
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

July 1988 

Dyadic Wavelets Energy Zero-Crossings Dyadic Wavelets Energy Zero-Crossings 

Stephane G. Mallat 
University of Pennsylvania 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 
Stephane G. Mallat, "Dyadic Wavelets Energy Zero-Crossings", . July 1988. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-30. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/612 
For more information, please contact repository@pobox.upenn.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76393497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/612
mailto:repository@pobox.upenn.edu


Dyadic Wavelets Energy Zero-Crossings Dyadic Wavelets Energy Zero-Crossings 

Abstract Abstract 
An important problem in signal analysis is to define a general purpose signal representation which is well 
adapted for developing pattern recognition algorithms. In this paper we will show that such a 
representation can be defined from the position of the zero-crossings and the local energy values of a 
dyadic wavelet decomposition. This representation is experimentally complete and admits a simple 
distance for pattern matching applications. It provides a multiscale decomposition of the signal and at 
each scale characterizes the locations of abrupt changes in the signal. We have developed a stereo 
matching algorithm to illustrate the application of this representation to pattern matching. 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-30. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/612 

https://repository.upenn.edu/cis_reports/612


Dyadic Wavelets Energy 
Zero Crossings 

MS-CIS-88-30 
GRASP LAB 140 

Stephane G. Mallat 

Department of Computer and Informat ion Science 
School of Engineering and Applied Science 

University of Pennsylvania 
Philadelphia, PA 19104-6389 

July 1988 
This Technical Report is an invited paper for a special 

issue in IEEE Transactions on Information Theory 

Acknowledgements: 
This work was supported in part by NSF-CER grants 

MCS-8219196-A02, NSFIDCR-8410771, 
IRI84-10413-A02, Air Foc/F49620-85-K-0018, U. S. 
Army grants DAA29-84-K-0061, DAA29-84-9-0027 

and DARPA/ONR N00014-85-K-0807. 



DYADIC WAVELETS ENERGY ZERO-CROSSINGS 
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ABSTRACT 

An important problem in signal analysis is to define a general purpose signal representa- 

tion which is well adapted for developing pattern recognition algorithms. In this paper we will 

show that such a representation can be defined from the position of the zero-crossings and the 

local energy values of a dyadic wavelet decomposition. This representation is experimentally 

complete and admits a simple distance for pattern matching applications. It provides a multis- 

cale decomposition of the signal and at each scale characterizes the locations of abrupt changes 

in the signal. We have developed a stereo matching algorithm to illustrate the application of 

this representation to pattern matching. 



1. Introduction 

An important problem in signal analysis is to define a general purpose signal representation which is well 

adapted for developing pattern recognition algorithms. We shall suppose in this paper that our signal f(x) has a 

finite energy 

We are first going to analyze the properties that we expect from a transform T which decomposes f(x) into such 

a meaningful representation Tf . 
Tf must be characterized by a set of discrete values in order to be processed by a digital computer. 

A priori, we do not want to throw away any information provided by the original signal f(x) . The representation 

must therefore be complete which means that T admits an inverse T-I on its range. 

To be able to develop algorithms which are robust to noise, any slight perturbation of the original signal f(x) 

should only produce a small distortion on the representation Tf and vice-versa. Hence, the two operators T and 

T-I should be continuous. 

In pattern recognition we want to compare a signal with a given model. We thus need to quantify the differences 

between the representations Tf and Tg of two different signals. For this purpose, we must define a simple and 

non ad hoc distance d(Tf , Tg) which can be related to more classical metrics on functions. 

For a signal f(x) , the origin of the x axis is generally chosen arbitrarily. The representation of f(x) should not 

depend upon the position of this origin. The transform T must therefore commute with any translation operator. 

Let f (x) E L2 , if g (n) = f (x-) , the representation Tg should be equal to the representation Tf translated 

by z .  

Recent work in signal analysis has shown that multiscale transforms provide meaningful deconlposition for 

interpreting the informations content of many types of signals such as images [I], seismic signals [6] and speech 

[12]. The signal is decomposed into a set of details which a appear at different scales. Depending upon the scale, 

these details will characterize different kinds of structures embedded in the signal. In image processing for exam- 

ple, the different structures of a complex pattern such as a tree will appear at different scales. At a fine scale, the 

details will provide some information about the shape of the leaves and the wood texture. At a coarser scale, these 

details will rather characterize the shape of the branches and the overall distributions of the leaves. A multiscale 

organization of the signal information will also enable us to develop efficient pattern recognition algorithms based 

on coarse to fine strategies, We first process the coarse structures of the signal and then refine the results by pro- 

cessing the finer details given the prior results derived at the coarse scales. These hierarchical algorithms are com- 

putationally very efficient. 



We will see in this paper that the wavelet model provides some important mathematical tools for understand- 

ing the properties of a multiscale signal decomposition. Wavelets have been introduced by A.Grossmann and 

J.Morlet [8] as functions whose translates and dilates could be used for expansions of L2 . These functions are 

now thoroughly studied in Mathematics [14,11], Theoretical Physics [5] and Signal Processing [12]. We will first 

define mathematically a dyadic wavelet transform and describe its fundamental properties. We will then show why 

the more classical [4] approach for discretizing this transform does not provide a translating representation ; when 

a signal is translated the discrete wavelet transform of this signal is not translated but completely modified. We 

will thus introduce another discrete transform based on the zero-crossings and the local energy values of the 

dyadic wavelet decomposition. This new representation does translate when the signal translates. For any wavelet 

which is the second derivative of a smoothing function, the zero-crossings of a dyadic wavelet decomposition pro- 

vide the locations of the abrupt changes in the signal. These abrupt modifications are meaningful features because 

they often correspond to the borders of the structures embedded in the signal. We will study the properties of this 

Energy Zero-Crossing representation and show that it is well adapted to pattern recognition applications. We will 

show in particular that one can reconstruct a signal from the zero-crossings and local energy values of the dyadic 

wavelet transform. In order to compute an Energy Zero-Crossing representation of a function, we must first com- 

pute its dyadic wavelet transform. We will describe a pyramidal algorithm of complexity n.log(n) for doing so 

and then show how to derive the Energy Zero-Crossing representation. We will also detail the implementation of 

a recursive algorithm which reconstructs the original signal from this representation. To illustrate the application 

of this representation in pattern matching, we have developed a stereo matching algorithm. The stereo matching 

problem consists of finding a point by point correspondence between two signals which are shifted from one 

another and have some local distortions. In image processing, we must solve such a correspondence problem 

when trying to recover the three dimensional shape of the surfaces which appear in a pair of stereo images. 

Notations: For any pair of functions f (x) E L2 and g (n) E L2 , 

/If /p = 7 l f (x) l dx will denote the norm of f(x) . 
-Q1 

The Fourier transform of f(x) will be written 

We shall also denote by f j(x) = 2j f ( 2 ~ x )  the scaling of f(x) with a factor 2j . The symmetrical of f(x) 



will be written f ( x )  = f (-x) . The vector space C will denote the set of L2 functions which are continuous. 

(L2)' will be the vector space of all infinite sequences j E ,  of L2 functions such that 

This summation defines a norm on (L2)' . Finally, G2)R will denote the vector space of finite sequences 

2. Dyadic Wavelet transform 

2.1. Smoothing functions and wavelets 

In this paragraph, we will introduce the dyadic wavelet representation as a transform which decomposes a 

continuous signal into a sum of details appearing at the scales (2/ ),, z . The dyadic wavelet transform is a discret- 

ization along the scale axis of the continuous wavelet transform defined by J. Morlet and A. Grossmann 183. We 

have chosen a dyadic decomposition for simplifying the computer implementation of the transform. 

Let S j  be the operator which smooths at the scale 2j any function f ( x )  E L2 . This operator convolves 

f(x) with a function $(x)  scaled by a factor 2j  : 

SJf ( x )  = f mW(x)  . (4) 

The function $(x )  will be called a smoothing function. Let us first study the properties of the operator SJ and 

of the corresponding smoothing function $(x )  . We will then show how to define the details of a function f(x) at 

the scale 2 from such an operator. For normalization purposes we will impose that 

A smoothing operation must gradually attenuate the details of a function when the scale decreases. From 

Sj+*f ( x )  we should be able to compute SJ f ( x )  with an additional smoothing. Let Si'f ( a )  and Si'+lf (a) be 

respectively the Fourier transform of s J f (x ) and S J + ~  f (x ) . This property will be verified if and only if 

15jf (,)I I l*Sj+lf ( a ) l  . (6 )  

Since Si'f ( a )  = f ( a )  b(2-Ja) and ~ + l f  ( a )  = f ( a )  4(2-~- la)  , equation (6) implies that there exists a 

function H ( a )  such that 

b(2a) = ~ ( a ) & a )  and * a ~  R I H ( ~ ) I  1 1  . (7) 



The Fourier transform of S j f ( x )  and Sj+l f (x  ) are thus related by 

s f  ( a )  = H (2-J-lo) Si'+'f ( a )  . (8) 

H (2-j- la)  is the additional smoothing which is needed in order to go from the scale 2j+l to the scale 2J . Equa- 

tion (7) shows that the Fourier transform of a smoothing function can be expressed from H ( a )  : 

& a )  = QH(2-p a) . 
P = 

(9) 

When the scale increases towards plus infinity we expect that the operator SJ will attenuate less and less the func- 

tion details and that S J  f ( x )  will converge in L2 towards f(x) . Conversely when the scale decreases towards 

zero, we smooth more and more the signal details and expect that the resulting signal will ultimately converges 

towards zero. One can easily show that these constraints are equivalent to the following conditions on the Fourier 

transform of $ ( x )  : 

lim ,&a~ = 1 and 

lim ,$,(a = 0 . (11)  

When smoothing a signal f(x) , we do not loose any information if the Fourier transform of the smoothing func- 

tion does not have any zero. It is theoretically possible to reconstruct f(x) from S j f  ( x )  with a deconvolution 

but such a deconvolution procedure is unstable. 

To extract the details which appear in Sj+* f ( x )  but have been attenuated in ~j f ( x )  we are going to intro- 

duce the function y ( x )  E L2 whose Fourier transform is given by 

The function ~ ( x )  is called a dyadic wavelet. By integrating equation (12)  on a between - and +.. and 

applying Parseval's theorem, we can show that //y// =//@/I = 1 . Since any smoothing function verifies 

& a )  = H(Q)  4(3) , the Fourier transform of a wavelet can also be written 

C ( 2 a )  = ~ ( o ) $ ( o )  where I ~ ( a ) l ~ +  I G ( ~ ) I ~ =  1 . 

With a simple summation on equation (12) we can show also that 

By taking the limit of (14)  when J tends towards -I- and applying the properties (10)  and (1 1) of a smoothing 



function, we have 

This convergence is clearly uniform for lo l > 1 . Lemma 1 shows that this property is a characterization of a 

dyadic wavelet. 

Lemma 1 

Any function ~ ( x )  E L2 such that //y// = 1 is a wavelet function if and only if 

*o E R ~1% ,$ 1 $(2~ 0 )  1 = 1 , and the convergence is uniform for l co l 5 1 
J J  

Fig. 1 shows an example of a smoothing function with its Fourier transform. Fig. 2 shows the associated 

wavelet with its Fourier transform. These particular functions are further described in paragraph 6.1.1 . 

1 . 1  . . . .  I . .  . .  I . . .  . I . . . .  I .  
' >x -7 TT !2 

Fig. 1. The left and right figures are respectively the graph of a smoothing function @(x) and its Fourier 

t ran~orm $($) . @(x) is a low passfilter. 

Given a wavelet y(x) , the wavelet transform at a scale 21 of f (x) E L2 is defined by 

wJf (x)=f mW'(x)  . (17) 

The wavelet transform of f(x) at the scale 2~ provides the details of f(x) which have been attenuated between the 

scales and 2i . The energy of these details are equal to the difference of the energies of SJ f and S J + ' ~  : 

/lWjf N = llsJ+lf 11 - l/Sjf N (18) 



1 . 1  . . . .  I . . . .  I . . . .  I .  . . .  I .  t . . . . I . . . . I . . . I . . . .  
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TT 
Fig. 2. The left and right figures are respectively the graph of a wavelet ~ ( x )  and the absolute value of its 

Fourier transform 1 1 . ~ ( x )  is a bandpassfilfer. 

Proof of equation (1 8)  : We can derive from equation (12) that 

l?(w)12 1$(2-j0)12 = l?(o)12 1+(2-~-~0)12 - lf(0)12 14(2-Jw)12 . 

By integrating this equation between - and += and applying Parseval's theorem we get equation (18) . 

2.2. Infinite dyadic wavelet transform 

We shall call Infinite Dyadic Wavelet Transform of f(x) , the sequence of functions 

Such a transform decomposes a function into its details which appear at all the scales ( 2 ~ ) ~ ~ ~  . We will study in 

this paragraph the most important properties of this transform. 

Translating property 

Let f ( x )  E L2 and g (x) = f (x-5) be a translation of f(x) by z . Since the convolution product is shifting, 

W~g(x)  = W J ~  (x*) . (20) 

The wavelet transform of g(x) is equal to the wavelet transform of f(x) translated by z . 

Completeness of the wavelet representation 

A function can be reconstructed from its wavelet representation. 

f (x) = .g w ~ f  (x)*$(x) = wrl[wJf (X)],.Z . 



The inverse wavelet transform operator W r l  is characterized by equation (21). 

Proof: Multiplying equation (15) by f (a) gives 

{(a) = &{(a) 1$(2ja)l' . 
J E 

This expression is the Fourier transform of equation (2 1). 

Energy conservation 

The total energy of a signal can be decomposed as a sum of the energies of the details appearing at each scale 2 ~ .  

+oo 
Ilf (x)lfL = ,C IWJf (x)1I2 

1- 

Proof : If we multiply equation (15) by 13 (a) 1 we get 

l?(a)12 = & l ) ( a )12  1$(2ja)12 . 
J E 

By integrating this equation between += and - we obtain equation (22) . 

Continuity and dyadic wavelet transform space 

Let 1 be the sub-vector space of (L2)' of all the wavelet t m f o r m  W d  = [w'f ( x ) ]  j e z  for f (x) E L2 . 

We saw that WI admits an inverse WI-I which is characterized by equation (21). The operator WI is thus an 

isomorphism from L2 onto 1 . The energy conservation equation shows that this ison~orphism is isometric for 

the norm on (L2)' defined by equation (3) . The operators WI and Wrl  are therefore continuous. 

To characterize the vector space 1 we are going to build a projection operator P I  from (L2)' on 1 . This 

projection operator will be defined from the wavelet transform WI and the inverse wavelet transform WI-I . We 

saw that the inverse wavelet transform WI-I was characterized by equation (21) for any element of 1 . Let us 

first extend the operator WI-I to the all space (L2)' : 

One can easily show that WT' j,z E L2 . We can now characterize the vector space 1 with the projection 

operator P I  defined by 



This operator clearly verifies the conditions of a projection operator from (L2)' on 1 : 

Let us insert in equation (24) the expressions of WI and WI-I given by equations (17) and (21) 

where Kj,k(x) = * $ ( x )  . 

As a consequence of equation (26), for any wavelet transform WIf = WJ ,, , we have in particular I -1 

This equation expresses the redundancy between the wavelet transforms at different scales. The functions Kj,k(x) 

are called reproducing kernels. The concept of reproducing kernel has been introduced by A. Grossmmann and J. 

Morlet [8]. The correlation of the wavelet transforms wk f (x )  and W J  f ( x )  is given by the energy of the repro- 

ducing kernel KjJ  (x). 

In practice a measuring device does not measure exactly a continuous signal but only an approximation at a 

finite resolution ro. A priori, we do not want to compute the dyadic wavelet transform of such an approximated 

signal at a scale bigger than ro . Indeed, if the scale is finner than the resolution, the details of the measured sig- 

nal do not carry any information about the original signal. In the next paragraph, we will modeled the concept of 

approximation at a finite resolution and describe its main properties. We will then define the finite dyadic wavelet 

transform of such an approximation. 

2.3. Finite Dyadic Wavelet Transform 

2.3.1. Modeling of a finite resolution approximation 

Intuitively, the approximation of any signal at a resolution ro is a signal which varies smoothly over a dis- 

1 tance - and which can be characterized by ro samples per length unit. We will suppose here that the resolu- 
r 0 

tion ro varies on a dyadic sequence ( ~ J ) J , ~  . In this paragraph, we are going to summarize the resolution model 

that we have developed for studying the orlhogonal wavelets of Yves Meyer [17,16]. The understanding of a fin- 

ite resolution approximation will then enable us to define a finite dyadic wavelet transform. 



Let us denote by AJ the operator which associates to any function f (x) E L2 an approximation at the 

resolution 2~ . Such an operator can be characterized by the following six properties that one would intuitively 

expect from such an approximation. 

AJ is a linear operator. If AJ f (x) is the approximation of some signal f(x) at the resolution 2 ~ ,  A J f (x) 

will not be modified if we approximate it at the resolution 2r . 
This principle shows that AJ o A J = AJ . The operator A j  is thus a projection operator on a particular vector 

space V, included in LZ . V, is the set of 1 possible approximated signals at resolution 2~ . 

Among all the approximated function at the resolution 2J, A J  f (x) is the function which is the most simi- 

lar to f(x) . 

The operator A J  is thus an orthonormal projection on the vector space Vj . 

Causality: The approximation of a signal at resolution 2r+' contains all the necessary informations to build 

the same signal at a smaller resolution 2J . 
Since A J is a projection operator on V, this principle is equivalent to : 

An approximation operation is similar at all resolutions. 

The spaces of approximated functions should thus be derived from one another by scaling each approximated 

function by the ratio of the resolution values. 

The approximation AJ f (x) of a signal f(x) can be characterized by 3 samples per length unit. When 

f(x) is translated by a length proportional to 2-J , AJ f (x) is translated and it is characterized by the same 

samples which have been translated. 

Because of the condition (30) , it is sufficient to express the above principle for j = 0 . This statement can be 

modeled as follow : 

Discrete characterization : There exists an isomorphism I. from Vo onto I2(z) (31) 

+oo 
where 12(z) = {(ai); . I . l ai 1 < +-.I , =- 



Translationoftheapproximation: * k c 2  ~; ( f (u -k) ) (x )  =A~( f (u ) ) (x -k)  . (32) 

Translation of the samples : lo( A J f (x) ) = (a;); . z <=> I o( A J ~  (x-k) ) = (ai-k)i . z . (33) 

Contrary to smoothing at a scale 2; , when computing an approximation at a resolution 2; we loose some 

information about the original signal f(x) . This lost information corresponds to the orthonormal projection of 

f(x) on the orthogonal complement of V, in L2 . However, when the resolution increases towards += the 

approximated signal should converge towards the original signal. Conversely when the resolution decreases 

to zero, the approximated signal contains less and less information and should ultimately converge towards 

zero. 

Since the approximated signal at a resolution 2 is equal to the orthogonal projection on a space V, , this princi- 

ple can be written : 

J - ~ ,  J- 
y , is dense in L2 and ,n v, = ( 0 )  . 

I- 1- 

We will call any set of vector spaces [v,] ,,, which verifies the properties (29) to (34) a rnultiresolution 

approximation of L2 . In order to characterize numerically the orthonomal projection operator AJ , we must 

find an orthonomal basis of Vj . The following theorem shows that such an orthonomal basis can be defined by 

scaling and translating a unique function t(x) . 

Theorem 1 

Let V, , . be a multiresolution approximation of L2 . There exists a unique function c(x) called a [ 1 
scaling function such that 

* ~ E Z  , [ ~ ~ J ( x - 2 - ; n ) ] , , ~ ~  isanorthonormalbasisof V; . (35) 

We can therefore build an orthonormal basis of any V, by scaling the function <(x) with a coefficient 2; 

and translating the resulting function on a grid whose interval is proportional to 2-J . The factor is a nor- 

malization with respect to the L2 norm. We can now define the orthogonal projection operator A J  from this 

orthonormal basis : 

The vector space V, of all the approximations at the resolution 21 of L2 functions is characterized by : 



Lemma 2 

Let V j  , be a multiresolution space sequence and c ( x )  be the associated scaling function. If there ex- [ 1 
ist a function v ( x )  E L2 such that 

1 c ( x )  = @ * V ( X )  with ;(a) = O(=) , then (38) 

The proof of this lemma is given in appendix 2. If the scaling function c ( x )  verifies the condition of the 

lemma, any approximated function at the resolution 21' is thus equal to a smoothing at the scale 2, of some func- 

tion in L2 . The contrary is false. The smoothing at the scale 21' of any function in L2 is not a priori the 

approximation at the resolution 2r of some function in L2 . We show in appendix 2 that a function f ( x )  E L2 
will verify SJ f ( x )  E Vj  if and ordy if 

I 

The function f ( x )  must therefore be in the vector space generated by the family of functions 

[ v j  (x - 2-j n ) ] a E z  ; it can not be any function in L2 . 

A multiresolution approximation [v,] j,z is completely characterized by the corresponding scaling func- 

tion c ( x )  . Conversely, we will call a scaling function any function c ( x )  E L2 such that , for all j E Z , 

[ ~ v ( x  -2-Jn) ]  n E z  is an orthonormal family and if V, is the vector space generated by this family of 

functions, then [v,] ,,, is a multiresolution approximation of L2 . The following theorem gives a practical 

characterization of the Fourier transform of a scaling function. 



Theorem 2 

Let 5(x) be a scaling function and X (a) be the 27c periodic function defined by : 

The function X (a) verifies the following properties : 

(a) IX(0)l = l .  

(b) I ~ ( o ) 1 ~ + I ~ ( ~ t n ; ) 1 ~ = 1  

Conversely let X(o) be a 27c periodic function satisfying (a) , (b) and such that 

(c) IX(o)l#O for o ~ [ O , l d 2 ]  

then, 6 0 )  =pa X (2-P o )  is the Fourier transform of a scaling function . (42) 

The proof of this theorem can be found in [17]. It is not difficult to defined numerically a function X(o) 

which verifies the properties (a) , (b) and (c) . With equation (12) we will thus be able to compute the Fourier 

transform ((a) of some scaling functions and hence the scaling function c(x) itself with an inverse Fourier 

transform. 

A convenient characterization of a signal approximated at the resolution 2~ is to uniformly sample this sig- 

nal at the rate 2/ . The following theorem shows how to reconstruct an approximation A J  f  ( x )  from the set of 

samples [ ~ j f  (2-Jn)) n e Z .  

Theorem 3 

-I-= 
If there exist two constants c l  and cz such that c l  5 C <(o+2nx) 5 c2 , then any function 

n- 

f  (x) E VJ can be decomposed into 

The spline function p(x) is unique and its Fourier transform is given by 



The proof of this lemma is detailed in appendix 3. In general, we will characterize a signal approximated at 

the resolution 9 by providing a uniform sampling of this signal. 

Let us suppose that we have been able to approximate a function f(x) at the resolution ZJ2 . This approxi- 

mation ~~~f (x) does not contain any information on the details of the function which are smaller than 2-J2 . It 
would thus be absurd to try to compute the wavelet transform of this approximated function for any scale bigger 

than ZJ2 . In the next paragraph we will study a finite dyadic wavelet transform of such an approximated function. 

2.3.2. Definition and properties of a finite dyadic wavelet transform 

We will suppose in this paragraph that we can only recover an approximation at the resolution 2J2 of the ori- 

ginal function. The resolution 2j2 can be viewed as the maximum resolution of our measuring device. We will 

also suppose that the scaling function C(x) verifies the condition of lemma 2. The approximation at the resolution 

2j2 of any function in f * (x) E Vi, can thus be interpreted as a smoothing at a scale 2;' of some function 

f (x) E L2 : f * ( x )  = SJ f (x) . We want to emphasize once more that the contrary is not true. From now on, we 

will denote by f * (x) = sJ2f (x) c Vj2 any approximated function at the resolution 2j2 . The incremental 

smoothing property (6) implies that from sJ2f (x) we can compute the wavelet transform of f(x) at any smaller 

scale 2~ , j < j2  . In practical computations we must however stop the wavelet decomposition at some finite reso- 

lution ZJ1 . 

We shall call finite dyadic wavelet transform between the scale ZJ2 and 211 the operator WF which 

transforms any function SJY E Vj2 into the set of functions 

It provides a smoothiig of the signal f(x) at a coarse scale 2'1 plus the successive details which appear between 
2 ' - .  

the scales 2;' and 2;. . Let (L " be the set of finite sequence of L2 functions gj(x) <,, [ 1 . The 

operator WF transforms any approximated signal f * = SJ f E Vj2 into an element of (L2p-" . 

Computation of a finite dyadic wavelet transform . 

We are going to describe a simple pyramidal algorithm for computing a frnite dyadic wavelet transform for any 

approximated signal si2f E Vj2 . We saw in paragraph 2.1 that the Fourier transforms of a smoothing function 

and its associated wavelet verify 

b(o) = H(?) $($) and $(a) = G (F) C(%) . 



At any scale 3, the Fourier transform of SJ+ lf ( x )  , SJ f ( x )  and WJ f (x )  are thus related by 

sf ( a )  = f (o )  b(2-j a )  = f ( o )  H (2-J-la) b(2-J-la) = H (2-J-lo) f i + l  f ( o )  and (46) 

W J  f ( a )  = f (a )  $(2-j a )  = f ( a )  G (2-j-lo) b(2-J-lo) = G (2-J-la) Si'+l f (a)  . (47) 

Since I H ( a )  l 5 1 and I G ( a )  l 5 1 , we can define the inverse Fourier transform of these functions in the sense 

of Schwartz distributions. Let h i  and g~ be the inverse Fourier transform of H(2-JW) and G(2-ja) . Equa- 

tion (46) and (47) yield 

Sjf ( x )  = Sj+lf m hJ+l and (48) 

By iterating on these two equations when j goes from j 2  - 1 to j 1 , we can compute the finite dyadic wavelet 

transform of ~ J 2 f  ( x )  . 
In all the examples which will be shown, we will suppose that the input signal was measured at the resolu- 

tion 1 . The maximum scale 2j2 of the finite dyadic wavelet transforms will thus be equal to 1 0.2 = 0) . Fig 3 

shows an example of a signal approximated at the resolution 1 and Fig. 4 gives a finite dyadic wavelet deconip- 

sition between the scales 1 and 2-5 0 ' 1  = -5). This wavelet decomposition was computed with the wavelet and 

the smoothing function shown in Fig. 1 and 2. 

Inverse finite wavelet transform 

A finite dyadic wavelet transform is complete. We can reconstruct f * =sJ2f E Vj2 from its finite wavelet 

transform 

The inverse finite wavelet transform can also be implemented with a simple pyramidal algorithm. Let H ( o )  and 

(?(a) be respectively the complex conjugate of H (o )  and G ( a )  . Since I H ( a )  l + I G ( a )  1 = 1 , equation 

(46) and (47) yield 

H(2-j- lo) Si'f ( o )  + G(2-j-lo) WJ  f (a )  = ( I H (2-J-la) 1 2 + I G (2-J-la) 12 ) $+If ( o )  = s + l f  (a )  (m) 

Let LJ and 9 be respectively the symrnetrics of h i  and g~ , the inverse Fourier transform of equation (50) can 

be written 

6J+l m SJ f (x )  + gi+l m WJ f (x )  = SJ+l f (x )  . (51) 

By iterating on this equation when j goes from j l  to j z  - 1 , we can thus reconstruct sJ,f ( x )  from its finite 



Fig. 3. Original signal measured at the resolution 1 : SOf ( x )  . 
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Fig. 4. Dyadic wavelet representation of the signal shown in Fig. 3. The signal was decomposed between the 

scales I and 2-5 . The signal at the top is a smoothing transform of the original signal at the scale z - ~  : F 5 f  ( x )  

dyadic wavelet transform. This algorithm is a characterization of the inverse finite dyadic wavelet transform WF-l 

Energy conservation 

For a finite dyadic wavelet transform we also have a simple energy conservation property given by : 

This equation can easily be derived by iterating on equation (18) when j goes from j  1 to j2  - 1 . 



a Continuity and finite wavelet transform space 

Let F be the sub-vector space of (L2yrj' of the finite wavelet transform of all the functions in V,, . The 

energy conservation equation shows that the operator WF is an isomorphism isometric from V,, onto F . The 

operators WF and WF-I are thus continuous. 

We are now going to characterize the vector space F with a projection operator from (L2YJ1 on F . 
This projector operator will also be defined from the wavelet transform WF and the inverse wavelet transform 

W F ~  . The inverse wavelet transform W F ~  was defined on any finite wavelet transform by iterating on equation 

(51). This operator can also be extended to any sequence of functions in the space (L2p-". . The extension of 

Wfl will transform any sequence E (L2P-j1 into a function f (x) E L2 with the following 

loop : 

1 when j goes from jl-1 to j2-1 : aj+l(x) = a, m + f, m @(x) 

C 
As extended, the range of WF-l will be a sub-vector space of L2 which includes strictly the initial vector space 

V;, . In order to be get back to the vector space V,, we must then apply the operator A'' which is an orthogonal 

projection on V,, . Let P F  be the operator defined by 

This operator clearly verifies the conditions of a projection operator from (L2y2-" on F : 

( ~ 2 ) i r j ~  
*[g,(~)]  jl-16, <j2 9 P F  [ gj(x) ] j1G<j2 E F  and 

This operator expresses the intrinsic redundancy of a finite dyadic wavelet representation. It will be an important 

tool for analyzing any transform based on a finite dyadic wavelet representation. 

The dyadic wavelet representation is a continuous representation which needs to be discretized for being 

used by computer algorithms. We will see in the next paragraph how one can build a complete and stable discrete 

wavelet transform by uniformly sampling the continuous dyadic wavelet transform. 



3. Uniform sampling of infinite dyadic wavelet transforms 

Ingrid Daubechies [3] has shown that it is possible to completely characterize a function f(x) by uniformly 

sampling the functions WJ f (x) at a rate proportional to 21 , for all scales 2J . The functions WJ f (x) are con- 

tinuous because equal to the convolution of two functions in L2 . The value of WJ f (x) is thus well defined at 

every point. Let r2i  be the sampling rate at each scale 9 . Ingrid Daubechies has shown that any function 
r 1 

f (x) E L2 is completely characterized by the set of samples 1 WJ (%)I . A reconstruction of the ori- 
( n j k Z 2  

ginal function f(x) can be estimated from this set of samples by discretizing equation (21) : 

In general, for such a reconstruction, there is an error term e(x) whose energy can be estimated. An important 

particular case of this discrete transform has been discovered by Yves Meyer [19,11]. Yves Meyer has shown that 
r -l 

one could find some wavelet functions ~ ( x )  such that (x-- 1 -  ~ ) J ( n , j k z z  is an orthonormal basis of L' . A 

wavelet orthonormal basis is a particular case of a discrete dyadic wavelet transform where r = 1 and e(x) = 0 in 

equation (54). Through a multiresolution approach of these bases, it is possible to analytically characterize .the 

Fourier transform of orthonormal wavelet functions [17]. Ingrid Daubechie has shown in particular that one could 

find some orthogonal wavelets which have a compact support and are n times continuously differentiable [2]. An 

orthogonal wavelet representation is very compact and can be used for data compression in image coding [16]. 

The fundamental drawback of sampled dyadic wavelet transforms for pattern recognition applications is that 

such representations do not translate. Let f (x) E L2 and g(x) = f (x-z) , we saw in equation (20) that 

Wig (x) = WJ f (x-) . However, the sampling of W J ~  (x) will not correspond to a translation of the sampling of 

WJ f (x) unless z = k* , k E Z (see Fig. 5) . A uniform sampling of a dyadic wavelet transform will thus be 

difficult to use in signal analysis. In the following paragraphs we will study an adaptive sampling of WJ f (x) 

which translates when f(x) is translated. We will see that such a sampling can be defined from the zero-crossings 

of a dyadic wavelet representation. 



Fig. 5 This drawing shows that the sampling of a wavelet transform (given by the crosses) is very different after 

translating the signal. The sampling does not translate if the translation is not proportional to the sampling rate. 

4. Energy Zero-Crossings Representation 

4.1. Adaptive Sampling : Zero-Crossings 

A simple adaptive sampling of the functions W J ~  (x) j , Z  consists of recording the position of the zero- I I 
crossings. When f(x) is translated, W J  f (x) is also translated so the position of the zero-crossings are translated 

as well. If ~ ( x )  is proportional to the second derivative of a smoothing function B(x) scaled by a factor a , any 

zero-crossing of W J  f (x) can be interpreted as a point of abrupt change in the function f(x) smoothed by B(x) 

at the scale 02; . Indeed if ~ ( x )  = h B"(ax) , 

A zero-crossing of W J ~  (x) will thus correspond to an inflection point of the function f(x) which had been 

smoothed by B(x) at the scale * . Fig. 6 illustrates this on a straight edge. Fig. 8 shows the wavelet decompo- 

sition of a straight edge between the scale 1 and 2-3 . We see that the location of the zero-crossings correspond to 

the location of the abrupt changes in the original signal shown in Fig. 7. In order to be proportional to the second 

derivative of a smoothing function, the Fourier transform $(a) of the wavelet ~ ( x )  must verify 

Since B(x) is a smoothing function, 6(0) = 1 . The Fourier transform @(a) must therefore have a zero of order 

two in o = 0. The parameters a and h are adjusted in order to have 6(0) = 1 and //€I// = 1 . Fig. 9 shows the 

smoothing function 8(x) which is proportional to the second derivative of the wavelet shown in Fig. 2. 

Several researchers have studied the characterization of a function from zero-crossings properties [15,23]. In 

particular, a large effort has been concentrated on the zero-crossing properties of a fimction convolved with the 



Fig. 6 The zero-crossings of a wavelet transform provide the locations of the inflection points (edges) of 

Fig. 7. Example of straight edges. 

t . . . . l . . . . l . . . . 1 . . . . 1 > . . . 1  
0  1 0 0  2 0 0  3 0 0  4 0 0  SO0 

Fig. 8. Dyadic wavelet decomposition of straight edges between the scales I and T3 . At each scale, the zero- 

crossings provide the location of the edges. 

Laplacian of a Gaussian [20,21,22,9]. The Laplacian of a Gaussian is not a wavelet since its Fourier transform 

does not verify the condition of Lemma 1. These studies are however giving some interesting preliminary results. 

Let us denote by AG ( x )  the Laplacian of a normalized Gaussian and AGS ( x )  = AG (sx) . Bob Hummel [9] has 

shown that we can characterize any function f (n) E L2 from the zero-crossings of f m AGS ( x )  , for all s E R . 
This characterization is however not stable. A small perturbation of the zero-crossings may correspond to an arbi- 

trarily large distortion on the function f(x) . Bob Hummel thus proposed to stabilized the zero-crossing represen- 

tation by recording the gradient along each zero-crossing. Although the derived representation seems to be stable 

experimentally [lo], it has two disadvantages for pattern recognition applications. The convolution with a Lapla- 

cian of Gaussian corresponds to a second derivative operation on the signal, the gradient along each zero-crossing 

will thus correspond to a third derivative. In practice, the computation of a signal's third derivative is noisy. The 
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Fig. 9. The left and right figures are respectively the graph of the smoothing function B(x )  and its Fourier 

transform 6(Q) . The second derivative of B(x) is proportiom1 to the wavelet shown in Fig. 2 .  

second problem is that such a representation admits no simple metric. It is difficult to find a non ad-hoc distance 

which combines both the value of the gradients and the position of the zero-crossings. We thus can not easily 

compare two signals decomposed with such a transform. In the next paragraph we will try to stabilize the zero- 

crossing representation of a dyadic wavelet transform with a local energy measure. We shall see that one can then 

easily define a metric within such a representation. In opposition to what has been done previously with the 

Laplacian of Gaussian, in a dyadic wavelet transform the scale parameters vary only on a dyadic sequence ( 2 / ) j ,  

and not over R or a uniform sub-lattice of R . We are thus keeping much less information about the zero- 

crossing locations. 

4.2. Stabilization with local energies 

Another way to stabilize a zero-crossing representation is to record the energy of WJ f ( x )  between two con- 

secutive zero-crossings (see Fig. 10). Let (& , z j )  be two consecutive zero-crossings, the energy el between 

z i - l  and z i  is defined by 

In the energy el we keep the sign of WJ f ( x )  on the interval [z i - l  , z j ]  . This energy measures the importance 

of the structure which appears at the scale 2 j  between the two "edges" located in zj-1 and z j  . The sign of the 

energy tells us whether the structure is convex or concave since it corresponds to the sign of a second derivative of 



the signal. 

We will characterize these zero-crossings and local energies with the following operator E . Let g (x) E C 
be a continuous L2 functions; let [ zn ] nEz and [en ] nE be respectively the positions of its zero-crossing and 

the values of the local energies between each pair of zero-crossings. The zero-crossings and local energies of g(x) 

are characterized by the piecewise constant function Eg(x) defined by : 

The function Eg(x) has the same zero-crossings as g(x) and has the same local energy between each pair of 

zero-crossings. We define the operator E on C and not over the all space L2 because the zero-crossings can 

not be defined for any function of L2 . E is a non linear operator from C to the sub-vector space of L2 of 

piecewise constant functions. Since g (x) and Eg (x) have the same local energies, they also have the same glo- 

bal energy : 

We shall denote by EI the operator which transforms any infinite sequence of continuous functions 

[ g ,  (x) ] E (C)' into a sequence of piecewise constant functions defined by EI [ g j  (x) ] = [ E ~ J  ] . 

?I (x) J e!,.l . 1 r eA+l I r 
i n - 1  eI, W 

Fig. 10. Construction of TJ f (x) from W J  f (x) . 

At each scale 2, the zero-crossings and local energies of W J  f (x) are characterized by the piecewise con- 

stant function TJ f = E ( Wf J ) . Fig. 10 illustrates this transformation. We shall call Infinite Energy Zero- 

Crossing representation the set of functions 

The S i t e  Energy Zero-Crossing representation is a sequence of piecewise constant functions which are charac- 

terized by the zero-crossings and energies of the infinite dyadic wavelet transform. The White Energy Zero- 



Crossing transform TI can be decomposed into an infinite wavelet transform WI followed by the energy zero- 

crossing detection operator EI : 

From the computer implementation point of view, at each scale 2~ , T J  f ( x )  will be characterized by the position 

of its zero-crossings [ z i  ] nE and by the value of its amplitude between two zero-crossings 

The definition of an EZC representation on a finite range of scales 2~ , for j 1 - 1 I j < j2 , can similarly be 

derived from the definition of a finite dyadic wavelet representation. Let sJ2f E Vj2 be an approximated Eunc- 

tion at the resolution 2j2 . We shall call finite Energy Zero-Crossing representation of sJ2f between the scales 

2'' and 2'' , the sequence of functions 

Fig. 11 shows the finite EZC representation between the scales 1 and 2-5 of the signal shown in Fig. 3. Let 

(C)jrJ1 be the set of finite sequences of continuous LZ functions Let EF denote the 

operator which transforms any sequence of function E (C)jrll into the sequence of functions 
r \ 

. The finite EZC transform operator TF can be decomposed into a finite wavelet 

transform followed by the operator EF : 

5. Properties of an Energy Zero-Crossings representation 

Translating property 

An Energy Zero-Crossings representation is clearly translating when the signal translates. Indeed, the zero- 

crossings of ~j f ( x )  are translated and the energies between two zero-crossings are not modified. 

Energy conservation 

We can derive an energy conservation property from equation (59) and from the energy conservation equations of 



Fig. 11. Energy Zero-Crossing representation of the signal shown in Fig. 3. It is derived from the zero-crossings 

and local energies of the wavelet transform shown in Fig. 4 .  The top curve is S-5f ( x )  and the other piecewise 

constant curves are the graphs of TJ f ( x )  for 0 > j 2 -5 . 

a dyadic wavelet transform. 

For an infinite energy zero-crossing representation we have : 

In the case of a finite energy zero-crossing representation the energy conservation is expressed by : 

5.1. Distance on the Energy Zero-Crossing representation 

A natural distance on the EZC representations can be derived from the energy conservation equations (64)  

and (65). For an infinite EZC representation, this distance is defined as follow. Let f ( x )  E L2 , g (n) E L2 and 
TLf , TIg be respectively their EZC representation, 

One can easily verify that d is indeed a distance. The energy conservation equations can be written 



For any pair of functions f (x)  and g(x) in L2 we also have 

d ( T d  , T g  5 d ( T d  9 0 )  + d(T1g 9 0 )  = llfll + l lg l l  - 

The distance d is thus closely related to the norm in L2 . In the finite case the distance d is similarly defined. 

Let d2f ( x )  e Vj2 and SJzg E Vj2 be two functions approximated at the resolution 2j2 . The distance between 

the two corresponding finite EZC representations is defined by 

We can also derive from the energy conservation equation (65)  that 

Since T J  f ( x )  and T J ~  ( x )  are piecewise constant functions, the integral 

is simple and quick to compute. It is calculated by multiplying the amplitude values of TJ f ( x )  and T J ~  ( x )  

between each pair of zero-crossings. The distance d can thus be easily implemented. 

The distance d as previously defined is a global distance which compares two EZC representations over the entire 

spatial domain. A pattern is often a local feature embedded in the signal. For pattern matching purposes, we need 

to define a local distance which compares locally two EZC representations. In order to derive such a distance 

from d , we will study the decomposition at all scales of a local feature such as a dirac 6,,(x) centered in xo . 

Let o be the size of the interval on which the energy of ~ ( x )  is mostly concentrated : 

Equations (71) and (72) show that the energy of W J ~ , , ( X )  is mainly concentrated on the interval 

[xo - 2 - ~ o  , xo + 2 - ~ o ]  . This implies that 

TJG,,(x) = 0 for Ix - xo l  1 2 - J  o . (72) 

In the case of an infinite EZC representation, it is thus natural to define the following local distance d,, for 



comparing two representations in the neighborhood of a point xo : 

For a finite EZC representation, the local distance dxo is given by 

When matching patterns with a coarse to fine strategy, we will decompose the local distance d,, into a sum of 

local distances dj,, such that 

~ & T J  f , T J ~ )  is a measure of the local distortion between f(x) and g(x) around the point xo , at the scale 2 j .  

5.2. Completeness of the Energy Zero-Crossing representation 

In this paragraph we will study the completeness of the finite Energy Zero-Crossing representation. The fin- 

ite Energy Zero-Crossing representation is complete if and only if the operator TF admits an inverse TF-l on its 

range. Since TF = EF o WF and WF is an isomorphism of V,, onto F , we must prove that the restriction of 

the operator EF to the vector space F is invertible on its range. This problem is difficult to solve mathematically 

because EF is a non linear operator. We will thus take an experimental approach to and show that one can 

develop an iterative algorithm which implements the inverse of the restriction of EF to F . 

For any function sJ2f E Vj2 , we want to reconstruct the finite wavelet transform W F ( S J ~ ~  ) from the EZC 

representation TF(si2f) . We must therefore characterize each function Wjf (x) with the positions of its zero- 

crossings and the values of its local energies. Let rf be the set of all the sequences 

E ( C ,  such that EF g,(x) - [ ] - T ~ S ' Y )  . For any such sequence, 

- I  = s f  x and for all integers jl 5 j < j2  , the zero-crossings and local energies of g,(x) and Tj f (x) 

are the same. rf is clearly not a vector space. The wavelet representation wF(si2f) is a member of the inter- 

section of r f  and F . If the restriction of EF to F is injective than this intersection is reduced to WFf : 

We have defined in (53) a linear projection operator PF on the vector space F . Let Prf be a projector on rf . 



Since rf is not a vector space Prr is a non linear operator. By definition Prf verifies the following two proper- 

ties : 

* [& ] jl-1s j < j2 E(C)"-'I 9 P H [ ~ , ]  j r ls j<j2 E rf and, (77) 

Since the wavelet transform wF(sizf) is a member of the intersection of rf and F , it is a fixed point of both 

operators Prr and PF . If the EZC representation is complete then assertion (76) shows that w F ( s j 2 f )  is the 

unique common fixed point of these two operators. Let 0 be a composition of Prf with PF 

w , ( ~ j ~ f )  is also a fixed point of 0 . We are going to use this property to reconstruct ~ , ( ~ j z f )  from the EZC 

representation T , ( s ~ z ~ )  . 

A classical method for computing a fixed point is to iterate on the operator from a given initial point. Let 
. . 

On be the composition n times of the operator 0 and I be an initial point in (CY2-J1 . We would like to show 

that 

lim On ( I )  = wF(,Sj2f) . 
n+ (80) 

Fig. 12 illustrates the principle of this reconstruction algorithm. 

Fig. 12 Illustration of the reconstruction algorithm. rf is symbolized by a curve and F by a plane. By iterating 

on a composition of the operators PW and P , we want to reach WF(S j2f ) which is at the intersection of rf 
. . 

and F . The intial point I is anywhere in (C)'-J1 . 



Since the operator 0 is not a contracting operator, the algorithm might not converge from any initial point. With 

the implementation of the operator 0 described in paragraph 6.2, we have shown experimentally that for any ini- 

tial point I the algorithm does converge. In about ten iterations, the function On (I) gives a very good recon- 

struction of wF(sJzf)  . Fig. 13 shows the result of such an iteration by using the EZC representation given in Fig. 

11. The quality of the reconstruction can be appreciated by comparing this reconstruction with the original wavelet 

decomposition shown in Fig. 4. From the reconstruction of this wavelet transform, we have reconstructed the ori- 

ginal signal by applying the inverse wavelet transform operator WFel . The reconstruction of the approximated 

function is shown in Fig. 14. We have obtained the same quality of reconstruction for all the signal that we have 

decomposed. The signal shown in Fig.3 is the scan line of an image. We have also tested the reconstruction algo- 

rithm on some particularly interesting functions of Vj, . We have shown numerically that if sizf = p ~ l ( x )  or 

sizf = t iz(x) the reconstruction algorithm also converges towards the original wavelet representation. By apply- 

ing the inverse wavelet transform operator WF-l , we have then been able to reconstruct the original functions 

pJz(x) and tJ2(x)  . Since the representation is translating, this shows that we can reconstruct any function of the 

two families [ p ' b - 2 - ~ 2 n ) ]  ,,. z and [5jYx-2-j2n)] nE . As shown in paragraph 2.3.1, each of these families 

is a basis of the vector space VJ, . However, since the operator TF is not linear, this does not enable us to con- 

clude anything about the reconstruction of any function ~ j t f  E Vjz . For all the signals that we have tested, five 

iterations are enough for having a good reconstruction of the finite dyadic wavelet transform. At the highest scales 

2 ~  , it takes a few more iterations for reconstructing properly the wavelet transforms WJ f ( x )  . When we decrease 

the value of j 1 , the quality of the reconstruction is not modified. 

A Wavelet transform and thus an Energy Zero-Crossing representation is defined with respect to a wavelet 

function ~ ( x )  . The examples shown in this paper were computed with the wavelet ~ ( x )  shown in Fig. 2. We 

have also tested the reconstruction with another wavelet which was much less regular. This other wavelet was 

derivable but not continuously derivable. Very similar results were obtained on the EZC representation defined 

with respect to this other wavelet. 

This reconstruction algorithm cannot provide a proof for the completeness of a finite Energy Zero-Crossing 

representation since we cannot make an extensive test on all the possible signals sizf E Vj2 . However, given 

these reconstructions, it is likely that the representation is indeed complete for any kind of signal in Vj2 or at least 

for a very large class of functions within this vector space. 
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Fig. 13 Reconstruction of the dyadic Wavelet transform with the iterative algorithm previously described. The 

quality of this reconstruction can be appreciated by comparing this graph with the original wavelet transform 

shown in Fig. 4. 

Fig. 14 Reconstruction of the original signal by applying the inverse wavelet tra@orm operator on the wavelet 

reconstruction shown in Fig. 13. The quality of this reconstruction can be appreciated by comparing this graph 

with the original signal shown in Fig. 3. 

5.3. Continuity 

We will see in this paragraph that the operators TF and TI can have some local discontinuities when some 

zero-crossings are created or disappear at a scale 2~ . We will study this problem for a finite EZC representation 

but the same result will apply for an infinite representation. The operator TF is said to be continuous if for any 

signal ~ j y  E Vj2 the addition of a signal e(x)  of small energy produces only a small distortion on the EZC 



representation of si2f ( x )  . This continuity cannot be derived from the energy conservation equation because T F  

is not a linear operator. Since T F  = EF o WF and since we know that W F  is continuous, the continuity of T F  

depends on the continuity of the restriction of EF to F . The continuity of the restriction of EF would mean that 

if //%(f) - WF(f+&)// is small then d( T F ( S J ~ ~ )  , T F ( S ~ Z ( ~  +E)) ) remains small. We our going to show that 

this is not true if the perturbation ~ ( x )  creates or suppresses a pair of zero-crossings in W j  f ( x )  at a given scale 

2 ~ .  This discontinuity phenomenon is illustrated by Fig. 15. 

e'n, 2 

Fig. 15 When creating a new zero-crossing, a small perturbation &(x) can significantly modify the Energy Zero- 

Crossing representation. The energy eA' is suddenly divided into e i ,  , ei,, and e j ,  . 

Let (zi.1 , zi2 ) be a pair of zero-crossings created by the perturbation ~ ( x )  between two zero-crossings 

( Z A - ~  , zi  ) of W J  f ( x )  . The energy el of W J  f ( x )  in the interval [ Z A - ~  , z i ]  is suddenly divided into eAS1 , 

e& and cis . If the perturbation ~ ( x )  is small then eA.1 + e ig  = e i  , ei.2 = 0 and ziVl = zi.2. Even if the 

perturbation &(x)  has a very low energy, Tj( f+&) can be significantly different from T j  f between the zero- 

crossings Z A - ~  and zA (see Fig. 15). Equation (81) gives an estimation of the distortion due to the apparition of a 

new pair of zero-crossings : 



In general a small perturbation will create or suppress pairs of zero-crossings in regions of low local energies. The 

perturbation estimated by equation (81) will then be small. It is also important to observe that the distortion of 

T , ( S ~ T )  introduced by new zero-crossings remains localized. The overall representation T ~ ( s J ~ ~ )  is not modi- 

fied. When testing the EZC representation on the stereo-matching problem, we will see that these local discon- 

tinuities do not disturb much the matching process. 

We saw in the previous paragraph that the operator TF is likely to be invertible on its range. Let us suppose 

that it is indeed invertible and let us denote by TF-I its inverse. The inverse operator TF-I is said to be continu- 

ous if any small perturbation of a representation T F ~  measured with d corresponds to a small distortion of the 

original signal f(x) . Since the inverse wavelet operator WF-l is continuous, it is sufficient to prove that the 

wavelet transform W F f  is only slightly modified. In this case we do not have any problem related to the creation 

of new pairs of zero-crossings since the EZC representation is supposed to be only slightly perturbated. The fact 

that our reconstruction algorithm does converge shows experimentally that any small perturbation of TFf 

corresponds to a small distortion of the associated wavelet representation W F ~  . As we said in the previous para- 

graph, this not a proof since we cannot test the algorithm on all the functions SJ2f E Vj2 . 

6. Numerical algorithms 

In this paragraph we will describe the numerical implementation of a finite Energy Zero-Crossing transform. 

We will then show how to compute the reconstruction algorithm described in paragraph 5.2 . 

6.1. Implementation of a finite EZC representation 

In the following, we are going to detail the computation of a finite EZC representation for any signal approx- 

imated at a resolution 1 . We will suppose that our measuring device provides us with a unifomi sampling at the 

rate 1 of a signal approximated at the resolution 1 . Theorem 2 shows how to interpolate between these samples 

for computing the value of this approximated signal everywhere. In order to calculate an EZC representation, we 

must first compute the corresponding dyadic wavelet representation. We will estimate the position of the zero- 

crossings and the value of the local energies of this wavelet transform. In practice we cannot compute the values 

of the functions W J  f ( x )  at every point. We can only calculate a uniform sampling of these functions. In order 

to estimate the positions of the zeros and the value of the energies with a similar precision for all the scales 2i , 

we must sample W J  f ( x )  at a rate proportional to 2j . In order to simplify the implementation we will choose a 

sampling rate which is a power of 2 . Let 2J0+~ be the sampling rate at each scale 2j . We will show that we can 

develop a discrete pyramidal algorithm for computing a uniform sampling of each function W J  f ( x )  at the rate 

2jo+j . The position of the zero-crossings and the values of the local energies will then be estimated with a simple 



linear interpolation between the samples of the functions WJ f ( x )  . 

6.1.1. Dyadic wavelets for discrete algorithms 

We are going to define in this paragraph a particular sub-class of dyadic wavelets which will enable us to 

compute a discrete wavelet transform with a pyramidal algorithm. We saw in paragraph 2.1 that any smoothing 

function @(x) has a Fourier transform & a )  which can then be written 

The Fourier transform of an associated wavelet ~ ( x )  can be expressed as 

( a )  G ) )  where I G ( o ) 1 2 + l ~ ( o ) 1 2 = l  . (83) 

As explained in paragraph 4.1, we are interested in wavelets ~ ( x )  which are proportional to the second derivative 

of a smoothing function 0(x) . We saw in equation (56) that the Fourier transform $(a )  must then have a zero of 

order two in o = 0 . Equation (83) implies that G ( a )  must also have a zero of order two in zero. This will be 

verified if and only if the first three derivatives of H ( a )  are equal to zero in o = 0. To be able to compute a 

discrete wavelet transform with a pyramidal algorithm, we will also suppose that H ( a )  and G ( a )  are 2n;2Jr1 

periodic . The functions H ( a )  and G ( a )  can then be written as Fourier series : 

H ( o )  = q h n  e in ~ j . - ' ~  and G ( a )  = q gn einYF1o . 
n E n~ 

The inverse Fourier transforms of H ( o )  and G ( o )  as defined in paragraph 2.3.2 are respectively the distribu- 

tions given by : 

h ( x )  = n & E hn 6(x - n2jr1) and g ( x )  = % gn 6(x - n 2 j r 1 )  . 
R E  

We will represent these two distributions by the two 12(2) sequences h = hn nE , g = gn nEz [ 1 [ ] and call 

them discrete filters. In the next paragraph we will see that we can compute a discrete wavelet decomposition by 

convolving successively the signal with these two discrete filters. 

We are now going to describe the particular wavelet transform which has been used for computing the exam- 

ples shown in this paper. In this particular case we chose a sampling coefficient 2'0 equal to 8 Go = 3). The 

Fourier transform of the smoothing function shown in Fig. 1 corresponds to a function H ( o )  which is 8n: 

periodic and such that 

w4 
H ( a )  = e - r n  for o E [An: ,4x]  



The coefficient 19.25 was adjusted numerically in order to have //$/I = 1 . We do not have any general character- 

ization of the functions H ( o )  which would enable us adjust the norm of @ ( x )  . The Fourier transform of the 

associated wavelet shown in Fig. 2 corresponds to G ( o )  = -dl - H ( u ) ~  . Fig. 16 gives the corresponding 

values of the two discrete fflters h = [ h, ] n E  a n d g = [ g n ] n E Z .  

Fig. 16 Coefficients of the discrete filters h , g . These filters are symmetrical : h-, = h, and g-,, = g, . 

6.1.2. Interpolation of a finite resolution approximation 

In this paragraph, we will describe the interpolation of a discrete approximated signal and explain how to 

compute a scaling function to define the concept of resolution. Let us suppose that our measuring device provides 

us with a uniform sampling at the rate 1 of a signal measured at the resolution 1 . Let sOf ( x )  E Vo denote this 

approximated signal; the uniform sampling corresponds to , . As we shall see in paragraph 6.1.3 , in 

order to apply the discrete pyramidal algorithm which computes the discrete wavelet transform of SOf , we must 

first calculate a uniform sampling of SOf ( x )  at a rate 2jb1 . Such a sampling can be calculated with the spline 

function p(x)  defined in theorem 3. Indeed, we saw in theorem 3 that 

SOf ( x )  = E SOf ( k )  p(x - k )  . 
k- 

For any sample n 2-jO+' we have 



This equation shows that the interpolated discrete signal Sof (n2-'"I) can be computed by putting 2jb' - 1 

zeros in between each sample of [sof ( n ) ]  ,,., and convolving the resulting signal with the discrete interpola- 

tion filter pd = [ p ( n  2-~0+l)] neZ  - 

Let us now discuss the choice of a scaling function to implement the concept of resolution. Theorem 2 

shows that the Fourier transform <(a) of a scaling function can be computed from a function X(w) satisfying the 

properties (a) , (b) and (c) . In order to be able to define a finite dyadic wavelet transform, the scaling function 

c(x)  must also verify the conditions of lemma 2. The Fourier transform c(w) must have a decay at infinity 

which is faster than @ : 

This condition will always be verified if the Fourier transform of c(x)  has a compact support. The scaling func- 

tions whose Fourier transform have a compact support have been studied by Yves Meyer [19]. They correspond to 

a function X ( o )  equal to 1 on the interval [-$ , $1 . The inconvenience of these scaling functions is that they 

have a slow effective decay at infinity in the spatial domain. The interpolation function p(x) defined in theorem 3 

will also have a slow decay. This means that the coefficients of the interpolation filter pd will decrease slowly. It 

is then more efficient to compute the convolution product of the interpolation (86) with a multiplication in the 

Fourier domain. 

If we want to be able to compute directly the interpolation equation in the spatial domain, we must choose a 

scaling function c(x)  which has a faster effective decay at infiity. This function was studied by P. Y. Lemarie 

[13]. In each interval [k , k+l] the function S(x)  is a polynomial of order three. Its Fourier transform is given by 

1 X ( o )  = .\l ( )  , and E(o) = 
28C8(20) 

where 
0 C8(@ 

The function C8(o) can be computed with the following formula 

105 
= 

0 6 n8 ( 5 + 30 (cos?)~ + 30 (sin?)2 ( C O S ~ ) ~  + 2 (sin?)' ( C O S ? ) ~  + 70 (cosg)' 2 + 2- 3 (sinT) ) . 

With theorem 3 we can derive that the Fourier transform of the spline function is equal to 



In this particular case, the function p(x) is cubic spline polynomial. The coefficients of the filter pd are given in 

Fig. 17 for jo=  3.  

Fig. 17 Comcients of the discrete filter Ip (n  2-jdl)] ., for jo = 3 . This filter is symmetrical. 

6.13. Discrete wavelet transform pyramidal algorithm 

In this paragraph, we are going to describe the pyramidal implementation of a discrete wavelet transform. 

This algorithm is a generalization of an algorithm that we developed [16] for orthogonal wavelets. It can also be 

viewed as a discretization of the pyramidal algorithm described in paragraph 2.3.2 for computing a finite dyadic 

wavelet transform. Let SOf ( x )  E VO be the approximated signal that we want to decompose. Let W J  fd denote 

the discrete signal equal to a uniform sampling of W J  f ( x )  at a rate ~JO'J  : 

Let us also denote by Sj f the discrete signal equal to a uniform sampling of SJ f ( x )  at a rate 2jd-' : 

Let 2-J the minimum resolution where we want to stop our wavelet decomposition. We are going to explain the 

computation of the discrete wavelet transform { [ W J ] , , . , , S-J f . I 
As described in paragraph 6.1.2, we will suppose that we have been able to compute a uniform sampling at 

the rate 2'0-' of the approximated signal SOf ( x )  that we want to decompose. This uniform sampling 

corresponds to the discrete signal SOfd . The following Lemma shows that for any scale 2~ , one can decompose 

Sj+l fd into SJ f and W J  f by convolving this discrete signal with the two filters h and g . This Lemma is a 

discrete equivalent of equations (48) and (49). 



Lemma 3 

* j  E Z , w J f d  = S j + l f d  m g and 

if [ h n J n E Z = S J + ' f d  + h  then S J ~ ~  = ( x h J n E Z  . 

The proof of this lemma is given in appendix 4. Lemma 3 shows that ~ j f  can be computed by convolv- 

ing S J + ~  f  d with the discrete filter g . To compute SJ  f  we must convolve SJ+' f  with the discrete filter h 

and keep every other sample of the convolution product. By iterating on equations (91) and (92), it is now easy to 

decompose the discrete signal SOf into the discrete wavelet transform { [ W j d ]  o , j  -J , S - j  f  . This I 
pyramidal algorithm is illustrated by a bloc diagram in Fig. 18. If SOfd  has N non zero samples, each discrete 

signal W J  f  has appmximatively N 2/+l non zero samples and that S" f  will have N 2" non zero samples. 

The computational complexity of the algorithm is N log(N) . The dyadic wavelet decomposition shown in Fig. 4 

was computed with the coefficients of the filters h and g given in Fig. 16. 

: keep one sampb out of 2 

: convolution with filter X 

Fig. 18 This bloc diagram illustrates the pyramidal architecture of the algorithm which decomposes the interpo- 

lated signal SOfd  into a discrete wavelet representation. This algorithm is based on convolutions with the two 

filters h and g . 

To compute the EZC representation, we can then estimate the position of the zero-crossings with a linear 

interpolation between the samples of W J  f which change sign. The energies between each pair of zero-crossings 

can also be estimated with a similar linear interpolation from the square of the samples. 



6.2. Implementation of the reconstruction algorithm 

We will now describe the numerical implementation of the reconstruction algorithm explained in paragraph 

5.2. This reconstruction algorithm is based on two projection operators : P F  and P n  . We saw in paragraph 

2.3.2 that the projection operator P F  could be decomposed into 

The discrete implementation of the operator W F  has been described in paragraph 6.1.3 . In the next paragraph we 

will explain another discrete pyramidal algorithm for implementing the inverse wavelet operator WF-l . We will 

then detail the implementation of the orthogonal projection operator A O and give a simple algorithm for comput- 

ing the non linear projection on r f  . 

6.2.1. Pyramidal implementation of a discrete inverse wavelet transform 

A discrete wavelet operator transforms a uniform sampling SOfd of an approximated signal s O f  ( x )  into a 

discrete dyadic wavelet representation { [ W J  f o ,  , , ,  , S-J fd . We will now describe another pyramidal I 
algorithm for implementing a discrete version of the inverse wavelet transform WF-l . This operator reconstructs 

s O f d  from { [ w J f d ]  OD > j 2-J . The algorithm is based on a discretization of equation (51). 

For each scale 9 we are going to show how to compute Sj+lfd from the two discrete signals SJ fd  and 

w j f d  . The first step of this calculation consists of interpolating between each sample of 

S f  d = [ ~ j  f (n 2-j0-~+')] n ,  z in order to get a sampling of SJ f ( x )  at a rate 2'" : A = [ S j  (n 2-Jo-J) ] n , z  . 
This interpolation is computed with the spline function p(x) described in paragraph 6.1.2. 

Equation (91) shows that the intermediate sample [ S J  ( (2n+l)2-j0-j )j n,z  can be computed by putting a zero 
r 7 

between each sample of SJ f and convolving the resulting signal with the interpolation filter p( ) -T J n E Z .  Fig. 

19 gives the coefficients of this filter when p(x) is a cubic spline polynomial. Such an interpolation is not exact 

but it provides a precise estimate of the intermediate samples. Indeed, the Nyquist rate of Sj f ( x )  is approxima- 

tively 2~ . Since we already have a sampling of SJ f ( x )  at the rate 2~0'j-l the function SJ f ( x )  will vary very 

smoothly between two samples ~ ~ - J o - J + '  and (n+l)2-jrJ+' . The smoothness of SJ f ( x )  is well approximated 

by the spline filter previously mentioned so equation (94) will give us a close estimation of the intermediate sam- 

ples. 



Let h= [h-n] n E z  and g =  [ g-n ] n E z  be the symmetricals of the two fdters h and g defined in (84) . 
The following lemma shows that S J + ' ~  can be computed by convolving WJ f and A with the two filters g 

and h . 

Lemma 4 

The proof of Lemma 4 is detailed in appendix 5. By repeating this reconstructing operation for 0 > j 2 -J , 
* > 

we can reconstruct SOf from the discrete wavelet representation {[ WJ f ] O<js-J ~ ~ ~ ~ h e h t e r s h  

and g that we used for our implementation are symmetrical so h = h and g = g . The bloc diagram shown in 

Fig. 19 illustrates the pyramidal algorithm which implements a discrete inverse wavelet transform WF-l . 

: expand by a factor 2 with 
a spline interpolation 

: convolution with filter X 

Fig. 19 This bloc diagram illustrates the pyramidal algorithm for reconstructing the interplated signal SOf from 

a discrete wavelet decomposition. This reconstruction is based on convolutions with the two discrete filters li 

and g . 

As described in paragraph 2.3.2, in order to define the projection operator PF  , WF-l must be extended to 

the whole space (L2)'-J' . The discrete implementation of WF-I that we just described reconstructs sOf from 

{ [wj fd  ] o j G J  , S-Jfd } . To implement the projection operator PF , we need to extend this algorithm to any 
L J 

sequence of discrete signals [d,] o,j,-l , where dj = is any sequence in 12(z) . Let 

[ ] be the discrete signal which is obtained by applying the operator WF-l on d = dn2-j,+l 
n o Z  

Theorem 3 shows that this discrete signal can be considered as a uniform sampling at the rate 2jr1 of a function 

d(x) E Vjrl , where 



For implementing the operator PF , we must compute the orthogonal projection of d ( x )  on the vector space Vo. 
This orthogonal projection will be characterized by a uniform sampling at a rate 1 in order to apply afterwards 

the pyramidal wavelet algorithm described in paragraphs 6.1.2 and 6.1.3 . 

6.2.2. Implementation of the projection operator A O 

The operator A0 is an orthogonal projection from L2 on the vector space V o  . In this paragraph, we are 

going to show how to compute the orthogonal projection on V o  of any function d ( x )  E Vj,l . The orthogonal 

projection A Od ( x )  will be characterized by a uniform sampling at a rate 1 . Equation (36) implies that 

+m 
AOd(x> = C < d ( x ) ,  S(x - p )  > S(x - p )  . 

P- 

The expression of d(x) given in equation (96) yields 

Each of the inner product < p'61(u-2-~0+1n) , c(u -p )  > can be expressed as a convolution product so that 

+m 
< d ( x )  , c(x - p  ) > = dn2-, 2-J*' pJO-'* &I - 2-~&ln)  . 

n- 

The sequence of inner products < d (x ) , e(x - p ) > 1 p. z can thus be computed by convolving the sequence 
k 

[ dn p , + l  ] with the discrete filter [2-~*' y'.-l# i ( n  2-Jcl 
n e  Z 

) ]  nEz and keeping one sample out of 2-jc1 of 

the convolution product. The uniform sampling of A Od ( x )  at a rate 1 is given by the sequence [ A  ~d ( k ) ]  ,, , . 
Equation (97) yields 

This uniform sampling is therefore equal to the convolution of 1 < d ( x )  , c(x - p  ) > 1 ,, z with the filter 
I - 

[ ~ ( n ) ]  ,,EZ . In conclusion, equations (98) and (99) show that ,, , can be computed from the 

discrete signal dn 2-ji+1 
]neZby:  

convolving [ dn z-j,+, ] with the discrete filter [2-j0+l S(n 2-~O+l)] n, , 
n e  Z 

taking one sample out of 2jb1 of the convolved signal, 

convolving the sub-sampled signal with the filter [ ~ ( n ) ]  n c  2 . 



The coefficients of the discrete filters [ c ,  = 2-jd1 pl+ g(n2-jd1 ) ] n€  and [ ~ ( n  ) ] E z are given by Fig. 

20 in the case of a cubic spline polynomial, for jo = 3 . 

Fig. 20 Coeflcients of the discrete fihers [ S ( n ) ]  z and [ c n  = S(n 2-,dl)] ,€ for jo = 3 , in 

the case of a cubic spline polynomial. Thesefilters are symmetrical. 

Equation (93) shows that the projection operator PF can now be implemented by computing an inverse 

discrete wavelet transform WF-l , then an orthogonal projection A0 on the vector space Vo and, finally, a 

discrete wavelet transform W F .  In order to f i s h  the implementation of the reconstruction algorithm described in 

paragraph 5.2, we must now define numerically the projection operator P . 

6.23. Implementation of a projection operator on rf 

By definition, a projection on rf should verify the two properties (77) and (78) . It must transform any 

sequence of curves g, ( x )  , < ,2 I 1  E (L2)' into a new sequence of curves h,(x) < ,2 [ I E rf . The 

function h,,-l(x) should be equal to s i l f  ( x )  and for j l y < j 2  each function h,(x) should have the same ener- 

gies and zero-crossings as TJ f ( x ) .  We will describe a simple algorithm for implementing this deformation. 



Let j lS j  <j2  and [ z j  ] ,,, , [ e i ]  ,. , be respectively the positions of the zero-crossings and the ener- 

gies of each function TJ f (x). We are going to deform a function g,(x) into a function h,(x) whose zero- 

[ ] ,€, and [ e i ]  n E ,  . This deformation is illustrated by Fig. 21. crossings and local energies will be equal to zA 

We first define a function a(x) such that for each pair of consecutive zeros (ZX'-~ , z i )  

a zi-1 + b = -g, (zi-1 ) 
- Y X E  [ ~ j - 1  ,zj- ' ]  , a . ( ~ ) = g j ( ~ ) - a x + b  with ( 1 0 )  

a z j  + b = -g,(zJ) 

The function a (x )  has a zero-crossing at each point [ z i ]  ,€, but might have some other ones (see Fig. 21). 

We need to remove these spurious zero-crossings and keep the sign of a(x)  constant and equal to the sign of ei 

on each interval , zj- l [  . This operation is done in the following loop. In this loop we add a triangle func- 

tion to a(x)  to suppress the regions of , z i - l [  where a(x )  has a sign different than the sign of ej (see 

Fig. 21). 

While a(x)  has a zero-crossing in the interval ] z ) - ~  , zj- l [  : 

let x,, E ] ~ j - ~  , zj- l [  be such that a(xn ) sign (e j )  = min { a(x)  sign (ej ) ) , 
x E ] ~ ~ j - ~  . ~,j-l[ 

x - zA-i for x E [ z i - i  ,xn]  , a(x )  = a (x ) -2a (xn )  
xn -zA-l ' 

x - z j  
for x E [x, , z j ]  , a(x )  = a(x)  - 2 a(xn) - , 

x n  - zA 

end of loop. 

Let us call P(x) the function N x )  which is obtained at the end of this loop. On each interval [ z i - l  , zj- l ]  , the 

sign of P(x) is equal to the sign of ej and P(zi-1) = P(zi) = 0 . We must now dilate P(x) on each of these inter- 

val in order to have a local energy equal to e i  . The function hi ( x )  is thus defined by : 

C J 

The overall deformation process is illustrated in Fig. 21. One can easily verify that such a deformation defines a 

projection operator Prr which verifies equations (77) and (78). 



Fig. 21 Illustration of the d@ormation algorithm for implementing the projection operator Prr . The function 

g, ( x )  is deformed in order to match its zero-crossings and local energy values with the zero-crossings and local 

energy values of TJ f ( x )  . 

7. Application of the EZC representation to stereo matching 

An important problem in computer vision is to recover a three dimensional description of the surfaces which 

appear in a scene. From two images of a single scene, one can indeed compute the distance between each point of 

the scene and the pair of stereo cameras. Let P be a point of the world which is projected on both images. Let 

Pi and P, be respectively .the projections of P on the left and the right images (see Fig. 22). One can compute 

the distance from P to the pair of stereo cameras from the difference of positioning T between PI and P, (see 

Fig. 22). This difference of positioning is called a disparity. The goal of a stereo-matching algorithm is to find for 

each point PI of the left image, the matching point P, of the right image such that PI and P, are the projec- 

tions of the same point P of the scene. The principle of such an algorithm is to look for a point P, in the right 

image such that locally around P, the image is the most similar to the neighborhood around PI in the left image. 

Although this matching problem is a priori a two dimensional search, it can be reduced to a one dimensional 

search by using the epipolar geometry of the cameras (see Fig. 22). An epipolar plane is a plane which contains 

the point P and the optical centers of the left and right cameras. The intersections of such a plane with the left 

and the right images define a pair of epipolar lines. The stereo match of any point which is on a left epipolar line 

can be found on the corresponding right epipolar line. The problem is thus reduced to a one dimensional matching 

problem along each pair of epipolar lines. Much research has been devoted to finding efficient algorithms for 



matching these epipolar lines [7,18]. We will show that such an algorithm can easily be implemented with the 

EZC representation. 

Fig. 22 Example of horizontal epipolar geometry of a pair of stereo images. A point P of the scene appears 

respectively in PI and P, in the left and right images. 

7.1. Matching Algorithm 

Let us suppose that our left and right images have N2 pixels each. A left and right epipolar scan line will 

have N samples each : [ l n ]  I,, and [ r n ]  . Each of these sequences of samples characterize the 

approximation of a signal at the resolution 1 . Let Sol ( x )  and SOr ( x )  be respectively the left and right approxi- 

mated signals which interpolate these samples. For every point xo , the goal of the matching process is to find the 

disparity z(xo) such that Sol (xo) and SOr ( x f l ( x o ) )  are locally the most similar. For this purpose, we will com- 

pute the finite EZC representations of Sol ( x )  and SOr ( x )  and compare locally these two representations with a 

coarse to fine strategy. A coarse to fine strategy consists of matching first the coarser details of the two signals 

SOl (x )  and SOr(x)  and then using the finer details to get more precise matches. Let 

{ [ T J ~  ( x ) ]  -Jqsl , S - J ~ ( X )  } and { [ T j r  ( x ) ]  -Jy,l, S-Ir ( x )  be respectively the finite EZC representation I 
C J C I 

of the left and the right approximated signals between the scales 1 and 2" . We have described in paragraph 6.1 

how to compute these representations given the sequences of samples Matching 

two signals T J  1 ( x )  and TJ  r ( x )  consists of trying to match their zero-crossings. We will use the local distance 

defined by equation (75) for matching the zero-crossings around which T J  1 ( x )  and T J  r ( x )  are the most similar. 

Let [ z i  ] j E  , [ e i )  j E  and [ f j ]  j E z  , [ E l ]  j E z  be respectively the zero-crossings and energies of T j  1 ( x )  

and T J  r ( x )  . Given a zero-crossing z i  of T J  1 ( x )  we want to find the zero-crossing z$ of T j  r ( x )  such that if 



z = z i  - 5) then 

This means that the neighborhood of TJr(x) around is the most similar to the neighborhood of T J Z  (x) 

around z i  (see Fig. 25). This minimum value dmi, gives also a confidence measure on the match. The smaller 

dmh is, the higher our confidence in the match. Each match between a zero-crossing of TJ 1 (x) and a zero- 

crossing of T J ~ ( X )  gives a local estimate of the disparity T . At the next scale 2J+l we will use this local esti- 

mate of the disparity in order to constrain the search when trying to find the correspondence between the zero- 

crossings of TJ+'Z (x) and the zero-crossings of Tj+lr (x) . When beginning at the coarser scale 2" we do not 

have any prior estimation of the disparity to constraint the search. This is, however, not a problem since the 

number of zero-crossings of T"l (x) and TwJr (x) will be small when J is big enough (see Fig. 25). 

7.2. Discussion of the algorithm and results 

The coarse to fine strategy reduces considerably the complexity of the search for a match since we use the 

matching information at the previous scale to constrain the search at the next scale. This strategy presupposes that 

we have a good confidence in the matches at the coarser scales since any error at a coarse scale might propagate at 

finer scales. At the coarse level we have a higher confidence in the matches because the signals T J Z  (x) and 

T J ~ ( X )  have less distortions (see Fig. 24). Indeed, the distortions between the left and right epipolar signals are 

primarily introduced in the high frequencies of these signals. The distortions are due to the difference of viewing 

perspective, to the camera system's noise and to the errors on the positioning of the epipolar lines in the two 

images. The matches at the coarser scales will thus be more reliable. 

In order to avoid side effects, at each scale, we did not try to to match the zero-crossings at the borders. As 

we can see from the successive matchings shown in Fig. 25 , we are getting a very dense matching on the signal. 

There are, however, some domains of the signal where we do not match the zero-crossings because there is too 

much distortion between T J Z  (x) and T J ~  (x) . In these domains, the minimal distance dmh of any pair of 

matching zero-crossings will be large. We have included in our algorithm a confidence threshold co in order to 

eliminate such matches. If - c co we eliminate the match. As shown in Fig. 25, in some domains we are 
d m h  

able to find some matches at a coarse scale but not at finer scales because there is too much high frequency noise. 

By comparing Fig. 23 and Fig. 24, we can see that when the left and right signal are locally similar, at each scale 

T J Z  and T J ~  are also similar. It is very rare that the discontinuity of the operator TF , mentioned in paragraph 



Fig. 23 Pair of stereo epipolar scan lines from a real pair of stereo images. The distortion between these two sig- 

nals is due to the difference of viewing perspective, to the camera noise and to the errors in the computation of the 

epipolar geometry. 

0 100 200 300 400 500 

Fig. 24 Energy Zero-Crossing representations of the two epipolar lines. The top EZC representation corresponds 

to the left signal and the bottom one to the right signal. We want to match these representations with a coarse to 

fine strategy. 

5.3, introduces a noticeable perturbation. As explained in paragraph 5.1 , the distance d& which must be minirn- 

ized is simple to compute. 

As a conclusion we would like to emphasize that such a stereo-matching algorithm is very simple to develop 

because the EZC representation in itself is well adapted to this pattern recognition problem. We did not try to add 
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Fig. 25. Coarse tofine matching between the zero crossings at the resolutions 2-2 and 2-I of the EZC represen- 

tations of apair of stereo epipolar lines. 

8. Conclusion 

In this paper we have defined a general low-level signal representation for signal analysis. This representa- 

tion is based upon the position of the zero-crossings of the dyadic wavelet representation and the values of the 

local energy between each pair of zero-crossings. We have first studied the mathematical properties of a dyadic 

wavelet representation and have then derived the properties of the Energy Zero-Crossing representation. The EZC 

representation is (experimentally) complete and admits a simple metric for pattern recognition applications. It has 

a multiscale organization and provides the locations of the signal "edges" at each scale. We have described a 

recursive algorithm for reconstructing a signal from its EZC representation. The convergence of the algorithm 

gives an experimental proof of the completeness of this representation. However, the mathematical proof remains 

an open problem. We have described the numerical implementation of all our algorithms. We have shown in par- 

ticular that we could implement a discrete wavelet transform with a pyramidal algorithm of complexity n.log(n) . 



A similar algorithm has been described for implementing a discrete inverse wavelet transform. We have 

developed a coarse to fine stereo-matching algorithm to illustrate the application of this decomposition to pattem 

recognition. The simplicity and the efficiency of this matching algorithm shows that the EZC representation is 

indeed well adapted for pattern recognition problems. 
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Appendix 1 

This appendix gives a proof of Lemma 1. We have already shown that if ~ ( x )  is a wavelet, it must verify 

the conditions of Lemma 1. Conversely, let yr(x) be a function verifying the condition of the lemma. Let 6(o) 

be a function defined by 6(o) 2 0 and 

The functions 6(w) and $(a) verify 

In order to prove that ~ ( x )  is a wavelet we will show that 6(o) is the Fourier transform of a scaling function. 

Let us prove first that J(o) is sqare integrable : 

The function $(a) is thus a square integrable function. It defines the Fourier transform of a function @(x) and 

with Parseval's theorem we can derive that /I$// = 1 . By scaling equation (103) by 2J we get 

-I-- 
From the uniform convergence of 3 1 $21 0 )  1 when J goes to +.. we can easily derive that 

J - 

lim I &a) 1 = 1 and 
1 - 9 3  

lim I I$(% I 
= 0 . 

Since b(0) 2 0 it will thus verify the limit conditions (10) and (1 1) of a smoothing function. Finally, b(o) 

clearly verifies the causality condition of a smoothing function since 

The inverse Fourier transform of 6(o) is thus a smoothing function. This concludes the proof of lemma 1. 



Appendix 2 

This appendix gives a proof to Lemma 2 and shows that the inverse is not true. In order to simplify the proof 

we will choose j = 0 . It can then be easily extended for any j E Z . By taking the Fourier transform of equation 

(37), we can show that the Fourier transform of any function f * ( x )  E Vo is given by 

Equation (38)  shows that f * ( a )  can be written 

+a0 
f* (m) = 4(m) { ( a )  where f ( a )  = G(2-J m) an e-ha 

n- 

In order to prove equation (39)  we must show that f ( m )  E L2 . Let us compute the integral of If ( a )  1 : 

Since an cha is 2rr periodic. and since we know that 3 C > 0 such that I v(m) l < . we have 
n- l + w  

This equation shows that f ( m )  is square integrable. It thus defines the Fourier transform of a function 

f ( x )  E L2 and f * ( x )  = SOf ( x )  . This concludes the proof of lemma 2 .  

Conversely, not every function f ( x )  E L2 verifies S j  f ( x )  c V, . In order to verify such a property, the 

Fourier transform of f(x) must be given by equation (105) . The inverse Fourier transform of this equation can be 

written 

The function f(x) must therefore be in the vector space generated by the family of functions [ v(x  - n ) ]  n e z -  



Appendix 3 

This appendix gives the proof of theorem 3. This Lemma will be proved for j = 0  since we can then gen- 

eralized the result for any j E Z by scaling the functions t ( ~ )  and p(x)  by a factor 2/ . Let us write equation 

(43) for f ( x )  = { ( X I  , 

If we take the Fourier transform of this equation, by applying the Poisson formula we get 

The Fourier transform of p(x)  must therefore verify 

This equation defines a function in L2 since c2 Z &a + 2n n )  Z c 1 . 
n- 

Let us now suppose that p(x)  is a function whose Fourier transform is defined by equation (108) . We are 

+oo 
going to prove that the property (43) is indeed verified. Since C ;(a + 2n n )  = 1  by applying the Poisson 

n- 

formula we can easily derive that 

r 

By reversing the derivation steps of equation (106) and (107) we can show also that 

From this equation, it is clear that for any k  E Z the function t ( x  - k )  can be decomposed on the family of func- 

tions [p (x  - n ) ]  .,z . Since {(x - k)  r e z  is a basis of Va , any function f ( x )  E Vo can thus be decorn- [ 1 ,  
posed in the family of the functions p(x - n )  j ne z : 

Since p ( x )  verifies the property (109) , for all n  E Z a,, = f ( n )  . This concludes the proof of the theorem . 



Appendix 4 

In this appendix we give a proof of lemma 3. 

Proof of equation (91): Let gj f (a) be the Fourier series of the discrete signal ~j f defined by equation (89) : 

Since W J  f (n 2-jO-j) = f m y ~ j  (n  2-jo-j) , by applying the Poisson formula we can easily derive that 

W J  f (a) = f (a) $2-j a) * 210'' & &(a + n 27c2jo+j) so 
n E 

W' f (a) = 2j0+j f (a + n 2312'") G(2-j LO + n 27c2Jo) . 
ne 

Equation (13) yields 

~(2-j6I-k  n 27c2jo) = G ( 2 - j - l ~ ~  7c2~0) 4(2-i-lwn x2~o) 

Since G (a) is 2j0z periodic, 

W j f d  (a) = 2jo+J G (2-2-I-la) f (a + n 27c2jo+j ) C(2-j-1 a + n ~2'0) . 
n E 

Let us now define the Fourier series $ f (LO) of the discrete signal SJ f . 

, f j f d  (a) = q j f  (n 2-j0-j+1) 4 2-j;j+'n 0 

nE 

Since s i f  (n  ~-Jo-J+') = f m (n 2 - j ~ ~ ~ ' )  , we can show similarly that sf (02-~0-~+1) can be writen 

$j f d (LO) = 2jo+'-' & f (a + n 7c2jotj) ((2-J a + n x2j7 , 
n E 

(1 13) 

By comparing equation (1 12) and equation (1 14) we can now derive that 

~ j f d ( ~ ~ )  = G(~-~- 'co) ~ + * f d ( @ )  . 

This equation is the Fourier transform of the discrete convolution given in assertion (91) of lemma 3. This con- 

cludes the proof of equation (91) . 

proof of equation (92) : We saw in equation (1 14) that the Fourier series fi f (a2-ja-j+l) can be written 

$jfd (a) = Yo+'-I f ( ~  + n 312jo'j) 6(2-j a + n ~ 2 ~ 0 )  . 
n E 

We can derive from equation (7) that 



This summation can be divided in two for n even and n odd : 

Since H is a 2;" periodic function, this expression can be written 

By comparing this equation with the expression of Si'f d (a) given in equation ( 1  14) , we can derive that 

Sj'f (a) = H ( 2 - j - l ~ )  Si'+l f (a) + H ( 2 - j - l ~  + 112jO-l) f i+ l  f (O + x2j0+;) . 

This expression is the Fourier transform of equation (92). It shows that S j f d  can be computed by convolving 

Sj+l  f with the discrete filter h and taking one sample out of two from the resulting discrete signal. 



Appendix 5 

In this appendix we give a proof to Lemma 4. 

Proof of equation (95) : We saw in equation (1 15) of appendix 4 that 

~j f (a) = G (2-j-la) s+' f ( a )  . 

Let &a) be the Fourier series of the discrete signal A defined in equation (95) , 

&a) = q ~ j f  ( n 2 - ~ ~ ~ ) e - i ~ 2 - ' ; i m  . 
n E  

With a proof similar to the proof of equation (1 15) given in appendix 4, we can show that 

&a) = H (2-J-' a) s+' f ( a )  . 

Let H(2-j-la) and F(2-j- la)  be respectively the complex conjugate of H (2-j-la) and G (2-j-la) . 

H(2-j-lw) &a) + G(2-j- la)  W j f d  ( a )  = ( I H (2-j-la) I + I G (2-j-la) I 2 ) Sj'+lfd ( a )  . 

G (a) verifies I H ( a )  1 + I G (a) 1 = 1 hence 

H(2-J-la) &a)  + G(2-j- la)  W j f d  ( a )  = S?i+lfd (a) . 

This equation is the Fourier transform of equation (95). This concludes the proof of lemma 4. 
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