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Abstract 

When an inclined, uniformly textured surface is viewed by an ob- 
server or imaged by a camera, the systematic distortions of the per- 
spective transformation will induce a predictable distribution of shifts 
in the projected spatial frequencies which compose the texture. By 
measuring these shifts using a set of filters having suitable spatial, fre- 
quency, and orientation resolution, the inclination angles of the orig- 
inal textured surface may be estimated. An algorithm is presented 
which uses the amplitude distributions of 2D Gabor filters to perform 
such a calculation. Central to the algorithm is a pair of iteratively exe- 
cuted routines. The f is t  adjusts local sets of parameters to reduce the 
error between predicted and measured filter amplitudes. The second 
propagates the local parameters to neighboring regions to consolidate 
the estimates of inclination. The algorithm is capable of operating in 
parallel on any number of regions in the image and with a diverse set 
of filter inputs. 



1 Introduction 

Gradients and transitions in visual textures can provide a number of cues 
for the analysis of objects and surfaces in the visual world. The image of 
an inclined, uniformly textured surface will exhibit systematic variations in 
the projected size, shape and density of elements which compose the tex- 
ture. Unlike segmentation, in which boundaries between objects are denoted 
by abrupt textural transitions, the distortions associated with surface in- 
clination are more gradual and smoothly varying across the image. With 
appropriate means of measurement, they may be used to estimate several 
three dimensional shape properties of the object, one of which is the angle 
of inclination of the surface relative to the viewer. 

Although a precise definition of texture remains elusive, texture has been 
described as a two dimensional distribution of elements having a kind of 
spatial shift invariance (Levine, 1985) in that any patch of the texture per- 
cept ually resembles any other similarly sized pat ch. The elements making 
up the texture (or texels) may be highly structured (as in a brick wall) or 
irregular (as in patterns of foam on the sea). In either case, the perspective 
imaging process will affect the projection of textural patterns. 

Two types of systematic distortion are introduced into the image of an 
inclined textured surface by perspective. The first occurs because points at 
different locations on the textured surface are different distances from the 
viewer. This is simply a distance effect: those areas farther away will project 
to smaller areas in the image plane resulting in a decrease in projected texture 
element size and an increase in projected element density. The second effect 
results from differences in angle between the textured surface and the line of 
sight to the viewer. As the inclined textured surface recedes into the distance, 
the angle between the line of sight and the surface tangent becomes more 
acute. This causes an anisotropic compression of apparent distance along 
the direction of maximum inclination (i.e. along the tilt) which distorts or 
"foreshortens" the shape of texture elements and increases their density along 
this dimension. Perspective distortions result from a combination of these 
two separate effects. 

Accordingly, a uniformly textured inclined planar surface will exhibit tex- 
tural compression and density changes which vary when measured at different 
orientations and positions in the image plane. If we take measurements at 
a number of locations with an orientation across the tilt of the surface in 



the image (perpendicular to the angle along which the surface recedes most 
rapidly from the viewer), we will detect linear compressions of texture as a 
function of location caused by the distance effect. If we measure at a num- 
ber of locations with an orientation along the tilt, then the distance and 
foreshortening effects combine and we will detect quadratic shape and size 
distortions of the texture. 

Gibson (1950a) used the term 'texture gradient" to describe these systern- 
atic variations and proposed that perception of surfaces is due to gradients 
of textural or other physical features. He suggested that such gradients are 
perceived by simultaneous variation over a set of different receptors, or differ- 
ential excitation of different receptors. The work presented in this paper is 
in many ways faithful to the spirit of Gibson's conjecture: we make estimates 
of surface inclination by analysis of the output of a number of filters which 
have the same mathematical form as those found to be an accurate model 
for simple cells in the visual cortex. 

One of the strongest controversies in studies of the visual system has been 
over the preferred elemental stimulus and "tuning curvesn of cortical neurons. 
At one extreme, the elemental stimulus is a long bar, and tuning is to its 
orientation (Hubel and Wiesel, 1959, 1962, 1974). At the other extreme, 
the elemental stimulus is a grating, and tuning is with respect to its spatial 
frequency (Campbell and Robson, 1968; Albrecht et al., 1979; Tootell et al., 
1981; DeValois et al., 1979). In the recent past a possible compromise has 
appeared with the revival of interest in the functions first proposed by Dennis 
Gabor (Gabor, 1946; Daugman, 1980, 1983, 1985a; Marcelja, 1981; Mackay, 
1981). These functions have the attribute of maximizing the simultaneous 
information about two different stimulus properties, an idea analogous to 
the uncertainty principle from physics, but applied to information. Daug- 
man (1985a) has explicitly delineated the necessary formalism in extending 
the idea to the two dimensional receptive field of a visual neuron. At the 
same time, Jones and Palmer (1987a, 1987b, Jones et al., 1987) have shown 
that the two dimensional receptive field of many simple cells in area 17 of the 
cat may be accurately and economically represented by the same 2D Gabor 
functions. Thus it would seem that 2D Gabor functions are highly appro- 
priate candidates for the filtering operators that do early (in the cognitive 
sense) analysis of the visual scene. 

A 2D Gabor function may be visualized as the product of a sinusoidal 
plane wave (grating) of some frequency and orientation with a two dimen- 



sional elliptical (circular in the filters used in this paper) Gaussian (see 
figure 1). They afford a means of making visual measurements which are 
spatially as well as frequency and orientation selective and, under certain 
norms, optimize the tradeoff in resolution which inevitably results from the 
uncertainty relation using a linear filter in these two domains (Daugman, 
1985a). The kind of local spectral analysis afforded by filters of this type 
have been shown to be applicable to a number of visual processing tasks. 
Several authors have shown that such local spectral measures are conducive 
to the segmentation of images by textural differences, particularly those tex- 
tures which have been found to be preattentively (rapidly) discriminable by 
humans (Turner, 1985, 1986; Gerstein and Turner, 1987; Daugman, 1985b; 
Clark et al., 1987). It has also been demonstrated that a number of inter- 
esting information compaction properties accrue from a Gabor representa- 
tion (Daugman, 1988; Porat and Zeevi, 1988). Other authors (Adelson and 
Bergen, 1985; Heeger, 1987, 1988) have shown a temporal extension of 
Gabor functions to be good primitive operators for early motion analysis. 
Orientation selective receptive fields much like Gabor functions can play a 
role in detecting shape from shading (Lehky and Sejnowski, 1988). It is likely, 
then, that such local spectral receptive fields may have evolved because this 
representation of visual information may serve a number of different compu- 
tational functions. 

The systematic spatial distortions of size and density under perspective 
must necessarily affect the projection of the spatial frequencies which com- 
prise the textured surface. Therefore, the inclination of a textured surface 
may be recovered from the unique and predictable frequency shifts which 
occur at different locations in its perspective image. However, there are 
two conditions necessary for any vision system to utilize these shifts in esti- 
mating surface inclination. First, the system must have adequate means of 
measuring the frequency components of the projected texture in local image 
regions. The manner in which the frequency components vary from region 
to region depends upon the direction of tilt of the surface and, because of 
the anisotropic nature of the distortions, the orientation of the spectral mea- 
surement. Consequently, the early representation of image information must 
possess a reasonable degree of spatial, frequency, and orientation selectivity. 
There are a number of filter forms which could satisfy these simultaneous 
requirements. The 2D Gabor function is one member of this family, selected 
for this research because of its physiological relevance. 



The second requirement pertains to the textured surface itself. The tex- 
ture must be appropriate in several ways for the accurate determination of 
the frequency shifts. In part, this requires that the spectral signature of the 
texture be sdciently uniform that variations measured from region to region 
derive largely from perspective distortions and not from systematic irregu- 
larities in the texture or other influences (such as occlusion or shadowing of 
texels which project out of the texture surface). As discussed later in this 
paper and in greater depth in another paper (Turner et al., 1989a), these are 
necessary but not sufficient conditions for the accurate estimation of surface 
inclination. 

Local spectral analysis of texture gradients was first developed by Bajcsy 
and Lieberman (1976) using windowed Fourier transforms. Utilizing algo- 
rithms formulated by Bajcsy (1972, 1973), they identified frequency shifts in 
spectral components occurring as a result of perspective projection of tex- 
tured surfaces in natural scenes. The work described in this paper is in some 
ways similar. However, the goals of this work go beyond development of com- 
putational techniques appropriate only to machine vision. By using a low 
level filter similar to the receptive field of cortical simple cells and by con- 
straining the higher level processes to local and parallel computational steps, 
the system developed in this paper may provide insights into problems and so- 
lutions common to both biological and machine vision. As an example, it has 
been found that the program described later in this paper replicates errors of 
slant angle underestimation with "irregular" textures that humans make in 
psychophysical experiments (Gibson, 1950b; Gruber and Clark, 1956; FIock 
and Moscatelli, 1964). Moreover, efforts to realize this system in a simulated 
neural network architecture have led to the postulation of a new, higher level 
receptive field organization for biological vision systems which has not yet 
been described in the physiological literature. 

This paper specifically addresses the computational aspects of the prob- 
lem and develops a machine vision algorithm by which textured surface in- 
clination may be estimated from local spectral measurements. It differs from 
most other computer based techniques in that it does not require the prior 
identification of texels (Blostein and Ahuja, 1987; Aloimonos, 1988), a diffi- 
cult task in natural environments, nor does it make strong assumptions about 
the isotropy of edge orientations (Witkin, 1981; Kanatani, 1984) or the reg- 
ularity of hown  texture elerpents (Ikeuchi, 1984) on the planar surface. The 
paper is organized as follows. After introducing the the perspective imaging 



model and filter form, section 4 describes the analytic relationship between 
the perspective projection of texture frequencies and the amplitude distri- 
butions of Gabor functions. Section 5 discusses the complications arising 
from the application of this model to naturally occurring textured surfaces 
and presents a parallel algorithm which recovers surface inclination using 
estimates obtained from local image patches. Section 6 describes a com- 
puter implementation of the method and presents results from a variety of 
different textured surfaces. The final section discusses certain limitations of 
the approach, areas for future investigation, and relevance of the model for 
biological vision systems. 

2 Perspective Imaging Model 
The imaging model, shown in figure 2, consists of an inclined textured plane 
a distance d from a pinhole camera with a flat image plane and a focal 
length f .  Although this model is an oversimplification of that occurring in 
a lensed camera or an eye (with a curved retina), these simplifications make 
the situation considerably more tractable by eliminating such complications 
as depth of field, yet the general applicability of the results to other systems 
is not significantly reduced. 

Imagine that the textured plane is a uniform sine wave grating of some 
frequency and orientation and that the plane has an oblique inclination rel- 
ative to the viewer. As seen in figure 3, the perspective distortions vary the 
projected frequency from region to region in the image. 

3 Gabor Filters 
The filters used in this work are discrete realizations of the following function: 

where 

xc and yc are the center locations of the Gabor filter Gaussian envelope 



a is the standard deviation of the Gaussian envelope. 

w is the frequency of the sinusoidal plane wave. 

a is the orientation of the plane wave. 

4 is its phase. 

The characteristics and selectivities of a filter are determined by these 
variables with w and a the frequency - orientation peaks, and a the spa- 
tial size of the Gaussian (and thereby also the frequency bandwidth). For 
simplicity, only circularly symmetric Gaussians have been used in this work. 
The value of 4 determines the phase of the filter. For each frequency - ori- 
entation, a pair of filters is generated differing in spatial phase by 90 degrees 
(approximately quadrature). With a number of different frequency, orienta- 
tion and spatial envelope combinations a set of filters as shown in figure 1 is 
generated. 

The 2D Gabor functions are applied to an image in a set of overlapping 
regions (much like receptive fields). A filter is applied to a region (centered 
at (x,, y,) ) by taking the inner product of the filter with the image material 
falling within the region. 

v, (I ,  G+) = C C I (x, Y) G+(x> Y) 
= Y 

From each phase pair of filters G at each location (x,, y,) we get 2 values. 
An amplitude A is computed as: 

A (1, G+) = dvi (I, G+) + vz (I, G+) (3) 
where Vh and Vh are the values computed from the same image region 
using the members of G which differ in phase. (Further details are available 
in Turner, 1986.) 

A set of Gabor functions applied to the perspective image of the inclined 
grating produce outputs which vary from location to location depending upon 
the local match between the projected spectral value and the frequency - 
orientation of the Gabor filter pair. Figure 4 shows the output of one par- 
ticular filter pair at  a number of different regions in the projected image. 



The amplitudes measured in the upper band of the image (where the pro- 
jected frequencies and orientations more nearly match those of this filter) are 
considerably higher than those of the bottom and top right of the image. 

Application of a number of Gabor functions to a grating image or to the 
projected image of a textured surface produces a two dimensional amplitude 
distribution for each filter specification in the set. From these, the algorithm 
attempts to estimate the slant - tilt values consistent with the distributions. 
In order to do so, however, the relationship between amplitude distributions 
and surface inclination must be described. 

4 Gabor Filter Amplitudes and Texture Fre- 
quency Gradients 

In this section an equation is derived for estimating the output or amplitude 
of a 2D Gabor filter pair applied to the perspective projection of the frequency 
component of a textured planar surface. The equation takes two sets of 
parameters as arguments. The first contains those values which are part 
of the imaging and measuring system and are, therefore, known quantities. 
This set includes the specifications of the Gabor filter pair and the location 
within the image plane to which the filters are applied. It also contains the 
relevant properties of the imaging system, in this case the focal length of the 
pinhole camera. The second set contains values associated with the textured 
surface in the real world. In most situations, these are the variables which 
must be determined by the algorithm. The two most important of these 
are, of course, the representation of slant and tilt of the surface. In order 
to evaluate these, however, the algorithm must also determine the texture 
frequency being projected (and measured by a particular Gabor filter pair). 
The algorithm makes these determinations by adjusting the second set of 
parameters to reduce the error between a set of amplitudes measured from 
the image and the estimates of the equation derived here. 

4.1 Encoding of Slant - Tilt 

Stevens (1983a, 1983b) has presented a method for encoding slant and tilt 
(c, T )  which is in common use for texture gradient studies. In his scheme the 
slant of a textured plane is the maximum angle between the texture plane 



and the image plane. The tilt is the angle between the projection of the 
texture plane surface normal and the x axis on the image plane. In other 
words, the tilt is the angle in the image plane along which the texture plane 
recedes most rapidly from the viewer while the slant is related to the rate a t  
which the plane recedes. The slant angle may vary between 0 and 90 degrees 
while the tilt varies between 0 and 360 degrees (with 90 degrees representing 
a texture surface farthest away from the viewer at the top of the image). 

While this slant - tilt representation is both intuitively simple and capable 
of describing any surface inclination, a slightly different method is used within 
the algorithm. Instead of slant - tilt the algorithm uses a measure of vertical 
slant and horizontal slant. Both the image plane and the texture plane are 
described by Cartesian coordinate systems with (x, y) representing points in 
the image plane and (u,v) representing points in the texture plane. The 
vertical slant (8) is the angle between the positive vertical axis on texture 
plane and the positive vertical axis in the image plane. The horizontal slant 
(+) is similarly defined. 

The inclination of a textured surface is constructively defined by the se- 
quence of coordinate transformations necessary to orient an imaginary tex- 
tured surface parallel to the image plane (perpendicular to the line of sight) 
with that of the actual textured surface being imaged. The vertical slant 
transformation is first applied by rotating the plane around its horizontal 
axis by the vertical slant angle (8). This is followed by a rotation around 
a vertical axis (through the origin of the texture plane) by the angle of its 
horizontal slant ($). (All rotations are clockwise when looking toward the 
origin from the positive side of the axis.) This has the advantage of favoring 
the horizontal axis in that points on the u axis (v = 0) of the texture plane 
always project to points on the x axis in the image plane. Using this system 
internally, an algorithmic adjustment to the vertical slant will have limited 
effect on horizontal frequency estimates. For low values of vertical slant, 
this same advantage applies to vertical frequency estimates with changes in 
horizontal slant. Using Stevens' method internally would involve rotating 
the coordinate systems relative to each other (necessitating a corresponding 
change in both horizontal and vertical frequency estimates) with any change 
in tilt estimate. 

The horizontal and vertical slant encoding may be transformed into Stevens' 
slant - tilt form using 



r = sin-' \/sin2 $ + sin2 8 cos2 $ 
- sin8 cos $ 

T = tan-' 
sin $ 

4.2 Estimation of Filter Amplitude 

The derivation proceeds in three parts. First a projection function is pre- 
sented describing the mapping from image coordinates to those on the tex- 
tured plane with the perspective transformation model. Second, the gradient 
of the projection function is used to determine the perspective distortions 
of spectral wavelengths which result from the imaging process. Third, the 
Fourier transform of a Gabor filter is used to estimate the output which re- 
sults from using a filter pair to measure the projected spectra in the image 
plane. 

4.2.1 Projection Function 

As described above, the projection of points on the texture plane to the 
image plane is obtained by a sequence of coordinate transformations involving 
rotations and perspective, giving us 

f v cos 9 
= d-usin$+vsinBcos$ 

Inverting these for (u, v )  gives 1 

xd cos 8 - yd sin 8 sin y!~ 
21 = 

f cos~cos$  - ysinO + xcosdsin+ (8) 

yd cos $ 
v = 

f C O S ~ C O S $  -ysine +xcosBsin$ 



4.2.2 Projection of Texture Spectra 

The frequency projected to the image plane at the point (x, y) is the product 
of the horizontal and vertical components of the texture hequency (F,, Fw) 
and the Jacobian of the projection function 

Where 

f d cos2 4 cos $ - yd sin 8 cos 8 cos2 $ 
(f cosBcos$ - ysin8 + xcos8sin$)' (11) 

- f d sin 8 cos 8 sin $ cos $ + xd sin 4 cos 8 cos2 + 
(f cosdcos$ - ysin8 + x c o ~ d s i n $ ) ~  (12) 

- yd cos 8 sin $ cos $ 
(f cos8cos$ - ysin8 + xcos8sin$)' (13) 

f d cos 4 cos2 + + xd cos 4 sin $ cos + 
(f cos 4 cos + - y sin 4 + z cos 8 sin $)2 

(14) 

4.2.3 Gabor Filter Amplitude 

With the projected texture frequency (F,, F,), the amplitude of a filter pair 
may be calculated using the Fourier transform of the Gabor function resulting 
in 

A' = c2*u2 exp {-2s2g2 [(g, - F.)' + (g, - F,)~]) (15) 

where 

C is the contrast of the texture frequency. 

a is the standard deviation of the Gaussian envelope of the 2D Gabor 
filter pair. 

g, and g, are the horizontal and vertical components of the Gabor filter 
modulating frequency. 

F, and F, are the horizontal and vertical frequency components from 
equation ( 10 ) projected to the image plane. 



Whereas the projected texture frequency described in equation (10) is a 
point function, the 2D Gabor filter effectively occupies a finite spatial area. 
The amplitude of the filter pair is described by equation (15) as if derived 
from a uniform frequency at  all image points. However, for non-perpendicular 
textured surface inclinations, the projected frequency varies smoothly across 
the image. Thus, for function (15) to accurately approximate those ampli- 
tudes actually measured from an image, the spatial size of the filters must be 
kept reasonably small to minimize the frequency variation over the effective 
area of the Gabor filter. In its present form, then, equation (15) is an accu- 
rate approximation for filters of moderate bandwidth. For the examples in 
this paper, the filter bandwidth has been kept constant at 1.5 octaves. This 
is well within the range of physiological estimates (Kulikowski et al., 1982). 
To maintain constant bandwidth, a varies with the frequency, making all 
filters scalings and rotations of each other (Mallat, 1988; Daugman, 1988). 

With equation (15) and information about the texture being imaged, we 
could predict the amplitude distributions obtainable in the image plane using 
a particular filter pair. However, the problem we are trying to solve is the 
inverse one. The algorithm extracts sets of amplitude distributions from an 
image using a known set of 2D Gabor functions and from these values must 
make surface inclination estimates. This process is complicated by the fact 
that many natural textures do not have perfectly uniform or simple spectral 
signatures. Such textures are often composed of a number of frequency com- 
ponents which, due to textural irregularities, vary the magnitude of local 
spectral measurements from region to region. In addition, there are often 
strong contrast gradients which can dominate the distributions of Gabor fil- 
ter amplitudes, thereby masking the frequency induced gradients critical for 
the estimation process. Thus, the algorithm must attempt to utilize a po- 
tentially variable and misleading source of information for the recovery of 
surface inclination. 



Description of Algorithm 
An algorithm which utilizes the preceding model is described in the following 
sections. Its major components are shown in the diagram of figure 5. The 
image is initially transformed by a point logarithmic function (described be- 
low) to compress its luminance dynamic range, thereby reducing the effect 
of contrast gradients. To this transformed image a set of Gabor Bters are 
applied to extract the amplitudes from which the inclination estimates are 
made. The heart of the algorithm is the parallel application of a pair of 
operations which are iteratively executed to form and consolidate the slant 
- tilt estimates at a number of locations in the image. 

In the first of this pair the algorithm attempts to fit parameter sets (in- 
cluding horizontal and vertical slant) to each of a number of local patches 
of the image by an error reduction procedure. In the second the local pa- 
rameter estimates are propagated to neighboring regions for consolidation. 
This phase ensures that variations in the local spectra of the texture will 
not result in unrealistically extreme local estimates. After completing the 
second phase the algorithm repeats the sequence of phases until termination 
conditions are met. 

This portion of the algorithm may be viewed as operating in parallel on 
a number of processors, each associated with one of the 2D Gabor functions 
applied to the image. Therefore, each processor is associated with a specific 
spatial location in the image and with a specific spectral value (those of the 
Gabor function). In the extreme case one processor could be created for each 
Gabor filter frequency and orientation specification at each image location 
to which the filter is applied. (However, such a calculation would run very 
slowly on a sequential architecture.) In making its slant - tilt estimates, each 
processor uses the outputs of the filter pair with which it is directly associated 
as well as those neighboring filters in the image with similar frequencies 
and orientations. Each processor communicates with other processors in a 
surrounding spatial neighborhood. 

Each of the sections of the algorithm is now described in further detail. 

5.1 Reducing the Influence of Contrast Gradients 
Changes in contrast across an image source will induce gradients in the Gabor 
filter amplitudes which may &ask or distort those induced by the perspective 



projections of texture frequencies. These combined effects, common in out- 
doors or natural scenes with nonuniform levels of illumination or reflectance, 
would result in inaccurate estimates of surface slant and tilt if not corrected 
by other means. Two general strategies are appropriate to counteract their 
effects. In the first, the filter ~ l u e s  are "normalizedn by using ratios of sin- 
gle filter outputs to local ensemble sums (eg. take the ratio of a single filter 
output to the sum of outputs of filters of all frequencies and/or orientations 
at the same spatial location in the image). This technique is similar to that 
effectively used in spatiotemporal filter studies for motion detection (Adelson 
and Bergen, 1985 ). In the second technique compression of the luminance 
dynamic range is achieved by application of a point nonlinear function (such 
as log) to the image before the filters are applied (Levine, 1985). This 
kind of compressive nonlinear transformation is also consistent with both 
physiological and psychophysical data (Fuortes, 1958, 1959; Rushton, 1961; 
Hurvich and Jameson, 1 966; S tockham, 1972). 

Either technique would be equally effective for this application; for the 
examples shown in this paper the second has been selected. A new image 
I' is created by transforming the gray level I(x, y) of each location x, y in 
source image I by 

I'b, Y) = (I(x1 Y) + 1) 
.. - (16) 

This operation serves to compress contrast gradients in I' while leaving 
the frequency gradients relatively unaffected. It is to this transformed image, 
then, that the Gabor filters are applied. 

5.2 Generation and Application of Gabor Filters 
The filters used by the algorithm are discrete realizations of equation (1). 
While the frequency - orientation selections for the filter set must ensure that 
the projected gradients of strong texture frequencies are adequately measured 
for the iterative sections, the algorithm requires neither completeness nor 
orthogonality for its operation. A wider frequency span of filters (as might 
exist in biological vision systems) would allow the same system to perform 
with a larger variety of stimuli by ensuring that some subset of the filters 
would be tuned to projected spectral peaks. However, it has been found that 
even fairly small filter sets can perform correctly with a diverse variety of 



texture types. (For example, the same set of 48 filters was used on all the 
image examples shown in this paper.) For reasons which will be described 
further in the next section, incorrect minima in the error surface used in 
the iterative sections are eliminated by overconstraining estimates to satisfy 
several filters which are closely tuned in frequency. Consequently, the filter 
set will contain a closer spacing of frequencies than might be required for 
other visual processing tasks. 

The algorithm is capable of compensating for any arrangement of spacing 
positions (even random) and sampling density has not been found in practice 
to be a critical variable for this application. Filters used in the examples in 
this paper have been spaced horizontally and vertically at a distance which 
results in 90 overlapping regions per dimension. 

5.3 Local Parameter Adjustment 

Each processor maintains an internal set of parameters for texture frequency, 
horizontal and vertical slant. By evaluating equation (15) for the specifica- 
tions of each Gabor filter pair within its spatial and spectral neighborhood 
(defined below), an expected distribution of outputs is generated from the 
current set of parameters. These are then compared with the actual values 
measured from the image by the Gabor filter pairs and an error is computed. 
Test sets of parameters are generated by taking combinations of positive and 
negative steps from the current parameter set. The algorithm computes an 
error for each of the test sets and adopts the set with the lowest error as the 
new estimate for this processor. Each processor, then, performs a hill climb, 
evaluating sets of parameters around the current set and always choosing the 
new set in the direction of lowest error. This operation is performed for all 
processors in the system. 

Equation (15) has five unknown variables: two slant terms, two texture 
frequency terms and a contrast term. It has been found that the system 
attains a solution more quickly if the contrast term is eliminated by taking a 
ratio of sums and differences of amplitudes. For the Gabor amplitudes taken 
from the image: 

where 



A, is the Gabor amplitude of the filter directly associated with the 
processor. 

is any other Gabor amplitude within the processor's spatial and 
spectral neighborhood. 

A similar ratio is computed from a parameter estimate using (15): 

From (17) and (18) a squared error is computed 

E (c) = c T  I,V (c, T)  (R ( ~ 7  T) - R' ( ~ 1  T ) ) ~  c, w (c, f )  
The weight W (c, r )  defines the spatial and spectral neighborhood of the 

processor. It determines which filter amplitudes are used in computing the 
error and with what importance. As will be shown later, the choice of weight- 
ing function has a considerable bearing on the shape of the error surface used 
in the hill climb operation. 

The weighting function used in the current implementations of the algo- 
rithm is described below. It gives greater influence in the error evaluation 
to outputs from filter pairs which are both spatially near each other in the 
image and similar in frequency and orientation. It is formed as the product 
of two terms. 

D is a spatial weighting function (a Gaussian in this version of the algo- 
rithm) which gives greater influence to values from filters which are spatially 
near to each other. 

(xc,yc) is the image location of the Gabor filter associated with the 
processor. 



(x,, y,) is the image location of another filter pair used in the error 
evaluation. 

aw is the standard deviation of the Gaussian spatial weighting function. 

S is a measure of filter similarity in frequency and orientation. In the 
current algorithm it is formed as an inner product amplitude between the 
different filter pairs. Equation (3) computes just such an inner product am- 
plitude for regions of the image and, therefore, may be used in the description 
of S. Substituting the phase pair members of G, in place of the image and 
centering them at the same spatial location (xc, Y,) as Gc: 

L 

in which G,& and G,+, are the members of G, differing in phase by 90 
degrees. 

Equation (20) may be thought of as a rough measure of distance or overlap 
between filters in a four-dimensional space (with two spatial and two spectral 
dimensions) which gives the algorithm an indication of the likelihood that 
amplitudes in two filters derive from the same frequencies in the texture. It 
also produces an interconnection "granularity" in this four-dimensional space 
in that it defines and limits the effective or required connectivity between 
processors. While it is probable that a number of other functions could serve 
this purpose, certain tradeoffs constraining the choice of weighting function 
have been identified and these are described below. 

5.4 Tradeoffs in the Choice of Weighting Function 
5.4.1 Wide Spectral and Spatial Support 

Since equation (15) has four variables, the error space is four dimensionaL 
In order to provide a visual representation of the surface a two dimensional 
slice may be taken by adjusting the frequency parameters with the horizontal 
and vertical slant values to show the lowest possible error for each slant pair. 
Figure 6 shows such a slice using a sine wave grating slanted 30 degrees. 
For this example a weighting function has been selected which uses the am- 
plitudes from only one filter pair frequency - orientation specification on a 



small patch in the center of the image. The horizontal and vertical slant pa- 
rameters vary along the s and y axes respectively. Each point on the surface 
represents the lowest possible error for this combination of horizontal and 
vertical slant. This error value is represented as the height of the peak. (The 
higher the peak the lower the error.) For one filter pair there are two peaks 
of very similar size. The one in back represents the correct inclination of 30 
degrees slant. The second peak is the reverse of this inclination (inclined in 
the reverse direction from perpendicular by an angle similar to the correct 
inclination). 

A grating which recedes from the viewer at the top projects frequencies 
in the image plane which increase from bottom to top. A grating inclined 
toward the viewer at the top has these projected frequencies reversed. With 
its symmetrical (Gaussian) frequency response (shown in one dimensional 
form in figure 7), a rising gradient of amplitudes may represent either an 
increasing frequency gradient (inclined away from viewer at the top) on the 
low frequency side of the Gabor filter's response or a decreasing frequency 
gradient (inclined toward viewer) on the high frequency side of the filter's 
response. As evident in the error surface, both situations can produce an 
accurate fit to the amplitude distributions. If the algorithm makes the wrong 
choice of texture frequency in its initial hill climb steps then it will likely select 
the error minimum representing slant values which are the reverse of the 
correct inclination. It becomes trapped in the reversed inclination minimum. 
(It is interesting that one of the subjects in Gibson's 1950 psychophysical 
study repeatedly perceived the slant of one textured surface as reversed in 
exactly this manner. p. 379) 

This situation occurs in other sensory modalities of biological organisms 
(Erickson, 1963) in which one sensor provides ambiguous information for the 
solution of a problem. Adding the constraint that several sensors of slightly 
different response must be simultaneously satisfied frequently disambiguates 
the problem. In this case, local estimates may be constrained to satisfy 
several filters of similar but not identical frequency and orientation. The 
addition of another filter having spectral overlap with the first (figure 7d) 
provides a clear means to distinguish the two cases. Each frequency value 
is now associated with a unique set of amplitude values. Moreover, the 
amplitude distributions of the second filter in both forward and backward 
inclination cases are sficieptly different to ensure that the reversed inclina- 
tion estimate is associated with a large error. By using a weighting function 



which includes different filter distributions, the error surface is considerably 
changed, affording the system a more rapid identification of the projected 
texture frequency and surface inclination. In figure 8 an error surface like 
that of figure 6 is shown. In this case, however, the weighting function has 
been altered to include a set of three filters with considerable overlap in fre- 
quency - orientation. The peak representing the correct inclination values is 
considerably sharper than it was in the single filter surface and the reversed 
inclination peak is eliminated. 

Irregularities in small patches of the textured surface may induce ampli- 
tude distributions which are consistent with extreme inclination values. By 
including amplitudes from a larger portion of the image the influence of these 
local irregularities are reduced and the estimates of each processor are more 
likely to be consistent over the entire planar surface. For these reasons it 
would seem that the weighting function should be selected to provide a wide 
spatial and spectral support to both improve the accuracy and speed of the 
hill climb (by changing the error surface) and to reduce the effect of textural 
irregularities on local inclination estimates. 

5.4.2 Narrow Spectral and Spatial Support 

The problem with a weighting function that admits wide spatial and spectral 
support is that, while it works quite well with synthetic or natural textures 
having one dominant frequency (like a sine wave grating), the world is filled . 

with textures of considerably greater spectral complexity. Naturally occur- 
ring textures are frequently composed of a number of spectral components 
of similar amplitude which can be closely spaced in frequency and orienta- 
tion. Using a weighting function with wide spectral support broadens the 
range of frequencies over which the error term is computed. The wider the 
frequency - orientation range of the Gabor filter pairs used in computing an 
error, the more likely the amplitude distributions will derive from different 
spectral components of the texture. This makes the algorithm more sensitive 
to the presence of multiple spectral peaks in the texture, even when they are 
spaced sufficiently widely to have minimal effect on local amplitude distribu- 
tions of single filter types taken alone. The resulting effect is a distortion of 
the error surface which introduces inaccuracies (particularly those of surface 
angle underestimation) into the parameter evaluation. 

Similarly, use of amplituck from spatially distant filter pairs is more likely 



to be inaccurate than from local spatial neighborhoods. Different texture 
frequencies may project to the same image frequency in spatially separated 
locations of the image. This can distort the amplitude distributions and 
gradients in ways that introduce further inaccuracies into the processor's 
parameter es timates. 

The tradeoff in spatial and spectral support depends, in large measure, 
upon the characteristics of the textured surface being imaged. Very regular, 
periodic textures (many manmade surfaces, for example) allow rapid evalu- 
ation of surface inclination by the inclusion of a wide variety of spatial and 
spectral inputs to the error evaluation. On the other hand, complex natural 
textures necessitate the narrowing of inputs which has the inevitable effect of 
making the local estimates more sensitive to the irregularities accompanying 
these textures and, therefore, more likely to be in error. In this situation 
the identification of structure in the distribution of local estimates must be 
performed in part at the higher parameter level rather than the level of the 
Gabor amplitudes. The weighting function described in this paper represents 
a compromise which has proven satisfactory on a wide variety of textured 
materials. Nevertheless, the diversity of texture characteristics argues for an 
adaptable system which both adjusts the weighting span of input tenns for 
different textures by analysis of filter amplitude statistics, and determines 
the optimal level upon which to evaluate surface structure. Investigations 
into such adaptive systems are appropriate for the future. 

5.5 Lateral Parameter Propagation 

Texture variations frequently produce local output distributions consistent 
with extreme inclination values. As described in the previous section, how- 
ever, errors may result from the obvious solution of increasing the spatial 
span of amplitudes from the image for parameter adjustment. Therefore, 
the parameter adjustment phase is followed by one in which distribution of 
parameters between neighboring processors is used to adjust and consolidate 
the parameter values. Each processor is connected to other processors in a 
spatial neighborhood around it. At each iteration the values are received from 
its neighbors and a weighted average for each parameter is computed. This 
weighted average becomes the new parameter value for the next execution of 
the local parameter adjustment step. 

This weighting function has two parts. First, greater importance is given 



to those estimates with lower error residuals (eq. 19). Second, for slant 
estimates, greater importance is given to parameters from nearby processors 
(eq. 21). For frequency estimates, spectral similarity weighting between 
filters is also included (eq. 22). 

where t is the parameter type, P, is the current parameter value, P,+l is 
the new parameter average. In some ways, this is like a relaxation labeling 
process (Rosenfeld et al., 1976; Hummel and Zucker, 1983; Landy, 1987). 
Instead of using a wide spatial and spectral span of inputs for each evaluation, 
the accuracy and reliability of inclination estimates are increased by lateral 
propagation of parameter values, essentially increasing the span of influence 
by label consolidation on the higher parameter level rather than at the low 
level of Gabor amplitudes. 

6 Implementation Details and Results 
This algorithm has been implemented in a set of programs which run on 
a Sun 4/260. The images of textured surfaces are 512 x 512 pixels with 
pixel grayscales varying between 0 and 255. The set of 48 2D Gabor filters 
(figure 1) used with these images contain 6 frequencies (8, 10, 12, 14, 16, 
18 pixel wavelengths) at 4 orientations (0, 45, 90, 135 degrees) with 2 phase 
pairs (0 and 90 degrees) for each frequency - orientation combination. The 
spatial size for each frequency choice is adjusted to give each filter a frequency 
bandwidth of 1.5 octaves. With the exception of pure sine phase, Gabor 
filters have a slight DC component which makes them sensitive to the phase 
of low texture frequencies. To prevent this from interfering with frequency 
gradients each filter has been adjusted by subtracting its mean pixel value 
from each pixel in its filter array. (This is discussed in Turner, 1986.) The 
filters are applied to the images in a set of overlapping regions separated by 
5 pixels along each dimension. 



6.1 Reduction of Gabor filter outputs 

In order to improve the efficiency of the simulation on this sequential archi- 
tecture, the number of Gabor filter outputs used by the algorithm is reduced 
by averaging the amplitude of Gabor filters in a number of regions of the im- 
age. This averaging or smoothing step also serves to reduce the effect of local 
texture variations on the filter output (and, thereby, inclination) estimates. 
An image is divided into 36 regions (6 x 6). Around each region a Gaussian 
weighted average (of 25 pixels std. dev.) is made of the output of each filter 
type. For each filter pair frequency and orientation value, this step produces 
36 averaged output values for the image. These averaged output values are 
then used in place of the raw filter pair amplitudes. While this averaging 
process induces some error into the filter output gradients, in practice this 
has not been found to significantly alter the accuracy of the results. 

6.2 Thresholding and Processor Creation 

The number of amplitude values used in fitting the parameters is further re- 
duced by a thresholding operation. Particular filters may not be sensitive to 
the spectral components of the imaged texture throughout the image plane. 
Their outputs will tend to be of low and relatively uniform amplitude, sup- 
plying little information about the gradient. (For example, in figure 4, the 
bright (high amplitude) region for this filter only occipies a band in the upper 
part of the image. The other sections of this image induce low amplitudes in 
this filter pair.) Moreover, fluctuations in these low amplitude values caused 
by local variations in the texture, if treated with the same importance as gra- 
dients in the higher amplitude values, would tend to introduce inaccuracies 
into the local slant estimates. 

The selection process has been accomplished by a thresholding operation 
which identifies the highest percentage (20 percent for the examples shown 
in this paper) of averaged Gabor amplitudes. A processor is assigned to 
the spatial location, frequency and orientation of each such high amplitude 
Gabor filter pair. This serves to conserve computational resources for those 
filters and image regions which contain the most information about the tex- 
ture gradient. (This is in many ways similar to the information compaction 
procedure used by Daugman (1988) in which a recognizable image is con- 
structed from only the Gabor filters with the highest output amplitudes.) 



The choice of percentage has not been found to be a critical parameter and 
a variety of other techniques would work as well here. In a truly parallel 
architecture a more appropriate solution would be to modify the lateral pa- 
rameter propagation sections described previously to place greater emphasis 
upon the higher amplitude values. The combined averaging and thresholding 
techniques described in these sections reduce the number of amplitudes used 
in the iterative portions of the algorithm from the original 194,400 extracted 
from the image to 173. 

6.3 Initial and Termination Conditions 

Parameters for all processors are set to the same initial values. Horizontal 
and vertical slant are both set to 0 degrees (perpendicular to the viewer) 
and frequency estimates are set to 0 frequency (DC). After some number of 
iterations during which the parameters change rapidly, the rate of change of 
average slant estimates for all processors in the system will slow. For the 
examples shown here, inclination values are shown at the time when average 
slant estimates do not wry more than 4 degrees over 20 iterations. For very 
simple regular textures this occurs quickly (50 iterations or less). For very 
irregular natural textures with complicated error surfaces the system takes 
longer, usually between 100 and 200 iterations. 

.. , 

6.4 Image Examples 
> 

Each processor computes its own estimate of surface inclination from the 
subset (by frequency and spatial location) of Gabor amplitudes used in com- 
puting its error value. While the lateral propagation operation serves to 
consolidate local estimates by pulling processor slant values toward the aver- 
age of its neighbors (and, perhaps, out of an incorrect minimum), there is still 
some variability from processor to processor. For non-planar textures, such 
systematic differences could characterize the local planar fit to the surface 
curvature. For the examples which follow, however, only a single inclination 
estimate is shown which is the average of all processor estimates. 

Figure 9a contains the image of a regular syxithesized checkerboard tex- 
ture which has been given a perspective projection of 45 degrees slant, 60 
degrees tilt. After 57 iterations the program estimate of its inclination was 
44.2 degrees slant, 60.1 degrees tilt. This level of accuracy is typical of the 



system's performance for regular textures with strong spectral peaks. In 
order to provide a subjective means for comparison, the program also pro- 
duces the perspective projection of a planar surface of grid lines inclined 
by the same horizontal and vertical slant transformation used to represent 
inclination within the program (see figure 9b). 

Results are shown in similar form for the natural images of figures 10 
through 15. Although the precise inclination values for these photographs 
were unavailable, the grid planes are in subjective agreement with those of 
the textured surfaces. Note that in figure 14, the surface is, in fact, slightly 
curved. In its present form the algorithm gives the planar approximation of 
this surface. 

Discussion 

There is an uncertainty relation which limits the resolution simultaneously 
attainable in space and frequency with linear filters (Gabor, 1946; Daugman, 
1985a). Optimally, the measurement of frequency gradients would be per- 
formed with filters of perfect resolution in both domains. However, this is 
not possible because of the upper limit on simultaneous resolution; the local 
spectral measurements necessarily admit a band of frequencies over a spatial 
region of the image. Reducing the bandwidth of the filters has the inevitable 
effect of increasing their spatial size, thereby increasing the image region 
(over which the projected frequencies are systematically varying) from which 
the amplitude is obtained. Increasing the spatial resolution by decreasing 
the spatial size has the effect of admitting a larger band of frequencies into 
each measurement. When a texture is composed of one predominant and 
uniform frequency, this tradeoff is not a significant problem. Many naturally 
occurring textured surfaces, however, have a different character. 

In the description of weighting function it was suggested that the wider 
the frequency span of the filters over which the error term is computed, the 
more likely it is that the different amplitude distributions derive from dif- 
ferent frequencies in the texture. However, when a texture is composed of 
closely spaced frequency peaks, then the amplitude distributions of individual 
filter types can be altered in ways which make accurate inclination estimation 
difficult if not impossible. In this situation, each filter amplitude represents 
a sum of discernible responses to each individual texture frequency. The am- 



plitude gradients which result tend to be flatter, resembling those of single 
frequencies at shallower angles of inclination. (As an extreme example, the 
perspective image of a surface with a flat power spectrum would contain no 
frequency gradients.) The algorithm in its present form will tend to underes- 
timate the inclination of such surfaces. It has been found in psychophysical 
experiments that humans also tend to underestimate the angle of textured 
surfaces with such irregular appearance (Gibson, 1950b; Gruber and Clark, 
1956; Flock and Moscatelli, 1964) suggesting the possibility that a similar 
process may be occurring. 

This is, then, a property of certain textures which makes the measure- 
ment of frequency gradients difficult or impossible with filters of finite spatial 
and frequency resolution. In addition to the texture attribute of reasonable 
spectral uniformity, the kind of local spectral analysis of texture gradients 
developed in this paper depends upon the texture frequency peaks being suf- 
ficiently separated from each other and from surrounding spectral values so 
as not to interfere significantly with the local amplitude distributions they 
independently induce in individual filters. To the extent that they deviate 
from this condition, the inclination estimates will deviate from the correct 
values, with a particular tendency toward underestimation of inclination an- 
gles. (This is treated in greater detail in Turner et al., 1989a. In this paper 
slant estimates are compared with the known inclination angles of a set of 
textured surfaces of increasing spectral complexity.).- - 

However, it is a highly artificial circumstance in which an animal or 
robotic system encounters only a monocular, stationary view of a textured 
surface (such as provided to this algorithm). In these cases, the visual system 
has been deprived of most other natural environmental cues to surface incli- 
nation such as stereopsis, convergence of surface borders, relative movement 
of the texture elements with the motion of the observer, hue changes with 
increasing distance, depth from focus, etc. Under normal conditions, defi- 
ciencies in the visual information available to one system can be overcome 
by other forms of analysis. It is certainly likely that all of the analysis mech- 
anisms available to biological vision systems operate together to improve the 
accuracy and reliability of surface perceptions. Even limited to stationary 
monocular views, a variety of edge and texel based algorithms which differ 
from the local spectral technique described here are available to machine vi- 
sion systems, each with particular strengths and weaknesses. This suggests 
that a robust system for analysis of surface properties such as inclination 



should employ and integrate a variety of mechanisms. 
The concerns of robustness and reliability also extend to internal aspects 

of these models. It might be unrealistic to demand a very high degree of pre- 
cision for a biological information processing system (Huggins and Licklider, 
1951). Within a neural assembly, any rnisarrangement of interconnections, 
noise, or the death of cells could result in firing rates not perfectly consistent 
with an optimal or precise representation of information. Although evolution 
may select for elegant mathematical or engineering solutions, deficiencies or 
inaccuracies in their implementation may result in a less than perfect execu- 
tion of those principles. Consequently, an algorithm intended to' serve in any 
sense as a biological model must be robust in that it is capable of adjusting 
or compensating for the variability of the information provided to it by the 
lowest level filtering operations and should degrade gracefully with selective 
deficits in that information. 

The set of filters applied to these images is neither complete nor orthogo- 
nal. The codcients derived from their application are inappropriate for such 
tasks as image representation. Certain spectral values are overrepresented 
while others are significantly underrepresented. In fact, as described in sec- 
tion 6.2, the current implementation disposes of the low amplitude filter pair 
values which contain little information about the texture gradient. Because 
the iterative algorithm adapts to the spatial and spectral relationships be- 
tween the Gabor filters, it is capable of operating with. an almost randomly 
selected set of filters as input. While the accuracy of the results would vary 
depending upon the match between the spectral components of the image 
and the filter set, the absence of particular coefficients would not prohibit 
the operation of the algorithm. Systematic studies of the relationship be- 
tween texture spectra and the choice of filter sets, as well as the effects of 
amplitude variability and noise on the accuracy of results are planned for the 
future. 

The weighting function used in the iterative section is a measure of spec- 
tral similarity and spatial distance between filters. In some sense these rep- 
resent the likelihood that two filters are measuring the same. spectral com- 
ponent in the image. In a self-organizing or adaptive system, the weighting 
function could be implemented as a modifiable measure of simultaneous ac- 
tivity within populations of filter elements. Two elements which are similar 
in frequency and orientation-preference are more likely to be simultaneously 
stimulated by a wide variety of image material than would those of very 



different filters. Furthermore, because image information tends to be lo- 
cally similar, filter elements with similar receptive fields which are also spa- 
tially close are more likely to be simultaneously stimulated. This provides 
a mechanism by which assemblies of elements (or neurons) could form for 
the performance of a particular computational function. Filters which are 
comparable and close will have greater tendency to be simultaneously active 
and will, therefore, tend to have the most influence on each other, exactly 
the criterion found useful for the weighting function in this application. In 
real nervous systems such dynamic formation of assemblies, although long 
postulated, has only recently been observed (Gerstein et al., 1989). 

If this model is to provide insight into mechanisms for biological vision 
then an additional issue must be addressed. Details of this portion of the 
research are fully reported elsewhere (Turner et al., 1989b) so they are only 
briefly described here. Electrophysiological experiments indicate that visual 
cells frequently operate by application of receptive fields to image material. 
These cells may be organized in a hierarchical manner to extract increasingly 
complex and subtle information from the the image. If a mechanism for 
analysis of surface inclination by local spectral gradients exists in cortex, 
then it is unlikely to operate by explicit evaluation of nonlinear equations 
as does the computer based algorithm. However, complicated algorithmic 
transformations may be realized by sets of receptive fields which represent 
specific instances of the transformation. 

For any value of surface inclination and texture frequency we may system- 
atically vary the Gabor function frequency and spatial location parameters 
in equation (15) to describe a distribution of amplitudes which would occur 
over an array of Gabor functions. With the array represented in a four di- 
mensional space (2, y, g,, g,) the resulting distribution of amplitudes may be 
considered to be model for a higher level receptive field which takes Gabor 
filters amplitudes as input and signals by its output level the presence of a 
particular inclination angle and texture frequency in the input array. The 
higher amplitude values in this array represent excitatory regions and lower 
amplitudes inhibitory ones. The receptive field which results can be described 
as a central, elongated excitatory band flanked by inhibitory regions. This 
would be a familiar description of cells in visual cortex if the dimensions of 
the coordinate system were only spatial, rather than spatial and spectral as 
in this case. Neurons with receptive fields such as these would have system- 
atically varying preferred spatial frequencies across the spatial dimensions of 



their receptive fields. In fact, elements with this receptive field organization 
have been formed in the hidden layer of a neural network simulation which, 
using a back-propagation algorithm (Rummelhart et al., 1986), learned to 
solve a simplified version of the texture gradient problem. 

At higher visual levels in cortex, receptive fields are often sufficiently com- 
plicated to make an understanding of their purpose difficult if not impossible 
without a model of the computation being performed. Neurons with recep- 
tive field organizations like those described here have not been described in 
the physiological literature. However, it is also unlikely that an experiment 
to detect such cells would have been conducted without a predictive theoret- 
ical model. It is hoped that computational studies such as these will provide 
a basis upon which to design the relevant physiological investigations. 

By computing parallel inclination estimates on a number of local image 
regions, the algorithm is well suited to future extension into curved surface 
description by local planar approximation. In its current form, the lateral 
parameter propagation phase computes weighted averages which implicitly 
assume a similarity of inclination across regions characteristic of planar or 
very slightly curved surfaces. For surfaces with constant rates of curvature, 
the inclination estimates should vary smoothly from region to region across 
the image. Because of textural irregularities, however, the actual local esti- 
mates will have considerable variability. The current lateral propagation step 
is, in some ways, an attempt to identify and reinforce.the presence of pla- 
nar structure within the set of inclinations from the parameter adjustment 
step. If, instead, the algorithm identified higher order regularities within 
the distribution of inclination values, it should be possible to converge upon 
a description of certain types of curvature in the textured surface. Various 
techniques for identifying these regularities are currently under investigation. 
Whether the low level Gabor amplitudes obtained from natural surfaces have 
sufficient structure to allow identification of any but the simplest curvatures 
remains to be determined. 
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Figure Captions 

Figure 1: A set of 2D Gabor filters. The set of 48 filters in the top half of the 
figure are the ones used in calculating inclination of all the image examples 
which follow in the paper. The set (shown in actual size relative to the 
textured image examples) contains 6 frequencies (8, 10, 12, 14, 16, 18 pixel 
wavelengths), 4 orientations (0, 45, 90, 135 degrees) with 2 phases (0 and 
90 degrees) for each frequency and orientation specification. All filters have 
a bandwidth of 1.5 octaves, thereby making them scalings and rotations of 
the two larger filters (shown to provide a more detailed view of the smaller 
filters actually used) in the bottom half of the figure. 

Figure 2: Perspective imaging model. A textured planar surface with coor- 
dinate system (u ,v )  is distance d from a pinhole camera with a flat image 
plane, coordinate system (x, y) and focal length f .  The inclination of the 
textured surface to the line of sight is indicated by the two angles 0 and $. 
Note that the origins of the (2, y) and (u, v) coordinate systems are on the 
line of sight a t  the centers of their respective planes. 

Figure 3: The perspective projection of a sine wave grating produces an 
image in which the projected frequencies vary smoothly across the image. 

Figure 4: Application of a particular 2D Gabor filter pair to the perspective 
sine wave image of the previous figure. The amplitude of the filter pair 
(indicated by the gray level intensity with the highest amplitude indicated 
by white) varies from location to location in the image depending upon the 
local match between the projected sine wave frequency in the image plane 
and the frequency - orientation of the Gabor filter. 



Figure 5: Diagram of the algorithm for estimating textured surface incliia- 
tion. The algorithm may be viewed as operating in parallel on a number of 
processors, each with access to a local section of the image and with inter- 
connections to a subset of its neighboring processors. The surface inclination 
estimates are made in a pair of iteratively executed operations labeled "Local 
Parameter Adjustmentn and 'Lateral Parameter Propagationn. The first of 
this pair attempts to fit inclination and other parameters to the Gabor filter 
amplitudes from its local patch of image. In the second phase, the parame- 
ters are propagated laterally to neighboring processors for consolidation by 
calculation of weighted parameter averages. 

Figure 6: Error surface for one Gabor filter frequency - orientation specifica- 
tion applied to the image of an inclined sine wave grating. Each location on 
the surface denotes one surface inclination value (8, +). The height at each 
point indicates the degree to which the Gabor amplitudes measured from the 
image fit this inclination value. (The greater the height, the better the fit.) 
When only one frequency - orientation filter specification is used, there are 
two surface inclinations which have minima. The one in back is the correct 
inclination. The one in front is the reverse of this inclination (similar slant 
angle in the reverse direction from perpendicular). If the algorithm makes 
the wrong initial parameter choices it can easily select a surface inclination 
which is the reverse of the correct one. 

Figure 7: a. Frequency tuning curve for a single Gabor function. With its 
symmetric Gaussian frequency response, a rising spatial gradient of ampli- 
tudes from the bottom to the top of an image may represent either b. a 
rising frequency gradient (with the surface inclined away from the viewer at 
the top) on the low frequency side of the filter's tuning curve or c. a decreas- 
ing gradient (inclined toward the viewer) on the high frequency side of the 
tuning curve. d. Adding a second filter having considerable frequency over- 
lap with the first affords an unambiguous means of determining which side 
of the Gaussian tuning curve an amplitude gradient represents. Although 
the amplitude gradients of the f i s t  filter are similar, the amplitudes of the 
second are significantly different in e. and f. 



Figure 8: Error surface for three Gabor filter frequency - orientation specifi- 
cations. Constraining the solution to satisfy three filters with similar but not 
identical frequencies disambiguates the previous situation. Only one mini- 
mum appears (the correct inclination angles) and the peak is more sharply 
defined, allowing the algorithm to arrive more rapidly to the ~olution. 

Figure 9: a. Synthesized Checkerboard with a 45 degree slant, 60 degree 
tilt. b. After 57 iterations the average inclination estimate for all processors 
is 44.2 degrees slant and 60.1 degrees tilt. For subjective comparison, a 
planar surface of grid lines is shown with the same surface inclination as that 
computed by the program. 

Figure 10: Image of birds flying over water. The average inclination estimate 
of all processors for this image is shown in the same planar grid format as 
for the checkerboard. ' 

Figure 11 : Overhead clouds. 

Figure 12: Field of clover. 

Figure 13: Field of mud. 

Figure 14: Electron micrograph of a pen. 

Figure 15: Leaves. 
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