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Abstract 
This article is a brief introduction to statistical 
decision theory. I t  provides background for un- 
derstanding the research problems in decision 
theory motivated by the sensor-fusion problem. 

1 Introduction 
This article is a brief introduction to statistical decision 
theory. I t  provides background for understanding the 
research problenls in decision theory motivated by the 
sensor fusion problem. In particular, this article is an in- 
troduction for the articles Robust Multi-Sensor Fusion: 
A Decision Theoretic Approaclr [I<amberova and Mintz, 
19901 and Non-hfon.olonic Decision Rules for Sensor Fu- 
sion [McKendall and Mintz, 19901 of these Proceedings. 
The principal references for this review are [Ferguson, 
19673, [Berger, 19851, and [DeGroot, 19701. The appen- 
dices of [McIiendall, 19901 give an expanded discussion 
of sensor fusion and an expanded introduction to deci- 
sion theory. 

Section 2 states the general research problem in sta- 
tistical estima.tion. Section 3 describes the sensor fusion 
problem. Section 4 introduces statistical decision the- 
ory and formulates the research problem as a dccision 
problem. Section 5 gives some exa.mples of the rcsearch 
problems studied. 

2 Research Problem 
The probleni of this research to  estimate the location 
parameter 0 E O of a single observation Z in the model 

Thus, the random variable Z is a measurcrncnt of the 
location parameter 6 in continuous, additivc noise 17. 
Thc goal of t i i s  research is to  estimate 0. The tsool for 
analysis is statistical decision thcory. 

There are two versions of this problem, standard esti- 
mation and robust, estimation. In a siandard-estimation 
problem, the distribution function F of the additivc noise 
V is known. An example is t o  estimate the mean 0 of 

'Acknowledgement: Navy Cont.rac1 N0014-88-I<-0630; 
AFOSR Grants 88-0244, 88-0296; Army/DAAL 03-89-C- 
0031PRI; NSF Grants CISE/CDA 88-22719, IRI 89-06770; 
and the Dupont. Corporation. 

Z - N(0 , l ) ;  in this case F - N ( 0 , l ) .  (The nota- 
tion N ( p ,  a 2 )  indicates a normal or Gaussian distribu- 
tion with location p and scale a . )  In a robust-estimation 
problem, the distribution F is uncertain: I t  is an un- 
known member of a given class 3 of distribution func- 
tions, an uncertainty class. An example is to estimate 
the mean 0 of Z -- N ( 0 , u 2 )  when u E (0,1] is un- 
known; in this case F E 3 where 3 is the set of N(O, u2) 
distribution functions with u E (0, 11. Robust estima- 
tion accounts for inexact cllaracterizations of the noise. 
Many problems in robust estimation reduce to problems 
in standard estimation. 

The statement of the problem in terms of mathemati- 
cal statistics is t o  estimate the location parameter 0 E @ 
of the random variable Z ,  where 

and 
Fz(rJB) = F ( z  - 0), Vz E 8. 

The distribution Fz(.(B) of Z is the sampling distribu- 
tion, and the distribution F of V is the izontinal distribu- 
tion. Similarly, the density of Z ,  fz(-IO), is the snmp1in.g 
density, and the density f of V is the nominal density. 
The density functions are related by the equation 

The location-estimation model of this research is fun- 
damental to  rcscarch in robust fusion of location data. 
Location data are sensors' measurements of the position 
of an object. Fusion is the combination of location data 
from different, sensors. Robust fusion accounts for uncer- 
tainty in the description of the underlying system. Thc 
goals of the rescarch in scnsor fusion are to  modcl scnsor 
fusion as astatistical problcm, to analyze thc modcl with 
statistical decision thcory, and to dcvelop mathematical 
statistics for the analysis. 

Exanlple Figure 1 illustrates a scnsor-fusion problem 
with three sensors. The sensors S1, S2, and S3 may bc 
different kinds of sensors. For example, S1 may be a 
laser sensor, S2 may be a sonar sensor, and S3 may be a 
camera. The output of each sensor Si is a mcasurcment 
Zi of the distance 0 of the object T 'from the horizon- 
tal axis. The dashed box around each sensor represents 



Figure 1: Sensor-fusion paradigm 

the noise associated with the sensor's measurement. For 
example, there may be uncertainty in the exact position 
of each sensor. The box around the object T represents 
the prior information about the location of the object. 
For example, the object may be in a room with known 
dimensions. 

The fusion problem is to combine the three mcasure- 
ments Z1, Zz, and Z3 of the distance 0 into a single 
estimate. Fusion of the data  requires that the data are 
consistent: The consistency problem is t o  verify that Z1, 
Z2, and Z3 are measurements of the sanle parameter. 

The location-data paradigm consists of a measurement 
Z of an unknown parameter 0 in statistical uncertainty, 
noise due to the environment or to  the sensor itself. A 
location model of a measurement assumes that the pa- 
rameter governs only the location of the noise but not 
its shape; the model assumes that the shape of the noise 
is independent of the parameter. (Such noise is called 
additive.) For example, a measurement Z of a paramne- 
ter 0 may be modeled as a normally distributed random 
variable with mean 0: Z - N(B, a2) .  Then the shape of 
the noise is N(0 ,u2 )  regardless of the location 0 of the 
mean. 

The sensor-fusion problem has multiple measurements 
Z1, . . . , Z, of the location 0 in additive noise. These 
measurements originate from different sensors. The fu- 
sion problem is t o  combine these data  into a single value 
for the location 0. T!le model assumes a tolerance e for 
error: An estimate 0 for B is acceptable if the absolute 
error of estimation le^ - 01 is a t  most e ;  otherwise, the 
error is una.cceptable. The goal of fusion is to  find an es- 
timator t11a.t minimizes the pr~bahilit~y of unacceptable 
error. The fusion problem subsumes the problem of con- 
sistency, which is to verify that the data  Z1, . . . , Z, are 
in fact measurements of the same location. 

4 Decision Theory 

The tool for tile analysis of the loca.tion-estimation prob- 
lem is statistical decision theory. This section introduces 

this theory and formulates the location-estimation model 
as a decision problem. 

The Decision Problein 

Figure 2 illustrates the structure of a statistical decision 
problem. The task is to  make a decision or perform some 
action a from a set A of allowable actions. The Darame- 
ter w determines the correct action to take, but the value 
of this parameter is not known. There are, however, two 
types of information about w. First, the possible values 
are known. These are the elements of the set R. Second. 
there is an observable random variable Z whose distri- 
bution depends on w and thus contains statistical infor- 
mation about w .  The goal of a decision problem is to 
choose an action from A by using the observable to gain 
information about the unknown parameter. The objec- 
tive is to  find a decision rule 6 that maps the sample 
space 2 of the observable Z to the action space A: The 
decision or action for an observation Z = z is 6 ( z )  E A. . , -  
Because the action taken is based on a random variable, 
the decision process has error. The loss function L gives 
the penalty for this error: The loss incurred by action a 
for the parameter w is L(w,a). 

In summary, a decision problem is a quadruple 
(R,A,  L, Z )  consisting of a parameter space 52, an action 
space A,  a loss function L, and an observable Z .  The 
parameier space is the set of possible values for the un- 
known statistical parameters. For standard estimation, 
the parameter space is R = O. For robust estimation, 
the parameter space is R = O x  F. The action space is 
the set of available decisions. The action space of the 
location-estimation problem is A = O; an action a E A 
is an estimate of 0. The loss function is a scalar function 
on R x A.  The loss L(w, a)  for w E R is the cost of the 
estimate a of 0. This research uses the zero-onc (e) loss 
function, L, : 

The observable is a random variable whose distribut.ion 
depends on the unknown parameters and thus contains 



Figure 2: A statistical decision problem 

R 

information about them. For the location-estimation 
problem, the observable is Z = 0 + V. 

A decision rule 6(Z) in an estimation problem is an 
estimator of 6 .  The decision rule is chosen according to 
an optimality criterion. This research constructs mini- 
max decision rules: Under zero-one (e) loss, an estimator 
6*(Z) of the location parameter 8 is minimax if 

supPW{16*(Z) - 8 )  > e) = inf supPW{16(Z) - Q l  > e). 
W 6 w 

Parameter 
W 

Thus, a minimax estimator based 011 zero-one (e) loss 
minimizes the maximum probability that the absolute 
error of estimation is greater than e. Equivalently, this 
estimator minimizes the maximum probability of unac- 
ceptable error. 

Op t ima l  Decision Rules  

I I 
I I 
I I 
I I 
I I 
I I 

A decision rule b1 is preferable to a decision rule h2 if the 
loss under 61 is smaller than the loss under 62. The loss 
function alone, however, is not enough to choose betwcen 
two decision rules since L(w, 6(Z)) is a random variable. 
Thus, the first step in evaluating the performance of a 
decision rule 6 is to find its average loss or risk R(w,6): 

R(w, 6) := E[L(w ,6(Z)] 

2 

The risk R ( w ,  6) is the weighted-average loss of 6, where 
the weight is given by the distribution Fz(.(0). 

Example  When the loss is zero-one (e), the risk of a 
rule 6 is the probability under w that thc absolute error 
exceeds e: 

.- 

dl;i(zlQ) 

= Pw{16(Z) - Q l  > e) 

Thus, small risk implies small probability of unaccept- 
able error of estimation. 

A 
0 bservable 

Z = z 

Comparison of risk gives a weak optimality criterion. 
A decision rule 61 is preferable to a decision rule 62 if 
the risk of b1 is smaller than the risk of 62 uniformly 
in w.  A decision rule is admissible if there is no other 
rule preferable to it. Comparison of risk, however, is an 
incomplete criterion since the risk varies in the unknown 
parameter w. (See figure 3.) Thus, the second step in 
finding a decision rule is to remove the dependence of 
a choice on the unknown parameter. This step leads 
to three types of decision rulcs: minimax, Bayes, and 
equalizer. 

The minimax approach eliminates the unknown pa- 
rameter w from the risk by comparing the maximum 
risks of two decision rules. A decision rule 6' is a min- 
imax rule if its maximum risk is the smallest possible 
maximum risk: 

6 
C 

Thus, a minimax rule guards against the worst-possible 
risk. 

The Bayes approach eliminates w by comparing the 
weighted-average risks of two decision rules. This ap- 
proach assumcs that tlicrc is a known probability distri- 
bution ?r on the parameter space R through which the 
risks are averaged. This distribution is the prior distri- 
bution on R. A decision rule 6' is Bayes against K if its 
weighted-average risk under a is the smallest possible 
weighted-averagc risk: 

Action 

a = 6(z) 

E[R(w ,be)] = inf E[R(w, 6)] 
6 

Thus, a Bayes rule guards against the worst-possible 
weighted-average risk. 

The equalizer approach eliminate w by choosing a de- 
cision rule with constant risk. A decision rule 6 is an 
equalizcr rule if for all w E R, 

R(w, 6) = constant. 

The goal of this rescarcli is to find a minimax rule for 
Ilie location parameter 0 of the measurement Z = 0 + V ,  



prefer 61 I prefer h2 

I W 

Figure 3: Incomplete comparison of decision rules through risk 

but direct computation of a minimax rule from thc def- 
inition is usually not possible. Instead, the Bayes and 
equalizer approaches provide an indirect strategy for 
finding minimax rules. A standard result from statis- 
tical decision theory states that a Bayes equalizer rule is 
minimax: 

T h e o r e m  1 Let T be a dis lr ib~rt ion on R, and suppose 
that the decision rule 6 is B a y e s  against T. If 6 is an 
equalizer rule,  theti 6 is ntinimax. 

Proof  See [Ferguson, 1967, p. 901 or [McI<endall, 
1990, p. 2711. 

Thus, the strategy for finding a minimax rule is first 
to construct an equalizer rule and second to show that 
it is Bayes against some probability distribution on R. 
Theorem 2 gives an extension of this strategy: 

T h e o r e m  2 Lei ?r be a distribution on  R, and stippose 
that the decision rule 6 i s  Bayes  against T. Suppose that 
there is a constant C such that  the fol101uin.g two  condi- 
t ions are met :  

1. R(w, 6) < C for  all w E R. 

2. P{w : R(w,6) = C )  = 1. 

Then 6 is n l in in~ax .  

P r o o f  See [Ferguson, 1967, p. 901 or [McKendall, 
1990, p. 2721. 

The probability distribution of these theorems is a 
mathematical tool; it has no interpretation for applica- 
tion. It  is a least-favorable distribution. A distribution 
no on R is least favorable if 

inf EXO [R(w , a)] = sup inf Ea [R(w , 6)] 
6 a 6 

(The superscripts indicates the distribution on R.) 
Computation of a Bayes rule is usually easier than 

con~putat*ion of a minimax rule from the definition. The- 
orem 3 outlines a strategy for finding a Bayes rule: 

T h e o r e m  3 Lel T be a distribution on  R, and let x(.lr) 
be the conditional distribution on  R given the observation 
Z = z .  If for all r ,  

E"(.Iz)[L(w, 6(r))] = inf EX('IZ)[L(w, a)], 

then 6 is Bayes  against T. 

Proof  Sce [Ferguson, 1967, pp. 43-45]. 

The conditional distribution ~ ( . l z )  on R is the posterior 
distribution on Q. The expected value under ?r(.lz) of 
the loss L(w, a) is the posterior expected loss of an action 
a .  Thus, a strategy for finding a Bayes rule against a 
prior distribution is to minimize the posterior expected 
loss under the corresponding posterior distribution. 

Uti l i ty  of Decision T h e o r y  

This decision-theoretic formulation of the location prob- 
lem has several features. First, standard estimation and 
robust eslimation coincide within the framework of sta- 
t,ist,ical decision theory. The only difference is thc spec- 
ification of the parameter space: R = O or R = O x F .  
The tools of st.atistica1 decision thcory, howcvcr, apply 
to either specification. Sccond, decision thcory incorpo- 
r a t s  prior informat.ion about the unknown parameters 
through the minimax criterion by optimizing over w E R. 
Third, a decision problem accounts for the consequences 
of tllc estimate through the loss function. Zero-one ( e )  
loss, in particular, lnodcls crror tolerance: An cstimate 
within e of 0 is suficiently close and so incurs no penalty, 
and an est.imate greater than e from 0 is too far and thus 
incurs full pcnalty. Also, zero-one loss is indcpendent of 
F. Finally, a minimax estimator 6*(Z) based on zcro-one 
( e )  loss induces au optimal fixed-size ( 2 e )  confidence pro- 
cedure that maximizes the confidence coeficicnt anlong 
all fixed-sizc (2e) confidence procedures. This fixcd-size 
confidence procedure induced by an estimator 6 of 0 is 

The confidence cocflicient is inf, P,{Cs(Z) 3 01, where 
P,{Ca(Z) 3 0 )  is the probability under w that the con- 



fidence inttrval'covers 0. If 6* is a minimax rule, then 

inf t.I PW{Ca- ( 2 )  3 9) = sup inf P,{C6(Z) 3 0 ) .  
6 

This confidence procedire provides a test of hypothesis 
that two measurements Z1 and Z2 are consistent. 

5 Examples 
Example This example gives a minimax rule for the 
location or mean 0 of a measurement Z - N ( 0 , l )  with 
0 E {-1,0,1) when the error tolerance e is 0. 

The  random variable Z has the structure Z = 0 + V 
where F - N(0 , l ) .  The possible values of 0 are the 
elements of O = {-1,0,1). This example is a standard- 
estimation problem since the nominal distribution F is 
known. Thus 52 = O or w = 9. Also, the action space A 
is O. The loss function is the zero-one (0) loss function: 

The minimax decision rule 6' is this: 

This rule implies, for example, that the estimate corre- 
sponding to the observation Z = 0.5 is = 0. Similarly, 
the estimate corresponding to any observation Z 2 0.803 
is 9 = 1. 

The risk function of 6' is this: 

This decision rule is an equalizer rule with risk 0.422. 
Furthermore, the rule 6' is Bayes against the distri- 

bution on O that assigns theye probabilities: 

(See [McKendall, 19901 for the arlalysis underlying 
this example and for similar problems in st.anda.rd 
estimation.) 0 

Example This example gives a minimax rule for the 
location 0 of a measurement Z -- Y ( 0 , l )  with 0 E 
[-0.3,0.3] when t+he error tolerance e 1s 0.1. 

This example is also a standard-estimation problem. 
The parameter space and action space both arc the in- 
terval [-0.3,0.3]. The zero-onc (0.1) loss function is this: 

The minimax decision rule 6' is this: 

-6*(-z) if z < O  

6*(z) = 0 if O < r < a  
r - a  if a < z < a + 0 . 2  (1) 

0.2 if a + 0.2 5 z 

Here a = 0.3992. (See figure 4.) This rule has )6*(z)l 5 
0.2 since the error tolerance is 0.1. 

Thc risk function of 6' is this: 

This decision rule has constant risk (0.6176) except for 
the points 0 = f 0.1, which 11ave.smaller risk. Since these 
points together have zero probability under any continu- 
ous distribution, this rule is essentially an equalizer rulc. 
In particular, theorem 2 applies to this rule. 

The rule 6' is Bayes against the distribution on O that 
has this density function: 

(See [Zeytinoglu and Mintz, 19841 for the analysis un- 
derlying this example.) 

Exalllplc This example gives a minimax rulc for the 
location 0 of a measurement Z - N(0 ,u2 )  with 0 E 
[-0.3,0.3] and some a 5 0.25 when the error tolerance 
is 0.1. 

This example is a robust-estimation problem since the 
scale and hence the nominal distribution F - N(0 ,a2 )  
are unccrtain. The uncertainty class is 

The parameter space R is O x 3 or, equivalently, 
[-0.3,0.3] x (0,0.25]. The action space and loss function 
are the same as those of the previous example. 

This problcm reduces to a standard-estimation prob- 
lem since the largest possible scale is suficiently small 
relativc to the error tolerance. The minimax rule for this 
example is the minimax rule for the standard-estimation 
problem of the last example wit11 the nominal distribu- 
tion replaced by N(0 ,  0.252). In particular, the minimax 
rule is given by definition 1 with a = 0.0808. 

(See [Zcytinoglu and Mintz, 19881 for the analysis un- 
derlying this exa~nple. See [Martin, 19871 and [McK- 
cndall, 1990) for other problems in robust estimation.) 0 
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