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Coherence and Consistency in Domains * 

(Extended Outline) 

Carl A. Guntert Achim ~ u n ~ t  

University of Pennsylvania Technische Hochschule Darms tadt 

March 16, 1988 

Abstract 

Almost all of the categories normally used as a mathematical foundation for denotational 
semantics satisfy a condition known as consistent completeness. The goal of this paper is to 
explore the possibility of using a different condition-that of coherence-which has its origins 
in topology and logic. In particular, we concentrate on those posets whose principal ideals 
are algebraic lattices and whose topologies are coherent. These form a cartesian closed category 
which has fixed points for domain equations. It is shown that a "universal domain" exists. Since 
the construction of this domain seems to be of general significance, a categorical treatment is 
provided and its relationship to other applications discussed. 

1 Introduction. 

The first structures used as a mathematical foundation for the denotational semantics of program- 

ming languages were lattices. With lattices it was possible to solve the necessary recursive equations 

and an elegant mathematical theory could be developed using the familiar category of (countably 

based) algebraic lattices [Sco76] (although it was necessary to  take some care to  choose the right 

notion of morphism). As experience with denotational semantics grew, deeper computational in- 

tuitions were developed and new categories were introduced in attempts to  match these intuitions 

to the mathematical constructs. For example, it was desirable to have a class of domains which 

included such structures as the partial functions from natural numbers to natural numbers which- 

under their usual ordering-do not form a lattice. Such theories were proposed by Plotkin [Plo78], 

Berry [Ber78] and also Scott [Sco81, Sco82a, Sco82bI. 

The category which Scott proposed was very similar to the algebraic lattices: a cpo D is 
said to be a Scott domain if the cpo D~ obtained by adding a top to D is a.n algebraic lattice 

'To appear in: Logic in Computer Science, edited by Y. Gurevich, IEEE Computer Society Press, July 1988. 
t ~ e ~ a r t m e n t  of Computer and Information Sciences, Philadelphia, PA 19104 U.S.A. Supported in part by 

U.S. Army Research Office Grant DAAG29-84-K-0061. 
t~achbereich Mathematik, 6100 Darmstadt, West Germany. 



(with a countable basis). The arrows of the category are continuous functions, i .e.  monotone 

functions which preserve joins of directed collections of elements. The category of Scott domains 

is easy to work with and has an intuitive logical character which has been the subject of several 

investigations (see, in particular, [Sco82b1 Abr871). One central feature of these treatments is the 

concept of consistency of data. One may think of a Scott domain as a collection of propositions or 

data elements under an ordering of partial information. An element s is ordered below an element 

y in a domain D if x is "more partial" than y. The element x is a kind of partial description of 

y. Now, given two data elements XI and xz, there may or may not be a third element y which 
they describe. If there is such a y, then XI and x2 are said to be consistent, otherwise they are 

inconsistent. A crucial feature of a Scott domain is the following fact: if two elements of a Scott 
domain D are consistent, then they have a join in D. This property is commonly referred to as 

consistent completeness. 
The use of consistent complete domains for modeling the semantics of types in programming 

languages has become the general practice. However, we would like to note in this paper that 

it is not the only reasonable direction the theory could have taken at the point that consistency 

was recognized as a central concept. Up until the time we are writing this paper, almost all of 

the categories of domains that have been proposed as a possible foundation for the semantics 

of programming languages have been (essentially equivalent to) cpo's which satisfy the consistent 

completeness condition. This includes those categories which use stable continuous functions [Ber78, 

Girt361 as well as categories related to the Scott domains (such as the continuous lattices).' The 

one noteworthy exception is the category of strongly algebraic domains which was introduced by 

Plotkin [Plo76] (where it is called SFP). These will be discussed below. 

One might apply the following line of reasoning in an attempt to deal with the concept of 

consistency of data. A domain is a collection of propositions providing partial descriptions of 

elements (which may also be propositions describing further elements); a given element dominates 

a collection of data elements which provide partial descriptions of it. We propose the following 

condition on the structure of the partial descriptions of an element: the partial descriptions of an 
element must form an algebraic lattice. Let us refer to  this condition as local algebraicity. But a 

locally algebraic cpo (with a countable basis) is just a Scott domain right? No, not at all! Aside 

from the fact that such a domain need not have a least element (an infinite discrete domain is 

locally algebraic for example) it is even possible that a consistent pair of elements have no join! 

(See Figure 1.) One can show, however, that almost all of the essential features needed to provide 

semantics for programming languages are satisfied by locally algebraic domains. 

The concept of a locally algebraic domain was formulated by the second author who came across 

the concept in the course of his investigations into extensions of Smyth's Theorem [Jun88]. We refer 

to locally algebraic domains as L-domains to keep the terminology short. They were independently 

discovered by Thierry Coquand as a special instance of his categories of embeddings [Coq88]. We 

will discuss some basic properties of L-domains in the next section-for a more detailed discus- 

'We omit from discussion categories of cpo's with no assumptions about the existence of a basis. 



Figure 1: A locally algebraic domain which is not consistent complete. 

sion, the reader can examine [Coq88, Jun881. The bulk of the paper will focus on the properties 

of a subcategory of the L-domains which were introduced in the first author's doctoral disserta- 

tion [Gun85]. The category which was investigated there (the objects were called short domains) 

consisted of those L-domains which were strongly algebraic. It was proved there that such domains 

formed a cartesian closed category in which one could solve recursive domain equations. However, 

we would like to  demonstrate a further fact about them below. Namely, that there is a "universal" 

domain in this category. Our construction is similar to that which appears in [Gun871 for the 

strongly algebraic domains, but a more subtle ordering is needed to make things work properly. 

The paper is divided into five sections. Section two provides some definitions and establishes 

notation. A few basic propositions are also remarked. The third section discusses the coherence 

condition on the topology of a domain. We show how this condition translates into an order- 

theoretic one and discuss some important properties of domains with coherent topologies. The 

fourth section discusses the universal domain construction. Since this construction seems to have 

a general significance, we have attempted to provide a categorical treatment of it. This categorical 

treatment makes it possible to see the construction in this paper and the one that was presented 

in [Gun871 as instances of a more general theory which may have applications in other cases. The 

fifth and final section contains some concluding remarks. 

In order to  make the discussion as succinct as possible, we have omitted almost all of the proofs 

for this extended outline version. A fuller version of the paper will contain all of the non-trivial 

proofs. 

2 Basic definitions and facts. 

For the purposes of this paper a cpo (complete poset) is a poset ( D , E )  with joins U M for all 

directed subsets M. (Sometimes a cpo is required to have a least element I, but this is not being 

required here.) A function f : D t E between cpo7s D and E is continuous if it is monotone and 

preserves joins of directed subsets of D. An element x of a cpo D is said to be compact if, whenever 

M is a directed subset of D and x C U M ,  then there is a y E M such that x C_ y. Let DO be the 



collection of compact elements of a cpo D. A cpo D is said to  be algebraic if, for every x E D ,  the 

set M of elements xo E DO such that xo 5 x is directed and U M = x. D is said to be w-algebraic 

if it is algebraic and Do is countable. An algebraic lattice is an algebraic cpo which is a lattice. 

Definition: A cpo D is locally algebraic if, for every x E D, the principal ideal 

generated by x is an algebraic lattice. I 

Proposi t ion 1 If D is locally algebraic, then it is algebraic. I 

To keep the terminology short, we will refer to  locally algebraic cpo's as L-domains. The 

category of L-domains properly contains the class of Scott-domains: Figure 1 shows an example. 

The difference between the two concepts is illustrated by the following characterizations: 

Proposi t ion 2 Let D be an algebraic cpo. 

1. D is a Scott-domain, if and only if every nonempty subset has a meet in D. 

2. D is an L-domain, if and only if every bounded nonempty subset has a meet in D.  I 

The difference may seem a slight one but it has some important consequences. The basis of the 

function space of a Scott-domain D has always the same cardinality as DO, whereas the cardinality 

may increase if D is an L-domain. However, the following (which was found independently by 

Thierry Coquand) remains true: 

T h e o r e m  3 The category of L-domains and continuous functions is cartesian closed. I 

(In fact, the category of L-domains forms a bicartesian closed category since it is possible to define 

a coproduct functor on it.) 

In [Jun88] it is proved that, in the category of algebraic cpo's with least element, there are 

exactly two maximal cartesian closed subcategories: the category of L-domains and the category 

of profinite domains, which we now proceed to define. 

A continuous function fL : D + E between cpo's D and E is said to be an embedding if there 

is a continuous function fR : E -, D such that f o fL = idD and f L  o f R  C idE where idD 

and idE are the identity functions on D and E respectively. If there is such a function f R ,  

then it is uniquely determined by f L  and is said to  be the projection corresponding to  f L .  Pairs 

f = ( f L ,  f R )  : D + E ,  where f L  is an embedding and f R  the corresponding projection, form the 

arrows of a category CPOeP which has cpo's as its objects. Composition is given by 

It is a basic fact in the theory of domains that CPOe"as directed colimits. 

T h e o r e m  4 The category of L-domains and embedding-projection pairs has diwcted colimits. 1 



Figure 2: K has a countable basis, but h' + li does not. 

If a cpo is a directed colimit in CPOeP of a family of finite posets, then it is said to be a 

profinite domain.2 It is possible to show that profinite domains must be algebraic. Let P and P e p  

be the categories of profinite domains with continuous functions and embedding-projection pairs 

respectively. It is possible to show that P is a bicartesian closed category and P e p  has colimits of 

directed families [Gun85, Gun871. Profinite domains with a countable basis and least element are 

the "SFP-objects7' of Plotkin [Plo76]. We will follow Smyth's terminology [Smy83] and refer to 

them as strongly algebraic domains. We write S A  for the category with continuous functions and 

SAeP for the category with embedding-projection pairs. The category S A  is a cartesian closed and 

SAeP has colimits for countable directed families [Plo76]. 

3 Coherence. 

In order to  get a satisfactory class of spaces as domains for denotational semantics it is desirable to  

impose a more restrictive condition than local algebraicity. Suppose one wished to define a notion 

of computability on L-domains. It might be possible to do this for the L-domains with a countable 

basis. So why not restrict oneself t o  these? The problem is that the L-domains with countable 

basis are not closed under the exponential! Consider the L-domain N of natural numbers (ordered 

discretely). The continuous functions from N to N are an L-domain, but there is obviously no 

countable basis. This may seem Like a superficial problem, but it is not. Suppose, for example, 

that we try to  fix things by requiring that there be a bottom element. The L-domain of continuous 

functions from NL to NI does have a countable basis. But consider the poset K pictured in 

Figure 2. This is an L-domain with a countable basis but K + h' has a basis with continuum 

many members. 

Since M. Smyth [Smy83] has proved that any domain which has an w-algebraic function space 

is in fact profinite, it is reasonable to  investigate the category of profinite L-domains which have 

2Actually, indfinite domain might be a better name with this definition. One can show, however, that the domains 

which are directed colimits of finite elements of CPOe* are exactly those domains which are codirected limits of 
finites in the dual category. 



countable bases and least elements, i.e. the strongly algebraic L-domains. The poset in Figure 2 is 

a typical example of an L-domain that fails to be profinite. 

An unfortunate drawback to  the profiniteness condition is the fact that it is not very easy 

to understand. Although intrinsic descriptions are possible and these do help in reasoning about 

profinite domains, it would still be nice to  work with a simpler class of structures. However, it 

turns out that the strongly algebraic domains which are L-domains may be somewhat more easily 

characterized than strongly algebraic domains in general. In particular, they may be identified as 

those L-domains which have a "nice" Scott topology. 

We will follow the definitions and notation in Johnstone [Joh82]. A cpo D can be given a 

topology as follows. The open subsets of the topology are those which satisfy: 

1. whenever x E U and x C y, then y E U, and 

2. whenever M E D is directed and U M E U, then M n U # 0. 

This is usually called the Scott topology on D and it will be denoted ED. It is possible to show that 

a function f : D + E between cpo's D and E is continuous in the sense that f(U M) = U f (M) ,  

for any directed M C D, if and only if it is continuous in the usual topological sense-with respect 

to the Scott topology. 

Definition: Let D be an algebraic cpo. The topology ED is said to be coherent if the compact 

open subsets of D are closed under finite intersections. I 

We would like to make two brief remarks about this terminology. First, to keep things simple, 

we have restricted the definition to  algebraic cpo's; the definition above would not correspond to  the 

usual notion of a coherent topology if D were allowed to be an arbitrary cpo. Second, we would like 

to comment that the meaning for the term "coherent" which we have given should not be confused 

with other meanings from the domain theory literature. In particular, a poset is sometimes said to 

be coherent if any pairwise consistent set has a least upper bound. This condition is stronger than 

consistent completeness and certainly does not correspond to the condition we are using here! 

Coherence is an elegant condition on the topology of a domain D which has an important 

significance for the order structure of D. Let us say that a poset P has the strong minimal upper 

bounds pmperty (or property M for short) if, for every finite subset u P, the set u of minimal 
upper bounds of u satisfies the following properties: 

1. v has only finitely many elements and 

2. v is complete in the sense that for every p E P, if x C p for every x E u, then y C p for some 

y E v. 

We have the following: 

Proposition 5 Let D be an algebraic cpo. Then ED is coherent if and only if the basis Do of D 

has property M. 1 



The central theorem of this section states that a profinite L-domain may be characterized using 

the coherence condition: 

Theorem 6 Let D be an  L-domain. Then CD is coherent if and only i f  D is profinite. ( 

Moreover, since the profinite L-domains lie at the intersection of two nice categories, they inherit 

some of that niceness themselves: 

Proposition 7 The category of profinite L-domains and continuous functions is a bicartesian 

closed category. I 

Proposition 8 The category of profinite L-domains and embedding-projection pairs has colimits 

for directed collections. I 

4 Building universal domains. 

The concept of a "universal domain" dates back at least to Scott's paper [Sco76] on Pw and is 

widely used in the current literature. The term "universal domain" is somewhat vaguely defined, 

however. We see basically two uses as being the most common. The easiest of these to understand 

is what one might call a "poor man's universal domain". Typically it is a domain which satisfies 

an isomorphism 

V r (V -t V) + Fl(V) + . - .+  Fn(V) 

where Fl ,  . . . , Fn are operators over which domain equations must be solved. One often sees such 

universal domains being used in the type theory literature [MPS84, Car841. The theory of domains 

provides us with all of the mathematical tools generally needed for solving equations like (1) so 

that we may employ such definitions quite freely and confidently. On the other hand, the poor 

man's universal domain depends on the choice of the functors F; (what if we want to  add another 

one?-the universal domain would need to  be changed) and it would be nice to know more facts 

about the order structure of the solution than the existence result for the solution tells us. It  

is therefore appealing to  have a single universal domain U which has all domains of interest as 

retracts. Of course, this is subject to one's interpretation of "domains of interest", but it is not 

dependent on a commitment to some finite list of functors. We refer the reader to  Taylor [Tay87] 

for a full discussion of universal domains (which he calls "saturated domains"). For the purpose 

of clarity, let us propose a crude definition of "universal domain" which will give the reader some 

idea what we are after. 

Definition: Let C be a category. An object U is universal in C if it is weakly terminal, i.e. for 

every object A of C ,  there is a (not necessarily unique) arrow f : A + U. ) 

Of course, any category that has a terminal object has a universal domain. However, one typically 

has it in mind that the arrows of the category C are monics. In particular, we show that the cate- 

gory SALdomeP of strongly algebraic L-domains with embedding-projection pairs has a universal 

domain. 



Figure 3: A typical increment in SALdomep. The poset on the left is embedded in the poset on 

the right. The open circles show the image of the embedding. 

The proof uses techniques from [Gun87]. However, naively rnimicing the construction which 

appears there will not work. We therefore begin by devising a general theory which can be applied 

to obtain the universal domain for both SAeP (as described in [Gun87]) and SALdomep. 
In particular, we provide a categorical treatment of the essential ingredients that make the 

universal domain construction work. The construction is reminiscent of one from general model 

theory. For example, one can show that every countable model A has a countably homogenous 

elementary extension as follows. It  is easy to see that A is elementarily embedded in a countable 

model Al which is homogeneous with respect to  finite sequences taken from A. One can use a 

similar construction to build a sequence of models A; such that, for each j < i, the model Ai is 

homogeneous with respect to finite sequences of elements from Aj and Aj is elementarily embedded 

in Ai. The colimit of this chain will be the desired homogeneous elementary extension of A. The 

reader can find many constructions that use this basic idea in a standard book on model theory 

such as [CK73] (where a more detailed description of the construction above appears on page 130). 

We begin with the following concept: 

Definition: An arrow f : A + B is an increment if, whenever f = h o g, then either h or g is an 

isomorphism. I 

Perhaps the simplest example of an increment is the inclusion map f : S + T between finite sets 

S and T, such that S = T U {x) for some x. If C is a poset (considered as a category), then an 

arrow x C y is an increment if and only if there is no element of C between x and y. If we consider 

the category of L-domains with embedding-projection pairs, then an arrow s : A + A' from a finite 

L-domain A into an L-domain A' is an increment if and only if A' has at most one more point than 

A. Figure 3 indicates a typical increment in this category. The increment embeds a four element 

poset into a poset with five elements; the closed circle indicates the "new" element. 

An w-chain in a category C is a functor F : w -i C from the ordinal w (considered as a category) 

into C .  In essence, an w-chain is a sequence of objects Ai where i < w and a collection of arrows 



a;j : A; + A j  where i < j < w. For each i, the arrow a;; is the identity on A; and, for any i 5 j 5 k, 

one has ajk o aij = aik. 

Definition: A concrete category C is incremental if 

1. C has an initial object, 

2. C has colimits of w-chains, 

3. every object A of C is a colimit of an w-chain (A i , a i j )  where A. is initial, each A; is finite 

(in the category C )  and each arrow a;,;+l : A; -t A;+1 is an increment. 1 

For example, the category of countable sets and injections is incremental. However, we are 

interested in a more subtle example: 

Theorem 9 The category SAep of strongly algebraic domains and embedding-projection pairs is 

incremental. 

Proof: This is Theorem 22 (the Enumeration Theorem) of [Gun87]. I 

Corollary 10 SALdomeP is incremental. 

Proof: Let A and B be strongly algebraic domains. If B is an L-domain and there is a projection- 

embedding pair f : A + B ,  then A is an L-domain. Since SAeP is incremental, it immediately 

follows that SALdomeP is. I 

Let C be an incremental category and let A be an object of C. An object A+ and arrow 

s : A -t A+ is a saturation of A if, for every increment f : B + B' and arrow g : B -t A,  there is 

an arrow h which makes the following diagram commute: 

B  
f 

- B' 

Let us say that an incremental category C has finite saturations if, for every finite object A of C, 

there is a saturation s : A -+ A+ where A+ is finite. 

Theorem 11 If an incremental category has finite saturations, then it has a universal object. 

Proof: Suppose C is an incremental category with finite saturations. Let So be any initial object 

of C .  Build the chain So,S1 = S t ,  ...,Si+l = s:, ... where s;,;+l is a saturation for each i .  Let U 
be a colimit for this chain. We claim that U is universal. To see this, suppose A is any object of C 

and we will demonstrate an arrow f : A -t U .  Since C is incremental, A is the colimit of a chain 

(A ; ,a i j )  of finite objects where Ao is initial and each arrow a;,;+l : A; -+ A;+1 is an increment. 

Now, there is an arrow fo : AD -t So since AD is initial. Suppose an arrow f i  : A; -+ S; is given. 

Since a;,i+l is an increment and s;,i+l is a saturation, there is an arrow fi+l such that the following 

diagram commutes: 



This collection of arrows fi gives rise to a cocone with vertex U over the chain (A;, aij). Since A is 

a colimit of this chain, there must consequently be a mediating arrow f : A -, U as desired. I 

Thus, to prove that there is a universal object in the category of strongly algebraic domains 

(as was done in [Gun87]) or that of strongly algebraic L-domains, it suffices to demonstrate that 

the category in question has finite saturations. The fact that SAeP has finite saturations is proved 

in [Gun87]. To get the result for SALdomeP requires a trick which we outline in the proof of the 

following 

Lemma 12 SALdomeP has finite saturations. 

Proof: (Sketch.) Let A be a finite L-domain. First, note that an L-domain has meets of bounded 

subsets. We define A+ to be the set of pairs (u, U) where u E A and U 5 A such that 

a u U, and 

We define the order relation on A+ by taking (u, U) 5 (v, V) iff 

We claim that A+ is again an L-domain: ( I ,  T I )  is clearly the least element of A+ and if (u, U )  
and (v, V) are bounded by (w, W), we form the join relative to (w, W )  as follows: 

1. If w = u = v, then W G U, W E V. The join is (w, U n V). 

2. If w = u # v, then u = w E V and (v, V) 5 (u, U). The join is (u, U). 

3. If w # u and w # v, then w E U n V. We have to distinguish three subcases: 

(a) If (u, U) < (v, V), then (v, V) is the join. 

(b) If u = v, then (u, U n V) is the join. 

(c) If cases a and b do not apply, then define x to  be the meet of (Jw) n U n V and (x, tx )  

is the desired join. 



The mapping a I+ ( a ,  t a )  embeds A into A+ with the corresponding projection being ( u ,  U) I+ u. 
If A is embedded in B then A+ is embedded in B+, because the corresponding projection preserves 

all existing meets. 

Now let f : A -+ A' be an increment, that is, A' contains one more element a' than A. We 

show that A' is embedded in A+. Let a be the largest element of A below a' and let V be the set 

of elements of A above a'. We define the embedding h : A' -+ A+ by 

Clearly, h is monotone and injective. The corresponding projection p : A+ + A' is given by 

u ,  i f u f : a f ;  

a', if u = a and U V; 

a, i f u = a a n d U p V . I  

By Theorem 11 we therefore have the following: 

Theorem 13 The category of strongly algebraic L-domains with embedding-projection pairs has a 
universal domain. I 

Elsa Gunter has recently shown [Gun] that there is a continuous pseudo-retraction of SAeP onto 

SALdomep. That is, 

Theorem 14 (E. Gunter) There is a continuous functor L : SAeP + SALdomeP such that, for 

any strongly algebmic domain D ,  we have L ( D )  '2 D if and only if D is an L-domain. I 

The proof of this result is non-trivial (finding an appropriate operator which is also a functor 

is the hard part) but it can be used to provide an easy proof of Theorem 13 using the existence 

of a universal domain for SAeP. Let V be the universal domain for SAeP (the existence of such a 

domain was demonstrated in [Gun87]). Let U = L(V) .  If D is a strongly algebraic L-domain, then 

there is an arrow f : D -+ Y .  Now L ( f )  : L ( D )  + U ,  but D Z L ( D )  so U is the desired universal 

L-domain. The universal domain constructed in this way is probably not isomorphic to the one 

given by the use of saturations above. 

5 Discussion. 

We think we have now shown that strongly algebraic L-domains have many of the basic properties 

which one might want in a mathematical foundation for programming semantics. Moreover, the 

strongly algebraic L-domains have a simple description: they are countably based L-domains with 

bottoms and coherent topologies. Is there any sense in which the strongly algebraic L-domains are 

better than the Scott domains? For this we have no clear answer. The local algebraicity condition 

seems to extend very naturally to the categorical level whereas the proper ca.tegorica1 version of 

consistent completeness seems less clear. For the purposes of programming semantics, it might be 



worthwhile t o  investigate an extension of profiniteness to the categorical level. This would perhaps 

tie in the work of Coquand more tightly with what we have discussed above and might reveal an 

interesting category of embeddings. In particular, the coherence concept may be helpful in moving 

us toward a good theory. 
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