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Abstract 

The  problem of positioning and manipulating three dimensional artic- 
ulated figures is often handled by ad hoc techniques which are cumbersome 
to use. In this paper, we describe a system which provides a consistent 
and flexible user interface to a complex representation for articulated fig- 
ures in a 3D environment. Jack is a toolkit of routines for displaying 
and manipulating complex geometric figures, and it provides a method of 
interactively manipulating arbitrary homogeneous transformations with a 
mouse. These transformations may specify the position and orientation 
of figures within a scene or the joint transformations within the figures 
themselves. Jack combines this method of 3D input with a flexible and 
informative screen management facility to provide a user-friendly interface 
for manipulating three dimensional objects. 

1 Introduction 

Many animation and simulation systems perform sophisticated operations on 
geometric figures in a particular configuration, but they leave tlie actual posi- 
tioning of the figures to ad hoc techniques such as keyboard input of numerical 
joint angles or valuator input from a mouse. This requires the user to  remem- 
ber complex information about the coordinate frames with which objects are 
constructed and the axes around which the joints revolve. All too often, such 



systems provide minimal capabilities for describing basic 3D position and ori- 
entation, forcing the user t o  adapt to a primitive set of commands. 

Much work has shown the value of kinesthetically appropriate feedback[7,5,16]. 
Systems which do provide direct manipulation with multi-dimensional input de- 
vices often do not provide adequate feedback on how the motion of the input 
device produces world space transformations. Typically, several dozen degrees 
of freedom must be manipulated. For example, the human body model usid by 
TEMPUS[2] has 18 joints and 48 degrees of freedom. Without adequate means 
of handling this complexity, systems can easily become cumbersome to use and 
the problem of figure positioning becomes a tremendous burden for the user. 

Jack is a system being developed at the University of Pennsylvania which 
provides a flexible and general user interface for manipulating complex artic- 
ulated structures, particularly human figures in a 3D working environment. 
Jack is not a complete system in itself, but a toolkit of routines and operators 
for displaying and manipulating geometric figures. Jack provides input and 
control for applications involving lighting and image rendering, anthropometric 
modeling, dynamics analysis, and keyframe and constraint-based animation and 
simulation. 

Jack incorporates a simple but powerful mechanism for manipulating ho- 
mogeneous transformations. These transformations describe the position and 
orientation of the figures and the displacement of joints, as well as other signif- 
icant points in space or on geometric objects. Jack combines a flexible object 
representation with a visually informative screen management facility to yield 
a user-friendly working environment. 

In this paper we describe the goals and philosophies behind the design of the 
Jack interface, as well some experiences with it. In Section 2, we discuss the 
problem of figure positioning and describe some desirable features of positioning 
systems. In Section 3, we discuss previous work in the area of figure positioning 
and three dimensional input techniques. In Section 4, we discuss the Jack 
interface and object representation. In Section 5, we describe the techniques 
which Jack uses to manipulate articulated figures. Finally, we summarize the 
approaches which Jack has taken to the various aspects of the problem of figure 
positioning. 

2 Figure Positioning 

Much of the recent research effort in animation has been aimed at developing 
new techniques for describing and generating motion, with the hope that this 
will provide the user with better control over the figures in a scene. These 
new techniques show great promise, but there has been little effort towards 
improving the fundamental interaction between the user and the objects. Work 
which has been done in this area has dealt primarily with arranging rigid bodies 
in space and has not properly considered the problem of manipulating complex 



articulated structures. 
The task of manipulating articulated figures is very common, particularly 

in animation. For keyframe animation systems, the importance of static posi- 
tioning is obvious. However, tools for static positioning have usefulness outside 
of the domain of scene composition and keyframe animation. For example, sys- 
tems which generate motion sequences from dynamic simulation[l,l0,l9] must 
still provide a mechanism for describing initial configurations and providing 
force and velocity information. Any such system will greatly benefit from a 
well-designed user interface. 

Bier taxonomizes the problem of scene composition into interactivity, anchor 
richness, end condition richness, and smoothness[5]. Interactivity describes the 
interface with the user: keyboard, dials, mouse, etc. Anchors refer to  the axes 
and planes with respect to  which transformations may be specified. The end 
conditions involve the values of the transformations, i.e. angles and distances. 
Smoothness pertains t o  the technique of displaying the interaction. 

Figure positioning has traditionally been difficult because systems failed in 
each of these categories. The failings of most interfaces can be classified as 
follows: 

Improper visual feedback of the current state of the figures 

Improper visual feedback of the results of transformations 

Inability t o  properly anticipate the effect of input 

Inability to  easily describe transformations with respect to  arbitrary ref- 
erence frames 

The ability to  get immediate feedback on how the parameters of a figure 
affect its appearance has an enormous impact on the usability of a system. In 
animation, most figure positioning and geometric operations are performed on 
a trial and error basis, and the user is not always interested in precise measure- 
ments and exact positions. The ability to  easily move a figure around in real 
time gives the user a better idea of what position the figure should assume. 

The importance of direct manipulation for figure positioning is clearly ob- 
vious. The use of keyboard input discourages experimentation because of the 
time it takes to  enter the values and see the results, as well as the difficulty 
in interpreting the results and determining if they caused the desired effect. A 
system which requires the user to  enter numerical values for explicit joint angles 
or translational axes and distances can never hope to  become an intuitive and 
flexible user tool. Text-driven input techniques are useful in scripting and in au- 
tomated computations, but for an interactive system, the capability of moving 
figures directly is of crucial importance. 

The most critical requirement of any interactive system is that it provide the 
user with the capability of easily and efficiently accomplishing a set of desired 



goals. Shneiderman has said that "when an interactive system is well designed, it 
almost disappears, enabling the user to  concentrate on his work or pleasure[l7]". 
In the case of three dimensional design and animation systems, this translates to 
the ability to  virtually reach into the environment and move objects and figures 
around at will. 

Based on this desire, we observe the following characteristics of a useful 
object manipulation system: 

Changing the view should be so effortless it is almost transparent to the 
user. This principal comes from the fact that when a person is presented 
with an object to  observe, he will pick it up, turn it around and look at it 
from several directions. The user of an interactive design system should 
be able to  do likewise. 

The display should give intuitive real-time feedback on the movement. 
The screen should be visually informative, and the user should be able to 
drag objects to see the effect of different positions. Recent advances in 
graphics workstations have made this goal easier to achieve. This makes 
the process of trial and error much more effective. 

The user should be able to easily predict what motion of the input device 
will yield the desired object motion. Many systems have failed to pro- 
vide usable manipulation tools because world space transformations are 
encoded in the space of the input device, making the results of the input 
difficult to  anticipate. 

Many types of movement (global/local translation/rotation) should be 
available at the user's fingertips. The user should be able to  experiment 
freely and quickly with position and orientation, and the response time 
should not be hampered by having to  repeatedly pick axes or reference 
items from a menu or keyboard. 

Anchors and end conditions should be rich. The user should be able to 
specify exact distances and angles as well as approximate positions. 

Previous Work 

Recent work has attempted to relieve the burden of figure positioning by au- 
tomating the task completely. Many exciting and promising techniques have 
been developed, based on inverse kinematics[ll,9], dynamics[l9,1,9], and con- 
straint based optirnization[3,4,20]. While these are very valuable techniques for 
generating realistic motion and precise positions, it can be difficult to  manip- 
ulate a figure exclusively in this way. Such systems should be developed in 
conjunction with techniques for direct manipulation. 



In the case of constraint satisfaction this is particularly true, since the con- 
straints themselves are usually specified relative to positions and orientations 
of points on the objects or in world space. Without a simple mechanism for 
positioning the constraints, the user is faced with the same old problem. This 
problem can easily turn a potentially powerful animation system into a frustra- 
tion for the user. This underscores the importance of a simple and intuitive way 
of moving objects and points around in a three dimensional environment. 

3.0.1 3D Input Devices 

Since the task of positioning articulated figures is inherently three dimensional, 
some attempts have been made at using three dimensional input devices. In 
particular, [3] and [16] describe experiments using a 3SPACE ~ i ~ i t i z e r l ,  a mag- 
netic device which senses the position and orientation of a hand-held wand. The 
experiments described in [3] conclude that the multiple degrees of freedom of 
the input device were difficult to  control simultaneously, and that it became 
easier to control the device with some of the degrees of freedom disabled. This, 
along with the lack of proper visual feedback, has limited the usefulness of this 
system. 

3.0.2 3D Input from 2D Devices 

Several techniques have been developed for describing three dimensional trans- 
formations with a two dimensional input device, such as a mouse. Nielson de- 
scribes techniques for mapping the motion a two dimensional mouse cursor to 3 
dimensional translation and rotation, based on the orientation of the projection 
of a world space coordinate triad onto the screen [12].  Bier describes transfor- 
mations formed by reference coordinate frames called skitters and jacks[5]. The 
user first positions the skitters and jacks in space and then uses their position 
and orientation to specify certain transformations. The skitters and jacks may 
be positioned directly on faces or along edges, or freely in space. Their position 
and orientation are manipulated by a set of dials. 

4 The Jack Interface 

Jack exhibits may desirable features of a three dimensional manipulation sys- 
tem. It  can be viewed as a database manager which creates, displays, and 
manipulates articulated figures, and provides input in terms of geometric con- 
figurations to routines which perform such things as image rendering, dynamic 
simulation, and animation. Jack maintains multiple windows, and each win- 
dow is a view into a geometric environment. Windows may view completely 
- - 

 S SPACE is a trademark of Polhemus Navigational Sciences Division, McDonnell Douglas 
Electronics Company 



different geometric environments, or they may provide different views of the 
same environment. J a c k  has a single "movement" operator, which is used to  
move anything which may be described by a homogeneous transformation. This 
uniformity helps the user cope with the complexity of the various operations. 

4.1 Articulated Figures 

J a c k  is a primarily a user interface which controls the interaction with artic- 
ulated figures represented in a system called peabody .  P e a b o d y  represents 
figures composed of rigid segments connected by joints, also under the influence 
of constraints. Joints connect segments through "attachment points" called 
sites. A site is a local coordinate frame specified with respect to  the base coor- 
dinate frame of the segment to  which it belongs. Joints connect sites belonging 
t o  different segments within the same figure. Constraints are pseudo-joints be- 
tween arbitrary sites in the environment. The segment is the basic geometric 
primitive. The state variables of each segment represent its mass and moment 
of inertia, as well as its geometry, stored as a boundary representation. 

The user treats figures as arbitrary collections of segments connected by 
joints, without necessarily imposing a hierarchy upon them. P e a b o d y  main- 
tains information about the global position and orientation of each segment in 
the environment. This global information is computed internally from the site 
and joint transformations. The user is encouraged to think of the geometric 
objects as an arbitrary graph structure of segments connected by joints. The 
segments are the nodes of the environment graph, and the joints are the edges. 
Figures are maximal subgraphs spanned only by internal joints. 

When peabody  computes the position and orientation of each segment, it 
first computes a spanning tree of the environment. Then it traverses the tree to  
compute the state information. This tree need only be recomputed when a new 
joint or segment is created or deleted, i.e. when the topology of the environment 
graph is altered. 

Since this tree is computed internally, the user does not have to think of 
a figure as a strict hierarchy with a specific root. This is a simple but very 
important concept. Most figures with which we are concerned, particularly 
human bodies, are in fact hierarchical. However, it is advantageous to  think 
of them as general graph structures which may be connected t o  other parts of 
the environment in arbitrary ways. These connections become important when 
assigning constraints, adjusting joints and moving figures, which we describe 
below. In J ack ,  figures may be easily rerooted interactively and can be rooted 
to  any site on the figure. This makes it very easy to  do such things as rotating 
a figure around a hand or pivoting around a foot. The figures may also be 
connected t o  other figures in the environment, not just the world frame. This 
arbitrary connect scheme makes it easy to  specify transformations with respect 
t o  arbitrary frames. 



(a) A segment with multiple sites 

(b) A joint between two sites 

Figure 1: The Peabody Data Structure 



Figure 2: A peabody figure 

4.2 The User Interface 

Jack displays the screen in a visually informative way by drawing a ground 
plane grid, which gives a perception of the orientation of the world coordinate 
system. It draws the orthogonal projections of the figures in the scene on each of 
the coordinate axis planes. The projections are drawn in a darker color than the 
figures themselves, so they do not heavily distract from the scene. This gives 
an easily interpreted visualization of the arrangement of the figures. These 
projections are like shadows from infinitely distant light sources. Since all three 
projections are closely placed on the screen, the user can quickly reference the 
orientation and relative placement of neighboring objects in the scene. 

All aspects of the display are optional and may be disabled. The user may 
choose to display the vertices, edges, faces, or sites associated with each segment 
on an individual basis. The sites are displayed as labeled coordinate axes. The 
orthogonal projections of the individual segments may be disabled as well. This 
allows the display to be easily tailored to suit a particular application, since the 
all forms of display may not be appropriate for all tasks at hand. 

Jack is a menu driven system, but most of the commands in the menus 
have several options which can be invoked through keystrokes as the command 
is being executed. Jack controls almost all of the interaction through the mouse, 
which has three buttons, and sits on an optical pad beside the display monitor. 
In general, pressing and releasing the mouse buttons are different events, and 
many functions require the user to hold down a mouse button while moving the 



Figure 3: The Jack screen 

mouse around on its pad. 

Jack provides a simple mechanism for picking figures by pointing at  them 
with the mouse. The user may pick segments, joints, sites, or entire figures, 
as well as individual vertices, edges, and faces of the segments. The picking 
mechanism waits for a mouse button to be pressed, then generates a "pick list" 
of items which currently lie under the mouse cursor. The user may select an 
item from the pick list by cycling through the pick list by clicking a second 
mouse button while still holding down the original button. When the original 
button is released, the item is selected. 

All commands are available through the menus, but they can also be en- 
tered from the keyboard, either directly or in scripts. The scripts may be 
either parametrized or unparametrized. Unparametrized scripts operate on pre- 
selected figures. Parametrized scripts select the necessary figures as they are 
need by the operations. 

The execution philosophy of Jack is similar to the EMACS text editor[l8]. 
Command sequences may be bound to convenient keystrokes on a user-defined 
basis, and the user can develop sequences of commands interactively and bind 
them to keys. This provides the user with a powerful way of tailoring the 
working environment to suit a particular task. 



5 Manipulating Objects 

Many operations require positioning a figure or reference point. This movement 
is performed by moving the mouse, and the resulting position is displayed on 
the screen as the movement takes place. The movement operator has several 
components, which allow the user to either translate or rotate the transform with 
respect to various axes. These axes are determined from the state of the three 
mouse buttons and the shift and control keys, and may change as the command 
executes by releasing and pressing the various keys. These keys are used to 
specify whether the type of transformation, i.e. translation or rotation, and the 
reference axes and the reference frame. The individual mouse buttons select 
the appropriate axes. The control key specifies whether the transformation is 
rotation or translation. The shift key allows the user to change the reference 
frame. When the desired position is achieved, the movement is terminated by 
hitting the escape key. 

The movement operator operates on two transformations: the reference 
transform, which is a global, and a relative transform, which is specified with 
respect to the reference. The reference transformation remains fixed; the rela- 
tive transformation is continuously updated as the movement takes place. Some 
type of "action" is usually performed as this is done, such as updating the global 
position and orientation of figures and joints in the scene. This basic operator 
is used in may situations throughout Jack to move various things, such as fig- 
ures and joints, as well as individual vertices, edges, and faces of geometric 
primitives. 

5.1 The Mouse Line 

Jack describes all motion with respect to the ray in the world coordinates which 
is cast through the location on the screen where the mouse cursor lies. This 
line in space is referred to as the mouse line, and it can be easily computed by 
an inversion of the viewing transformation. Jack restricts movement to lie in 
certain user-selected planes described below, and it determines world coordinate 
points by intersecting the mouse line with these planes. 

5.2 Translation 

Under normal operation, translations along the x, y, and z axes of an object's 
local coordinate frame are encoded in the left, middle, and right mouse buttons, 
so that pressing down any mouse button enables translation along that axis. 
During the movement operation, when the user presses a button, translation is 
enabled along that axis. When the user presses two mouse buttons, translation 
is enabled along those two axes, i.e. in the plane spanned by those axes. Since 
the mouse is a two-dimensional device, it is not possible to translate along three 
axes simultaneously, so pressing three buttons at  once has no effect. 



When the buttons go down, a vector is drawn in world coordinates describing 
the translational axes. As the user moves the mouse pad around, the object 
moves in world coordinates so that its location lies under the mouse cursor. As 
the figure moves, its global and local coordinates are displayed on the screen so 
that the exact position is available as well. 

Figure 4: Translation 

Translation along a single axis may be achieved by pressing only one button. 
The mouse may move anywhere on the screen, but the translation is restricted 
to a particular axis is space, which maps to a line on the screen. Therefore it 
is not possible to move the location of the figure along the axis such that it 
appears under the mouse cursor. In this case, Jack determines the position of 
the figure from the point along the translational axis which is nearest to the 
mouse line. Jack repeatedly repositions the mouse cursor so it lies along the 
line of translation. 

5.3 Rotation 

Rotation is accomplished in a similarly intuitive way, by requiring the user to 
move the mouse around in circles on its pad. The three mouse buttons are 
encoded as rotation around the x, y, and z axes. When the user presses down 
on a button, a "wheel" is displayed at  the origin of the figure describing the 
rotational axis. This wheel lies in the plane in which the rotation is to take 
place, with the origin of the wheel at the rotational axis. Then a vector is 



drawn from the current mouse line intersection with this plane, and as the user 
moves the mouse around in this plane, the figure stays fixed with respect to this 
reference vector. Therefore, if the user moves the cursor around in circles on 
the screen centered at  the origin of the object, the object rotates around the 
three dimensional axis. 

Figure 5: Rotation 

5.4 Joints 

These moving operations are helpful for positioning figures in world space, but 
usually an articulated figure is composed of a number of joints, having specific 
degrees of freedom. Peabody provides a mechanism for associating arbitrary 
rotational and translational degrees of freedom with a joint. In this case, the 
transformation at the joint is restricted to these axes. A simple and common 
example is the euler angles, which are defined as a rotation about the z axis, 
followed by a rotation around the y axis, followed by rotation about z. 

In the case of transforming a joint which has specific degrees of freedom, 
the same type of movement is employed, but it is simply encoded in the mouse 
buttons in a different way. A properly defined joint will never have more than 
six degrees of freedom. The first three axes are encoded in the left, middle, and 
right buttons, respectively. The second three are activated by holding down 
the shift key. It is highly unusual to have a single joint with more than three 
degrees of freedom. Such a joint could more effectively be represented by a 
simple homogeneous transformation. 



This mechanism has left unspecified how the joint displacement affects the 
position of the figure. When a joint is adjusted, one segment remains fixed with 
respect to the world frame and the other moves. In a strict hierarchy, this is a 
simple matter since there is a well defined "proximal" and "distal" segment. But 
peabody represents figures as a general graph, so it is ambiguous which segment 
remains fixed and which moves. In this case, peabody takes the proximal and 
distal segments from the underlying spanning tree of the environment, so that 
the segment which remains fixed is the one which is on the side of the figure 
which is rooted to the world. Since it is very easy to re-root a figure, it is a 
simple matter to arrange a transformation keeping any arbitrary segment fixed 
in space. 

5.5 Reference Frame 

The transformations described above are local to the coordinate frame being 
transformed, so that if an object is rotated and then translated, the translation 
will be with respect to the rotated axes. The transformations may be specified 
with respect to the parent transformation by holding down the shift key. In the 
case of a joint, the parent is the segment on the "other" side of the joint. In the 
case of a figure, the transformation it taken with respect to the site to which the 
figure is connected. If this site is attached to the world coordinate frame, the 
transformation is relative to the world. If a figure is rooted to another figure, 
the motion is relative to that figure. 

Since the control and shift keys are close together on the keyboard, they are 
easy to press in conjunction. Thus, the user may specify global or local rotation 
or translation by holding down some combination of the control and shift key 
and the three mouse buttons. The motion continues in the fashion until the 
user presses the control key, ending the transformation. The transformation 
may also be aborted by typing ^C. 

1 key I effect  I 
1 left mouse I x translation/rotation I 

middle mouse I y translation/rotation 
right mouse 1 z translation/rotation 

H CNTL I rotation 
SHIFT I transform w.r.t. parent 

Figure 6: Key bindings during movement 
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5.6 Observations 

A seeming drawback of this technique is that the user must remember the cur- 
rent orientation of the t, y, and z axes. However, the translational and rotational 
icons, along with the coordinate axis projections, give the user a simple means 
of determining this information quickly. Typically, the user has a particular di- 
rection in world coordinates in mind when he initiates a transformation. Since 
the icons are displayed as the keys are pressed and before the motion begins, 
the user can easily cycle through the available axes to  select the appropriate 
set. 

For instance, the user may want to  "turn the figure around," which may 
technically involve rotating 180' about the y axis. The user can initiate a 
"move figure" operation, press the control key to  specify rotation, and press the 
left, middle, and right mouse buttons in turn and begin moving the mouse when 
the appropriate axis is displayed. This technique frees the user from having t o  
remember that the y axis is the appropriate axis. This avoids overloading the 
screen with information by making it available a t  the user's fingertips as he 
needs it. 

Another seeming drawback of this technique is the inability to  translate or 
rotate an object along an axis parallel to  the line of sight, since in this configu- 
ration, small differences in the screen coordinates of the mouse may correspond 
to  large distances in world coordinates. However, this is a transformation which 
the user should be discouraged from performing anyway. The first prerequisite 
for manipulating a figure, by computer or by hand, should be t o  position the 
figure in a convenient view. 

5.7 End Conditions 

These techniques provide a flexible way of manipulating transformations inter- 
actively, but it can be difficult t o  specify precise angles and distances in this 
way. This can be achieved in several ways. The most straightforward is to sim- 
ply enter the coordinates from the keyboard, which can be done by typing ^K 
during the motion, after which the user will be prompted for the desired angles 
or distances. This need only be done when a specific known distance or angle 
is needed. 

While a motion is taking place, the user may "snap" the transformation 
t o  a particular face, edge, or node with a single keystroke. The snapping is 
controlled by three keys: 'F for snapping to a face, ^E for snapping to an edge, 
^N for snapping t o  a node. When one of these keys is pressed while moving a 
transform, the user is prompted to pick the appropriate item, and the transform 
is moved to tangency with the selected item. This tangency is accomplished by 
translating the transform to the desired node, edge, or face along the shortest 
possible distance, without rotation. 

It is also possible to snap a transform to the direction of an edge or face. To 



do this, the user first orients the transform so that it is approximately aligned 
with the desired edge or face and then types 'X-E to snap to an edge, or -X-F 
to snap to a face. The snapping mechanism then takes the local coordinate 
axis of the transform which is closest to the desired orientation and adjusts the 
transform so that that axis is aligned the transformation with the edge or face. 

6 Moving the View 

Jack has a simple set of routines for manipulating the view, based on the 
operations of sweeping, panning, and zooming. The sweep operation sweeps the 
camera around horizontally and vertically on a virtual circular track, keeping 
it focused at the same reference point. The pan operation does the opposite, 
changing the orientation of the camera but keeping it at a fixed position. The 
zoom operation translates the camera along its line of sight. zoom can be 
performed simultaneously with either the horizontal or vertical sweep. 

All three of these operations can be performed during the same viewing 
action, similar to the movement operator. By default, the left and middle 
mouse buttons controls the horizontal and vertical swing of the camera during 
a sweep operation. The right button controls zoom. Any two may be used 
in combination. A vertical motion of the mouse with the middle button down 
causes the camera to move up and down; a horizontal motion of the mouse with 
the left button down causes the camera to move side to side. When the shift 
key is pressed, the viewing operation changes to a pan, in which the camera 
says in the same location and rotates around on its axis. The left and middle 
mouse buttons control the horizontal and vertical motion just as with the sweep 
operation. 

The view associated with each window provides a powerful visual tool. In- 
ternally, the view is represented by a site coordinate frame: the global position 
and orientation of the site determine the viewing transformation of the window. 
By default, a standard camera figure is created for each window with the view 
attached to it ,  but the view may be attached to any site in the environment. 
This provides a convenient means of positioning certain types of figures, such 
as light sources. The user may attach the view to a light, and then adjust the 
view, seeing in the window the objects on which the light shines. 

This also provides a simple mechanism of performing view assessment. Our 
human figure representation has sites in each eye. The user may create two 
windows side by side, and attach the views in the window to the sites in the 
eyes. Then the user sees in the windows exactly what the figure would see 
given his current position in the environment. This is particularly useful during 
animation and simulation, when a motion sequence may be developed from a 
third point of view and then viewed from the perspective of the human figure. 



7 Conclusion 

Jack provides a flexible and easy-tuuse interface for displaying and manipu- 
lating complex articulated figures. The windows, orthographic projections, and 
movement icons provide good visual feedback on the current state of the envi- 
ronment and the effect of the input. Since all three dimensional position and 
orientation information is provided by the same operator, there is a consisted 
interface for all aspects of the system. Since the movement operator generates 
homogeneous transformations based on the screen location of the mouse cursor, 
it is easy to anticipate the effect which movements of the input device will have 
on the objects. Since peabody is a very general mechanism for representing 
articulated structures, it is very easy to  define attachment and reference points 
to specify transformations with respect to arbitrary frames. 
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