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ESTIMATION OF 3-D MOTION AND STRUCTURE BASED ON A TEMPORALLY- 

ORIENTED APPROACH WITH THE METHOD OF REGRESSION 

Abstract 

In this paper we argue that the 3-D velocity of a single point up to a scalar factor can be 
recovered from its 2-D trajectory under the perspective projection. We then extend the idea 
to the recovery of 3-D motion of rigid objects. In both cases measurements are collected 
through temporal axis first, while keeping the amount of measurements in each frame 
minimal. We may use muliple features to get a more accurate estimate if they are available. 
This approach called temporally oriented approach requires us to introduce the explicit model 
for the evolution of 3-D motion. Our analysis is based on the assumption that the 3-D motion 
is smooth so that its 3-D velocity can be approximated as a truncated Taylor series. Regres- 
sion relations between unknown motion parameters and measurements for a single point and 
rigid body are derived. The method of Maximum Likelihood is used to estimate the motion. 
The uniqueness of determining the 3-D motion of a single point is discussed. Experimental 
results obtained from simulated data and real images are given to illustrate the robustness of 
this approach. 



1. INTRODUCTION 

Estimating the 3-D motion and structure of objects in space from image is one of the major problems 

in computer vision. Resulting estimates may play an important role in building intelligent robot, track- 

ing moving objects and autonomous navigation. In the past few years, a substantial amount of work 

have been done by many researchers in finding these estimates. However, it is widely held that most 

existing schemes are very sensitive to noise even when synthetically generated measurements are used 

[Agga85, Fang84, Wu86, Broi86b, Roac80, Lin861. In this paper, a new algorithm which relies on a 

large number of images is proposed. Many experimental results dealt with simulation measurements 

and real images are given to illustrate the robustness of this approach. 

There are two kinds of measurements we can obtain from image squences. They are, respectively, 

the measurements of projective positions [Agga81, Lin86, Seth87, Fang84, Rana801, which are defined 

as the positions in the image coordinates corresponding to 3-D feature points on the object, and the 

measurements of optical flows [Ullm8 1, Horn8 1, Wohn83, Hild83, Nage83, Schu85, Hara8 1, Tret84, 

Enke84, Heeg861. Using these two measurements lead to two different kinds of approaches in recov- 

ering the 3-D motion: token-matching approaches and optical flow approaches. 

For the token matching approaches, point features corresponding to motion of points in the scene 

have been studied extensively [Ullm79, Roac80, Nage8 1, Long8 1, Hum8 1, Tsai8 1, Tsai82, Tsai84, 

Zhuan86, Faug87, Nage861. Other features like straight lines in the scene have also been used. Liu 

and Huang [Liu86] showed that the rigid body motion can be determined by using six lines over three 

frames. Mitiche, Seida and Aggarwal [Miti861 used the conservation of angular configuration as a rigi- 

dity constraint and showed that four lines in three frames are sufficient to determine the rigid body 

motion. Faugeras, Lustman and Toscani [Faug87] showed that at least three views are necessary when 

line segments are used. Tsai studied the conic arc to determine the motion [Tsai83]. 

For the optical flow approach, 3-D motion is determined from the mesurements of the optical 

flows and their temporal and spatial derivatives. Longuet-Higgins and Prazdny [Long801 showed that 

the rigid motion and local orientation of a curved surface patch could be determined by using the spa- 

tial derivatives of the optical flow up to second order. Waxman and Ullman [Waxm85] derived a 

kinematic approach to optical flow analysis from the fluid mechanics. They showed that the slopes, 

curvatures and motion could be recovered for both planar and curved surfaces. Longuet-Higgins 

[Long84], Subbarao and Waxman [Subb85] and Kanatani [Kana851 have independently obtained closed 

form solutions for planar surfaces in motion. Waxman, Kamgar-Parsi and Subbarao [Waxm86a] 

obtained close-form solutions for curved surfaces based on the solution of planes. Wu and Wohn 



[Wu86] recovered the rigid body motion and the surface normal by using the spatial and temporal 

derivatives up to first order. 

Aggarwal and Nandhakumar [Agga88] gave an excellent and up to date review of the whole field 

of estimating 3-D structure and motion from sequences of monocular and stereoscopic images. They 

described some of the different mathematical formulations of the token-matching approach and 

optical-flow approach, and compared in detail of these two different approaches. They also presented 

an oview of the fusion of stereo analysis and motion analysis, and discussed different algorithms in 

finding the correspondence between the features in the image sequences. 

Although the token matching approach and optical flow approach use different measurements of 

the motion and follow different procedures in estimating the 3-D motion and sturcture of the object, it 

is observed that they are biased more toward the spatial information of image sequence than the tern- 

poral information. In the token matching approach, the main theme is to find the minimal number of 

points and condition that guarantee the unique solution, when N (=2,3, typically) frames are given. 

Similarly, the optical flow approach requires spatial derivatives of the optical flow field evaluated from 

two or three frames. Here, the theme is "Find the minimal order spatial derivatives when the flow 

field is given." Of course, these two approaches do use the temporal change of the images, but they 

use the images separately. Most of them use only two or three frames at a time. Let us call this kind 

of approach a spatially-oriented approach (SOA). 

There are a number of problems we need to face when the SOAs are persued. Firstly, if the mov- 

ing object does not have enough features on it, then SOAs can not estimate the 3-D motion of this 

object. Secondly, we need to segment the scene such that we can use the features belonging to the 

same object. The more features we use, the deeper level of segmentation required. Thirdly, if we only 

use two or a few frames to find the 3-D motion, no matter what method we use, the estimation prob- 

lem becomes ill-posed itself. Even for human beings, we have difficulty even in making qualitative 

interpretation for the 3-D motion when we have only two snapshots of a moving object. If the time 

interval between these two snapshots is very small, we may assume the motion is constant between the 

snapshots and use them to estimate the motion. But the small change in these snapshots make it very 

difficult to determine the motion, especially when there are noises in the observation. If the time inter- 

val between the snapshots is large, we can not even "imagine" how the object moves between our 

observations. 

In this paper, we propose a new approach to the estimation of 3-D motion from image sequences. 

This approach seeks for the temporal information prior to the spatial information, such as the trajectory 



of a moving point in the image plane or the temporal change of the slope of a line which is the projec- 

tion of a 3-D line. We call this kind of approach a temporally-oriented approach (TOA). The irnpor- 

tance of TOA is that we can avoid many problems we face in SOAs. Since we observe motion over an 

extended period of time, we can reduce the number of features which are required by SOAs. Actually, 

we will show that we can analyze the motion even for a single particle. Consequently, the problem of 

requiring multiple features can be eliminated and the burden for the segmentation is reduced. Also, as 

we use more frames to estimate the 3-D motion, the problem itself becomes more well-posed. This can 

be justified as follows. When we observe a moving object, such as a flying shuttle and a hunting leo- 

pard, the longer we observe, the more accurately we can estimate its motion and predict where this 

object will be. 

A number of researchers have proposed the use of a large number of frames in estimating 3-D 

motion in order to improve estimates and/or to simplify the procedure in finding the measurements of 

motion [Weng87, Broi86a,b, Wu86, Waxm86b. Boll851. However, their approaches just reverse the 

thinking of TOA. Their motivation for using multiple frames is that they want to use temporal infor- 

mation to "help" or "stabilize" spatially-oriented approaches in determining the motion. In TOAs, we 

rely on the temporal information from the moving object while keeping the number of feature points in 

a single image as small as possible. Of course we may use multiple features to get a more robust esti- 

mate if they are available. Therefore, the TOA and the previous multi-frame approach are different in 

their motivation. The following is some reviews of the previous work which utilizes a large number of 

frames. 

Weng, Huang and Ahuja [Weng87] proposed the locally constant angular mometum model in 

estimating 3-D motion from the measurements of projective positions. Their model assumed that angu- 

lar momentum is constant over short time intervals, the moving body possesses an axis of symmetry 

and the motion of the rotation center is approximated by a polynomial. The first two assumptions are 

required in their derivation because they wanted the Euler's equations integrable. In our approach, we 

do not make these two assumptions because we derive directly the relation between the unknown 

motion parameters and the projective positions, rather than solving the equations for the external torque 

and the angular momentum. In finding the 3-D motion, they first estimated the rotation matrices and 

translations between the frames by using "two-frame" motion analysis and then estimated the motion of 

the rotation center from these estimated rotation matrices and translation, i.e., their approach still con- 

siders the frames separately. In our approach, we utilize all the available information in the temporal 

and spatial domains to estimate the translation velocity of the rotation center, the rotation of the rigid 

body and the relative depth simultaneously. Furthermore, in their paper, only simulations on binocular 



image sequences were reported. 

Wu and Wohn [Wu86] recovered 3-D rigid body motion and the surface normal from optical 

flows by using the spatial and temporal derivatives of optical flows up to the first order. The estimate 

was more robust than that of the previous methods which require spatial derivatives up to the second 

order. In finding 3-D motion, their approach uses more temporal information but still relies on spatial 

information. 

Broida and Chellappa [Broi86a,b] estimated motion parameters sequentially by using projective 

positions of multiple points in a sequence of noisy images. They used the dynamic model to describe 

the temporal behavior of the estimated parameters and the iterative extended Kalrnan filter to find the 

estimate. In [Broi86a], they estimated the motion of a two-dimensional object by using one- 

dimensional projected images. They assumed that the image coordinates of the feature points were 

available, that the motion was unforced, that the absolute distance to the center of rotation was known 

and that the noise level in the Kalman filter formulation was known. In [Broi86b], they extended their 

work the estimation of 3-D rigid body motion. Motion was modeled by a truncated Taylor series but 

only the linear terms were used in their derivation. The simulation was conducted only on very special 

motion such as pure translation or rotation about a fixed and known axis. The basic difference 

between their work and our approach is that they use the nonlinear, coupled vector differential equation 

to describe the relationship between the unknown parameters at different time while we use the regres- 

sion relation to describe this relationship explicitly. The number of the unknown parameters they 

needed to estimate are more than three times of that of our approach. 

Bolles and Baker [Boll851 proposed the "Epipolor-plane image" (EPI) analysis to estimate the 

pure translation of a camera or the absolute depth in a stationary enviroment. They used very dense 

image sequences in estimation so that the estimates could be determined by simply measuring the 

slopes of the lines on EPI planes. Hence, their motivation for using multiple frames was to simplify the 

estimation procedure. They pointed out that their geometric approach does not work for general 

motion. 

The key step in our temporally-oriented approach is to integrate the information from each frame 

effectively so that we can use the measurements in all available frames. We will derive the regression 

relations [Spre69, Will591 for the motion of particle and rigid body in which the unknown motion 

parameters are related to the projective positions explicitly. Then we will use the method of Maximum 

Likelihood to estimate the motion from noisy measurements of the projective position. Note that in 

using these regression relations to find the estimate, we will include d l  the measurements for different 



feature points on the rigid body. This means that we use all the information in the temporal domain 

as well as the spatial domain in estimating the motion. Furthermore, we can use the previous estimates 

of the parameters, as many regression models do, to predict where the next projective positions will be. 

This is important in obtaining the reliable measurement of the projected positions because this predic- 

tion will decrease the chance of mis-matching the features and reduce the size of the searching space 

of the moving features on the image plane. Also, this prediction is useful in solving the problem of 

object occlusion. 

In this paper, we assume that the measurements of projective positions corrupted with noise are 

available. We assume that the motion of the object is smooth so that the 3-D velocity of the motion 

can be approximated as the truncated Taylor series. Figure 1 shows the camera model and the coordi- 

nate system we will use in our derviation. 

The rest of this paper is organized as follows. Section 2 studies the motion of a particle. We 

prove that we can determine uniquely the 3-D velocity of the motion up to a scale factor from the pro- 

jective position sequence. We then derive the regression relation between motion parameters and pro- 

jective positions. The method of Maximum Likelihood is used to estimate the motion from noisy 

measurements. Experimental results and discussions follow. Section 3 studies the motion of rigid 

body. We propose to use the state equation approach to find the regression relations between unknown 

motion parameters and projective positions of the rigid body. The state equation describes the evolution 

of motion in time. We first consider the case of constant translation and rotation and then extend the 

study to general motion. We also investigate how to reduce the number of unknowns if all the points 

lie on a planar surface. The method of Maximum Likelihood is used to find the estimate. Simulation 

results and discussion are given. Section 4 is the conclusion of this paper. 

2. MOTION ANALYSIS OF A MOVING PARTICLE 

In this section, we will estimate the instantaneous 3-D motion of a moving particle by using the 

sequence of its projective position. Section 2.1 studies the model of the motion and the uniqueness of 

the estimation. Section 2.2 discusses how to estimate the motion parameters when measurements are 

noisy. Experimental results and discussions are given in section 2.3. 

2.1. MODEL OF THE MOTION AND UNIQUENESS OF THE SOLUTION 

Let R(t) = [X(t) Y(t) 2(t)lT, [ ~ ( t )  j(t)lT and y(t) = [V,(t) VY(t) vZ(t)lT be the 3-D position, the projective 

position and the instantaneous velocity of a moving particle at time t, respectively. Let 

~ ' ( t )  = [v,(t) v;(t) v;(t)lT be the velocity l ( t )  scaled by l/Z(O). Then we have 
d 

-R(t) = V(t) (2.1.1) 
dt - 



If the particle moves smoothly in the 3-D space, we may model the y(t) as a truncated Taylor series 

and express the components of l ( t )  in the following form. 
"x "Y "z 

VX(t) = c. vxi ti, VY(t) = vyi t', VZ(t) = C v, ti 
i = O  i = O  i = O  

Note that the coefficients in the above expansion have their physical interpretation. For example, 

[Vxo Vyo vZolT and [V,, Vyl vZllT represent the velocity and the acceleration of the moving particle at 

time zero, respectively. The selection of nx, ny and n~ in (2.1.3), the order of the motion, is dependent 

on the temporal behavior of the motion, i.e., how smooth the object moves in the 3-D space. It is well 

known that we can only estimate the translation of a moving object up to a scale factor because of the 

perspective projection. Thus, our objective is to find the unknown coefficients in (2.1.3) scaled by 

l/Z(O) from the measurements of the sequence of the projective position [x(t) y(t)lT. 

Integrating (2.1.1) and using (2.1.3), we obtain 

Consequently, we have 

where (v;;, i = 0, ..., nx), {v;,, i = 0, ..., ny] and {v;, i = 0, ..., nZ] are the coefficients in (2.1.3) scaled 

If N(t) and D(t) are polynomials with degrees n~ and n, respectively and the constant coefficient 

of D(t) is one, then N(t)/D(t) is referred to as a rational function with degree (n,, n,). Thus, from 

(2.1.5), the components of the projective position x(t) and y(t) are rational functions with degrees 

(nx + 1, nz + 1) and (ny + 1, nz + l), respectively. 

If we know all the coefficients in (2.1.5), then the trajectory [x(t) y(t)lT on the image plane over 

the time is uniquely determined. Our motion analysis just reverses this correspondence, i.e., we want to 

determine these coefficients from the given trajectory. It is worth asking whether or not this determi- 

nation is unique when the orders of the model of the velocity in (2.1.3) have been prefixed. In the fol- 

lowing we will show that, from the projective positions of a moving particle, we can recover the 

instantaneous velocity up to a scale factor uniquely. First, two related lemmas are given. 



Lemma 1 
If x(t) and y(t) are irreducible rational functions on t E [t,, td with degrees (nx + 1, nz + 1) and 

(ny + 1, nz + I), respectively, and x(t) and y(t) are not equal to zero, then the 1x2 functions fi(t), i=1, ... 
, nx + ny + nz + 3 defined as 

are linearly independent on [t,, tz) over the field of real numbers. 

Proof: We prove this lemma by contradiction. Assume that fj(t), i  = 1, ..., nx + ny + nz + 3, are 

linearly dependent on [t,, td over the field of real numbers, then there exist real numbers R, 

i = I, ..., n, + n, + nz + 3, not all zero, such that 

for all t in [t,, td. This implies, 

If 4+nX+nv+2 = 0, i =  1,  ..., nz+ 1, then 

This implies CL, = 0 for all i, which contradicts the hypothesis that q ' s  are not all zero. If 

a i + n x + n y + 2  f 0, i = 1, ..., nz + 1, then 

Consequently, we obtain that x(t) and y(t) are rational functions with degrees (nx, n& and (ny, n&, 

respectively. This contradicts the assumption of x(t) and y(t) are irreducible. Hence, the - f's are linearly 



independent on [t,, td. Q.E.D. 

Lemma 2 

Let fj(t), for i=l, ..., n, be lx  p real-valued continuous functions defined on [t,, tJ. Let F be the nxp 

matrix with f j  as its row, i.e., ~=[f i~(t)  g ( t )  . . . g(t)lT. Define the Gram matrix of the f 's as 

t2 

W(tl, t2) = 1 F(t) ~ ( t ) ~  dt. Then &(t) are linearly independent on [tl, td if and only if the nxn constant 

matrix W(tl, t2) is nonsingular. 

Proof: The proof of this lemma can be found in [Chen84]. 

Theorem 1 (Uniqueness of particle motion) 

If the instantaneous velocity y(t) of the moving particle is modeled as truncated Taylor series up to 

degree nx, ny and n,, respectively, and x(t) and y(t) in (2.1.5) are irreducible and are not equal to zero, 

then the scaled velocity - ~ ' ( t )  ( = - V(t)) can be recovered uniquely from x(t) and y(t). 
Z(0) - 

Proof: From (2.1.5). we have 

In matrix form, (2.1.11) can be rewritten as 

where &(t) i= 1, ... , nx + ny + nz + 3 are defined in (2.1.6). Multiplying ~ ~ ( t ) ,  on both sides and 

integrating from tl to t2, we obtain 
L? 

[via . . . vknx vi0 v;"~ V, . . . vA, 1 W(tl, tz) = I [x(t) - ~ ( 0 )  ~ ( t )  - ~(011 FT(t) dt (2.1.13) 
'1 

= [x(t) - x(0) y(t) - y(0)I (2.1.12) v . . v,, v, - . - v;, v& . . - v;, ] 

where W(tl, tZ) is defined in lemma 2. From Lemma 1 and 2, the matrix W(t,, t2) is nonsingular. Con- 

- 
5 (0 
f2(t) 

- 

~x+"y+nz+3(t)  - - 

sequently, we have 
I2 

[v;, . . v,, vk0 - . . VknY V& . . VL, ] = [J [x(t)-x(0) y(t)-y(O)] ~ ~ ( t )  dt] wl ( t l ,  tr) (2.1.14) 



1 Thus, from (2.1.3). -V(t) can be recovered uniquely. Q.E.D. 
Z(0) - 

There are some degenerate cases of x(t) and y(t) for which we can not recover the velocity 

uniquely. If x(t)=y(t)=O, then Vx(t) = Vy(t) = 0 and VZ(t) can be arbitrary. In this case, the particle 

moves along the optical axis. If x(t)=x(O) and y(t)=y(O), then velocities l/Z(O) y(t) with 

Vz(t) = X(0) Vx(t) = Y(0) Vy(t) are the solutions which satisfy (2.1.5). In this case, the x(t) and y(t) are 

reducible. Note that the above two cases are the only degenerated cases for the the motion of constant 

velocity. For the higher order model of the velocity, we will study further the physical interpretation 

of the solutions when the rational functions in (2.1.5) are reducible. 

2.2 ESTIMATION FROM NOISY MEASUREMENTS 

If there is no noise in the measurements of [x(t) y(t)lT, then we can use (2.1.14) to find the 3-D instan- 

taneous velocity of the moving particle. However, in practice, we can only get the noisy measurements 

of the projective position at discrete times. In this section, we address the problem of finding the 

motion of a moving particle from these measurements. We will discuss the importance of (2.1.5) in 

estimating the motion and then apply the method of Maximum Likelihood to find the estimate. 

As we discussed in the previous section, if we model the instantaneous velocity y(t) as a trun- 

cated Taylor series, then (2.1.5) gives the explicit relation between the projective images [x(t) y(t)] and 

the unknown parameters: the coefficients in (2.1.3) scaled by l/Z(O), i.e., (v$, i = 0, 1, ..., nx), 

{v;;, i = 0, 1, ..., n,), and (vA, i = 0, 1, ..., n,). This means that this relation is regressive [Spre69, 

Wi11591. This observation is useful in two aspects. First, as many regression models do, we can use 

the previous estimates of the parameters to predict where the next projective position will be. This is 

important in obtaining the reliable measurements of the projective position because this prediction will 

reduce the size of the space to be searched for the moving features on the image plane and decrease 

the chance of mis-matching the feature. Second, we can apply any of the standard approaches in 

finding the estimates for regression relations and the analysis for the performance of these estimates to 

our motion analysis. In the following, the method of Maximum Likelihood is discussed to estimate the 

motion. 

Let [xn(tj) yn(tj)lT be the noisy measurements of [x(t) y(t)] at time tj, j=O ,..., J, where (J+l) is the 

number of avaliable frames. Define the motion parameter vector 8 and the measurement vector g as 

follows. 

0 = [via . . v;lnx vGo vGny v&, . . v;,, ] - (2.2.1) 



Let f(M18) -- be the joint probability density function of - M which are parametrized by 8. For some obser- - 
vation of the projective positions, - M is equal to some fixed value m and f@lg) is a function of 8. This 

function is called the likelihood function and we denote it as L@ ,E), i.e., L@,* = f(g = gig. The 

method of Maximum Likelihood is to seek - 8 k )  which satisfies L@@, 9 = max(L(0, m)). The 
9 - -  - 

interpretation of this estimate is that o(@ is the parameter most likely to have produced the measure- 

ment m [Spre69]. 

Let us model the noise in the measurements xn(tj) and yn(tj), j=1, ..., J, as white, zero mean Gaus- 

sian noise with constant variance, which are uncorrelated, then finding the Maximum Likelihood esti- 

mate of - 8 is equivalent to solving the least squares problem. That is, if we define the sum of squares 

function 

then the unknown parameters {v;, i = 0, 1, ..., nx}, {v;~, i = 0, 1, ..., ny}, and {v;, i = 0, 1, ..., nZ} can 

be found by minimizing S over the space of parameters. Note that the regression relations x(t) and y(t) 

in (2.1.5) are nonlinear functions with respect to the unknown parameters. Nonlinear optimization can 

be used in finding the estimates. There are 2 x (J+l) measurements and nx + ny + nz + 3 unknowns in 

this optimization. In order to improve the estimate, we may consider the x(to) and y(b) in (2.1.5) as the 

additional unknowns. A number of experiments which dealt with the synthetic measurements and real 

images were conducted and will be discussed in next section. 

2.3 EXPERIMENTAL RESULTS 

23.1. Experiments on synthetic measurements 

In these experiments, we use (2.1.5) to generate the exact trajectory of a moving particle by entering 

the 3-D position at time zero and the velocity of the particle. Adding white, zero mean Gaussian noise 

to these exact data, we obtain the noisy trajectory as our measurements xn(t) and yn(t). We then estimate 

the velocity by solving the least squares problem in (2.2.3). We use the "Zxssq" routine of IMSL pack- 

age to obtain the estimate. Zxssq is based on a modification of the Levenberg-Marquardt algorithm 

which eliminates the need for explicit derivatives. The initial values of the estimates are set to zero. 

We consider the case of constant velocity. The focal length of the camera is set to one unit. The visi- 

ble portion of the image plane is (-0.36, 0.36) x (-0.36, 0.36) units. This portion corresponds to the 

viewing angle of + 20 degrees. We consider this observed image as 256 x 256 pixels. 

Experiment 1: Different noise level 



In this experiment, we compare the estimates at different noise levels. The standard deviations of the 

noise are 0.5, 2.74 and 5 pixels, respectively. The 3-D velocity is (5.8, 6.2, 20) units/second. The time 

interval between frames is 0.05 second. The 3-D position of the pariticle at time zero is (0, 0, 20) 

units. Figure 2a shows the exact and noisy trajectories on the image plane. (Ordy the trajectory with 

2.74 pixels error is shown). Figures 2b and 2c are the x and y components of the trajectory. Figures 

2d-2f are the relative error in percentage of the estimated v;, V; and v;. From these results, we have 

the following observations. The estimated errors decrease as the noise in the measurements decrease. 

The estimated errors for V; and V; are smaller than that for V; as expected. As we use more frames 

in finding the estimate, the estimated error decreases. Note that if we only use three frames, which is 

the minimal number of frames for determining the constant motion, to find the estimate, the estimated 

error is very large. This justifies our earlier contention that the problem of estimating the motion is 

ill-conditioned when we only use a small number of frames. 

Experiment 2: Monte Carlo analysis 

In this experiment, we run the simulation for fifty different sets of noise and compute the sample mean 

and standard deviation of the estimates as we change the number of frames used in the estimation. 

The 3-D velocity of the particle is (7.5, -8.8, 30) unitsfsecond. The time interval between frames is 

0.04 second. The standard deviation of the noise is 2.5 pixels. The 3-D position of the pariticle at time 

zero is (0, 0, 20) units. Figures 3a, 3b and 3c show the exact and a typical noisy trajectories and their 

x and y components. Figures 3d-3f show the sample mean as well as + 1 standard deviation of the esti- 

mates versus number of frames used in the estimate. It is observed that the sample mean converges to 

the true values and the sample standard deviations decrease as we use more frames in our estimates. 

The estimated errors of V; are larger than those of V; and v;, and the error is significantly large when 

we use only a few of frames in finding the estimates. 

Experiment 3: Higher order motion 

In this experiment, the motion is modeled as constant acceleration. The 3-D velocity and the accelera- 

tion of the moving particle at time zero are (20, -16, 30) unitsfsecond and (-10, 9, -15) units/second2, 

respectively. The time interval between frames is 0.04 seconds and the standard deviations of the noise 

is 2.74 pixels. The 3-D position of the particle at time zero is (-6, -1, 20) units. Figure 4a shows the 

exact and noisy trajectories on the image plane. Figures 4b and 4c are the x and y components of the 

trajectory. Figures 4d-4f are the exact and estimated v;((t), V;(t) and vi(t) ,  respectively. From these 

results, we observed that the estimated velocities scaled by l/Z(O) are covergent to the true values. 



2.3.2. Experiments on real images 

In these experiments, we generate the image sequences and get the measurements of the projective 

positions as follows. We put a CCD camera on a robotic arm and move the arm with known velocity 

respect to a stationary airplane model. This is equivalent to object motion with the same velocity 

respect to the camera in the reverse direction. We threshold the observed images and calculate the 

center of mass of the binary images to yield the projective positions (x(t) y(t)) in pixels. These values 

are transformed to the world coordinate system as follows. 

x(mm) = (~(pixels) - x,) x xscale x xyratio, y(mm) = (y(pixe1s) - y,) x yscale 

where (x,, yJ is the center of image, (xscale, yscale) is the conversion factor between the physical 

image plane and the digitized image, and xyratio is the aspect ratio of camera. Then we normalize the 

above values with respect to the focal length of the camera to get our measurements. Figure 5 shows 

the set up of these experiments. Note that only one camera is used. In our camera calibration, G, y,, 

xscale, yscale and xyratio are 253.53 pixels, 257.20 pixels, 0.023 mm/pixel, 0.0134 mdpixel and 

0.7288, respectively. The focal length of the camera is 8.5 mm. The image is 512x512 pixels in size. 

We consider the case of constant velocity and the sampling rate is 1 framelsecond. 

Experiment 4 and 5 

Figures 6a and 7a show the images of zero frames overlapped with the threshold images of frames 0, 

8, 16, 24, 32, 40 and 48 for experiments 4 and 5, respectively. Figures 6b and 7b show the measure- 

ments of x and y components, respectively. Figures 6c and 7c are the estimates of v;(, V; and V; and 

figures 6d and 7d show the ratio of V; / V; and V; / V; for these two experiments, respectively. 

For experiment 4, the 3-D velocity is (6, 4, -5) mmlsecond. The z component of the particle at 

time zero is measured as 46.4 cm. In figure 6c, the estimates converge to the value of (-0.0130, 

-0.00855, 0.0102), which is equal to (6.0320, 3.9672, -4.7328) rnmlsecond. This is quite close to the 

input velocity of the camera. The estimates of the ratio of V; / v;( and V; / V; in figure 6d are conver- 

gent to the true values. For experiment 5, the 3-D velocity is (4, 4, -4) mm/second. The z component 

of the particle at time zero is measured as 47.2 cm. In figure 7c, the estimates converge to the value of 

(-0.008636, -0.008469, 0.007703), which is equal to (4.0762, 3.9974, -3.6358) mm/second. This is still 

close to the input velocity of the camera. Figure 7d shows that the estimates of the ratio of V; I V; and 

V; I V; are also convergent to the true values. 



3. MOTION ANALYSIS OF A MOVING RIGID BODY 

In this section, we are interested in estimating the motion of a moving rigid body from its image 

sequence. Section 3.1 studies the model of the motion. Section 3.2 proposes to use the state equation 

approach to find the regression relations between the unknown motion parameters and the projective 

positions. The method of Maximum Likelihood is used to estimate the parameters. Experimental results 

and discussions are given in section 3.3. 

3.1 MODEL OF THE RIGID BODY MOTION 

Suppose that there are (N+l) feature points on the visible surface of the rigid object and we have 

measured the projective positions of these points as the object moves in front of a camera. It is well 

known that any rigid body motion can be represented by the translation of the rotation center and the 

rotation of the whole object with respect to this rotation center. We also know that we can only esti- 

mate the translation up to a scale factor because of the perspective projection. Thus, our objective is to 

find this translation of the rotation center up to a scalar factor and the rotation from the observed pro- 

jective positions. 

Let &(t) = [Xi(t) Yi(t) zi(t)lT, [xi(t) yi(t)lT and E(t )  = Wix(t) ViY(t) viZ(t)lT be the 3-D position, the 

projective position and the instantaneous velocity of i-th feature point at time t, respectively. Let yi(t) 

be the velocity of zero-point Vo(t) scaled by l/Zo(0). Then we have 
d 

- 
-R.(t) = X(t) 
dt 

(3.1.1) 

Integrating (3.1.1) from 0 to t, we can find the &(t) in terms of X(t), i.e., 
t 

&(I) = &(O) + 1 E(T)  d~ 
0 

Let - Q(t) = [Qx(t) QY(t) QZ(t)lT be the angular velocity of the motion. From the assumption concerning a 

rigid body, we have 

X<t)  - IoCt) = g(t )x(S(t )  - &(t)) (3.1.4) 

where Ro(t) - is the rotation center. We can express (3.1.4) alternatively in the following form. 

Similarly to the motion of a particle, we will model the velocity of a rigid body as the Taylor series. 



The key step of our approach in estimating the rigid body motion is to derive the explicit relation 

between the projective positions and the unknown translation ~ & t )  - and the rotation SZ(t). - The deriva- 

tion of this relation is given in next section. 

3.2 STATE EQUATION APPROACH IN FINDING THE REGRESSION RELATION 

In this section, we describe the state equation approach to finding the regression relations between the 

unknown motion parameters and the projective positions. Basically, we are going to solve the equation 

of rigid body motion in (3.1.5). We then propose to use the method of Maximum Likelihood to esti- 

mate the motion parameters. By using these regression relations, we utilize all the available information 

in the temporal and spatial domains to estimate the translation velocity of the rotation center, the rota- 

tion of the rigid body and the relative depth simultaneously. We first consider the case of constant 

translation and rotation and then extend the study to general motion. We also investigate how to 

reduce the number of unknowns if all the points lie on a planar surface. 

3.2.1 CONSTANT TRANSLATION AND ROTATION 

For convenience, we use - V(t) instead of yo(t) to represent the translation of the rotation center. If the 

translation and the rotation of a moving rigid body are constant, i.e., 

V(t) = [Vxo VYO vZOIT* = [Rxo nyo ~ , " l T  - (3.2.la,b) 

then the projective position of the rotation center is given, from (3.1.2) and (3.1.3), as follows. 

where [vFXo vaYO v ' ~ ] ~  = - [Vxo Vyo v,]' is the translation velocity of the rotation center with the 
G(0) 

scalae factor 1 1 Zo(0). Because of the constant rotation, (3.1.5) is a state equation of the state vector 

&(t) - Ro(t)] - with the constant matrix A. Its solution is 
A@-%I 

S<t>  - Eoo<t) = e &(to) - Eo(to)) (3.2.3) 
A('-@ 

where e is the state transition matrix and eAt is equal to the inverse Laplace transform of (sI - A)-'. 

Let the components of eA' be qj, i j=  1,2,3, then we have 

Q; (sz; + n;) 
a,, = - + (1 - cos at) {L} sin cot (3.2.4a,d) 

o2 o2 o2 0 

n; (nz + sz;) 
a,, = - + QzQx 

0 s  at ,  {;a = - (1 - cos ot) t} 2 sin o t  (3.2.4b,e) 
o2 o2 o2 

n; (n; +a$) 
a33 = - + cos at, ka = * (I - cos at)  {;} sin at (3.2.4c,f) 

o2 o2 o2 W 



where w = f(Q2 + Q{ + Q;)~'~. There are two solutions for the w in solving the state equation. The 

absolute values of them are equal to the amplitude of 9. Note that we have the same qj in (3.2.4) for 

two different a ' s  and our unknowns for the rotation are fix, Qy and fi,, not w. From (3.1.2) and 

(3.1.3), we have 

where Z, = Zi(0)/Zo(O), i=1, ..., N is the relative depth between the i-th point and 0-th point at time zero. 

Equations (3.2.2) and (3.2.5) give the explicit relations between the projective positions xi(t) and 

yi(t) and the unknown parameters via, via, vb, Rxo, QYo, QZo and Zio, i= 1, ... , N. That is, they are the 

regression relations we want to find. Thus, as we discussed the motion of particle in section 2, we can 

estimate the unknown parameters by using the method of Maximun Likelihood due to these regression 

relations. Furthermore, if we model the noise in the measurements xi(tj) and yi(tj) of the projective 

positions xi(t) and yi(t) at time tj, i=O,l, ..., N, j= 0,2, ..., J, where (J+l) is the number of available frames, 

are white, zero mean Gaussian noise and they are uncorrelated, then finding the Maximum Likelihood 

estimate is equivalent to solving the following least squares problem. Define the sum of squares func- 

tion as 
S = C [xni(tj) - xi(tj)12 + [yi(tj) - yi(tj)12 (3.2.6) 

i. j 

Then the parameters, V;O, V;O, v&, Qxo, QyO, Qm and Zio, i= 1, ... , N, can be estimated by minimizing 

S over the space of parameters. There are 2 x J x (N+l) measurements and (6+N) unknowns in this 

optimization problem, so that we need at least three frames to recover the motion. In order to improve 

the estimates, we may consider the xi(to) and yi(to), i=O,l, ..., N, in (3.2.5) as additional unknowns. It is 

important to note that in estimating the rigid body motion by solving the above least squares problem, 

we have used, simulaneously, all the available frames and feature points on the rigid body. This means 

that we utilizes all the information in temporal domain as well as the spatial domain to find our esti- 

mates. 

3.2.2 MOTION OF PLANAR SURFACE 

If all the observed points lie on a planar surface, we can reduce the unknown parameters as follows. At 

time zero, suppose all the points lay on the planar surface, 

Z = p X + q Y + r  (3.2.7) 

where p and q are the slopes of the planar surface, and r is the distance between the planar surface and 

the projective center along the optical axis. Then we have 



Zi(0)=pXi(O)+qYi(O)+r i=O,l, ...B 
This implies 

Zi(0) = r [l - p xi(0) - q yi(0)]-' 

Thus the unknown parameters Zio, i=1, ..., N, are reduced to p and q. Note that the above derivation is 

still valid even for the general motion disucussed in the next section. 

3.2.3 GENERAL MOTION 

If the motion of the rotation center is not constant, we can model its translational velocity by using a 

truncated Taylor series as we discussed the motion of particles in section 2, i.e., 

"x "Y "z 
VX(t) = C v, ti, VY(t) = C vyi t', VZ(t) = C v, t' 

i = 0 i = 0 i = O  

Then we have 
"x "Y 

xo(0) + v;(; ti+'/(i+l) yo(0) + C v;; t'+'/(i+ 1) 

where vii ,  v;; a n d ~ ;  are the coefficients in the expansion with the scale factor 1 / Zo(0). If the rota- 

tion g(t) is not constant, then the state equation of Ri(t) - Ro(t) in (3.1.5) is time-varying and its solu- 

tion is as follows. 

Ri(t) - Ro(~) = @(t, b) (Ri(b) - Ro(to)) 

where @(t, to) is the state transition matrix of the state equation and it is the unique solution of the 

matrix equation 

with the initial condition @(b, to) = I. Unfortunately, there is in general no close-form expression for 

@(t, to) in terms of A(t) except for some special cases [Chen84]. Numerical methods are needed to 

solve the matrix differential equation (3.2.13) if we want to get the state transition matrix from the 

matrix A(t). However, we can show that the state transition matrix is nonsingular. From (3.1.6). we 

know that A(t) is skew symmetric with the components SZx(t), Ry(t) and SZz(t). This implies that the 

state transition matrix is orthononnal. This follows from the following theorem. 

Theorem 2 

If the time varying matrix A(t) is skew symmetric, i.e., ~ ~ ( t )  = -A(t), then the state transition matrix 

O(t,b) defined in (3.2.13) is orthonomal, i.e., 



The proof of this theorem is given in appendix. Consequently, we can find 

Thus, if we can recover the state transition matrix, then we can find the A(t) as well as the rotation 

R(t) from (3.2.15) and (3.1.6). Defining the ij-th components of @(t, 0) as cqj, i j  = 1, 2, 3, we have - 

Equations (3.2.11) and (3.2.16) give the explicit relations between the projective positions and the unk- 

nown motion parameters a ' s  and V's. Thus, we still find the regression relation for the general motion 

and we can use the method of Maximum Likelihood as well as the method of least squares to estimate 

the motion. 

3.3 EXPERIMENTAL RESULTS 

Similarly to the experiments for the motion of particle, we use (3.2.4) and (3.2.5) to generate the exact 

trajectory of the moving feature points by entering the 3-D position of the points at time zero, the 

translation and rotation of the motion. Adding white zero mean Gaussian noise to these exact data, we 

obtain the noisy trajectories as our measurement. We then estimate the velocity by solving the prob- 

lem of least squares in (3.2.6). We again use the "Zxssq" routine to obtain the estimate. We utilize all 

the measurements of different feature points and frames simultaneously. We consider the case of con- 

stant velocity. Camera parameters used in the simulation are identical to those used in section 2.3.1. 

Experiment 6: Different number of feature points 

In this experiment, we compare the estimates when the number of feature points varies. The 3-D posi- 

tions of the seven points used in the experiment are (0,0,20), (4,-4,20), (-2,-4,20), (4,-3,20), 

(1.3,1.4,25), (-1.5,2.3,15) and (1,-1.30) units. We use the first three, five, and seven points of them to 

find the rigid body motion. Zero-th point is the rotation center of the motion. The standard deviations 

of the noise are 2.5 pixels. The 3-D translation is (-4,0,10) units/second and the angular velocity is (- 

1,-1.2.5) radian/second. The time interval between frames is 0.04 second. Figure 8a shows the exact 

and noisy trajectories of the feature points on the image plane. Figures 8b and 8c are the x and y 



components of the trajectories, respectively. Figures 8d-80 are the relative error in percentage or 

estimated error in unitslsecond of the estimated v;(, v;, v;, G, Qy, Qz, Zlo, Zm, ZS0 and 

respectively. From these results, we have the following observation. The estimation errors decrease if 

we use more points in the estimation process. The estimation errors for the relative depth are very 

small. As we use more frames in estimating the motion, the estimated error decreases. Still, if we use 

ordy a few frames to find the estimate, the error of the estimate is very large even if we use seven 

points. This also justifies our earlier contention that the problem of estimating the motion is ill- 

conditioned if we use only a small number of frames. 

Experiment 7: Monte Carlo analysis 

In this experiment, we run the simulation for fifty different sets of noise and compute the sample mean 

and standard deviation of the estimates as we vary the number of frames. The 3-D positions of the 

three feature points used in this experiment are (0,0,20), (4,-4,20) and (-2,-4,20) units. The 3-D trans- 

lation is (-4,3,10) unitslsecond and the angular velocity is (-1.2,1.3,2.3) radianslsecond. The time inter- 

val between frames is 0.04 second. Figure 9a shows the exact and noisy trajectories of the feature 

points on the image plane. Figures 9b and 9c are the x and y components of the trajectories, respec- 

tively. Figures 9d-9k show the sample mean as well as It one standard deviation of the estimated v;, 

v;, v=, STx, STyr QZ, ZI0 and & versus number of frames used in the estimation, respectively. From 

these results, we observe that the sample mean converges to the true values and the sample standard 

deviations decrease as we use more frames. The error is large when we use only a few frames in 

finding the estimates. 

4. CONCLUDING REMARK 

The method we presented in this paper requires relatively large number of frames and the smoothness 

of 3-D motion during that time span. Since some simple feature points can be extracted almost in real- 

time using special-purpose hardware, it is not unrealistic to expect to collect the necessary measure- 

ments in 1-2 seconds. Also the 3-D velocity in the real world does not change rapidly unless the object 

is exerted by high-frequency forces. In order to find the estimate faster and to capture the variation of 

the 3-D motion, we are working on the sequential algorithms in solving our least square problems. 

Segmenting feature points into indepently moving objects is an open, but a difficult problem. We 

are currently working on this problem still following the temporally-oriented approach. The 3-D total 

velocity at individual feature points shall provide better segmentation (as opposed to the segmentation 

schemes based on the 2-D velocity). 



Appendix: Proof of Theorem 2 I 
I 
I 

Taking the transpose on both sides of (3.2.13), we have hT(t, r,,) = aT(t, b) ~ ~ ( t ) .  Because A(t) is skew I 
I 
I 

d symmetric, &T(t, b )  = - oT(t, b )  A(t). It implies that -(oT(t, r,,) @(t, t,,)) = 0. So, aT(t, r,,) @(t, to) is a I 

dt I 
I 

constant matrix for all t. But we know that @(I,,, to) = I, so we have Q(t, @(t, b )  = I. Q.E.D. 
I 
I 
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Fig. 1. Camera model and coordinate system. 

Exact and noisy measurements of x-compment versus frames 
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Fig. 2b. Noisy measurements of x-component of the 
moving particle versus number of frames for experi- 
ment 1. Standard deviations of the noise are 0.5, 
2.74 and 5.0 pixels. 
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Fig. 2c. Noisy measurements of y-component of the 
moving particle versus number of frames for experi- 
ment 1. Standard deviations of the noise are 0.5, 
2.74 and 5.0 pixels. 
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Fig. 2a. Exact and noisy trajectories of the moving 
particle for experiment 1. Standard deviation of the 
noise is 2.74 pixels. 
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Relative e m r  (%) of V; versus frames 

Fig. 2d. Relative error (%) of V; versus number of 
frames for experiment 1. Standard deviations of the 
noise are 0.5 (O), 2.74(A) and 5.0 (El) pixels. 
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Fig. 2f. Relative error (%) of V; versus number of 
frames for experiment 1. Standard deviations of the 
noise are 0.5 (0). 2.74(A) and 5.0 (0) pixels. 
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Fig. 2e. Relative error (%) of V; versus number of 
frames for experiment 1. Standard deviations of the 
noise are 0.5 (O), 2,74(A) and 5.0 (0) pixels. 
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Exact and noisy trajectories (2.5 pixels error) 
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Fig. 3a. Exact and noisy trajectories of the moving 
particle for experiment 2. Standard deviation of the 
noise is 2.5 pixels. - 



Wact and noisy measurements of x-cunponent versus frames 
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Fig. 3b. Noisy measurements of x-component of the 
moving particle versus number of frames for experi- 
ment 2. Standard deviation of the noise is 2.5 pixels. 
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Fig. 3d. Sample mean and k standard deviation of 
estimated ~i versus number of frames for experi- 
ment 2. 
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Fig. 3c. Noisy measurements of y-component of the 
moving particle versus number of frames for experi- 
ment 2. Standard deviation of the noise is 2.5 pix- 
els. - 
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Fig. 3e. Sample mean and k standard deviation of 
estimated V; versus number of frames for experi- 
ment 2. 
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Fig. 3f. Sample mean and + standard deviation of 
estimated V; versus number of frames for experi- 
ment 2. 
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Fig. 4a. Exact and noisy trajectories of the moving 
particle for experiment 3. Standard deviation of the 
noise is 2.74 pixels. 
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Fig. 4b. Noisy measurements of x-component of the Fig. 4c. Noisy measurements of y-component of the 
moving particle versus number of frames for experi- moving particle versus number of frames for experi- 
ment 3. Standard deviations of the noise are 2.74 ment 3. Standard deviations of the noise are 2.74 , pixels. pixels. 



Fig. 4d. Exact and estimated v;(t) versus number of 
frames for experiment 3. - . . - -- -- 
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Fig. 5. Setup for real image experiments. 
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measurements of x and y components versus frames 
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Fig. 6a. Image of zero frame added with threshold Fig. 6b. Noisy measurements of x and y components 
images of frames 0, 8, 16, 24, 32, 40 and 48 for (in pixels) vmus number of frames for experiment '.: 
experiment 4. 4. . - - 
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Fig. 6c. Estimates of v;, V; and V; (in . 
uniWsecond) versus number of frames for experi- '4 
ment 4. - .  - - - - - -  



Fig. 7a. Image of zero frame added with threshold 
images of h n e s  0, 8, 16, 24, 32, 40 and 48 for 
experiment 5. - - 
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Fig. 7c. Estimates of v;, V; and V; (in 
UniWseoond) versus number of frames for expui- 
ment 5. - - - - -- - 
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mclLIllnmmts ofx and y components versus fnmes 

Fig. 7b. Noisy meamements of x and y components 
(in pixels) versus number of frames for experiment 
5. 
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Exact and noisy trajedories (25 pixels error) 
' . . ' l . . . . I , . . , l . . . . I . , . . l . . . .  

Fig. 8a Exact and noisy trajectories of the moving 
particles for experiment 6. Standard deviation of the 
noise is 2.5 pixels. 
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Fig. &. Noisy measurements of y-component of the 
moving particle versus number of frames for experi- 
ment 6. Standard deviation of the noise is 2.5 pixels. 
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Fig. 8b. Noisy measurements of x-component of the 
moving particles versus number of frames for exper- 
iment 6. Standard deviation of the noise is 2.5 pix- 
els. . . . ~  .... . -- -~ ..-.... ~- -. 

Relative error (90) of Vi versus frames 
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Fig. 8d. Relative error (%) of V; versus number of 
frames for experiment 6 by using three points (0). 
five points(A) and seven points (0. 
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Fig. 8e. Estimated error of V; versus number of 
frames for experiment 6 by using three points (0). 
five points(A) and seven points 0. 
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Fig. 8f. Relative error (%) of V; versus number of 
frames for experiment 6 by using three points (0). 
five points(A) and seven points (0). 
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Relative error (%) of Ry versus frames 

Fig. 8g. Relative error (%) of Qx versus number of Fig. 8h. Relative error (%) of Qy versus number of 
frames for experiment 6 by using three points (0), frames for experiment 6 by using three points (0). 
five points(A) and seven points (0. - - five points(A) and seven points (0). 

. -  - 
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Fig. 8i. Relative error (%) of QZ versus number of 
frames for experiment 6 by using three points (0). 
five points(A) and seven points (El). 
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Fig. 8j. Relative error (%) of Zlo versus number of 
frames for experiment 6 by using three points (0). 
five points(A) and seven points (a. 
- - 
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Fig. 8k. Relative error (%) of 210 versus number of Fig. 81. Relative e m r  (95) of & versus number of 
frames for experiment 6 by using three points (0). frames for experiment 6 by using five points(A) and 
five points(A) and seven points (0. 

-. seven points (0). - - 

t 
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Fig. 8m. Relative error (%) of versus number of 
frames for experiment 6 by using five points(A) and 
seven points (0). 
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Fig. 8n. Relative error (%) of versus number of 
frames for experiment 6 by using seven points 0. 
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Fig. 80. Relative error (%) of & versus number of 
frames for experiment 6 by using seven points 0. 



Exact and noisy trajectories (25 pixels error) 
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Fig. 9a. Exact and noisy trajectories of the moving 
particles for experiment 7. Standard deviation of 
the noise is 2.5 pixels. 
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0 ' 3 6 6  

- 0 3 6 t . m m n l . a 1 m 1 a . . n 1 m n  . f m .  

0 10 20 30 40 
Frames 

50 

Fig. 9c. Noisy measurements of y-component of the 
moving particles versus number of frames for exper- 
iment 7. Standard deviation of the noise is 2.5 pix- 
els. 
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Fig. 9b. Noisy measurements of x-component of the 
moving particles versus number of frames for exper- 
iment 7. Standard deviation of the noise is 2.5 pix- 
els. .- -- -- 
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Fig. 9d. Sample mean and zk standard deviation of 
estimated V& versus number of frames for experi- 
ment 7. 
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Fig. 9e. Sample mean and + standard deviation of 
estimated V; versus number of frames for experi- 
ment 7. 
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Fig. 9g. Sample mean and + standard deviation of 
estimated Qx versus number of frames for experi- 
ment 7. 
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Fig. 9f. Sample mean and + standard deviation of 
estimated V; versus number of frames for experi- 
ment 7. 
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Fig. 9h. Sample mean and + standard deviation of 
estimated L?, versus number of frames for experi- 
ment 7. 
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Sample mean and fo of versus frames 

Fig. 9i. Sample mean and + standard deviation of 
estimated !& versus number of frames for experi- 
ment 7. 
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Sample mean and 5x1 of Zlo versus frames 
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Fig. 9j. Sample mean and + standard deviation of 
estimated Zlo versus number of frames for experi- 
ment 7. . --- - 

- 

Fig. 9k. Sample mean and + standard deviation of 
estimated & versus number of frames for experi- 
ment 7. 
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