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through Ethernet, a local area network, which also allows interaction between the user and sensors. 
Design principles of the system can be found in Section 2. 
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RFMS SOFTWARE REFERENCE MANUAL 

Hong Zhang 
Department of Computer and Information Science 

The University of Pennsylvania 

1. Introduction 

This manual explains the software of the Robot Force and Motion Server 
(RFMS)[l], a high performance robot control system designed and implemented in the 
GRASP laboratory. In this system, the robot manipulator is considered a force/motion 
server to the robot and a user application is treated as a request for the service of the 
manipulator. The user application is created on one of the UnixfVAX machines in 'C' 
programming language as a set of function calls. The application is carried out in a 
multi-processor controller, which consists of Intel single board computers and provides 
computing power necessary for computationally intensive tasks. The VAX machine 
and the Intel controller communicate through Ethernet, a local area network, which 
also allows interaction between the user and sensors. Design principles of the system 
can be found in [2]. 

The software of the system involves a variety of computers: the user interface is 
written to be executed on a UnixfVAX machine; the control software is written to be 
executed on Intel 8086-based single board computers; and the network software is 
written to be executed on a UniflAX machine on one end and Intel processor on the 
other. The rest of the documentation will be organized according to where the execu- 
tion of the program is. Section Two will discuss user interface, and for those who 
intend to only use the system for specific applications, it is adequate to read this sec- 
tion. Section Three will discuss the implementation the Ethernet software. This sec- 
tion is useful only if one would like to make changes to the communication protocols 
between the user and the Intel controller. Section Four will discuss the software writ- 
ten for the robot controller which consists of Intel single board computers to control 
the robot manipulator, a PUMA 260 in our case. It is important for one to understand 
this section if what is provided in the system is insufficient to carry out his applica- 
tions. 

This material is based on work supported by the National Science Founda- 
tion under Grant No. ECS-8411879. Any opinions, findings, conclusions, or 
recommendations expressed in this publication are those of the authors and 
do not necessarily reflect the views of the National Science Foundation. 



We would like to mention that the system is yet to be finalized, for we have been 
using it for research and thus need to constantly make changes. Several versions of the 
system exist among the people who have used and modified the system for their own 
needs. We will try to be consistent throughout this documentation, though confusion 
may occur from time to time. The programs are organized by the processor on which 
.they are executed, with one directory per processor and common include files in two 
separate directories. The following table roughly explains the contents of the direc- 
tories under lusrluserslhz on robo.cis.upenn.edu and lusrluserslhzlrobo on 
grasp.cis.upenn.edu. 

Table 1. RFMS Directories 

All source files will be underlined and all functions will be italicized. 

Directory 

/VAX 

/include 

11 86 

/h 

/super 

lJi 

/math 

/S Y s 

/c86 

/c 1 86 

2. User Interface 

Content 

user interface and Ethernet driver on the 
VAX side 

include files for /VAX directory 

Ethernet driver on the Intel side 

include files for the Intel controller 

programs written for the supervisor of the 
Intel controller 

programs on the ith joint 

programs for the math processor 

library functions for 8086 (YO, interrupt 
control, vector operations, etc.) 

cross compiler for 8086, loader, and optim- 
izers 

cross comipler for 80186 

From a user's point of view, the available functions can be classified into three 
categories: world-model definition, motion record definition, and motion requests. 
Another category, task synchronization, enables the user to wait until the completion 
of a sub-task before the next one starts. Although it is not available at this time, it can 
be easily added. Sensor input is another area yet to be integrated into the system, and 
all the mechanisms exist. The structure of the program is similar to that of an RCCL 



program in spirit, whose underlining principles can be found in [3]. A user requests 
the service of the robot controller by making function calls from a 'C' function named 
pumatask(). 

2.1. Programs of the User Interface 

A total of eight programs constitute the user interface of the system. Since the 
emphasis of the system is not to construct a comprehensive robot programming sys- 
tem, effort made to create the user process is kept at minimum. We have used this part 
of the system only for testing the robot controller. 

A user defines a task by making calls to the system functions. A task defines the 
world model in terms of the transformations (relationships between coordinate frames 
of interest) and position equations (definitions of points in the work space to which the 
manipulator is to move). The fashion in which a move to a position is conducted such 
as segment time, compliance specification, etc., is defined by a motion record. Upon 
any call to create one of these, the created data structure is f ist  stored in the 
corresponding symbol table and then a copy of it is sent to the RFMS through the Eth- 
ernet. To initiate an action, a move is called with two parameters: a pointer to the desti- 
nation position and a pointer to a motion record. Fundamental to the user interface are 
the three symbol tables storing transformations, position equations, and motion records 
that have been created. The move requests are not stored in a symbol table because 
they are not referred to by other variables. This may change, however, once task syn- 
chronization is needed for the system has to keep track of the move requests have been 
issued. Once the application is created and compiled, one can run the application like 
any other 'C' programs by a.out. 

The rnain.c allocates memory for static symbol tables for the user process, initial- 
izes the communication link between the user process and the RFMS, and then calls 
pumatask() defined in, say, myaDu.c, by the user, which contains a stream of function 
calls to the system. After defining an application, the user may call the function 
debug(), which logs data corning from the Intel controller in real-time and store them 
in six different files, corresponding to six joints of the robot manipulator. The nature 
of the data is entirely up to the user, but there must be an agreement in what the Intel 
controller sends and what the user interprets. This function call is optional and has 
been used as a debugging tool so far. One can expect to log one set of data every four 
to five sampling periods. 

There are currently a number of ways to create a transformation: a transformation 
with pure translation and no rotation by gentr - trsl(), a rotation transformation defined 
in terms of either Euler angles or roll-pitch-yaw angles by gentr - eul() or gentr - rpy(). 
All functions related to transformation creation are defined in trans.c. 



A position equation is created by a call to makepst() in m. One must provide a 
name to the position as a string of characters in the first argument and three constants 
for the three configurations lefty, up, andflipped, associated with the PUMA 260. Since 
a position equation may contain a number of transformations on either side, makepst() 
must be able to handle variable number of arguments[4]. The last argument of 
makepst() when defined is declared to as a pointer to a transformation, the same data 
type as the rest of the arguments that follow it when the actual call is made. Two key 
words, EQ and TL in the actual call help interpret where left-hand side ends and which 
transformation is the tool transformation [5]. 

A motion record specifies how a motion is to be executed. and it contains such 
attributes as segment time, acceleration time, mode of the motion, and compliance 
specification. These attributes then become the four input arguments to a call to mak- 
emot(), which is contained in the program m0t.c. Both segment time and acceleration 
time are in seconds, and mode of the motion can be either Cartesian or joint. Compli- 
ance uses a bit pattern as in Figure 1 to indicate the physical constraints to the motion 

Figure 1. Bit Pattern Representing Compliance 

MSB 

where Ri represents rotational compliance along a certain Cartesian direction and Ti 
translational compliance along a certain Cartesian direction. In this example, four 
motion records are defined. The first simply defines a joint motion with a segment time 
of 2 seconds an acceleration time of 0.2 seconds. The third motion records defines a 
Cartesian motion with a 20 second segment time, a 0.5 second acceleration time, and 
compliance along z direction. 

.. . ~ R , ~ R , / R , ~ T , ~ T ~ ~ T ~ ~ L S B  

The program m0ve.c contains the function move(). The function uses the two 
input arguments, a pointer to position and a pointer to the motion record, to issue a 
move request. 

At the end of each function call, a message is issued to the RFMS. Functions in 
the file mess.c handle packet preparation. Currently, the user application is not receiv- 
ing any messages, even though the software could handle it. The format of the mes- 
sages is defined in msgs. h. The message type identifies the content and interpretation of 
the message. A message is written into the buffer, msg, before function mess() is 
called, which prepares the Ethernet packet and invokes Ethernet function Send() in 
c0mm.c to send it. 

All floating point numbers are modified before being sent, since the VAX 
machine and Intel computers represent a floating point number differently, as illus- 
trated in Figure 2. 



low word 

low word 

Intel Floating Point Representation 

high significant (7 bits) sign 

DEC Floating Point Representation 

low significant (16 bits) 

exponent (8 bits) 

low significant (16 bits) 

Figure 2. Floating Point Representation 

We choose to convert floating point numbers on the VAX machine since it is faster 
than any Intel computer and time on the Intel computers is more valuable. The func- 
tion convert() in mess.c performs the conversion. 

2.2. An Example 

high significant (7 bits) sign 

The following example further illustrates how an application program is created. 
# include "..lincl~deldatdef.h~~ 
# include ". .lincludelextdef.h" 
# include "..lincludelcondef.h" 

exponent (8 bits) 

pumatask() 

C 
TRSF *t2; 
PST "homegst; 
MOT *mjnt, *mwait, *mcart, *mcwait, *mcartcz, *mcartcx; 

t2 = gentr - trsl("t2 ", 203.2, -126.23,203.2); I* home *I  
homegst = makepst("home", RIGHT, DOWN, FLIP, t6, EQ, t2, TL, t6); 
mjnt = makemot(2.0,0.2, JNT, 0); 
mcart = makemot(4.0,0.3, CAR, 0); 
mcartcz = makemot(20.0,0.5, CAR, 0x4); 
mcartcx = makemot(l5.0,0.5, CAR, 0x1); 

move(homegst, mcartcz); 
move(homegst, mjnt); 



1 
The three include files in the beginning are necessary for the user to define local 

variables of the data types created for robot programming (hldatdefh), to make func- 
tion calls to the system (hlextdef-h), and to make use of the constants defined in the 
system (hlcondefh). TRSF, PST, andMOT represent data type transformation, position 
equation, and motion request, respectively. In the instruction section of pumatask(), a 
transformation is first created by providing function gentr-trsl() with three transla- 
tional components of the p vector in the order of x, y, and z. 

The Function call, makepsto, creates a position equation with transformations 
either known to the system or defined by the user. In our case, it has t6, which is 
known to the system, on one side and t2, which is defined by the user, on the other. 
Configurations of this position are specified as right, down and flip. Four motion 
records are defined in this program, with one joint motion, and three Cartesian motion, 
of which two require compliance. 

Two motions are requested in this task. The arm will move to the same position 
as the initial position (i.e., remain stationary), while complying along z direction. 
Once this is finished, the arm will move back to home position. 

Once the application is created, it can be compiled and linked with the rest of the 
system. The application is executed in the same fashion as any other Unix executable 
file, when the Intel controller is initialized and ready to accept tasks. 

3. Ethernet Interface 

The user and the Intel controller communicate through Ethernet, a local area net- 
work. The implementation details of this interface can be found in [6] and in Appen- 
dix A. Here we only outline some of its features users need to know in order to use it. 

The interface on the users' side is performed on a Unix/VAX machine. Unix sup- 
ports Ethernet and, for robot control, our software is built as the data link layer by 
making use of the Data Link Interface (DLI). The interface on Intel's side is built from 
scratch and has two layers, the data link and logic link. The protocol used between the 
two machines is one-bit-sliding window and positive acknowledgement with 
retransmission, which means the machine sending a message keeps trying until it 
receives acknowledgement or the number of trials exceeds a limit. A token exists 
which determines who can send a message at any given moment. It is usually held by 
the VAX machine and the Intel machine has it only when the VAX machine requests a 
message from the Intel controller. Typically the VAX machine sends a message to the 
Intel machine whenever it wants and the arrival of a message creates an interrupt to the 
Ethernet board 186/51[14] of the Intel controller, which then reads the message in its 
interrupt handling procedure. The Intel controller, on the other hand, cannot send a 



message to the VAX unless it is explicitly asked to do so. This is caused by the fact 
that the software on the VAX side is not written as an interrupt handler, but rather as a 
listener and therefore can not deal with any unexpected incoming messages. 

Two primitives on the VAX for sending and receiving a message have the syntax: 
Send (buffer, size) 

and 
Recv(buffer, size). 

The counterpart on Intel side employs two primitives: 
Recv - Frame(bufSer) 

and 
Send-Ack() or Ans - Send-Req(). 

Which one to use to send a packet depends upon if the message just received is a real 
message or a request for a message to be sent to the VAX. Once messages are 
received by the 186/51, they are queued in an array, waiting to be processed by the 
supervisor of the Intel controller. 

The communication software for VAX is contained in one file comm.c, and for 
the Intel controller there are three 'C' files in the directory 1186, dld.c, llc.c, and 
main.c. The program d1d.c contains the data link layer, and the program 1lc.c contains 
the logic link layer. The program main.c first initializes the data link layer by 
Init - 5860, sets up a linear array of messages in which the incoming messages are 
stored, and inform the supervisor of the array address by storing it at a fixed memory 
location accessible to both supervisor. Two other assembly programs in this directory, 
reint.a86 and handler.a86, deal with the interrupt control of the 186/51. 

There is only limited memory space on the 186151 and, therefore, the size of the 
message queue can be of only a finite length. Currently, a total of 100 messages can be 
stored, of which each has a fixed size of RBUF-SIZE bytes. Since the supervisor keeps 
looking in the queue for available new entries, overflow never occurs if we assume the 
speed of processing messages by the supervisor is faster than the that of the incoming 
messages. The system fails if this assumption is not valid. A dirty bit in the last byte of 
a message buffer indicates if the buffer contains an unprocessed message. 

There are currently two 186/51 computers of different models: one is an ES and 
the other an S. In additional to their difference in jumper locations and notations, the 
only software difference one needs to know is the Ethernet address defined for the Eth- 
ernet chip 82586. The S model has an address of 

0x08,0x00,0x2b, Ox02,0x89, Oxfc, 

and the ES model has an address of 
0x08,0x00,0x2b, Ox02,0~96,0x74. 



4. Intel Controller 

This part of the software runs on Intel single board computers, and it is developed 
on a VAX machine where the user process is and cross-compiled and down-loaded to 
the targets via a serial line. (The information on the cross-compiler can be found in 
Appendix B) The controller is a multi-coniputer system with shared memory and a 
common bus, through which data communication and control signals are transmitted. 
Each computer in the system contains dual-ported memory, of which part is defined as 
global so that other computers in the system can access it as well. Information 
exchange takes place in the form of mail boxes and system synchronization is achieved 
by interrupts. There are currently nine computers running in parallel, six joint proces- 
sors, a supervisor, a math processor, and an Ethernet computer. There is a real-time 
synchronized interrupt driven process on each of the joint processors, the supervisor 
and the math processor. In addition, there is a background process on the supervisor 
and the math processor. 186151 runs asynchronously with the rest of the system. 

Supervisor, joints and the rest of the system need to communicate with each other 
and exchange information. Also the kind of data each one requires of any other is 
known a priori. To facilitate such communication, mail-boxes are created on each 
computer with their addresses stored at pre-defined memory locations. These addresses 
are currently stored in the topmost part of the memory fi-om segment O m 0  so as not to 
interfere with the code, data, or stack segments. During the initialization process, 
supervisor waits until ready flags are cleared in all processors before it picks up 
addresses of the mail-boxes where it will either drop or pick up mails. Most of the glo- 
bal memory access is done by the supervisor. Currently the only access by the joints is 
during the compliance when every joint needs to collect other joints' errors. Two sys- 
tem functions, rblock() and wblock() facilitate global memory access. The sources and 
destinations of the mail boxes are summerized in the following table. 



Table 2. Mailbox Description 

Both trajectory generation and inverse kinematics are performed on this parallel 
processor and a lot of efforts have been devoted to computation distribution. Trajec- 
tory generation at Cartesian level, i.e., calculation of the end effector position and 
orientation, is performed on the supervisor. Joints, on the other hand, plan their indivi- 
dual trajectories given the end effector coordinates. The dependency exists among the 
inverse kinematics of the joints, for the ith joint requires solutions of all prior i - 1 
joints. This dependency, however, can be eliminated when each joint uses other joints' 
solutions in the previous period. This scheme is approximate, but it allows the system 
to compute the kinematics in parallel thus speeding up the system substantially. The 
details of the trajectory trajectory can be found in [7] and the details of the parallel 
inverse kinematics can be found in [8]. 

description 

one copy to each joint to instruct what 
actions to take 

information math processor needs to 
compute Jacobian matrices and 
dynamics 

one from each joint to the supervisor 
to return the status of the joint 

results computed by math and collect- 
ed by supervisor for one of the joints 

one on each joint distributed by the 
supervisor 

4.1. Supervisor 

destina- 
tion 
bufSer 

MAIL 

MMAIL 

JMAILi 
i= l  ... n 

PARCi 
i = l  ... n 

PARC 

data type 

S-MAIL 

M-MAIL 

JMAIL 

PARCEL 

PARCEL 

Two concurrent processes, one being interrupt driven and the other in the back- 
ground, are executed on the supervisor. The background process reads the messages 
stored in the 186/51 and sets up data structures, which the second interrupt driven pro- 
cess uses to coordinate the operation of the controller and the generation of motion tra- 
jectories. Supervisor runs on an iSBC 86/30 computer[22]. 

source bufSer 
(origin) 

MAIL 
(supervisor) 

MMAIL 
(supervisor) 

JMAIL 
(joints) 

PARi 
(math) 

PARCi 
i = l  ... n 
(supervisor) 



The program, main.c, initializes the system and interacts with the user to go 
through the manual mode, the calibration mode, and then onto the set-point mode. Its 
serial port is connected to a terminal where the user operates for the purpose of down- 
loading the code and monitoring the controller operation during system development. 
Eventually, the interactive session should take place between the VAX machine where 
the user really is and the control system through the Ethernet. 

4.1.1. Background Process 

The background process program is stored in bk2d.c. To process messages stored 
on the 186/51 (refer to Section 3), the supervisor maintains a pointer to the next avail- 
able message in the message queue. Depending upon the type of the message, different 
action is taken. The format of the messages are defined in the include file hlrns2s.h. 
Data structure definitions in this file must agree with those in includeldatdef.h, if the 
supervisor is to interpret the messages correctly. When there is no message in the 
queue, the background process simply waits. 

Upon the arrival of a message, the type of a message is determined, and a 
corresponding data structure may be created and added to the world model. Currently, 
there are six possible types, INIT, STOP, TTR, TPOS, TMD, TREQ. The first two 
simply are signals for the beginning and end of a task definition. The rest are for a 
transformation, a position, a mode, and, motion request message, respectively. The 
definitions of these data structures can be found in h1datadef.h. 

These data structures refer to or are linked with each other. For example, a posi- 
tion contains pointers to transformations defined previously. If the messages came 
from the same machine as the one that receives it, the addresses could be used as 
pointers. Unfortunately this is not the case. A linked structure must be sent piece by 
piece and the receiving machine must be able to resolve all the cross references. In 
order to be able to locate the dependencies, we associate each message of a given type 
with an identification number. To facilitate a fast search, four symbol talbes, ttbl[], 
mtbl[], ptbln, rtbln, are set up to store the pointers to the data structures and the id 
numbers are indeces in the symbol tables. 

When a position equation message arrives, a ring structure is created[5]. The pro- 
gram, pstn.c, contains functions necessary to create the structure. A ring consists of a 
number of items representing transformations in the equation, of which each contains a 
pair of atoms containing the forward and inverse transformation. Function Atom() 
allocates memory for one atom, NewTermO links a pair of atoms, Listn()'s link n 
terms, and MakePoso takes two lists of terms as left and right hand sides of the equa- 
tion and forms the ring. 



Processing of other messages requires much less work and is dealt without any 
primitive functions. 

4.1.2. Real-time Process 

The real-time process is executed upon a periodic intempt signal generated by 
the programmable timer on the supervisor. The entire process runs like a finite state 
machine and action taken in each period depends on two state variables. The variable, 
rtstate, in program rtisr.~, changes among eight possible states, IDLE, FREE, MANU, 
CALIB, HOLD, SEW, STOP, and EMGCY. These constants are defined in file 
c0mm.h. The state the system may fall in is illustrated by the following graph. 

CALIB @ 
Figure 1: State Diagram of the RFMS 

The interpretation of each state is summerized in the following table. 



Table 3. Real-Time State 

state 

IDLE 
FREE 
CALIB 
SETP 

HOLD 
MANU 

In IDLE state, the system is in the initialization process. The free state is one in 
which the all joints are freed and compensate only for the gravity. This state is useful 
when we check the gravity loading constants we compute from the dynamics equa- 
tions. In MANU state, the joints can be controlled manually in order to position the 
manipulator. The state CALIB indicates that the joints are going through a calibration 
procedure by looking for the zero indeces while making incremental moves. The state 
SETP is entered once the calibration is finished. Finally states STOP and EMGCY 
represent when the joints should stop and when the joints have detected abnormal con- 
ditions and need to come to a stop, respectively. 

action 

get current position and keep the power off 
get current position and send current compensating for gravity 
keep incrementing joint position until zero index is observed 
call jsetp() and derive encoder position and compute observed 
sin and cos 
turn the power on 

increment desired encoder position by 4 counts either clock- 
wise or counterclockwise 

If the system is in SETP state, another variable state, in file setp-c, determines the 
stage in which the trajectory generation is. The number of states correspond to the 
number of cases in the motion control summary in [7] ,  plus two additional states for 
the stationary case when there is no next motion command and for the case when the 
manipulator is coming to a stop. The state diagram in state is given in Figure 2. 



Start 

I 1 

Figure 2. State Diagram of the Trajectory Generator 

where the states are defined in Table 4. 

state 

S2 

- - -- - - - 

definition 
I I wait for a new move request I I straight line motion segment I I one sampling period before the transition 1 

beginning period of the transition 
initialization of the transition 

I during the transition I 
I end of a motion with no next move 

Table 4. Definition of state 

Whichever state the system is in, supervisor exchanges information with and for 
the rest of the system. Four data structures, also defined in hlcomm.h, function as 
buffers holding information to be exchanged. The structure, S-MAIL, contains what to 
be shipped to the joints from the supervisor, J-MAIL, contains what to be shipped 
from the joints to the supervisor, and M-MAIL, contains information updated by the 
math processor for the joints. Another structure, PARCEL, contains information 
related to manipulator kinematics, such as dynamics and Jacobian matrices, that is pro- 
vided to the joints at a low rate. In fact, each joint receives its new PARCEL every n 
periods, where n is the number of joints. 

A few points concerning mails need to be clarified. First, there are three sets of 
sines and cosines returned from each joint in J-MAIL. The first two sets are expressed 
in terms of a sine and the sign the the cosine. They correspond to the sines and cosines 



of the current and the next destination and positions, respectively. The third set is sine 
and cosine of the observed joint position. Secondly, The interpretation of the integer 
for the sign of the cosine is illustrated by the following figure where a clear bit in the 
corresponding position represents positive and set bit negative. 

MSB 1 ... 1J61J51J41 J31J2) J11 LSB 

Figure 3. Bit Pattern Representing Signs of the Cosines 

Thirdly, the fields in S-MAIL Csigns and CsignsC are simply the oring of the 
corresponding signes from all the joints. 

The program setp.c depends on a number of functions. Functions Dequeue() and 
Unqueue() either take next motion request out of or and put back a fetched motion 
request to the motion request queue. GetEX() and GetLDR() compute the next T6 in 
joint motion and Cartesian motion, respectively. All these functions are stored in file 
expr.c. Another function InitD(), defined in file  drive.^, initializes the constant parts of 
the drive transformation for the next segment of Cartesian motion. 

4.2. Joint Process 

We describe the joint processes by showing how one joint works, since other 
joints are simply replicates of this example and differ mainly in the constants used in 
the programs. There are two joint independent programs, jsem.c and jrtc.c, In addi- 
tion, there is one joint dependent program in each joint directory, jnti .~,  where i refers 
to the joint number, in each joint directory. The executable file of each joint is made up 
of the joint dependent and independent files. Joints share only the source code, not the 
executable code. 

The program, jnti.c, contains the entry point, main(), that initializes joint depen- 
dent global variables and calls rtc() in jrtc.c to begin joint's operation. Two other 
functions in jnti.~, InvKine(), and, InvKineCO, compute inverse kinematics from two 
different set of parameters provided in supervisor mail. ManuInc() is used during 
manual mode to compute the amount of position increment. IsReady() determines if 
the joint should start calibrating or wait. This is necessary to overcome the mechanical 
coupling among joints during calibration. AngToEngO performs conversion between 
the encoder count and the joint angle in radians. WriteEnc() writes the change in its 
joint angle to the other joints that are coupled with this joint in order for them to make 
compensation. ReadChgsO copies the changes in other joints written in its memory 
into 'C' variables so as to be refered to later. Function PID calculates the control law. 



Finally Starts() informs the supervisor of the completion of the joint's initialization. 

The interrupt handler Rtisr() in jrtc.c is dictated by the same rtstate variable as on 
the supervisor to determine what the joint should do. It is executed at the same rate as 
the supervisor's interrupt service routine and computes the desired joint position in 
encoder count. According to the current rtstate, the fashion in which the desired posi- 
tion is computed varies. The result is passed on to the function Servo(), which actually 
performs servoing of the joint with the position computed in the previous sampling 
period. Currently it is either a PD or a PID control with gravity and fiction compensa- 
tions. Should the compliance be required, the servo error is adjusted in Adjust() before 
used to compute reacting torque. 

JSelp() in jsetp.c computes the joint set-point. The variable state drives the pro- 
cess. There are several worth-noting points. First, all information needed by the joints 
is assumed to be available in the data structure MAIL, the buffer sent by the supervi- 
sor. Secondly, since in general the kinematic solution for ith joint requires the solution 
of inner i-1 joints, values of those joints computed in the previous sampling period are 
used in order for the joint not to wait for solutions to be computed, as has been men- 
tioned previously. Finally, the joints should not have to wait for the supervisor to 
finish before they can start doing inverse kinematics. Instead, the T6 is pipelined so 
that supervisor and joints start computing at the same time. 

4.3. Math Process 

The purpose of this process is to compute dynamic coefficients and Jacobian- 
relation matrices. Current computed joint angles are passed to this process as input 
and it provides gravity loadings and the compliance matrix as output to one joint per 
sampling period cyclically. The reason for only one joint per period is that the update 
of the parameters takes place at a much slower rate than the sampling rate and there is 
no point of sending XX The incoming information is deposited in MMAIL, the mail 
box for the math process from the supervisor and the output is returned in the buffer 
PARi, whose content applies to the joint specified in MMAIL.joint. 

Again there is a real-time interrupt driven process that handles interaction with 
the supervisor and there is a background process that computes in an endless loop. The 
calculation of the dynamic coefficients is based on equations in [9], which uses 
Lagrangian mechanics to express dynamic terms explicitly and determines the con- 
stants in the coefficient from experiments. Procedures in [lo] are used for the calcula- 
tion of the compliance marrix. In order to prevent from happening the situation where 
the real-time interrupt service routine copies results partially updated by the inter- 
rupted process, a binary variable is used to indicate which of the two copies of a partic- 
ular quantity, such as Jacobian matrix, is valid. 



Currently only the Jacobian matrices from the base of the robot to the end- 
effector are considered. Should a tool be added to the system, modification would be 
necessary. Further, velocity dependent dynamic coefficients as well as the effects of a 
load at the robot end effector on the dynamics are not considered. 

5. Postscript 

One of the lessons we have learned from the RFMS project is that it is extremely 
difficult to program a multiprocessor system without a powerful development system. 
It is then predictably difficult to try to explain the system to someone wishing to under- 
stand and modify the system. To fully master the system requires a lot of time. It is 
however not as overwhelming to simply use the existing software to program the robot. 
This single document provides but a portion of the knowledge one must learn before he 
can feel comfortable working with the controller. It is strongly recommended that one 
read other related documentations and the hardware reference manual being prepared 
for this system for a better understanding. 



Appendix A 

RoboNet: A Local Area Network for Robot Systems 

This documentation is about RoboNet, an Ethernet-based local area network that 
the we have designed and implemented. This documentation serves two purposes: as a 
user's guide to give robot system users a brief description on how to use the network 
software to transfer data from one machine to another, and as a system programmer's 
manual for those who maintain this network and those who are interested in custorniz- 
ing part of this network or extending it for other applications. 

The remainder of this documentation is organized in four sections. Section two 
describes the network software function calls, their usage, and the results of those 
calls; Section three describes the network and its layers; Section four describes the log- 
ical link layer of RoboNet; and Section 5 describes the data link layer of RoboNet. 
Two appendixes describe how to compile the network software, where to find the files, 
and how to maintain the network software. For those who are interested only in using 
the software, we suggest that you read section two and three. For system programmers, 
we suggest that you read the entire documentation. 

A.1. User's Guide 

Currently only Grasp (VAX 11/785), Robo (Microvax 11) and Intel 186151 have 
RoboNet software. These machines are physically all attached to the Ethernet cable. 
We use RoboNet to transfer messages from the VAX machines to the Intel 18615 1 and 
vise versa. Exchanges of messages among VAX machines are performed by software 
already available on these machines running Unix. The RoboNet is illustrated in Figure 
1. 

The VAX users can send messages to the Intel machines by invoking the network 
software. If the VAX user desires a particular piece of information from the Intel, he 
must send a message request to the Intel. The Ethernet communication on the Intel side 
is not accessible at the user level. A user can assume that process exists on the 18615 1 
that handles the messages and message request. 

This appendix is an edited and revised version of the reference manual, 
"RoboNet: A Local Area Network for Robot Systems", prepared by Pearl Pu, 
the Department of Computer and Information Science, the University of 
Pennsylvania. 
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Figure A. 1. RoboNet 
A.1.1. The Network Software Function Calls for the VAX users 

A n 

To be able to use these function calls, you have to have a Grasp, or Robo account. 
You have to know how to program in C. And finally you have to know what you are 
doing with these messages on the Intel side. 

h 

In order to use the software, you have to do the following: 

v v v 

1. Include vm.h in your program. 

grasp 
VAX 785 

2. Compile your program with vax - 1lc.o. 

The network software, seen at the user level, consists of the following C function 
calls: Init - Comm - Link(}, Sync(), Send(), and Recv(}. 

Init - Comm - Link{): 
This function initializes the communication link between the host where 
the user is located and the Intel 186/51. The Intel Ethernet address is 
specified in this routine automatically as the destination address in sending 
and source address in receiving. Note that if the Intel address changes, one 
needs to notify the system programmer to modify this address accordingly. 

Sync{): 
This routine synchronizes certain variables between the user process on the 
VAX and the communication process on the Intel 186/5 1. 

Send(msgsptr, length}: 
msgsptr is a pointer to the buffer which contains the message you want to 
send, and length is an integer that specifies the length of the message 
string. Note that length can not be greater than M A V R A M E  or less than 
MIN - FRAME in vax.h. 

Robo 

PVAX 

Intel 
186/5 1 



Recv( {type, msgsptr, length)): 
type specifies what type of information you would like to receive from the 
Intel side. There are ten types of such information. msgsptr points to the 
buffer area where you want to receive the message. Length returns the 
actual length of message received. For certain reasons, all messages com- 
ing from Intel must be of one size. That size is specified by R-SIZE 
(receive packet size) in vax.h. 

An example program, which illustrates how to use the network software on the 
VAX side, is shown in Figure 2. 
main() 

i 
int i; 
char msgs[100], bufSer[R - SIZE]; 
int length; 

I* fill up the msgs to be sent out *I 
for(i=O; i<lOO; i++) 

msgs[i]= 'a' + ( i% 10); 

Init - Comm - Link(); 
SyncO; 

I* send the same message 10 times *I 
for (i=O; i d 0 ;  i++) 

Send(msgs, sizeof(msgs)); 

Recv(type2,bufler, &length); I* receive type2 message */ 
bufSer[length]= NULL; 
printS("The received message is %sW, buffer); 

Figure 2. An Example Program 

A.1.2. The Network Software on the Intel Side 

Currently user support on the Intel side is entirely tailored to the need of the robot 
controller, which is a multiprocessor system based on Intel 86130s with a supervisor 
handling message bookkeeping. All the messages sent from a user process on any of 
the VAXes or Microvaxes are queued up in a large buffer area on the 186151. The 



beginning address of the large buffer area is stored in the RAM of the 186/51 at 
Oxlff00. The robot controller decides where each message finally goes. If the user 
requests a piece of information to be sent back to the VAX side, the network software 
on the Intel side will take care of this request. 

To bring up the network process on the Intel 18615 1, you have to ask the system 
programmer to do so. This process, once brought up, should be running continuously. 

A.2. RoboNet: An Overview 

RoboNet is a research effort to investigate the feasibility of designing a tailored 
local area network for robot systems, and stimulate further interest in this area. The 
current trend for robot systems is to distribute user tasks and robot tasks on different 
processors to increase computation speed. This introduces, however, communication 
problems between the users and the robot controller. To solve the communication 
problems, there are two solutions: one is to use existing software; the other is to design 
new software. 

The reason we designed and implemented our own communication network 
stemmed from the observation that existing local area network protocols[ll][l2] are 
for large data file transfers. The header in each packet is usually complicated and the 
data large. If we use these protocols for transferring messages of small sizes, which is 
the situation with communication in robot systems, the system will be inefficient. 

User Application 

Logical Link 

Data Link IEEE 802.2 

Physical IEEE 802.3 

Figure A.2. Layers in RoboNet 

RoboNet is designed with four layers as shown in Figure 3. The lowest layer, the 
physical layer, is an IEEE 802 standard. The data link layer is an IEEE compatible 
layer. IEEE 802.2 consists of data link and logical link layers. We only chose to imple- 
ment the data link layer with the standard. It is hoped that RoboNet will be adaptable, 
should there be more suitable protocols. For instance, MAP ( Manufacturing Automa- 
tion Protocol) is another IEEE 802 standard. It is claimed that MAP is more efficient 
than Ethernet, and it does not degenerate when the load of the network becomes heavy. 
Therefore, if MAP is found to be more suitable for our application and affordable, we 



can replace Ethernet by MAP without changing anything above. Another advantage of 
a standard implementation of the lower layers is to support heterogeneous machines. 
The robot system we have here contains VAX 11/785s, Microvax IIs, Intel micropro- 
cessors. In the future, it may also have Lisp machines. Since most computer manufac- 
tures now make Ethernet chips available to most of their machines, in order to install 
RoboNet on a machine we only have to install the upper three layers. 

In the next two sections, we will describe the, three lower layers. Section two is a 
description of the user application layer. Currently RoboNet is installed on Grasp 
(VAX 11/785), Robo (Microvax 11), and Intel 186/51. As mentioned earlier, since this 
part of documentation is for system programmers, we will concentrate on not only 
design issues but also implementation details. 

A.3. The Physical and Data Link Layers in RoboNet 

As shown in Figure 3, the physical layer is the IEEE 802.3 (Ethernet) standard. 
On the VAX machines (VAXes, Microvaxes), this layer comes with the machine. On 
the Intel 186/51, there is a network coprocessor called the 82586, which is essentially 
an Ethernet chip that handles low level packet sending, receiving, framing, etc. For a 
detailed description of the 82586, refer to [13][14]. The 82586 is the coprocessor to 
the main CPU 80186. 

The data link layer on the VAX machines uses the data link interface (DLI) from 
the Digital Equipment Cooperation. All packets sent out from the DL1 are Ethernet 
packets. The DL1 only takes care of damaged packets by verifying the check sum. 
Lost, duplicated, and out-of-order packets, however, are not taken care of. 

On the Intel 186/51 microprocessor, the data link layer has to be implemented 
since there is no existing software. Fortunately, there is a manual[l3] which describes 
how to program the 82586 coprocessor. We largely adopted an example from this 
manual as the data link layer. According to the manual, this example implements an 
IEEE 802.2 compatible data link layer. 

Some differences between the example and our implementation are worth men- 
tioning. 

1. Multicast is not supported in our implementation. 

2. The address for ISCP is found to be different in our case from that specified in the 
example. The correct ISCP address on our board is OxffO (absolute) instead of 
OxfffO. 

3. The interrupt from 82586 is the zeroth interrupt instead of the third. 

4. Broadcast mode is disable, i.e., no broadcast messages from the Ethernet will be 
received. 



A.4. The Logical Link Control Layer in RoboNet 

We designed this layer. The principal mechanism used to prevent the network 
from losing, duplicating, and sending out-of-order packet is called one-bit-sliding win- 
dow and positive acknowledgement with retransmission protocol[l5]. We describe the 
characteristics of the logical link control (LLC) in RoboNet by describing the LLC 
packets and the algorithms used on both the Intel and the VAX sides. 

A.4.1. The LLC Packet Types 

SYNC: 
This type of LLC packets take care of synchronization problems between the two 
sides. A network process runs on the Intel 186151 continuously, whereas network 
processes come and go on the VAX side. Synchronization of sequence numbers is 
a problem if not taken care properly. We solve this problem by sending a SYNC 
packet every time a network process comes up on the VAX side. Upon receiving 
this packet, the Intel network process will initialize the sequence number. 

ACK:An acknowledgement packet is sent out whenever the network process receives a 
good packet (i.e., with good check sum) other than an acknowledgement packet, 
that is, we do not acknowledge ACK packets. 

REG:A regular packet will be passed to the host for processing if the sequence number 
matches expected frame number (specified by FrameExpected in 1lc.c). This is to 
ensure that no duplicated packet, from retransmission, is passed to the host. 

SendReq: 
A packet of this type can only be sent out from the VAX machines. This type of 
packet will cause a message to be sent out from the Intel to the network process 
on the VAX. For instance, a SendReq packet with T6 specified in the first byte 
will cause the T6 matrix, which is stored and kept updated on the Intel 186151, to 
be sent to the VAX. This way, the robot system users can be updated with infor- 
mation from the Intel machines. 

A.4.2. The Algorithm for the LLC on the VAX Side 

procedure Send(type, msgsptr, length): 
/* type: one of (ACK, REG, SYNC, SendReq) 

msgsptr: points to data to be sent 
length: the length of message 
Functionality: this routine prepares a LLC header for each 
message pointed by msgsptr by adding the type, sequencejields, 
then sends out the message. If an acknowledgement does not 



arrive within the timeout period, this routine will send out 
again the same message. It keeps doing so until either an ack 
arrives, or exceeds the allowed trial limit (maxtimeout). 

*/ 

var f frame; 

if (type= = SendReq) 
sendreq= TRUE; 

f.type = type; /* specify packet type */ 
f.seq = NextFrameToSend; I* append sequence number */ 

f.data = msgsptr; 

Acked= FALSE; 
timeoutcnt=O; 

/* keep trying if no ack, and # of tries has not exceeded the limit */ 

while( timeoutcnt < matimeout AND Acked= = FALSE) do 
begin 

sendfv); I* transmit a frame */ 
Timeout=FALSE; 
StartTimer(); 
Recv - Ack; I* timer can timeout in this routine */ 

end; 

if (timeoutcnt > = matimeout) 
write("Error: a frame is lost."); 

Inc(NextFrameToSend); I* invert sender seq number */ 

end; /* end of Send */ 

procedure Recv - Ack(): 
I* Functionality: this routine waits for an acknowledgement to 

arrive from the other side. I f  timer times out, it will stop 
waiting and return to Send, which will resend the same message 
If an ack comes, it will set the Jag to indicate so. 

*I 



var r :frame; /* place to put received frame *I  

While (Acked= = FALSE AND Timeout= = FALSE) do 
begin 

wait(event); /*note: timer can timeout while waiting */ 
if (event= = FrameArrival AND r.seq= = NextFrameToSend) 

Acked= = TRUE; 

I* if the packet sent out was a sendreq, 
* then acknowledge packet contains info. */ 

if (sendreq = = TRUE ) 
To - Host(r); /* pass message to host */ 

Inc(FrameExpected); 
end; 

end; /* end of Recv-Ack * I  

procedure Isr - Timer(): 
/* Functionality: this routine will be called when the timer times out. 
*/ 

Timeout=TRUE; 
timeoutcnt= timeoutcnt+ 1 ; 

end; I* end of Isr - Timer */ 

/* type specijies what type of information to be sent back 
msgsptr returns the address of received message 
length returns the length of received message 
Functionality: Receiving a message is similar to sending a message. 
The requested message is sent back from the Intel in the Acknowledge 
packet. This is called piggybacking. 

*/ 

var req :frame; 

req.data[O] = type; /* spectfy what information to receive */ 
Send(SendReq, req, sizeof(req)); I* send a request frame */ 



end; I* end of Recv *I 

procedure Sync(): 
I* Functionality: This routine sends out a packet to synchronize 

sequence numbers on both VAX and Intel side. 
*I 

var f $rame; 

end; I* end of SYNC. *I 

A.4.3. The Algorithm for the LLC on the Intel Side 

procedure Recv-FrameCf): 
I* f points the received frame 

Functionality: This procedure is invoked when 82586 receives a frame 
and issues an interrupt to CPU. It does diferent things according 
to the type of messages it received. 

*I 

case f. type 

ACK: I* there will be no ACKfiame on the Intel side *I 

REG: Send-Ack (f.seq); 
if gseq = = FrameExpected) 

putfCf.data); I* put f in big bujfer *I 
Inc(FrameExpected); I* invert seq *I 

SYNC: Send-Ack(f.seq ); 
FrameExpected=O; I* reinitialize *I 
NextFrameToSend; I* reinitialize *I 

SendReq: Ans-Send - Req(); I* answer send request *I 
if gseq = = FrameExpected ) 
Inc(FrameExpected); 



end; I* of case */ 

end; I* of Recv-Frame *I 

procedure Send-Ack( seq ): 
/* Functionality: this routine sends out an acknowledgement packet. 
*/ 
var f: frame; 

f.type= ACK; 
f.seq= seq; 

sendf Cf); I* transmit a frame */ 

end; I* of Send - Ack *I 

procedure Ans - Send - Req (seq); 
I* Functionality: this routine piggyback the requested information 

in the acknowledgement packet. 
*/ 

var f :frame; 

$type= ACK; 
f.seq= seq; 
$data = getf(data); 
sendfv); I* transmit a frame *I 

end; I* of Ans-Send-Req */ 

A.5. Miscellaneous 

The data link layer for the 186/5 1 is contained in file d1d.c. The packet size from 
the Intel controller to the VAX can be changed by modifying constant R - SIZE in 
vax.h, in m, and the field in so - addr.choose - addr.dli - eaddr.dligrotype in vax E1c.c. 
If you get errors like "ERROR: enable toget CB, TBD, or FD", you should consider to 
increase the size of the CB, or TBD, or FD queues by changing the CB - CNT, 
TBD - CNT, or FD - CNT in dld Ilc .h. 



Appendix B 

Use of 8086 Cross Compiler Under Unix 

B.1. Introduction 

This document is interesting to those who intend to program an 8086187-based 
single board computer under a VAX/Unix environment. The compiler introduced here 
was initially obtained from MIT Laboratory for Computer Science; however, it was 
written for an IBM-PC/MS-DOS environment. Modification to this compiler is mostly 
done to the VO library and math library. In addition, Intel's iSDM (System Debug 
Monitor) is incorporated to the system to allow both down-loading of users' programs 
and debugging of them. Efforts have been made to optimize the intermediate assembly 
programs generated by the compiler so that a 15 to 30 percent better performance can 
be achieved after running the optimizer. 

This document serves as a users' manual of the cross compiler without elaborat- 
ing on the details. It assumes a user to have experience with C language and Unix. 
Knowledge of 8086187 assembly language is necessary for debugging a program. 

Throughout the discussion, host computer refers to the one where you develop 
your programs. The target computer is the 8086-based single board computer. Unix C 
compiler is simply called compiler and the cross compiler is explicitly qualified. 

Running a C program consists of several steps. First, you should properly connect 
the hardware. The search path of your account should be set up correctly so that you 
can access the library files. The compilation of your C program using cross compiler 
follows similar syntax as to those of the C compiler. Before running an executable file, 
it should be down loaded to the target computer. Finally, you can run your program 
with the help of Intel's System Debug Monitor (referred to as SDM from now on). 

B.2. Cable Hook-up 

Your interface to both Unix and the target computer is all done from a single ter- 
minal. Normally, your terminal acts just like a regular Unix terminal and the target 
computer is simply another tty to the same host computer. You should connect your 
terminal to the a tty line and the serial port of the target to another tty line, both using 
standard RS232. After the lines are connected and power plugged in, turn on the 
switch of the the target system and initialize its line to Unix by 

% stty 9600 raw -echo > Idevlttyxy 



where xy is the target's tty number. 

B.3. Down Loading the Loader via SDM 

Setting up your path on Unix correctly is important because your program need to 
find the libraries and you need to access several executable files. The directory of 
these files is machine dependent, but on Upenn-GRASP, the following in your .cshrc 
or .tcshrc is adequate: 

set path=($path lusrluserslhzJc86/lib86) 

If you are a shell user, use in .profile 

PATH = $PATH:/usr/users/hz/c 86llib86 

export PATH 

Initiate the communication with the target by kermit function of Unix which 
changes your Unix terminal to a virtual terminal of the target. Kermit is invoked by the 
following command: 

% kermit clb /dev/ttyxy 9600 

You are then communicating to the target through the SDM from this point on. 
The SDM responds with the following message followed by either a dot (.) or aster- 
isks(*), the latter indicating that SDM has not been booted and you are talking to it for 
the first time. 

iSDM 86 Monitor Vx.y 
Copyright 1983 Intel Corporation 

To boot, type capital U and you will see the monitor respond with a dot indicating 
it has been booted. To exit kermit thereby exiting SDM upon completion of your job, 
type A followed by a letter c and message "C-kermit Disconnected" will be printed. 

Although you could use SDM to down load your application program, the slow 
loading speed prohibits development of any large program. Alternatively, a fast loader 
is available to directly read your program from serial port and store it into memory 
without going through SDM. The idea is then to load the fast loader with SDM and to 
load your program with the fast loader. To load the fast loader, type: 

% ldld 

You will then asked if the tty of the target is the right one such as 

ttyh3? (y/n) 

You should answer accordingly. The loaded data and the corresponding addresses will 
echo on the screen. This fast loader is invoked later by the dl command to load the 



application program. 

B.4. Cross Compiler 

As a C programmer, you may be used to writing programs under Unix and not 
aware of what is C and what is Unix. Therefore, it is important that you read through 
this document before attempting to write any C program. Basically, C is a high level 
language that allows you to express your algorithms in terms of C functions, whereas 
Unix is an operating system which provides C with an environment. Many things you 
use in the form of function calls are intrinsic to Unix, such as multi-processes, file sys- 
tems, and I f 0  interface. When your program is intended for an 8086187, many utilities 
on Unix are no longer available on your target board. For example, you can not open 
files or write to a file. Any library with which your program is linked must be created 
for 8086187. 

Theoretically, the language definition of the C cross compiler is 100% compatible 
with Unix C, i.e., all variable types, data structures, operations, type specifications, etc. 
follow the conventions in [16]. However, there are major differences between this 
compiler and Unix C compiler in the Unix interface and I/O libraries. In fact, the only 
system calls you can make are limited to those of standard If0 (see in Appendix A), 
although they may expand in the future. The reason for not implementing them is obvi- 
ously that your single board computer does not contain a sophisticated operating sys- 
tem which actually provides these system functions. Our thought on T/O library sup- 
port was that a total compatibility would require a major undertaking which may not 
be necessary although not impossible. 

The options accepted by the compiler are the following: 

-P run only the C preprocessor (cpp) and leave the result in prog.i, 
where pr0g.c was the input file. 

-S do not run the assembler, leaving the assembly language output 
file in prog.a86, where pr0g.c was the input file. 

-c compile, assemble, but do not create a .corn file, leaving binary 
file in prog.b, where pr.c was the input file. 

-0 name changes the name of the generated default a.abs file to 
"name.absV. 

-lm links the program with the mathematics library 
-1r links the program with the RFMS library 
-1lib specifies a directory to be searched when processing #include 

statements during preprocessor stage. 

To cross compile your programs for the 8086/87 target system, use the shell script cc86 as 



% cc86 [options] ... file ... 

Unless -0 option is specified, the default name of the output is a.abs, instead of 
a.out, where abs stands for absolute file. It has a format understandable by the fast 
loader and, apparently, it can not be executed on the host computer. The input to cc86 
can be more than one file; it can be a combination of assembly programs, object files, 
and C programs. There are two standard libraries: VO library, which is always linked 
with your programs, and the math library. Read Appendix B for the math functions 
provided by the math library. 

As usual, there are three parts to this cross compiler: a compiler that produces 
assembly programs from input C programs, a assembler that reads the output of the 
compiler and the input assembly programs and assembles them to the object files, and 
a linker that links everything together. Unfortunately, the intermediate assembly 
language, A86, is not standard ASM-8086 assembly language but a hybrid between 
ASM-8086 and VAX- 11 assemblers; nor is it equivalent to ASM-8086 particularly in 
its instructions dealing with data allocation and the floating point stack. Therefore, if 
you need to write assembly programs, the best you could do is using -S option of the 
cross compiler to generate sample assembly programs and figure your way out, with 
the help of 8086/87 and VAX-11 literatures [17][18][19][20]. Appendix C contains a 
table of encodings of 8087 stack arithmetic instructions, which may be useful when 
you need to program 8087 and would like to achieve efficiency. 

Because of the nature of the program execution, the main program can no longer 
have arguments argc and argv, which are usually handled by the operating system. 
Also be warned that you are at your own risk if you do not initialize variables, local or 
global. Your target computer does not do everything the Unix does such as initializing 
memory. Failure to comply to this may result in meaningless outcomes. We have also 
found that the cross compiler can not handle functions which return a float; you must 
define these functions to return a double. Further, when a function is declared double, 
it must have a return statement to avoid underflow of the float stack on 8087. Finally, 
an integer variable on 8086 is 16 bits long rather than 32 as on VAX and a double is 
eight bytes. 



B.5. Down Loading Your Application 

The next step is to load your program to the memory of the target. The default lo- 
cation of the starting address of your program is at hex 1000 or 4 kilobytes from the 
beginning. This information is useful later when you debug your program. To load 
the program, simply type: 

% dl cabs file> 

The down loading speed is about one kilobytes per second, or 9600 baud. You 
may examine the size of your program to figure out how long a down loading takes. 

The location of the code segment and data segment can be at any 16-byte boun- 
dary by changing two constants in the down loading program. Currently, the memory 
format of the target is set to the following diagram: 

Reserved for SDM 

....................... 0x0900 
Fast Loader 

....................... 0x1000 CS (code segment) 

Code 

....................... 0x10000 DS, SS, ES 

Data + Stack 

----------------------- OxlffOO = top of the stack 
SP (stack pointer) = OxffOO 

....................... End of 128 K Ram 

The size of your programs is limited to almost an 8086 segment and can be as 
large as 60 kilobytes. Data and stack may take another 64K segment less 256. The 
sizes are examined by the linker and warnings are issued when the actual sizes exceed 
or approach the limits. 

B.6. SDM - System Debug Monitor 



SDM is an assembly language level debugger that offers such features as 
disassembling code, single step, changing register and memory contents, break point, 
and displaying register and memory contents. You can monitor your program on the 
target directly from your Unix terminal with the help of the on board SDM through 
kermit which changes a Unix terminal to that of your target computer. As mentioned 
above, this can be done by 

% kermit clb /dev/ttyxy 9600 

and you will also see SDM respond as before. In case it has crashed for any reason, 
push the reset button of the target and type capital U to reboot the system. 

We will try to explain a few commands that are particularly useful in executing your 
program. It is strongly recommanded that you read 1211 if you really want to learn 
how to use SDM. This section gives just a tiny subset of the rich debugging com- 
mands of SDM. 

B.6.1 X Command 

This command allows you to examine and modify registers. 
.X 

will display all the 8086 registers. 
To modify a register, do 
.x register = value 

where value can be a hexadecimal number, another register, or an expression of the 
sum or difference of numbers and registers. 
.xn 

displays the 8087 registers and stack registers and you can change the values of stack 
registers by 
.xst(i) = real number 

where i is the stack register number from 0 through 7 and real number is represented in 
exponential notation such as 1.23 e-4 

B.6.2 D Command 

This command displays memory contents in a given data type which can be 
integer(i), long integer(li), long real(lr), short integer(si), short real(sr), binary code 
decimals(t), temporary real(tr, ten bytes), word(w), or disassembled instruction(x). 
Address is represented as segrnent:offset. The default segment is code segment(cs) 
and default offset is instruction pointer (ip). For example, 



.14& 
displays 14 disassembled instructions from location cs:ip. 
.d ds:5#16t 

displays 16 decimal bytes in both hexadecimal and ASCII format, beginning at ds:5. 
.5dtr 10 

displays five temporary real values, beginning at cs:lO in both temporary real hexade- 
cimal and decimal format. 

B.6.3 G Command 

This command instructs the monitor to begin executing your program at the 
current cs:ip. It can be followed by a starting address and addresses where you want to 
break the program. For example, 
.g 7fa, IfO:e20 

will stop either at cs:7fa or lfO:e20, whichever comes first. 
.g 2d0:113, ip 

tells the monitor to begin execution instructions at 2d0: 113 and continue until it gets to 
the current cs:ip. 

When the program stops at a break point, the following message is printed. 
"BREAK at xxxx:yyyy 

B.6.4. Bugs 

As usual, there are bugs associated with SDM package. The single step feature is 
shaky at times when you use 8087. For example, to step through a program by G com- 
mand may generate a dfferent result from that you obtain to go all the way by G com- 
mand; or when you single step, the board may not do what the next instruction says it 
will do, etc. We have no solutions to this and encourage you to ask Intel for help. 

B.7. Miscellaneous 

In lib86 directory, there exist several utility programs to convert files from one 
format to another. 

abshex - converts an abs file to a hex file, 
ldabs - converts an Id file (output of MIT compiler) to an abs file, 
ldhex - converts an Id file to a hex file. 

B.8. An Example 



In this section, we will go through an example to demonstrate how the cross compiler 
and the debugger work. Suppose you have created the following program on Unix: 

# include <math.h> 
#defineRAD - TO - DEG57.29578 

main() 

i 
double x, y; 
int i; 

x = 0.1; 
for(i = 0;  i < 10; i++) { 

y += x; 
printf("sin(%4.1f) = %fin\r", y*RAD - TO - DEG, sin(y)); 

I 
I 

First compile the program using the C compiler and test it on Unix as 

Of course, on Unix we can only test the portion of the program not dependent on the 
target hardware. 

After making sure the program is free of errors as far as you can go on Unix, you 
can then cross compiler your program: 



An a.abs is created at this point for you to down load. You are then ready to try it out 
on your target computer. As the fist step, properly connect the Unix tty (e.g. ttyh3) 
line to your target computer and turn on the power. A typical sequence of commands 
may look like: 

% stty 9600 raw -echo > /dev/ttyh3 
% kermit clb /dev/ttyxy 9600 

iSDM 86 Monitor Vx. y 
Copyright 1983 Intel Corporation 

*** (capital U is pressed here) 

.rc> 
C-Kermit Disconnected 
% ldld 
ttyh3 '? (y/n) y 
S 0090:OOOO 
0090:OOOO 00 - b8, 
0090:000100 - 90, 
0090:0002 00 - 00, 
0090:0003 00 - 8e, 



% dl a.abs (wait approximate 5 seconds) 
% kermit clb /dev/ttyxy 9600 
iSDM 86 Monitor Vx. y 
Copyright 1983 Intel Corporation 

0100:OOOO FA CLI -, 
0100:0001 B83F13 MOV AX, 133FH ;I = +4927-, 
0 100:0004 B 104 MOV CL, 4 

*BREAK at 0 100:002B 
.X 
AX = 0006 CS = 0100 IP = 0020 FL = F046 0 0  DO JO TO SO Z1 A0 P1 CO 
BX = 1AE3 SS = 1000 SP = FFOO BP = 0000 
CX = 0000 DS = 1000 SI = 008 1 
DX = 00D8 ES = 1000 DI = 0000 

.(^c) 
C-Kermit Disconnected 
% 



You are now at the end of a debugging session. 

B.9. VO Library 

Only standard input and output functions are provided by the library, i.e., input to 
the program and output from the program can only go through your terminal. Further- 
more, VO functions are restricted to the following. Attempt to invoke any other will 
result in an undefined function error. 
char getchar(); 
char *gets(); 
putchar(ch) char ch; 
putw(word) int word; 
puts(s) char *s; 
printf(s, arg) char *s; 

It should be pointed out that the line feed character In', when used to obtain a 
new line, must be accompanied by a carriage return '\r7 in order to move the cursor 
back to the beginning of the next line. This second character is put out by Unix 
automatically so that your printing program need not use it explicitly. 

B.lO. Math Library 

The following math functions are provided in the math library. 
double fabs(), ldexp(), modf(); 
double sqrt(); 
double sin(), cos(), tan(), asin(), aces(), atan(), atan2(); 
double sc(sc-p, angle) 
struct sncs *sc-p; double angle; 
where sncs is 
struct sncs { 

float sin; 
float cos; 

1; 

B . l l .  8087 Floating Point Stack Programming 

The compiler does not make use of the floating point stack registers one through 
seven for the sake of simplicity. On the other hand, at times you may desire to achieve 
better efficiency by programming in A86 and taking advantage of the floating registers. 
Unfortunately, the A86 does not provide instructions which handle the float stack 
registers except for the top, it is necessary to program in 8087 machine code directly. 
The following table provides some of the frequently used arithmetic instructions to 



manipulate on the float stack. An example is also presented to illustrate the idea and 
the technique. 

Table A. 1. Encodings of 8087 Float Stack Arithmetic Instructions 

Suppose you would like to program a partial sinus function using 8087's partial 
tangent call. It may look like: 

i=6 

Oxc6d8 

Oxc6dc 

Oxc6de 

Oxe6d8 

Oxeed8 

Oxeedc 

Oxe6dc 

Oxeede 

Oxe6de 

i=7 

Oxc7d8 

Oxc7dc 

Oxc7de 

Oxe7d8 

Oxefd8 

Oxefdc 

Oxe7dc 

Oxefde 

Oxe7de 

i=4 

Oxc4d8 

Oxc4dc 

Oxcstde 

Oxe4d8 

Oxecd8 

Oxecdc 

Oxe4dc 

Oxecde 

Oxe4de 

i=3 

Oxc3d8 

Oxc3dc 

Oxc3de 

Oxe3d8 

Oxebd8 

Oxebdc 

Oxe3dc 

Oxebde 

Oxe3de 

i=5 

Oxc5d8 

Oxc5dc 

Oxc5de 

Oxe5d8 

Oxedd8 

Oxeddc 

Oxe5dc 

Oxedde 

Oxe5de 

i=2 

Oxc2d8 

Oxc2dc 

Oxc2de 

Oxe2d8 

Oxead8 

Oxeadc 

Oxe2dc 

Oxeade 

Oxe2de 

i=l 

Oxcld8 

Oxcldc 

Oxclde 

Oxeld8 

Oxe9d8 

Oxe9dc 

Oxeldc 

Oxe9de 

Oxelde 

Instructions 

fadd st, s(i) 

faddst(i),st 

faddp st(i), st 

fsub st, st(i) 

fsubr st, st(i) 

fsub st(i), st 

fsubrst(i),st 

fsubp st(i), st 

fsubrp st(i), st 

i=O 

OxcOd8 

OxcOdc 

OxcOde 

OxeOd8 

Oxe8d8 

Oxe8dc 

OxeOdc 

Oxe8de 

OxeOde 



.glob1 -psin 
I double psin(x) x double; compute sinus of x in radians 
psin: mov bx, sp - 

fldd *2(bx) 
fptan 
fwait 
.word Oxc8d8 I fmul st, st(0) 
fwait 
.word Oxcld9 I fld st(1) 
fwait 
.word Oxc8d8 I fmul st, st(0) 
fwait 
.word Oxclde l faddp s(l), st(0) 
fsqrt 
fwait 
.word Oxf9de l fdivp st( I), st(@ 
ret 

Note that every instruction must be preceded by a float wait o instruction to assure nor- 
mal function of the hardware. Also, if you are serious about programming 8087, 
always remember to clean up the float stack before exiting a function, with the return 
value of the function on the stack if there is any. Pushing too many things on to the 
saturated float stack leads to unexpected result as the values at the bottom of the stack 
will not drop out as one would think. 
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