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Abstract 

In order to evaluate the performance of our elastic matching system, we have created a 
digitized atlas from a young normal male brain, using 135 myelin-stained sections at 
700 micron spacing. Software was written to enter and edit regional anatomic contours, which 
were stacked and aligned to create a 3D atlas. We then evaluated the matching system by com- 
paring computer generated contours with expert-defined contours for several subcortical struc- 
tures, based on CT scans from six neurologically normal patients. The error in positioning, as 
defined by the distance between the centers of gravity, averaged 4.2 mm for the computer and 
1.7 mm for the worst expert's reading, with the computer-drawn region frequently inscribed 

within that of the expert. Comparison was also made for each structure by determining the 
volume of overlap and the volumes not overlapping. On average, the computer's agreement 
with the experts was about 20 % less than the agreement among the experts. This was a prel- 
iminary test of the system using only subcortical structures. The results are promising, and 
techniques are being implemented to overcome the current deficiencies. 
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1 Introduction and motivation 

While human observers are able to successfdly interpret qualitative information in radio- 
graphic data, objective measurements of regional size, density or volume pose particular prob- 
lems. For certain types of images, like positron emission tomography (PET) scans, which 
represent function, e.g., the distribution of flow or metabolism, it is useful to have independent 
anatomic information. To interpret such scans, many groups have chosen to collect anatomic 
images (computer tomography - CT, or magnetic resonance scans - MRI) which are in some 
way aligned with the PET scans. Regions of interest (ROI's) are first defined on the anatomic 
images and then superimposed on the PET scans to extract functional data within those ana- 
tomic regions [I ,  2.31. Other groups define ROI's directly on the PET images, using a reference 
atlas or template of ROI's based on average anatomy [4 ,5] .  The goal of our work is to assist in 
both approaches, that is to develop improved methods to perform quantitative analysis of 
images that are considered to reflect anatomy (CT and MRI), and to define standardized ana- 
tomic ROI's that may be used to extract data from images that represent brain function, like 
PET or single photon emission computed tomography (SPECT). 

In order to evaluate the performance of our matching system [6,7], we have created a digi- 
tized atlas from a young normal male brain. This 3D anatomy atlas can be matched to the ana- 
tomic scans, and then superimposed on an aligned set of PET scans. This paper reports our pro- 
gress towards the matching of the atlas with CT scans, while the accuracy of matching the atlas 
with PET scans remains as a future project. 

The rest of this paper is organized as follows: section 2 provides a brief overview of the 
matching process; section 3 describes the construction of the anatomy brain atlas; section 4 
details the materials used, the experiments involved, reports the computer performance illus- 
trated with the inter- and intra-observer variability, and shows the limitation of the current sys- 
tem; the final section consists of conclusions. 

2 Matching system 

The input to our matching system are CT scans and PET scans of the same subject. The 
matching is based on the anatomy brain atlas (or a set of atlases), which represents a three- 
dimensional anatomic model of a healthy human brain. The overall matching process consists 
of: 

- preprocessing of CT and PET images, 

- localization of brain in CT and in PET images, 

- global alignment or registration of CT brain, PET brain and anatomy brain atlas images, 



- individualization of anatomy brain atlas by elastically mapping it onto CT brain images, 

- analysis of anatomy in CT images and analysis of metabolism in PET images using indivi- 
dualized brain atlas. 

All code is written in the C programming language, running under UNIX operating system on a 
Hewlett-Packard workstation. The developed matching process is three-dimensional without 
giving preference to the slicing plane, since plane of section can vary from patient to patient. 
First, preprocessing and brain localization take place. This gives us 3D images of the patient's 
CT and PET brain with cubically shaped voxels of size ( 1.0 mm x 1.0 mm x 1.0 mm ), which 
are used in global alignment. Next, the 3D PET brain image is aligned with the 3D CT brain 
image by translation and rotation, and the 3D atlas image is aligned with the CT brain image by 
translation, rotation and scaling. To derive transformation parameters, we approximate each 
brain by an ellipsoid-like scatter of particles uniformly distributed in space and find the centroid 
and the covariance matrix for each of the brain images. The translational difference between 
two brains is eliminated by aligning the centers of mass. For rotation and scaling correction we 
use the method of principal axes. Although this method is not as accurate as the method 
reported by Pelizzari [8], we accepted its result as the initial approximation of the elastic match- 
ing. After global alignment, the idealized atlas is transformed into an individualized atlas by 
elastically deforming it to match CT brain. Deformation proceeds step-by-step using coarse- 
to-fine strategy. The outer edge of the atlas brain is matched to the outer edge of the CT brain 
and the atlas ventricles are matched to the CT brain ventricles [7]. Other anatomic structures 
are deformed as a side-effect of ventricles and outer edge matching. Finally, the deformed atlas 
is used to facilitate the analysis of the patient's CT images and/or PET images. The atlas can be 
visualized as two-dimensional sections through the tissue. Each structure may be either 
displayed as a solid or as a contour, optionally superimposed on the corresponding CT and PET 
sections. 

3 Brain atlas 

The process of constructing an idealized brain atlas requires, among other things, images 
of a normal brain at sufficiently fine spacing to eliminate, or at least minimize, artifacts intro- 
duced by interpolation. It is also desirable that the brain sections be obtained at a standard plane 
of section, to facilitate the definition of structures by reference to existing atlases. The danger 
of using a single brain, even if it is normal, is that it might, by chance, represent an extreme of 
the normal distribution. The atlas that we have created from this brain must, therefore, be con- 
sidered as only the initial step towards a final atlas (or atlases) that will evolve with time. It is 
commonly felt [9] that the best atlas is one based on average normal MRI scans. Our software 
has the potential to provide such an atlas by elastically matching the initial atlas to a large 
number of MRI scans and then creating an atlas based on the average sizes and positions of ana- 
tomic structures. 



There were no existing atlases that met a l l  of our criteria, so we chose to create one from 
the brain of a normal 31-year old male in the Yakovlev Collection of the Armed Forces Institute 
of Pathology. This brain was embedded in celloidin and cut parallel to the plane bisecting the 
anterior and posterior commissures. Sections were 35 p thick, and every 20th section was 
stained for myelin. (Contiguous sections were stained with cresyl violet, so the potential exists 
to go back to them in order to define cytoarchitectural regions). This resulted in tissue sections 
that were 700 p apart, which corresponded to 0.89 mm in vivo after correcting for the shrink- 
age due to the embedding and staining processes. Each section was photographed from a fixed 
location, with a ruler included for later scaling. The negatives were enlarged onto dimensionally 
stable acetate sheets, and these were then digitized using a video camera connected to a Vax 
computer. Figure 1 shows one of 135 digitized images. 

Figure 1. Digitized picture of one section of the anatomy brain atlas. 

The images of the rulers were carefully measured, and any slight differences in any of the pho- 
tographic steps were corrected by appropriate software scaling. The digitized images, which 
contained fiducial markers (burr holes drilled through the brain while in situ) were aligned with 
interactive software and stacked to create a cube of data. This cube was then resliced using 



1.0 mm voxels, which allows reformatting in other image planes without loss of resolution. 

The atlas was created by manually tracing various structures on the original digitized 
images, using a mouse to draw the contours. One experienced neuroanatomist drew outlines of 
several structures and his outlines were checked independently by another, also experienced 
neoroanatomist. Software to do this was written in the C programming language on a Hewlett- 
Packard workstation, running under UNIX and X-Windows. Because of the myelin staining, 
the boundaries of subcortical structures and graylwhite interfaces are clearly defined. Cortical 
regions may be assigned using standard reference sources [lo, 111, and the outer edge of the 
brain and the ventricles are readily apparent. 

Two distinct atlases are created by coloring the structures differently. In the atlas that is 
used for elastic matching, each structure should be assigned a color (grey scale values) that 
corresponds to the color that structure would be on a CT scan. While there is noise in the CT 
scans, the atlas brain ventricles and the rest of the atlas brain are colored uniformly using an 
average grey value of the corresponding regions in the CT brain (figure 2-left). In the other 
atlas (Figure 2-right), which is used for display and analysis, the structures can be assigned arbi- 
trary colors to best display the results. 

Figure 2. The brain atlas. Only one horizontal section is shown. The left picture 
shows one section of the atlas which is used for matching, the right picture shows 
the corresponding section of the atlas which is used for display and analysis. 



4 Evaluation of the matching 

4.1 Materials used 

We used CT scans obtained from GE9800 scanner, located at the Hospital of the Univer- 
sity of Pennsylvania. Each patient was represented by 26 to 28 slices. Slices were 5 mm apart 
with pixel size of ( 0.41 mm x 0.41 mm ). To provide a preliminary test of how well the match- 
ing system performs, we planned to analyze the CT scans of six young normal males 
corresponding closely to the subject whose brain was used to create the atlas. Unfortunately it 
was impossible to obtain finely spaced CT scans on young controls, so the subjects that are 
included in this report include three male and three female patients, whose neurological status 
was either normal or whose pathology did not involve major distortions of normal anatomy. We 
evaluated the matching system by comparing computer-generated contours with expert-defined 
contours. Since subcortical structures are relatively well-defined, we felt that there would be 
more variability in the way experts would draw cortical ROI's. If the matching software did not 
work well with subcortical regions, it would almost certainly do even worse on cortical regions, 
so we chose to perform this initial test using only subcortical structures. The computer and 
several experts defined the contours of a variety of these subcortical structures. 

4.2 Region of interest analysis 

One neuroradiologist, who was particularly interested in and knowledgeable about ana- 
tomy, drew contours on all structures at all levels for all subjects. Another neuroradiologist also 
outlined structures for two of the patients, while a neurologist experienced in interpreting CT 
and PET scans outlined all structures in all subjects. Finally, a neuroanatomist, also experienced 
in interpreting tomographic images, did the complete analysis three times, separated by at least 
two weeks, in order to establish a measure of intra-observer variability. All readings were done 
independently and without discussion, using the same image contrast and brightness settings. 
There was no way to know objectively where the true edges of the structures were located and 
we assumed, that the experts' readings were scattered around the truth. The readers agreed in 
advance upon which structures were present on each CT slice. The analyses were based only on 
these sections, although in some cases the computer produced regional contours for these struc- 
tures on other section images as well. The computer matching was performed on the same six 
subjects and the regional contours defined in this process were compared with the experts' read- 
ings. 



4.3 Elastic matching results 

We included in this preliminary test the following subcortical regions: body of the caudate 
nucleus, head of the caudate nucleus, lenticular nucleus (putarnen and globus pallidus), 
thalamus, brainstem (not divided) and cerebellum. In the subsequent descriptions the experts' 
readings are denoted by WA, JC, DG, and RD. C is the computer-defined reading and patients 
are denoted by PI,  P2, P3, P4, P5 and P6. The regional indices are: 11 1-left body of caudate 
nucleus, 112-right body of caudate nucleus, 131-left head of caudate nucleus, 132-right head of 
caudate nucleus, 135-left lenticular nucleus, 136-right lenticular nucleus, 117-left thalamus, 
118-right thalamus, 201-brainstem, 301-cerebellum. 

For each individual ROI, the volume and the center of gravity were calculated for the 
experts and for the computer. Tables 1 and 2 demonstrate the computer performance by com- 
paring the regional volume. The values in Table 1 show that the volume defined by the com- 
puter tends to be smaller than the volume defined by the experts. In table 2 we see that of 60 
structures analyzed, there were 28 structures with the computer defined volume in the range of 
experts' variability. 

Table I. Comparison by volume for one patient. 

Comparing the computer-generated volume with the experts-defined volume for one of the 
patients. "IN" indicates that the volume generated by the computer "C" was within the range of 
variability among the experts. "Low" is the smallest and "High is the largest volume among the 
six experts' readings with the mean volume "Mean". All values are in mm3 . 

Structure 

111 
112 

131 
132 

135 
136 

117 
118 

20 1 
301 

Patient P6 

Low 

409 
516 

2418 
2334 

458 1 
4177 

5567 
6101 

14680 
104841 

High 

1634 
1323 

3486 
3737 

5315 
5777 

705 6 
7377 

18162 
108592 

Mean 

1071 
1012 

2928 
2920 

4906 
4760 

6416 
6490 

16308 
107151 

C 

537 
675 

1878 
2301 

5305 
5480 

6358 
6133 

23873 
127647 

IN / OUT 

IN 
IN 

OUT 
OUT 

IN 
IN 

IN 
IN 

OUT 
OUT 



Table 2. Comparison by volume for all patients. 

Comparing the computer-generated volume with the experts-defined volume for all six patients. 
"IN" indicates that the volume generated by the computer was within the range of the experts. 

Tables 3 and 4 show how the coordinates of computer-defined center of gravity for each 
individual R01 compare with those defined by the experts. Table 3 shows the positioning errors 
for one patient, where d,( i) ,  dy ( i ) ,  and d, ( i ) ,  are the positioning errors of reading i with respect 
to the n other readings, in direction x , y and z , respectively: 

Structure 

1 1  1 
112 

131 
132 

135 
136 

117 
118 

20 1 
30 1 

Table 4 summarizes the positioning errors for all six patients, where D(i) is the positioning error 
of reading i  with respect to the n other readings, 

P4 

OUT 
IN 

OUT 
OUT 

IN 
IN 

OUT 
OUT 

OUT 
OUT 

The mean error in positioning by the computer for all structures, as defined by the average 
distance in mm between the computer-placed center of gravity and the experts' defined centers 
of gravity was 4.2 mm and for the worst expert's reading 1.7 mm . 

P 1 

OUT 
OUT 

IN 
IN 

OUT 
IN 

OUT 
IN 

OUT 
IN 

P5 

IN 
IN 

IN 
IN 

IN 
OUT 

IN 
OUT 

OUT 
OUT 

P6 

IN 
IN 

OUT 
OUT 

IN 
IN 

IN 
IN 

OUT 
OUT 

P2 

OUT 
IN 

IN 
IN 

OUT 
IN 

IN 
IN 

OUT 
OUT 

P3 

OUT 
OUT 

IN 
OUT 

OUT 
OUT 

IN 
OUT 

OUT 
OUT 



Table 3. Positioning errors for one patient. 

Computer-generated positions were compared with the experts-defined positions and the differ- 
ences d,(C), d,(C), d, (C), are shown above in columns 5-7. In addition, each expert was com- 
pared with the other experts and the differences of the worst expert dx(E), d,(E), dz(E), are 

shown in columns 2-4. All numbers are in units of mm. 

Patient P1 

Table 4. Positioning errors for all six patients. 

dx(C dy (C dz (C 

1.3 3 .O 0.0 
2.6 5.7 0.0 

0.9 1.5 2.2 
0.9 2.8 1.9 

0.9 0.6 2.3 
0.7 3.0 1.1 

1.5 4.1 1.4 
0.5 2.9 0.3 

4.7 2.5 0.2 
4.6 1.8 1.1 

Structure 

11 1 
112 

131 
132 

135 
136 

117 
118 

201 
301 

Comparing the computer-defined positions with the experts for all six patients. For each indivi- 
dual ROI, the center of gravity was calculated for the experts and for the computer. The com- 
puter generated positions are compared with the experts' positions, and the distances D(C) are 
tabulated above, together with the worst expert distances D(E) to the remaining experts. The 
numbers reported are in units of mm. 

dx (E dy (E ) d2 (E 

0.7 1.7 0.0 
0.9 0.5 0.0 

0.2 0.3 0.5 
0.0 0.5 0.5 

0.4 1 .O 0.2 
2.3 2.6 1.1 

0.9 1.2 0.4 
0.7 0.5 0.6 

0.8 0.4 0.3 
0.1 1.3 1.4 

Strut- 
ture 

111 
112 

131 
132 

135 
136 

117 
118 

20 1 
30 1 

P 1 

D@), D(C) 

1.9, 3.3 
1.1, 6.3 

0.6,2.8 
0.7, 3.5 

1.1,2.6 
3.6, 3.3 

1.6, 1.6 
1.1, 3.0 

0.9,5.4 
2.0.5.1 

P2 
D@), D(C) 

1.8, 3.0 
1.8,2.6 

1.2,2.0 
1.3,2.0 

1.4,2.7 
2.3,2.7 

1.9,4.5 
3.0,4.5 

1.0, 1.7 
0.6,2.7 

P3 
D(E), D(C) 

2.6, 10.3 
1.3, 11.6 

0.8, 2.2 
1.2, 3.3 

1.5, 2.4 
1.6, 5.5 

1.5, 1.3 
1.1, 2.7 

1.4, 4.4 
2.0, 7.9 

P5 

D(Eh D(C) 

2.8, 6.8 
2.4,6.3 

0.7, 1.7 
1.0,3.0 

1.3, 1.8 
1.4, 3.9 

2.6, 3.0 
1.3,5.5 

l.0,2.4 
1.1, 5.6 

P4 

D@), D(C) 

3.0, 16.6 
3.8, 13.0 

1.1, 2.8 
1.0, 2.7 

2.3, 3.1 
2.8, 4.2 

1.9, 1.9 
1.3, 2.1 

1.6, 4.4 
0.5, 6.7 

P6 

D(E), D(C) 

6.7,7.0 
5.1,7.3 

1.5 2.7 
1.3, 1.9 

2.0,3.7 
1.7,2.7 

0.8 3.5 
0.8, 3.5 

1.1,2.4 
0.5,5.2 



Comparison was also made for each structure by determining the volume of overlap and 
the volumes not overlapping. We defined the relative overlap R (i, j )  of two readings i and j 
as the volume of the intersection divided by the total volume defined by either of the two read- 
ings (their union): 

volume of intersection 
( i  ' j )  = volume of intersection + volume out of intersection . 

For example, if a region defined by reader 1 contained 900 voxels, and the region defined by 
reader 2 contained 1100 voxels, 800 of which overlapped with reader 1, then the denominator 
that we used was 1200 voxels ( 800 intersection + 100 reader 1 only + 300 reader 2 only). The 
relative overlap in this example was, therefore, R ( 1,2) = 8001 1200 = 0.667. This is very 
conservative measure and gives lower values than if we had chosen to define overlap relative to 
only the first reader, which in this case would have been 800 / 900, or 0.889 . There was no a 
priori reason to assume that reader 1 was necessarily more correct than reader 2, so the 300 vox- 
els defined by reader 2 but not by reader 1 should also be accounted for, which is the approach 
we have taken. Intuitively, one might expect that the two volumes of equal size of 1000 voxels 
with one half of overlapping voxels (500) should overlap one half. Yet, by our definition we get 
only 0.33. 

Using this measure, the computer was pairwise compared with all of the experts. More- 
over, each of the experts was pairwise compared with all of the other experts. Tables 5 and 6 
show these comparisons for one patient. The last column contains the overall relative overlaps, 
using the definition of relative overlap of reading i with respect to the n readings j : 

Tables 7 and 10 are the composite of the overall relative overlaps, ones averaged over the 
patients and ones averaged over the readers. Table 7 shows that the average relative overlaps 
varied from 0.29 to 0.70. We can also see that, on average, the computer's agreement with the 
experts was about 20 % less than the agreement among the experts, with the worst computer 
results for the body of caudate. 



Table 5. The computer agreement with the experts. 

For each individual structure and for each expert, the value reported is the relative overlap 
between the computer and one of the experts. R(C) in the last column is the overall relative 
overlap of the computer with the experts. 

Patient P6 

Table 6. The agreement between the expert WA and the other experts. 

Structure 

11 1 
112 

131 
132 

135 
136 

117 
118 

20 1 
30 1 

For each individual structure, the number reported is the relative overlap between the expert 
WA and each of the other experts. R(WA) in the last column is the overall relative overlap of 
the expert WA with the other experts. 

R(C,WA) 

0.47 
0.37 

0.43 
0.52 

0.62 
0.59 

0.72 
0.66 

0.63 
0.68 

Patient P6 

R(C,JC) 

0.47 
0.55 

0.49 
0.62 

0.69 
0.59 

0.69 
0.66 

0.65 
0.68 

Structure 

111 
112 

131 
132 

135 
136 

117 
118 

20 1 
30 1 

R(WAPD2) 

0.46 
0.66 

0.77 
0.79 

0.73 
0.66 

0.83 
0.77 

0.75 
0.91 

R(C,RD 1) 

0.36 
0.33 

0.40 
0.57 

0.56 
0.61 

0.68 
0.65 

0.63 
0.68 

R(WA,JC) 

0.4 1 
0.39 

0.67 
0.64 

0.72 
0.65 

0.83 
0.76 

0.79 
0.89 

R(WA,RDl) 

0.66 
0.53 

0.67 
0.62 

0.66 
0.67 

0.74 
0.77 

0.80 
0.91 

R(WA.RD3) 

0.43 
0.67 

0.73 
0.76 

0.77 
0.74 

0.8 1 
0.85 

0.77 
0.92 

R(CRD2) 

0.23 
0.31 

0.38 
0.53 

0.56 
0.67 

0.73 
0.65 

0.56 
0.68 

R(WA) 

0.49 
0.56 

0.7 1 
0.7 1 

0.72 
0.68 

0.80 
0.79 

0.78 
0.9 1 

R(C,RD3) 

0.22 
0.33 

0.41 
0.53 

0.71 
0.75 

0.72 
0.68 

0.57 
0.68 

R(C) 

0.35 
0.38 

0.42 
0.55 

0.63 
0.64 

0.7 1 
0.66 

0.61 
0.68 



Table 7. Composite by reader. For each individual structure, for each reader and for the com- 
puter, the value reported is the overall relative overlap, averaged over the six patients. 

Figure 3 demonstrates how the experts and the computer typically drew contours on the same 
CT slice, and Figure 4 shows the computer-generated outlines in comparison with the unions 
defined by the experts. 

Structure 

111 
112 

131 
132 

135 
136 

117 
118 

20 1 
30 1 

C 

.30 

.35 

.52 

.50 

.64 

.64 

.67 

.62 

.59 

.70 

Readers 

WA 

.61 

.68 

.74 

.73 

.75 

.72 

.75 

.74 

.80 

.90 

JC 

.58 

.57 

.7 1 

.7 1 

.72 
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Figure 3. Comparing typical expert and typical computer. One of the experts gen- 
erated outlines (shown in darker) and the computer generated outlines superim- 
posed on the corresponding CT slice. 

Figure 4. Comparing typical computer with the experts. The computer-generated 
outlines are superimposed on the corresponding CT slice, along with the union of 
ROI's defined by the experts. 



4.4 Intra-observer reproducibility 

As mentioned, one reader drew contours three separate times. Figure 5 shows just an 
example of the three readings superimposed on the corresponding CT slice. Table 8 shows the 
pairwise comparison of the three readings by RD for one patient. The final results are summar- 
ized in Table 9. It is of interest that the best results for any region averaged less than 93 % 

total agreement, even for a structure as large and well-defined as 'the cerebellum, and only about 
82 % for the thalamus. There was considerable variability in the placement of ROI's over the 

body of the caudate nucleus, with some cases where there was less than 50 % agreement 
between individual readings. This is a somewhat surprising finding, and reflects primarily the 
difficulty in seeing an edge on the C T  where there is both considerable noise and similar gray 
values both inside and outside the structure. Another factor in the intra-observer variability is 
the ability to maintain a constant set of mental criteria, since the image parameters and the 
knowledge of anatomy remain constant. The greatest agreement apparently occurred with the 
largest, best-defined structures, and the worst agreement with .the smallest, ill-defined struc- 
tures. Since edge definition appears to be the major problem, it is not surprising that the smal- 
lest regions produce the largest errors, since misplacement of the edge by even one pixel would 
have a greater relative effect on small regions. It is impossible from our data to determine how 
much of the error is due to size, how much to poor constrast, and how much to inconsistent cri- 
teria. The data in Table 8 from the three readings of RD suggest that no learning took place 
from the first to last reading, which validates the implicit assumption that they were indepen- 
dent measurements. 



Table 8. Intra-observer reproducibility for one patient. 
- - -  - - - -  

Pairwise comparison of the three readings by the reader RD for the patient PI. R(RD) in the last 
column is the average relative overlap of the three readings. 

Patient P1 

Table 9. Intra-observer reproducibility for all six patients. 

Structure 
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Summary for all six patients. Individual values are the averages of the three readings for each 
patient. The last column shows the average intra-observer reproducibility for each particular 
structure, averaged over the six patients. 
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Figure 5. Typical example showing intra-observer variability. The three readings 
of the same expert were superimposed on the corresponding (X slice. 

4.5 Experts' comparisons 

Table 10 shows the relative overlap for each structure, using the means of all expert com- 
parisons. It also shows that there is no difference in the experts' performance among the six 
patients analyzed, which supports the assumption we made that each patient was sufficiently 
normal not to affect the way the experts evaluated the scans. There is less difference among the 
experts for the head of the caudate, lenticular nucleus, and thalamus, while there is more 
disagreement among the experts over the placement of the body of the caudate. This finding is 
due, no doubt, to the same factors discussed in the previous section. A variable not present in 
the intra-observer evaluation, but present here, is the different anatomic knowledge possessed 
by each reader. From the anatomy, one would expect more variability in the way different peo- 
ple would perceive the thalamus, yet this was not the case according to the data in Table 7. It 
would seem, therefore, that each reader had essentially the same knowledge base, or at least that 
any differences had little effect on the analysis we did. 

The task of drawing ROI's with the mouse combined both perceptual and motor skills 
with visual feedback. Our expert-expert results should not be surprising, since it has been shown 
in similar tasks that adults make average errors of I s 2 0  % in copying clearly defined objects 
like squares and diamonds [12]. When the uncertainty of edge detection is added, as we did, 
even less agreement is to be expected. Figure 6 demonstrates the variability among the experts. 



Table 10. Composite by patient. Individual values in columns 2-7 are the means of all readers. 
The last column is the average over the patients. 

Figure 6. Typical example showing inter-observer variability. The three different 
experts' readings superimposed on the corresponding CT slice. 
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4.6 Limitations of current system 

The major limitations to the system as it is currently implemented come from two major 
sources - bone and ventricles. The atlas, in its present form, was derived from brain sections 
that did not contain all of the structures that would be present in vivo, like the falx and bony 
structures. This means that the atlas is not colored appropriately and the two brain representa- 
tions do not correspond. The best solution to this may be to use MRI scans to refine the current 
atlas. 

Another problem with the atlas coloring is .that it does not include choroid plexus. Even 
normal CT scans contain choroid within the ventricles, and although we currently do some 
preprocessing to remove calcifications from the CT images, their variable size and position 
make it difficult to create an atlas to correspond to their CT appearance. This can also be 
resolved by interactively removing the calcified, or even normal, choroid from the CT's prior to 
performing the matching. The worst errors in the current study occurred in the patient with both 
the largest ventricles and the greatest extent of calcified choroid plexus. 

In some ways we biased this study against the computer. A more realistic evaluation of a 
finished system will have to include cortical ROI's, which will not be agreed upon in advance, 
but will be selected by each observer independently. We expect that this will result in consider- 
ably more variability among the experts, and our atlas-based software may prove to be both 
more objective and more reliable, although this remains to be seen. 

Since MRI scans provide better definition of the graylwhite interface than does CT, they 
should lead to more correct anatomical images. This should reduce the inter- and possibly 
intra-observer variability in defining ROI's, while the effect on the computer matching is 
unpredictable. 

It may also be possible to improve the computer's performance by applying 2-D elastic 
matching to each slice after the overall 3D elastic matching of the brain as a whole. Other 
interactive pre-processing and post-processing may also be appropriate. 

5 Conclusions 

The current findings are promising. For most regions the errors in positioning by the com- 
puter were on the order of 2-4 mm. For many structures the computer's ROI was placed within 
the experts', so when applied to the analysis of functional images like PET or SPECT the com- 
puter might actually be more likely to extract correct data. 

The finely spaced brain atlas that we have created can be elastically matched to multiple 
CT or MRI scans. We know that there is variability from person to person in both gross and 
microscopic anatomy [13]. In addition, there are well-documented interhemispheric differences, 
although the magnitude of these asymmetries has not been clearly established [14,15]. This 



software gives us the ability to create an anatomic stereotactic atlas like the one called for by 
Mazziotta and Koslow [9], since we can take a large number of MRI scans and map them all 
onto a single standard representation, eliminating the size and shape variations from person to 
person. A wide range of morphometric analyses may then be possible after this anatomic nor- 
malization. 
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