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Abstract 

State-of-the-art database management systems are inappropriate for real-time applications 
due to their lack of speed and predictability of response. To combat these problems, the scheduler 
needs to be able to take advantage of the vast quantity of semantic and timing information that 
is typically available in such systems. Furthermore, to improve predictability of reponse, the 
system should be capable of providing a partial, but correct, response in a timely manner. 
We therefore propose to develop a semantics for real-time database systems that incorporates 
temporal knowledge of data-objects, their validity, and computation using their values. This 
temporal knowledge should include not just historical information but future knowledge of when 
to expect values to appear. This semantics will be used to develop a notion of approx imate  or 
partial computa t ion ,  and to develop schedulers appropriate for real-time transactions. 



1 Introduction: What is a real-time database? 

In real-time applications, programs must not only be functionally correct, but must meet timing 

constraints. For example, in tracking systems, input data must repeatedly be received from sensor 

processes. The data is then collectively examined and calculations are performed to determine if 

and where to  move the sensor processes so as not to lose the object being tracked. In such a system, 

it is not enough that the calculations be performed correctly; the calculations must be performed 

quickly enough that the sensors can be alerted or moved in time to maintain their view of the object, 

or that defensive action can be taken. Input from the sensor processes must be received on a cyclic 

basis, the period of which is determined by the motion of the object being tracked. Furthermore, 

the time at which the sensor data was taken is important to the result of the calculation. 

A critical component of these applications is the database, which is used to  store external input 

such as environmental readings from sensors, as well as system information. Entries in the database 

are rarely deleted but constantly updated; hence sophisticated database management systems are 

necessary. However, state-of-the-art database management systems are typically not used in real- 

time applications due to two inadequacies: 1)speed and 2) predictability of response [I, 21. 

The first inadequacy, speed, should be carefully considered. Database management systems 

are, and always have been, concerned with the throughput of transactions; much research has been 

done in this area (efficient buffering, indexing, design, query optimization, main memory databases, 

parallel architectures, etc.). While these techniques are important, they are non-specific to real- 

time databases. We wish to concentrate on the distinctive characteristics of real-time databases 

that can be used to improve the responsiveness of such systems. 

One important distinction between real-time and non-real-time databases is how constrained 

the environment is. For example, to  design a traditional relational database management system, 

one generally knows something about how attributes relate to one another (functional, multivalued 

dependencies, etc.), and something about the expected transactions and their relative frequency. 

One then designs the system to perform well for the expected transactions, yet have the relations 

in some appropriate normal form whenever possible. However, one still expects a large number 

of ad hoc transactions. In database applications for robotics or surveillance systems, most of the 

transactions are predefined, not only in the sense that the operations and data-items requested are 

known, but in that the time at which the results will be required is known. Furthermore, the time 

intervals during which data-items will be updated is predictable. For example, sensor processes may 

be known to  take readings during some time interval of their periodic execution. The data may also 

have a validity interval: a citing can be used to extrapolate values within a small neighborhood 



of the time it was made although it is only accurate for the real-time moment in which it was 

taken. The database will therefore know when to expect new values for the data representing 

the readings, and should be able to use this knowledge to schedule transactions using the new 

data to  improve their response time. Furthermore, the completion time for these transactions may 

depend on the validity interval of the data computed; the transactions can be thought of as being 

triggered by the arrival of the data. In fact, this is what is frequently done in practice: designers 

of real-time database systems put not just data, but actual code into home-grown systems that 

allow them to take advantage of the detailed knowlege they have of their application. To design 

an application independent database management system that will be useful for real-time systems, 

we need to develop a semantics which will allow us to capture the temporal knowledge of data, the 

operations on the data, and times by which the operations will be expected to complete. We also 

need to consider schedulers that will take advantage of the future knowledge of transactions and 

their deadlines. 

The second inadequacy is predictability of response: a computation must be guaranteed to 

complete by its deadline. This is not necessarily synonymous with "quickly". For example, payroll 

systems are "real-time" in the sense that checks for employees must be generated by the first of 

the month. The payroll system has a whole month to work on the problem, not just milliseconds. 

However, predictability of response is particularly difficult when the deadlines are short since the 

complex interactions of scheduling the CPU controlling the database, scheduling disk accesses, 

buffering, and concurrency control become important. While these factors need to be examined as 

a whole, we would like to improve predictability by guaranteeing a response by the transaction's 

deadline which is either a complete result or a partial result. This requires the computation to have 

an iterative or multi-phase nature. Furthermore, the computation should be monotonic in the sense 

that "goodness" of the answer is monotonically non-decreasing as the computation proceeds [3, 41: 

Not only should the "precision" of the answer improve as computation proceeds, but an answer 

that is produced at one point in computation should never be contradicted by a later answer. An 

example of such a computation is the bisection method for finding the root of a function. The 

interval containing a root is initially very large, and keeps halving as the computation proceeds. At 

any point in the computation, the interval is valid; however, it is best defined when the endpoints of 

the interval converge to a single point, the root of the function. We would like to develop iterative 

techniques for querying databases that provide a partial answer at any point in computation, the 

goodness of which improves monotonically as computation proceeds. 

As an example of how a partial answer to a database query could be useful, suppose that we 

have a distributed sytem of three blood bank databases. Each blood bank database maintains, 



among other information, a relation of how many pints of each blood type is currently on hand. 

Suppose that type 0 -  is dangerously low a t  hospital X, and X is trying to  find out if there is any 

available within the network of blood banks to meet a current crisis. This query could be expressed 

as: "Is there a blood bank that has blood of type 0-I", Thus, the query "Do you have blood of 

type 0- ?" would be broadcast to each of the three databases, and the final answer would be the 

logical "or" of the responses from each of the databases. The initial partial anwer to the query 

would be "I don't know yet." This partial answer can be changed to "Yes" immediately some blood 

bank responds with a "Yes", regardless of whether all blood banks have responded. The answer 

becomes "No" only when all of the blood banks have responded negatively. However, at  any point 

in time, there is some answer to  the query that is correct. If hospital X then wanted to  know "How 

much blood of type 0 -  is there in the system?", the initial partial answer would be "At least 0", 

and would be improved by adding the total amount from each database as the information became 

available. For instance, if the first blood bank responded with "10 pints", the answer would be 

improved to "At least 10 pints." If the second and third blood banks responded with 5 and 25 

pints respectively, the answer would become "Exactly 40 pints." 

This example underscores several of the points that we have been making: 

It is an example of a real-time process in which the response must be predictable: Hospital X 

cannot wait indefinitely for an answer from the blood banks since in the worst case that there 

is no 0 -  blood it must start rounding up donors to cover any anticipated crisis. However, its 

deadlines would be minutes (or hours, depending on how nervous hospital X is) rather than 

milliseconds. 

A "hand-coded" query system which anticipates this type of query probably would act as in 

the example, while a strict relational algebra system would not be optimized to give partial 

information. 

The "goodness" of the answer given to the user is monotonically non-decreasing with time. 

Given a partial answer "At least 10 pints." the user can infer that the total is definitely not 

less than 10 pints, and possibly any integer greater than or equal to 10 pints (11 or 1198, for 

example). Furthermore, the answer given at an earlier stage is never contradicted at a later 

stage. 

In summary, we propose to develop general purpose databases management techniques for 

real-time database systems. To do this, we must address the primary problems of speed and 

predictability o f  response. To improve the predictability of response, we propose to look for methods 

of i n e m m e n t a l  computation of queries which can be used to generate partial answers in a timely 



manner. To improve the thoughput of transactions in these systems where the queries are largely 

preknown, we propose to  encorporate into the database as much temporal information as possible 

about when values are expected to be updated, and what the deadlines of transactions accessing 

these values will be. We will then develop schedulers appropriate for real-time transactions. 

The rest of this proposal is organized as follows: In the next section we discuss partial compu- 

tation of database queries, and present some preliminary ideas. We then briefly survey research in 

temporal databases, and discuss what additional features are needed to use these ideas in real-time 

databases. We also give insights into how the scheduling of transactions can be improved using 

this extensive temporal knowledge. Section 3 summarizes our expected contributions. The last 

two sections respectively contain a justification of the budget, and curriculum vitae of the principal 

investigators. 

2 The Research Plan 

2.1 Partial queries 

Red-time systems define correctness as providing the correct result in a timely manner. If the timing 

requirements for a computation cannot be met, the computation fails. To relax this definition of 

correctness, one must either be willing to accept the results of computation late, or be willing 

to accept partial, poorer quality results in a timely manner. The first strategy interprets timing 

constraints as being "soft": the completion of a computation or set of computations has a value to 

the system which is expressed as a function of time. The system schedules these computations to  

maximize the total value to the system; however, it does not guarantee that all computations will 

be performed at their local maximum value [5] .  The second strategy requires the computations 

to have an iterative or multi-phase nature. Furthermore, they should be monotonic in the sense 

that "goodness" of the answer is monotonically non-decreasing as the computation proceeds [3]. 

An example of this sort of computation was given in the introduction for a distributed blood bank 

database: The query "How many pints of 0- blood are there?" could intially be answered by 

"At least O", and be improved by adding the amount from each individual database as the values 

became available ("At least 15", "At least 20") until all databases had answered ("Exactly 40"). 

While "soft" timing constraints have recently been proposed for transaction management in 

real-time database systems [6], little work has been done on generating partial or "approximating" 

answers to queries. ([7] is a notable exception to this, and will be discussed later). Unless all 
structures necessary to the query are accessible, there is no notion of an answer. For example, in 

relational databases, a query f(R1, Rz, Rg, ..., 8,) can be thought of as some combination of the 



tables R1, ..., R, using relational algebra operators. For simple expressions involving one binary 

operator, the relationship of tables R1, R2 to the final result is not difficult to reason about: For 

example, if f(R1, R2)= R1 U R2, it is obvious that R1 and R2 each contain a part of the answer, 

although, in general, neither will contain the whole answer: R1 and Rq are both said to be consistent 

approximations of the final result. If f(Rl, R2)=R1 w R2, then every tuple in the join is contained 

in both R1 and R2 , but each table may contain other tuples as well that do not participate in 

the join. Both are said to be complete approximations of the final result. Note in this case that 

a tuple of R1 participating in the join with R2 is a partial description of the tuple in the result 

since it may not contain all the fields in R1 W R2. However, for more complicated expressions like 

f (R1, R2, R3)= R1 W (R2 U R3), it is difficult to reason about the information in R2 and R3 with 

respect to the final result. 

The reason why conventional query languages (and the relational algebra in particular) do not 

seem to be amenable to an iterative method is that the relationship of individual tables (or whatever 

structure is used in the model) to the final result is not explicit. Using the semantic notions 

of complete and consistent approximations, we have recently presented a method of iteratively 

combining structures as they become available [S, 91. That is, the user first specifies the semantic 

relationship of the answer to the query to the individual relations in the database. The system then 

combines the approximations as structures become available in such a way that a partial answer 

is always available. The partial answer consists of a complete approximation, from which the user 

can infer tuples that are definitely not in the answer to the query, and a consistent approximation, 

from which the user can infer tuples that definitely are part of the answer. If some of the structures 

are inaccessible due to concurrent, conflicting activity in the database or due to the fact that they 

are located at a remote node and take too much time to be shipped over the network, a partial 

answer can be constructed. 

To motivate these ideas, we will walk through an example of a real-time monitoring system 

for a hospital and show how the query could be specified and answered iteratively. The system 

is intended to alert the hospital staff when a patient becomes critically ill (CODE - RED), and 

"immediately" provide them with complete and current statistics on the patient (such as blood and 

urine analysis or whatever other tests are being routinely done on the patient, and vital statistics 

that are being constantly monitored such as blood pressure and temperature). The database is 

widely distributed. The business office contains the usual patient information: 

PATIENT(Name, Address, Patientcode, Next0 fKin ,  TekephoneNum, ...). 



The test lab contains results of tests performed on people: 

LAB(PatientCode,TestDate, TestType, Results). 

The intensive care unit contains a history of vital statistics on critically ill patients: 

P - B(PatientCode, BedNum) 

ICU(BedNum, Temperature, BloodPressure, Pulse, ...). 

Each patient is connected to  dedicated machines taking measurements, which detect critical con- 

ditions (such as a rapid rise in blood pressure). When a critical condition occurs, a flag is raised 

and the bed-number is sent to the central computer in intensive care. Note that at any given time, 

any number of patients occupying beds in the intensive care unit may have activated an alerter. 

This can be thought of as a series of relations (ALERTl, ALERT2, ...) where ALERTi contains 

all bed-numbers that have activated an alerter since the time was activated. A current 

report (CODE - RED;) on the patients occupying the flagged beds must then be made available: 

C O D E  - REDi(PatientCode, Name, BedNum, Nex t0  f Kin, 

(TestDate, TestType, Results)*, (Temperature, BloodPressure, Pulse)') 

This query will not necessarily generate a first normal form relation, since there are an unspecified 

number of test types and their results for each patient, as well as a partial history of vital statistics. 

The query may also wish to specify "the most recent" result of each test, or ask for a limited history 

of the results of each test to give the staff an overview of how the patient is reacting. Note that in 

this situation, the staff cannot wait an unbounded amount of time for the complete answer. Often 

a partial answer will give them enough information to determine what immediate action to take. 

This course of action can be improved as more information about the patient is obtained. 

In addition to  the above relations, suppose that we know the following: 

1. Every person who goes code-red is registered as a patient in the business office: PATIENT 

is a complete approximation of CODE - REDi. 

2. Every person who goes code-red is in the intensive care unit: I C U  is a complete approximation 

of C O D E  - REDi. 

3. Every person who goes code-red has had some tests sent to the test lab: LAB is a complete 

approximation of C O D E  - REDi. 



4. Only people who activate the alerter go code-red: for each i, ALERT; is a consistent approx- 

imation of C O D E  - RED;. 

5. The relations are correct and complete. 

6. The patient codes are unique. 

Suppose that beds 1 and 2 simultaneously activate the alerter at  time i (ALERTi = {1,2)), and 

that very shortly later, bed 3 activates the alerter (ALERT;+l = (3)). Intuitively, what we would 

want to do is augment the ALERT relations with information from I C U ,  P A T I E N T  and LAB 

that pertains to  the critically ill patients occupying the listed beds . This could be done at the time 

the alerter was activated by retrieving the local Patientcode from ICU,  and sending the request 

off to the business office and lab. The remote nodes would then send the requested information, 

first about the patients in beds 1 and 2, and then for the patient in bed 3. However, if the remote 

nodes had been previously notified about who was in the intensive care units, they could have sent 

their complete approximations of the requested information as the information became available 

(e.g., as tests were analyzed, they would forward information about anyone in the intensive care 

unit): ( ICU W LAB). Thus, when the derter was activated the necessary information could be 

locally extracted from the complete approximation. 

In our system, either of these approaches could be taken. Given the semantic understanding 

of relations in the system relative to  the abstract concept C O D E  - REDi,  we create a partial 

result, which monotonically improves with time. The partial result is represented by a bounding 

pair (A, B), where A is a complete approximation of the final result and B is a consistent ap- 

proximation of the final result. For example, the bounding pair at the lab computer might be 

(LAB W (IIPatientNumICU), {I), the bounding pair at the business office (PATIENT,  {)) and the 

bounding pairs at the intensive care unit (I, ALERT;), (I, ALERT;+l). Given two bounding pairs 

for a query, (A1, Bl),  (A2, B2), we combine them into another bounding pair (A, B)  where A is 

no "larger" a complete approximation than A1 or Az, and B is "at least as large" a consistent 

approximation as B1 and B2. That is, the new bounding pair is a better approximation of the final 

result since it squeezes the complete and consistent approximations closer together. This continues 

until there are no more bounding pairs to encorporate, or until A and B describe the same set of 

objects, i.e., the answer is determined. For example, combining the bounding pair from the lab 

computer with the bounding pair from the business office would yield the bounding pair 



Combining bounding pairs at  the intensive care unit would yield 

where Ub can be thought of as the "union" operator. These could then be combined to yield the 

pair 

((LAB W (npatientNumICU)) W PATIENT,ALERTi U ~ A L E R T ~ + ~ ) .  

The final answer would be 

where P is a special operator that extends tuples in ALERT;U~ALERT,+~ with the extra in- 

formation from LAB w (IIpatientNumICU) (it can loosely be thought of as the join of these two 

sets). 

The system has several advantages: 

1. It can be used to  provide a partial, monotonically improving answer to a query. A partial 

result can be shown to be "correct" at any time in the sense that if an object is said to satisfy 

the query, it will never be shown not to satisfy the query as computation proceeds; if an 

object can be inferred to  not satisfy the query in a partial result, it will never be shown to 

satisfy the query in an improvement to the answer. 

2. It  is not tied in to any data model in particular (although the example given was relational 

in flavor). 

3. It detects anomalies in the database, which can arise either due to incorrect semantic un- 

derstanding of the structures in the database, or due to errors contained in the database. 

For example, if the patient had been rushed to the intensive care unit in such a hurry that 

they were not admitted correctly and entered into the business office's database, an anomaly 

would arise when the patient activated the alerter: there would be an entry in the consistent 

approximation of C O D E  - RED; with no corresponding entry in its complete approximation 

in the business office. 

A disadvantage of this approach is that the complete approximation of the query may be a very 

large set, and could take too long to enumerate as a partial answer. We would like to be able to use 

the method proposed in [7] to use rules as a shortened, but accurate, description of this set. For 

example, if the patient had had a routine series of tests, all of which came back with normal results, 

the system should avoid listing each test individually but abbreviate with "G-series normal". We 

would also like to understand the relationship of this approach to deductive databases. 



2.2 Semantics of Temporal Objects 

In the previous example, time was frequently associated with the data. For example, each patient 

repeatedly undergoes the same tests (blood and urine analysis, for example), the results of which 

should be indexed by the time at which the sample was taken. Patients in the ICU are also 

constantly monitored for vital signs (a history of information). Furthermore, data has "intervals of 

validity": samples for tests are generally collected every morning and analyzed early in the day. A 

test-result that is more than one day old is probably only of historical interest, but not of current 

relevance. ALERT; also has an interval of validity, based on the period on which vital statistics 

are being measured (or more gruesomely, on whether the patient is alive). 

Although real-time systems that are actually being implemented are much more complex than 

this example, input is usually received from the outside world (via sensors), and the data received 

frequently has a time or interval of validity. Thus, any model that will be useful for a real-time 

system must have a semantics for temporal data objects. 

2.2.1 Overview of Previous Research in Temporal Databases 

There has recently been great interest in encorporating time in databases. A taxonomy of various 

efforts appears in [lo], where they distinguish static databases, static rollback databases, histor- 

ical databases, and temporal databases. Static databases are traditional databases which store a 

"current" snapshot of the real world. Updates overwrite the old information, and there is no way 

for users to  explicitly access past snapshots. Static rollback databases extend static databases by 

storing old snapshots, indexed by time. An update transaction T maps the most recent snapshot 

Sl to a new snapshot S2. The time associated with S2 is the time at which T occurred (tmnsac- 

tion time). Updates can only be made to  the most recent snapshot; the sense of "history" that is 

provided is the history of updates to  the database, rather than the history of the real world. Thus, 

we can ask for the following type of historical information: "What did we believe to have been true 

at  time t?". 

In historical databases, a snapshot represents what the database currently believes to have been 

true at that time. Updates can be made to any snapshot, not just the most recent snapshot; old 

snapshots are not retained. The time associated with a snapshot is the time at which those values 

are currently believed to  have been true (valid time). Thus, if at  some point in time we ask "What 

do we currently believe to have been true at  time t?" we may get a different answer than if we ask 

the same question a t  a later time. Furthermore, we cannot necessarily find out what we believed 

to have been true at some time in the past. 



Temporal databases support both transaction time and valid time. Thus, we can not only ask 

what we believed to have been true at  time t, but see how that belief evolved to what we currently 

believe to have been true at that time. The information retrieved is much more complex than a 

snapshot since it also contains information about transaction and valid time. 

Other types of time also seem to  appear in the literature, which is loosely categorized as "user- 

defined". For example, consider the process of promoting a faculty member [lo]. To do this, a 

promotion letter must be signed validating the promotion. The letter is then forwarded to the 

bursar's office (or whatever office contains the database of faculty members and their ranks), and 

the data entered into the database. Valid time is the time at which the letter validating the 

promotion was signed; transaction time is the time at which the information was entered in the 

database. However, the effective date of the promotion may be retro-active or future to either the 

valid or transaction time, and is therefore said to be "user-defined". 

2.2.2 Extensions for Real-Time Databases 

Since databases in real-time systems are unlikely to be relational, we need a semantics of time 

that is not tied in with a particular data model. With few exceptions, however, the work that has 

been done to  date in temporal databases has concentrated on consistingly extending the relational 

model, and the relational algebra [ll, 12, 131 (exceptions to this are [14]). We would like to develop 

a semantics of temporal objects that is independent of a data model, by extending work currently 

in progress [15, 8, 91. 

Our initial feeling is that historical time, with updates restricted to monotonically improving 

what we know to be true, will be sufficient for most real-time applications: Sensor readings are 

taken, but not corrected once they have been entered in the database. However, valid time must 

be interpreted to  model what we know to be true abou the future, as well as the past. Future 

knowledge has not been widely used to date; notable exceptions to this are [16], who allows future 

updates, and [14], who mentions that one might want to niodel potential futures from a given 

present situation. The reason for this is that future knowlege is often imprecise. Projecting where 

a missile will be at some future time t can be represented by a range of possible positions, none 

of which are known to  be true. As time progresses to t ,  this range will become smaller; when t 

is reached, the answer will be a single value. Note that this type of update is monotonic since 

the set of possible positions is always being reduced in size, and no new positions are being added. 

Future knowledge is also imprecise because the time at which a value will become true is not known 

precisely. For example, one may know that an object will be returning a certain position sometime 

in the period [tl,tl + PI. However, the exact time at which that will occur is not known. Our 



Scranton) 

Figure 1: The extended domain of cities of the world. 

model for historical data must therefore be able to accomodate information that is partial in the 

time domain as well as in the value domain. 

Current work in temporal databases also does not seem to distinguish adequately between a 

value being inapplicable at  time t ("NA"), and the value being applicable but not available at time 

t ("?") (this has been referred to as the "lifespan" of an object, but has not been completely 

developed [17, 11, 14, 181). Note that NA and ? are both more informative than knowing nothing 

about the value of an object (I). Partial or incomplete information has been studied elsewhere, 

where the domain for an attribute is extended to include all possible subsets of the total values 

[19]. For example, if New York, Scranton and Philadelphia were the only cities in the world, the 

hierarchy of values for an attribute CITY whose domain is the cities in the world would be as in 

figure 1. The benefit of using such a hierarchy is that information that is gained as time progresses 

can be used to  improve a past approximation. 

For example, suppose that we are interested in recording where people have lived, and represent 

this as a historical relation, DO MICILES(Name,  Year, City, State). We can think of each person 

as having an infinite number of tuples, from infinity past to infinity future; the times outside the 

lifetime of a person will yield inapplicable values for City and State. A partial relation containing 

information about Chris is in figure 2: Chris was born in 1985, and we have some information 

about where he lived in 1985 and 1986 but know nothing of his life since then. Suppose that we 

then find out that Chris lived in Pennsylvania in 1988, but we don't know if he lived in Scranton 
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Chris 1 [1987, oo) ) l 1 1  

Name 
Chris 
Chris i1985,1'985] 
Chris 1 r1986.19861 

Figure 2: A partial DOMICILES relation. 

City 
N A 

Year 
10.19841 

Philadelphia Pennsylvania 
New York I New York 

State 
N A 

l1988.19881 1 IPhiladelphia,Scrantonl I Pennsylvania 1 

State 
N A 

Name 
Chris 
Chris 
Chris 
Chris 

Chris 1 11989. ool 1 l 1 1  I 

Figure 3: The partial DOMICILES relation after updating. 

Year 
r0.19841 
i1985,1'985] 
[1986,1986] 
~1987,19871 

or Philadelphia. Not only can we insert some partial information about where Chris lived in 1988, 

but we can improve our historical information for 1987 since we now know that he was dive in 

1987, i.e., that information about City and State is applicable (see figure 3). 

In the previous example, we used some sort of "temporal consistency constraint": if a person is 

known to be born at time t l ,  and is known to be alive at time t2 > t l ,  then he is known to be alive 

any time between tl and tz.  The updates that we made to the relation were also "monotonic", in the 

sense that the information was only improved, but never retracted. The example also represents the 

type of temporal information and updating that occurs in real-time systems: in a robot application, 

sensory information may be received from distributed sensors and stored at a central database. This 

information may arrive out of order or even be lost (as in the partial information about where Chris 

lived in 1988). However, when values do arrive, they can be used to improve other values to  which 

they are related that had previously been estimated (due to the value being lost, or delayed). 

City 
NA 

2.3 Schedulers for Real-Time Transactions 

Philadelphia 
New York 
? 

A key way in which real-time databases for surveillance or robotics applications differ from con- 

ventional databases is that many of the queries are predefined, not only in the sense that the data 

to  be accessed can be anticipated, but that the deadlines are known. This knowledge can be used 

to improve the speed of the system in several ways: full or partial pre-execution of the queries, and 

Pennsylvania 
New York 
? 



correct but aon-serializable concurrency control mechanisms. 

2.3.1 Pre-executing Frequently Executed Queries 

Queries that are preknown or anticipated are commonly called views. To eliminate the overhead of 

computing a view every time it is accessed in a relational database system, several proposals have 

considered storing a materialized view. While storing the materialized view frequently simplifies 

queries on the view, updating the base relations incurs the additional expense of maintaining the 

materialized view. Due to  this overhead, it was initially thought that materialized views should not 

be used to support real-time queries [20]. However, for several common types of view definitions 

there are incremental (or differential) techniques for updating the view; tuples can be selectively 

added to  or deleted from the existing materialization rather than completely recalculating the view 

[21, 22, 231. Recent performance comparisons indicate that these techniques perform well (in the 

sense of the "total cost per query" accrued to  the system) if the view is very selective, queries on 

the view retrieve most of the view, and updates are infrequent [24]. 

However, the performance advantages of view materialization depend on the ability to use 

differential update techniques. Such techniques are not possible for geneml views whose definitions 

involve universal quantifiers, i.e., the relational algebra "divide" operator which is not commutative, 

distributive, or associative. We have therefore been looking for other types of redundant data which 

can be used to improve the performance of queries on general views, and have recently proposed 

a new method called semi-materilization [25]. Semi-materialized views represent partially executed 

queries. They support efficient evaluation of queries on the view, but are easy to maintain (see [26] 

for a preliminary performance evaluation). We would like to continue to explore the usefulness of 

this and other techniques when there are several views defined over the same relations. 

2.3.2 Non-serializable Execution 

Serializability has been almost unanimously accepted as the appropriate correctness criteria in 

centralized and distributed database systems. Much research has been done in developing con- 

currency control techniques that guarantee serializability (i.e., the concurrency control mechanism 

must guarantee than any legal schedule is equivalent to some serial execution of the transactions 

represented in that schedule). To extend this notion to real-time databases, one must ensure that 

schedules are not only serializable, but that the timing constraints of transactions can be met. 

Two efforts have recently appeared that extend locking [6] and timestamping [27] to real-time 

applications. 

However, people building large real-time systems are unwilling to pay the price for serializability 



[2]. Predictability of response is severely compromised due to waiting (in locking) or pre-emption 

(in timestamping). Furthermore, transactions may be serialized in such a way that the "most 

recent copy" of data is not used in a calculation, as in multi-version timestamping techniques, or 

locking techniques that force an update transaction to wait instead of making the most recent value 

available to the executing transaction. Red-time transactions frequently want the "current" view 

of the world, whether or not it is the result of a serializable execution sequence; or transactions 

may wish to see the world "as of" a certain time. Serializability is therefore not only too expensive 

in terms of predictability of response, but may not even represent the desired behavior. We would 

like to define an appropriate notion of correctness, and find ways to guarantee correctness while 

increasing the throughput of the system by using semantic knowledge of transactions, and the "as 

of" time of the world view they wish to use. We feel that ideas in [28, 29, 30, 311 will be applicable 

since data may already be replicated to speed queries (materialization or semi-materialization), and 

due to the presence of historical data (although data may perhaps stored at the same node rather 

than being distributed as in the above proposals). 

Since many of the transactions in this environment are anticipated, it may also be possible to 

perform much of the scheduling of transactions in advance, borrowing ideas from scheduling periodic 

and aperiodic real-time jobs with precedence constraints in a multi-processor environment (see [32] 

to name just one and omit a multitude). Database transactions have precedence constraints among 

themselves based on the data-items that they read and write, which disallow certains interleavings 

of a set of transactions. Consider, for example, two transactions Tl and T2: TI reads the set of 

data-items {x, y} and updates {y}; T2 reads the set {x, y) and updates (writes) {x). The executions 

of these transactions cannot be interleaved in any way if a serializable schedule is to be achieved. 

However, if the scheduler allows transactions to be pre-empted (as in timestamping), it may be 

possible to avoid backing out the pre-empted transaction and instead use the partial computation 

when the transaction is resumed. Continuing with the previous example, suppose that x and y 

are large relations, and Tl reads x to compute the total number of tuples in the relation. After 

reading x, suppose TI is pre-empted by T2 who inserts 10 tuples and deletes 4 from relation x. Tl 

does not have to re-read x to calculate the new to td  number of tuples, but can just add 10-4=6 

to the previously calculated total to generate the appropriate update to y. We would like to look 

for generalizations of this technique, similar to incremental or differential updating performed on 

materialized views. 

3 Expected Contribution 

Definition of Issues Specific t o  Real-Time Database Systems. While providing ef- 



ficient access to data and improving the throughput of transactions has been the subject of 

database research for years, there has been almost no work on servicing transactions with 

timing requirements (exceptions to  this are [6, 271). The issues involved in building a general 

purpose (distributed) real-time database have not been clearly enumerated; this proposal is 

a starting point on which we will build. 

a Guaranteed Deadlines Using Partial Results. A key way in which real-time database 

systems differ from traditional databases is the need for predictable response. The first way 

in which we propose to provide this is by guaranteeing an answer by a transaction's deadline 

(this was inspired by the notion of imprecise results for general computations proposed in 

[3]). While the answer may only be partial, it is guaranteed to  montonically improve as time 

progresses. We have several promising results in this area, which we are generalizing to larger 

classes of queries and adapting to  include rules [8, 91. 

Semantics of Temporal Data Objects. The notion of "partial computations" can also 

be used to  predict future values: "Old" sensor data is never overwritten or discarded, and 

can be used to predict (partial) future values. Partial future values can be used to improve 

fault tolerance as well as predictability of response. Furthermore, new or out of sequence 

updates can monotonically improve past predictions using a notion of temporal consistency 

constraints. 

a Model of Real-Time Transactions and Notion of Correctness. Another way in which 

we plan to  provide predictable response is by capturing semantic and temporal information 

about transactions: their timing requirements, the data objects they access, how "recent" the 

values must be, and how "accurate" the values must be (in terms of partial results). A notion 

of "correct execution" for real-time transactions will then be developed, extending ideas in 

[28, 29, 30, 311. 

Develop Efficient Schedulers. The semantic information captured about transactions 

and the objects they access will then be used to develop efficient schedulers for real-time 

transactions. One idea is to preprocess as much computation as possible; here, we have 

some initial results on deciding what redundant data to store to  optimize frequently executed 

queries [25, 261. Another idea is to schedule actions of transactions in advance to eliminate 

unpredictable contention over shared objects (331. A third idea is to use partial results to 

avoid completely recomputing a transaction if it is pre-empted. 

This is a new and exciting area of research. Many of these preliminary ideas were drawn from 



a workshop held last December [2] at which representatives from TRW, IBM and Boeing discussed 

the "real" real-time applications they were developing. All of these people pointed to the need 

for basic research in real-time distributed database systems. We also have access to  a number 

of real-time applications in which to test the validity and usefulness of our ideas: a distributed 

multisensory robot system currently being developed here at the University of Pennsylvania; and a 

real-time distributed database for credit card calling being developed at AT&T. We feel that this 

environment will guide us in developing ideas that are not only theoretically sound, but practically 

important. 
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