
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1989

Software Tools for Dynamic and Kinematic Modeling of Human Software Tools for Dynamic and Kinematic Modeling of Human

Emotion Emotion

Ernest M. Otani
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Ernest M. Otani, "Software Tools for Dynamic and Kinematic Modeling of Human Emotion", . January
1989.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-89-43.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/705
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/705
mailto:repository@pobox.upenn.edu

Software Tools for Dynamic and Kinematic Modeling of Human Emotion Software Tools for Dynamic and Kinematic Modeling of Human Emotion

Abstract Abstract
Human body modeling has been undertaken in both the fields of biomechanics and computer graphics.
Historically, each approach has lacked some of the advantages of the the other. This project further
develops one model used for human task studies and computer animation by improving motion realism
and facilitating user interaction with the model. Realism is provided by an interface that links a general
purpose mechanism simulator with the JACK graphics environment and a prototype human figure with
realistic mass and joint properties based on studies in the biomechanics literature. Improved interaction
is achieved through software tools which can position several of the figures joints simultaneously. Also, a
tool is developed for calculating the mass and inertia properties of an arbitrary polyhedron based on its
geometry and an assumption of constant density. Finally, suggestions are offered for future study.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-89-43.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/705

https://repository.upenn.edu/cis_reports/705

Software Tools For
Dynamic And Kinematic

Modeling Of Human Emotion

MS-CIS-89-43
GRAPHICS LAB 28

Ernest M. Otani

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

Software Tools For
Dynamic And Kinematic

Modeling Of Human Motion

MS-CIS-89-43
GRAPHICS LAB 28

Ernest M. Otani

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

July 1989

Acknowledgements:
This research is partially supported by Lockheed

Engineering and Mangement Services, Pacific
Northwest Laboratories B-U0072-A-N, the

Pennsylvania Benjamin Franklin Partnership, NASA
grants NAG-2-426, and NGT-50063, NSF grants

MCS-8219196-CER, IST-86-12984, IRI84-10413-A02
and DMC85-16114, and ARO grants

DAAG29-84-K-0061, DAA29-84-9-0027 including
participation by the U.S. Army Human Engineering

Lab.

UNIVERSITY OF PENNSYLVANIA

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

SOFTWARE TOOLS

FOR

DYNAMIC AND KINEMATIC

MODELING OF HUMAN MOTION
. -

Ernest M. Otani

Philadelphia, Pennsylvania

August, 1989

A thesis presented to the Faculty of Engineering and Applied Science of the Uni-
versity of Pennsylvania in partial fulfillment of the requirements for the degree of
Master of Science in Engineering for graduate work in Mechanical Engineering and
Applied Mechanics.

Norman I. Badler
Advisor

Noam Lior
Graduate Group Chair

- -
Abstract

Human body modeling has been undertaken in both the fields of biomechanics and
computer graphics. Historically, each approach has lacked some of the advantages of
the the other. This project further develops one model used for human task studies
and computer animation by improving motion realism and facilitating user interaction
with the model. Realism is provided by an interface that links a general purpose
mechanism simulator with the JACK graphics environment and a prototype human
figure with realistic mass and joint properties based on studies in the biomechanics
literature. Improved interaction is achieved through software tools which can position
several of the figures joints simultaneously. Also, a tool is developed for calculating
the mass and inertia properties of an arbitrary polyhedron based on its geometry and
an assumption of constant density. Finally, suggestions are offered for future study.

To Dr. Theodore Toshiro Otani and Tomie Kojima Otani for the learning, Elaine
Miye Otani for the enthusiasm, and Dr. Niels Fujio Otani for the curiosity.

Acknowledgements

I wish to express my gratitude to my advisor Dr. Norman Badler whose encour-
agement and enthusiasm allowed me to explore a field new to me. Without his input
and support this thesis would not have been possible.

I would also like to thank my many colleagues in the University of Pennsylvania
Computer Graphics Research Lab who nurtured the development of my project with
sound advice, sharp criticism and many excellent ideas. In particular: Cary Phillips
for his help and collaboration in developing software for Jack, and Phil - - Lee for helping -

me get started, teaching me about DYSPAM and steering me clear of many wrong
turns.

This research is partially supported by Lockheed Engineering and Management
Services, Pacific Northwest Laboratories B-U0072-A-N, the Pennsylvania Benjamin
Franklin Partnership, NSF Grants IST-86-12984 and DMC85-16114, NASA Grants
NAG-2-426 and NGT-50063, NSF CER Grant MCS-82-19196, and ARO Grant
DAAG29-84-K-0061 including participation by the U. S. Army Human Engineering
Laboratory.

Thanks also to Evan S trassberg, for the many insightful conversations about DYS-
PAM, and my fat her, Dr. Theodore 0 tani, for answering my many anatomy quest ions
and helping me find references.

Finally, I would like to thank Kevin Donovan, Rich Quach and Wendy Wagner
for their friendship and support.

Contents

1 Introduction

2 Previous Work 5
. 2.1 Crash Simulators and Ejection Seat Studies 5

. 2.2 OtherBodyPropertyStudies 8
. 2.2.1 Gait Studies 8

. 2.2.2 Non-Impact Joint Studies 8
. 2.3 The Graphics Environment 11
. 2.3.1 Animation Models 11

. 2.3.2 Graphics Lab Software 12

3 Mover: A Dynamics Driver for the Jack Environment 14
. 3.1 Data Representations 14
. 3.1.1 DYSPAMfiles 15

. 3.1.2 Peabody figure files 17
. 3.1.3 Joint Transformation Conventions 20

. 3.2 Ernest: Converting the Input 21'
. 3.2.1 Converting Revolute Joints 21

. 3.2.2 Converting Spherical Joints 21
. 3.3 Pebble: Converting the Output 24

. 3.4 Integrating the Programs 25

4 The Body Model 28
. 4.1 Modeling Joint Properties 28

. 4.1.1 Active and Passive Joint Properties 29
. 4.1.2 SelectingaStiffnessFunction 30

. 4.1.3 Stiffness Properties of Spherical Joints 31

. 4.1.4 Stiffness Properties of Revolute Joints 32
. 4.1.5 Non-linear Springs: Data Representation 33

. 4.2 The Prototype Simulation Figure 33
. 4.2.1 Elbow Springs 35

. 4.2.2 Knee Springs 35
. 4.2.3 Shoulder Springs 36

. 4.2.4 Hip Springs 39

. 4.2.5 Waist Springs 42

5 Positioning Tools 44
. 5.1 Locating the Center of Mass 44

. 5.2 Testing for Figure Stability 45
. 5.3 Generating Mass and Inertia Data 46

. 5.4 Parametric Shoulder Positioning 55
. 5.5 Multiple Interactive Joint Positioning 59

6 Conclusion 63

References 65

A Figure Definition for the Prototype Body 69

List of Figures

. 3.1 DYSPAM Input File: structure 15
. 3.2 DYSPAM Input File . ndyspamfile 16

. 3.3 DYSPAM Input File: jackforce 17
. 3.4 Peabody Figure File 18

. . . 3.5 Zifyjoint: Algorithm for Handling Restriction on Revolute Joints 22
. 3.6 Pebble: Converting DYSPAM output to Jack input 26

. 3.7 Information Flow of Mover 27

. 4.1 Data format for specifying non-linear springs 33
4.2 Elbow moment-displacement relationship: Engin's elbow data and pro-

. totype elbow model 35
4.3 Knee moment-displacement relationship: CAL3D data and prototype

. knee model 36
4.4 Shoulder moment-displacement relationship for x axis: Engin subject

. data and prototype shoulder model 37
4.5 Shoulder moment-displacement relationship for y axis: Engin subject

data and prototype shoulder model . 38
4.6 Shoulder moment-displacement relationship for z axis: Engin subject

. data and prototype shoulder model 35
4.7 Illustration of the directional dependence of the passive hip moment .

MHFE is the moment for leg motion in the direction of increasing
extension and MHEF is the moment for increasing flexion 39

4.8 Hip moment-displacement relationship for flexion: Yoon and Mansour
subject data and prototype hip model 40

4.9 Prototype hip moment-displacement relationship for ab/adduction . . 41
4.10 Prototype hip moment-displacement relationship for medialllateral ro-

. tation 41
4.11 Prototype waist moment-displacement relationship for flexion parallel

to the frontal plane . 42
4.12 Prototype waist moment-displacement relationship for flexion parallel

to the sagittal plane . 43
4.13 Prototype waist moment-displacement relationship for rotation parallel

to the transverse plane . 43

5.1 Determining Static Figure Stability 46

vii

5.2 Example of decomposing a solid into tetrahedra 48
5.3 Calculating a Volume Integral: A Special Case 61
5.4 Inman's graph showing relation between clavicle and humerus elevations 61
5.5 Definitions of Joint Angles in the Shoulders 62

Chapter 1,

Introduction

Human motion modeling is a useful, important part of predicting how individuals will

interact with their surroundings. In the field of human factors engineering, human

modeling is used to understand how an operator would accomplish some task and to

design work stations and tasks that enhance the operator's effectiveness. Because it,

is often impossible or infeasible to create realistic prototype environments to study

operator performance, a computer model of the environment and the humans who will

work there is essential. Such a model would enable designers and mission developers

to rehearse a mission within the computer generated environment and make refine-

ments to both the operator's station and the mission task itself. Several iterations

of planning, testing and redesign would then result in a more functional environment

and a more effective mission plan.

Consider planning a task for a space misson. In this application, the micro-gravity

environment and a restrictive space suit can greatly complicate the task. Given the

brevity and expense of even near space missions, the value of realistic, interactive

planning tools is obvious.

Human modeling is also important when studying hazardous or potent.ially haz-

ardous situations. Historically, much work has been done to predict the motion of

humans in sudden acceleration situations, as in a car crash or an airplane ejection

seat. Applications of computer modeling for risk assessment need not be limited to

these two cases, however. One can imagine situations which are so novel that the

danger to a human participant is unclear. In these situations, computer modeling

could help estimate the risk.

In this thesis, I describe several approaches to human modeling using interactive

computer graphics. In particular, I focus on some of the basic dynamic and kinematic

properties of the human figure, and how they might be used to improve animation

realism and facilitate user interaction.

Chapter 2 is a brief review of some of the work that has been done in human

modeling in the fields of biomechanics and computer science. The existing anthropo-

metric models that are the starting point of this thesis are described as well as some

of the key body modeling papers that will be the bases of my joint models.

Chapter 3 describes a facility called Mover for simulating and animating the mo-

tion of a human figure under the influence of simple systems of forces and moments.

The program at the heart of this facility is a modified version of DYSPAM [I, 21, a

general purpose simulator for spatial mechanisms developed by R. Schaffa and B. Paul

of the Department of Mechanical Engineering and Applied Mechanics, University of

Pennsylvania1. This facility takes input consisting of a figure and force information,

and generates an animation sequence.

For such a simulation to yield realistic motions, realistic input is required. Unfor-

tunately, typical human motions like walking, lifting objects and other such actions

are complex. And the necessary force and moment specifications required to achieve

a natural looking motion may be surprisingly elusive.

In chapter 4, I focus on the other part of the simulation input - the body model. In

particular, I present a simplified figure description designed especially for simulation

'DYSPAM is available through the Department of Mechanical Engineering and Applied hiechan-
ics a t the University of Pennsylvania, Philadelphia, Pennsylvania 19104. For further information
contact Dr. Burton Paul

purposes and a model for figure joint properties based on studies in the biomechanics

literature. My objective is to provide a reasonable method for modeling the properties

of the human figure that could be used in conjunction with any general purpose

simulator. I provide a prototype figure as an example with the intention that its

"typical" joint stiffness and inertia parameters will be replaced by data collected

from specific individuals when such data becomes available.

In addition to simulation, user interaction with computer models is important

when planning or designing some human task. Because physically basecl motion

algorithms are so difficult to develop, it is often convenient for the user to directly

position the figure with an interactive user interface. When this technique is used,

the model's kinematic properities should be as realistic as possible. In chapter 5 ,

I describe some algorithms for interactively positioning the shoulder complex. The

shoulder, which is often casually thought of as a single ball joint, is actually a set

of several bones and joints that form a fairly complicated spatial mechanism that

is difficult to model as an assembly of conventional kinematic pairs (see Dvir and

Berme [3] for a planar model). I model the kinematic behavior of this "joint" with a

positioning algorithm that reflects the dependence of the the motion of the humerus

on that of the clavicle. The algorithm is based on studies of shoulder motion and

concepts from dance notation.

Extending the idea of making one joint's position dependent on another's, I also

develop a general routine for establishing arbitrary linear relationships between sets

of joint displacements. This notion of parametric relationships between graphical

objects, while simple to implement, has many powerful possible applications.

Another set of tools, for calculating and interactively displaying mass and inertia

properties of objects, are useful both as interactive positioning aids and as starting

points for future physical simulation programs.

Finally, in chapter 6, I present conclusions about these approaches to human

modeling and offer some suggestions for possible future projects.

The tools presented here are all implemented as special applications for the Ja,ck

graphics user interface in use at the University of Pennsylvania Computer Graphics

Research Lab. The algorithms upon which many of them are based, however, may

be applied to any system. It is my hope that the work shown here will prove to be

a small step in the continuing evolution of computer graphics as applied to human

modeling.

Chapter 2

Previous Work

Many mathematical and computer models have been developed to describe human

motion in a variety of situations. One can roughly divide the work that has been clone

into the following categories: impact studies, gait studies, non-impact joint studies,

and animation models. In each kind of study, there are elements that are very specific

to the particular scenario being examined as well as more general elements that may

be useful in this project. In the following sections, a brief review of the work in each

category is given with some comments on the portions of the work that are relevant.

Crash Simulators and Ejection Seat Studies

The automotive industry conducts numerous studies each year of human response

to the sudden decelerations that occur in automobile crashes. The aircraft industry

conducts similar studies on human response to the sudden acceleration that occurs

when ejecting from an airplane. For each of these fields, a computer simulation is

typically developed that predicts the passive response of the seated figure to the large

external forces, and estimates the likelihood of serious injury. Other investigators

then attempt to verify the simulation results through the use of animal, cadaver, a,nd

anthropomorphic dummy experiments. Review articles by King and Chou [A] and

Prasad [5] discuss some of the prominent simulation models used by industry. These

two articles are the primary sources for the discussion that follows.

King and Chou [4] describe several classes of simulators: gross-motion simulators

(in two and three dimensions), and head, spine, and thorax impact models. Since

my project concerns general whole-body motion, I will just review the discussion of

three dimensional gross-mot ion simulators. he first is the three mass, 12 degree-of-

freedom HSRI model developed by Robbins [6] . This model, designed primarily for

the evaluation of constraint systems, calculates contact forces applied to the figure

by the interior of the vehicle, which is modeled as up to 25 planes. Lap belts and

shoulder harnesses may also be modeled. The three masses represent the head, torso

and legs of the occupant.

A modification of the original model is reported by Robbins et. al. [7] in which

the number of masses is increased to 6 and the number of degrees-of-freedom to

14. Collision forces between body segments are included as well as frictional forces

between the body and the contact surfaces. Joint limits are also included.

The Texas Transportation Institute 3-D automobile occupant model (TTI) (Young

[8]) has 12 masses and 32 degrees-of-freedom. The body segments are modeled by

spheres that are connected by revolute and spherical joints. The spine is modeled with

two segments and torsional springs. Joint limits are simulated by bilinear torsional

viscous dampers. As with the HSRI model, the vehicle interior and restraint belts

may be modeled as planar contact surfaces. However, this model contains no segment

to segment collision detection.

The model by Furusho and Yokoya [9] is a 3 mass, 12 degree-of-freedom system

similar to the earlier HSRI system. The body is modeled as head, torso, and legs

segments with springs and dampers included to represent neck and hip stiffness. The

simulation calculates seat belt loads and seat reaction and friction forces.

Another model reviewed by King and Chou is the "Superman" or UCIN model

developed by Huston et al. [lo]. This model has a 12 segment, 31 degree-of-freedom

body connected by revolute and spherical joints. Segments are modeled as elliptical

cylinders, ellipsoids and frustums of elliptical cones. Collisions are detected between

the figure and its environment, but the contact forces are not calculated.

Two three dimensional models are described in the more recent review by Prasad

[5]. The first of these is the CAL3D (or CVS) model which is also mentioned by King

and Chou. This model was developed by the Calspan Corporation and is described

extensively by Bartz [ll], Bartz and Butler [12] and Fleck et al. [13, 141. Prasad 151

reviews a recent version of the model called CVS-IV or Version 20 which can simulate

a 30 segment, 21 joint figure plus the vehicle and ground. Joints are specified as

locked, pinned, ball-and-socket, or Euler joints. Up to 20 other constraints may

also be specified including some segment motion specifications. Joint torques may

be modeled as springs of viscous or coulomb friction mechanisms. Special elements

are available for modeling tension only members (like muscles) and flexible members

(like the spine). As with the other models, contact forces are calculated and restraint

systems may be simulated. Prasad [5] states the program is flexible enough to be

considered a general purpose articulated figure simulator. This system has been used

for a number of impact studies including studies of vehicle-pedestrian impacts.

A final system is the MADYMO Crash Victim Simulation Program developed by

TMO in the Netherlands. The program is described by Wismans et al. [15, 161. This

system allows any number of segments, but the whole figure must contain no loops,

and joints may only be modeled as revolute or spherical. Joint torques are specified

in tabular form. Contact reactions may be modeled as nonlinear springs, viscous

damping or coulomb friction. As with the other models, restraints may be modeled,

and contact forces are calculated. This system has been used in pedestrian impact

studies and child restraint system studies.

Other Body Property Studies

2.2.1 Gait Studies

Many human body models, both whole body and lower extremity models, have been

developed for the study of human locomotion. Typically, the objective of these mod-

els is to determine the joint reactions and moments that occur during walking and

running. A good review of the biomechanics literature in this area is given by Icing

[17]. King divides the research into inverse dynamics and forward dynamics studies.

A forward dynamics model by Onyshko and Winter [18] models the whole body in

seven segments: one for the torso and upper extremities, and three segments for each

leg. The model uses a Lagrangian approach to predict the leg motion of a walking

figure and a "manual" iterative approach to specifying joint torques. Initial joint

angles and velocities are provided as input, joint moments during each of four phases

of the gait are specified, and the resulting motion is observed. If the motion is not

satisfactory, joint moments may be adjusted and the simulation run again. The abil-

ity to freely vary the moments facilitates simulating the gaits of both normal and

injured subjects where particular muscle groups might be weak. Realistic results are

reported, and the important physical parameters of the model are provided.

2.2.2 Non-Impact Joint Studies

In order to create a computer figure that moves as a real human figure does, it

is necessary to have an accurate kinematic model for the joints in the body (here

"joint" is used more in the mechanisms sense than the strict medical sense). There

have been a number of studies of the healthy and impaired properties of each of

the numerous joints in the human body. For this project, only those studies which

describe the range of motion and passive resistance properties of healthy joints are

of interest. Furthermore, I focus only on certain major joints, namely the elbow,

shoulder complex, hip, and knee. Different approaches to specifying joint position

and motion are also useful and are briefly reviewed. Since a comprehensive review of

even the work done in the limited field described above would be beyond the scope of

this project, I merely highlight a few representative papers in the recent biomechanics

literature.

Elbow Studies

Engin et al. has done a number of relevant studies of joint biomechanics. His work

on the elbow [19] contains functions fitting empirical data of both voluntary range

of motion of the humero-elbow complex, and the passive resistance of the elbow as a

function of hyperextension angle. Both of these studies are useful in characterizing

the mechanical properties of the elbow.

Shoulder Complex Studies

The classic article in this area is by Inman et al. [20]. In this article, the ranges of

motion of the different members composing the shoulder complex are described, and

their interrelationships are given. Also described are the mechanics of the different

force-lever mechanisms formed by the muscles and bones in the system. Action

current potential measurements provide insight into what role each of the different

muscles plays in each of the basic shoulder motions.

Engin [21] extends this work to include studies of the forced range of motion of

the shoulder and the associated passive resistive forces and moments. Although the

number of subjects in the study was very small, the shapes of the curves generated

may be useful in defining elastic joint limits for simulation models.

A later study by Engin [22] reports the angular damping coefficients of the shoulder

in the vertical plane as a function of upper arm position. Although the emphasis in

this paper is on the theory and met hod of measurement, the results given may prove

useful in designing a vibration model of the shoulder.

Hip Studies

Yoon and Mansour [23] provide mathematical functions fitting measurements of pas-

sive hip resistance to hip flexion and extension angles. Relations for resistance as a

function of hip angle are provided for several different knee angles thus accounting

for the influence of muscles that span both joints.

Knee Studies

A thorough description of the envelope of motion for the knee joint is given by

Blakevoort e t al. 1241. This is an in vitro study of the range of motion in flexion

and in tibia1 rotation. External forces are applied to the specimen knee and the

resulting force-displacement plots are provided. Since the study is performed on ca-

daver knees, the actual values of the torques reported at the joint limits might be

in question, but the general shape of the force-displacement curve may be similar to

that of a live subject. It will probably be necessary to compare these results with

other studies to verify the validity of the method.

General Joint Models

Most joints in the human body have some amount of compliance even in directions

other than those of their primary action or motion. Although this compliance is

slight, a truly thorough model would consider practically every joint as a six degree

of freedom joint with some allowable translation and some allowable rotation in every

direction. Typically, though, the range of motion in translation is slight, and the

amount of compliance in directions that are not usual for the joint is also fairly

small. Hence most simulations that model joints and joint limits make simplifying

assumptions about the "allowable" motion of the joints. A thorough discussion of

the different models that are used is contained in a paper by Kinzel and Gutowski

[25]. The most common simplifications are hinge or revolute joints for the knees and

elbows, and ball and socket or spherical joints for the shoulders and hips.

Another useful topic in the literature is the specification of coordinate systems

appropriate for describing joints. Grood and Suntay [26] have written a number of

articles suggesting a scheme similar to Euler angles, but having the advantage that

relative translations could also be represented. Perhaps even more importantly, in

the proposed scheme (unlike in the usual euler angle system), the order of the relative

rotations of the moving segments does not need to be specified. The particular paper

cited applied the "joint coordinate" system to the knee, but other papers by the same

authors consider the spine and other joints in the body.

2.3 The Graphics Environment

2.3.1 Animation Models

Human figures developed for computer animation applications are as many and varied

as those developed for impact simulations. The figures reviewed by Dooley [27] , for

instance, have a large amount of articulation and anthropometric accuracy and flexi-

bility. However, they are lacking in the physical properties that would be needed for

dynamic simulations. Conversely, systems which provided animation post-processors

for existing human motion simulators (like those described earlier) are often lack-

ing in anatomical complexity or the ability to model a variety of different dynamic

situations (see Wilmert [28]).

More recently, work has been done to incorporate dynamic directly into anima-

tion systems. And appropriate human body models have developed to accompany

these systems. Wilhelms [29] used an 18 degree-of-freedom figure to demonstrate her

dynamically driven animation system, but the figure was a very simple one from an

anthropometric and anatomical viewpoint. It did contain joint limits that were mod-

eled spring and damper systems, but apparently no effort was given to establishing a

force-displacement behavior that mimicked the actual human body.

Work by Girard [30] on animal and human locomotion also places a heavy empha-

sis on motion controlling algorithms and less emphasis on the accuracy of the models

the algorithms drive. Physical parameters such as mass distribution within the figure

are used in the algorithms, but their values apparently are not related to those of real

animals.

For accuracy and care in developing anthropomorphic human figures, one should

consider the models developed in the Computer Graphics Research Lab at the Uni-

versity of Pennsylvania. A technical report by Grosso et aE. [31] describes the lastest

developments in generating anthropometrically accurate figures of different sizes based

on population information. These figures have 31 segments and 42 degrees-of-freedom.

Kinematic joint limits are available and based on anthropometry data. Until recently,

however, the ability to use these models in animations that were physically based was

absent.

2.3.2 Graphics Lab Software

All tools developed in this project are intended to be extensions of existing software

developed at the University of Pennsylvania Computer Graphics Research Laboratory.

Two important parts of that body of software are Peabody and Jack. Peabody is a

graph-structured representation for articulated figures (see [32] for details). It is a

language for representing figure information including all figure location, joint, and

segment connectivity information, as well as other physical attributes of the figure

being described. The data files (called "figure files" in this thesis) are structured,

much like a programming language. This facilitates editing and understanding the

data. These files are read by a parser that converts the syntax and data into the

computer's internal data representation.

Jack is a graphic user interface program and a library of subroutines that serve as

the foundation upon which various applications may be built (see Phillips [33]). Jack

provides an interactive 3D graphics environment for modeling, displaying and manip-

ulating articulated figures. A mouse and nested menus provide easy user interaction

with existing utilities. Jack runs on a Silicon Graphics IRIS graphics workstation

and provides capabilities such as animation, real-time rendering and real-time 3D

manipulation of represented objects.

Chapter 3

Mover: A Dynamics Driver for
the Jack Environment

Mover is the name given to a collection of computer programs which allow the general

purpose mechanism simulator DYSPAM to act as a preprocessor for the Jack graphics

environment. A situation may be set up using the Jack user interface, saved as a

Peabody representation, and shipped to Mover which will in turn run a simulation and

generate an animation file which can then be played back in the Jack environment.

This sequence of actions greatly simplifies the design of a simulation set-up and

allows easy blending of keyframe animation with simulation results. Also, attaching

DYSPAM in this way to a powerful graphics system grants the benefits of three-

dimensional visualization of both the initial conditions and the resulting motion.

The following sections will describe the problems involved in creating this system,

and the resulting conversion progranls themselves.

3.1 Data Representations

Both Jack and DYSPAM represent articulated figures, and both have similar notions

of degrees of freedom and local and global coordinate systems, but the formats of their

data representations are radically different. This difference was the main obstacle in

achieving an integration of the two programs without extensively changing either.

3.1.1 DYSPAM files

DYSPAM, as it is used our lab, takes 3 input files1: structure, ndyspamfile, and

jackforce. A brief overview of the contents of each file is given with a sample file

for illustration. For more detailed descriptions of the input format see Schaffa [I] or

St rass berg [34].

Structure

Structure (see figure 3.1) contains the basic information for controlling the simulation.

The first line contains the number of bodies, number of joints, and the number degrees

of freedom in the system. The next line contains the number global forces, Iocal

forces, global moments and local moments applied to the body. The remainder of the

file contains flags and numerical integration and equation solving parameters. Also

included, is the number of rotational springs in the system and time information for

integration step size and the time interval between iterations to be written as output.

l a 1, 3 number of bodies, joints, degrees of freedom .
1 0 0 0 local forces, global forces, local moments, global moments

0, 0, 3 flags and number of rotational springs

" O 0 " more flags
I

0 . ~ ~ 0 0 0 0 , 0.10000, 30.0, 0.300000 start time, time step, stop time, animation step
0.00000001, 0.00001, 0.000001, 7
10.0 ,1.0 ,0.1/ numerical procedure parameters

Figure 3.1: DYSPAM Input File: structure

Ndyspamfile

Ndyspamfile (see figure 3.2) contains the mechanism description. Information is ar-

ranged in 6 sections (or tables):

'A special file called "optionaln may be also be used. This file specifies non-linear springs and is
described in Chapter 4.

body joint table - a list of connectivity relationships and joint types connecting
pairs of segments.

joint triad table - the location and orientation of joint coordinate frames in
terms of the segment's local reference frame

mass and inertia information - a list of each segment's mass, center of mass site,
and principal moments of inertia.

point of interest table - a list of site locations and the segments to which they
belong.

spring parameters - linear spring and damping constants, rest angles, range of
hysteresis, and the degree of freedom with which the spring is associated.
. m a 1 conditions - initial displacements and velocities for all the figure's degrees
of freedom.

1 0 1 7 body joint table
0 1
0.00 0.00 -1.00 0.00
0.00 1.00 0.00 120.00
1.00 0.00 0.00 0.00

1 1 I - joint triad table

1.00 0.00 '0.00 0.00 .

0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00

1 3 25'. 000000 250.000000 50.000000 50. oooooo - mass and inertia data
1 1 0.00,0.00,0.00
2 1 150.00,0.00,-15.00 1 p o i n t of interest table
3 1 75.00,0.00,0.00
1 1000.000000 600.000000 0.000000 I
1 500.000000 600.000000 0.000000 2 1 spring parameters
I 800.000000 600.000000 0.000000 3
1 0.349066 0.698132 0.000000 0.00 0.00 0.00- initial conditions

Figure 3.2: DYSPAM Input File: ndyspamfile

Jackforce

The last of the input files, jackforce (see figure 3.3)' contains a list of the local forces,

global forces, local moments and global moments applied to the system. Each item

is listed with the number of a point of interest where it is acting (from the point of

interest table in ndyspamfile) and its global x, y and z components. These forces

are constant only, with time varying forces requiring a user-specified routine called

FORCES within the DYSPAM source code.

Figure 3.3: DYSPAM Input File: jackforce

3.1.2 Peabody figure files

Much of the same information contained in the DYSPAM input files is also contained

in the Peabody figure file. However, the same information takes a dramatically dif-

ferent form as can be seen in figure 3.4. Here, the format uses a data representation

language which can be interpreted by the Peabody parser (see Phillips [32]). The

information is then stored internally in an extensive data structure.

figure (

segment floor (
psurf = "floor. pss" ;
site prox ->location = xyz(O,O,O) * trans(0,0,0);
site dist ->location = xyz(-45deg, -90.00deg , -45.00deg) *

trans (0,12Ocm, 0) ;
mass = -1.0;

segment link1 (
psurf = "1inkI.p~~";
site prox (
location = xyz(O,O,O) * trans(0,0,0) ;

j

site dist ->location = xyz(O,O,O)
* trans (150. OOcm, 0. OOcm, -15.00cm) ;

site CM(
location = xyz(O,O,O) * trans(75.00cm,0.00cm,O.OOcm);
globalforce = (100.0, 0.0, 0.0);

3
mass = 25.0;
inertia = (50,50,50) ;

root = f100r.prox;

j o int shoulder (
connect floor.dist to link1.prox;
type = R(I,O,O)*R(O,1,0)*R(0,0,1);
displacement = (~deg, 40deg, 20deg);
stiff = (100, 1000, 1000);
rest = (0, 0 , 0) ;

3

Figure 3.4: Peabody Figure File

Essentially, a figure description is a structure composed of several sub-struct ures.

Each structure and substructure has an identifier such as "segment" and a name,

such as "floor".

The segment sub-structure contains all the information concerning a particular

segment (a.k.a. body) in the system. Psurf refers to a named file containing the ge-

ometry (i.e. three dimensional shape) information for display purposes. The location

of the origin in the definition of the psurf defines the local coordinate system of the

segment. Sites are equivalent to "Points of Interest" in the DYSPAM nomenclature.

Each site is itself a "sub-sub-structure" with position and orientation fields. Position

is specified with the identifier "trans" and orientation is specified with the identifier

L L ~ y ~ 7 7 . LLxyz(10deg,20deg,30deg)" indicates that the site in question is in an orienta-

tion that can be achieved by rotating the local coordinate frame first 10 degrees about

the x-axis then 20 degrees about the rotated y-axis and finally 30 degrees about the

doubly rotated z-axis. Sites may be named in any fashion convenient to the user, but

the name "CM" is reserved for that site locating the center of mass of the segment.

The segment's mass and inertia information are indicated in their appropriate fields.

As in DYSPAM, the Peabody representation assumes. the local coordinate system of

the segment is parallel with the principle inertial axes of the body. Finally, each site

has global and local force and moment fields in which constant external forces and

moments may be specified.

The joint sub-structure contains the connectivity information and all other joint

related parameters. Each joint connects two and only two segments as indicated by

the "connect" specification. "connect floor.dist to linkl . prox" means that this joint

connects the site named L'dist" that is a part of the segment named "floor" to the site

named "prox" that is a part of the segment named "linkl". The type specification

indicates the number and type of the degrees of freedom of the joint. L'R(l,O,O)"

indicates a rotational degree of freedom about the local x-axis. "T(1,0,0)" indicates

a translational degree of freedom along the x-axis. By chaining a sequence of these

degrees of freedom together, a number of different kinds of mechanical joints may be

specified. Each joint also has fields for specifying joint limits and spring information

such as a spring constant, damping constant and rest angle.

The identifier "root" indicates which site can be considered attached to the ground

(i.e. unmoving) segment.

From this discussion it should be apparent that the DYSPAM input files and the

PEABODY figure files contain much the same information. The primary differences

between them can be summarized:

DYSPAM files contain time related information such as velocity and simulation
start and stop times.

DYS PAM files contain numerical procedure parameters.

DYSPAM files contain flags for invoking more complex procedures.

Peabody files contain references to figure geometry.

Fortunately, most of the differences may be safely ignored. DYSPAM, having no

display capabilities of its own has no need for the psurf geometry files. And flags and

numerical procedure parameters may be set in advance and assumed to be the same

for all cases that are expected to be encountered. The only remaining considerations

are the data related to time and velocity. These are only a few values, so it is not too

great a burden to specify them at the time the simulation is called.

What remains is the task of converting those elements that are in common from

one format to the other.

3.1.3 Joint Transformation Conventions

To complicate the conversion process, there exist within DYSPAM some restrictions

on the definition of joint triads associated with certain kinematic pairs. These re-

strictions are absent from the Peabody representation. First, DYSPAM expects all

revolute joints to be defined so that the axis of rotation is the positive z-axis. Peabody,

however, allow revolutes to be defined about any axis, be it a positive or negative

coordinate axis, or even some other arbitrary axis.

Second, DYSPAM defines its spherical joints using a 2-Y-X Euler angle conven-

tion, so any initial position or output position of a spherical joint is defined in terms

of this convention. Peabody, however, allows any sequence of rotations as its defini-

tion of a spherical joint. So proper interpretation of the figure file by DYSPAM and

proper creation of an animation file, both needed the ability to convert from or to an

arbitrary relative rotation sequence.

Other joint types have restrictions also, but since these are the only ones that

occur in the human body model, these are the only ones that are accommodated.

3.2 Ernest: Converting the Input

Ernest was first written by Lee and Chu as a basic interface between Jack and

DYSPAM. The approach was simple: read a Peabody figure file, parse it with the

Peabody parser and then.query the internal data representation for each item required

for the DYSPAM input files, and write them to the appropriate file. Unfortunately,

the program was not very flexible as it could not handle joints other than the revolute

type, and those joints were required to be specified in the DYSPAM fashion, with

the rotation being about the local z-axis. However, the basic work of interpreting the

Peabody data and counting the number of joints, sites, and segments and arranging

the data so that it could be output as DYSPAM input files was accomplished.

3.2.1 Converting Revolute Joints

In consultation with Phillips3 we developed a scheme for handling the restriction on

the definition of revolute joints. The objective was to allow the existing freedom in the

Peabody description while still passing only "legal" joints to DYSPAM. The solution

was to internally redefine all revolute joints that were not already defined about the

z-axis so that they were, and then writing that description out to the DYSPAM input

files. The function used was called "zifyjoint". The algorithm is outlined in figure

3.5.

3.2.2 Converting Spherical Joints

The conversion of spherical joints presented a slightly more complicated problem.

Since Peabody allows spherical joints to be composed of three sequential rotations

about arbitrary axes, some arbitrary set of initial displacements had to be converted

to the DYSPAM convention. As an additional complication, it was realized that the

displacements produced by DYSPAM as output from the simulation would have to be

2This program was provided to me by one of the authors, Phillip Lee
3Cary B. Phillips, University of Pennsylvania Department of Computer Science, 1989

2 1

done 7
reset transform

yes + done original + coordinate
displacements systems on

About the yes
positive -+PI both sides of

z-axis? joint

no 4
get global

save original set joint transformation
joint to chango current

displacement to zero axis to positive
z-axis

Figure 3.5: Zifyjoint: Algorithm for Handling Restriction on Revolute Joints

converted back to the original Peabody rotation convention so the animation system

would be able to display .the sequence of positions accurately. So whatever solution

was used would have to be reversible. Once again, the objective was to pass equivalent

information to DYSPAM while imposing few, if any restrictions on the Peabody joint

definitions.

 he strategy for achieving the conversion was simple. First, the data structure

would be read to determine what sequence of rotations was being specified by the

Peabody figure file. With that information, the three initial joint displacements can

be interpreted correctly, and an appropriate rotation matrix calculated. Then the

elements of the rotation matrix can be used to find the equivalent joint displacements

in the 2-Y-X system (the DYSPAM rotation convention).

If #, 0 and $ are relative rotations about the z, y and x-axes, respectively, then

the corresponding rotation matrix is given by4:

cosOcos+ sin$sinOcosq5-cos$sin4 cos+sin8cosq5+sin$sin~
R = [cos 6 sin # sin # sin $ sin 0 + cos + cos 4 cos + sin 0 sin 4 - sin 1C, cos q5

- sin 6 sin $ cos 6 cos $ cos 6 1
Z-Y-X Euler angles can be found for any rotation matrix by observing the relation-

ships of certain elements of the above matrix.

R2,1 = cos 6 sin # (3.1)

Rill = cos 0 cos #

R3,2 = sin + cos 0

R3,3 = cos + cos 0

R3,1 = - sin 6

From these relationships we can find 4, $ and 6 except in two special cases. In general,

6 = atan2(-R3,1, cos 0) (3.9)

The two special cases occur when cos0 = 0. This can happen in two ways. If

= sin6 = 1 then we know 6 = n/2. In this case, we solve for the difference

between q5 and +:

Rzt3 = cos 1C, sin 4 - sin 1C, cos 4 = sin(+ - +) (3.10)

R,,3 = cos $ cos + + sin+ sin + = cos(+ - +) (3.11)

0 = n/2 corresponds, in this case, to a 90 degree rotation about the y-axis which

places the x-axis in direct opposition to the original z-axis thus effectively reducing

4Throughout this work I will use the robotics rotation matrix convention in which the columns of
the matrix may be interpreted as vectors along the rotated coordinate axes referred to the unrotated
axes. The computer graphics convention is to use rows instead.

the number of degrees of freedom. The single degree of freedom replacing $ and # in

this case is the difference 4 - $. 4 or $ may therefore be set arbitrarily. We establish

the relations hip:

d=-1Ct

So the resulting displacements are:

1 4 = -$ = -atan2(R2,3, Rlt3)
2

R3,1 = 1 indicates the other special case, 8 = -7r/2. By reasoning similar to the

previous case, we find
1

$ = '$ = 'atan2 (~ 2 ~ 3 , ~ 1 ~ 3) 2
(3.15)

This algorithm is implemented in a function called "tozyx" which is called by the

section of Ernest which handles initial conditions.

Pebble: Converting the Output

The output of DYSPAM essentially consists of a sequence of time values each fol-

lowed by a list of joint displacements specifying the configuration of the system at

that time. The joint displacements correspond, of course, to angles as defined in

DYSPAM conventions. The output conversion program's task is to replace the joint

displacements in the output with displacements as defined in the particular figure file

that was the original source for the system description.

Accommodating the differences in convention for revolute joints was simply a

matter of checking if the Peabody definition of a positive displacement was in a

counter-clockwise direction (i.e. defined about a positive coordinate axis) or a clock-

wise direction (i.e. defined about a negative axis). Since DYSPAM revolute joints are

always positive in a counter-clockwise direction, those defined in the opposite way in

the Peabody definition required a sign change for their displacement.

Converting spherical displacements presented a problem that was solved by im-

posing a restriction on the kinds of spherical joint definitions that could be converted

from the DYSPAM convention. As in Ernest, we needed a mechanism that would

take a rotation matrix, and produce a set of angles representing that rotation in some

Euler angle-like convention. However, without restricting the sequence to be about

mutually perpendicular axes, it would be very difficult to apply an algorithm simi-

lar to the one in the previous section to handle the conversion. We decided that a

slight restriction would not significantly reduce the user's convenience when designing

Peabody figures. Sequences of rotations would have to be about coordinate axes or

negative coordinate axes. Arbitrary axes within the local joint coordinate sys tern

would not be allowed. However, the location and orientation of the joint triads them-

selves could always be defined arbitrarily so the restriction on the kinds of joints that

could be used was purely syntactical.

Not counting definitions of rotations about negative axes, there are twelve se-

quences of rotations that meet the above restriction and are capable of producing

three rotational degrees of freedom. They are:

For each of these cases, it is simple to find the angles in the given convention

that correspond to a rotation matrix. This is the heart of Pebble. The rest of the

algorithm is outlined in figure 3.6.

3.4 Integrating the Programs

Mover is a shell program that makes the sequence of the conversion programs and the

simulator itself a little more manageable. Ernest takes as input a Peabody figure file

and time information provided by the user and produces DYSPAM input files struc-

ture, ndyspadle and jackforce. DYSPAM can then use those files, run a simulation

1. Read t h e o r i g i n a l f i g u r e f i l e and parse it t o get t h e
d a t a s t r u c t u r e s .

2 . S tep through t h e DYSPAM output f i l e t ime s t e p by t ime s t e p .
3 . For each t ime s t e p :

a . Normalize t h e time (necessary f o r animation)
b . S tep through each j o i n t i n o rder as def ined i n t h e f i g u r e f i l e .

i . i d e n t i f y t h e j o i n t type (revo lu te , p r i smat ic , e t c .)
ii. check t o make su re j o i n t s a r e def ined according

t o t h e r e s t r i c t i o n
iii. convert t h e j o i n t angles from t h e DYSPAM f i l e base on t h e

type of j o i n t (assume a l l r o t a t i o n s a r e about p o s i t i v e axes)
i v . change t h e s i gns of those displacements about negat ive axes .

v . Write t o t h e output f i l e (known as an a c t i o n f i l e)
c . next j o i n t

4. next t ime s t e p

Figure 3.6: Pebble: Converting DYSPAM output to Jack input

and produce a set of output files including the "animation" output file called 0ut.e.

Pebble then takes 0ut.e and the original figure file and generates a Jack compatible

animation file (known as an action file). Since the whole process requires only a figure

file as input, it makes sense to hide the internal workings of the sequence by creating a

macro that handles all the other files for the user (see figure 3.7). This is the function

of Mover.

User inputs
simulation Peabody
parameters Figure File 7

\ I +
Ernest

DYSPAM

DYSPAH 0ut.e
output files

t

Hover Pebble Hakesuript

t
L

animation anint! t ion
action file script / file

Jack
(animation
playback)

Figure 3.7: Information Flow of Mover

Chapter 4

The Body Model

In this chapter, I continue the development of the anthropomorphic figure described in

chapter 2. That figure has the shape and size and joints of a human, but few of the of

the properties necessary for a dynamic simulation. It is like a mannequin that can be

posed, but does not move as a human would under the influence of external forces. The

objective of this portion of the project is to add sufficient information to the model

so that the new model would be to the old as a cadaver is to a mannequin. That is, a

model of a body possessing accurate mass and inertia information, and having joints

that behave realistically - with motion limits and elastic and damping properties.

This model then would be ready for the next generation of refinements that could

include motion algorithms and strength information to generate naturalistic human

actions.

4.1 Modeling Joint Properties

One of the most obvious differences between the motion of a human and a human-like

model is the limits on the human's range of motion. That is, elbows of humans bend

easily only through a limited range of angles, whereas a simply hinged figure's joints

have no such limits. Joint limits in JACK are specified as kinematic restrictions

on the positioning of joints both internally, and via user interaction. This feature

prevents the user from placing the figure in a configuration that would be impossible

(or extremely uncomfortable) for a real human. The task here is to extend this idea

to incorporate these joint limits into the Mover simulation system. This amounts to

characterizing the force versus displacement relationships of typical body joints and

applying these relationships within the simulation driver (in our case, DYSPAM) .
In this section, I will describe my scheme to represent passive resistive moments at

joints, and how they are applied to the model.

4.1.1 Active and Passive Joint Properties

Joint limits can be thought of in two ways. One can consider a limit to be the

displacement at which a human can no longer continue to move his own joint in a

particular direction. This kind of limit I will call an "active limitn. It is reasonable

to assume that this kind of limit is easily measured from live subjects and probably

is a function of both the individual's strength and her suppleness.

A joint limit can also be thought of as the displacement at which the resistive forces

of stretched body tissues associated with the joint achieve some arbitrary value. Often

this value corresponds to the displacement at which a live subject would begin to feel

discomfort. This kind of limit I will call a "passive limit" since the limit is assumed

to be determined by measuring a subject that is not consciously attempting to resist

the motion of his joint. Passive limits can be measured on both live subjects and

cadavers (although it is unclear whether results obtained from cadavers are valid for

live subjects). This limit is independent of the subject's strength although strength

may be a predictor of the limit's value.

Put simply, an active limit is the angle to which a human can bend his own joint,

and a passive limit is the angle to which some external force can force the human's

joint.

In the context of setting purely kinematic limits on motion, either active or passive

limits may be employed. The choice would depend on whether the motion is intended

to be generated by the figure itself or by some external impetus. However, in the

context of dynamic simulation, it is not the value of the limits that are important but

the relationship between the joint displacement and the resistive moment associated

with it. The resistance may be either passive or active. Only passive resistances

will be considered here since active resistance implies use of strength and strength

modeling is beyond the scope of this project1.

4.1.2 Selecting a Stiffness Function

To adequately model the relationship between resistive moments and joint displace-

ments, it is necessary to have a method for storing different relationships in a file and

then using that stored information to generate appropriate moment values for given

displacements. There are two ways of accomplishing this: by table or by function.

If a table is used then the whole table of data must be stored and retrieved, and

an interpolation routine would have to be used to determine values between entries

in the table. The values generated could be extremely faithful to the actual data if

enough points are included in the table.

The other strategy is to fit some kind of function to the relationships in advance

and then just store and retrive the parameters of the function. In this case, all the

values would be generated, and how faithful that generated data would be to the

original data would depend on how good the fit was. An advantage of this strategy

is the convenience of having uniform representations with small sets of parameters.

Both strategies have merits, but I use fitted functions rather than tables because

the implementation is slightly simpler, and the fits seem very good. Each set of joint

data gleaned from the biomechanics literature is fitted to a cubic polynomial. The

lit is possible that the addition of a strength model to the passive resistance model described
here might be capable of replicating in simulation active joint limits measured from actual human
subjects.

cubic polynomial is a good choice because it is widely used in crash simulators and

also because its shape can closely match many of the moment-displacement curves in

the literature. Comparisons of the fitted functions and the actual data will appear in

later sections. Data is fit to the polynomial using a least-squares method.

4.1.3 Stiffness Properties of Spherical Joints

Representing the stiffness behavior of spherical joints is particularly difficult since

most empirical studies only examine moment-displacement relationships about each

of the usual coordinate axes with little or no data collected for rotations about oblique

axes. For this reason, the model developed for this class of joint can at best be

considered only a reasonable approximation of actual joint behavior.

Spherical joints are modeled as a directionally weighted average of the influences

of three non-linear spring-dashpot systems, one for each degree of freedom. Each

equation relates a displacement a to a moment M :

Here, the coefficients c define the moment-displacement relationship of the joint

about the different coordinate axes, b, is a viscous damping coefficient and b,,,, is

a coulomb friction element. Typically, these relations are derivable from available

empirical results with different coefficients applying to motion about different axes.

Any change in orientation of one segment relative to another can be expressed as

a single angular displacement cr about some axis A . If the vector A is defined as

a unit vector, then it is possible to devise a weighting scheme that is based on the

2Goldstein [35] has a good description of the method for finding an axis-angle representation from
a set of euler angles.

relationship between the direction of the rotation axis A and the joint coordinate

system. The scheme used in this model is:

Here, M,, M,, M, are the three spring systems described in equations 4.1, 4.2, 4.3,

Ax, A,, and A, are the components of the rotation axis and i , j and k are the p u a l

Cartesian unit vectors.

Notice that when the rotation axis A lies along a coordinate axis, the equation

above reduces to the single component moment equation for that axis. There is no

guarantee that values for rotations about non-coordinate axes will be accurate, but

the estimate seems reasonable.

4.1.4 Stiffness Properties of Revolute Joints

Revolute joints are typically characterized by a region in the range of motion that

is virtually free of influence from joint stiffness. I will call this region the deadzone.

In order to adequately model this behavior I divide the range of motion into three

regions in which the moment-displacement behavior is defined by:

co + qa + c2a2 + c3a3 + bvb + bc,,lsgn(a) - Ma, for a < a[
M = { 0.0 + bvb + bco,,sgn(a) for a1 _< a 5 a, (4.5)

co + c la + c2a2 + c3a3 + b,b + bcoulsgn(a) - Ma, for a > a,

Where a1 and a, are the boundaries of the deadzone.

For revolute joints a is defined as the difference between some rest value cue and

the actual displacement.

1 1 - joint number, axis number

0.0 2 -4365e09 0.0 8 -4168e09 - C ~ , C 1 , C 2 , C3

0.0 0.0 b", bcoul

0.0 0.0 0.0 - ao,a1,au
1 2 joint number, axis number
7.9322608 -4.658809 8.617e09 -5.114e09
0.0 0.0
0.0 0.0 0.0
1 3
0.0 4.3931e07 0.0 -3.098e08
800000 0 .O
0.0 0.0 0.0
9 3
-155000000 845000000 -1240000000 492000000
800000 0.0
0.0 0.0 1.553

Figure 4.1: Data format for specifying non-linear springs

4.1.5 Non-linear Springs: Data Representation

The specification for these formulations for non-linear springs are passed to DYSPAM

via a special input file called optional. The file is so named because either linear or

non-linear springs can currently be specified, with the linear springs being standard

and the non-linear springs optional. Within the file, is a listing for the parameters of

each degree of freedom employing a rotational spring. Springs for spherical joints and

revolute joints are specified in the same format even though some of the parameters

are not used for both. The specifications for a, , a1 and a0 are simply ignored by

the routine that calculates the spring forces for spherical joints. An example of the

format is given in figure 4.1. The units are in the cgs (cm-gram-second) system.

The Prototype Simulation Figure

It is impossible to characterize all humans with a single model. Humans, even "typi-

cal'' ones, vary widely in stature, mass distribution, and suppleness. In this section,

I propose a prototype simulation figure as an example of what a figure specifically

designed for simulation studies might be like. The values used for the figure's body

parameters, such as segment lengths, mass properties and so on are based on typical

anthropometric values, though not necessarily from the same population of subjects.

The model, therefore, should be considered only a template for more accurate, or

carefully collected body parameters.

The prototype figure is a simplified version of the 50th percentile male body

definition used at the University of Pennsylvania Computer Graphics Research Lab.

It has 10 segments and 10 joints with 26 degrees of freedom. The simplification is

necessary to prevent excessive computation time during simulation. The Peabody

definition is given in the appendix. The geometry for the figure consolidates psurfs

from some of the smaller segments into the larger segments thus achieving a figure

that is structurally much simpler than the original, but whose appearance is about

the same. For example, the foot and toe psurfs are consolidated into the lower leg.

The resulsing figure has the following segments:

torso segment - includes head and neck and clavicles

upper arm segments - (left and right)

lower arm segments - (left and right) includes hands

lower torso segment

upper leg segments - (left and right)

lower leg segments - (left and right) includes feet

Along with the reduction in numbers of segment is a reduction in joints. Only the

major joints (elbows, knees, hips, shoulders and waist) remain in this simplified figure.

The following sections discuss the prototype moment-displacement relationships and

the studies upon which they are based.

a Engin's Fit
-Hodifred w/deadzone

Angle (deg)

Figure 4.2: Elbow moment-displacement relationship: Engin's elbow data and proto-
type elbow model

4.2.1 Elbow Springs

The prototype elbow is based on a study by Engin and Chen [19]. Engin measured

the moment-displacement relationship of ten healthy males in elbow extension and

hyperextension. The results of the measurements were then fit to cubic polynomials.

The mean values for the coefficients are used as the prototype values. Figure 4.2

shows the resulting polynomial and the modeled behavior that includes a resistance-

free region. The values for a, and are estimates.

4.2.2 Knee Springs

The prototype knee is based on the technical report accompanying the CAL3D crash

simulator [13]. The moment-displacement relations hip given in that report was ob-

tained by measuring torque values from a Sierra 292-1050 crash dummy. It is unclear

how well such results would correlate with results obtained from humans. A graph of

the knee data from the CAL3D report and the prototype polynomial fit are given in

figure 4.3.

Prototype knee relation

o CALSU data
-Polynomial fit

d -100 0 100 200

Knee m g l t (deg)

Figure 4.3: Knee moment-displacement relationship: CAL3D data and prototype
knee model .

4.2.3 Shoulder Springs

The shoulder of the prototype figure is modeled as a spherical joint. Its stiffness

behavior is based on a study by Engin [20]. This study measured the passive resistive

shoulder moments of several healthy subjects. Moment components about each of the

coordinate axes (see figure 5.5 for definition of axes) were measured as the subjects

arm was forced through its range of motion in each of several directions. As might

be expected, the resistive moment tended to directly oppose the motion although

small components in other directions were also measured. That is, when the arm was

forced through its range of motion about the x axis, the x component of the resistive

moment was the greatest. The same was true for the other axes as well.

For the prototype shoulder, the moment-displacement relationship used for each

degree of freedom is a cubic polynomial fit of the moment component directly opposing

the motion of the arm. The small components about the other axes are ignored.

Figures 4.4, 4.5 , and 4.6 compare the cubic polynomial fits to the data from a

particular subject in Engin's study.

Prototype shoulder relation: x-axis
3 40
1
Y

Adductlon angle (deg)

0 Engin Data
- Polvnomial fit.

Figure 4.4: Shoulder moment-displacement relationship for x axis: Engin subject
data and prototype shoulder model

Prototype shoulder relation: y-axis
n
I 40 -

- - - - -

&
V

I
20 0 Engin Data

5 . -Polynom~al ii t

2
L 10

Arm extension in h e sagittal plane (deg)

Figure 4.5: Shoulder moment-displacement relationship for y axis: Engin subject
data and prototype shoulder model

Prototype shoulder relation: z-axis

Figure 4.6: Shoulder moment-displacement relationship for z
and prototype shoulder model

axis: Engin subject data

HIP ANGLE
Figure 4.7: Illustration of the directional dependence of the passive hip moment.
MHFE is the moment for leg motion in the direction of increasing extension and
MHEF is the moment for increasing flexion.

4.2.4 Hip Springs

The study used as a basis for the prototype hip is by Yoon and Mansour [23]. It

examines motion of the leg parallel to the sagittal plane for several different knee

angles. Some of the muscles involved in hip motion span both the hip and knee

joints, so knee angle can strongly influence the range of motion of the hip (and vice

versa). Yoon and Mansour found a qualitative relationship between knee angle and

passive hip moment but were unable to establish a good quantitative relationship.

Another phenomenon described by Yoon and Mansour is the directional depen-

dence of the hip moment. That is, hip moments for a given displacement depended on

whether the leg was moving in a direction of increasing flexion or increasing extension

(see figure 4.7, adopted from Yoon and Mansour, for an illustration).

The prototype hip models neither the relationship between the hip moment and

the knee angle nor the different functions for movement in flexion and movement in

extension. Of these two shortcomings, the lack of a good two joint model for the

hip is probably more serious. The difference between the increasing extension and

3The greatest moment in hip extension and the least moment in hip flexion occur with maximum
knee flexion. And the least moment in hip extension and the greatest moment in hip flexion occur
with the knee at maximum extension

Prototype hip: y-axis

Hip flexion (deq)
Figure 4.8: Hip moment-displacement relationship for flexion: Yoon and Mansour
subject data and prototype hip model.

the increasing flexion curves was on the order of 5-10 N-m or about 15% of the total

range. The difference between hip moments of a bent leg and a straight leg is much

greater, as much as 45-50 N-m or about 60% of the total range.

It is reasonable to compensate for the directional dependence property by fitting a

function that lies on the median between the increasing extension and the increasing

u y hip moment

20 -

2 Y *

i -20 -

4 0 - I
CI
Y m

-60 - ::
L

i -80 -

1
b

flexion curves. This approximation would result in values that deviated from the

observed values by less than 8%.

Without a reasonable two joint function for the hip moment, though, it is very

9 20 4 60 SO 100

:.-,
--\

'.\
9

-\
\
\

- l * o . , . . l . ~ ~

difficult to account for the dependence on knee angle.

The prototype hip uses the data described by Yoon and Mansour for a particular

subject with knee angle of 15 degrees and movement in the direction of increasing

extension. This particular scenario was chosen arbitrarily. Figure 4.8 compares the

Yoon and Mansour data to the prototype hip model. Moment values for the other de-

grees of freedom (ab/adduction and medial/lateral rotation) are estimates not based

on any empirical study. Figures 4.9 and 4.10 show the relationships used.

Prototype hlp relatlon: x-axls

angle (deg)

Figure 4.9: Prototype hip moment-displacement relationship for abladduction.

Prototype hip relation: z-axis

angle (deg)

Figure 4.10: Prototype hip moment-displacement relationship for medial/lateral ro-
tation.

Prototype waist relation: x-axis

-60 -4 -2G 0 20 40 60

Angle ideg)

moment

Figure 4.11: Prototype waist moment-displacement relationship for flexion parallel
to the frontal plane.

4.2.5 Waist Springs

The waist joint in the prototype figure is an artifice. No such joint exists in the human

figure. The waist joint is simply a device to allow some bending of the torso without

adding the complexity of a curvable spine. The moment-displacement functions used,

therefore, are completely artificial. Graphs of the relations used are given in figures

4.11, 4.12, and 4.13.

Figure 4.12: Prototype waist moment-displacement relationship for flexion parallel
to the sagittal plane.

Prototype waist relation: y-axis

Prototype waist relation: z-axis

Inn .

Waist y moment.

200

* I00 -
i
I 0 -
s * n
C

-100 - i

-200

z waist

-20 0 20 40 60 80
Angle (deg)

\
\

\
\
\ ',
"\ -----,

-\
"\

\ \.

I - .) - . I 1 . .

moment

IVV I I - 1

-10'2 i) 1?0
angle fdeg)

Figure 4.13: Prototype waist moment-displacement relationship for rotation parallel
to the transverse plane.

Chapter 5

Positioning Tools

Computer animation can be created in two ways. It may be generated by algorithm

(with a simulation program, for example), or it can be crafted keyframe by keyframe

by an animator. In the latter case, it is essential that the animator have at his or her

disposal tools that will help position the figure within each keyframe. The human

figure, with its many joints presents a particular challenge for the keyframe animator

as each degree of freedom of each joint must be correctly positioned if the resulting

motion is to seem natural. In this chapter, I describe some of the positioning tools

I developed to aid the animator in creating more natural body positions. Most of

the routines have a more general range of application, though. The center of mass

routines and the geometry-based mass and inertia information generator are general

routines that could be applied to any Peabody figure. The multiple joint positioning

scheme can only be applied to joints with revolute degrees of freedom, but otherwise,

it is independent of the choice of figure. Only the coupled shoulder routine requires

the specific human figure to function properly.

5.1 Locating the Center of Mass

Two positioning tools provide the animator with the location of the center of mass of

a figure. This information is clearly useful in creating some kinds of motions (jumping

and other whole body motions, for example) as well as for the analysis of motions

already created by simulation programs.

The center of mass of an articulated figure changes as the figure moves. These

tools compute the center or mass of the figure and display it either interactively, as

joints are adjusted and the mass distribution of the figure changes, or as a separate

calculation on a static figure. Both routines make use of the special "CM" site and the

"mass" field within the Peabody representation of each segment. The basic algorithm

for both is based on the definition of the center of mass of a collection of bodies:

Here xi is the global position vector of segment i, mi is the mass of segment i, and

qM is the global position of the center of mass of the set of n segments composing

the figure.

Both center of mass routines ask the user to identify a figure either directly, by

selecting it with the mouse, or indirectly, by selecting a joint that is a part of the figure.

Each routine then searches through the data structure and sums over the masses of

each segment and the global positions of each site named "CM" . The equation 5.1 is

applied, and the result is displayed on the screen numerically as well as visually, with

a coordinate frame icon drawn at' the figure's center of mass.

Testing for Figure Stability

One possible application for the calculation of the center of mass is to determine

static support stability of a figure. The simplest case is treated by the "Stability

Test" menu choice in the Center of Mass menu of my application program. This

routine asks the user to select a figure and a set of supporting faces. The program

then calculates the center of mass of the whole figure and determines whether or not

the projection of the center of mass onto the ground plane falls within a support

polygon defined by the convex hull of the projections of the vertices of the supporting

faces onto the ground plane. Figure 5.1 illustrates the method. A message is returned

by the program indicating whether or not the figure is balanced.

projection \ szpporting face
center of mass

Figure 5.1: Determining Static Figure Stability

This stability test is a simple example of how the center of mass routine might

be used by an application program. The test by itself may be somewhat useful when

considering the posture of a human figure carrying a massive load and could be used

iteratively as the posture was adjusted from an unbalanced one to a more stable one.

The test assumes that the only supports available are the ones indicated by the

user and that the only force acting on the figure is gravity. Further, the test assumes

all joints in the figure are rigid.

5.3 Generating Mass and Inertia Data

The routines that calculate the figure center of mass and the stability test both depend

on the existence of the special "CMn site. The "inertia" field of the Peabody figure

description is similarly assumed to exist by the program that converts the figure to

DYSPAM format. This information typically comes from the user, but on occasion

it would be useful if such data could be estimated automatically. For this purpose, a

special routine is included as a choice in the Center of Mass menu.

The routine, identified as "Psurf Mass Info" asks the user to pick a segment with

the mouse and enter its density. It then displays on the screen the center of mass

location, volume, and moment of inertia matrix based on an assumption of uniform

density. Such an assumption is reasonable for many applications. The psurf selected

may be of any shape, concave or convex. The only restriction is that the vertices 'of

each face be ordered in such a way that an observer on the exterior of the solid would

see them sequentially arranged in a counter-clockwise direction. This restriction is

already required by various rendering algorithms

The algorithm for determining mass properties is based on the idea that any solid

with planar faces can be systematically decomposed into a set of tetrahedra. One

method for achieving this decomposition is selecting one vertex as the apex 'of all the

tetrahedra, and then systematically dividing each face into triangles with each triangle

serving as the base of a tetrahedron. Figure 5.2 illustrates how a rectangular prism

might be decomposed. In the scheme I use, some of the tetrahedra are degenerate,

having all four points coplanar. This case is detected by the program and does not

present a problem. Once the decomposition is accomplished, the task of finding mass

properties of the whole solid is reduced to the two tasks of finding the mass properties

of each tetrahedron and using those values to calculate the properties of the whole

solid.

The first property to consider is volume. In a solid of uniform density the volume is

'In this discussion, "vertex" will always refer to a point on the surface of the psurf that is serving
to define the boundary of a face.

2UApex" is the name assigned arbitrarily to one of the 4 corners of a tetrahedron. "Base" is the
set of three corners that are not the apex.

Figure 5.2: Example of decomposing a solid into tetrahedra

proportional to the mass, so if the density is known, determining the volume effectively

determines the mass. In the calculations that follow, the density constant is omitted

with understanding that the results should be multiplied by the density to change

volume properties into mass properties.

The volume of a tetrahedron may be calculated in two ways, via vector products,

or by direct integration. The vector method uses the formula:

al x a2 . a3
Volume =

6 (5 .2)

In this formula the three vectors al, a2,and a3 originate at the apex of the tetrahedron

and extend to each of the vertices in the base in order. Notice that since this formula

contains a vector cross product, the order of the vectors is important. If the vertices

of a face are arranged in a clockwise direction from the vantage point of the apex,

then by the convention described earlier, the apex of the tetrahedron must be on the

interior side of that face. Similarly, if the vertices are arranged counter-clockwise, the

apex is on the exterior. The volume value calculated is positive when the apex sees

the inside of a face and negative when the apex sees the outside. If the apex is itself

a vertex (as in my implementation), all the volumes calculated for a convex solid will

be either zero (for faces including the apex) or some positive value. Concave solids or

solids not simply connected will produce some positive and some negative volumes.

The sum of these volumes is the total volume of the solid.

The other method for finding the volume of an arbitrary tetrahedron, direct in-

tegration, is not immediately necessary since the vector formula (equation 5.2) is

available. However, the method of finding a volume integral for an arbitrary tetra-

hedron will be necessary when calculating the elements of the inertia tensor. For

illustration, I will provide the method in the following discussion.

The difficulty in calculating a volume integral over an arbitrary tetrahedron is in

the setting of the limits of integration. Since the shape may be positioned anywhere

in space and oriented in any way, it is difficult to arrive at a general algorithm that

does not rely on a classification scheme with many cases. A better solution is to find

a way to transform any tetrahedron into a special case where the limits are easy to

set and the integration is straightforward. In my implementation, this simple case

is one where the apex of the tetrahedron is at the origin of a coordinate system and

each of the base vertices lies on a coordinate axis. In this case the volume integral is

clearly given by:

s(1-zit) r(1- yls-zit)
Volume = J t J dx dy dz

0 0
(5.3)

Here, r, s, and t are the x, y and z intercepts, respectively. Figure 5.3 illustrates the

definition of these variables. The solution is easily found to be:

rst
Volume = -

6

It is obvious that for this special case of a tetrahedron with three orthogonal edges,

this result is equivalent to the result given by the vector equation stated previously.

To extend this result to arbitrary tetrahedra, a transformation to a (possibly)

non-orthogonal coordinate system must be made. For convenience, select the three

vectors all a2, and a3 (as defined earlier) as the basis vectors for the new system,

€1, €2 and €3. SO we can say:

Here, i, j and k are the usual Cartesian unit basis vectors.

For convenience let us create a matrix [A] composed of the coefficients in the

above expressions.

Notice that a single position p can be expressed as a composition of scalars times

the basis vectors of either system. That is,

What is needed now is a transformation from the Cartesian space to the non-or-

thogonal space. To find this we make use of the metric tensor [g]. The metric tensor

has nine elements, g'?j. Here are some of its properties:

In these equations, the ei are the contravarient basis vectors. They are defined to be

orthogonal to the covarient basis vectors E; . 6: is the Kronecker delta.

The covarient components in the non-orthogonal system t j on the right hand side

of equation 5.13 are defined as the projections of some vector p on the covarient basis

vectors:

So from Eqs. 5.14, 5.13 and the definitions of the non-orthogonal basis vectors 6

(equations 5.5-5.7) , we can write:

If we call the metric tensor [g] and we recall the coefficient matrix [A], we rewrite

equation 5.15 in matrix form:

Here, p,, p,, p, are the Cartesian components of p.

It can be shown that ([g][A])-' is just [A]*. So a transformation from the non-

orthogonal system to the Cartesian system can also be written:

The differential volume element of this system is given by:

The next step in transforming the volume integral is determining the limits of

integration. The limits are portions of the equation of a plane in intercept form. So

3For a full development of this result see Budiansky [36]

5 1

transforming the limits is equivalent to transforming that plane. In Cartesian space,

the base plane of the tetrahedron is defined by the three points located by the vect.ors

al , a2, a3 and the equation may be given by:

Here, the b's are constants.

The limits of integration in the non-orthogonal system are found by making the

substitution for the p's given in 5.17 resulting in the transformed equation for the

base plane:

(h a l l + b2a12 + bsa13)t1 + (ha21 + b2a22 + b3a23)t2 + (ha31 + b2a32 + b3a33)t3 + b4 = 0

(5.20)

A final manipulation places this equation in intercept form:

E l + ? + ? - - - - 1
r s t

r, s and t are the transformed intercept values and can easily be found from equation

5.20. Finally, the integral given in equation 5.3 can be written and calculated for the

non-ort hogonal case:

Det [gl Jt / s (1 - C 3 / f)
volume = J-'

0 0
dtl dt2 dt3 (5.22)

Volume = Ja
The same approach can be used to calculate center of mass and moments and

products of inertia of arbitrary tetrahedra. In the case of the x location of center of

mass, the Cartesian volume integral (for the special case) is :

The and T equations are similar. To determine the x location of the center of mass

for an arbitrary tetrahedron, the limits are the same as for the volume calculation,

but the integrand must be transformed. This transformation is very straight forward

and yields:

And of course, the other coordinates of the center of mass can be found in the same

way. This location is the center of mass relative to the apex (origin of the non-

orthogonal coordinate system). Since in my implementation, all of the tetrahedra

composing the solid have the same apex, finding the center of mass of the whole solid is

simply a matter of performing a mass (or volume) weighted average over the collection

of tetrahedra and then adjusting the result to compensate for the displacement of the

apex vertex from the origin. Continuing the calculation for ?i?

- CZ1 Ti';Volumei
xtOtal = (X coord of apex) + Total Volume

Elements of the inertia tensor can be found in the same way. The evaluation of the

integrals in the transformed space, while straight forward, are extremely 1engthy.The

symbolic math program MACSYMA was used to both verify hand calculations and

to generate evaluations of these integrals. Basically, the inertia tensor is composed of

two kinds of terms - diagonal terms, and off-diagonal terms. A sample of an initial

integral and its solution for each kind is given below.

The inertia tensor in its usual form is:

J .f J (y2 + z2)dzdydz - $ J J xy dxdydz - J J $ xz dxdydz
- J J J yx dxdydz J J J (x2 + z2) dxdydz - J J J yz dxdydz
- J J J zx dzdydz - .f J J zy dxdydz J J J (x2 + z2) dxdydz

A typical diagonal term (the first element (1,l))yields:

A typical off-diagonal element (element (2,l)) is given by:

The results for each tetrahedron are relative to the local origin (i.e. the apex vertex).

To find the results relative to the center of mass of the solid, we first find the total

inertial terms relative to the apex by adding up the contributions of each tetrahedron:

The ? are elements of the inertia matrix for the whole solid but relative to the apex

vertex.

The next step is to apply the parallel axis theorem to find the corresponding

inertia values relative to the center of mass. For diagonal terms the formula is:

-
I, = ?, - (Total volume)(g2 + z2)

And for the off-diagonal term$ the formula is:

- *

I, = I,, - (Total volume)(@)

Where the 5,g and 2 indicate the location of the center of mass relative to the apex

vertex.

5.4 Parametric Shoulder Positioning

The shoulder "joint" is actually a system of several articulations stabilized and con-

trolled by 13 muscles and 3 major bones. Although our model simplifies this complex

system into a chain of two segments (clavicle and humerus) with 5 degrees of freedom

(3 at the glenohumeral "joint" and 2 at the sternoclavicular "joint") specifying the

position of the upper arm and clavicle relative to the torso remains a particularly

challenging task. It is inconvenient to specify 5 degrees of freedom merely to position

the arm interactively, and with the user free to chose any values for the 5 angles,

many unfeasible arm positions may result.

To assist the user in positioning the arm, I developed an interactive positioning

scheme in which the user specifies, in spherical coordinates, the position of a point

on the humerus, and the program continuously calculates and sets appropriate values

for clavicle elevation and abduction and humerus flexion/extension, abladduction

and medial-lateral rotation. In this way, the user can easily achieve approximately

the shoulder configuration that he seeks with a single command.

Such a routine depends on the availabilty of simple relationships between the 5

degrees of freedom being set and the two that the user specifies. Inman [20] provides

a thorough description of the anatomy of the shoulder complex and the relationships

between the various structures that participate in shoulder motion. In particular, In-

man provides a graph based on clinical observations showing the relationship between

humerus elevation (both in abduction and forward flexion) and clavicle elevation. A

reproduction of this graph appears in figure 5.4. Notice that arm elevation is not

equivalent to humerus elevation since humerus elevation is modeled as relative to the

clavicle and not the torso. This suggests that arm elevation (defined relative to the

torso) is actually the sum of contributions from both the sternoclavicular joint and

the glenohumeral joint. The graph in figure 5.4 provides the sternoclavicular con-

tribution for a given elevation, so the contribution at the glenohumeral joint is the

difference.

The shoulder positioning routine uses the two values representing the "latitude"

4 and the "longitude" 8 of the elbow to determine the orientations of the clavicle and

humerus. 8 is zero with the arm pointing straight in front of the figure and increases

as the arm moves to the figure's left. 4 is zero when the arm is pointing straight

overhead and increases as the arm is lowered (this is opposite to the definition of

increasing arm elevation). With these definitions established, we can now define the

formula relating 4 and 6' to the various joint angles.

For the left shoulder:

elevation angle = a,, = 180 - 4 (5.39)

abduction angle = a,, = 90 - 8 (5.40)

clavicle elevation due to motion parallel to frontal plane = PI (5.41)

0.2514ae, + 91.076 for 0 5 a,, 5 131.4
81 = { -0.035ae, + 128.7 for a,, > 131.4 (5.42)

clavicle elevation due to motion parallel to sagittal plane = P2 (5.43)

0.21066ae, + 92.348 for 0 5 a,, 5 130.0
= { 120.0 for a,, > 130.0 (5.44)

clavicle angle 1 = cos(aab)pl + (1 - c o s (c ~ ~ ~)) ~ ~ - 90 (5.45)

clavicle angle 2 = 0.2aa, (5.46)

humerus angle 1 = a,, - clavicle angle 1 (5.47)

humerus angle 2 = crab - clavicle angle 2 (5.45)

In these equations, the a's are upper arm angles as measured relative to the torso,

and the 2 p's are "clavicle" angles as defined in Inman's graph (figure 5.4). The joint

angles themselves are defined as shown in figure 5.5. All the equations use degrees as

the measure of the angles.

Equations 5.42 and 5.44 were adopted from a linear approximation of Inman's

graph. The other clavicle angle relation was an estimate. It is important to note that

even Inman's data should be considered merely a representative case rather than a

universally valid relationship. Inman was concerned with qualitative observations

more than quantitative relations hips.

The above formulae establish 4 of the 5 joint displacements required to uniquely

position the upper arm system. The fifth displacement is medial-lateral rotation of

the humerus, or rotation about the long axis of the upper arm. This angle of rotation

or "twist" could be determined in any of a number of ways. The simplest would be

to let the angle of twist be zero. That is, whatever medial-lateral rotation was the

result of the sequential rotations in abduction and elevation would be considered the

default. This selection of a default angle of twist causes some difficulty at the poles of

the sphere of motion, though. When the arm is pointing straight up, the twist could

have a variety of different default values. In this case, the twist would depend on the

path the arm to arrive at the pole, rather than being some fixed certain value at the

pole regardless of the route used to arrive there.

A perhaps more restrictive scheme would be to establish a standard (or default)

twist angle for every point in the sphere of motion regardless of how the arm arrived

there. Such a scheme is used in Labanotation (a variety of dance notation) and

was suggested by Badler, O'Rourke and Kaufman [37] for this particular positioning

problem.

This scheme is best described by simply listing the equations that define it. Below,

4 and 0 are the coordinates described earlier, and + is the additional twist imposed

on the humerus after rotations of 8 and then r$ have been applied in sequence about

their appropriate axes. Looking down the arm, the rotation angle + increases in a

clockwise direction for the right arm and a counter clockwise direction for the left

arm. For the left arm, the formulae are:

180 - e(i - &) -9018190 o < # 1 9 0
-180(1 - &) + (4 - 270)(&) -90 4 0 5 90 90 4 4 < 180
(0 - 180)(1 + 9) 90 5 f3 1 270 90 5 4 5 180
2(0 - 180) & - (180 + 8) (1 - &) 9 0 4 0 < 1 8 0 0 5 4 5 9 0
(180 - 8)(1 - g) + sgn(225 - 8)360& 180 5 8 5 270 0 4 # 4 90

(5.49)

The twist angle in this scheme varies continuously over the whole sphere of motion

except for a seam that occurs behind the figure's back in a physically unreachable

region. This scheme can be thought of as producing a "natural" rotation for the arm

throughout its reachable space. This would be the rotation you would choose without

thinking if instructed to point your hand in some direction. When the hand is directly

overhead, the twist is such that the thumb (with no wrist or forearm rotation) would

point behind the figure. When the hand is straight ahead of the figure, the thumb

would point straight up. Of course this choice of preferred angle of twist is by no

means unique, but with its use the user can be assured of remaining within the range

of physically viable arm configurations.

In this discussion, all the formulae have been expressed for the left shoulder and

its joint angle conventions. The formulae, are, of course, about the same for the right

arm with the differences mostly being a matter of sign conventions.

This shoulder positioning tool provides a new level of detail to the motion of the

58

shoulder without further encumbering the user. The parametrically related shoulder

joints reflect the moving center of rotation that is an important characteristic of the

human shoulder. This would be lost if a simple ball joint is used as the model.

5.5 Multiple Interactive Joint Positioning

The idea of linking the motion of one joint or one degree of freedom to another can be

expanded to facilitate the positioning of whole sets of joints if a specific relationship

between their joint angles is known. A simple application of this idea is symmetrical

arm or leg motion. If it is known that both elbows will always have the same or nearly

the same angle, it should not be necessary to set each of them separately. Instead,

the user would specify the relationship between the two joints and then adjust one of

them with the angle of the other being set automatically.

The interactive linked motion routine I developed allows the user to specify other

joints as being proportionally related to a single controlling joint. This will allow

various kinds of symmetric and anti-symmetric relationships to be created. The user

specifies the number of joints to be linked to the controlling joint and the factor c

that will be the multiplier for the angles of that joint. The relationships for a joint i

with three degrees of freedom can be stated:

Here, c is a multiplier specified by the user, ei0 is the zeroth joint angle of joint i, and

9conlrolo is the zeroth joint angle of the designated controlling joint. If the constant c is

chosen to be 1.0, then the dependent joint will be set so that it has exactly the same

joint angles as the controlling joint. Up to 10 dependent joints can chosen. Also, the

values of the constants are stored in static memory, so the next time the routine is

invoked, the same relationship may be used without having to specify it again.

This algorithm is a little primitive as the parameterization really should be by

degree of freedom rather than by joint. This is particularly apparent when one at-

tempts to use the routine on joints with dissimilar numbers of degrees of freedom,

or on joints that are symmetrically positioned within the figure (like left and right

shoulders) but whose degrees of freedom are not defined symmetrically.

Nevertheless, the concept of a user specified relationship between joints that can

be modified and used interactively is a powerful one. One could easily imagine how

this idea could be extended to affect the geometry of the psurf or any other values in

the graphics environment.

Figure 5.3: Calculating a Volume Integral: A Special Case

CLAWCL7LA.R A N G L E

-

---I- - -

--- Tiorward Flexion

1 0 90 30 40 50 60 70 80 4 0 100 110 110 IS0 W O I S 0 1 6 0 l'tOmO
Degree of EIcvafio~ of fhs A r m

Figure 5.4: Inman's graph showing relation between clavicle and humerus elevations

Chapter 6

Conclusion

The objective of this project was to improve realism and facilitate interaction in

computer modeled human motion. As the goal has two parts, so does the project.

The first part, improving the facility for dynamic simulation, and developing a model

to be used with it was only partly successful. Mover, the dynamics interface for the

Jack environment, is functional but not convenient. Human motion depends heavily

on the active, conscious movements of the individual. Such movements are especially

hard to develop with a preprocessor. Too much time is spent waiting for results that

could often be better spent designing a motion keyframe by keyframe.

Ideally, dynamic simulation should be applied interactively. A situation would

be modeled and as the simulation progressed, the user could change the parameters

of the simulation and so could have some better measure of control of the resulting

motion. This is quite different from the crash-test family of simulators that includes

Mover.

In defense of the Mover system, it is well suited for generating motions that are

strongly governed by external forces and moments. And, if it is some day coupled

with a strength model, its range of applications could expand beyond being mostly a

crash simulator to include active tasks requiring strength and planning.

The development of the body model to accompany Mover was fairly sucessful.

The biomechanics literature contained a large enough body of studies that I feel

confident the models for joint stiffness which I present are adequate for most simple

body models. The only major weakness of the joint model is mentioned in chapter

4. Muscles that span more than one joint have a profound impact on limb flexibility

and active strength. Any future models should accommodate this.

The prototype figure suggested at the end of chapter 4 clearly suffers from the lack

of a sufficient body of data. Many values in the prototype were merely estimates and

at best, the prototype is a "Frankenstein's monster" with data for different parameters

taken from different experimental subjects (some of whom were cadavers). As I

stressed in chapter 4, the prototype is only meant to serve as reasonable template,

and in that context, it is successful.

The other part of this project, improving the interactive tools was somewhat more

successful. The interactive center of mass routine and coupled shoulder positioning

algorithm both suggest a trend towards increasing the level of realism in the devel-

opment of interactive positioning tools. I am most encouraged by the linked motion

algorithm which suggests a vast number applications that could link on variable in

the graphics environment to another. Figures could flip light switches and influence

the lighting model. Body segments could change shape as a function of joint angle

thus mimicking the flexing of muscles. Many such applications could grow out of this

simple idea.

The automatic mass and inertia generator is surprisingly robust. With the single

restriction on the ordering of polygon vertices and the assumption of constant density,

the inertia of any object that can be represented with a psurf can be calculated.

Objects don't even have to be simply connected.

Future projects that can build on this work are:

Modify the Mover system to handle trajectory motion problems.

Add collision detection and modeling as either an interactive tool, or a part of
the dynamics preprocessor.

Expand on the idea of adding realism by linking the behavior of some things to
the behavior of others.

Collect a coherent set of joint stiffness data from a significant population and
run a verification study on the joint models.

Bibliography

[I] Schaffa, R.B., "Dynamic Analysis of Spatiil Mechanisms", Ph.D. Dissertation,

Department of Mechanical Engineering and Applied Mechanics, The University

of Pennsylvania (1984).

[2] Paul, B., "Program DYSPAMn in Multibody Systems Handbook Springer

Verlag (to be published).

[3] Dvir, Z. and Berme, N., "The Shoulder Complex in Elevation of the Arm: A

Mechanism Approach", Journal of Biomechanics, Vol. 11, 1978, pp. 219-225.

[4] King, A.I. and Chou, C.C., "Mathematical Modelling, Simulation and Experi-

mental Testing of Biomechanical System Crash Response," J . of Biomechanics,

Vol. 9, 1976, pp. 301-317.

[5] Prasad, P., "An Overview of Major Occupant Simulation Models," SAE Paper

(?) No. 840855.

[6] Robbins, D .H., "Three-dimensional Simulation of Advanced Automotive Re-

straint Systems," Paper No. 700421, 1970 Int. Automotive Safety Conf. Com-

pendium. P-30, SAE.

[7] Robbins, D.H., Bennett, Jr., R.O. and Bowman, B.M., "User-oriented Mathe-

matical Crash Victim Simulator," Proc. 16th Stapp Car Crash Conference, pp

128-148, SAE, 1972.

[8] Young, R.D., "A Three-dimensional Mathematical Model of an Automobile Pas-

senger," Texas Transportation Inst. Res. Report, pp. 140-142, 1970.

[9] Furusho, H. and Yokoya, K., "Analysis of Occupant's Movements in Head-on

Collision," Trans. Soc. Automotive Engr. Japan, Vol. 1, 1970, pp. 145-155.

[lo] Huston, R.L., Hessel, R. and Passerello, C., "A Three- dimensional Vehicle-man

Model of Collision and High Acceleration Studies," Paper No. 740275. Society

of Automotive Engineers Inc. 1974.

[ll] Bartz, J.A., "A Three-dimensional Computer Simulation of a Motor Vehicle

Crash Victim, Phase 1 - Development of the Computer Program," Calspan report

NO. VJ-2978-V-1, July 1971.

[12] Bartz, J . A. and Butler, F. E., "A Three-dimensional Computer Simulation of a

Motor Vehicle Crash Victim, Phase 2 - Validation Study of the Model," Calspan

Report No. VJ-2978-V-2, December 1972.

[13] Fleck, J.T., Butler, F.E. and Vogel, S.L., "An Improved Three-dimensional Com-

puter Simulation of Motor Vehicle Crash Victims," Volumes I-IV, Report Nos.

DOT-HS-801507 thru -510, 1974.

[14] Fleck, J. T. and Butler, F.E., "Development of an Improved Computer Model of

the Human Body and Extremity Dynamics," Report No. AMRL-TR-75-14, July

1975.

[15] Wismans, J., Maltha, J.,Melvin, J . W. and Stalnaker, R. L., "Child Restraint

Evaluation by Experimental and Mathematical Simulation," SAE 7910 17, Proc.

23rd. Stapp Car Crash Conference,SAE, Warrendale, Pennsylvania, 1979.

[16] Wismans, J.,Maltha, J., Van Wijk, J . J. and Janssen, E. G., "MADYhIO -

A Crash Victim Simulation Computer Program for Biomechanical Research

and Optimization of Designs for Impact Injury Prevention," AG ARD-meeting,

Cologne, Germany, April, 1982.

[17] King, A. I., "A Review of Biomechanical Models," J . of Biomechanical Engi-

neering, Vol. 106, 1984, pp.97-104.

[18] Onyshko, S., and Winter, D.A., "A Mathematical Model for the Dynamics of

Human Locomotion," J. of Biomechanics, Vol. 13, 1980, pp. 361-368.

[19] Engin, A. E., "Kinematic and Passive Resistive Properties of the Human Elbow

Complex," J. of Biomechanical Engineering, Vo1.109, 1987, pp. 318-323.

[20] Inman, V. T., Saunders, J. B. and Abbott, L. C., "Observations on the Function

of the Shoulder Joint," J. Bone Jt. Surg., Vol. 26a, 1944, pp. 1-30.

[21] Engin, A. E., "On the Biomechanics of the Shoulder Complex," J. Biomechanics,

Vol. 13, 1980, pp. 575-590.

[22] Engin, A. E., "On the Damping Properties of the Shoulder Complex," J. Biome-

chanical Engineering, Vol. 106, 1984, pp. 360-363.

[23] Yoon, Y. S., Mansour, J. M., "The Passive Elastic Moment a t the Hip," J.

Biomechanics Vol. 15, 1982, pp. 905-910.

[24] Blankevoort, L., Huiskes, R. and De Lange, A., "The Envelope of Passive Knee

Joint Motion," J. Biomechanics, Vol. 9, 1988, pp. 705-720.

[25] Kinzel, G.L. and Gukowski, L.J., "Joint Models, Degrees of Freedom and

Anatomical Motion Measurement," J. of Biomechanical Engineering, Vol. 105,

1983, pp. 55-62.

[26] Grood, E.S. and Suntay, W.J., "A Joint Coordinate System for the Clinical

Description of Three Dimensional Motions: Application to the Knee," J. Biome-

chanical Engineering, Vol. 105, 1983, pp. 136-144.

[27] Dooley, M., "Anthropometric Modeling Programs - A Survey," IEEE Computer

Graphics and Applications, Vol. 2, no. 9, 1982, pp. 17-25.

[28] Wilmert, K.D., "Visualizing Human Body Motion Simulations," IEEE Computer

Graphics and Applications, Vol. 2, no. 9, 1982, pp. 35-38.

[29] Wilhelms, J., "Using Dynamic Analysis for Realistic Animation of Articulated

Bodies," IEEE Computer Graphics and Applications, Vol. 7, no. 6, 1987, pp.

12-27.

[30] Girard, M., "Interactive Design of 3D Computer-animated Legged Animal Mo-

tion," IEEE Computer Graphics and Applications, Vol. 7, no. 6, 1987, pp. 39-51.

[31] Grosso, M.R., Quach, R.D. and Badler, N. I., "Anthropometry for Computer

Animated Human Figures," Technical Report, Department of Computer and

Information Science,The University of Pennsylvania (1989).

[32] Phillips, C.B., "Programming with Jack", unpublished manual, University of

Pennsylvania Dept . of Computer and Information Sciences, 1988.

[33] Phillips, C.B., and Badler, N.I., "Jack: A Toolkit for Manipulating Articulated

Figures", Proceedings of the ACM SIGGRAPH Symposium on User Interface

Software, Banff, Alberta, Canada, 1988.

[34] Strassberg, E.R., "User Interface and Animation Processor for Dynamics of Spa-

tial Mechanisms Simulated via DYSPAM", M.S.E Thesis, University of Pennsyl-

vania Department of Mechanical Engineering and Applied Mechanics, 1989.

[35] Goldstein, H., Chapter 4 and Appendix B of Classical Mechanics, Second

Edition, Addison- Wesley, 1980.

[36] Budiansky, B. , Chapter 4 of Handbook of Applied Mathematics Pearson,

C.E. ed. VanNostrand Rienhold Company, 1974.

[37] Badler, N.I., O'Rourke, J., and Kaufman, B., "Special Problems in Human Move-

ment Simulation," A CM Computer Graphics, 1980.

Appendix A

Figure Definition for the
Prototype Body

figure (
attribute attribute3 (

rgb = (1.00,0.37,0.00);
3
attribute attribute11 (

rgb = (1.00,0.37,0.00);
3
attribute attribute13 {

rgb = (1.00,0.37,0.00);
3
attribute attribute15 {

rgb = (1.00,0.37,0.00);
3
segment right-lower-leg (

psurf = "ecalf.pssU;
attribute = attribute3;
mass = 4000.778;
inertia = (1199091.8750,1453679.875Oa29209O.i563);
site proximal->location = trans(O.OOcm,O.OOcmaO.OOcm);
site distal->location = trans(0.00cm,0.00cm,36.80cm);
site CM->location = trans(2.6lcm,0.0lcm,23.73cm);

3
segment lef t-lower-leg (

psurf = "ecalf . pss" ;
attribute = attribute3;
mass = 4000.77g;
inertia = (1199091.8750,1453679.8750,292090.1563);
site proximal->location = trans(0.00cm,0.00cm,O.OOcm);
site distal->location = trans(0.00cm,0.00cm,36.80cm);
site CM->location = trans(2.6lcm,0.0lcm,23.73cm);

3
segment right-upper-leg {

psurf = "eup1eg.p~~" ;
attribute = attribute3;
mass = 8205.55g;

inertia = (992266.1875,1013080.3125,156199.0156);
site proximal->location = trans(0.00cm,0.00cm,O.00cm);
site distal ->location = trans(0.00cm,0.00cm,43.40cm);
3
site CM->location = trans(0.00cm,0.00cm,18.07cm);

3
segment left-upper-leg (

psurf = "eupleg.pssl' ;
attribute = attribute3;
mass = 8205.55g;
inertia = (992266.1875,1013080.3125,156199.0156);
site proximal->location = trans(0.00cm,0.00cm,O.O0cm);
site distal->location = trans(0.00cm,0.00cm,43.40cm);
site CM->location = trans(0.00cm,0.OOcm,18.07cm);

3
segment right-lower-arm (

psurf = "elowarm. pss" ;
attribute = (attribute3, attributell) ;
mass = 1815.81g;
inertia = (365474.6875,361975.3750,13135.1484);
site proximal->location = trans(0.00cm,0.00cm,O.OOcm);
site distal->location = trans(0.00cm,0.00cm,28.8Ocm);
site CM->location = trans(-0.01cm,0.00cm,17.51cm);

3
segment left-lower-arm (

psurf = "elowarm. pss" ;
attribute = (attribute3 ,attribute13) ;
mass = 1815.81g;
inertia = (365474.6875,361975.3750,13135.1484);
site proximal->location = trans(0.00cm,0.00cm,O.OOcm);
site distal->location = trans(0.00cm,0.00cm,28.80cm);
site CM->location = trans(-0.01cm,0.00cm,17.51cm);

3
segment right-upper-arm (

psurf = I' euparm . pss" ;
attribute = attribute3;
mass = 2297.406;
inertia = (165567.2500,171408,9688,19422.7441);
site proximal->location = trans(0.00cm,0.00cm,O.OOcm);
site distal->location = trans(0.00cm,0.00cm,33.40cm);
site CM->location = trans(-0.03cm,0.02cm,13.99cm);

3
segment left-upper-arm (

psurf = "euparm. pss" ;
attribute = attribute3;
mass = 2297.40g;
inertia = (165567.2500,171408.9688,19422.7441) ;
site proximal->location = trans(0.00cm,0.00cm,O.OOcm);
site distal->location = trans(0.00cm,0.00cm,33.40cm);
site CM->location = trans(-0.03cm,0.02cm,13.99cm);

3
segment lower-torso (

psurf = "eltorso. pss" ;
attribute = (attribute3, attribute13) ;
mass = 3469.32g;
inertia = (232921.1406,124958.4453,303026.2500);
site proximal->location = trans(0.00cm,0.00cm,O.0Ocm);
site distal->location = trans(0.00cm,0.00cm,13.10cm);
site rlateral->location = xyz(-180.00degy0.00degJ0.00d~g)

* trans(O.OOcm,-6.12cmJ0.00cm);
site llateral->location = xyz(-180.00deg,O. 00deg , 0. OOdeg)

* trans(0.00cm,6.12cm,O.00cm);
site CM->location = trans(0.00cm,0.00cm,6.17cm);

3
segment center-torso (

psurf = "echest . pssll ;
attribute = (attribute3 ,attribute15) ;
mass = 13169.608;
inertia = (9540146.0000,9199660.0000,1203154.8750);
site proximal->location = trans(0.00cm,0.00cm,O.OOcm);
site distal->location = trans(0.00cm,0.00cm,47.60cm);
site utproximal->location = trans(0.00cm,0.00cm,47.60cm);
site utdistal->location = trans(0.00cm,0.00cm,47.60cm);
site utleft->location = xyz(-90. OOdeg, 0. OOdeg, 0.00deg)

* trans(0.00cm,0.00cm,47.60cm);
site utright->location = xyz(90. OOdeg, 0. OOdeg, 0. OOdeg)

* trans(0.00cm,0.00cm,47.60cm);
site rstdistal->location = xyz(90.00degJ0.00deg,0.00deg)

* trans(0.00cm,0.00cm,50.00cm);
site lstdistal->location = xyz(-90. OOdegyO. OOdeg, 0.00deg)

* trans(0.00cm,0.00cm,50.00cm);
site rcl-lateral->location = xyz(-180.00deg,0.00deg,0.00deg)

* trans(0.00cm,-17.20cm,50.00cm);
site lc1,lateral->location = xyz(-180.00deg,O. 00deg,0. OOdeg)

* trans(0.00cm,17.20cmy50.00cm);
site CM->location = trans(0.09cm,-0.08cm,33.76cm);

3
segment body-root (

mass = -1.OOg;
site distal->location = xyz(-90.00deg,0.00deg,-90.00deg)

* trans(0.00cm,0.00cm,O.OOcm);
site left->location = xyz(-90.00deg,0.00deg,0.00deg)

* trans (0. OOcm, 0. OOcm, 0 .OOcm) ;
site right->location = xyz(90.00deg,0.OOdeg,O.OOdeg)

* trans (0. OOcm, 0. OOcm, 0 .OOcm) ;
site floor->location = xyz(45.00deg,90.00deg,45.OOdeg)

* trans(0.00cm,0.00cm,-94.1Ocm);
site base->location = trans(0.00cm,-94.10cm,0.00cm);

3
joint waist {

connect lower,torso.distal to center~torso.proxima1;
type = R(0.00,0.00,1.00)*R(1.00,0.00,0+00)

*R(0.00,1.00,0.00);
stiff = (1.00,1.00,1.00);

3
joint root-ltorso (

connect body-root.dista1 to lower~torso.proximal;
type = R(l.00,0.00,0.00)*R(0.00,1.00,0.00)

*R(0.00,0.00,1.00);
J
joint left-shoulder (

connect center,torso.lcl,lateral to left,upper,arm.proximal;
type = R(0.00,0.00,1.00)*R(1.00,0.00,0.00)

*R(0.00,1.00,0.00);
stiff = (1.00,1.00,1.00);

3
joint right-shoulder (

connect center,torso.rcl,lateral to right-upper-arm.proxima1;
type = R(0.00,0.00,-I.OO)*R(-1.00,0.00,0.00)

*R(0.00,1.00,0.00);
stiff = (1.00,1.00,1.00);

3
joint right-elbow (

connect right-upper-arm.dista1 to right,lower,arm.proximal;
type = R(0.00,1.00,0.00);
stiff = (1.00);

3
joint left-elbow (

connect left-upper-arm.dista1 to left,lower,arm.proximal;
type = R(0.00,1.00,0.00);
stiff = (1.00) ;

J
joint right-hip-j oint (

connect lower,torso.rlateral to right,upper,leg.proximal;
type = R(0.00,0.00,-1.00)*R(-l.OO,O.OO,O.OO)

*R(0.00,1.00,0.00);
stiff = (1.00,1.00,1.00);

3
joint left-hip-joint (

connect lower,torso.llateral to left,upper,leg.proximal;
type = R(0.00,0.00,1.00)*R(1.00,0.00,0.00)

*R(0.00,1.00,0.00);
stiff = (1.00,1.00,1.00);

3
joint right-knee (

connect right-upper-leg.dista1 to right-lower-leg.proxima1;
type = R(O.OO,-1.00,0.00);
stiff = (1.00);

3
joint left-knee (

connect left-upper-leg.dista1 to left-lower,leg.proximal;
type = R(O.OO,-1.00,0.00);
stiff = (1.00);

3
root = body,root.base;

3

"Optional" DY SPAM input file for
Prototype Figure

	Software Tools for Dynamic and Kinematic Modeling of Human Emotion
	Recommended Citation

	Software Tools for Dynamic and Kinematic Modeling of Human Emotion
	Abstract
	Comments

	tmp.1194200818.pdf.KhkLK

