
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

February 1988

Jack: A Toolkit for Manipulating Articulated Figures Jack: A Toolkit for Manipulating Articulated Figures

Cary B. Phillips
University of Pennsylvania

Norman I. Badler
University of Pennsylvania, badler@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Cary B. Phillips and Norman I. Badler, "Jack: A Toolkit for Manipulating Articulated Figures", . February
1988.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-28.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/611
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76393496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F611&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/611
mailto:repository@pobox.upenn.edu

Jack: A Toolkit for Manipulating Articulated Figures Jack: A Toolkit for Manipulating Articulated Figures

Abstract Abstract
The problem of positioning and manipulating three dimensional articulated figures is often handled by ad
hoc techniques which are cumbersome to use. In this paper, we describe a system which provides a
consistent and flexible user interface to a complex representation for articulated figures in a 3D
environment. Jack is a toolkit of routines for displaying and manipulating complex geometric figures, and
it provides a method of interactively manipulating arbitrary homogeneous transformations with a mouse.
These transformations may specify the position and orientation of figures within a scene or the joint
transformations within the figures themselves. Jack combines this method of 3D input with a flexible and
informative screen management facility to provide a user-friendly interface for manipulating three
dimensional objects.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-28.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/611

https://repository.upenn.edu/cis_reports/611

JACK:
A TOOLKIT FOR MANIPULATING

ARTICULATED FIGURES
Cary B. Phillips
Norman I. Badler

MS-CIS-88-28
GRAPHICS LAB 20

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 191 04

April 1988

Acknowledgements: This research is partially supported by Lockheed Engineering and
Management Services, the Pennsylvania Benjamin Franklin NASA Grant NAG-2-426
Partnership, NSF CER Grant MCS-82-19196, NSF Grants IST-86-12984 and DMC-85-16114,
and ARO Grants DAA29-84-9-0027, DAAG29-84-K-0061 including participation by the U.S.
Army Human Engineering Laboratory.

Jack:
A Toolkit for Manipulating

Articulated Figures

Cary B. Phillips
Norman I. Badler

Computer Graphics Research Laboratory
Department of Computer and Information Sciences

University of Pennsylvania
Philadelphia, Pennsylvania 19104-0389

February 29, 1988

Abstract

The problem of positioning and manipulating three dimensional artic-
ulated figures is often handled by ad hoc techniques which are cumbersome
to use. In this paper, we describe a system which provides a consistent
and flexible user interface to a complex representation for articulated fig-
ures in a 3D environment. Jack is a toolkit of routines for displaying
and manipulating complex geometric figures, and it provides a method of
interactively manipulating arbitrary homogeneous transformations with a
mouse. These transformations may specify the position and orientation
of figures within a scene or the joint transformations within the figures
themselves. Jack combines this method of 3D input with a flexible and
informative screen management facility to provide a user-friendly interface
for manipulating three dimensional objects.

1 Introduction

Many animation and simulation systems perform sophisticated operations on
geometric figures in a particular configuration, but they leave tlie actual posi-
tioning of the figures to ad hoc techniques such as keyboard input of numerical
joint angles or valuator input from a mouse. This requires the user to remem-
ber complex information about the coordinate frames with which objects are
constructed and the axes around which the joints revolve. All too often, such

systems provide minimal capabilities for describing basic 3D position and ori-
entation, forcing the user t o adapt to a primitive set of commands.

Much work has shown the value of kinesthetically appropriate feedback[7,5,16].
Systems which do provide direct manipulation with multi-dimensional input de-
vices often do not provide adequate feedback on how the motion of the input
device produces world space transformations. Typically, several dozen degrees
of freedom must be manipulated. For example, the human body model usid by
TEMPUS[2] has 18 joints and 48 degrees of freedom. Without adequate means
of handling this complexity, systems can easily become cumbersome to use and
the problem of figure positioning becomes a tremendous burden for the user.

Jack is a system being developed at the University of Pennsylvania which
provides a flexible and general user interface for manipulating complex artic-
ulated structures, particularly human figures in a 3D working environment.
Jack is not a complete system in itself, but a toolkit of routines and operators
for displaying and manipulating geometric figures. Jack provides input and
control for applications involving lighting and image rendering, anthropometric
modeling, dynamics analysis, and keyframe and constraint-based animation and
simulation.

Jack incorporates a simple but powerful mechanism for manipulating ho-
mogeneous transformations. These transformations describe the position and
orientation of the figures and the displacement of joints, as well as other signif-
icant points in space or on geometric objects. Jack combines a flexible object
representation with a visually informative screen management facility to yield
a user-friendly working environment.

In this paper we describe the goals and philosophies behind the design of the
Jack interface, as well some experiences with it. In Section 2, we discuss the
problem of figure positioning and describe some desirable features of positioning
systems. In Section 3, we discuss previous work in the area of figure positioning
and three dimensional input techniques. In Section 4, we discuss the Jack
interface and object representation. In Section 5, we describe the techniques
which Jack uses to manipulate articulated figures. Finally, we summarize the
approaches which Jack has taken to the various aspects of the problem of figure
positioning.

2 Figure Positioning

Much of the recent research effort in animation has been aimed at developing
new techniques for describing and generating motion, with the hope that this
will provide the user with better control over the figures in a scene. These
new techniques show great promise, but there has been little effort towards
improving the fundamental interaction between the user and the objects. Work
which has been done in this area has dealt primarily with arranging rigid bodies
in space and has not properly considered the problem of manipulating complex

articulated structures.
The task of manipulating articulated figures is very common, particularly

in animation. For keyframe animation systems, the importance of static posi-
tioning is obvious. However, tools for static positioning have usefulness outside
of the domain of scene composition and keyframe animation. For example, sys-
tems which generate motion sequences from dynamic simulation[l,l0,l9] must
still provide a mechanism for describing initial configurations and providing
force and velocity information. Any such system will greatly benefit from a
well-designed user interface.

Bier taxonomizes the problem of scene composition into interactivity, anchor
richness, end condition richness, and smoothness[5]. Interactivity describes the
interface with the user: keyboard, dials, mouse, etc. Anchors refer to the axes
and planes with respect to which transformations may be specified. The end
conditions involve the values of the transformations, i.e. angles and distances.
Smoothness pertains t o the technique of displaying the interaction.

Figure positioning has traditionally been difficult because systems failed in
each of these categories. The failings of most interfaces can be classified as
follows:

Improper visual feedback of the current state of the figures

Improper visual feedback of the results of transformations

Inability t o properly anticipate the effect of input

Inability to easily describe transformations with respect to arbitrary ref-
erence frames

The ability to get immediate feedback on how the parameters of a figure
affect its appearance has an enormous impact on the usability of a system. In
animation, most figure positioning and geometric operations are performed on
a trial and error basis, and the user is not always interested in precise measure-
ments and exact positions. The ability to easily move a figure around in real
time gives the user a better idea of what position the figure should assume.

The importance of direct manipulation for figure positioning is clearly ob-
vious. The use of keyboard input discourages experimentation because of the
time it takes to enter the values and see the results, as well as the difficulty
in interpreting the results and determining if they caused the desired effect. A
system which requires the user to enter numerical values for explicit joint angles
or translational axes and distances can never hope to become an intuitive and
flexible user tool. Text-driven input techniques are useful in scripting and in au-
tomated computations, but for an interactive system, the capability of moving
figures directly is of crucial importance.

The most critical requirement of any interactive system is that it provide the
user with the capability of easily and efficiently accomplishing a set of desired

goals. Shneiderman has said that "when an interactive system is well designed, it
almost disappears, enabling the user to concentrate on his work or pleasure[l7]".
In the case of three dimensional design and animation systems, this translates to
the ability to virtually reach into the environment and move objects and figures
around at will.

Based on this desire, we observe the following characteristics of a useful
object manipulation system:

Changing the view should be so effortless it is almost transparent to the
user. This principal comes from the fact that when a person is presented
with an object to observe, he will pick it up, turn it around and look at it
from several directions. The user of an interactive design system should
be able to do likewise.

The display should give intuitive real-time feedback on the movement.
The screen should be visually informative, and the user should be able to
drag objects to see the effect of different positions. Recent advances in
graphics workstations have made this goal easier to achieve. This makes
the process of trial and error much more effective.

The user should be able to easily predict what motion of the input device
will yield the desired object motion. Many systems have failed to pro-
vide usable manipulation tools because world space transformations are
encoded in the space of the input device, making the results of the input
difficult to anticipate.

Many types of movement (global/local translation/rotation) should be
available at the user's fingertips. The user should be able to experiment
freely and quickly with position and orientation, and the response time
should not be hampered by having to repeatedly pick axes or reference
items from a menu or keyboard.

Anchors and end conditions should be rich. The user should be able to
specify exact distances and angles as well as approximate positions.

Previous Work

Recent work has attempted to relieve the burden of figure positioning by au-
tomating the task completely. Many exciting and promising techniques have
been developed, based on inverse kinematics[ll,9], dynamics[l9,1,9], and con-
straint based optirnization[3,4,20]. While these are very valuable techniques for
generating realistic motion and precise positions, it can be difficult to manip-
ulate a figure exclusively in this way. Such systems should be developed in
conjunction with techniques for direct manipulation.

In the case of constraint satisfaction this is particularly true, since the con-
straints themselves are usually specified relative to positions and orientations
of points on the objects or in world space. Without a simple mechanism for
positioning the constraints, the user is faced with the same old problem. This
problem can easily turn a potentially powerful animation system into a frustra-
tion for the user. This underscores the importance of a simple and intuitive way
of moving objects and points around in a three dimensional environment.

3.0.1 3D Input Devices

Since the task of positioning articulated figures is inherently three dimensional,
some attempts have been made at using three dimensional input devices. In
particular, [3] and [16] describe experiments using a 3SPACE ~ i ~ i t i z e r l , a mag-
netic device which senses the position and orientation of a hand-held wand. The
experiments described in [3] conclude that the multiple degrees of freedom of
the input device were difficult to control simultaneously, and that it became
easier to control the device with some of the degrees of freedom disabled. This,
along with the lack of proper visual feedback, has limited the usefulness of this
system.

3.0.2 3D Input from 2D Devices

Several techniques have been developed for describing three dimensional trans-
formations with a two dimensional input device, such as a mouse. Nielson de-
scribes techniques for mapping the motion a two dimensional mouse cursor to 3
dimensional translation and rotation, based on the orientation of the projection
of a world space coordinate triad onto the screen [12]. Bier describes transfor-
mations formed by reference coordinate frames called skitters and jacks[5]. The
user first positions the skitters and jacks in space and then uses their position
and orientation to specify certain transformations. The skitters and jacks may
be positioned directly on faces or along edges, or freely in space. Their position
and orientation are manipulated by a set of dials.

4 The Jack Interface

Jack exhibits may desirable features of a three dimensional manipulation sys-
tem. It can be viewed as a database manager which creates, displays, and
manipulates articulated figures, and provides input in terms of geometric con-
figurations to routines which perform such things as image rendering, dynamic
simulation, and animation. Jack maintains multiple windows, and each win-
dow is a view into a geometric environment. Windows may view completely
- -

 S SPACE is a trademark of Polhemus Navigational Sciences Division, McDonnell Douglas
Electronics Company

different geometric environments, or they may provide different views of the
same environment. J a c k has a single "movement" operator, which is used to
move anything which may be described by a homogeneous transformation. This
uniformity helps the user cope with the complexity of the various operations.

4.1 Articulated Figures

J a c k is a primarily a user interface which controls the interaction with artic-
ulated figures represented in a system called peabody . P e a b o d y represents
figures composed of rigid segments connected by joints, also under the influence
of constraints. Joints connect segments through "attachment points" called
sites. A site is a local coordinate frame specified with respect to the base coor-
dinate frame of the segment to which it belongs. Joints connect sites belonging
t o different segments within the same figure. Constraints are pseudo-joints be-
tween arbitrary sites in the environment. The segment is the basic geometric
primitive. The state variables of each segment represent its mass and moment
of inertia, as well as its geometry, stored as a boundary representation.

The user treats figures as arbitrary collections of segments connected by
joints, without necessarily imposing a hierarchy upon them. P e a b o d y main-
tains information about the global position and orientation of each segment in
the environment. This global information is computed internally from the site
and joint transformations. The user is encouraged to think of the geometric
objects as an arbitrary graph structure of segments connected by joints. The
segments are the nodes of the environment graph, and the joints are the edges.
Figures are maximal subgraphs spanned only by internal joints.

When peabody computes the position and orientation of each segment, it
first computes a spanning tree of the environment. Then it traverses the tree to
compute the state information. This tree need only be recomputed when a new
joint or segment is created or deleted, i.e. when the topology of the environment
graph is altered.

Since this tree is computed internally, the user does not have to think of
a figure as a strict hierarchy with a specific root. This is a simple but very
important concept. Most figures with which we are concerned, particularly
human bodies, are in fact hierarchical. However, it is advantageous to think
of them as general graph structures which may be connected t o other parts of
the environment in arbitrary ways. These connections become important when
assigning constraints, adjusting joints and moving figures, which we describe
below. In J ack , figures may be easily rerooted interactively and can be rooted
to any site on the figure. This makes it very easy to do such things as rotating
a figure around a hand or pivoting around a foot. The figures may also be
connected t o other figures in the environment, not just the world frame. This
arbitrary connect scheme makes it easy to specify transformations with respect
t o arbitrary frames.

(a) A segment with multiple sites

(b) A joint between two sites

Figure 1: The Peabody Data Structure

Figure 2: A peabody figure

4.2 The User Interface

Jack displays the screen in a visually informative way by drawing a ground
plane grid, which gives a perception of the orientation of the world coordinate
system. It draws the orthogonal projections of the figures in the scene on each of
the coordinate axis planes. The projections are drawn in a darker color than the
figures themselves, so they do not heavily distract from the scene. This gives
an easily interpreted visualization of the arrangement of the figures. These
projections are like shadows from infinitely distant light sources. Since all three
projections are closely placed on the screen, the user can quickly reference the
orientation and relative placement of neighboring objects in the scene.

All aspects of the display are optional and may be disabled. The user may
choose to display the vertices, edges, faces, or sites associated with each segment
on an individual basis. The sites are displayed as labeled coordinate axes. The
orthogonal projections of the individual segments may be disabled as well. This
allows the display to be easily tailored to suit a particular application, since the
all forms of display may not be appropriate for all tasks at hand.

Jack is a menu driven system, but most of the commands in the menus
have several options which can be invoked through keystrokes as the command
is being executed. Jack controls almost all of the interaction through the mouse,
which has three buttons, and sits on an optical pad beside the display monitor.
In general, pressing and releasing the mouse buttons are different events, and
many functions require the user to hold down a mouse button while moving the

Figure 3: The Jack screen

mouse around on its pad.

Jack provides a simple mechanism for picking figures by pointing at them
with the mouse. The user may pick segments, joints, sites, or entire figures,
as well as individual vertices, edges, and faces of the segments. The picking
mechanism waits for a mouse button to be pressed, then generates a "pick list"
of items which currently lie under the mouse cursor. The user may select an
item from the pick list by cycling through the pick list by clicking a second
mouse button while still holding down the original button. When the original
button is released, the item is selected.

All commands are available through the menus, but they can also be en-
tered from the keyboard, either directly or in scripts. The scripts may be
either parametrized or unparametrized. Unparametrized scripts operate on pre-
selected figures. Parametrized scripts select the necessary figures as they are
need by the operations.

The execution philosophy of Jack is similar to the EMACS text editor[l8].
Command sequences may be bound to convenient keystrokes on a user-defined
basis, and the user can develop sequences of commands interactively and bind
them to keys. This provides the user with a powerful way of tailoring the
working environment to suit a particular task.

5 Manipulating Objects

Many operations require positioning a figure or reference point. This movement
is performed by moving the mouse, and the resulting position is displayed on
the screen as the movement takes place. The movement operator has several
components, which allow the user to either translate or rotate the transform with
respect to various axes. These axes are determined from the state of the three
mouse buttons and the shift and control keys, and may change as the command
executes by releasing and pressing the various keys. These keys are used to
specify whether the type of transformation, i.e. translation or rotation, and the
reference axes and the reference frame. The individual mouse buttons select
the appropriate axes. The control key specifies whether the transformation is
rotation or translation. The shift key allows the user to change the reference
frame. When the desired position is achieved, the movement is terminated by
hitting the escape key.

The movement operator operates on two transformations: the reference
transform, which is a global, and a relative transform, which is specified with
respect to the reference. The reference transformation remains fixed; the rela-
tive transformation is continuously updated as the movement takes place. Some
type of "action" is usually performed as this is done, such as updating the global
position and orientation of figures and joints in the scene. This basic operator
is used in may situations throughout Jack to move various things, such as fig-
ures and joints, as well as individual vertices, edges, and faces of geometric
primitives.

5.1 The Mouse Line

Jack describes all motion with respect to the ray in the world coordinates which
is cast through the location on the screen where the mouse cursor lies. This
line in space is referred to as the mouse line, and it can be easily computed by
an inversion of the viewing transformation. Jack restricts movement to lie in
certain user-selected planes described below, and it determines world coordinate
points by intersecting the mouse line with these planes.

5.2 Translation

Under normal operation, translations along the x, y, and z axes of an object's
local coordinate frame are encoded in the left, middle, and right mouse buttons,
so that pressing down any mouse button enables translation along that axis.
During the movement operation, when the user presses a button, translation is
enabled along that axis. When the user presses two mouse buttons, translation
is enabled along those two axes, i.e. in the plane spanned by those axes. Since
the mouse is a two-dimensional device, it is not possible to translate along three
axes simultaneously, so pressing three buttons at once has no effect.

When the buttons go down, a vector is drawn in world coordinates describing
the translational axes. As the user moves the mouse pad around, the object
moves in world coordinates so that its location lies under the mouse cursor. As
the figure moves, its global and local coordinates are displayed on the screen so
that the exact position is available as well.

Figure 4: Translation

Translation along a single axis may be achieved by pressing only one button.
The mouse may move anywhere on the screen, but the translation is restricted
to a particular axis is space, which maps to a line on the screen. Therefore it
is not possible to move the location of the figure along the axis such that it
appears under the mouse cursor. In this case, Jack determines the position of
the figure from the point along the translational axis which is nearest to the
mouse line. Jack repeatedly repositions the mouse cursor so it lies along the
line of translation.

5.3 Rotation

Rotation is accomplished in a similarly intuitive way, by requiring the user to
move the mouse around in circles on its pad. The three mouse buttons are
encoded as rotation around the x, y, and z axes. When the user presses down
on a button, a "wheel" is displayed at the origin of the figure describing the
rotational axis. This wheel lies in the plane in which the rotation is to take
place, with the origin of the wheel at the rotational axis. Then a vector is

drawn from the current mouse line intersection with this plane, and as the user
moves the mouse around in this plane, the figure stays fixed with respect to this
reference vector. Therefore, if the user moves the cursor around in circles on
the screen centered at the origin of the object, the object rotates around the
three dimensional axis.

Figure 5: Rotation

5.4 Joints

These moving operations are helpful for positioning figures in world space, but
usually an articulated figure is composed of a number of joints, having specific
degrees of freedom. Peabody provides a mechanism for associating arbitrary
rotational and translational degrees of freedom with a joint. In this case, the
transformation at the joint is restricted to these axes. A simple and common
example is the euler angles, which are defined as a rotation about the z axis,
followed by a rotation around the y axis, followed by rotation about z.

In the case of transforming a joint which has specific degrees of freedom,
the same type of movement is employed, but it is simply encoded in the mouse
buttons in a different way. A properly defined joint will never have more than
six degrees of freedom. The first three axes are encoded in the left, middle, and
right buttons, respectively. The second three are activated by holding down
the shift key. It is highly unusual to have a single joint with more than three
degrees of freedom. Such a joint could more effectively be represented by a
simple homogeneous transformation.

This mechanism has left unspecified how the joint displacement affects the
position of the figure. When a joint is adjusted, one segment remains fixed with
respect to the world frame and the other moves. In a strict hierarchy, this is a
simple matter since there is a well defined "proximal" and "distal" segment. But
peabody represents figures as a general graph, so it is ambiguous which segment
remains fixed and which moves. In this case, peabody takes the proximal and
distal segments from the underlying spanning tree of the environment, so that
the segment which remains fixed is the one which is on the side of the figure
which is rooted to the world. Since it is very easy to re-root a figure, it is a
simple matter to arrange a transformation keeping any arbitrary segment fixed
in space.

5.5 Reference Frame

The transformations described above are local to the coordinate frame being
transformed, so that if an object is rotated and then translated, the translation
will be with respect to the rotated axes. The transformations may be specified
with respect to the parent transformation by holding down the shift key. In the
case of a joint, the parent is the segment on the "other" side of the joint. In the
case of a figure, the transformation it taken with respect to the site to which the
figure is connected. If this site is attached to the world coordinate frame, the
transformation is relative to the world. If a figure is rooted to another figure,
the motion is relative to that figure.

Since the control and shift keys are close together on the keyboard, they are
easy to press in conjunction. Thus, the user may specify global or local rotation
or translation by holding down some combination of the control and shift key
and the three mouse buttons. The motion continues in the fashion until the
user presses the control key, ending the transformation. The transformation
may also be aborted by typing ^C.

1 key I effect I
1 left mouse I x translation/rotation I

middle mouse I y translation/rotation
right mouse 1 z translation/rotation

H CNTL I rotation
SHIFT I transform w.r.t. parent

Figure 6: Key bindings during movement

13

5.6 Observations

A seeming drawback of this technique is that the user must remember the cur-
rent orientation of the t, y, and z axes. However, the translational and rotational
icons, along with the coordinate axis projections, give the user a simple means
of determining this information quickly. Typically, the user has a particular di-
rection in world coordinates in mind when he initiates a transformation. Since
the icons are displayed as the keys are pressed and before the motion begins,
the user can easily cycle through the available axes to select the appropriate
set.

For instance, the user may want to "turn the figure around," which may
technically involve rotating 180' about the y axis. The user can initiate a
"move figure" operation, press the control key to specify rotation, and press the
left, middle, and right mouse buttons in turn and begin moving the mouse when
the appropriate axis is displayed. This technique frees the user from having t o
remember that the y axis is the appropriate axis. This avoids overloading the
screen with information by making it available a t the user's fingertips as he
needs it.

Another seeming drawback of this technique is the inability to translate or
rotate an object along an axis parallel to the line of sight, since in this configu-
ration, small differences in the screen coordinates of the mouse may correspond
to large distances in world coordinates. However, this is a transformation which
the user should be discouraged from performing anyway. The first prerequisite
for manipulating a figure, by computer or by hand, should be t o position the
figure in a convenient view.

5.7 End Conditions

These techniques provide a flexible way of manipulating transformations inter-
actively, but it can be difficult t o specify precise angles and distances in this
way. This can be achieved in several ways. The most straightforward is to sim-
ply enter the coordinates from the keyboard, which can be done by typing ^K
during the motion, after which the user will be prompted for the desired angles
or distances. This need only be done when a specific known distance or angle
is needed.

While a motion is taking place, the user may "snap" the transformation
t o a particular face, edge, or node with a single keystroke. The snapping is
controlled by three keys: 'F for snapping to a face, ^E for snapping to an edge,
^N for snapping t o a node. When one of these keys is pressed while moving a
transform, the user is prompted to pick the appropriate item, and the transform
is moved to tangency with the selected item. This tangency is accomplished by
translating the transform to the desired node, edge, or face along the shortest
possible distance, without rotation.

It is also possible to snap a transform to the direction of an edge or face. To

do this, the user first orients the transform so that it is approximately aligned
with the desired edge or face and then types 'X-E to snap to an edge, or -X-F
to snap to a face. The snapping mechanism then takes the local coordinate
axis of the transform which is closest to the desired orientation and adjusts the
transform so that that axis is aligned the transformation with the edge or face.

6 Moving the View

Jack has a simple set of routines for manipulating the view, based on the
operations of sweeping, panning, and zooming. The sweep operation sweeps the
camera around horizontally and vertically on a virtual circular track, keeping
it focused at the same reference point. The pan operation does the opposite,
changing the orientation of the camera but keeping it at a fixed position. The
zoom operation translates the camera along its line of sight. zoom can be
performed simultaneously with either the horizontal or vertical sweep.

All three of these operations can be performed during the same viewing
action, similar to the movement operator. By default, the left and middle
mouse buttons controls the horizontal and vertical swing of the camera during
a sweep operation. The right button controls zoom. Any two may be used
in combination. A vertical motion of the mouse with the middle button down
causes the camera to move up and down; a horizontal motion of the mouse with
the left button down causes the camera to move side to side. When the shift
key is pressed, the viewing operation changes to a pan, in which the camera
says in the same location and rotates around on its axis. The left and middle
mouse buttons control the horizontal and vertical motion just as with the sweep
operation.

The view associated with each window provides a powerful visual tool. In-
ternally, the view is represented by a site coordinate frame: the global position
and orientation of the site determine the viewing transformation of the window.
By default, a standard camera figure is created for each window with the view
attached to it , but the view may be attached to any site in the environment.
This provides a convenient means of positioning certain types of figures, such
as light sources. The user may attach the view to a light, and then adjust the
view, seeing in the window the objects on which the light shines.

This also provides a simple mechanism of performing view assessment. Our
human figure representation has sites in each eye. The user may create two
windows side by side, and attach the views in the window to the sites in the
eyes. Then the user sees in the windows exactly what the figure would see
given his current position in the environment. This is particularly useful during
animation and simulation, when a motion sequence may be developed from a
third point of view and then viewed from the perspective of the human figure.

7 Conclusion

Jack provides a flexible and easy-tuuse interface for displaying and manipu-
lating complex articulated figures. The windows, orthographic projections, and
movement icons provide good visual feedback on the current state of the envi-
ronment and the effect of the input. Since all three dimensional position and
orientation information is provided by the same operator, there is a consisted
interface for all aspects of the system. Since the movement operator generates
homogeneous transformations based on the screen location of the mouse cursor,
it is easy to anticipate the effect which movements of the input device will have
on the objects. Since peabody is a very general mechanism for representing
articulated structures, it is very easy to define attachment and reference points
to specify transformations with respect to arbitrary frames.

References

[I] Armstrong, W. W., and Mark Green, "The Dynamics of Articulated Rigid
Bodies for Purposes of Animation," The Visual Computer 1, No. 4, 1985.

[2] Badler, Norman I., Jonathan D. Korein, James U. Korein, Gerald Radack,
Lynne S. Brotman, "Positioning and Animating Human Figures in a Task-
Oriented Environment," The Visual Computer 1, No. 3, 1985.

[3] Badler, Norman I. , Kamran Manoochehri, David Baraff, "Multi-
Dimensional Input Techniques and Articulated Figure Positioning by Mul-
tiple Constraints," In Proceedings of 1986 Workshop on 3 0 Interactive
Computer Graphics, (Chapel Hill, NC, October 23-26, 1986), ACM, New
York, 1987.

[4] Badler, Norman I., Kamran Manoochehri, and Graham Walters, "Artic-
ulated Figure Positioning By Multiple Constraints", Computer Graphics
and Applications, Vol. 7, No. 6, June, 1987.

[5] Bier, Eric "Skitters and Jacks: Interactive Positioning Tools," In Proceed-
ings of 1986 Workshop on 3 0 Interactive Computer Graphics, (Chapel Hill,
NC, October 23-26, 1986), ACM, New York, 1987.

[6] Bier, Eric, "Snap-Dragging," Computer Graphics 20, No. 3, 1986.

[7] Britton, E.G. J.S. Lipscomb, M.E. Pique, "Making Nested Rotations Con-
venient for the User." Computer Graphics 12, No. 3, 1978.

[8] Forrest, A.R., "User Interfaces for Three-Dimensional Geometric Model-
ing." In Proceedings of 1986 Workshop on 3 0 Interactive Computer Graph-
ics, (Chapel Hill, NC, October 23-26, 1986), ACM, New York, 1987.

[9] Girard, Michael and A.A. Maciejewski, "Computational Modeling for the
Computer Animation of Legged Figures," Computer Graphics 19, No. 3,
1985.

[lo] Isaacs, Paul M. and and Michael F . Cohen, "Controlling dynamic simula-
tion with kinematic constraints", Computer Graphics 21, No. 4, 1987.

[ll] Korein, James U., "A Geometric Investigation of Reach," MIT Press, Cam-
bridge, MA, 1985.

[12] Nielson, G.M. and Dan Olsen, Jr., "Direct Manipulation Techniques for
Objects Using 2D Locator Devices," In Proceedings of 1986 Workshop on
3 0 Interactive Computer Graphics, (Chapel Hill, NC, October 23-26, 1986),
ACM, New York, 1987.

[13] Phillips, Cary, "Programming With Jack," unpublished programmer's
manual.

[14] Phillips, Cary, "Using Jack," unpublished user's manual.

[15] Pique, M.E. "Semantics of Interactive Rotations." In Proceedings of 1986
Workshop on 3 0 Interactive Computer Graphics, (Chapel Hill, NC, Octo-
ber 23-26, 1986), ACM, New York, 1987.

[16] Schmandt, Christopher, "Spatial Input/Display Correspondence In a
Stereoscopic Computer Graphics Workstation," Computer Graphics 17, No.
3, 1983.

[17] Shneiderman, Ben, Designing the User Interface, Addison Wesley, 1987

[18] Stallman, Richard, Gnu Emacs Users Manual.

[I91 Wilhelms, Jane "Using Dynamics for the Animation of Articulated Bod-
ies Such as Humans and Robots," Proceedings of Graphics Interface '85,
Montreal, 1985.

[20] Witkin, Andrew, Kurt Fleischer, and Alan Barr, "Energy Constraints on
Parametrized Models," Computer Graphics 21, No. 3, 1987.

	Jack: A Toolkit for Manipulating Articulated Figures
	Recommended Citation

	Jack: A Toolkit for Manipulating Articulated Figures
	Abstract
	Comments

	tmp.1190302736.pdf.Ep9LU

