
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1988

RFMS Software Reference Manual RFMS Software Reference Manual

Hong Zhang
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Hong Zhang, "RFMS Software Reference Manual", . January 1988.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-01.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/632
For more information, please contact repository@pobox.upenn.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76393505?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/632
mailto:repository@pobox.upenn.edu

RFMS Software Reference Manual RFMS Software Reference Manual

Abstract Abstract
This manual explains the software of the Robot Force and Motion Server (RFMS), a high performance
robot control system designed and implemented in the GRASP laboratory. In this system, the robot
manipulator is considered a force/motion server to the robot and a user application is treated as a
request for the service of the manipulator. The user application is created on one of the Unix/VAX
machines in 'C' programming language as a set of function calls. The application is carried out in a multi-
processor controller, which consists of Intel single board computers and provides computing power
necessary for computationally intensive tasks. The VAX machine and the Intel controller communicate
through Ethernet, a local area network, which also allows interaction between the user and sensors.
Design principles of the system can be found in Section 2.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-01.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/632

https://repository.upenn.edu/cis_reports/632

RFMS SOFTWARE
REFERENCE MANUAL

Hong Zhang

MS-CIS-88-01
GRASP LAB 130

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 191 04-6389

January 1988

Acknowledgements: This research was supported in part by National Science Foundation
under Grant No. ECS-8411879, NSF-CER grant MCS-8219196, and U.S. Army grants
DAA29-84-K-0061, DAA29-84-9-0027.

RFMS SOFTWARE REFERENCE MANUAL

Hong Zhang

Department of Computer and Information Science
The University of Pennsylvania

Philadelphia, PA 19104-6389

December, 1987

CONTENTS

Page
.. . 1 Introduction 1

. ..*..........................*.........*.............*................... 2 User Interface 2
2.1. Programs of the User Interface ... 3

... 2.2. An Example 5

... 3 . Ethernet Interface 6
... 4 . Intel Controller 8
.. 4.1. Supervisor 9

4.1.1. Background Process ... 10
... 4.1.2. Real-time Process 11

.. 4.2. Joint Process 14
... 4.3. Math Process 1 5

.. . 5 Postscript 16

APPENDICES

... Appendix A: RoboNet 17
A.1. User's Guide ... 17

.. A . 1.1. The Network Software on the VAX Side 18
... A . 1.2. The Network Software on the Intel Side 19

.. A.2. RoboNet: An Overview 20
.. A.3. The Physical and Data Link Layers in RoboNet 21

... A.4. The Logical Link Control Layer in RoboNet 22
.. A.4.1. The LLC Packet Types 22

A.4.2. The Algorithm for the LLC on the VAX Side .. 22
A.4.3. The Algorithm for the LLC on the Intel Side ... 25

.. A.5. Miscellaneous -26
Appendix B: Use of C-8086 Cross Compiler .. 27

... B . 1. Introduction -27
... B . 2. Cable Hook-up -27

B.3. Down Loading the Loader via SDM .. 28
... B . 4. Cross Compiler 29

B.5. Down Loading Your Application ... 31
B.6. SDM - System Debug Monitor ... 31

.. B.6.1. X Command -32

.. B.6.2. D Command -32

... B.6.3. G Command 33

B.6.4. Bugs ... 33
... B.7. Miscellaneous 33

B.8. An Example .. 33
B.9. I/O Library .. 37

... B . 10 . Math Library 37
.. B . 1 1 . 8087 Floating Point Stack Programming -37

REFERENCES

RFMS SOFTWARE REFERENCE MANUAL

Hong Zhang
Department of Computer and Information Science

The University of Pennsylvania

1. Introduction

This manual explains the software of the Robot Force and Motion Server
(RFMS)[l], a high performance robot control system designed and implemented in the
GRASP laboratory. In this system, the robot manipulator is considered a force/motion
server to the robot and a user application is treated as a request for the service of the
manipulator. The user application is created on one of the UnixfVAX machines in 'C'
programming language as a set of function calls. The application is carried out in a
multi-processor controller, which consists of Intel single board computers and provides
computing power necessary for computationally intensive tasks. The VAX machine
and the Intel controller communicate through Ethernet, a local area network, which
also allows interaction between the user and sensors. Design principles of the system
can be found in [2].

The software of the system involves a variety of computers: the user interface is
written to be executed on a UnixfVAX machine; the control software is written to be
executed on Intel 8086-based single board computers; and the network software is
written to be executed on a UniflAX machine on one end and Intel processor on the
other. The rest of the documentation will be organized according to where the execu-
tion of the program is. Section Two will discuss user interface, and for those who
intend to only use the system for specific applications, it is adequate to read this sec-
tion. Section Three will discuss the implementation the Ethernet software. This sec-
tion is useful only if one would like to make changes to the communication protocols
between the user and the Intel controller. Section Four will discuss the software writ-
ten for the robot controller which consists of Intel single board computers to control
the robot manipulator, a PUMA 260 in our case. It is important for one to understand
this section if what is provided in the system is insufficient to carry out his applica-
tions.

This material is based on work supported by the National Science Founda-
tion under Grant No. ECS-8411879. Any opinions, findings, conclusions, or
recommendations expressed in this publication are those of the authors and
do not necessarily reflect the views of the National Science Foundation.

We would like to mention that the system is yet to be finalized, for we have been
using it for research and thus need to constantly make changes. Several versions of the
system exist among the people who have used and modified the system for their own
needs. We will try to be consistent throughout this documentation, though confusion
may occur from time to time. The programs are organized by the processor on which
.they are executed, with one directory per processor and common include files in two
separate directories. The following table roughly explains the contents of the direc-
tories under lusrluserslhz on robo.cis.upenn.edu and lusrluserslhzlrobo on
grasp.cis.upenn.edu.

Table 1. RFMS Directories

All source files will be underlined and all functions will be italicized.

Directory

/VAX

/include

11 86

/h

/super

lJi

/math

/S Y s

/c86

/c 1 86

2. User Interface

Content

user interface and Ethernet driver on the
VAX side

include files for /VAX directory

Ethernet driver on the Intel side

include files for the Intel controller

programs written for the supervisor of the
Intel controller

programs on the ith joint

programs for the math processor

library functions for 8086 (YO, interrupt
control, vector operations, etc.)

cross compiler for 8086, loader, and optim-
izers

cross comipler for 80186

From a user's point of view, the available functions can be classified into three
categories: world-model definition, motion record definition, and motion requests.
Another category, task synchronization, enables the user to wait until the completion
of a sub-task before the next one starts. Although it is not available at this time, it can
be easily added. Sensor input is another area yet to be integrated into the system, and
all the mechanisms exist. The structure of the program is similar to that of an RCCL

program in spirit, whose underlining principles can be found in [3]. A user requests
the service of the robot controller by making function calls from a 'C' function named
pumatask().

2.1. Programs of the User Interface

A total of eight programs constitute the user interface of the system. Since the
emphasis of the system is not to construct a comprehensive robot programming sys-
tem, effort made to create the user process is kept at minimum. We have used this part
of the system only for testing the robot controller.

A user defines a task by making calls to the system functions. A task defines the
world model in terms of the transformations (relationships between coordinate frames
of interest) and position equations (definitions of points in the work space to which the
manipulator is to move). The fashion in which a move to a position is conducted such
as segment time, compliance specification, etc., is defined by a motion record. Upon
any call to create one of these, the created data structure is f ist stored in the
corresponding symbol table and then a copy of it is sent to the RFMS through the Eth-
ernet. To initiate an action, a move is called with two parameters: a pointer to the desti-
nation position and a pointer to a motion record. Fundamental to the user interface are
the three symbol tables storing transformations, position equations, and motion records
that have been created. The move requests are not stored in a symbol table because
they are not referred to by other variables. This may change, however, once task syn-
chronization is needed for the system has to keep track of the move requests have been
issued. Once the application is created and compiled, one can run the application like
any other 'C' programs by a.out.

The rnain.c allocates memory for static symbol tables for the user process, initial-
izes the communication link between the user process and the RFMS, and then calls
pumatask() defined in, say, myaDu.c, by the user, which contains a stream of function
calls to the system. After defining an application, the user may call the function
debug(), which logs data corning from the Intel controller in real-time and store them
in six different files, corresponding to six joints of the robot manipulator. The nature
of the data is entirely up to the user, but there must be an agreement in what the Intel
controller sends and what the user interprets. This function call is optional and has
been used as a debugging tool so far. One can expect to log one set of data every four
to five sampling periods.

There are currently a number of ways to create a transformation: a transformation
with pure translation and no rotation by gentr - trsl(), a rotation transformation defined
in terms of either Euler angles or roll-pitch-yaw angles by gentr - eul() or gentr - rpy().
All functions related to transformation creation are defined in trans.c.

A position equation is created by a call to makepst() in m. One must provide a
name to the position as a string of characters in the first argument and three constants
for the three configurations lefty, up, andflipped, associated with the PUMA 260. Since
a position equation may contain a number of transformations on either side, makepst()
must be able to handle variable number of arguments[4]. The last argument of
makepst() when defined is declared to as a pointer to a transformation, the same data
type as the rest of the arguments that follow it when the actual call is made. Two key
words, EQ and TL in the actual call help interpret where left-hand side ends and which
transformation is the tool transformation [5].

A motion record specifies how a motion is to be executed. and it contains such
attributes as segment time, acceleration time, mode of the motion, and compliance
specification. These attributes then become the four input arguments to a call to mak-
emot(), which is contained in the program m0t.c. Both segment time and acceleration
time are in seconds, and mode of the motion can be either Cartesian or joint. Compli-
ance uses a bit pattern as in Figure 1 to indicate the physical constraints to the motion

Figure 1. Bit Pattern Representing Compliance

MSB

where Ri represents rotational compliance along a certain Cartesian direction and Ti
translational compliance along a certain Cartesian direction. In this example, four
motion records are defined. The first simply defines a joint motion with a segment time
of 2 seconds an acceleration time of 0.2 seconds. The third motion records defines a
Cartesian motion with a 20 second segment time, a 0.5 second acceleration time, and
compliance along z direction.

.. . ~ R , ~ R , / R , ~ T , ~ T ~ ~ T ~ ~ L S B

The program m0ve.c contains the function move(). The function uses the two
input arguments, a pointer to position and a pointer to the motion record, to issue a
move request.

At the end of each function call, a message is issued to the RFMS. Functions in
the file mess.c handle packet preparation. Currently, the user application is not receiv-
ing any messages, even though the software could handle it. The format of the mes-
sages is defined in msgs. h. The message type identifies the content and interpretation of
the message. A message is written into the buffer, msg, before function mess() is
called, which prepares the Ethernet packet and invokes Ethernet function Send() in
c0mm.c to send it.

All floating point numbers are modified before being sent, since the VAX
machine and Intel computers represent a floating point number differently, as illus-
trated in Figure 2.

low word

low word

Intel Floating Point Representation

high significant (7 bits) sign

DEC Floating Point Representation

low significant (16 bits)

exponent (8 bits)

low significant (16 bits)

Figure 2. Floating Point Representation

We choose to convert floating point numbers on the VAX machine since it is faster
than any Intel computer and time on the Intel computers is more valuable. The func-
tion convert() in mess.c performs the conversion.

2.2. An Example

high significant (7 bits) sign

The following example further illustrates how an application program is created.
include "..lincl~deldatdef.h~~
include ". .lincludelextdef.h"
include "..lincludelcondef.h"

exponent (8 bits)

pumatask()

C
TRSF *t2;
PST "homegst;
MOT *mjnt, *mwait, *mcart, *mcwait, *mcartcz, *mcartcx;

t2 = gentr - trsl("t2 ", 203.2, -126.23,203.2); I* home *I
homegst = makepst("home", RIGHT, DOWN, FLIP, t6, EQ, t2, TL, t6);
mjnt = makemot(2.0,0.2, JNT, 0);
mcart = makemot(4.0,0.3, CAR, 0);
mcartcz = makemot(20.0,0.5, CAR, 0x4);
mcartcx = makemot(l5.0,0.5, CAR, 0x1);

move(homegst, mcartcz);
move(homegst, mjnt);

1
The three include files in the beginning are necessary for the user to define local

variables of the data types created for robot programming (hldatdefh), to make func-
tion calls to the system (hlextdef-h), and to make use of the constants defined in the
system (hlcondefh). TRSF, PST, andMOT represent data type transformation, position
equation, and motion request, respectively. In the instruction section of pumatask(), a
transformation is first created by providing function gentr-trsl() with three transla-
tional components of the p vector in the order of x, y, and z.

The Function call, makepsto, creates a position equation with transformations
either known to the system or defined by the user. In our case, it has t6, which is
known to the system, on one side and t2, which is defined by the user, on the other.
Configurations of this position are specified as right, down and flip. Four motion
records are defined in this program, with one joint motion, and three Cartesian motion,
of which two require compliance.

Two motions are requested in this task. The arm will move to the same position
as the initial position (i.e., remain stationary), while complying along z direction.
Once this is finished, the arm will move back to home position.

Once the application is created, it can be compiled and linked with the rest of the
system. The application is executed in the same fashion as any other Unix executable
file, when the Intel controller is initialized and ready to accept tasks.

3. Ethernet Interface

The user and the Intel controller communicate through Ethernet, a local area net-
work. The implementation details of this interface can be found in [6] and in Appen-
dix A. Here we only outline some of its features users need to know in order to use it.

The interface on the users' side is performed on a Unix/VAX machine. Unix sup-
ports Ethernet and, for robot control, our software is built as the data link layer by
making use of the Data Link Interface (DLI). The interface on Intel's side is built from
scratch and has two layers, the data link and logic link. The protocol used between the
two machines is one-bit-sliding window and positive acknowledgement with
retransmission, which means the machine sending a message keeps trying until it
receives acknowledgement or the number of trials exceeds a limit. A token exists
which determines who can send a message at any given moment. It is usually held by
the VAX machine and the Intel machine has it only when the VAX machine requests a
message from the Intel controller. Typically the VAX machine sends a message to the
Intel machine whenever it wants and the arrival of a message creates an interrupt to the
Ethernet board 186/51[14] of the Intel controller, which then reads the message in its
interrupt handling procedure. The Intel controller, on the other hand, cannot send a

message to the VAX unless it is explicitly asked to do so. This is caused by the fact
that the software on the VAX side is not written as an interrupt handler, but rather as a
listener and therefore can not deal with any unexpected incoming messages.

Two primitives on the VAX for sending and receiving a message have the syntax:
Send (buffer, size)

and
Recv(buffer, size).

The counterpart on Intel side employs two primitives:
Recv - Frame(bufSer)

and
Send-Ack() or Ans - Send-Req().

Which one to use to send a packet depends upon if the message just received is a real
message or a request for a message to be sent to the VAX. Once messages are
received by the 186/51, they are queued in an array, waiting to be processed by the
supervisor of the Intel controller.

The communication software for VAX is contained in one file comm.c, and for
the Intel controller there are three 'C' files in the directory 1186, dld.c, llc.c, and
main.c. The program d1d.c contains the data link layer, and the program 1lc.c contains
the logic link layer. The program main.c first initializes the data link layer by
Init - 5860, sets up a linear array of messages in which the incoming messages are
stored, and inform the supervisor of the array address by storing it at a fixed memory
location accessible to both supervisor. Two other assembly programs in this directory,
reint.a86 and handler.a86, deal with the interrupt control of the 186/51.

There is only limited memory space on the 186151 and, therefore, the size of the
message queue can be of only a finite length. Currently, a total of 100 messages can be
stored, of which each has a fixed size of RBUF-SIZE bytes. Since the supervisor keeps
looking in the queue for available new entries, overflow never occurs if we assume the
speed of processing messages by the supervisor is faster than the that of the incoming
messages. The system fails if this assumption is not valid. A dirty bit in the last byte of
a message buffer indicates if the buffer contains an unprocessed message.

There are currently two 186/51 computers of different models: one is an ES and
the other an S. In additional to their difference in jumper locations and notations, the
only software difference one needs to know is the Ethernet address defined for the Eth-
ernet chip 82586. The S model has an address of

0x08,0x00,0x2b, Ox02,0x89, Oxfc,

and the ES model has an address of
0x08,0x00,0x2b, Ox02,0~96,0x74.

4. Intel Controller

This part of the software runs on Intel single board computers, and it is developed
on a VAX machine where the user process is and cross-compiled and down-loaded to
the targets via a serial line. (The information on the cross-compiler can be found in
Appendix B) The controller is a multi-coniputer system with shared memory and a
common bus, through which data communication and control signals are transmitted.
Each computer in the system contains dual-ported memory, of which part is defined as
global so that other computers in the system can access it as well. Information
exchange takes place in the form of mail boxes and system synchronization is achieved
by interrupts. There are currently nine computers running in parallel, six joint proces-
sors, a supervisor, a math processor, and an Ethernet computer. There is a real-time
synchronized interrupt driven process on each of the joint processors, the supervisor
and the math processor. In addition, there is a background process on the supervisor
and the math processor. 186151 runs asynchronously with the rest of the system.

Supervisor, joints and the rest of the system need to communicate with each other
and exchange information. Also the kind of data each one requires of any other is
known a priori. To facilitate such communication, mail-boxes are created on each
computer with their addresses stored at pre-defined memory locations. These addresses
are currently stored in the topmost part of the memory fi-om segment O m 0 so as not to
interfere with the code, data, or stack segments. During the initialization process,
supervisor waits until ready flags are cleared in all processors before it picks up
addresses of the mail-boxes where it will either drop or pick up mails. Most of the glo-
bal memory access is done by the supervisor. Currently the only access by the joints is
during the compliance when every joint needs to collect other joints' errors. Two sys-
tem functions, rblock() and wblock() facilitate global memory access. The sources and
destinations of the mail boxes are summerized in the following table.

Table 2. Mailbox Description

Both trajectory generation and inverse kinematics are performed on this parallel
processor and a lot of efforts have been devoted to computation distribution. Trajec-
tory generation at Cartesian level, i.e., calculation of the end effector position and
orientation, is performed on the supervisor. Joints, on the other hand, plan their indivi-
dual trajectories given the end effector coordinates. The dependency exists among the
inverse kinematics of the joints, for the ith joint requires solutions of all prior i - 1
joints. This dependency, however, can be eliminated when each joint uses other joints'
solutions in the previous period. This scheme is approximate, but it allows the system
to compute the kinematics in parallel thus speeding up the system substantially. The
details of the trajectory trajectory can be found in [7] and the details of the parallel
inverse kinematics can be found in [8].

description

one copy to each joint to instruct what
actions to take

information math processor needs to
compute Jacobian matrices and
dynamics

one from each joint to the supervisor
to return the status of the joint

results computed by math and collect-
ed by supervisor for one of the joints

one on each joint distributed by the
supervisor

4.1. Supervisor

destina-
tion
bufSer

MAIL

MMAIL

JMAILi
i= l ... n

PARCi
i = l ... n

PARC

data type

S-MAIL

M-MAIL

JMAIL

PARCEL

PARCEL

Two concurrent processes, one being interrupt driven and the other in the back-
ground, are executed on the supervisor. The background process reads the messages
stored in the 186/51 and sets up data structures, which the second interrupt driven pro-
cess uses to coordinate the operation of the controller and the generation of motion tra-
jectories. Supervisor runs on an iSBC 86/30 computer[22].

source bufSer
(origin)

MAIL
(supervisor)

MMAIL
(supervisor)

JMAIL
(joints)

PARi
(math)

PARCi
i = l ... n
(supervisor)

The program, main.c, initializes the system and interacts with the user to go
through the manual mode, the calibration mode, and then onto the set-point mode. Its
serial port is connected to a terminal where the user operates for the purpose of down-
loading the code and monitoring the controller operation during system development.
Eventually, the interactive session should take place between the VAX machine where
the user really is and the control system through the Ethernet.

4.1.1. Background Process

The background process program is stored in bk2d.c. To process messages stored
on the 186/51 (refer to Section 3), the supervisor maintains a pointer to the next avail-
able message in the message queue. Depending upon the type of the message, different
action is taken. The format of the messages are defined in the include file hlrns2s.h.
Data structure definitions in this file must agree with those in includeldatdef.h, if the
supervisor is to interpret the messages correctly. When there is no message in the
queue, the background process simply waits.

Upon the arrival of a message, the type of a message is determined, and a
corresponding data structure may be created and added to the world model. Currently,
there are six possible types, INIT, STOP, TTR, TPOS, TMD, TREQ. The first two
simply are signals for the beginning and end of a task definition. The rest are for a
transformation, a position, a mode, and, motion request message, respectively. The
definitions of these data structures can be found in h1datadef.h.

These data structures refer to or are linked with each other. For example, a posi-
tion contains pointers to transformations defined previously. If the messages came
from the same machine as the one that receives it, the addresses could be used as
pointers. Unfortunately this is not the case. A linked structure must be sent piece by
piece and the receiving machine must be able to resolve all the cross references. In
order to be able to locate the dependencies, we associate each message of a given type
with an identification number. To facilitate a fast search, four symbol talbes, ttbl[],
mtbl[], ptbln, rtbln, are set up to store the pointers to the data structures and the id
numbers are indeces in the symbol tables.

When a position equation message arrives, a ring structure is created[5]. The pro-
gram, pstn.c, contains functions necessary to create the structure. A ring consists of a
number of items representing transformations in the equation, of which each contains a
pair of atoms containing the forward and inverse transformation. Function Atom()
allocates memory for one atom, NewTermO links a pair of atoms, Listn()'s link n
terms, and MakePoso takes two lists of terms as left and right hand sides of the equa-
tion and forms the ring.

Processing of other messages requires much less work and is dealt without any
primitive functions.

4.1.2. Real-time Process

The real-time process is executed upon a periodic intempt signal generated by
the programmable timer on the supervisor. The entire process runs like a finite state
machine and action taken in each period depends on two state variables. The variable,
rtstate, in program rtisr.~, changes among eight possible states, IDLE, FREE, MANU,
CALIB, HOLD, SEW, STOP, and EMGCY. These constants are defined in file
c0mm.h. The state the system may fall in is illustrated by the following graph.

CALIB @
Figure 1: State Diagram of the RFMS

The interpretation of each state is summerized in the following table.

Table 3. Real-Time State

state

IDLE
FREE
CALIB
SETP

HOLD
MANU

In IDLE state, the system is in the initialization process. The free state is one in
which the all joints are freed and compensate only for the gravity. This state is useful
when we check the gravity loading constants we compute from the dynamics equa-
tions. In MANU state, the joints can be controlled manually in order to position the
manipulator. The state CALIB indicates that the joints are going through a calibration
procedure by looking for the zero indeces while making incremental moves. The state
SETP is entered once the calibration is finished. Finally states STOP and EMGCY
represent when the joints should stop and when the joints have detected abnormal con-
ditions and need to come to a stop, respectively.

action

get current position and keep the power off
get current position and send current compensating for gravity
keep incrementing joint position until zero index is observed
call jsetp() and derive encoder position and compute observed
sin and cos
turn the power on

increment desired encoder position by 4 counts either clock-
wise or counterclockwise

If the system is in SETP state, another variable state, in file setp-c, determines the
stage in which the trajectory generation is. The number of states correspond to the
number of cases in the motion control summary in [7] , plus two additional states for
the stationary case when there is no next motion command and for the case when the
manipulator is coming to a stop. The state diagram in state is given in Figure 2.

Start

I 1

Figure 2. State Diagram of the Trajectory Generator

where the states are defined in Table 4.

state

S2

- - -- - - -

definition
I I wait for a new move request I I straight line motion segment I I one sampling period before the transition 1

beginning period of the transition
initialization of the transition

I during the transition I
I end of a motion with no next move

Table 4. Definition of state

Whichever state the system is in, supervisor exchanges information with and for
the rest of the system. Four data structures, also defined in hlcomm.h, function as
buffers holding information to be exchanged. The structure, S-MAIL, contains what to
be shipped to the joints from the supervisor, J-MAIL, contains what to be shipped
from the joints to the supervisor, and M-MAIL, contains information updated by the
math processor for the joints. Another structure, PARCEL, contains information
related to manipulator kinematics, such as dynamics and Jacobian matrices, that is pro-
vided to the joints at a low rate. In fact, each joint receives its new PARCEL every n
periods, where n is the number of joints.

A few points concerning mails need to be clarified. First, there are three sets of
sines and cosines returned from each joint in J-MAIL. The first two sets are expressed
in terms of a sine and the sign the the cosine. They correspond to the sines and cosines

of the current and the next destination and positions, respectively. The third set is sine
and cosine of the observed joint position. Secondly, The interpretation of the integer
for the sign of the cosine is illustrated by the following figure where a clear bit in the
corresponding position represents positive and set bit negative.

MSB 1 ... 1J61J51J41 J31J2) J11 LSB

Figure 3. Bit Pattern Representing Signs of the Cosines

Thirdly, the fields in S-MAIL Csigns and CsignsC are simply the oring of the
corresponding signes from all the joints.

The program setp.c depends on a number of functions. Functions Dequeue() and
Unqueue() either take next motion request out of or and put back a fetched motion
request to the motion request queue. GetEX() and GetLDR() compute the next T6 in
joint motion and Cartesian motion, respectively. All these functions are stored in file
expr.c. Another function InitD(), defined in file drive.^, initializes the constant parts of
the drive transformation for the next segment of Cartesian motion.

4.2. Joint Process

We describe the joint processes by showing how one joint works, since other
joints are simply replicates of this example and differ mainly in the constants used in
the programs. There are two joint independent programs, jsem.c and jrtc.c, In addi-
tion, there is one joint dependent program in each joint directory, jnti .~, where i refers
to the joint number, in each joint directory. The executable file of each joint is made up
of the joint dependent and independent files. Joints share only the source code, not the
executable code.

The program, jnti.c, contains the entry point, main(), that initializes joint depen-
dent global variables and calls rtc() in jrtc.c to begin joint's operation. Two other
functions in jnti.~, InvKine(), and, InvKineCO, compute inverse kinematics from two
different set of parameters provided in supervisor mail. ManuInc() is used during
manual mode to compute the amount of position increment. IsReady() determines if
the joint should start calibrating or wait. This is necessary to overcome the mechanical
coupling among joints during calibration. AngToEngO performs conversion between
the encoder count and the joint angle in radians. WriteEnc() writes the change in its
joint angle to the other joints that are coupled with this joint in order for them to make
compensation. ReadChgsO copies the changes in other joints written in its memory
into 'C' variables so as to be refered to later. Function PID calculates the control law.

Finally Starts() informs the supervisor of the completion of the joint's initialization.

The interrupt handler Rtisr() in jrtc.c is dictated by the same rtstate variable as on
the supervisor to determine what the joint should do. It is executed at the same rate as
the supervisor's interrupt service routine and computes the desired joint position in
encoder count. According to the current rtstate, the fashion in which the desired posi-
tion is computed varies. The result is passed on to the function Servo(), which actually
performs servoing of the joint with the position computed in the previous sampling
period. Currently it is either a PD or a PID control with gravity and fiction compensa-
tions. Should the compliance be required, the servo error is adjusted in Adjust() before
used to compute reacting torque.

JSelp() in jsetp.c computes the joint set-point. The variable state drives the pro-
cess. There are several worth-noting points. First, all information needed by the joints
is assumed to be available in the data structure MAIL, the buffer sent by the supervi-
sor. Secondly, since in general the kinematic solution for ith joint requires the solution
of inner i-1 joints, values of those joints computed in the previous sampling period are
used in order for the joint not to wait for solutions to be computed, as has been men-
tioned previously. Finally, the joints should not have to wait for the supervisor to
finish before they can start doing inverse kinematics. Instead, the T6 is pipelined so
that supervisor and joints start computing at the same time.

4.3. Math Process

The purpose of this process is to compute dynamic coefficients and Jacobian-
relation matrices. Current computed joint angles are passed to this process as input
and it provides gravity loadings and the compliance matrix as output to one joint per
sampling period cyclically. The reason for only one joint per period is that the update
of the parameters takes place at a much slower rate than the sampling rate and there is
no point of sending XX The incoming information is deposited in MMAIL, the mail
box for the math process from the supervisor and the output is returned in the buffer
PARi, whose content applies to the joint specified in MMAIL.joint.

Again there is a real-time interrupt driven process that handles interaction with
the supervisor and there is a background process that computes in an endless loop. The
calculation of the dynamic coefficients is based on equations in [9], which uses
Lagrangian mechanics to express dynamic terms explicitly and determines the con-
stants in the coefficient from experiments. Procedures in [lo] are used for the calcula-
tion of the compliance marrix. In order to prevent from happening the situation where
the real-time interrupt service routine copies results partially updated by the inter-
rupted process, a binary variable is used to indicate which of the two copies of a partic-
ular quantity, such as Jacobian matrix, is valid.

Currently only the Jacobian matrices from the base of the robot to the end-
effector are considered. Should a tool be added to the system, modification would be
necessary. Further, velocity dependent dynamic coefficients as well as the effects of a
load at the robot end effector on the dynamics are not considered.

5. Postscript

One of the lessons we have learned from the RFMS project is that it is extremely
difficult to program a multiprocessor system without a powerful development system.
It is then predictably difficult to try to explain the system to someone wishing to under-
stand and modify the system. To fully master the system requires a lot of time. It is
however not as overwhelming to simply use the existing software to program the robot.
This single document provides but a portion of the knowledge one must learn before he
can feel comfortable working with the controller. It is strongly recommended that one
read other related documentations and the hardware reference manual being prepared
for this system for a better understanding.

Appendix A

RoboNet: A Local Area Network for Robot Systems

This documentation is about RoboNet, an Ethernet-based local area network that
the we have designed and implemented. This documentation serves two purposes: as a
user's guide to give robot system users a brief description on how to use the network
software to transfer data from one machine to another, and as a system programmer's
manual for those who maintain this network and those who are interested in custorniz-
ing part of this network or extending it for other applications.

The remainder of this documentation is organized in four sections. Section two
describes the network software function calls, their usage, and the results of those
calls; Section three describes the network and its layers; Section four describes the log-
ical link layer of RoboNet; and Section 5 describes the data link layer of RoboNet.
Two appendixes describe how to compile the network software, where to find the files,
and how to maintain the network software. For those who are interested only in using
the software, we suggest that you read section two and three. For system programmers,
we suggest that you read the entire documentation.

A.1. User's Guide

Currently only Grasp (VAX 11/785), Robo (Microvax 11) and Intel 186151 have
RoboNet software. These machines are physically all attached to the Ethernet cable.
We use RoboNet to transfer messages from the VAX machines to the Intel 18615 1 and
vise versa. Exchanges of messages among VAX machines are performed by software
already available on these machines running Unix. The RoboNet is illustrated in Figure
1.

The VAX users can send messages to the Intel machines by invoking the network
software. If the VAX user desires a particular piece of information from the Intel, he
must send a message request to the Intel. The Ethernet communication on the Intel side
is not accessible at the user level. A user can assume that process exists on the 18615 1
that handles the messages and message request.

This appendix is an edited and revised version of the reference manual,
"RoboNet: A Local Area Network for Robot Systems", prepared by Pearl Pu,
the Department of Computer and Information Science, the University of
Pennsylvania.

Ethernet

! Multibus
4 4

Figure A. 1. RoboNet
A.1.1. The Network Software Function Calls for the VAX users

A n

To be able to use these function calls, you have to have a Grasp, or Robo account.
You have to know how to program in C. And finally you have to know what you are
doing with these messages on the Intel side.

h

In order to use the software, you have to do the following:

v v v

1. Include vm.h in your program.

grasp
VAX 785

2. Compile your program with vax - 1lc.o.

The network software, seen at the user level, consists of the following C function
calls: Init - Comm - Link(}, Sync(), Send(), and Recv(}.

Init - Comm - Link{):
This function initializes the communication link between the host where
the user is located and the Intel 186/51. The Intel Ethernet address is
specified in this routine automatically as the destination address in sending
and source address in receiving. Note that if the Intel address changes, one
needs to notify the system programmer to modify this address accordingly.

Sync{):
This routine synchronizes certain variables between the user process on the
VAX and the communication process on the Intel 186/5 1.

Send(msgsptr, length}:
msgsptr is a pointer to the buffer which contains the message you want to
send, and length is an integer that specifies the length of the message
string. Note that length can not be greater than M A V R A M E or less than
MIN - FRAME in vax.h.

Robo

PVAX

Intel
186/5 1

Recv({type, msgsptr, length)):
type specifies what type of information you would like to receive from the
Intel side. There are ten types of such information. msgsptr points to the
buffer area where you want to receive the message. Length returns the
actual length of message received. For certain reasons, all messages com-
ing from Intel must be of one size. That size is specified by R-SIZE
(receive packet size) in vax.h.

An example program, which illustrates how to use the network software on the
VAX side, is shown in Figure 2.
main()

i
int i;
char msgs[100], bufSer[R - SIZE];
int length;

I* fill up the msgs to be sent out *I
for(i=O; i<lOO; i++)

msgs[i]= 'a' + (i% 10);

Init - Comm - Link();
SyncO;

I* send the same message 10 times *I
for (i=O; i d 0 ; i++)

Send(msgs, sizeof(msgs));

Recv(type2,bufler, &length); I* receive type2 message */
bufSer[length]= NULL;
printS("The received message is %sW, buffer);

Figure 2. An Example Program

A.1.2. The Network Software on the Intel Side

Currently user support on the Intel side is entirely tailored to the need of the robot
controller, which is a multiprocessor system based on Intel 86130s with a supervisor
handling message bookkeeping. All the messages sent from a user process on any of
the VAXes or Microvaxes are queued up in a large buffer area on the 186151. The

beginning address of the large buffer area is stored in the RAM of the 186/51 at
Oxlff00. The robot controller decides where each message finally goes. If the user
requests a piece of information to be sent back to the VAX side, the network software
on the Intel side will take care of this request.

To bring up the network process on the Intel 18615 1, you have to ask the system
programmer to do so. This process, once brought up, should be running continuously.

A.2. RoboNet: An Overview

RoboNet is a research effort to investigate the feasibility of designing a tailored
local area network for robot systems, and stimulate further interest in this area. The
current trend for robot systems is to distribute user tasks and robot tasks on different
processors to increase computation speed. This introduces, however, communication
problems between the users and the robot controller. To solve the communication
problems, there are two solutions: one is to use existing software; the other is to design
new software.

The reason we designed and implemented our own communication network
stemmed from the observation that existing local area network protocols[ll][l2] are
for large data file transfers. The header in each packet is usually complicated and the
data large. If we use these protocols for transferring messages of small sizes, which is
the situation with communication in robot systems, the system will be inefficient.

User Application

Logical Link

Data Link IEEE 802.2

Physical IEEE 802.3

Figure A.2. Layers in RoboNet

RoboNet is designed with four layers as shown in Figure 3. The lowest layer, the
physical layer, is an IEEE 802 standard. The data link layer is an IEEE compatible
layer. IEEE 802.2 consists of data link and logical link layers. We only chose to imple-
ment the data link layer with the standard. It is hoped that RoboNet will be adaptable,
should there be more suitable protocols. For instance, MAP (Manufacturing Automa-
tion Protocol) is another IEEE 802 standard. It is claimed that MAP is more efficient
than Ethernet, and it does not degenerate when the load of the network becomes heavy.
Therefore, if MAP is found to be more suitable for our application and affordable, we

can replace Ethernet by MAP without changing anything above. Another advantage of
a standard implementation of the lower layers is to support heterogeneous machines.
The robot system we have here contains VAX 11/785s, Microvax IIs, Intel micropro-
cessors. In the future, it may also have Lisp machines. Since most computer manufac-
tures now make Ethernet chips available to most of their machines, in order to install
RoboNet on a machine we only have to install the upper three layers.

In the next two sections, we will describe the, three lower layers. Section two is a
description of the user application layer. Currently RoboNet is installed on Grasp
(VAX 11/785), Robo (Microvax 11), and Intel 186/51. As mentioned earlier, since this
part of documentation is for system programmers, we will concentrate on not only
design issues but also implementation details.

A.3. The Physical and Data Link Layers in RoboNet

As shown in Figure 3, the physical layer is the IEEE 802.3 (Ethernet) standard.
On the VAX machines (VAXes, Microvaxes), this layer comes with the machine. On
the Intel 186/51, there is a network coprocessor called the 82586, which is essentially
an Ethernet chip that handles low level packet sending, receiving, framing, etc. For a
detailed description of the 82586, refer to [13][14]. The 82586 is the coprocessor to
the main CPU 80186.

The data link layer on the VAX machines uses the data link interface (DLI) from
the Digital Equipment Cooperation. All packets sent out from the DL1 are Ethernet
packets. The DL1 only takes care of damaged packets by verifying the check sum.
Lost, duplicated, and out-of-order packets, however, are not taken care of.

On the Intel 186/51 microprocessor, the data link layer has to be implemented
since there is no existing software. Fortunately, there is a manual[l3] which describes
how to program the 82586 coprocessor. We largely adopted an example from this
manual as the data link layer. According to the manual, this example implements an
IEEE 802.2 compatible data link layer.

Some differences between the example and our implementation are worth men-
tioning.

1. Multicast is not supported in our implementation.

2. The address for ISCP is found to be different in our case from that specified in the
example. The correct ISCP address on our board is OxffO (absolute) instead of
OxfffO.

3. The interrupt from 82586 is the zeroth interrupt instead of the third.

4. Broadcast mode is disable, i.e., no broadcast messages from the Ethernet will be
received.

A.4. The Logical Link Control Layer in RoboNet

We designed this layer. The principal mechanism used to prevent the network
from losing, duplicating, and sending out-of-order packet is called one-bit-sliding win-
dow and positive acknowledgement with retransmission protocol[l5]. We describe the
characteristics of the logical link control (LLC) in RoboNet by describing the LLC
packets and the algorithms used on both the Intel and the VAX sides.

A.4.1. The LLC Packet Types

SYNC:
This type of LLC packets take care of synchronization problems between the two
sides. A network process runs on the Intel 186151 continuously, whereas network
processes come and go on the VAX side. Synchronization of sequence numbers is
a problem if not taken care properly. We solve this problem by sending a SYNC
packet every time a network process comes up on the VAX side. Upon receiving
this packet, the Intel network process will initialize the sequence number.

ACK:An acknowledgement packet is sent out whenever the network process receives a
good packet (i.e., with good check sum) other than an acknowledgement packet,
that is, we do not acknowledge ACK packets.

REG:A regular packet will be passed to the host for processing if the sequence number
matches expected frame number (specified by FrameExpected in 1lc.c). This is to
ensure that no duplicated packet, from retransmission, is passed to the host.

SendReq:
A packet of this type can only be sent out from the VAX machines. This type of
packet will cause a message to be sent out from the Intel to the network process
on the VAX. For instance, a SendReq packet with T6 specified in the first byte
will cause the T6 matrix, which is stored and kept updated on the Intel 186151, to
be sent to the VAX. This way, the robot system users can be updated with infor-
mation from the Intel machines.

A.4.2. The Algorithm for the LLC on the VAX Side

procedure Send(type, msgsptr, length):
/* type: one of (ACK, REG, SYNC, SendReq)

msgsptr: points to data to be sent
length: the length of message
Functionality: this routine prepares a LLC header for each
message pointed by msgsptr by adding the type, sequencejields,
then sends out the message. If an acknowledgement does not

arrive within the timeout period, this routine will send out
again the same message. It keeps doing so until either an ack
arrives, or exceeds the allowed trial limit (maxtimeout).

*/

var f frame;

if (type= = SendReq)
sendreq= TRUE;

f.type = type; /* specify packet type */
f.seq = NextFrameToSend; I* append sequence number */

f.data = msgsptr;

Acked= FALSE;
timeoutcnt=O;

/* keep trying if no ack, and # of tries has not exceeded the limit */

while(timeoutcnt < matimeout AND Acked= = FALSE) do
begin

sendfv); I* transmit a frame */
Timeout=FALSE;
StartTimer();
Recv - Ack; I* timer can timeout in this routine */

end;

if (timeoutcnt > = matimeout)
write("Error: a frame is lost.");

Inc(NextFrameToSend); I* invert sender seq number */

end; /* end of Send */

procedure Recv - Ack():
I* Functionality: this routine waits for an acknowledgement to

arrive from the other side. I f timer times out, it will stop
waiting and return to Send, which will resend the same message
If an ack comes, it will set the Jag to indicate so.

*I

var r :frame; /* place to put received frame *I

While (Acked= = FALSE AND Timeout= = FALSE) do
begin

wait(event); /*note: timer can timeout while waiting */
if (event= = FrameArrival AND r.seq= = NextFrameToSend)

Acked= = TRUE;

I* if the packet sent out was a sendreq,
* then acknowledge packet contains info. */

if (sendreq = = TRUE)
To - Host(r); /* pass message to host */

Inc(FrameExpected);
end;

end; /* end of Recv-Ack * I

procedure Isr - Timer():
/* Functionality: this routine will be called when the timer times out.
*/

Timeout=TRUE;
timeoutcnt= timeoutcnt+ 1 ;

end; I* end of Isr - Timer */

/* type specijies what type of information to be sent back
msgsptr returns the address of received message
length returns the length of received message
Functionality: Receiving a message is similar to sending a message.
The requested message is sent back from the Intel in the Acknowledge
packet. This is called piggybacking.

*/

var req :frame;

req.data[O] = type; /* spectfy what information to receive */
Send(SendReq, req, sizeof(req)); I* send a request frame */

end; I* end of Recv *I

procedure Sync():
I* Functionality: This routine sends out a packet to synchronize

sequence numbers on both VAX and Intel side.
*I

var f $rame;

end; I* end of SYNC. *I

A.4.3. The Algorithm for the LLC on the Intel Side

procedure Recv-FrameCf):
I* f points the received frame

Functionality: This procedure is invoked when 82586 receives a frame
and issues an interrupt to CPU. It does diferent things according
to the type of messages it received.

*I

case f. type

ACK: I* there will be no ACKfiame on the Intel side *I

REG: Send-Ack (f.seq);
if gseq = = FrameExpected)

putfCf.data); I* put f in big bujfer *I
Inc(FrameExpected); I* invert seq *I

SYNC: Send-Ack(f.seq);
FrameExpected=O; I* reinitialize *I
NextFrameToSend; I* reinitialize *I

SendReq: Ans-Send - Req(); I* answer send request *I
if gseq = = FrameExpected)
Inc(FrameExpected);

end; I* of case */

end; I* of Recv-Frame *I

procedure Send-Ack(seq):
/* Functionality: this routine sends out an acknowledgement packet.
*/
var f: frame;

f.type= ACK;
f.seq= seq;

sendf Cf); I* transmit a frame */

end; I* of Send - Ack *I

procedure Ans - Send - Req (seq);
I* Functionality: this routine piggyback the requested information

in the acknowledgement packet.
*/

var f :frame;

$type= ACK;
f.seq= seq;
$data = getf(data);
sendfv); I* transmit a frame *I

end; I* of Ans-Send-Req */

A.5. Miscellaneous

The data link layer for the 186/5 1 is contained in file d1d.c. The packet size from
the Intel controller to the VAX can be changed by modifying constant R - SIZE in
vax.h, in m, and the field in so - addr.choose - addr.dli - eaddr.dligrotype in vax E1c.c.
If you get errors like "ERROR: enable toget CB, TBD, or FD", you should consider to
increase the size of the CB, or TBD, or FD queues by changing the CB - CNT,
TBD - CNT, or FD - CNT in dld Ilc .h.

Appendix B

Use of 8086 Cross Compiler Under Unix

B.1. Introduction

This document is interesting to those who intend to program an 8086187-based
single board computer under a VAX/Unix environment. The compiler introduced here
was initially obtained from MIT Laboratory for Computer Science; however, it was
written for an IBM-PC/MS-DOS environment. Modification to this compiler is mostly
done to the VO library and math library. In addition, Intel's iSDM (System Debug
Monitor) is incorporated to the system to allow both down-loading of users' programs
and debugging of them. Efforts have been made to optimize the intermediate assembly
programs generated by the compiler so that a 15 to 30 percent better performance can
be achieved after running the optimizer.

This document serves as a users' manual of the cross compiler without elaborat-
ing on the details. It assumes a user to have experience with C language and Unix.
Knowledge of 8086187 assembly language is necessary for debugging a program.

Throughout the discussion, host computer refers to the one where you develop
your programs. The target computer is the 8086-based single board computer. Unix C
compiler is simply called compiler and the cross compiler is explicitly qualified.

Running a C program consists of several steps. First, you should properly connect
the hardware. The search path of your account should be set up correctly so that you
can access the library files. The compilation of your C program using cross compiler
follows similar syntax as to those of the C compiler. Before running an executable file,
it should be down loaded to the target computer. Finally, you can run your program
with the help of Intel's System Debug Monitor (referred to as SDM from now on).

B.2. Cable Hook-up

Your interface to both Unix and the target computer is all done from a single ter-
minal. Normally, your terminal acts just like a regular Unix terminal and the target
computer is simply another tty to the same host computer. You should connect your
terminal to the a tty line and the serial port of the target to another tty line, both using
standard RS232. After the lines are connected and power plugged in, turn on the
switch of the the target system and initialize its line to Unix by

% stty 9600 raw -echo > Idevlttyxy

where xy is the target's tty number.

B.3. Down Loading the Loader via SDM

Setting up your path on Unix correctly is important because your program need to
find the libraries and you need to access several executable files. The directory of
these files is machine dependent, but on Upenn-GRASP, the following in your .cshrc
or .tcshrc is adequate:

set path=($path lusrluserslhzJc86/lib86)

If you are a shell user, use in .profile

PATH = $PATH:/usr/users/hz/c 86llib86

export PATH

Initiate the communication with the target by kermit function of Unix which
changes your Unix terminal to a virtual terminal of the target. Kermit is invoked by the
following command:

% kermit clb /dev/ttyxy 9600

You are then communicating to the target through the SDM from this point on.
The SDM responds with the following message followed by either a dot (.) or aster-
isks(*), the latter indicating that SDM has not been booted and you are talking to it for
the first time.

iSDM 86 Monitor Vx.y
Copyright 1983 Intel Corporation

To boot, type capital U and you will see the monitor respond with a dot indicating
it has been booted. To exit kermit thereby exiting SDM upon completion of your job,
type A followed by a letter c and message "C-kermit Disconnected" will be printed.

Although you could use SDM to down load your application program, the slow
loading speed prohibits development of any large program. Alternatively, a fast loader
is available to directly read your program from serial port and store it into memory
without going through SDM. The idea is then to load the fast loader with SDM and to
load your program with the fast loader. To load the fast loader, type:

% ldld

You will then asked if the tty of the target is the right one such as

ttyh3? (y/n)

You should answer accordingly. The loaded data and the corresponding addresses will
echo on the screen. This fast loader is invoked later by the dl command to load the

application program.

B.4. Cross Compiler

As a C programmer, you may be used to writing programs under Unix and not
aware of what is C and what is Unix. Therefore, it is important that you read through
this document before attempting to write any C program. Basically, C is a high level
language that allows you to express your algorithms in terms of C functions, whereas
Unix is an operating system which provides C with an environment. Many things you
use in the form of function calls are intrinsic to Unix, such as multi-processes, file sys-
tems, and I f 0 interface. When your program is intended for an 8086187, many utilities
on Unix are no longer available on your target board. For example, you can not open
files or write to a file. Any library with which your program is linked must be created
for 8086187.

Theoretically, the language definition of the C cross compiler is 100% compatible
with Unix C, i.e., all variable types, data structures, operations, type specifications, etc.
follow the conventions in [16]. However, there are major differences between this
compiler and Unix C compiler in the Unix interface and I/O libraries. In fact, the only
system calls you can make are limited to those of standard If0 (see in Appendix A),
although they may expand in the future. The reason for not implementing them is obvi-
ously that your single board computer does not contain a sophisticated operating sys-
tem which actually provides these system functions. Our thought on T/O library sup-
port was that a total compatibility would require a major undertaking which may not
be necessary although not impossible.

The options accepted by the compiler are the following:

-P run only the C preprocessor (cpp) and leave the result in prog.i,
where pr0g.c was the input file.

-S do not run the assembler, leaving the assembly language output
file in prog.a86, where pr0g.c was the input file.

-c compile, assemble, but do not create a .corn file, leaving binary
file in prog.b, where pr.c was the input file.

-0 name changes the name of the generated default a.abs file to
"name.absV.

-lm links the program with the mathematics library
-1r links the program with the RFMS library
-1lib specifies a directory to be searched when processing #include

statements during preprocessor stage.

To cross compile your programs for the 8086/87 target system, use the shell script cc86 as

% cc86 [options] ... file ...

Unless -0 option is specified, the default name of the output is a.abs, instead of
a.out, where abs stands for absolute file. It has a format understandable by the fast
loader and, apparently, it can not be executed on the host computer. The input to cc86
can be more than one file; it can be a combination of assembly programs, object files,
and C programs. There are two standard libraries: VO library, which is always linked
with your programs, and the math library. Read Appendix B for the math functions
provided by the math library.

As usual, there are three parts to this cross compiler: a compiler that produces
assembly programs from input C programs, a assembler that reads the output of the
compiler and the input assembly programs and assembles them to the object files, and
a linker that links everything together. Unfortunately, the intermediate assembly
language, A86, is not standard ASM-8086 assembly language but a hybrid between
ASM-8086 and VAX- 11 assemblers; nor is it equivalent to ASM-8086 particularly in
its instructions dealing with data allocation and the floating point stack. Therefore, if
you need to write assembly programs, the best you could do is using -S option of the
cross compiler to generate sample assembly programs and figure your way out, with
the help of 8086/87 and VAX-11 literatures [17][18][19][20]. Appendix C contains a
table of encodings of 8087 stack arithmetic instructions, which may be useful when
you need to program 8087 and would like to achieve efficiency.

Because of the nature of the program execution, the main program can no longer
have arguments argc and argv, which are usually handled by the operating system.
Also be warned that you are at your own risk if you do not initialize variables, local or
global. Your target computer does not do everything the Unix does such as initializing
memory. Failure to comply to this may result in meaningless outcomes. We have also
found that the cross compiler can not handle functions which return a float; you must
define these functions to return a double. Further, when a function is declared double,
it must have a return statement to avoid underflow of the float stack on 8087. Finally,
an integer variable on 8086 is 16 bits long rather than 32 as on VAX and a double is
eight bytes.

B.5. Down Loading Your Application

The next step is to load your program to the memory of the target. The default lo-
cation of the starting address of your program is at hex 1000 or 4 kilobytes from the
beginning. This information is useful later when you debug your program. To load
the program, simply type:

% dl cabs file>

The down loading speed is about one kilobytes per second, or 9600 baud. You
may examine the size of your program to figure out how long a down loading takes.

The location of the code segment and data segment can be at any 16-byte boun-
dary by changing two constants in the down loading program. Currently, the memory
format of the target is set to the following diagram:

Reserved for SDM

....................... 0x0900
Fast Loader

....................... 0x1000 CS (code segment)

Code

....................... 0x10000 DS, SS, ES

Data + Stack

----------------------- OxlffOO = top of the stack
SP (stack pointer) = OxffOO

....................... End of 128 K Ram

The size of your programs is limited to almost an 8086 segment and can be as
large as 60 kilobytes. Data and stack may take another 64K segment less 256. The
sizes are examined by the linker and warnings are issued when the actual sizes exceed
or approach the limits.

B.6. SDM - System Debug Monitor

SDM is an assembly language level debugger that offers such features as
disassembling code, single step, changing register and memory contents, break point,
and displaying register and memory contents. You can monitor your program on the
target directly from your Unix terminal with the help of the on board SDM through
kermit which changes a Unix terminal to that of your target computer. As mentioned
above, this can be done by

% kermit clb /dev/ttyxy 9600

and you will also see SDM respond as before. In case it has crashed for any reason,
push the reset button of the target and type capital U to reboot the system.

We will try to explain a few commands that are particularly useful in executing your
program. It is strongly recommanded that you read 1211 if you really want to learn
how to use SDM. This section gives just a tiny subset of the rich debugging com-
mands of SDM.

B.6.1 X Command

This command allows you to examine and modify registers.
.X

will display all the 8086 registers.
To modify a register, do
.x register = value

where value can be a hexadecimal number, another register, or an expression of the
sum or difference of numbers and registers.
.xn

displays the 8087 registers and stack registers and you can change the values of stack
registers by
.xst(i) = real number

where i is the stack register number from 0 through 7 and real number is represented in
exponential notation such as 1.23 e-4

B.6.2 D Command

This command displays memory contents in a given data type which can be
integer(i), long integer(li), long real(lr), short integer(si), short real(sr), binary code
decimals(t), temporary real(tr, ten bytes), word(w), or disassembled instruction(x).
Address is represented as segrnent:offset. The default segment is code segment(cs)
and default offset is instruction pointer (ip). For example,

.14&
displays 14 disassembled instructions from location cs:ip.
.d ds:5#16t

displays 16 decimal bytes in both hexadecimal and ASCII format, beginning at ds:5.
.5dtr 10

displays five temporary real values, beginning at cs:lO in both temporary real hexade-
cimal and decimal format.

B.6.3 G Command

This command instructs the monitor to begin executing your program at the
current cs:ip. It can be followed by a starting address and addresses where you want to
break the program. For example,
.g 7fa, IfO:e20

will stop either at cs:7fa or lfO:e20, whichever comes first.
.g 2d0:113, ip

tells the monitor to begin execution instructions at 2d0: 113 and continue until it gets to
the current cs:ip.

When the program stops at a break point, the following message is printed.
"BREAK at xxxx:yyyy

B.6.4. Bugs

As usual, there are bugs associated with SDM package. The single step feature is
shaky at times when you use 8087. For example, to step through a program by G com-
mand may generate a dfferent result from that you obtain to go all the way by G com-
mand; or when you single step, the board may not do what the next instruction says it
will do, etc. We have no solutions to this and encourage you to ask Intel for help.

B.7. Miscellaneous

In lib86 directory, there exist several utility programs to convert files from one
format to another.

abshex - converts an abs file to a hex file,
ldabs - converts an Id file (output of MIT compiler) to an abs file,
ldhex - converts an Id file to a hex file.

B.8. An Example

In this section, we will go through an example to demonstrate how the cross compiler
and the debugger work. Suppose you have created the following program on Unix:

include <math.h>
#defineRAD - TO - DEG57.29578

main()

i
double x, y;
int i;

x = 0.1;
for(i = 0; i < 10; i++) {

y += x;
printf("sin(%4.1f) = %fin\r", y*RAD - TO - DEG, sin(y));

I
I

First compile the program using the C compiler and test it on Unix as

Of course, on Unix we can only test the portion of the program not dependent on the
target hardware.

After making sure the program is free of errors as far as you can go on Unix, you
can then cross compiler your program:

An a.abs is created at this point for you to down load. You are then ready to try it out
on your target computer. As the fist step, properly connect the Unix tty (e.g. ttyh3)
line to your target computer and turn on the power. A typical sequence of commands
may look like:

% stty 9600 raw -echo > /dev/ttyh3
% kermit clb /dev/ttyxy 9600

iSDM 86 Monitor Vx. y
Copyright 1983 Intel Corporation

*** (capital U is pressed here)

.rc>
C-Kermit Disconnected
% ldld
ttyh3 '? (y/n) y
S 0090:OOOO
0090:OOOO 00 - b8,
0090:000100 - 90,
0090:0002 00 - 00,
0090:0003 00 - 8e,

% dl a.abs (wait approximate 5 seconds)
% kermit clb /dev/ttyxy 9600
iSDM 86 Monitor Vx. y
Copyright 1983 Intel Corporation

0100:OOOO FA CLI -,
0100:0001 B83F13 MOV AX, 133FH ;I = +4927-,
0 100:0004 B 104 MOV CL, 4

*BREAK at 0 100:002B
.X
AX = 0006 CS = 0100 IP = 0020 FL = F046 0 0 DO JO TO SO Z1 A0 P1 CO
BX = 1AE3 SS = 1000 SP = FFOO BP = 0000
CX = 0000 DS = 1000 SI = 008 1
DX = 00D8 ES = 1000 DI = 0000

.(^c)
C-Kermit Disconnected
%

You are now at the end of a debugging session.

B.9. VO Library

Only standard input and output functions are provided by the library, i.e., input to
the program and output from the program can only go through your terminal. Further-
more, VO functions are restricted to the following. Attempt to invoke any other will
result in an undefined function error.
char getchar();
char *gets();
putchar(ch) char ch;
putw(word) int word;
puts(s) char *s;
printf(s, arg) char *s;

It should be pointed out that the line feed character In', when used to obtain a
new line, must be accompanied by a carriage return '\r7 in order to move the cursor
back to the beginning of the next line. This second character is put out by Unix
automatically so that your printing program need not use it explicitly.

B.lO. Math Library

The following math functions are provided in the math library.
double fabs(), ldexp(), modf();
double sqrt();
double sin(), cos(), tan(), asin(), aces(), atan(), atan2();
double sc(sc-p, angle)
struct sncs *sc-p; double angle;
where sncs is
struct sncs {

float sin;
float cos;

1;

B . l l . 8087 Floating Point Stack Programming

The compiler does not make use of the floating point stack registers one through
seven for the sake of simplicity. On the other hand, at times you may desire to achieve
better efficiency by programming in A86 and taking advantage of the floating registers.
Unfortunately, the A86 does not provide instructions which handle the float stack
registers except for the top, it is necessary to program in 8087 machine code directly.
The following table provides some of the frequently used arithmetic instructions to

manipulate on the float stack. An example is also presented to illustrate the idea and
the technique.

Table A. 1. Encodings of 8087 Float Stack Arithmetic Instructions

Suppose you would like to program a partial sinus function using 8087's partial
tangent call. It may look like:

i=6

Oxc6d8

Oxc6dc

Oxc6de

Oxe6d8

Oxeed8

Oxeedc

Oxe6dc

Oxeede

Oxe6de

i=7

Oxc7d8

Oxc7dc

Oxc7de

Oxe7d8

Oxefd8

Oxefdc

Oxe7dc

Oxefde

Oxe7de

i=4

Oxc4d8

Oxc4dc

Oxcstde

Oxe4d8

Oxecd8

Oxecdc

Oxe4dc

Oxecde

Oxe4de

i=3

Oxc3d8

Oxc3dc

Oxc3de

Oxe3d8

Oxebd8

Oxebdc

Oxe3dc

Oxebde

Oxe3de

i=5

Oxc5d8

Oxc5dc

Oxc5de

Oxe5d8

Oxedd8

Oxeddc

Oxe5dc

Oxedde

Oxe5de

i=2

Oxc2d8

Oxc2dc

Oxc2de

Oxe2d8

Oxead8

Oxeadc

Oxe2dc

Oxeade

Oxe2de

i=l

Oxcld8

Oxcldc

Oxclde

Oxeld8

Oxe9d8

Oxe9dc

Oxeldc

Oxe9de

Oxelde

Instructions

fadd st, s(i)

faddst(i),st

faddp st(i), st

fsub st, st(i)

fsubr st, st(i)

fsub st(i), st

fsubrst(i),st

fsubp st(i), st

fsubrp st(i), st

i=O

OxcOd8

OxcOdc

OxcOde

OxeOd8

Oxe8d8

Oxe8dc

OxeOdc

Oxe8de

OxeOde

.glob1 -psin
I double psin(x) x double; compute sinus of x in radians
psin: mov bx, sp -

fldd *2(bx)
fptan
fwait
.word Oxc8d8 I fmul st, st(0)
fwait
.word Oxcld9 I fld st(1)
fwait
.word Oxc8d8 I fmul st, st(0)
fwait
.word Oxclde l faddp s(l), st(0)
fsqrt
fwait
.word Oxf9de l fdivp st(I), st(@
ret

Note that every instruction must be preceded by a float wait o instruction to assure nor-
mal function of the hardware. Also, if you are serious about programming 8087,
always remember to clean up the float stack before exiting a function, with the return
value of the function on the stack if there is any. Pushing too many things on to the
saturated float stack leads to unexpected result as the values at the bottom of the stack
will not drop out as one would think.

REFERENCES

[I] Paul, R.P. and Zhang, H. 1985. "Design of a Robot Force/Motion Server".
Proceedings of IEEE International Conference on Robotics and Automation,
St.Louis, MO.

[2] Paul, R.P., Zhang, H., Hashirnoto, M., Durrant-Whyte, H., Izaguirre, A., Trinkle,
J., Zhang, Y., Fuma, F., Ulrich, N., and Donham, M. 1986. "A Distributed System
for Robot Manipulator Control", Department of Computer and Information Sci-
ence, the University of Pennsylvania. 1986.

[3] Hayward, V. and Paul, R. 1984. "Introduction to RCCL: A Robot Control C Li-
brary", Proceedings of IEEE International Conference on Robotics and Automa-
tion, Atlanta, GA.

[4] Pu, P. 1986. "RoboNet: A Local Area Network for Robot Systems", Department
of Computer and Information Science, University of Pennsylvania.

[5] Paul, R.P. 198 1. "Robot Manipulators: Mathematics, Programming, and Con-
trol", MIT Press.

[7] Paul, R.P. and Zhang, H. 1984. "Robot Motion Trajectory Specification and
Generation", ISRR Proceedings , Japan.

[8] Zhang, H. and Paul, R.P. 1988. "A Parallel Solution to Robot Inverse Kinemat-
ics", Proceedings of IEEE International Conference on Robotics and Automation,
Philadelphia, PA.

[9] Izaguirre, A., Hashimoto, M., and Paul, R. 1987. "A New Computational Struc-
ture for Real-time Dynamics". Proceedings of International Workshop on Robot-
ics: Trends, Technology, and Applications, Madrid, Spain.

[lo] Paul, R. P. and Zhang, H. 1986. "Computationally Efficient Kinematics for Mani-
pulators with Spherical Wrists Based on the Homogeneous Transformation
Representation". International Journal of Robotics Research 5(2):32 - 44.

[11] Postel, J., 1980. "User Datagram Protocol", RFC 768, Information Sciences Insti-
tute.

[121 Postel, J., 1982. "TCP-IP Implementations", Network Information Center, SRI
Int.

[13] Intel 1985. "Local Area Networking (LAN) Component User's Manual",
2308 14-002, Intel Corporation.

1141 Intel 1984. "iSBC 186/51 COMMputer Board Hardware Reference Manual,"
1221 36-002, Intel Corporation.

[15] Tanenbaum, A., 198 1. "Computer Networks", Englewood Cliffs, N. J., Prentice-
Hall,

[16] Kernighan, B.W and Ritchie, D.M. 1978. "The C Programming Language",
Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632.

[17] Intel Corporation, "iSBC 337 Multimodule Numeric Data Processor Hardware
Reference Manual", Intel Corporation, 3065 Bowers Avenue, Santa Clara, Cali-
fornia 9505 1.

[18] Rector, R. and Alexy, G, "The 8086 Book", Osborne/McGraw-Hill, 630 Bancroft
Way, Berkeley, California 947 10.

[19] Levy, H.M. and Eckhouse, R.H., "Computer Programming and Architecture", Di-
gital Equipment Corporation, Bedford, MA 01730.

[20] Intel Corporation, "ASM86 Language Reference Manual", Intel Corporation,
3065 Bowers Avenue, Santa Clara, California 95051.

[21] Intel Corporation, "iSDM 86 System Debug Monitor Reference Manual",
Hardware Reference Manual", Intel Corporation, 3065 Bowers Avenue, Santa
Clara, California 9505 1.

[22] Intel 1982. "iSBC 86/14 and iSBC 86/30 Single Board Computer Hardware
Reference Manual," 14404-002, Intel Corporation.

	RFMS Software Reference Manual
	Recommended Citation

	RFMS Software Reference Manual
	Abstract
	Comments

	tmp.1190736185.pdf.ltlOS

