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Abstract

This article describes non-monotonic estima
tors of a location parameter () from a noisy
measurement Z = () +V when the possible val
ues of~ have. the form {0,±1,±2,... ,±n}. If
the nOIse V IS Cauchy, then the estimator is
a ~on-monotonic step function. The shape of
thIS rule reflects the non-monotonic shape of
the likelihood ratio of a Cauchy random vari
able. If the noise V is Gaussian with one of two
possible scales, then the estimator is also a non
monotonic step function. The shape this rule
reflects the non-monotonic shape of the like
lihood ratio of the marginal distribution of Z
given () under a least-favorable prior distribu
tion.

1 Introduction

This article describes non-monotonic estimators in deci
sion problems motivated by sensor fusion. It finds mini
max r~les under zero-one (0) loss for the location param
eter () In ~w? problems of the fusion paradigm Z =() +V.
The statIstIcal background for this research is reviewed
i~ the article Statistical Decision Theory for Sensor Fu
ston [McKen~all,1990b] of these Proceedings, which also
defines notatIon and terminology.
~he first problem is a standard-estimation problem in

~hIch. (} E {a, ±1, ±2, ... , ±n}, for a given integer n, and
I~ whIch th~ no~se V has the standard Cauchy distribu
tIon. A motIvatIon for these assumptions is extension of
the results of [Zeytinoglu and Mintz, 1984] and [McK
endall, 1990a] that assume the distribution of V has a
monotone likelihood ratio.! The noise distributions in
most practical applications do not have monotone like
liho.od ratios; the Cauchy distribution is a simple distri
butIon that does not have a monotone likelihood ratio.
The minimax rule for this problem is a non-monotonic
function. In contrast, the decision rules corresponding

• Acknowledgement: Navy Contract N0014-88-K-0630'
AFOSR Grants 88-0244, 88-0296; Army/DAAL 03-89-C~
0031PRI; NSF Grants CISE/CDA 88-22719, IRI 89-06770;
and the Dupont Corporation.

1 A random variable Z with a density function !z(·IB),
for BEE>, has a monotone likelihood ratio if the ratio
!z(·IB1 )/!z(·182 ) is non-decreasing for alI 81 > 82 .

to a noise distribution with a monotone likelihood ratio
are monotonic functions.

The second problem is a robust-estimation problem
in which () E {-I, 0, I} and the noise V has either the
N(O,O'r) or the N(O, O'~) distribution. If the maximum
allowable scale is not too large, the robust-estimation
problems of [Zeytinoglu and Mintz, 1988] and [McK
endall, 1990a] reduce to standard-estimation problems.
The underlying distributions in these problems have a
monotone .likel~h?od ratio (in the location parameter),
an.d so theIr mInImax rules are monotonic. In contrast,
thIS problem has a non-monotonic minimax rule because
the maximum scale is too large. (A similar problem in
which the possible locations are an interval has a ran
domized minimax rule. [Martin, 1987].)

Section 2 discusses the standard-estimation problem
with the Cauchy noise distribution. Section 3 discusses
the robust-estimation problem with uncertain noise dis
tribution. The results listed here are a synopsis of results
in [McKendall, 1990a], which gives the underlying anal
ysis and the proofs.

2 Cauchy Noise Distribution

This section constructs a ziggurat minimax rule fJ* for
the location parameter in a standard-estimation problem
(en, en, L o, Z) in which Z has a Cauchy distribution. A
ziggurat decision rule is a non-monotonic step function
with range en. The non-monotonicity of fJ* reflects the
non-monotonicity of the likelihood ratio of a Cauchy dis
tribution. The range of fJ* reflects the structure of the
zero-one (e) loss function.

Section 2.1 reviews the Cauchy distribution. Sec
t~on 2.2 summarizes the main results. The remaining sec
tIo~S develop these results in more detail. Their organi
zatIon follows the strategy for finding a minimax decision
rule by finding a Bayes equalizer rule. Section 2.3 defines
ziggurat decision rules. Section 2.4 discusses Bayes anal
ysis of a ziggurat decision rule. Sections 2.5, 2.6, and 2.7
give the risk analysis of a ziggurat decision rule. Sec
tion 2.8 combines the conclusions of this chapter to find
an admissible minimax estimator.

2.1 Cauclly Distribution

A continuous random variable V has the Cauchy distri
bution with location parameter It and unit scale, written
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Figure 1: A likelihood ratio !CIJ-ll)j!CIJ-l2) of a Cauchy distribution

v ~ C(p, 1), if its density function! is The function J-li is this:

if X = i - !. I
1- 

2

XQ °
Xl YI
X2 Y2
X3 P2(Y2)
X4 Pl (Yl)

Xs 00

( . 1 ) ( . I )2 2
1 - "2 X - 1 -"2 + Vl

if X # i - ~

1r*(±1) = 1r*(O)jp(l)
1r*(±2) = 1r*(0)j(p(1)p(2))

The factors p(±l) connect 1r* to {Xi} and thus to {)*:

fz(xdl)
p(l) := fz(xtll- 1) =: l/p(-I)

This partition is a Pi-constrained partition of ~+.
The probability function 1r* is this:

v := !v15
These equations have unique solution Yl, Y2 such that

Yl E (~, ~ + Vl) and Y2 E (~, ~ + VI)'

Furthermore, Yl < Y2. (The solution may be computed
numerically by the Newton-Raphson method.) The par
tition {Xi} is defined in terms of this solution:

2.2 Introduction

This section introduces and summarizes the results
through an example. In particular, it shows how to con
struct a minimax rule {)* and a least-favorable probabil
ity function 11"* on 8 n for the standard-estimation prob
lem (8n ,8n ,Lo,Z) in which n = 2 and F is the C(O, 1)
distribution. The general results have arbitrary n.

The decision rule {)~ defined by figure 2, is the ziggurat
decision rule over a partition {Xi} ~ of ~+ onto 8 2 : It is
an even, non-monotonic step function with range 8 2 and
with steps of unit height occurring at points of {Xi}. The
points x 1 and X2 are chosen so that {)* is an equalizer
rule. The points X3 and X4 and the positive probability
function 1r* are constructed from Xl and x2 so that {)* is
Bayes against 1r; Consequently, the rule {)* is admissible
and minimax, and the probability function 1r* is least
favorable.

The partition {Xi} requires solution of the ziggurat
equalizer equations:

The distribution function of a C(p, 1) random variable is

1 v - J-l
F(vlJ-l) = -; arctan(-l-) + !.

The C(O, 1) distribution is the standard Cauchy distribu
tion. An important property of a Cauchy disrtibution is
that it does not have a monotone likelihood ratio. Fig
ure 1 illustrates the shape of these ratios.

The functions 9i and hi are these:

9i(X) F(x-i)+F(i-lli(X)),

hi{x) F(Jli+l(X) - i) + F{x - i),
i = 1,2

i =0,1

The probability function 1r* is positive and unique.

2.3 Ziggurat Decision Rule

This section defines and illustrates ziggurat decision
rules. A ziggurat rule is specified in terms of a parti-
tion of ~+.
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Figure 2: Ziggurat decision rule 8*

Notation: It For integers p ~ q, the notation It
means the integers from p to q. For example, Ig =
{O, 1, ... ,pl.

Remark A particular partition of ~+ is specified by
the points Xi, i E If. The specification of Xo and Xp+l
is implicit.

Definition: ziggurat decision rule Let {Xi }~n+l be
a partition of ~+. The ziggurat decision rule 8 over {Xi}

onto en is this:

Definition: partition of ~+ A partition2 of ~+ is a
set of points {Xi}~+l such that Xo = 0, Xp+l = 00, and
Xi+l > Xi for i E Ib. Such a partition is abbreviated as
{Xi}.

Example 2.1 A partition of ~+ with p = 4 is

{Xi}~ = {O, 0.617, 1.912,4.536, 11.209,00}. 0

and
X2n+l-i = J-li(Xi).

Example 2.3 A J-li-constrained partition of ~+ has the
following structure:

{O, Xl, X2,·· . ,Xn-l, Xn , J-ln(Xn ), J.ln-I(Xn-I),

... ,J-l2(X2),J-lI(XI), oo}
Furthermore, Xi E ei. 0

Example 2.4 Let n = 2. Define Xl, X2, X3, X4:

Xl := 0.617, X2 := 1.912, X3 := 4.536, X4 := 11.209.

Note that Xl E ~l and X2 E e2:

! < Xl < ~ + ~v'5 = 1.618

~ < X2 < ~ + ~v'5 = 2.618
Verify that X3 = J.l2(X2) and X4 = J.lI(XI). There
fore, {O, xl, X2, X3, X4, oo} is a J.li-constrained partition
of ~+. 0

2.4 Bayes Rule

Notation

Bayes analysis of a ziggurat rule for a decision problem
(en ,8n ,Lo,Z) in which Z has a Cauchy distribution
requires J-li-constrained partitions of ~+.

Notation ei:= (i - ~, i - ! + v)

Definition: J-li-constrained partition of ~+ A J-li

constrained partition of ~+ is a partition {Xi }~n+l of ~+
such that for all i E If ,

Xi E ~i

i = 0, ,n
i = 1, ,n

6(z) :=

{

i if Xi ~ Z < Xi+l,

6(z) := n - i if Xn+i ~ Z < Xn+i+l,
-6(-z) if z ~ 0

Example 2.2 Let n = 2. Define 6:

o if 0 ~ Z < Xl

u if Xl ~ Z < X2

2u if X2 ~ z < X3

u if X3 ~ z < X4
o if X4 ~ z

-6(-z) if z < 0

\/X E~.

Then 6 is the ziggurat decision rule over the partition
{0,XI,X2,X3,X4,00} onto O2 .0

Remark The ziggurat rule over {Xi }~n+l steps be
tween i-I and i at Xi and between i and i-I at X2n+l-i,

i E If.

Remark The term ziggurat loosely describes the shape
of the rule over ~+: A ziggurat is a terraced pyramid.

2This definition differs from the set-theoretic definition of
some contexts.

Remark Let {Xi }~n+l be a J.li-constrained partition of
~+. The ziggurat rule over {Xi} steps between i-I and
i at Xi and between i and i-I at J.li(Xi), i E If·

Remark Let fzeli) "-J C(i,l), where i is an integer.
The function J-li satisfies the identity

!z(J-li(x)li+e) !z(xli+e)
!z(J-li(x)li - e - 1) - !z(xli - e - 1)'

This is the functional definition of J-li. Bayes analysis
motivates this definition. The algebraic definition of J-li
is derived from the functional definition.



6(z) =

I E I~.

2ho(Xl)

91 (Xl) + hI (X2)

92(X2) + h2(xa)

9a(Xa) 0

R(O,6)
R(±u,6)

R(±2u,6)
R(±3u,6)

Yl 0.570743
Y2 = 1.731856
Ya = 2.979961

Here, YI E (0.5,0.5 + VI), Y2 E (1.5,1.5 + VI), and Y3 E
(2.5,2.5+Vl). AIsoY2-Yl > 1 and Y3-Y2 > 1.0

2ho(Yl) =91 (Y1) + hI (Y2) =92(Y2).

The ziggurat-equalizer equations for n =3 are these:

2ho(Y1) = 91(Y1) + h1(Y2) = 92(Y2) + h2(Ya) = 9a(Ya). 0

Example 2.9 The ziggurat-equalizer equations for n =
2 are these:

Proposition 3 states that the ziggurat-equalizer equa
tions have a unique solution Yl, ... , Yn that has certain
properties. Proposition 4 uses this solution to construct
an equalizer rule.

Proposition 3 Assume F ~ C(O,l). The ziggurat
equalizer equations have unique, increasing solution Y1,
... , Yn with Yl E ~l· Furthermore Yl - Yl-1 > 1 for
IE I 2.
Example 2.10 Let F ~ C(O, 1). The ziggurat-equalizer
equations for n = 3 and u = 1 have the following solu
tion:

For n ~ 2, the ziggurat-equalizer equations are

2.6 Ziggurat-Equalizer Equations

Equating the expressions R( (), 6) over () E eN to find
a ziggurat equalizer rule leads to the ziggurat-equalizer
equations. These are n equations in n unknowns Yl, ... ,
Yn. For n = 1, the ziggurat-equalizer equation is

Remark In proposition 1, the restriction to a Pi
constrained partition of ~+ and the conditions on the
probability function are necessary for the decision rule
to minimize the posterior expected loss.

2.5 Risk Function

Proposition 2 gives the risk function of a ziggurat deci
sion rule over a Pi-constrained partition of ~+.

Proposition 2 Let {Xi}~n+1 be a pi-constrained par
tition of ~+, and let 6 be the ziggurat decision role over
{Xi} onto en.

R(0,6) 2ho(Xl)

R(±i,6) 9i(Xi) + hi(Xi+l), i E I?-l
R(±n,6) 9n(Xn )

Example 2.8 Let n =3. Let {xi}6 be a Pi-constrained
partition of ~+, and let 6 be the ziggurat decision rule
over {Xi} onto ea.

Then 6 is Bayes against some positive probability func
tion on e 2 • 0

Example 2.6 Consider example 2.5. The conditions
of proposition 1 for a probability function 7r on 8 2 are
these:

7r(0) = p(l) 7r(1)

p(l) := fz(xlI1) = f(0.617 - 1) = 1.204
fz(xdO) f(0.617)

7r(1) = p(2) 7r(2)

p(2) := fZ(X21 2) = f(1.912 - 2) = 1.818
fz(x211) /(1.912 - 1)

Also, 7r(-1) = 7r(1) and 7r(-2) = 7r(2). Hence:

L 71"(9) 71"(0) ( 1+ il) + P(1)P(2))
8

3.5757r(0)

Thus 7r assigns these probabilities:

11"(0) 0.280

7r(±1) = 0.232
7r(±2) = 0.128

Therefore, the ziggurat decision rule over {Xi}~ onto e2
is Bayes against the probability function 11" on e2 . 0

Example 2.7 The probability function iT of proposi
tion 1 is given by the following equations: For all I E II,

7r(±/) =(IT fz(Xklk) )-171"(0)'
k=1 fZ(Xklk - 1)

where

Main Result

Proposition 1 shows that to any ziggurat decision rule 6
over a Pi-constrained partition of ~+, there corresponds
a positive probability function 7r on en such that 6 is
Bayes against 7r.

Proposition 1 Assume F ~ C(O, 1). Let {Xi}~n+1 be
a pi-constrained partition of ~+. Let 7r be the even, pos
itive probability function on en such that for alii E II ,

7r(/- 1) = p(/) 7r(/).

The ziggurat decision rule over {Xi} onto en is Bayes
against 7r.

Example 2.5 Let n = 2. Let {Xi}~ be the Pi-
constrained partition of ~+ given in example 2.4:

{Xi} = {0,0.617,1.912,4.536,11.209,oo}

Let 6 be the ziggurat decision rule over {Xi} onto e2 :

° if °~ z < 0.616
1 if 0.616 ~ z < 1.912
2 if 1.912 ~ z < 4.536
1 if 4.536 ~ z < 11.209
o if 11.209 ~ z

- 6(- z) if z < °



Thus, the ziggurat decision rule over {Xi} onto e3 is an
equalizer. Its risk is R6 = 93(X3):

Note that {Xi} is a partition of ~+:

{Xi} ={0,0.571, 1.732,2.980,5.104,6.891, 18.170,00}.

( N)-ll-r
F(-!) < R6. ~ 1 - 1 + 2r .

l-r

Remark The upper bound of this corollary is better
than the upper bound 2F(-!) of proposition 4:

This section constructs a minimax rule for the
location parameter in a robust-estimation problem
(e l x {O'l' 0'2}, e l , Lo,Z) in which the uncertainty class
is {N(O,O'r), N(O,O'~)}. The larger scale 0'2 is large
enough that the problem does not reduce to standard
estimation. Examples 3.1 and 3.2 give minimax rules
for specific values of the scales. Example 3.3 considers
a similar problem in which the scale set has more than
two points. The minimax rules of these examples are not
monotonic even though the nominal distribution has a
monotone likelihood ratio in its location parameter. Ex
amples 3.4 - 3.7 discuss the analysis underlying these
results.

3 Uncertain Noise Distribution

( N)-ll-r
1 - 1 + 2r i 2F(-!u) as N i 00

1-r

Then

where

Then 6* and 11"* have the following properties:

1. 6* is Bayes against 11";
2. 6* is an equalizer rule.

3. 6* is minimax.

4. 6* is admissible.
5. 11"* is least favorable.

Example 2.13 Refer to example 2.11: The ziggurat de
cision rule over {Xi} onto e3 is an adn1issible minimax
rule. 0

Example 2.14 Refer to examples 2.5 and 2.6: Verify
that Yl := 0.617 and Y2 := 1.912 satisfy the ziggurat
equalizer equations for n = 2, and note that {Xi} is a
Jli-constrained constrained partition of ~+. Thus 6 is
minimax and 11" is least favorable. 0

Corollary 2 In theorem 1, define

r:= F(-~)/F(~).

Also, define Xo := 0 and X2n+l := 00. Suppose that
{Xi}~n+l is a partition ofSR,+, and let 6* be the ziggurat
decision rule over {Xi} onto en.

Let 1r* be the positive probability function on en de
fined by the following conditions: For i E It ,

5.104
6.891

18.170

X4 Jl3(X3)
Xs Jl2(X2)
X6 .- Jll(Xl)

2.8 Minimax Rule

Theorem 1 combines the conclusions of this chapter to
find an admissible minimax estimator of the location pa
rameter () for a decision problem (en, en, L o,Z) in which
Z has a Cauchy distribution.

Tlleorem 1 Assume F ""J C(O, 1). Let Yl, ... , Yn with
Yi E €i satisfy the ziggurat-equalizer equations. For i E
If, define

F(X3 - 3) + F(3 - Jl3(X3))

F(X3 - 3) + F(3 - X4)
0.635

Here, 0.352 =F(-!) < R6 < 2F(-!).D

Example 2.12 Refer to example 2.5: Verify that Yl :=
0.617 and Y2 := 1.912 satisfy the ziggurat-equalizer equa
tions for n = 2. Thus, since {Xi} is a Jli-constrained
constrained partition of ~+, the ziggurat rule over {Xi}
is an equalizer rule. 0

Remark Proposition 3 asserts that Xl, ... , X n exist
and that Xi > Xi-I, i E I~. There is no guarantee, how-
ever, that {Xi} ~n+ 1 is a partition of ~+; it is necessary
to verify that Jli-l(Xi-l) > Jli(Xi), i E I!]. If {Xi} is
a partition of ~+, then it is a Jli-constrained partition
by construction. Numerical computations suggest that
{Xi} is in fact a partition of ~+, but there is no proof of
this conjecture.

2.7 Equalizer Rule

Proposition 4 gives a ziggurat equalizer rule.

Proposition 4 Assume F ""J C(O,l). Let Yl, ... , Yn
with Yi E ei satisfy the ziggurat-equalizer equations. For
i E It, define

Xi := Yi and X2n+l-i := Jli(Yi).

Also, define Xo := 0 and X2n+l := 00. If {Xi}~n+l is
a partition of ~+, then the ziggurat decision rule 6 over
{Xi} onto en is an equalizer rule. Furthermore, if {Xi}
is a partition of ~+, then the common risk of 6 is R6 =
9n(Xn) and F(-!) < R6 < 2F(-!).

Example 2.11 Let n =3. The solution Yl, Y2, Y3 to the
ziggurat-equalizer equations specified by the proposition
IS

Yl = 0.571, Y2 = 1.732, Y3 =2.980.

Let Xl := Yl, X2 := Y2, and X3 := Y3. Also, define X4,
Xs, and X6 as follows:
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Figure 3: A minimax rule for (81 X{0'1,0'2},8 1,Lo,Z) (z ~ 0)

Example 3.1 Let 0'1 :== 1 and 0'2 :== 2.5. Define the
decision rule 6* as follows:

Xl 1.09833

X2 2.59355

X3 3.095

this:

11"*(0,0'1)

11"* (0,0'2)
7r*(±1,0'1)

1I"*(±1, 0'2)

o
0.43414873

0.09183446

0.19109118

R«0,0'1),6*) == 0.271514

R«O, 0'2), 6*) == R«±l,0'1), 6*) == R«±l,0'2), 6*)

== 0.550656

In this example, too, the risk for the parameter (0,0'1)
is less than the equalized risk for the other parameters,
and the probability mass for (0,0'1) is zero. 0

Example 3.3 This example extends example 3.2 by al
lowing the scale set to have more than two points.

Define 0'0 == 0.9073846. Let ~ be a scale set that
includes 0'1, 0'2, and any finite number of points between
0'0 and 0'1. Then 6* is robust minimax for the decision
problem (8 1 x~, 8 1 , Lo, Z). The probability function of
example 3.2 is extended as follows: If 0' =F 0'1 or 0' =F 0'2,
then 11"*(0,0') :== 0 for all O. Here, too, 6* is Bayes against
7r: and 7r* is least favorable. 0

Example 3.4 In the standard-estimation problems
of [McKendall, 1990a], the likelihood ratio of the sam
pling density fz (·10) is important to Bayes analysis. If
Z has a monotone likelihood ratio, for example, the cor
responding Bayes rule is monotonic. Alternatively, if Z
has a Cauchy distribution, the non-monotonic shape of a
Bayes rule mimics the non-monotonic shape of a Cauchy
likelihood ratio. In this robust-estimation problem, how
ever, it is the likelihood ratio of the marginal density of
Z given 0 under the least-favorable distribution 11"*, de
noted .Bz(·IO), that is important to Bayes analysis:

The risk function is this:

(1)

o
0.40587187

0.048166

0.24890241

1("* (0,0'1)
1("*(0,0'2)

11'"* (±1, 0'1)

11'"* (±1, 0'2) .-

6*(z) :==

Then 6* is a Bayes rule against 7r: and 7r* is a least
favorable probability function.

The rule 6* is almost an equalizer rule over 8 1 x
{0'1,0'2}:

R((0,0'1),6*) == 0.26453

R«O, 0'2), 6*) == R«±l,0"1), 6*) == R«±l,0"2), 6*)

== 0.576597

The risk for the parameter (0,0"1) is less than the equal
ized risk for the other pairs, and the probability mass for
(0,0"1) is zero. 0

Example 3.2 Let 0"1 := 1 and 0"2 := 2. The corre
sponding points Xl, X2, X3 are these:

o if 0::; z < Xl

1 if Xl::; z < X 2

o if x 2 ::; z < X3

1 if X3 ::; Z

-6*( -z) if z < o.
(See figure 3.) This rule is a minimax rule for
(81 X {0'1, 0'2}, 8 1 , L o, Z).

Let 11'"* be the following probability function on 8 1 x
{0'1,0'2}:

Figure 4 plots a likelihood ratio of .Bz( ·10) for the robust
estimation problem of example 3.1. The non-monotonic
shape of 6* mimics the shape of this ratio. 0

Xl 1.09504

X2 2.93635

X3 3.20822

Define 6* by definition (1). Then 6* is minimax. The
corresponding least-favorable probability function 11'"* is

.Bz(zIO) :== E fz(zl(O, 0')) 11"(0,0'), zEW



Figure 4: A likelihood ratio of ,8z( .\0)

Example 3.7 This example lists the risk function of a
decision rule 8* of definition (1).

Example 3.5 The probability function 1r* of exam
ple 3.1 or 3.2 satisfies the following linear system of equa
tions:

.Bz(xiI1) = .Bz(xdO), i = 1,2,3

L L 1r*(0, 0") = 1
(J q

Define Yo, Y1, Y2, and Y3:

R( (0,0"),8*)

R((l, 0"), 6*)

R( (-1 , 0") , 8*)

-2F(X1/O:) + 2F(X2/0")
+ 2F(-X3/0")
F((XI - 1)/0") - F((X2 - 1)/0")
+ F((X3 - 1)/0")
R( (1, 0"), 6*) 0

Yo .- 1r* (0, 0"1)

Y1 .- 1r*(0, 0"2)

Y2 1r*(1, 0"1)

Y3 .- 1r*(2, 0"2)

The equations are these (i = 1,2,3):

1 x· 1 x·
- f( ..2. ) Yo + - f( --..: ) Yl
0"1 0"1 0"2 0"2

1 Xi - 1 1 x· - 1
--f(--) Y2 - - f(-'-) Y3 =0

0"1 0"1 0"2 0"2

Yo + YI + 2Y2 + 2Y3 = 1

When Xl, X2, and X3 are known, these are four equations
in four variables.

These constraints on the probability function are anal
ogous to those of proposition 1.0

Example 3.6 The results of examples 3.1, and 3.2 are
computed from the following nonlinear system of equa
tions with the assumption that 7r* (0,0"1) =0 (or Yo =0):

YI + 2Y2 + 2Y3 = 1
,Bz(xiI1) = ,Bz(xiIO), i = 1,2,3
R( (1, 0"j ), 6*) = R(0, 0"2), 8* ), j = 1, 2

These are six equations in the six unknowns Xl, X2, X3,

YI, Y2, Y3· It must be verified for any solution that
Xl ~ X2 ~ X3, that YI, Y2, and Y3 are non-negative,
that 8* is Bayes against 1r: and that R«O, 0"1), 8*) ~

R((O, 0"2), 8*).0
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