows the desired trajectory 
for the case of 0.2 rps .  Figs. 4.6, 4.7, and 4.8 show the error angles in degree for each joint for the cases 
of 0.2, 0.5, and 1 rps ,  respectively. The mean of the absolute values of errors and the maximum for one 
minute are listed in Table 4.5.  The errors become larger according to the increase of velocity. Figs. 4.9 
and 4.10 show the trajectories in x-y plane and x-z plane for the case of 1 r p s ,  respectively. The maximum 
errors in the radius and in the z-coordinates are listed in Table 4.6.  This implies that the errors in joint 
angles generate not the deviation across the desired trajectory but the delay along it. The main cause of 
this is, of course, large delays in sampling times and another is the rough resolution of "clock()" function. 
If PUMA 260 travels along the circle at l r p s ,  then it moves about six degrees during 16.666 msec ,  which 
corresponds to  about four degrees of Joint 1 at the largest value. 

4.2.2 PID Controller 

PID controllers make robot manipulator robust for slow changes of system parameters. Therefore we apply 
the results given in Subsection 2.6.1 to  design a PID controller for PUMA 260. Namely, we use following 
controller: 



Table 4.4: Expectation of y function for PUMA 260 

Table 4.5: Mean and Maximum of Joint Angle Errors 

Table 4.6: Maximum Error in Cartesian Space for PD Controller 

46 

Joint 
1 
2 
3 
4 
5 
6 

1 .O[rps] 
Mean[deg/s] 

0.6408 
0.3834 
0.8256 
0.0469 
0.3755 
0.5453 

Max[deg] 
3.8700 
1.3781 
3.5637 
0.3526 
1.1918 
3.3778 

0.5[rps] 
Mean[deg/s] 

0.1340 
0.0919 
0.1929 
0.0019 
0.0963 
0.1321 

0.2[rps] 
Max[deg] 

0.7373 
0.3003 
0.6680 
0.0114 
0.3004 
0.6699 

Mean[deg/s] 
0.3345 
0.2219 
0.4680 
0.0074 
0.2277 
0.3127 

Max[deg] 
1.7246 
0.6699 
1.4662 
0.0453 
0.6482 
1.5257 



Figure 4.2: Simple Computed Torque Controller: 0.2 rps 

Figure 4.3: Simple Computed Torque Controller: 0.5 rps 



Figure 4.4: Simple Computed Torque Controller: 1.0 rps 
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Figure 4.5: Trajectory for 0.2 rps 



Figure 4.6: Joint Angle Errors for 0.2 rps 

Figure 4.7: Joint Angle Errors for 0.5 rps 
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Figure 4.8: Joint Angle Errors for 1.0 rps 

Figure 4.9: Trajectory in x-y Plane for 1.0 rps 



Figure 4.10: Trajectory in x-z Plane for 1.0 rps 

Table 4.7: Maximum Error in Cartesian Space for PID Controller 

where 

Using the same procedure as we used for PD coritrollers, we have A = 13msec, Kp = Diag{1307.69) ,  Kv = 
Diag(64.621, and Ki = Diag(53.25).  Figs. 4.11 -. 4.14 show simulation results for five seconds, where 
the gravity compensation term G(q(tk)) was removed from Eq. 4.12. Figs. 4.11 and 4.12 are for the PD 
controller given above and the others for the PID controller designed here. The velocity is 1 rps for both 
controllers. For the PD controller, PUMA 260 falls about 0.7 cm a t  the most stretched position in Fig. 
4.11, while the maximum error in the radius is about 0.6 cm ( Fig. 4.12 ). If we use the PID controller, 
the vertical deviation becomes less than 0.2 cm at the worst ( Fig. 4.13 ) and the maximum radius error 
becomes a little larger ( Fig. 4.14 ). Table 4.7 shows the errors in the radius and the z-coordinate for 
0.2 ,0 .5 ,  and 1.0 rps from t = 0.5 sec to  5.0 sec. 



Figure 4.11: Trajectory in x-y Plane for PD Controller 

Figure 4.12: Trajectory in x-z Plane for PD Controller 



Figure 4.13: Trajectory in x-y Plane for PID Controller 

Figure 4.14: Trajectory in x-z Plane for PID Controller 



Chapter 5 

Conclusions 

In this report, the stability of randomly sampled linear control systems was discussed and the following 
results were obtained. 

A necessary and sufficient condition for the asymptotical stability with probability one was obtained 
for one-dimensional systems. 

Applying the results to the systems whose sampling intervals are subject to Bernoulli distribution, 
uniform distribution and coupled uniform distribution, the stability conditions were derived explicitly. 

A sufficient condition for the asymptotical stability with probability one was obtained for multi- 
dimensional systems. 

For a typical two-dimensional system, a concrete design procedure shown for a PID controller and a 
PD controller with one step delay as well as a PD controller. 

The above results were applied to robot control systems and the effectiveness of the PD controller 
with a feedforward term, computed torque controller, and simple computed torque controller were 
compared with a random sampling rate. It was shown that PD controllers are very sensitive to the 
randomness of the sampling rate, while computed torque controllers and simple computed torque 
controllers are useful for random sampling rates which have fairly wide distributions. 

Finally, the stability problem of PUMA 260 controlled by work-station SUN 3 was discussed. First 
of all, the distribution of sampling intervals was measured and approximated by a mixed uniform 
distribution. Next, the feedback gains and the transformation matrix were obtained for the two 
dimensional system mentioned above. Then the stability of PUMA 260 with same gains were checked 
using same transformation matrix. To do so, a Lisp program which generates a linerized equations 
along a reference trajectory automatically was developed. Finally some simulation results were shown. 



Appendix A 

Linearized Dynamic Equation of 
Robot Manipulators 

Here we develop a Lisp program to generate a C program which calculates linearized dynamic equations 
of manipulators along a given trajectory recursively. 

In general, dynamic equations of robot manipulators are very complicated and to linearize the equations 
is a formidably burdensome work, while we often need linearized equations to assure the stability of the 
systems and so on. One way to deal with this work is to  develop a lisp program to write the equations for 
us. 

Since we have already had efficient recursive algorithms to calculate the actuator torques(forces) of 
robot manipulators for given configuration (for example [6]), we can easily deduce recursive equations to 
calculate small deviations of the torques(forces) given small deviations of joint variables. Since, of course, 
Iinearized equations are linear with respect t o  joint variables, we can calculate the coefficients from the i-th 
variable to the torques(forces) by setting the i-th variable to be equal to one and the others t o  be equal to 
zero. But if we use the general equations directly, the amount of the calculation becomes again formidable. 
Fortunately, the parameters of the equations contain a lot of zeros, ones, minus-ones, and common terms 
which appears many times during the calculation. It is also known that there is a linear dependence among 
parameters and the amount of the calculation can be reduced by using the dependence. We can use these 
facts if we develop a Lisp program to generate a C program for it. 

Dynamic equations of manipulators are described as follows: 

where q, q, q are angle(paition), velocity, and acceleration vectors of joint variables, respectively. M is 
the inertia matrix, C the centrifugal and Coriolis force, and G the gravitational force. Here we neglect the 
Coulomb friction since it does not appear in linearized equations. 

We assume that a desired trajectory (a, 4, h, F) is given where 

and define small deviation vectors Sq, 6q, 6q, and b r  as follows: 



Then we have 

where 

6r = P6q + Q6q  + Rbq, 

P = M ( @ ,  

Q = [aR/a;l](% h),  
R = [aR/aq](q, q, q). 

Linearized equation is given as follows: 

where 

Recursive equations of dynamics of the manipulator are given as follows: 
[Forward Equations] 

[Backward Equations] 

Fi = mi[vi + wi x (pi + si) + wi x (wi x ( p  I + s.))] t ,  (A.16) 
Ni = I;wi + wi x (Iiw;), (A.17) 

fi = R+lE+1 + Fi, (A.18) 
= &+I [ni+l + (R:+lpi) x fi+l] + mi(pi + si) x iri + Ni, (A.19) 

Ti = n:(gz) + IAiGi + RDiii (A.20) 

where ii and ti are the velocity and the acceleration of the joint variable of link i. wi, w;, and v; are the 
angular velocity, angular and linear acceleration of the frame i with respect to the frame i, respectively. 
Fi, N;, 5, and ni are the force due to the motion of link i ,  the torque due to the motion of link i, the total 
force in the link i, and the total torque in the link i expressed with respect to the frame i,  respectively. 
pi is the vector from the origin of frame i - 1 to the origin of frame i and si the vector from the origin of 
frame i to the gravity center of link i with respect to frame i. mi is the mass of link i and Ii is the inertia 
matrix of link i at the origin of frame i with respect to frame i. R, is the rotation matrix from frame 



i - 1 to i .  IA; and RDi are inertia and velocity friction parameters of the i-th actuator, respectively, and 
z = (O,O, 1)'. 

Then the differential equations are given as follows: 
[Forward Equations] 

[Backward Equations] 

SF; = m i [ 6 ~ ;  + 6Wi x (pi + s;) + 6 ~ ;  x (w, x (pi + s;)) + ~i x (6wi x ( p i  + s~) ) ] ,  (A.24) 

6N; = Ii6W; + 6wi x ( 1 ; ~ ; )  + w; x (I;6wi), (A.25) 

6fi = &+16fi+l + 6Fi + 6qi+lDR+lG+l, (A.26) 

6ni = &+1[6ni+l+ (*+,pi) x &+1 + 6qi+l(Ei+1R:+~pi) x fi+l] + 
~q i+ lD&+l [n i+ l+  (R;+lpi) x f;+l] + mi(pi + s;) x SV; + 6Ni, (A.27) 

ST; = b d ( R f ~ )  + 6q in : (E iZ~)  + IAi6ii + RDi6ni, (A.28) 

where aRi/aqi = DR, and aR;/aqi = E;Rf. 
If we use 6q = 0,Sq = 0, and 6q = 0 except 6qj = 1 for some j, then 61; gives ci, element of C 

matrix. Therefore, if we use the equations given above directly to  calculate matrices A, B,  and C of the 
linearized equation a t  {tj(t), h(t) ,  q(t), r ( t ) )  for some t, then we must calculate the dynamic equation once 
and differential equations 18 times. 

The Lisp program developed here takes the symmetry property of A matrix and the linearly dependence 
of parameters of PUMA260 into the consideration. Alberto et al. [9] investigated the dependence among 
parameters of PUMA260 and showed only 23 parameters are significant which contain 6 actuator inertias, 
6 velocity frictions, and 6 Coulomb frictions. 

The Lisp program generates five procedures as follows: 

D-equation(q, dq, ddq, tau) calculates input T from (q, dq, ddq). 

comm-terms(q, dq, ddq, tau) calculates 35 common terms used to calculate matrices P, Q, and R. 

P-mat r ix(P)  calculates P matrix. 

Q m a t r i x ( d q , Q )  calculates Q matrix. 

R m a t r i x ( d q , R )  calculates R matrix. 

Table A.l shows the number of operations contained in the C program generated by the Lisp program. 
Linearized equation is calculated by these procedures as follows: 



void ~-~quation(q,dq,ddq~A~B) 
real q b ]  , d q b l  , d d q G d  ,ACmml CmI . B C d  [ml; 
{ 
real AACmml Cmml , t a u b l  , P b n d  b l , 9  [mml [d ,Rcmml [d ,det, eps=l .OE-6; 
int rank.i,j; 

Matrices(q,dq,ddq,tauIPD9,R); 
Matdiag(B,6, 1.0) ; 
Matsweep(P ,B,6,6,6,&det, eps ,&rank) ; 

where matrices A and B are 6 x 12 and 6 x 6 dimensional matrices and correspond to lower half sub- 
matrices of A and B in Eq. (A.12), respectively. The dynamic equation which calculates q from q ,  q ,  and 
r is given by 

void ~ynamics (tau, q. dq,ddq) 
real tau b I  , q C m d  , dq [ml, ddq [mml; 
{ 
real tauom , p m  , A A ~  m ,  det, eps=l. OE-6,dqi bl ~ddql[ml , t a u i b l  ; 
int i,j,rank; 

for(i=O; i<6; i++) ddqCil=O. 0; 
D-equation(q,dq,ddq,tauO); 
co-terms(q,dq,ddq,tauO) ; 
Prmatrix (P) ; 



Table A.l: Number of Operations 

Total 
549 
504 
1495 

Operations 
Additions 

Substructions 
Multiplications 

Dynamic Equation 
76 
53 
184 

Linear Equation 
473 
45 1 
1311 
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