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Abst rac t  

This paper outlines our current progress in active sensor control. We consider the 
problem of controlling a nonlinear observation system observing data implicitly related 
to parameters of interest. We show how linear estimation theory can be applied to this 
problem, and develop the notion of an information m a p  showing the information expected 
from sensor viewpoints. We discuss the robustness of these techniques, and propose a 
method to enhance their robustness. We expect these maps to  be useful in active sensor 
controI. 

1- f ntroduction 

If robots are to perform tasks in unconstrained environments, they will have to rely on sensor 
information to make decisions. However, sensors are not perfect imaging devices. Signal noise 
and discretization effects lead to information that has some uncertainty associated with it. 
In an unconstrained environment, robot decision m a h g  will depend on world models built 
from sensor information, so the information needed for proper action will be uncertain. Thus, 
in order to  make informed decisions, the robot will need to  take action explicitly devoted to 
reducing uncertainty. For this to be possible, sensory systems must he controllable, or active 

PI- 
Active perception frees a. system from the restriction of a single, static image by assuming 

the sensor is free to  probe and explore the environment in search of data. This removes the 
restriction of the single image and replaces it with the much more flexible approach of actively 
seeking and using several scenes or samples. Active perception does not necessarily imply that 
the sensors physically move in space, but rather that they have controllable parameters that 
are changed in an intelligent fashion to  influence the data gathering process. For example, 

*Acknowledgements: This work was supported in part by RSF/DCR 8410771, NSF DMC-8411879 and DhfC- 
12838, Airforce F49620-85-K-0018, DARPA/ONR, ARhlY/DAP.G-29-84K-0061, NSF-CER DCR82-19196 A02, 
NIH NS-10939-11 as part of the Cerebrovascular Research Center, by DEC Corp., and LORD Corp. 



consider a camera fixed to  the end of a robot manipulator. The camera can be located in 
space by moving the arm, and image quality is influenced by the setting of aperture and focus. 

The problem we are considering is how to control active sensors in order to  reduce un- 
certainty about the environment. In [2], we outlined a general approach for the reduction of 
quantitative and qualitative uncertainty. For the purposes of this paper, uncertainty can be 
attributed to two causes: uncertainty due to  signal noise, and incompleteness of information 
due to limitations of sensor scope. At the micro (signal) level, the simplicity of data and the 
nature of the noise leads to consideration of statistical methods of modeling and analysis of 
signal noise. Since any information derived from a noisy signal will itself be subject to that 
noise, ad we will assume that all information in a model can be represented via probability 
distributions. 

F'rom a geometric standpoint, scope limitations provide the fundamental constraint in sen- 
sor control. The choice of viewpoint can substantially influence both the quantity and quality 
of information a sensor furnishes. For example, a camera must be pointed at an object to 
observe it. Different points of view give different information about the object. Moreover, we 
can expect that the quality of information varies with viewing distance, aperture and other 
controllable parameters. 

Our approach to this problem is based on mapping the information expected from different 
vantage points. At this point in time, we are considering the problem of refining information. 
We assume that we have some prior information on an object, and we seek to  control the 
sensor in order to  improve this estimate. This paper outlines our methods for fieacting the 
information content of camera views. We are currently developing methods for sensor control 
based on these "information maps." 

1.1 Formalizing the Problem 

A sensor can be thought of as a controllable measurement system. The choices of control 
parameters determines the information returned by the sensor. We can formalize a controllable 

. measurement device as a mathematical system of the following general form: 

where u is the control vector for the measurement system, and p is the quantity we are at- 
tempting to  observe. We observe z, a function of both u and p contaminated with additive 
noise V(.). In general, we assume that V also varies according to our choice of control. 

Our problem is to maximize, by choice of u, some measure of the information z carries about 
p. In control theory, the ability to estimate p based on z is referred to as the observability of 
a system. For the purpose of this paper, we will assume the observed system is static so that 
we are left with a point estimation problem. Then, the observability of p is basically the the 
information matrix of p resulting from the observation system. 



The information matrix of a distribution is closely related to the variance covariance matrix 
of the distribution. Recall the variance of a univariate density f is defined as 

In the multivariate case, we consider the variance-covariance matrix given by ~[(x-%)(x-% 
In the case of the Gaussian distribution, the information matrix is the inverse of the variance- 
covariance mat.rix. 

1.2 Previous Work 

There has been some relevant work in the control theory literature related to  controllable 
measurement subsystems. Meier [3] deals with specializations of Equation 1 in which in which 
V(-) is constant zero-mean Gaussian noise, and the system is linear in z as in 

In this case, the best measurement control for a dynamic system can be derived. It  is 
shown that the optimal control is open-loop and the solution is given by a dynamic program. 

Miiller and Weber [4] consider the related problem of maximizing the observability/controllability 
of a system linear in both state and control. Their approach is to  maximizing a suitable norm 
of the observability matrix by adjusting certain parameters of the system. The norms they 
discuss are the trace, determinant, an maximum eigenvalue of the observability matrix. 

Our problem is distinguished by a number of important criteria. First, we may not be 
able to directly observe the quantity we wish to estimate. Our observations may only bear an 
implicit relation to the parameters of interest. Second, our systems tend to be nonlinear in both 
state and control. Third, our measurement noise depends on the control of the measurement 
system. Finally, and perhaps most importantly, our information is limited by sensor scope. 
Our information may vary widely and discontinuously based on what information is presented 
t o  the sensory system. Hence, we have taken the approach of first investigating the properties 
of typical measurement systems. Once we have an understanding of the relationship between 
control and information, we can solve the problem of control. 

2 Statistical Information 

The information matrix resulting from a number of measurements depends on the estimation 
technique employed. Possibly the simplest technique is the Minimum Square Error solution. 
In this case, nothing needs to be assumed other than the data has additive noise. The problem 
can be stated as finding a S which minimizes: 



Maximum likelihood is applicable if we known a distribution, f(-), for the observed data. 
In this case, we attempt to  pick 6(-) so that the probability of the observed data is maximized. 
This method can be stated generally as: 

When the data has a gaussian distribution, mean square error is equivalent to maximum 
likelihood techniques. 

If both a prior on 8 and a distribution on the observations, a , are known then we can 
attempt to minimize the mean square error. That is, we attempt to find the 6(.) such that: 

In the general case, we know that the 6 that minimizes Equation 2 is 

This solution looks deceptively simple, but it  depends on having the joint distribution of 0 and 
z which may be extremely complex to derive. However, if z and 8 are jointly gaussian, then 
the problem is much simpler as S(.) is known to be an affine transformation on z. In this casz, 
if the prior on 8 is N(d,Ae) and z has distribution N(p,A,), we have: 

The general solution for linearly time-varying B is what is referred to as the Kalman filter. 

2.1 Deriving an Observation System Based on Constraints 

In general, we may not be able to directly observe the information of interest. Instead, we are 
forced to  make observations which bear some implicit relationship to the parameters we seek. 
This can be generally expressed in terms of a constraint of the form: 



J5'e assume the parameter p is the desired information. Observations of z serve to reduce 
the degrees of freedom in p. Mathematically, p belongs to a set of points forming a manifold. 
As observations of a are taken, this set is restricted until (ideally) a single point is left. Realis- 
tically, the observations of x will be contaminated with noise, forcing us to  estimate p. Thus, 
we would like to apply the statistical methods outlined in the previous section. 

The problem is one in constrained nonlinear optimization. In general, these solutions are 
not analytically or computationally tractable. ?Ve must then search for a way to  simplify the 
problem. One way of simplifying the problem is to reduce the nonlinear constraints to Linear 
ones, and then apply the solution for linear observatioil systems given in Equations 3 and 4. 

3 First Order Techniques 

One way to  avoid the complications of nonlinear optimization is to  approximate the nonlinear 
constraint with a linear one, and then apply linear techniques. For our general constraint 
eqiiation, this is done by approximating equation 5 with the first order terms of a Taylor series 
centered about prior estimates for x and p. 

We will assume that our observations of x are taken from a system of the form 

where x(.) is the true parameter, and T V ( - )  represents zero-mean gaussian noise with variance- 
covariance Aw. We will further assume that p has is distributed about a prior mean j? with 
variance-covariance A,. Expanding Equation 5, we get 

By dropping all terms of higher order than linear, this equation can be rewritten to form 
a linear observation system: 

Kote that from Equation 6 we know E[z  - x] = 0 and E[(x  - z)(x - = Arv. 



Figure 1: The Positioning Problem 

Applying linear estimation techniques to this formulation will result in information matrices 
of the form: 

~ ; l =  J J ~ A ; ~  M 
A - 

(9) 

3.1 Geometric Information Maps 

JTTe will apply the linearization methods to the problem of determining general position of an 
object in two dimensions. The problem can be posed as follows. Assume an observation system 
and an object are related to a fixed base coordinate system by [5] 

'Tb = translate(x,, y,, O)rot(z, a,) 

OTb = translate(x,, yo, O)rot(z, a,) 

These can be combined giving the combined transformation from camera coordinates to object 
coordinates. 

Let Of; = qx;, y;, 0, 1IT denote a homogeneous feature position in object coordinates, and 
let ,zi = ?xi, yi,O, 1IT represent an observation of f; in camera coordinates. The vector p we 
are estimating is p = [x,, yo, aOlT of an object. We will do this by building a constraint based 
on correlating sensor observations y with features f;. 

A feature f; appearing in the camera maps into the object frame as 

f i  (z;, p) = 'TOCzi = 



- sin(a0) (yo - yc) - cos(ao) (zo - x,) + sin(ao - a,) yi + cos(cto - a,) xi 
- cos(ao) (yo - y,) + sin(ao) (so - x,) + cos(ao - a,) y; - sin(ao - a,) x; 

For this single observation, we know that F;(z;,p) - f' = 0. We can build the complete 
constraint for the object by letting F(z,p) = [F1(zl,p), F2(22,p), . . . , K ( z n ,  p)IT and 0 = 
[fF,fT,. . . , fz]. Then we we know that 

Observation that each Fi is linear in z;. If the z; are independent, then the information 
on p resulting from each observation of zi is independent of other observations. That is, V of 
Equation 7 is of the form: 

Therefore, V" will also be diagonal. The variance covariance computed in Equation 9 
from independent observations will be a sum of the quadratic forms of M: v;-' Mi. Thus, 
i t  suffices to  derive the information matrix for arbitrary z; and sum over i for the complete 

-*- information matrix. 

Taking partial derivative of 12 with respect to z and p gives 

dg cos(ao - a,) sin(cuo - a,) - =  [ 
az - sin(ao - a,) cos(ao - a,) I 

Now, by employing Equations 8 we get the expression: 

To this point, we have not considered visibility issues. However, it is clear that not a l l  
points will be visible a t  all times, and we can only make observations on visible points. If 
a point is not visible, we need to set the information associated with observing it to zero. 
Visibility is easily computed by the following technique: 



Figure 2: Sample Object 

1. Project all feature points of an object to the viewing plane (line in two dimensions). 

2. Compute the convex hull of the projected points. 

3. Use the points forming the convex hull to divide the feature points into two classes; 
visible and not visible. We receive observations z; only from those f; that are visible. 

Let us denote the set of observations resulting from visible points by 

Z = {zilzi corresponds to a visible point) 

This results in the following simple expression for the information from a single camera view: 
..--. 

3.2 Results to Date 

We have implemented these results in our laboratory. This section shows the information 
maps resulting from a simulated camera observing a polygon as shown in Figure 2. In order to 
generate these plots, we have coupled the parameters of *T, by x, = r*cos(a,) and y, = cos(a,) 
and plotted with respect to T and a,. The axis are oriented so that r is increasing to  the right, 
and a, is increasing to  the left. The variance of observations was modeled by a constant 
variance on oi,  and a quadratic function of the form (x - 5)' on crz. This turns out to  be close 
to models observed in depth from stereo? 

Figure 3 shows the determinant values resulting when a; is equal to the minimum values 
achieved by a:. The maximum information values are achieved when the right hand portion of 
the polygon is in viewed from approximately the optimal distance. Figure 4 shows the separate 
components of the information matrix. The rapid variation in information values comes from 
the fact that Equation 16 is discontinuous due to the effects of occlusion. At every value of a, 
where a point appears or disappears from view, there is an information discontinuity. 

'Eric Krotkov, personal communication 



Figure 3: Determinant of Ayl with respect to  T and a, 

Figure 4: Components of the Information Matrix 



F i r s t  Order variance - Perspective Projection ~ i r s t  Order Variance - Orthoqonal Projection 

Figure 5: Plots of a: for Orthogonal and Perspective Projections 

3.3 Comparison to nonlinear Solution 

For specific cases, we can evaluate the exact solution to the estimation problem and compare 
the results with our approximations. In the example above, the nonlinearity was in the angle 
a,. If we have two points we can derive the angle of the transform by computing, via inverse 
tangent, the angle of the feature points; and offset that angle by the inclination of the feature 
relative to the object and the c m e r a  relative to  the feature to get a,. We are currently 
comparing the first-order approximation of azo with the actual value of azo based on this 
relationship. To first order, we have 

2 - cos2(6, + aj - ac)oi + sin2(&, + aj - ac)oz Y2 - 91 
Qa0 - 

llf2 - flll 
9 al = tar'-' (x, - 

The quantity 6, represents a prior estimate of a,. Figure 5 shows plots of variance with respect 
to  r and a, for orthogonal and perspective projections. In these plots, u; = 11 and a: follows 
the distance squared model. The plots we made for two feature points symmetric about a line 
through the origin of the object frame. 

We are currently evaluating the actual values of azo under different assumed initial proba- 
bility distributions. If we assume that cy = y2 - yl and c, = x2 - xl are uniformly distributed 
in an interval of length 2 b, and 2 b, respectively, then we can derive a closed form solution 
for f,(-) where z = cy/c,. 

2 
lmin(+,cy -by)  - r n a x ( ~ , ~ , + b , ) ~ l  if r > O 

2 2 f z ( 4  = m i  ( c  - b y  - m ( c  +by)  1 if r < o 
I min(c, - by)2 - max(cy + by)21 otherwise 

Then, aio is given by the usual  tan-l(z)] which we evaluate numerically. This integral 



is difficult evaluate since it is discontinuous an exhibits radical behavior over the integration 
range. Our initial results suggest that it is close to the first order approximation. 

If we assume that c, = y2 - y1 and c, = x 2  - x 1  are normally distributed with unequal 
variance and non-zero mean, then we cannot even derive a closed form solution for f,(.) where 
z = c,/c, in general. It is known that, for zero mean processes, the final distribution is 

b b 
fa(') = 62 cosz(a) + sinZ(a) 

where b = \/$ 
Even in this case, a: is not analytically derivable. For the case of non-zero mean, we must do 
a numerical integration to  derive the distribution 

Then, to evaluate E[tan-I(%)], we must again numerically evaluate 

We are currently checking our implementation of this integration. Our initial results suggest 
that the first order approximation is not a good approximation of the correct vdue. 

4 Robustness Issues 

It should be noted that the resulting information maps are really random variables. That 
is, the variance is conditioned on observations. Moreover, the computed information maps 
depend on a linearization. The linearization is done at a given point. This technique depends 
on having a relatively dependable prior to furnish the point to linearize about. If the previous 
estimate is bad, then we can expect that the linearization, and hence the information maps, 
diverge substantially from the true values. There are a number of approaches to solving this 
problem. For instance, we could go to a second or higher order approximation, but we loose 
the advantage of a simple linear system. 

One approach we are considering pursuing is to apply game-theoretic techniques to the 
problem. Recall from Equation 1 that our measurement system took the form 

In order to linearize this, we were forced to pick a prior point estimate for p. Rather than do 
this, we can instead think of a relatively bad p so that whatever action we take is safe. In this 
case, we can state our estimation problem in the following form: 



min max EllAz - all2 H E 7-1 
A H (17) 

M7e specify a set of possible H's, 7-L and choose our estimation procedure based on the 
n70rst member of that set. Some general results in game theory assure us that there is a single 
best A, but possibly multiple (though a finite number) of A's with an associated distribution. 
In the case of multiple values for H, we will use the distribution as though it were our prior 
on II and solve the estimation problem. Application of these techniques should yield robust 
information maps. 

5 Conclusions and Discussion 

We have presented results pertaining to the prediction of information from sensor systems. I e  
consider the sensor as a controllable measurement system observing the environment. These 
observation are related to the parameters of interest via general constraints. We apply lin- 
earization techniques to  derive a linear observation system, and look at the variance-covariance 
matrices resulting from mean-square estimation procedures. These results are extended to  ac- 
count for occlusion and missing observations. 

Concurrent with this, we are attempting to evaluate the robustness of linearized constraints. 
In general, linearization relies on having a reasonable prior estimate to linearize about, and 
smoothness of the function being linearized. We are investigating robust techniques for esti- 
mation base on game theory. Our initial investigations seem promising. 

We plan to use information maps for control of sensors. Several interesting questions arise 
due to the scope limitations of sensors. For instance, it is possible the information of interest 
is not observable from the current vantage points. What policy should we employ to make it 
observable? If the information is observable, then, by the law of large numbers, we can always 
get good information by taking a sufficient number of obser~ations. What if we have time and 
processor constraints? Should we move? Where should we move? We foresee addressing all of 
these questions. 

Acknowledgements: The author would like to thank Max Mintz for his help and guidance 
in doing this research. 
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