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Abstract 

Human body modeling has been undertaken in both the fields of biomechanics and 
computer graphics. Historically, each approach has lacked some of the advantages of 
the the other. This project further develops one model used for human task studies 
and computer animation by improving motion realism and facilitating user interaction 
with the model. Realism is provided by an interface that links a general purpose 
mechanism simulator with the JACK graphics environment and a prototype human 
figure with realistic mass and joint properties based on studies in the biomechanics 
literature. Improved interaction is achieved through software tools which can position 
several of the figures joints simultaneously. Also, a tool is developed for calculating 
the mass and inertia properties of an arbitrary polyhedron based on its geometry and 
an assumption of constant density. Finally, suggestions are offered for future study. 
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Chapter 1, 

Introduction 

Human motion modeling is a useful, important part of predicting how individuals will 

interact with their surroundings. In the field of human factors engineering, human 

modeling is used to understand how an operator would accomplish some task and to 

design work stations and tasks that enhance the operator's effectiveness. Because it, 

is often impossible or infeasible to create realistic prototype environments to study 

operator performance, a computer model of the environment and the humans who will 

work there is essential. Such a model would enable designers and mission developers 

to  rehearse a mission within the computer generated environment and make refine- 

ments to  both the operator's station and the mission task itself. Several iterations 

of planning, testing and redesign would then result in a more functional environment 

and a more effective mission plan. 

Consider planning a task for a space misson. In this application, the micro-gravity 

environment and a restrictive space suit can greatly complicate the task. Given the 

brevity and expense of even near space missions, the value of realistic, interactive 

planning tools is obvious. 

Human modeling is also important when studying hazardous or potent.ially haz- 

ardous situations. Historically, much work has been done to predict the motion of 

humans in sudden acceleration situations, as in a car crash or an airplane ejection 



seat. Applications of computer modeling for risk assessment need not be limited to 

these two cases, however. One can imagine situations which are so novel that the 

danger to a human participant is unclear. In these situations, computer modeling 

could help estimate the risk. 

In this thesis, I describe several approaches to human modeling using interactive 

computer graphics. In particular, I focus on some of the basic dynamic and kinematic 

properties of the human figure, and how they might be used to improve animation 

realism and facilitate user interaction. 

Chapter 2 is a brief review of some of the work that has been done in human 

modeling in the fields of biomechanics and computer science. The existing anthropo- 

metric models that are the starting point of this thesis are described as well as some 

of the key body modeling papers that will be the bases of my joint models. 

Chapter 3 describes a facility called Mover for simulating and animating the mo- 

tion of a human figure under the influence of simple systems of forces and moments. 

The program at the heart of this facility is a modified version of DYSPAM [I, 21, a 

general purpose simulator for spatial mechanisms developed by R. Schaffa and B. Paul 

of the Department of Mechanical Engineering and Applied Mechanics, University of 

Pennsylvania1. This facility takes input consisting of a figure and force information, 

and generates an animation sequence. 

For such a simulation to yield realistic motions, realistic input is required. Unfor- 

tunately, typical human motions like walking, lifting objects and other such actions 

are complex. And the necessary force and moment specifications required to achieve 

a natural looking motion may be surprisingly elusive. 

In chapter 4, I focus on the other part of the simulation input - the body model. In 

particular, I present a simplified figure description designed especially for simulation 

'DYSPAM is available through the Department of Mechanical Engineering and Applied hiechan- 
ics a t  the University of Pennsylvania, Philadelphia, Pennsylvania 19104. For further information 
contact Dr. Burton Paul 



purposes and a model for figure joint properties based on studies in the biomechanics 

literature. My objective is to provide a reasonable method for modeling the properties 

of the human figure that could be used in conjunction with any general purpose 

simulator. I provide a prototype figure as an example with the intention that its 

"typical" joint stiffness and inertia parameters will be replaced by data collected 

from specific individuals when such data becomes available. 

In addition to simulation, user interaction with computer models is important 

when planning or designing some human task. Because physically basecl motion 

algorithms are so difficult to develop, it is often convenient for the user to directly 

position the figure with an interactive user interface. When this technique is used, 

the model's kinematic properities should be as realistic as possible. In chapter 5 ,  

I describe some algorithms for interactively positioning the shoulder complex. The 

shoulder, which is often casually thought of as a single ball joint, is actually a set 

of several bones and joints that form a fairly complicated spatial mechanism that 

is difficult to model as an assembly of conventional kinematic pairs (see Dvir and 

Berme [3] for a planar model). I model the kinematic behavior of this "joint" with a 

positioning algorithm that reflects the dependence of the the motion of the humerus 

on that of the clavicle. The algorithm is based on studies of shoulder motion and 

concepts from dance notation. 

Extending the idea of making one joint's position dependent on another's, I also 

develop a general routine for establishing arbitrary linear relationships between sets 

of joint displacements. This notion of parametric relationships between graphical 

objects, while simple to implement, has many powerful possible applications. 

Another set of tools, for calculating and interactively displaying mass and inertia 

properties of objects, are useful both as interactive positioning aids and as starting 

points for future physical simulation programs. 



Finally, in chapter 6, I present conclusions about these approaches to human 

modeling and offer some suggestions for possible future projects. 

The tools presented here are all implemented as special applications for the Ja,ck 

graphics user interface in use at the University of Pennsylvania Computer Graphics 

Research Lab. The algorithms upon which many of them are based, however, may 

be applied to any system. It is my hope that the work shown here will prove to be 

a small step in the continuing evolution of computer graphics as applied to human 

modeling. 



Chapter 2 

Previous Work 

Many mathematical and computer models have been developed to describe human 

motion in a variety of situations. One can roughly divide the work that has been clone 

into the following categories: impact studies, gait studies, non-impact joint studies, 

and animation models. In each kind of study, there are elements that are very specific 

to the particular scenario being examined as well as more general elements that may 

be useful in this project. In the following sections, a brief review of the work in each 

category is given with some comments on the portions of the work that are relevant. 

Crash Simulators and Ejection Seat Studies 

The automotive industry conducts numerous studies each year of human response 

to the sudden decelerations that occur in automobile crashes. The aircraft industry 

conducts similar studies on human response to the sudden acceleration that occurs 

when ejecting from an airplane. For each of these fields, a computer simulation is 

typically developed that predicts the passive response of the seated figure to the large 

external forces, and estimates the likelihood of serious injury. Other investigators 

then attempt to verify the simulation results through the use of animal, cadaver, a,nd 

anthropomorphic dummy experiments. Review articles by King and Chou [A] and 

Prasad [5] discuss some of the prominent simulation models used by industry. These 



two articles are the primary sources for the discussion that follows. 

King and Chou [4] describe several classes of simulators: gross-motion simulators 

(in two and three dimensions), and head, spine, and thorax impact models. Since 

my project concerns general whole-body motion, I will just review the discussion of 

three dimensional gross-mot ion simulators.   he first is the three mass, 12 degree-of- 

freedom HSRI model developed by Robbins [6] .  This model, designed primarily for 

the evaluation of constraint systems, calculates contact forces applied to the figure 

by the interior of the vehicle, which is modeled as up to 25 planes. Lap belts and 

shoulder harnesses may also be modeled. The three masses represent the head, torso 

and legs of the occupant. 

A modification of the original model is reported by Robbins et. al. [7] in which 

the number of masses is increased to 6 and the number of degrees-of-freedom to 

14. Collision forces between body segments are included as well as frictional forces 

between the body and the contact surfaces. Joint limits are also included. 

The Texas Transportation Institute 3-D automobile occupant model (TTI) (Young 

[8]) has 12 masses and 32 degrees-of-freedom. The body segments are modeled by 

spheres that are connected by revolute and spherical joints. The spine is modeled with 

two segments and torsional springs. Joint limits are simulated by bilinear torsional 

viscous dampers. As with the HSRI model, the vehicle interior and restraint belts 

may be modeled as planar contact surfaces. However, this model contains no segment 

to segment collision detection. 

The model by Furusho and Yokoya [9] is a 3 mass, 12 degree-of-freedom system 

similar to the earlier HSRI system. The body is modeled as head, torso, and legs 

segments with springs and dampers included to represent neck and hip stiffness. The 

simulation calculates seat belt loads and seat reaction and friction forces. 

Another model reviewed by King and Chou is the "Superman" or UCIN model 



developed by Huston et al. [lo]. This model has a 12 segment, 31 degree-of-freedom 

body connected by revolute and spherical joints. Segments are modeled as elliptical 

cylinders, ellipsoids and frustums of elliptical cones. Collisions are detected between 

the figure and its environment, but the contact forces are not calculated. 

Two three dimensional models are described in the more recent review by Prasad 

[5]. The first of these is the CAL3D (or CVS) model which is also mentioned by King 

and Chou. This model was developed by the Calspan Corporation and is described 

extensively by Bartz [ll], Bartz and Butler [12] and Fleck et al. [13, 141. Prasad 151 

reviews a recent version of the model called CVS-IV or Version 20 which can simulate 

a 30 segment, 21 joint figure plus the vehicle and ground. Joints are specified as 

locked, pinned, ball-and-socket, or Euler joints. Up to 20 other constraints may 

also be specified including some segment motion specifications. Joint torques may 

be modeled as springs of viscous or coulomb friction mechanisms. Special elements 

are available for modeling tension only members (like muscles) and flexible members 

(like the spine). As with the other models, contact forces are calculated and restraint 

systems may be simulated. Prasad [5] states the program is flexible enough to be 

considered a general purpose articulated figure simulator. This system has been used 

for a number of impact studies including studies of vehicle-pedestrian impacts. 

A final system is the MADYMO Crash Victim Simulation Program developed by 

TMO in the Netherlands. The program is described by Wismans et al. [15, 161. This 

system allows any number of segments, but the whole figure must contain no loops, 

and joints may only be modeled as revolute or spherical. Joint torques are specified 

in tabular form. Contact reactions may be modeled as nonlinear springs, viscous 

damping or coulomb friction. As with the other models, restraints may be modeled, 

and contact forces are calculated. This system has been used in pedestrian impact 

studies and child restraint system studies. 



Other Body Property Studies 

2.2.1 Gait Studies 

Many human body models, both whole body and lower extremity models, have been 

developed for the study of human locomotion. Typically, the objective of these mod- 

els is to determine the joint reactions and moments that occur during walking and 

running. A good review of the biomechanics literature in this area is given by Icing 

[17]. King divides the research into inverse dynamics and forward dynamics studies. 

A forward dynamics model by Onyshko and Winter [18] models the whole body in 

seven segments: one for the torso and upper extremities, and three segments for each 

leg. The model uses a Lagrangian approach to predict the leg motion of a walking 

figure and a "manual" iterative approach to specifying joint torques. Initial joint 

angles and velocities are provided as input, joint moments during each of four phases 

of the gait are specified, and the resulting motion is observed. If the motion is not 

satisfactory, joint moments may be adjusted and the simulation run again. The abil- 

ity to freely vary the moments facilitates simulating the gaits of both normal and 

injured subjects where particular muscle groups might be weak. Realistic results are 

reported, and the important physical parameters of the model are provided. 

2.2.2 Non-Impact Joint Studies 

In order to create a computer figure that moves as a real human figure does, it 

is necessary to have an accurate kinematic model for the joints in the body (here 

"joint" is used more in the mechanisms sense than the strict medical sense). There 

have been a number of studies of the healthy and impaired properties of each of 

the numerous joints in the human body. For this project, only those studies which 

describe the range of motion and passive resistance properties of healthy joints are 

of interest. Furthermore, I focus only on certain major joints, namely the elbow, 



shoulder complex, hip, and knee. Different approaches to specifying joint position 

and motion are also useful and are briefly reviewed. Since a comprehensive review of 

even the work done in the limited field described above would be beyond the scope of 

this project, I merely highlight a few representative papers in the recent biomechanics 

literature. 

Elbow Studies 

Engin et al. has done a number of relevant studies of joint biomechanics. His work 

on the elbow [19] contains functions fitting empirical data of both voluntary range 

of motion of the humero-elbow complex, and the passive resistance of the elbow as a 

function of hyperextension angle. Both of these studies are useful in characterizing 

the mechanical properties of the elbow. 

Shoulder Complex Studies 

The classic article in this area is by Inman et al. [20]. In this article, the ranges of 

motion of the different members composing the shoulder complex are described, and 

their interrelationships are given. Also described are the mechanics of the different 

force-lever mechanisms formed by the muscles and bones in the system. Action 

current potential measurements provide insight into what role each of the different 

muscles plays in each of the basic shoulder motions. 

Engin [21] extends this work to include studies of the forced range of motion of 

the shoulder and the associated passive resistive forces and moments. Although the 

number of subjects in the study was very small, the shapes of the curves generated 

may be useful in defining elastic joint limits for simulation models. 

A later study by Engin [22] reports the angular damping coefficients of the shoulder 

in the vertical plane as a function of upper arm position. Although the emphasis in 



this paper is on the theory and met hod of measurement, the results given may prove 

useful in designing a vibration model of the shoulder. 

Hip Studies 

Yoon and Mansour [23] provide mathematical functions fitting measurements of pas- 

sive hip resistance to hip flexion and extension angles. Relations for resistance as a 

function of hip angle are provided for several different knee angles thus accounting 

for the influence of muscles that span both joints. 

Knee Studies 

A thorough description of the envelope of motion for the knee joint is given by 

Blakevoort e t  al. 1241. This is an in vitro study of the range of motion in flexion 

and in tibia1 rotation. External forces are applied to the specimen knee and the 

resulting force-displacement plots are provided. Since the study is performed on ca- 

daver knees, the actual values of the torques reported at the joint limits might be 

in question, but the general shape of the force-displacement curve may be similar to 

that of a live subject. It will probably be necessary to compare these results with 

other studies to verify the validity of the method. 

General Joint Models 

Most joints in the human body have some amount of compliance even in directions 

other than those of their primary action or motion. Although this compliance is 

slight, a truly thorough model would consider practically every joint as a six degree 

of freedom joint with some allowable translation and some allowable rotation in every 

direction. Typically, though, the range of motion in translation is slight, and the 

amount of compliance in directions that are not usual for the joint is also fairly 



small. Hence most simulations that model joints and joint limits make simplifying 

assumptions about the "allowable" motion of the joints. A thorough discussion of 

the different models that are used is contained in a paper by Kinzel and Gutowski 

[25]. The most common simplifications are hinge or revolute joints for the knees and 

elbows, and ball and socket or spherical joints for the shoulders and hips. 

Another useful topic in the literature is the specification of coordinate systems 

appropriate for describing joints. Grood and Suntay [26] have written a number of 

articles suggesting a scheme similar to Euler angles, but having the advantage that 

relative translations could also be represented. Perhaps even more importantly, in 

the proposed scheme (unlike in the usual euler angle system), the order of the relative 

rotations of the moving segments does not need to be specified. The particular paper 

cited applied the "joint coordinate" system to the knee, but other papers by the same 

authors consider the spine and other joints in the body. 

2.3 The Graphics Environment 

2.3.1 Animation Models 

Human figures developed for computer animation applications are as many and varied 

as those developed for impact simulations. The figures reviewed by Dooley [27] , for 

instance, have a large amount of articulation and anthropometric accuracy and flexi- 

bility. However, they are lacking in the physical properties that would be needed for 

dynamic simulations. Conversely, systems which provided animation post-processors 

for existing human motion simulators (like those described earlier) are often lack- 

ing in anatomical complexity or the ability to model a variety of different dynamic 

situations (see Wilmert [28]). 

More recently, work has been done to incorporate dynamic directly into anima- 

tion systems. And appropriate human body models have developed to accompany 



these systems. Wilhelms [29] used an 18 degree-of-freedom figure to demonstrate her 

dynamically driven animation system, but the figure was a very simple one from an 

anthropometric and anatomical viewpoint. It did contain joint limits that were mod- 

eled spring and damper systems, but apparently no effort was given to establishing a 

force-displacement behavior that mimicked the actual human body. 

Work by Girard [30] on animal and human locomotion also places a heavy empha- 

sis on motion controlling algorithms and less emphasis on the accuracy of the models 

the algorithms drive. Physical parameters such as mass distribution within the figure 

are used in the algorithms, but their values apparently are not related to those of real 

animals. 

For accuracy and care in developing anthropomorphic human figures, one should 

consider the models developed in the Computer Graphics Research Lab at  the Uni- 

versity of Pennsylvania. A technical report by Grosso et aE. [31] describes the lastest 

developments in generating anthropometrically accurate figures of different sizes based 

on population information. These figures have 31 segments and 42 degrees-of-freedom. 

Kinematic joint limits are available and based on anthropometry data. Until recently, 

however, the ability to use these models in animations that were physically based was 

absent. 

2.3.2 Graphics Lab Software 

All tools developed in this project are intended to be extensions of existing software 

developed at the University of Pennsylvania Computer Graphics Research Laboratory. 

Two important parts of that body of software are Peabody and Jack. Peabody is a 

graph-structured representation for articulated figures (see [32] for details). It is a 

language for representing figure information including all figure location, joint, and 

segment connectivity information, as well as other physical attributes of the figure 

being described. The data files (called "figure files" in this thesis) are structured, 



much like a programming language. This facilitates editing and understanding the 

data. These files are read by a parser that converts the syntax and data into the 

computer's internal data representation. 

Jack is a graphic user interface program and a library of subroutines that serve as 

the foundation upon which various applications may be built (see Phillips [33]). Jack 

provides an interactive 3D graphics environment for modeling, displaying and manip- 

ulating articulated figures. A mouse and nested menus provide easy user interaction 

with existing utilities. Jack runs on a Silicon Graphics IRIS graphics workstation 

and provides capabilities such as animation, real-time rendering and real-time 3D 

manipulation of represented objects. 



Chapter 3 

Mover: A Dynamics Driver for 
the Jack Environment 

Mover is the name given to a collection of computer programs which allow the general 

purpose mechanism simulator DYSPAM to act as a preprocessor for the Jack graphics 

environment. A situation may be set up using the Jack user interface, saved as a 

Peabody representation, and shipped to Mover which will in turn run a simulation and 

generate an animation file which can then be played back in the Jack environment. 

This sequence of actions greatly simplifies the design of a simulation set-up and 

allows easy blending of keyframe animation with simulation results. Also, attaching 

DYSPAM in this way to a powerful graphics system grants the benefits of three- 

dimensional visualization of both the initial conditions and the resulting motion. 

The following sections will describe the problems involved in creating this system, 

and the resulting conversion progranls themselves. 

3.1 Data Representations 

Both Jack and DYSPAM represent articulated figures, and both have similar notions 

of degrees of freedom and local and global coordinate systems, but the formats of their 

data representations are radically different. This difference was the main obstacle in 

achieving an integration of the two programs without extensively changing either. 



3.1.1 DYSPAM files 

DYSPAM, as it is used our lab, takes 3 input files1: structure, ndyspamfile, and 

jackforce. A brief overview of the contents of each file is given with a sample file 

for illustration. For more detailed descriptions of the input format see Schaffa [I] or 

St rass berg [34]. 

Structure 

Structure (see figure 3.1) contains the basic information for controlling the simulation. 

The first line contains the number of bodies, number of joints, and the number degrees 

of freedom in the system. The next line contains the number global forces, Iocal 

forces, global moments and local moments applied to the body. The remainder of the 

file contains flags and numerical integration and equation solving parameters. Also 

included, is the number of rotational springs in the system and time information for 

integration step size and the time interval between iterations to be written as output. 

l a  1, 3 number of bodies, joints, degrees of freedom . 
1 0 0 0  local forces, global forces, local moments, global moments 

0, 0,  3 flags and number of rotational springs 

" O  0 " more flags 
I 

0 .  ~ ~ 0 0 0 0 ,  0.10000, 30.0, 0.300000 start time, time step, stop time, animation step 
0.00000001, 0.00001, 0.000001, 7 
10.0 ,1.0 ,0.1/ numerical procedure parameters 

Figure 3.1: DYSPAM Input File: structure 

Ndyspamfile 

Ndyspamfile (see figure 3.2) contains the mechanism description. Information is ar- 

ranged in 6 sections (or tables): 

'A special file called "optionaln may be also be used. This file specifies non-linear springs and is 
described in Chapter 4. 



body joint table - a list of connectivity relationships and joint types connecting 
pairs of segments. 

joint triad table - the location and orientation of joint coordinate frames in 
terms of the segment's local reference frame 

mass and inertia information - a list of each segment's mass, center of mass site, 
and principal moments of inertia. 

point of interest table - a list of site locations and the segments to which they 
belong. 

spring parameters - linear spring and damping constants, rest angles, range of 
hysteresis, and the degree of freedom with which the spring is associated. 
. . .  . . m a 1  conditions - initial displacements and velocities for all the figure's degrees 
of freedom. 

1 0 1 7  body joint table 
0 1 
0.00 0.00 -1.00 0.00 
0.00 1.00 0.00 120.00 
1.00 0.00 0.00 0.00 

1 1  I - joint triad table 

1.00 0.00 '0.00 0.00 . 

0.00 1.00 0.00 0.00 
0.00 0.00 1.00 0.00 

1 3 25'. 000000 250.000000 50.000000 50. oooooo - mass and inertia data 
1 1 0.00,0.00,0.00 
2 1 150.00,0.00,-15.00 1 p o i n t  of interest table 
3 1 75.00,0.00,0.00 
1 1000.000000 600.000000 0.000000 I 
1 500.000000 600.000000 0.000000 2 1 spring parameters 
I 800.000000 600.000000 0.000000 3 
1 0.349066 0.698132 0.000000 0.00 0.00 0.00- initial conditions 

Figure 3.2: DYSPAM Input File: ndyspamfile 

Jackforce 

The last of the input files, jackforce (see figure 3.3)' contains a list of the local forces, 

global forces, local moments and global moments applied to the system. Each item 

is listed with the number of a point of interest where it is acting (from the point of 



interest table in ndyspamfile) and its global x, y and z components. These forces 

are constant only, with time varying forces requiring a user-specified routine called 

FORCES within the DYSPAM source code. 

Figure 3.3: DYSPAM Input File: jackforce 

3.1.2 Peabody figure files 

Much of the same information contained in the DYSPAM input files is also contained 

in the Peabody figure file. However, the same information takes a dramatically dif- 

ferent form as can be seen in figure 3.4. Here, the format uses a data representation 

language which can be interpreted by the Peabody parser (see Phillips [32]). The 

information is then stored internally in an extensive data structure. 



figure ( 

segment floor ( 
psurf = "floor. pss" ; 
site prox ->location = xyz(O,O,O) * trans(0,0,0); 
site dist ->location = xyz(-45deg, -90.00deg , -45.00deg) * 

trans (0,12Ocm, 0) ; 
mass = -1.0; 

segment link1 ( 
psurf = "1inkI.p~~"; 
site prox ( 
location = xyz(O,O,O) * trans(0,0,0) ; 

j 

site dist ->location = xyz(O,O,O) 
* trans (150. OOcm, 0. OOcm, -15.00cm) ; 

site CM( 
location = xyz(O,O,O) * trans(75.00cm,0.00cm,O.OOcm); 
globalforce = (100.0, 0.0, 0.0); 

3 
mass = 25.0; 
inertia = (50,50,50) ; 

root = f100r.prox; 

j o int shoulder ( 
connect floor.dist to link1.prox; 
type = R(I,O,O)*R(O,1,0)*R(0,0,1); 
displacement = (~deg, 40deg, 20deg); 
stiff = ( 100, 1000, 1000); 
rest = (0, 0 , 0) ; 

3 

Figure 3.4: Peabody Figure File 



Essentially, a figure description is a structure composed of several sub-struct ures. 

Each structure and substructure has an identifier such as "segment" and a name, 

such as "floor". 

The segment sub-structure contains all the information concerning a particular 

segment (a.k.a. body) in the system. Psurf refers to a named file containing the ge- 

ometry (i.e. three dimensional shape) information for display purposes. The location 

of the origin in the definition of the psurf defines the local coordinate system of the 

segment. Sites are equivalent to "Points of Interest" in the DYSPAM nomenclature. 

Each site is itself a "sub-sub-structure" with position and orientation fields. Position 

is specified with the identifier "trans" and orientation is specified with the identifier 

L L ~ y ~ 7 7 .  LLxyz(10deg,20deg,30deg)" indicates that the site in question is in an orienta- 

tion that can be achieved by rotating the local coordinate frame first 10 degrees about 

the x-axis then 20 degrees about the rotated y-axis and finally 30 degrees about the 

doubly rotated z-axis. Sites may be named in any fashion convenient to the user, but 

the name "CM" is reserved for that site locating the center of mass of the segment. 

The segment's mass and inertia information are indicated in their appropriate fields. 

As in DYSPAM, the Peabody representation assumes. the local coordinate system of 

the segment is parallel with the principle inertial axes of the body. Finally, each site 

has global and local force and moment fields in which constant external forces and 

moments may be specified. 

The joint sub-structure contains the connectivity information and all other joint 

related parameters. Each joint connects two and only two segments as indicated by 

the "connect" specification. "connect floor.dist to linkl . prox" means that this joint 

connects the site named L'dist" that is a part of the segment named "floor" to the site 

named "prox" that is a part of the segment named "linkl". The type specification 

indicates the number and type of the degrees of freedom of the joint. L'R(l,O,O)" 

indicates a rotational degree of freedom about the local x-axis. "T(1,0,0)" indicates 

a translational degree of freedom along the x-axis. By chaining a sequence of these 

degrees of freedom together, a number of different kinds of mechanical joints may be 

specified. Each joint also has fields for specifying joint limits and spring information 

such as a spring constant, damping constant and rest angle. 

The identifier "root" indicates which site can be considered attached to the ground 



(i.e. unmoving) segment. 

From this discussion it should be apparent that the DYSPAM input files and the 

PEABODY figure files contain much the same information. The primary differences 

between them can be summarized: 

DYSPAM files contain time related information such as velocity and simulation 
start and stop times. 

DYS PAM files contain numerical procedure parameters. 

DYSPAM files contain flags for invoking more complex procedures. 

Peabody files contain references to figure geometry. 

Fortunately, most of the differences may be safely ignored. DYSPAM, having no 

display capabilities of its own has no need for the psurf geometry files. And flags and 

numerical procedure parameters may be set in advance and assumed to be the same 

for all cases that are expected to be encountered. The only remaining considerations 

are the data related to time and velocity. These are only a few values, so it is not too 

great a burden to specify them at the time the simulation is called. 

What remains is the task of converting those elements that are in common from 

one format to the other. 

3.1.3 Joint Transformation Conventions 

To complicate the conversion process, there exist within DYSPAM some restrictions 

on the definition of joint triads associated with certain kinematic pairs. These re- 

strictions are absent from the Peabody representation. First, DYSPAM expects all 

revolute joints to be defined so that the axis of rotation is the positive z-axis. Peabody, 

however, allow revolutes to be defined about any axis, be it a positive or negative 

coordinate axis, or even some other arbitrary axis. 

Second, DYSPAM defines its spherical joints using a 2-Y-X Euler angle conven- 

tion, so any initial position or output position of a spherical joint is defined in terms 

of this convention. Peabody, however, allows any sequence of rotations as its defini- 

tion of a spherical joint. So proper interpretation of the figure file by DYSPAM and 

proper creation of an animation file, both needed the ability to convert from or to an 

arbitrary relative rotation sequence. 



Other joint types have restrictions also, but since these are the only ones that 

occur in the human body model, these are the only ones that are accommodated. 

3.2 Ernest: Converting the Input 

Ernest was first written by Lee and Chu as a basic interface between Jack and 

DYSPAM. The approach was simple: read a Peabody figure file, parse it with the 

Peabody parser and then.query the internal data representation for each item required 

for the DYSPAM input files, and write them to the appropriate file. Unfortunately, 

the program was not very flexible as it could not handle joints other than the revolute 

type, and those joints were required to be specified in the DYSPAM fashion, with 

the rotation being about the local z-axis. However, the basic work of interpreting the 

Peabody data and counting the number of joints, sites, and segments and arranging 

the data so that it could be output as DYSPAM input files was accomplished. 

3.2.1 Converting Revolute Joints 

In consultation with Phillips3 we developed a scheme for handling the restriction on 

the definition of revolute joints. The objective was to allow the existing freedom in the 

Peabody description while still passing only "legal" joints to DYSPAM. The solution 

was to internally redefine all revolute joints that were not already defined about the 

z-axis so that they were, and then writing that description out to the DYSPAM input 

files. The function used was called "zifyjoint". The algorithm is outlined in figure 

3.5. 

3.2.2 Converting Spherical Joints 

The conversion of spherical joints presented a slightly more complicated problem. 

Since Peabody allows spherical joints to be composed of three sequential rotations 

about arbitrary axes, some arbitrary set of initial displacements had to be converted 

to the DYSPAM convention. As an additional complication, it was realized that the 

displacements produced by DYSPAM as output from the simulation would have to be 

2This program was provided to me by one of the authors, Phillip Lee 
3Cary B. Phillips, University of Pennsylvania Department of Computer Science, 1989 

2 1 



done 7 
reset transform 

yes + done original + coordinate 
displacements systems on 
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positive -+PI both sides of 
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no 4 
get global 
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joint to chango current 

displacement to zero axis to positive 
z-axis 

Figure 3.5: Zifyjoint: Algorithm for Handling Restriction on Revolute Joints 

converted back to the original Peabody rotation convention so the animation system 

would be able to display .the sequence of positions accurately. So whatever solution 

was used would have to be reversible. Once again, the objective was to pass equivalent 

information to DYSPAM while imposing few, if any restrictions on the Peabody joint 

definitions. 

 he strategy for achieving the conversion was simple. First, the data structure 

would be read to determine what sequence of rotations was being specified by the 

Peabody figure file. With that information, the three initial joint displacements can 

be interpreted correctly, and an appropriate rotation matrix calculated. Then the 

elements of the rotation matrix can be used to find the equivalent joint displacements 

in the 2-Y-X system (the DYSPAM rotation convention). 

If #, 0 and $ are relative rotations about the z, y and x-axes, respectively, then 



the corresponding rotation matrix is given by4: 

cosOcos+ sin$sinOcosq5-cos$sin4 cos+sin8cosq5+sin$sin~ 
R =  [ cos 6 sin # sin # sin $ sin 0 + cos + cos 4 cos + sin 0 sin 4 - sin 1C, cos q5 

- sin 6 sin $ cos 6 cos $ cos 6 1 
Z-Y-X Euler angles can be found for any rotation matrix by observing the relation- 

ships of certain elements of the above matrix. 

R2,1 = cos 6 sin # (3.1) 

Rill = cos 0 cos # 

R3,2 = sin + cos 0 

R3,3 = cos + cos 0 

R3,1 = - sin 6 

From these relationships we can find 4, $ and 6 except in two special cases. In general, 

6 = atan2(-R3,1, cos 0) (3.9) 

The two special cases occur when cos0 = 0. This can happen in two ways. If 

= sin6 = 1 then we know 6 = n/2. In this case, we solve for the difference 

between q5 and +: 

Rzt3 = cos 1C, sin 4 - sin 1C, cos 4 = sin(+ - +) (3.10) 

R,,3 = cos $ cos + + sin+ sin + = cos(+ - +) (3.11) 

0 = n/2 corresponds, in this case, to a 90 degree rotation about the y-axis which 

places the x-axis in direct opposition to the original z-axis thus effectively reducing 

4Throughout this work I will use the robotics rotation matrix convention in which the columns of 
the matrix may be interpreted as vectors along the rotated coordinate axes referred to the unrotated 
axes. The computer graphics convention is to use rows instead. 



the number of degrees of freedom. The single degree of freedom replacing $ and # in 

this case is the difference 4 - $. 4 or $ may therefore be set arbitrarily. We establish 

the relations hip: 

d=-1Ct 

So the resulting displacements are: 

1 4 = -$ = -atan2(R2,3, Rlt3) 
2 

R3,1 = 1 indicates the other special case, 8 = -7r/2. By reasoning similar to the 

previous case, we find 
1 

$ = '$ = 'atan2 ( ~ 2 ~ 3 ,  ~ 1 ~ 3 )  2 
(3.15) 

This algorithm is implemented in a function called "tozyx" which is called by the 

section of Ernest which handles initial conditions. 

Pebble: Converting the Output 

The output of DYSPAM essentially consists of a sequence of time values each fol- 

lowed by a list of joint displacements specifying the configuration of the system at 

that time. The joint displacements correspond, of course, to angles as defined in 

DYSPAM conventions. The output conversion program's task is to replace the joint 

displacements in the output with displacements as defined in the particular figure file 

that was the original source for the system description. 

Accommodating the differences in convention for revolute joints was simply a 

matter of checking if the Peabody definition of a positive displacement was in a 

counter-clockwise direction (i.e. defined about a positive coordinate axis) or a clock- 

wise direction (i.e. defined about a negative axis). Since DYSPAM revolute joints are 

always positive in a counter-clockwise direction, those defined in the opposite way in 

the Peabody definition required a sign change for their displacement. 

Converting spherical displacements presented a problem that was solved by im- 

posing a restriction on the kinds of spherical joint definitions that could be converted 

from the DYSPAM convention. As in Ernest, we needed a mechanism that would 

take a rotation matrix, and produce a set of angles representing that rotation in some 

Euler angle-like convention. However, without restricting the sequence to be about 



mutually perpendicular axes, it would be very difficult to apply an algorithm simi- 

lar to the one in the previous section to handle the conversion. We decided that a 

slight restriction would not significantly reduce the user's convenience when designing 

Peabody figures. Sequences of rotations would have to be about coordinate axes or 

negative coordinate axes. Arbitrary axes within the local joint coordinate sys tern 

would not be allowed. However, the location and orientation of the joint triads them- 

selves could always be defined arbitrarily so the restriction on the kinds of joints that 

could be used was purely syntactical. 

Not counting definitions of rotations about negative axes, there are twelve se- 

quences of rotations that meet the above restriction and are capable of producing 

three rotational degrees of freedom. They are: 

For each of these cases, it is simple to find the angles in the given convention 

that correspond to a rotation matrix. This is the heart of Pebble. The rest of the 

algorithm is outlined in figure 3.6. 

3.4 Integrating the Programs 

Mover is a shell program that makes the sequence of the conversion programs and the 

simulator itself a little more manageable. Ernest takes as input a Peabody figure file 

and time information provided by the user and produces DYSPAM input files struc- 

ture, ndyspadle  and jackforce. DYSPAM can then use those files, run a simulation 



1. Read t h e  o r i g i n a l  f i g u r e  f i l e  and parse  it t o  get t h e  
d a t a  s t r u c t u r e s .  

2 .  S tep  through t h e  DYSPAM output  f i l e  t ime s t e p  by t ime s t e p .  
3 .  For each t ime s t e p :  

a .  Normalize t h e  time (necessary f o r  animation) 
b .  S tep  through each j o i n t  i n  o rder  as def ined i n  t h e  f i g u r e  f i l e .  

i . i d e n t i f y  t h e  j o i n t  type ( revo lu te ,  p r i smat ic ,  e t c . )  
ii. check t o  make su re  j o i n t s  a r e  def ined according 

t o  t h e  r e s t r i c t i o n  
iii. convert  t h e  j o i n t  angles  from t h e  DYSPAM f i l e  base on t h e  

type  of j o i n t  (assume a l l  r o t a t i o n s  a r e  about p o s i t i v e  axes) 
i v .  change t h e  s i gns  of those  displacements about negat ive  axes .  

v .  Write t o  t h e  output  f i l e  (known as an a c t i o n  f i l e )  
c .  next  j o i n t  

4. next  t ime s t e p  

Figure 3.6: Pebble: Converting DYSPAM output to Jack input 

and produce a set of output files including the "animation" output file called 0ut.e. 

Pebble then takes 0ut.e and the original figure file and generates a Jack compatible 

animation file (known as an action file). Since the whole process requires only a figure 

file as input, it makes sense to hide the internal workings of the sequence by creating a 

macro that handles all the other files for the user (see figure 3.7). This is the function 

of Mover. 
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Figure 3.7: Information Flow of Mover 



Chapter 4 

The Body Model 

In this chapter, I continue the development of the anthropomorphic figure described in 

chapter 2. That figure has the shape and size and joints of a human, but few of the of 

the properties necessary for a dynamic simulation. It is like a mannequin that can be 

posed, but does not move as a human would under the influence of external forces. The 

objective of this portion of the project is to add sufficient information to the model 

so that the new model would be to the old as a cadaver is to a mannequin. That is, a 

model of a body possessing accurate mass and inertia information, and having joints 

that behave realistically - with motion limits and elastic and damping properties. 

This model then would be ready for the next generation of refinements that could 

include motion algorithms and strength information to generate naturalistic human 

actions. 

4.1 Modeling Joint Properties 

One of the most obvious differences between the motion of a human and a human-like 

model is the limits on the human's range of motion. That is, elbows of humans bend 

easily only through a limited range of angles, whereas a simply hinged figure's joints 

have no such limits. Joint limits in JACK are specified as kinematic restrictions 

on the positioning of joints both internally, and via user interaction. This feature 



prevents the user from placing the figure in a configuration that would be impossible 

(or extremely uncomfortable) for a real human. The task here is to extend this idea 

to incorporate these joint limits into the Mover simulation system. This amounts to 

characterizing the force versus displacement relationships of typical body joints and 

applying these relationships within the simulation driver (in our case, DYSPAM) . 
In this section, I will describe my scheme to represent passive resistive moments at 

joints, and how they are applied to the model. 

4.1.1 Active and Passive Joint Properties 

Joint limits can be thought of in two ways. One can consider a limit to be the 

displacement at which a human can no longer continue to move his own joint in a 

particular direction. This kind of limit I will call an "active limitn. It is reasonable 

to assume that this kind of limit is easily measured from live subjects and probably 

is a function of both the individual's strength and her suppleness. 

A joint limit can also be thought of as the displacement at which the resistive forces 

of stretched body tissues associated with the joint achieve some arbitrary value. Often 

this value corresponds to the displacement at which a live subject would begin to feel 

discomfort. This kind of limit I will call a "passive limit" since the limit is assumed 

to be determined by measuring a subject that is not consciously attempting to resist 

the motion of his joint. Passive limits can be measured on both live subjects and 

cadavers (although it is unclear whether results obtained from cadavers are valid for 

live subjects). This limit is independent of the subject's strength although strength 

may be a predictor of the limit's value. 

Put simply, an active limit is the angle to which a human can bend his own joint, 

and a passive limit is the angle to which some external force can force the human's 

joint. 

In the context of setting purely kinematic limits on motion, either active or passive 



limits may be employed. The choice would depend on whether the motion is intended 

to be generated by the figure itself or by some external impetus. However, in the 

context of dynamic simulation, it is not the value of the limits that are important but 

the relationship between the joint displacement and the resistive moment associated 

with it. The resistance may be either passive or active. Only passive resistances 

will be considered here since active resistance implies use of strength and strength 

modeling is beyond the scope of this project1. 

4.1.2 Selecting a Stiffness Function 

To adequately model the relationship between resistive moments and joint displace- 

ments, it is necessary to have a method for storing different relationships in a file and 

then using that stored information to generate appropriate moment values for given 

displacements. There are two ways of accomplishing this: by table or by function. 

If a table is used then the whole table of data must be stored and retrieved, and 

an interpolation routine would have to be used to determine values between entries 

in the table. The values generated could be extremely faithful to the actual data if 

enough points are included in the table. 

The other strategy is to fit some kind of function to the relationships in advance 

and then just store and retrive the parameters of the function. In this case, all the 

values would be generated, and how faithful that generated data would be to the 

original data would depend on how good the fit was. An advantage of this strategy 

is the convenience of having uniform representations with small sets of parameters. 

Both strategies have merits, but I use fitted functions rather than tables because 

the implementation is slightly simpler, and the fits seem very good. Each set of joint 

data gleaned from the biomechanics literature is fitted to a cubic polynomial. The 

lit is possible that the addition of a strength model to the passive resistance model described 
here might be capable of replicating in simulation active joint limits measured from actual human 
subjects. 



cubic polynomial is a good choice because it is widely used in crash simulators and 

also because its shape can closely match many of the moment-displacement curves in 

the literature. Comparisons of the fitted functions and the actual data will appear in 

later sections. Data is fit to the polynomial using a least-squares method. 

4.1.3 Stiffness Properties of Spherical Joints 

Representing the stiffness behavior of spherical joints is particularly difficult since 

most empirical studies only examine moment-displacement relationships about each 

of the usual coordinate axes with little or no data collected for rotations about oblique 

axes. For this reason, the model developed for this class of joint can at  best be 

considered only a reasonable approximation of actual joint behavior. 

Spherical joints are modeled as a directionally weighted average of the influences 

of three non-linear spring-dashpot systems, one for each degree of freedom. Each 

equation relates a displacement a to a moment M : 

Here, the coefficients c define the moment-displacement relationship of the joint 

about the different coordinate axes, b, is a viscous damping coefficient and b,,,, is 

a coulomb friction element. Typically, these relations are derivable from available 

empirical results with different coefficients applying to motion about different axes. 

Any change in orientation of one segment relative to another can be expressed as 

a single angular displacement cr about some axis A . If the vector A is defined as 

a unit vector, then it is possible to devise a weighting scheme that is based on the 

2Goldstein [35] has a good description of the method for finding an axis-angle representation from 
a set of euler angles. 



relationship between the direction of the rotation axis A and the joint coordinate 

system. The scheme used in this model is: 

Here, M,, M,, M, are the three spring systems described in equations 4.1, 4.2, 4.3, 

Ax, A,, and A, are the components of the rotation axis and i ,  j and k are the p u a l  

Cartesian unit vectors. 

Notice that when the rotation axis A lies along a coordinate axis, the equation 

above reduces to the single component moment equation for that axis. There is no 

guarantee that values for rotations about non-coordinate axes will be accurate, but 

the estimate seems reasonable. 

4.1.4 Stiffness Properties of Revolute Joints 

Revolute joints are typically characterized by a region in the range of motion that 

is virtually free of influence from joint stiffness. I will call this region the deadzone. 

In order to adequately model this behavior I divide the range of motion into three 

regions in which the moment-displacement behavior is defined by: 

co + qa + c2a2 + c3a3 + bvb + bc,,lsgn(a) - Ma, for a < a[ 
M = {  0.0 + bvb + bco,,sgn(a) for a1 _< a 5 a, (4.5) 

co + c la  + c2a2 + c3a3 + b,b + bcoulsgn(a) - Ma, for a > a, 

Where a1 and a, are the boundaries of the deadzone. 

For revolute joints a is defined as the difference between some rest value cue and 

the actual displacement. 



1 1  - joint number, axis number 

0.0 2 -4365e09 0.0 8 -4168e09 - C ~ , C 1 , C 2 ,  C3 

0.0 0.0 b", bcoul 

0.0 0.0 0.0 - ao,a1,au 
1 2  joint number, axis number 
7.9322608 -4.658809 8.617e09 -5.114e09 
0.0 0.0 
0.0 0.0 0.0 
1 3  
0.0 4.3931e07 0.0 -3.098e08 
800000 0 .O 
0.0 0.0 0.0 
9 3 
-155000000 845000000 -1240000000 492000000 
800000 0.0 
0.0 0.0 1.553 

Figure 4.1: Data format for specifying non-linear springs 

4.1.5 Non-linear Springs: Data Representation 

The specification for these formulations for non-linear springs are passed to DYSPAM 

via a special input file called optional. The file is so named because either linear or 

non-linear springs can currently be specified, with the linear springs being standard 

and the non-linear springs optional. Within the file, is a listing for the parameters of 

each degree of freedom employing a rotational spring. Springs for spherical joints and 

revolute joints are specified in the same format even though some of the parameters 

are not used for both. The specifications for a, , a1 and a0 are simply ignored by 

the routine that calculates the spring forces for spherical joints. An example of the 

format is given in figure 4.1. The units are in the cgs (cm-gram-second) system. 

The Prototype Simulation Figure 

It is impossible to characterize all humans with a single model. Humans, even "typi- 

cal'' ones, vary widely in stature, mass distribution, and suppleness. In this section, 



I propose a prototype simulation figure as an example of what a figure specifically 

designed for simulation studies might be like. The values used for the figure's body 

parameters, such as segment lengths, mass properties and so on are based on typical 

anthropometric values, though not necessarily from the same population of subjects. 

The model, therefore, should be considered only a template for more accurate, or 

carefully collected body parameters. 

The prototype figure is a simplified version of the 50th percentile male body 

definition used at  the University of Pennsylvania Computer Graphics Research Lab. 

It has 10 segments and 10 joints with 26 degrees of freedom. The simplification is 

necessary to prevent excessive computation time during simulation. The Peabody 

definition is given in the appendix. The geometry for the figure consolidates psurfs 

from some of the smaller segments into the larger segments thus achieving a figure 

that is structurally much simpler than the original, but whose appearance is about 

the same. For example, the foot and toe psurfs are consolidated into the lower leg. 

The resulsing figure has the following segments: 

torso segment - includes head and neck and clavicles 

upper arm segments - (left and right) 

lower arm segments - (left and right) includes hands 

lower torso segment 

upper leg segments - (left and right) 

lower leg segments - (left and right) includes feet 

Along with the reduction in numbers of segment is a reduction in joints. Only the 

major joints (elbows, knees, hips, shoulders and waist) remain in this simplified figure. 

The following sections discuss the prototype moment-displacement relationships and 

the studies upon which they are based. 
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Figure 4.2: Elbow moment-displacement relationship: Engin's elbow data and proto- 
type elbow model 

4.2.1 Elbow Springs 

The prototype elbow is based on a study by Engin and Chen [19]. Engin measured 

the moment-displacement relationship of ten healthy males in elbow extension and 

hyperextension. The results of the measurements were then fit to cubic polynomials. 

The mean values for the coefficients are used as the prototype values. Figure 4.2 

shows the resulting polynomial and the modeled behavior that includes a resistance- 

free region. The values for a, and are estimates. 

4.2.2 Knee Springs 

The prototype knee is based on the technical report accompanying the CAL3D crash 

simulator [13]. The moment-displacement relations hip given in that report was ob- 

tained by measuring torque values from a Sierra 292-1050 crash dummy. It is unclear 

how well such results would correlate with results obtained from humans. A graph of 

the knee data from the CAL3D report and the prototype polynomial fit are given in 

figure 4.3. 
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Figure 4.3: Knee moment-displacement relationship: CAL3D data and prototype 
knee model . 

4.2.3 Shoulder Springs 

The shoulder of the prototype figure is modeled as a spherical joint. Its stiffness 

behavior is based on a study by Engin [20]. This study measured the passive resistive 

shoulder moments of several healthy subjects. Moment components about each of the 

coordinate axes (see figure 5.5 for definition of axes) were measured as the subjects 

arm was forced through its range of motion in each of several directions. As might 

be expected, the resistive moment tended to directly oppose the motion although 

small components in other directions were also measured. That is, when the arm was 

forced through its range of motion about the x axis, the x component of the resistive 

moment was the greatest. The same was true for the other axes as well. 

For the prototype shoulder, the moment-displacement relationship used for each 

degree of freedom is a cubic polynomial fit of the moment component directly opposing 

the motion of the arm. The small components about the other axes are ignored. 



Figures 4.4, 4.5 , and 4.6 compare the cubic polynomial fits to the data from a 

particular subject in Engin's study. 

Prototype shoulder relation: x-axis 
3 40 
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Figure 4.4: Shoulder moment-displacement relationship for x axis: Engin subject 
data and prototype shoulder model 
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Figure 4.5: Shoulder moment-displacement relationship for y axis: Engin subject 
data and prototype shoulder model 

Prototype shoulder relation: z-axis 

Figure 4.6: Shoulder moment-displacement relationship for z 
and prototype shoulder model 

axis: Engin subject data 



HIP ANGLE 
Figure 4.7: Illustration of the directional dependence of the passive hip moment. 
MHFE is the moment for leg motion in the direction of increasing extension and 
MHEF is the moment for increasing flexion. 

4.2.4 Hip Springs 

The study used as a basis for the prototype hip is by Yoon and Mansour [23]. It 

examines motion of the leg parallel to the sagittal plane for several different knee 

angles. Some of the muscles involved in hip motion span both the hip and knee 

joints, so knee angle can strongly influence the range of motion of the hip (and vice 

versa). Yoon and Mansour found a qualitative relationship between knee angle and 

passive hip moment but were unable to establish a good quantitative relationship. 

Another phenomenon described by Yoon and Mansour is the directional depen- 

dence of the hip moment. That is, hip moments for a given displacement depended on 

whether the leg was moving in a direction of increasing flexion or increasing extension 

(see figure 4.7, adopted from Yoon and Mansour, for an illustration). 

The prototype hip models neither the relationship between the hip moment and 

the knee angle nor the different functions for movement in flexion and movement in 

extension. Of these two shortcomings, the lack of a good two joint model for the 

hip is probably more serious. The difference between the increasing extension and 

3The greatest moment in hip extension and the least moment in hip flexion occur with maximum 
knee flexion. And the least moment in hip extension and the greatest moment in hip flexion occur 
with the knee at maximum extension 
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Figure 4.8: Hip moment-displacement relationship for flexion: Yoon and Mansour 
subject data and prototype hip model. 

the increasing flexion curves was on the order of 5-10 N-m or about 15% of the total 

range. The difference between hip moments of a bent leg and a straight leg is much 

greater, as much as 45-50 N-m or about 60% of the total range. 

It is reasonable to compensate for the directional dependence property by fitting a 

function that lies on the median between the increasing extension and the increasing 
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difficult to account for the dependence on knee angle. 

The prototype hip uses the data described by Yoon and Mansour for a particular 

subject with knee angle of 15 degrees and movement in the direction of increasing 

extension. This particular scenario was chosen arbitrarily. Figure 4.8 compares the 

Yoon and Mansour data to the prototype hip model. Moment values for the other de- 

grees of freedom (ab/adduction and medial/lateral rotation) are estimates not based 

on any empirical study. Figures 4.9 and 4.10 show the relationships used. 
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Figure 4.9: Prototype hip moment-displacement relationship for abladduction. 

Prototype hip relation: z-axis 
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Figure 4.10: Prototype hip moment-displacement relationship for medial/lateral ro- 
tation. 
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Figure 4.11: Prototype waist moment-displacement relationship for flexion parallel 
to the frontal plane. 

4.2.5 Waist Springs 

The waist joint in the prototype figure is an artifice. No such joint exists in the human 

figure. The waist joint is simply a device to allow some bending of the torso without 

adding the complexity of a curvable spine. The moment-displacement functions used, 

therefore, are completely artificial. Graphs of the relations used are given in figures 

4.11, 4.12, and 4.13. 



Figure 4.12: Prototype waist moment-displacement relationship for flexion parallel 
to the sagittal plane. 
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Figure 4.13: Prototype waist moment-displacement relationship for rotation parallel 
to the transverse plane. 



Chapter 5 

Positioning Tools 

Computer animation can be created in two ways. It may be generated by algorithm 

(with a simulation program, for example), or it can be crafted keyframe by keyframe 

by an animator. In the latter case, it is essential that the animator have at  his or her 

disposal tools that will help position the figure within each keyframe. The human 

figure, with its many joints presents a particular challenge for the keyframe animator 

as each degree of freedom of each joint must be correctly positioned if the resulting 

motion is to seem natural. In this chapter, I describe some of the positioning tools 

I developed to aid the animator in creating more natural body positions. Most of 

the routines have a more general range of application, though. The center of mass 

routines and the geometry-based mass and inertia information generator are general 

routines that could be applied to any Peabody figure. The multiple joint positioning 

scheme can only be applied to joints with revolute degrees of freedom, but otherwise, 

it is independent of the choice of figure. Only the coupled shoulder routine requires 

the specific human figure to function properly. 

5.1 Locating the Center of Mass 

Two positioning tools provide the animator with the location of the center of mass of 

a figure. This information is clearly useful in creating some kinds of motions (jumping 



and other whole body motions, for example) as well as for the analysis of motions 

already created by simulation programs. 

The center of mass of an articulated figure changes as the figure moves. These 

tools compute the center or mass of the figure and display it either interactively, as 

joints are adjusted and the mass distribution of the figure changes, or as a separate 

calculation on a static figure. Both routines make use of the special "CM" site and the 

"mass" field within the Peabody representation of each segment. The basic algorithm 

for both is based on the definition of the center of mass of a collection of bodies: 

Here xi is the global position vector of segment i, mi is the mass of segment i, and 

qM is the global position of the center of mass of the set of n segments composing 

the figure. 

Both center of mass routines ask the user to identify a figure either directly, by 

selecting it with the mouse, or indirectly, by selecting a joint that is a part of the figure. 

Each routine then searches through the data structure and sums over the masses of 

each segment and the global positions of each site named "CM" . The equation 5.1 is 

applied, and the result is displayed on the screen numerically as well as visually, with 

a coordinate frame icon drawn at' the figure's center of mass. 

Testing for Figure Stability 

One possible application for the calculation of the center of mass is to determine 

static support stability of a figure. The simplest case is treated by the "Stability 

Test" menu choice in the Center of Mass menu of my application program. This 

routine asks the user to select a figure and a set of supporting faces. The program 

then calculates the center of mass of the whole figure and determines whether or not 



the projection of the center of mass onto the ground plane falls within a support 

polygon defined by the convex hull of the projections of the vertices of the supporting 

faces onto the ground plane. Figure 5.1 illustrates the method. A message is returned 

by the program indicating whether or not the figure is balanced. 

projection \ szpporting face 
center of  mass  

Figure 5.1: Determining Static Figure Stability 

This stability test is a simple example of how the center of mass routine might 

be used by an application program. The test by itself may be somewhat useful when 

considering the posture of a human figure carrying a massive load and could be used 

iteratively as the posture was adjusted from an unbalanced one to a more stable one. 

The test assumes that the only supports available are the ones indicated by the 

user and that the only force acting on the figure is gravity. Further, the test assumes 

all joints in the figure are rigid. 

5.3 Generating Mass and Inertia Data 

The routines that calculate the figure center of mass and the stability test both depend 

on the existence of the special "CMn site. The "inertia" field of the Peabody figure 



description is similarly assumed to exist by the program that converts the figure to 

DYSPAM format. This information typically comes from the user, but on occasion 

it would be useful if such data could be estimated automatically. For this purpose, a 

special routine is included as a choice in the Center of Mass menu. 

The routine, identified as "Psurf Mass Info" asks the user to pick a segment with 

the mouse and enter its density. It then displays on the screen the center of mass 

location, volume, and moment of inertia matrix based on an assumption of uniform 

density. Such an assumption is reasonable for many applications. The psurf selected 

may be of any shape, concave or convex. The only restriction is that the vertices 'of 

each face be ordered in such a way that an observer on the exterior of the solid would 

see them sequentially arranged in a counter-clockwise direction. This restriction is 

already required by various rendering algorithms 

The algorithm for determining mass properties is based on the idea that any solid 

with planar faces can be systematically decomposed into a set of tetrahedra. One 

method for achieving this decomposition is selecting one vertex as the apex 'of all the 

tetrahedra, and then systematically dividing each face into triangles with each triangle 

serving as the base of a tetrahedron. Figure 5.2 illustrates how a rectangular prism 

might be decomposed. In the scheme I use, some of the tetrahedra are degenerate, 

having all four points coplanar. This case is detected by the program and does not 

present a problem. Once the decomposition is accomplished, the task of finding mass 

properties of the whole solid is reduced to the two tasks of finding the mass properties 

of each tetrahedron and using those values to calculate the properties of the whole 

solid. 

The first property to consider is volume. In a solid of uniform density the volume is 

'In this discussion, "vertex" will always refer to a point on the surface of the psurf that is serving 
to define the boundary of a face. 

2UApex" is the name assigned arbitrarily to one of the 4 corners of a tetrahedron. "Base" is the 
set of three corners that are not the apex. 



Figure 5.2: Example of decomposing a solid into tetrahedra 

proportional to the mass, so if the density is known, determining the volume effectively 

determines the mass. In the calculations that follow, the density constant is omitted 

with understanding that the results should be multiplied by the density to change 

volume properties into mass properties. 

The volume of a tetrahedron may be calculated in two ways, via vector products, 

or by direct integration. The vector method uses the formula: 

al x a2 . a3 
Volume = 

6 (5 .2)  

In this formula the three vectors al, a2,and a3 originate at the apex of the tetrahedron 

and extend to each of the vertices in the base in order. Notice that since this formula 

contains a vector cross product, the order of the vectors is important. If the vertices 

of a face are arranged in a clockwise direction from the vantage point of the apex, 

then by the convention described earlier, the apex of the tetrahedron must be on the 



interior side of that face. Similarly, if the vertices are arranged counter-clockwise, the 

apex is on the exterior. The volume value calculated is positive when the apex sees 

the inside of a face and negative when the apex sees the outside. If the apex is itself 

a vertex (as in my implementation), all the volumes calculated for a convex solid will 

be either zero (for faces including the apex) or some positive value. Concave solids or 

solids not simply connected will produce some positive and some negative volumes. 

The sum of these volumes is the total volume of the solid. 

The other method for finding the volume of an arbitrary tetrahedron, direct in- 

tegration, is not immediately necessary since the vector formula (equation 5.2) is 

available. However, the method of finding a volume integral for an arbitrary tetra- 

hedron will be necessary when calculating the elements of the inertia tensor. For 

illustration, I will provide the method in the following discussion. 

The difficulty in calculating a volume integral over an arbitrary tetrahedron is in 

the setting of the limits of integration. Since the shape may be positioned anywhere 

in space and oriented in any way, it is difficult to arrive at a general algorithm that 

does not rely on a classification scheme with many cases. A better solution is to find 

a way to transform any tetrahedron into a special case where the limits are easy to 

set and the integration is straightforward. In my implementation, this simple case 

is one where the apex of the tetrahedron is at the origin of a coordinate system and 

each of the base vertices lies on a coordinate axis. In this case the volume integral is 

clearly given by: 

s(1-zit) r(1- yls-zit) 
Volume = J t  J  dx dy dz 

0 0 
(5.3) 

Here, r, s, and t are the x, y and z intercepts, respectively. Figure 5.3 illustrates the 

definition of these variables. The solution is easily found to be: 

rst 
Volume = - 

6 



It is obvious that for this special case of a tetrahedron with three orthogonal edges, 

this result is equivalent to the result given by the vector equation stated previously. 

To extend this result to arbitrary tetrahedra, a transformation to a (possibly) 

non-orthogonal coordinate system must be made. For convenience, select the three 

vectors all a2, and a3 (as defined earlier) as the basis vectors for the new system, 

€1, €2 and €3. SO we can say: 

Here, i, j and k are the usual Cartesian unit basis vectors. 

For convenience let us create a matrix [A] composed of the coefficients in the 

above expressions. 

Notice that a single position p can be expressed as a composition of scalars times 

the basis vectors of either system. That is, 

What is needed now is a transformation from the Cartesian space to the non-or- 

thogonal space. To find this we make use of the metric tensor [g]. The metric tensor 

has nine elements, g'?j. Here are some of its properties: 



In these equations, the ei are the contravarient basis vectors. They are defined to be 

orthogonal to the covarient basis vectors E; .  6: is the Kronecker delta. 

The covarient components in the non-orthogonal system t j  on the right hand side 

of equation 5.13 are defined as the projections of some vector p on the covarient basis 

vectors: 

So from Eqs. 5.14, 5.13 and the definitions of the non-orthogonal basis vectors 6 

(equations 5.5-5.7) , we can write: 

If we call the metric tensor [g] and we recall the coefficient matrix [A], we rewrite 

equation 5.15 in matrix form: 

Here, p,, p,, p, are the Cartesian components of p. 

It can be shown that ([g][A])-' is just [A]*. So a transformation from the non- 

orthogonal system to the Cartesian system can also be written: 

The differential volume element of this system is given by: 

The next step in transforming the volume integral is determining the limits of 

integration. The limits are portions of the equation of a plane in intercept form. So 

3For a full development of this result see Budiansky [36] 

5 1 



transforming the limits is equivalent to transforming that plane. In Cartesian space, 

the base plane of the tetrahedron is defined by the three points located by the vect.ors 

al , a2, a3 and the equation may be given by: 

Here, the b's are constants. 

The limits of integration in the non-orthogonal system are found by making the 

substitution for the p's given in 5.17 resulting in the transformed equation for the 

base plane: 

( h a l l  + b2a12 + bsa13)t1 + (ha21 + b2a22 + b3a23)t2 + (ha31 + b2a32 + b3a33)t3 + b4 = 0 

(5.20) 

A final manipulation places this equation in intercept form: 

E l + ? + ?  - - - - 1 
r s t  

r, s and t are the transformed intercept values and can easily be found from equation 

5.20. Finally, the integral given in equation 5.3 can be written and calculated for the 

non-ort hogonal case: 

Det [gl Jt / s ( 1 - C 3 / f )  
volume = J-' 

0 0 
dtl dt2 dt3 (5.22) 

Volume = Ja 
The same approach can be used to calculate center of mass and moments and 

products of inertia of arbitrary tetrahedra. In the case of the x location of center of 

mass, the Cartesian volume integral (for the special case) is : 

The and T equations are similar. To determine the x location of the center of mass 

for an arbitrary tetrahedron, the limits are the same as for the volume calculation, 



but the integrand must be transformed. This transformation is very straight forward 

and yields: 

And of course, the other coordinates of the center of mass can be found in the same 

way. This location is the center of mass relative to the apex (origin of the non- 

orthogonal coordinate system). Since in my implementation, all of the tetrahedra 

composing the solid have the same apex, finding the center of mass of the whole solid is 

simply a matter of performing a mass (or volume) weighted average over the collection 

of tetrahedra and then adjusting the result to compensate for the displacement of the 

apex vertex from the origin. Continuing the calculation for ?i? 

- CZ1 Ti';Volumei 
xtOtal = (X coord of apex) + Total Volume 

Elements of the inertia tensor can be found in the same way. The evaluation of the 

integrals in the transformed space, while straight forward, are extremely 1engthy.The 

symbolic math program MACSYMA was used to both verify hand calculations and 

to generate evaluations of these integrals. Basically, the inertia tensor is composed of 

two kinds of terms - diagonal terms, and off-diagonal terms. A sample of an initial 

integral and its solution for each kind is given below. 

The inertia tensor in its usual form is: 

J .f J (y2 + z2)dzdydz - $ J J xy dxdydz - J J $ xz dxdydz 
- J J J yx dxdydz J J J (x2 + z2) dxdydz - J J J yz dxdydz 
- J J J zx dzdydz - .f J J zy dxdydz J J J (x2 + z2) dxdydz 

A typical diagonal term (the first element (1,l))yields: 



A typical off-diagonal element (element (2,l)) is given by: 

The results for each tetrahedron are relative to the local origin (i.e. the apex vertex). 

To find the results relative to the center of mass of the solid, we first find the total 

inertial terms relative to the apex by adding up the contributions of each tetrahedron: 

The ? are elements of the inertia matrix for the whole solid but relative to the apex 

vertex. 



The next step is to apply the parallel axis theorem to find the corresponding 

inertia values relative to the center of mass. For diagonal terms the formula is: 

- 
I, = ?, - (Total volume)(g2 + z2) 

And for the off-diagonal term$ the formula is: 

- * 

I, = I,, - (Total volume)(@) 

Where the 5,g and 2 indicate the location of the center of mass relative to the apex 

vertex. 

5.4 Parametric Shoulder Positioning 

The shoulder "joint" is actually a system of several articulations stabilized and con- 

trolled by 13 muscles and 3 major bones. Although our model simplifies this complex 

system into a chain of two segments (clavicle and humerus) with 5 degrees of freedom 

(3 at the glenohumeral "joint" and 2 at  the sternoclavicular "joint") specifying the 

position of the upper arm and clavicle relative to the torso remains a particularly 

challenging task. It is inconvenient to specify 5 degrees of freedom merely to position 

the arm interactively, and with the user free to chose any values for the 5 angles, 

many unfeasible arm positions may result. 

To assist the user in positioning the arm, I developed an interactive positioning 

scheme in which the user specifies, in spherical coordinates, the position of a point 

on the humerus, and the program continuously calculates and sets appropriate values 

for clavicle elevation and abduction and humerus flexion/extension, abladduction 

and medial-lateral rotation. In this way, the user can easily achieve approximately 

the shoulder configuration that he seeks with a single command. 

Such a routine depends on the availabilty of simple relationships between the 5 

degrees of freedom being set and the two that the user specifies. Inman [20] provides 



a thorough description of the anatomy of the shoulder complex and the relationships 

between the various structures that participate in shoulder motion. In particular, In- 

man provides a graph based on clinical observations showing the relationship between 

humerus elevation (both in abduction and forward flexion) and clavicle elevation. A 

reproduction of this graph appears in figure 5.4. Notice that arm elevation is not 

equivalent to humerus elevation since humerus elevation is modeled as relative to the 

clavicle and not the torso. This suggests that arm elevation (defined relative to the 

torso) is actually the sum of contributions from both the sternoclavicular joint and 

the glenohumeral joint. The graph in figure 5.4 provides the sternoclavicular con- 

tribution for a given elevation, so the contribution at the glenohumeral joint is the 

difference. 

The shoulder positioning routine uses the two values representing the "latitude" 

4 and the "longitude" 8 of the elbow to determine the orientations of the clavicle and 

humerus. 8 is zero with the arm pointing straight in front of the figure and increases 

as the arm moves to the figure's left. 4 is zero when the arm is pointing straight 

overhead and increases as the arm is lowered (this is opposite to the definition of 

increasing arm elevation). With these definitions established, we can now define the 

formula relating 4 and 6' to the various joint angles. 

For the left shoulder: 

elevation angle = a,, = 180 - 4 (5.39) 

abduction angle = a,, = 90 - 8 (5.40) 

clavicle elevation due to motion parallel to frontal plane = PI (5.41) 

0.2514ae, + 91.076 for 0 5 a,, 5 131.4 
81 = { -0.035ae, + 128.7 for a,, > 131.4 (5.42) 

clavicle elevation due to motion parallel to sagittal plane = P2 (5.43) 

0.21066ae, + 92.348 for 0 5 a,, 5 130.0 
= { 120.0 for a,, > 130.0 (5.44) 



clavicle angle 1 = cos(aab)pl + (1 - c o s ( c ~ ~ ~ ) ) ~ ~  - 90 (5.45) 

clavicle angle 2 = 0.2aa, (5.46) 

humerus angle 1 = a,, - clavicle angle 1 (5.47) 

humerus angle 2 = crab - clavicle angle 2 (5.45) 

In these equations, the a's are upper arm angles as measured relative to the torso, 

and the 2 p's are "clavicle" angles as defined in Inman's graph (figure 5.4). The joint 

angles themselves are defined as shown in figure 5.5. All the equations use degrees as 

the measure of the angles. 

Equations 5.42 and 5.44 were adopted from a linear approximation of Inman's 

graph. The other clavicle angle relation was an estimate. It is important to note that 

even Inman's data should be considered merely a representative case rather than a 

universally valid relationship. Inman was concerned with qualitative observations 

more than quantitative relations hips. 

The above formulae establish 4 of the 5 joint displacements required to uniquely 

position the upper arm system. The fifth displacement is medial-lateral rotation of 

the humerus, or rotation about the long axis of the upper arm. This angle of rotation 

or "twist" could be determined in any of a number of ways. The simplest would be 

to  let the angle of twist be zero. That is, whatever medial-lateral rotation was the 

result of the sequential rotations in abduction and elevation would be considered the 

default. This selection of a default angle of twist causes some difficulty at the poles of 

the sphere of motion, though. When the arm is pointing straight up, the twist could 

have a variety of different default values. In this case, the twist would depend on the 

path the arm to arrive at the pole, rather than being some fixed certain value at the 

pole regardless of the route used to arrive there. 

A perhaps more restrictive scheme would be to establish a standard (or default) 

twist angle for every point in the sphere of motion regardless of how the arm arrived 



there. Such a scheme is used in Labanotation (a variety of dance notation) and 

was suggested by Badler, O'Rourke and Kaufman [37] for this particular positioning 

problem. 

This scheme is best described by simply listing the equations that define it. Below, 

4 and 0 are the coordinates described earlier, and + is the additional twist imposed 

on the humerus after rotations of 8 and then r$ have been applied in sequence about 

their appropriate axes. Looking down the arm, the rotation angle + increases in a 

clockwise direction for the right arm and a counter clockwise direction for the left 

arm. For the left arm, the formulae are: 

180 - e(i  - &) -9018190 o < # 1 9 0  
-180(1 - &) + (4 - 270)(&) -90 4 0 5 90 90 4 4 < 180 
(0 - 180)(1 + 9) 90 5 f3 1 270 90 5 4 5 180 
2(0 - 180) & - (180 + 8) (1 - &) 9 0 4 0 < 1 8 0  0 5 4 5 9 0  
(180 - 8)(1 - g) + sgn(225 - 8)360& 180 5 8 5 270 0 4 # 4 90 

(5.49) 

The twist angle in this scheme varies continuously over the whole sphere of motion 

except for a seam that occurs behind the figure's back in a physically unreachable 

region. This scheme can be thought of as producing a "natural" rotation for the arm 

throughout its reachable space. This would be the rotation you would choose without 

thinking if instructed to point your hand in some direction. When the hand is directly 

overhead, the twist is such that the thumb (with no wrist or forearm rotation) would 

point behind the figure. When the hand is straight ahead of the figure, the thumb 

would point straight up. Of course this choice of preferred angle of twist is by no 

means unique, but with its use the user can be assured of remaining within the range 

of physically viable arm configurations. 

In this discussion, all the formulae have been expressed for the left shoulder and 

its joint angle conventions. The formulae, are, of course, about the same for the right 

arm with the differences mostly being a matter of sign conventions. 

This shoulder positioning tool provides a new level of detail to the motion of the 
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shoulder without further encumbering the user. The parametrically related shoulder 

joints reflect the moving center of rotation that is an important characteristic of the 

human shoulder. This would be lost if a simple ball joint is used as the model. 

5.5 Multiple Interactive Joint Positioning 

The idea of linking the motion of one joint or one degree of freedom to another can be 

expanded to facilitate the positioning of whole sets of joints if a specific relationship 

between their joint angles is known. A simple application of this idea is symmetrical 

arm or leg motion. If it is known that both elbows will always have the same or nearly 

the same angle, it should not be necessary to set each of them separately. Instead, 

the user would specify the relationship between the two joints and then adjust one of 

them with the angle of the other being set automatically. 

The interactive linked motion routine I developed allows the user to specify other 

joints as being proportionally related to a single controlling joint. This will allow 

various kinds of symmetric and anti-symmetric relationships to be created. The user 

specifies the number of joints to be linked to the controlling joint and the factor c 

that will be the multiplier for the angles of that joint. The relationships for a joint i 

with three degrees of freedom can be stated: 

Here, c is a multiplier specified by the user, ei0 is the zeroth joint angle of joint i, and 

9conlrolo is the zeroth joint angle of the designated controlling joint. If the constant c is 

chosen to be 1.0, then the dependent joint will be set so that it has exactly the same 

joint angles as the controlling joint. Up to 10 dependent joints can chosen. Also, the 

values of the constants are stored in static memory, so the next time the routine is 

invoked, the same relationship may be used without having to specify it again. 



This algorithm is a little primitive as the parameterization really should be by 

degree of freedom rather than by joint. This is particularly apparent when one at- 

tempts to use the routine on joints with dissimilar numbers of degrees of freedom, 

or on joints that are symmetrically positioned within the figure (like left and right 

shoulders) but whose degrees of freedom are not defined symmetrically. 

Nevertheless, the concept of a user specified relationship between joints that can 

be modified and used interactively is a powerful one. One could easily imagine how 

this idea could be extended to affect the geometry of the psurf or any other values in 

the graphics environment. 



Figure 5.3: Calculating a Volume Integral: A Special Case 
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Figure 5.4: Inman's graph showing relation between clavicle and humerus elevations 





Chapter 6 

Conclusion 

The objective of this project was to improve realism and facilitate interaction in 

computer modeled human motion. As the goal has two parts, so does the project. 

The first part, improving the facility for dynamic simulation, and developing a model 

to be used with it was only partly successful. Mover, the dynamics interface for the 

Jack environment, is functional but not convenient. Human motion depends heavily 

on the active, conscious movements of the individual. Such movements are especially 

hard to develop with a preprocessor. Too much time is spent waiting for results that 

could often be better spent designing a motion keyframe by keyframe. 

Ideally, dynamic simulation should be applied interactively. A situation would 

be modeled and as the simulation progressed, the user could change the parameters 

of the simulation and so could have some better measure of control of the resulting 

motion. This is quite different from the crash-test family of simulators that includes 

Mover. 

In defense of the Mover system, it is well suited for generating motions that are 

strongly governed by external forces and moments. And, if it is some day coupled 

with a strength model, its range of applications could expand beyond being mostly a 

crash simulator to include active tasks requiring strength and planning. 

The development of the body model to accompany Mover was fairly sucessful. 

The biomechanics literature contained a large enough body of studies that I feel 

confident the models for joint stiffness which I present are adequate for most simple 

body models. The only major weakness of the joint model is mentioned in chapter 

4. Muscles that span more than one joint have a profound impact on limb flexibility 



and active strength. Any future models should accommodate this. 

The prototype figure suggested at the end of chapter 4 clearly suffers from the lack 

of a sufficient body of data. Many values in the prototype were merely estimates and 

at best, the prototype is a "Frankenstein's monster" with data for different parameters 

taken from different experimental subjects (some of whom were cadavers). As I 

stressed in chapter 4, the prototype is only meant to serve as reasonable template, 

and in that context, it is successful. 

The other part of this project, improving the interactive tools was somewhat more 

successful. The interactive center of mass routine and coupled shoulder positioning 

algorithm both suggest a trend towards increasing the level of realism in the devel- 

opment of interactive positioning tools. I am most encouraged by the linked motion 

algorithm which suggests a vast number applications that could link on variable in 

the graphics environment to another. Figures could flip light switches and influence 

the lighting model. Body segments could change shape as a function of joint angle 

thus mimicking the flexing of muscles. Many such applications could grow out of this 

simple idea. 

The automatic mass and inertia generator is surprisingly robust. With the single 

restriction on the ordering of polygon vertices and the assumption of constant density, 

the inertia of any object that can be represented with a psurf can be calculated. 

Objects don't even have to be simply connected. 

Future projects that can build on this work are: 

Modify the Mover system to handle trajectory motion problems. 

Add collision detection and modeling as either an interactive tool, or a part of 
the dynamics preprocessor. 

Expand on the idea of adding realism by linking the behavior of some things to 
the behavior of others. 

Collect a coherent set of joint stiffness data from a significant population and 
run a verification study on the joint models. 
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Appendix A 

Figure Definition for the 
Prototype Body 

figure ( 
attribute attribute3 ( 

rgb = (1.00,0.37,0.00); 
3 
attribute attribute11 ( 

rgb = (1.00,0.37,0.00); 
3 
attribute attribute13 { 

rgb = (1.00,0.37,0.00); 
3 
attribute attribute15 { 

rgb = (1.00,0.37,0.00); 
3 
segment right-lower-leg ( 

psurf = "ecalf.pssU; 
attribute = attribute3; 
mass = 4000.778; 
inertia = (1199091.8750,1453679.875Oa29209O.i563); 
site proximal->location = trans(O.OOcm,O.OOcmaO.OOcm); 
site distal->location = trans(0.00cm,0.00cm,36.80cm); 
site CM->location = trans(2.6lcm,0.0lcm,23.73cm); 

3 
segment lef t-lower-leg ( 

psurf = "ecalf . pss" ; 
attribute = attribute3; 
mass = 4000.77g; 
inertia = (1199091.8750,1453679.8750,292090.1563); 
site proximal->location = trans(0.00cm,0.00cm,O.OOcm); 
site distal->location = trans(0.00cm,0.00cm,36.80cm); 
site CM->location = trans(2.6lcm,0.0lcm,23.73cm); 

3 
segment right-upper-leg { 

psurf = "eup1eg.p~~" ; 
attribute = attribute3; 
mass = 8205.55g; 



inertia = (992266.1875,1013080.3125,156199.0156); 
site proximal->location = trans(0.00cm,0.00cm,O.00cm); 
site distal ->location = trans(0.00cm,0.00cm,43.40cm); 
3 
site CM->location = trans(0.00cm,0.00cm,18.07cm); 

3 
segment left-upper-leg ( 

psurf = "eupleg.pssl' ; 
attribute = attribute3; 
mass = 8205.55g; 
inertia = (992266.1875,1013080.3125,156199.0156); 
site proximal->location = trans(0.00cm,0.00cm,O.O0cm); 
site distal->location = trans(0.00cm,0.00cm,43.40cm); 
site CM->location = trans(0.00cm,0.OOcm,18.07cm); 

3 
segment right-lower-arm ( 

psurf = "elowarm. pss" ; 
attribute = (attribute3, attributell) ; 
mass = 1815.81g; 
inertia = (365474.6875,361975.3750,13135.1484); 
site proximal->location = trans(0.00cm,0.00cm,O.OOcm); 
site distal->location = trans(0.00cm,0.00cm,28.8Ocm); 
site CM->location = trans(-0.01cm,0.00cm,17.51cm); 

3 
segment left-lower-arm ( 

psurf = "elowarm. pss" ; 
attribute = (attribute3 ,attribute13) ; 
mass = 1815.81g; 
inertia = (365474.6875,361975.3750,13135.1484); 
site proximal->location = trans(0.00cm,0.00cm,O.OOcm); 
site distal->location = trans(0.00cm,0.00cm,28.80cm); 
site CM->location = trans(-0.01cm,0.00cm,17.51cm); 

3 
segment right-upper-arm ( 

psurf = I' euparm . pss" ; 
attribute = attribute3; 
mass = 2297.406; 
inertia = (165567.2500,171408,9688,19422.7441); 
site proximal->location = trans(0.00cm,0.00cm,O.OOcm); 
site distal->location = trans(0.00cm,0.00cm,33.40cm); 
site CM->location = trans(-0.03cm,0.02cm,13.99cm); 

3 
segment left-upper-arm ( 

psurf = "euparm. pss" ; 
attribute = attribute3; 
mass = 2297.40g; 
inertia = (165567.2500,171408.9688,19422.7441) ; 
site proximal->location = trans(0.00cm,0.00cm,O.OOcm); 
site distal->location = trans(0.00cm,0.00cm,33.40cm); 
site CM->location = trans(-0.03cm,0.02cm,13.99cm); 

3 
segment lower-torso ( 



psurf = "eltorso. pss" ; 
attribute = (attribute3, attribute13) ; 
mass = 3469.32g; 
inertia = (232921.1406,124958.4453,303026.2500); 
site proximal->location = trans(0.00cm,0.00cm,O.0Ocm); 
site distal->location = trans(0.00cm,0.00cm,13.10cm); 
site rlateral->location = xyz(-180.00degy0.00degJ0.00d~g) 

* trans(O.OOcm,-6.12cmJ0.00cm); 
site llateral->location = xyz(-180.00deg,O. 00deg , 0. OOdeg) 

* trans(0.00cm,6.12cm,O.00cm); 
site CM->location = trans(0.00cm,0.00cm,6.17cm); 

3 
segment center-torso ( 

psurf = "echest . pssll ; 
attribute = (attribute3 ,attribute15) ; 
mass = 13169.608; 
inertia = (9540146.0000,9199660.0000,1203154.8750); 
site proximal->location = trans(0.00cm,0.00cm,O.OOcm); 
site distal->location = trans(0.00cm,0.00cm,47.60cm); 
site utproximal->location = trans(0.00cm,0.00cm,47.60cm); 
site utdistal->location = trans(0.00cm,0.00cm,47.60cm); 
site utleft->location = xyz(-90. OOdeg, 0. OOdeg, 0.00deg) 

* trans(0.00cm,0.00cm,47.60cm); 
site utright->location = xyz(90. OOdeg, 0. OOdeg, 0. OOdeg) 

* trans(0.00cm,0.00cm,47.60cm); 
site rstdistal->location = xyz(90.00degJ0.00deg,0.00deg) 

* trans(0.00cm,0.00cm,50.00cm); 
site lstdistal->location = xyz(-90. OOdegyO. OOdeg, 0.00deg) 

* trans(0.00cm,0.00cm,50.00cm); 
site rcl-lateral->location = xyz(-180.00deg,0.00deg,0.00deg) 

* trans(0.00cm,-17.20cm,50.00cm); 
site lc1,lateral->location = xyz(-180.00deg,O. 00deg,0. OOdeg) 

* trans(0.00cm,17.20cmy50.00cm); 
site CM->location = trans(0.09cm,-0.08cm,33.76cm); 

3 
segment body-root ( 

mass = -1.OOg; 
site distal->location = xyz(-90.00deg,0.00deg,-90.00deg) 

* trans(0.00cm,0.00cm,O.OOcm); 
site left->location = xyz(-90.00deg,0.00deg,0.00deg) 

* trans (0. OOcm, 0. OOcm, 0 .OOcm) ; 
site right->location = xyz(90.00deg,0.OOdeg,O.OOdeg) 

* trans (0. OOcm, 0. OOcm, 0 .OOcm) ; 
site floor->location = xyz(45.00deg,90.00deg,45.OOdeg) 

* trans(0.00cm,0.00cm,-94.1Ocm); 
site base->location = trans(0.00cm,-94.10cm,0.00cm); 

3 
joint waist { 

connect lower,torso.distal to center~torso.proxima1; 
type = R(0.00,0.00,1.00)*R(1.00,0.00,0+00) 

*R(0.00,1.00,0.00); 
stiff = (1.00,1.00,1.00); 



3 
joint root-ltorso ( 

connect body-root.dista1 to lower~torso.proximal; 
type = R(l.00,0.00,0.00)*R(0.00,1.00,0.00) 

*R(0.00,0.00,1.00); 
J 
joint left-shoulder ( 

connect center,torso.lcl,lateral to left,upper,arm.proximal; 
type = R(0.00,0.00,1.00)*R(1.00,0.00,0.00) 

*R(0.00,1.00,0.00); 
stiff = (1.00,1.00,1.00); 

3 
joint right-shoulder ( 

connect center,torso.rcl,lateral to right-upper-arm.proxima1; 
type = R(0.00,0.00,-I.OO)*R(-1.00,0.00,0.00) 

*R(0.00,1.00,0.00); 
stiff = (1.00,1.00,1.00); 

3 
joint right-elbow ( 

connect right-upper-arm.dista1 to right,lower,arm.proximal; 
type = R(0.00,1.00,0.00); 
stiff = (1.00); 

3 
joint left-elbow ( 

connect left-upper-arm.dista1 to left,lower,arm.proximal; 
type = R(0.00,1.00,0.00); 
stiff = (1.00) ; 

J 
joint right-hip-j oint ( 

connect lower,torso.rlateral to right,upper,leg.proximal; 
type = R(0.00,0.00,-1.00)*R(-l.OO,O.OO,O.OO) 

*R(0.00,1.00,0.00); 
stiff = (1.00,1.00,1.00); 

3 
joint left-hip-joint ( 

connect lower,torso.llateral to left,upper,leg.proximal; 
type = R(0.00,0.00,1.00)*R(1.00,0.00,0.00) 

*R(0.00,1.00,0.00); 
stiff = (1.00,1.00,1.00); 

3 
joint right-knee ( 

connect right-upper-leg.dista1 to right-lower-leg.proxima1; 
type = R(O.OO,-1.00,0.00); 
stiff = (1.00); 

3 
joint left-knee ( 

connect left-upper-leg.dista1 to left-lower,leg.proximal; 
type = R(O.OO,-1.00,0.00); 
stiff = (1.00); 

3 
root = body,root.base; 

3 



"Optional" DY SPAM input file for 
Prototype Figure 
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