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Abstract. We give a proof that all terms that type-check in the theory of contructions are 
strongly normalizing (under P-reduction). The main novelty of this proof is that it uses a 
"Kripke-like" interpretation of the types and kinds, and that it does not use infinite contexts. 
We explore some consequences of strong normalization, consistency and decidability of type- 
checking. We also show that our proof yields another proof of strong normalization for L F  
(under P-reduction), using the reducibility method. 

1 Introduction 

We give a proof that all terms that type-check in the theory of constructions are strongly 
normalizing (under P-reduction). The main novelty of this proof is that it uses a "Kripke- 
like" interpretation of the types and kinds, and that it does not use infinite contexts. The idea 
used for avoiding infinite contexts comes from Coquand's thesis [Coq85]. Our proof yields as 
a corollary another proof of strong normalization (under P-reduction) of well-formed terms 
of LF.  In fact, it is easy to see that this proof does not use the candidates of reducibility at 
all. We are unaware of similar proofs (using reducibility ''A la Tait") for LF .  

'The results in this paper were first presented a t  the First Annual Workshop on Logical Frameworks, 
Esprit Basic Research Action, Antibes, May 7-11, 1990. 

'partially supported by ONR Grant N00014-88-K-0593. 



Our experience with proofs of strong normalization is that besides their intrinsic diffi- 
culty, their clarity and ease of understanding are greatly affected by the choice of notation, 
and the order in which the concepts are introduced. For example, it is logical to define 
"the values" before defining [I' D AIJpA, the interpretation of types, since this latter defi- 
nition requires the former (the term "values" is used by Coquand [Coq87], but in Girard's 
terminology and ours, these are the sets CA,* of "candidates of reducibility"). However, we 
believe that it more intuitive and easier for understanding such proofs, if [I 'DA]~A is defined 
before the families of candidates (In Coquand [Coq87], [I'D A]pA is called the interpretation 
of a term, and it is denoted as Evalp M). It is possible to do so by first giving a rough 
and intuitive idea of what families of candidates are. Another difficulty is to package in a 
convenient way the various ingredients making up a candidate assignment (the substitution 
component, the candidate assignment component, etc). This is one place where the idea of 
viewing a context A as a world, as in Kripke semantics of intuitionistic logic, seems helpful. 

A key remark for our presentation is the following: proofs of normalization that follow 
the reducibility method are intuitionistic. Hence, it should be possible to carry them in any 
intuitionistic model, hence in any Kripke model. There is furthermore one natural Kripke 
"term model" where we take for the Kripke worlds, the valid contexts of the type system. It 
should be noted that this paper represents "ongoing research", and that this is a preliminary 
version of a paper in which we intend to explore more thoroughly the nature of Kripke models 
for the theory of constructions. 

Among the sources of inspiration for this research, Moggi and Mitchell's work on Kripke 
models for the simply-typed X-calculus [MM87] should be mentioned. We also became re- 
cently aware of work by Aarne Ranta [Rango], in which the notion of "contexts as (finite 
approximation of) worlds" is used. One of the motivations for this work is to give an intu- 
itionistic treatment of the notion of "possible worlds". Ranta's notion of Kripke structure is 
more general than ours, in that he does consider any interpretation between contexts, and 
not only projection (here seen dually as inclusion). It may be interesting to see if one can 
formulate a normalization proof in this framework. 

One should be careful in referring to "the" theory of constructions, since different ver- 
sions of this theory have been formulated and these versions are not all equivalent. Thus, 
in order to avoid ambiguities, we formulate in the next section a version of the theory of 
constructions equivalent (but not identical in syntax) to the version presented by Coquand 
and Huet [CH88]. We refer to this version of the theory of constructions as CC. 

Syntax of the Theory of Constructions CC 

We find it pedagogically convenient to first describe a theory of constructions whose syntax 
has three levels (kinds, type families, and terms). The special kind * is the logical kind of 
propositions. In other words, types (propositions) are exactly those type families whose kind 



is *. In the simple theory of type, Church used the notation o for *. Another notation used 
in place of * is Prop (or even Type). Furthermore, some authors use Type instead of kind, 
but we find this practice somewhat confusing, since in the Curry-Howard formula-as-type 
analogy, propositions correspond to types. 

We begin by defining raw terms. 

Definition 2.1 We use the nonterminal K to range over kinds, A to range over type families, 
and M to range over terms. We also use two kinds of variables, ranging over kinds and type 
families. Raw terms are defined by the following grammar. 

A 4 t 1 (Vt: K)A I (Vx: A)A I (AA) ( (AM) ( (At: I<. A) 1 (Ax: A. A) 

M -+ x ( (MM) ( (MA) I (At: K. M) I (Ax: A. M). 

A context is an ordered sequence of pairs A = ((xl, Al), . . . , (x,, A,)), where x; is a 
variable and A; is a kind or a type family, and for any two x;, A; and xj, Aj in A, i # j 
implies that x; # xj. A context A is usually written as xl: Al , . .  . , x,: A,. There are four 
categories of judgments: 

Definition 2.2 Judgments are expressions of the form: 

A D (A is a valid context), 

A D K:  kind (IS is a valid kind in context A), 

A D A: K (A kind-checks with kind I< in context A),  

A D M: A (M type-checks with type A in context A). 

We define P-reduction and p-conversion in the usual manner on raw terms. This means 
that redexes will be of the form (At: K. A)B, (Ax: A. B)M,  (At: I(. M)B,  and (Ax: A. M ) N .  
We emphasize that we do not consider 7-conversion in this paper. There appears to be some 
difficulties with the Church-Rosser theorem if p7-conversion is defined on raw terms, and it 
seems that one needs to define judgments of the form A D  M Act M' (equality judgments), 
which is quite cumbersome. 

3 Typing Rules for CC 

We could list the typing rules assuming the above syntax, but it is possible to state them 
more concisely if certain conventions are adopted. 



Firstly, we will not distinguish between type variables and term variables. 

Secondly, we will use the symbol K to denote either kind or *. 
Thirdly, we will denote both judgments A D  K: kind and ADO: * as ADA: K, and similarly, 
we will denote both judgments A D a: K and A D M:  o as A D M:  A. 

Finally, we identify V and l l ,  and A and A.  

Note that now, there is only one kind of raw terms given by the following grammar: 

M + I * I ( nx :  M)M 1 (MM) I (AX: M. MI. 

With the above conventions, we only have one rule for each kind of rule. 

Definition 3.1 In the rules below, K ,  61, ~2 E {*, kind). 

Context Formation: 

A D *: kind 
A D A : K  

empty context 

Axiomatic Judgments: 
A D  

Product Formation and Quantification: 

A D A ~ : K ~  A , X : A ~ D A ~ : K ~  

Abstraction: 
A D A1: A, x: Al D A2: rc2 A, x: A1 D M:  A2 

A D (AX: Al. M): (Hz: A1)A2 

Application: 
A D M: (llx: Al)A2 A D N: A, 

A D M N :  A2[N/x] 

Ifind and Type Conversion: 



It turns out that the above typing rules can be simplified, because some of the premises 
are redundant. Of course, this has to be justified carefully, but this has been verified by 
Coquand and Huet [CH88], and others. For the reader's convenience, we recall some of the 
main basic properties of CC.  

Some Basic Properties of CC 

We shall use the notation AD E as an abbreviation for all forms of judgments. Given contexts 
r and A, the notation r 5 A means that r is an initial subsequence of A. 

First, we note that under ,B-conversion alone, the Church-Rosser theorem holds even for 
raw terms. 

Theorem 4.1 (Martin Lof) 
The Church-Rosser property holds for raw terms of C C  (even the economical version) 

Proof. Such a proof using the so called "TaitIMartin Lof's method" was given by 
Martin Lof [ML72]. 

It should be noted that theorem 4.1 is quite handy. It appears that if ,B-conversion is 
defined on raw terms, which is definitely more convenient than using equality judgments, 
many important properties of CC make use of the Church-Rosser property. 

The propositions listed below consist of the translation in English and in our terminology 
of properties 1-7 in Chapter 1 of Coquand's thesis [Coq85]. In some cases, these proofs require 
some amplification. First, we need the following definitions, which are translations in our 
terminology of Coquand's definitions. 

Definition 4.2 K is a kind iff I( is of the form* or (IIxl: Al)  . . . (IIx,: Am)*, and ADK: kind 
for some context A; 

A is a type family iff A D A: K for some context A and some kind K; 

A is a type iff A D A: * for some context A; 

M is a proof (or proof term) iff A D M: A where A is not a kind. 

When we want to stress that a context A is well-formed, that is, when A D is derivable, 
we say that A is a valid context, and similarly for kinds, type families, types, and proofs. 

Lemma 4.3 If A D  E, then A' D for every A' 5 A, and more generally, every derivation of 
A D E contains a derivation of A' D as a subderivation. 



Lemma 4.4 If A b A: I< and A b A: K' where both K and K' are kinds, then I< Act K t .  
Similarly, if A b M :  A and A b M :  A', where both A and A' are not kinds, then A ACC A'. 

The proof of the above lemma actually seems to require the Church-Rosser property 
and the following proposition. 

Proposition 4.5 Assume that A b (IIx: A ) K :  kind and A b (IIx:  A f )K ' :  kind. If (IIx: A ) K  
ACC ( n x :  A')K1, then A Act A' and I< ACc I<'. 

Proposition 4.6 Both A b M :  A and A D  M :  kind are not derivable at the same time. 

Definition 4.7 Given any two contexts A, A', we say that A C A' iff for every x, if 
x E dom(A)  then x E dom(At)  and A ( x )  = A f ( x ) .  

Lemma 4.8 Assume that A b, A' b, and A C_ A'. If A b E ,  then A' D E .  In particular, i f  
A I A ' ,  A'D, a n d A ~ E ,  t h e n A f b E .  

Lemma 4.9 If A b M :  A and A, x: A,  A' E ,  then A, A f [ M / x ]  b E [ M / x ] .  

Lemma 4.10 If A b M :  A and A is not a kind, then A b A: *. If A D M :  A and A is a kind, 
then A b A: kind. 

Lemma 4.11 If A, x: A, A' b E ,  A 6 c c  A', and either A D A':* or A r> A': kind, then 
A , x :  A', A' b E. 

Lemma 4.12 If A D M :  A and M Act N ,  then A b N :  A .  

Lemma 4.13 The judgments A b M :  A where A is a type and A D M :  I< where I< is a kind 
cannot hold simultaneously. 

The proof of the above above lemma seems to require the Church-Rosser property. 

In view of proposition 4.6, kinds are disjoint from type families and proofs. In view of 
lemma 4.13, proofs and type families are disjoint. 



5 Strong Normalization in CC 

The proof of strong normalization for well-typed terms of C C  is obtained by generalizing the 
proof given by Girard for the system F, [Gir72], as   resented in Gallier [Galgo]. However, 
there are some significant technical complications. In F,, we have an ascending hierarchy, 
kinds, type families, and terms, where kinds do not depend on type families or terms, and 
type families do not depend on terms. However, in CC, kinds, type families, and terms, are 
defined in a single big simultaneous inductive construction. The main difficulty is to ensure 
that the interpretations [I' D A]pA are nondegenerate (i.e., nonempty sets). 

The first step is to define the concept of a candidate assignment, which packages together 
a substitution and a valuation assigning candidates to variables. 

Definition 5.1 A substitution is a function cp: V + Terms such that cp(x) # x for only 
finitely many x, and for every cp(x), there is some context A and either some type A such 
that A D cp(x): A (and A D A: k), or some kind K such that A D ~ ( x ) :  K (and A D I/;: kind). 
The domain D(cp) of cp is the set D(y)  = {x I cp(x) # x). 

Every substitution cp has a unique homomorphic extension @:Terms + Terms. Given 
a term M (term, type family, or kind), the result of applying cp to M is @(M), and it is 
denoted as cp(M) or M[cp]. 

Some form of Kripke structure is lurking around. Contexts are going to play the role of 
worlds. Consequently, most concepts will be defined "in world A". The notion of inclusion 
of worlds is the relation defined in definition 4.7. Substitutions will also play the role of 
valuations assigning values to variables. This motivates the following definition. 

Definition 5.2 Given two valid contexts I', A, where I' is used to type/kind check, and A 
acts as a world, given a substitution cp, we say that I'[(p] type-checks in A iff A D  x[cp]: I'(x)[p] 
for every x E dom(I'). 

At first glance, one may be concerned that this condition is circular. However, this is 
not so. Indeed, if I' = xl: Al, . . . , x,: A, is a valid context, it can be easily shown that 
FV(A;) C {xl, . . . , xi-,) for all i ,  1 5 i < n, and that I'[cp] type-checks in A means that 
A D xi[(p]: Ai[xl[cp]/xl,. . . ,~; -~[cp] /x;-~]  for all i, 1 5 i 5 n, which is possible. 

We now assume that for every world A and type family A that kind-checks in A, we 
have a set CA,A of nonempty sets called candidates to be defined soon. All we need to know 
is that, when A is a type, every C E CAYA is a set of terms A' D M such that A' D M: A 
for some A' > A, and when A kind-checks with kind (IIx: B)K,  every element of CAYA is a 
certain function. We also have a set CkYA consisting of nonempty sets of types A' D A such 
that A'D A: * for some A' > A, and a set Ckindta consisting of nonempty sets of kinds A'D K 
such that A' D K: kind for some A' > A. 



Definition 5.3 A candidate assignment is any function p from V U {*,kind) to Terms U 
(Terms x UC), such that the following properties hold: 

(1) If we define the function p,: V + Terms such that, 

then p, is a substitution (which means that p,(x) # x only for finitely many x E V),  
and, 

(2) If p(x) = (A,C),  then A is a type-family that kind-checks in some context A and 
C E C A , ~ ,  else if p(x) = A then A is a term (proof) that type-checks in some context 
A; 

(3) p(*) = (*, C) ,  C E C*,a, p(kind) = (kind, C), and C E Ck;,d,a. 

The function p also defines another function p, such that x H C, * H C, and kind H C. 
By abuse of notation, both p, and p, are often denoted as p, when the context makes it clear 
which is referred to. 

Definition 5.4 A candidate assignment p satisfies I? at A iff 

(1) I'[p,] type-checks in A. 

(2) Whenever ~ ( x )  = (A, C)  or p(x) = A, then A kindltype-checks in A, and C E CA,*. 

It is easy to verify that if A A' and p satisfies l? a t  A, then p satisfies I' at A'. We can 
now define [I'D AlJpA, where I' is a context, either A is a type family that kind-ckecks in I', or 
A is a kind valid in I', or A = kind, p is a candidate assignment, and A is a context viewed as 
a world. The definition is by induction on the complexity of I' D A (if l? = xl: Al, . . . , x,: A,, 
then the complexity of r D A is the sum of the sizes of A1, . . . , A,, A). It only makes sense 
when p satisfies I' at A. 

Definition 5.5 In the clauses below, K stands for a kind, a for a type, A, B for type 
families, D for a kind or a type, M for a type family or a term (proof), and N for a term 
(proof). 



[I' D (IIx: K)D]pA = {A' D M ) At D M:  ((Hz: I() D) [p,], At  2 A, and 

V A ~ ~ ~  a t ,  van D A E [r ~ l l ~ ~ ~ ,  vc E CA,a,,, 
A" D (MA) E [I?, x: I< D Dlp[.: = (A, C)]Att), 

[I' D (Hz: 0)  D] pA = {A' D M I A' D M: ((Hz: a )  D) [p,] , A' > A, and 
VA" 2 A', V A ~ ~ D  N E [r D U I ~ A ~ ,  

AN D ( M N )  E [I', x: a D D]p[x: = N]AU}, 

[I' D AX: K. B]pA = A(A' D A)AC. [I', x: K D B]p[x: = (A, C)]Af, 
a function with domain 

{(A' I> A, C )  1 A' l> A: I([p,], A' > A, c E cA,Aj), 
[[I' D Ax: 0. B]pA = A(At D N). [[I', x: a D B]p[x: = NIA', 

a function with domain 

{AID N 1 A'D N: ~ [ p , ] ,  At > A). 

We emphasize again the fact that in [I' D xIpA, we have I' D x: I( for some kind K ,  i.e., 
x is a type variable. 

Definition 5.6 Given any judgment I' D M:  A (where A can even be kind), given any can- 
didate assignment p, and any context A viewed as a world, we write A It r[p] iff 

( la)  p satisfies r at  A, and 

(2a) A D x[p] E [[I' D I'(x)]pA for every x E dom(r). 

We will also write A It (M: A)[p] iff 

( lb)  p satisfies I' at A, and 

(2b) A D M[p] E [I' D A]pA. 

Then, the main theorem reads as follows: Whenever I' D M: A and A It I'[p], then 
A It (M: A)[p]. This looks like a Kripke-style type soundness result. 

Actually, it is not obvious that the inductive definition of [I' D A]pA defines nonempty 
sets and total functions, and this depends on some properties of the sets CA,*. One of the 
crucial facts is that for every valid context A and type or kind A, there is some term or type 
family A' D M with A' 2 A such that A' D M: A. Indeed A' = A, x: A where x 4 dom(A) 
does the job, since A, x: A D x: A is derivable. 

We can now define the sets CAIA. For this this, we need a complexity measure for types 
and kinds. 



Definition 5.7 Let A be any valid type, and K any valid kind. We define c(A) and c(K) 
inductively as follows: 

It is easily verified that if K Kt ,  then c(K) = c(I<'). The main property of this 
complexity measure is that it is invariant under substitution. 

Lemma 5.8 For every type family or term M, for every kind I<, c(K[M/x]) = c(I<). 

Proof. We proceed by induction on the structure of K .  If K = *, the lemma holds 
since *[M/x] = *. If K = (Hz: B)D, there are two cases. If B is also a kind, by the 
induction hypothesis, c(B[M/x]) = c(B), c(D[M/x]) = c(D), and the lemma holds since 
I<[M/x] = (IIx: B[M/x])D[M/x]. If A is a type, then A[M/x] is also a type, and since 
c(A[M/x]) = 0 and by the induction hypothesis c(D[M/x]) = c(D), the lemma holds. 

We also let c(kind) = 0. The sets CAYA are defined by induction on c(K), where ADA: K .  
Since c(K) only depends on the equivalence class of K modulo p-conversion, this definition 
is proper. The definition of the sets CAY* given next is a bit more general than really required 
for proving strong normalization. The reason for giving it in this form is that it can be used 
to extend our proof to other properties besides strong normalization. This definition also 
contains all the closure conditions that will come up during the proof of the main result. 

Definition 5.9 The family C of sets CAYA where A is a kind or a type family valid in the 
context A, is defined by the properties listed below. It is called the family of saturated sets. 

1 .  CkindlA is the set of sets C,  such that, each C is a nonempty set of strongly normalizing 
kinds A' D I<, with A' > A, and the following properties hold: 

(a) A' D * E C for all A' _> A. 

(b) For every kind A' D (IIx: Ii')D, with A' > A and K a kind, if A' D I( E C and 
A' D D E C, then A' D (IIx: K ) D  E C. 

(c) For every kind A' D (IIx: a )D,  with A' > A and a a type, for every C' E C,,a, if 
A ' D ~  E C' and A'D D E C, then A'D (IIx:a)D E C. 

(d) Whenever A' D I( E C and A' A", then A" D I< E C. 

2. CktA is the set of sets C,  such that, each C is a nonempty set of strongly normalizing 
types A' D A, with A' > A, and the following properties hold: 



(SO) For every type A' D (IIx: IOA, with A' > A and K a kind, for every C' E CkindtA7 
if A' D K E C' and A' D A E C, then A' D (IIx: IC)A E C, and 

For every type A' D (IIx: a)A, with A' > A and a a type, if A' D a E C and 
A' D A E C,  then A' D (IIx: a )A E C. 

(Sl)  For every variable x, if A'D xNl . . . N,: * for some A' 2 A and Nl, . . . , Nm are SN, 
then A'D xNl . . . Nm E C. 

(S2) Whenever A' D MIN/x]Nl..  . Nm:* and A' D N: B is SN for some A' > A, if 
A'D M[N/x]N1.. . Nm E C, then A'D (AX: B. M ) N N l . .  . Nm E C. 

(S3) Whenever A' D A E C and A' C A", then A" D A E C 

3. When A is a type (and ADA: *), C A , ~  is the set of sets C ,  such that, each C is a nonempty 
set of strongly normalizing terms A' D M such that A' D M: A for some A' > A, and the 
following properties hold: 

(Sl)  For every variable x, if A' D xNl . . . Nm: A for some A' > A and Nl, . . . , Nm are 
SN, then A'P xNl . .  . Nm E C. 

(S2) Whenever A' D MIN/x]Nl . . . Nm: A and A' D N: B is SN for some A' > A, if 
A'D M[N/x]Nl . .  . Nm E C, then A' D (Ax: B. M)NNl . . . Nm E C. 

(S3) Whenever A' D M E C and A' & A", then AN D M E C. 

4. When A is a type family such that A D A: (IIx: B ) D  (and A D (IIx: B)D: kind), CA,a is 
the set of functions with the following properties: 

(a) If B is a kind, then 

f E CAYA is a function with domain 

{(A' D M,  C))  I A' D M: B, A' 2 A, C E CM,Al) 

such that f (A' P M, C )  E CAM,A~, and 

~ ( A ' D  Ml ,C)  = ~ ( A ' D  M2,C)  whenever MI Act M2. 

(b) If B is a type, then 

f E CA,A is a function with domain {A' D N 1 A' D N: B, A' > A) such that 
f (A' D N )  E CAN,A~, and . f (A' P Nl) = f (A' D N2) whenever Nl cc N2. 



Note that this definition is proper, because we can prove that the sets CM,Al, and 
CANtAl7 needed in (4) are well defined, where A D  A: (IIx: B)D,  A'D M: B, and A'D N: B with 
A' > A. This is correct, since A'D AM: D[M/x], A'D AN: D[N/x], c(B) < c((IIx: B)D),  and 
by lemma 5.8, c(D[M/x]) = c(D) < c((IIx: B)D), and c(D[N/x]) = c(D) < c((IIx: B)D). 
One can also easily prove that if A Act A', then C A , ~  = CA1,~. 

Given a type family A such that A D  A: I(, we can prove by induction on c(K) that each 
C A , ~  is nonempty. 

Lemma 5.10 Whenever A kind-checks in A, C A , ~  is nonempty. 

Proof. We define an element  can^,^ of CA,A where A D A: K such that A Act A' 
implies that  can^,^ = c a n ~ l , ~ ,  by induction on c(K). We call  can^,^ the canonica/ member 
of CA,A- 

When A = kind, note that the set canki,d,~ of strongly normalizing kinds of the form 
A' D K for some A' > A is nonempty, since A' D *: kind for every A', and it is obvious that 
(b), (c), and (d), are also satisfied. 

When A = *, note that the set can,,A of strongly normalizing types of the form A' D N 
for some A' > A is nonempty, since A, x:* D x:* for x $ dom(A). Properties (SO), (Sl), 
(S2), and (S3), are also easily verified. 

When A is a type, note that the set  can^,^ of strongly normalizing terms of the form 
A'D N such that A'D N: A for some A' > A is nonempty, since A, x: AD x: A for x $ dom(A). 
Properties (Sl), (S2), and (S3), are also easily verified. That A Act A' implies  can^,^ = 
c a n ~ l , ~  follows from the fact that A' D N: A and A Lcc A' implies that A' D N: A'. 

When A D A: (IIx: B)  D,  we define the function can~,A as follows. By the induction 
hypothesis, for every M such that A'D M: B for some A' > A,  can^,^^ is defined. We define 
C U ~ A , A  such that canAtA(A' D M, C )  = C ~ ~ A M , A ~ ,  and C U ~ ~ , ~ ( A '  D M)  = C U ? ~ A M , ~ ~  if B is a 
type. If A ACC A', then AM ACC AIM, and this implies canAM,Al = canA~M,~f by the 
induction hypothesis. [7 

Remark: It will be observed later that for proving strong normalization, we can simply 
define CkindYA and CklA as the singleton families Ck;,d,~ = {cank;,d,~) and C,,A =  can,,^). 

In order to show that the closure properties of the family C insure that the sets I[I'DA]~A 
are also in C, we need the following technical lemma. 

Lemma 5.11 If C is the family of saturated sets, for any two p and p' satisfying I' at A, if 
x[p] ACC x[p' for every x E dom(l?), then [I' D A]pA = [I' D A]pfA. 



Proof. A fairly simple induction on the size of A. 

Now, we can prove that C contains the sets [l? D A]IpA. 

Lemma 5.12 IfC is the family of saturated sets, whenever p satisfies I' at A, then 
[r D All pa E c*,,,, . 

Proof. One proceeds by induction on the size of A,  also adding to the induction hy- 
pothesis the fact proved in lemma 5.11 that for any two p and p1 satisfying I' at A, if 
x[p] Act x[pl] for every x E dom(I'),  then [I' D A ] p A  = [[I' D A]IplA. 

Given two valid contexts I' = xl:  A l l . .  . , x,: A ,  and I" = xl:  A',, . . . , x,: A;, we say 
that I' ACc I'l iff A; Act A: for all i ,  1 5 i 5 m. 

Lemma 5.13 If C is the family of saturated sets, whenever p satisfies I? and I" at A and 
I' Act I", then [I' D A]pA = [I" D A]pA.  

Proof. A fairly simple induction on the size of A. 

We also have the following technical property known as LLsubstitution property7'. This 
is perhaps the lemma whose proof is the most technical. 

Lemma 5.14 If C is the family of saturated sets, and p satisfies I' at A, if r , x :  K D A: B 
for some B, and I? D D: K where K is a kind, then 

[I' D A[D/x]lJpA = [I', X :  I< D A]p[x: = (D[p] ,  [I' D D ] p A ) ] A ,  

and if I?, x: a D A: B for some B ,  and I? D M :  a where a is a type, then 

[I' D A [ M / x ] ] p A  = [I', X :  a D A]p[x: = M[p]]A .  

Proof. In order to prove this lemma, it is necessary to prove the following stronger 
property: 

Assuming that p satisfies I?, I?' at A, if I?, x: K ,  I"D A: B for some B ,  and I' D D: K where 
I< is a kind, then 

[I?, I"[D/x]  D A [ D / x ] l p A  = [I??: I<, I'l D A]lp[x: = (D[p] ,  [I' D DlJpA)]A,  

and if r ,  x: a ,  l?' D A: B for some B ,  and I' D M :  a where a is a type, then 

[I', I "[M/x]  D A [ M / x ] ] p A  = [I?, X :  a, I" D A]Ip[x: = M [ p ] ] A .  

The proof of this property is by induction on the size of A, and it uses lemma 5.11 and 
lemma 5.13. 

Using the previous lemma, we can show the following important lemma. 



Lemma 5.15 If C is the family of saturated sets, whenever p satisfies I? at A and A Act 
A', then [I' D A]pA = [I' D At]pA. 

Proof. The proof is by induction on the sum of the sizes of A and A', and it uses lemma 
5.11, lemma 5.13, and lemma 5.14. 

Finally, we can prove the main theorem. Recall from definition 5.6 that A IF I?[p] means 

( I )  p satisfies I? at A, and 

(2) A D x[p] E [I? D r(x)]pA for every x E dom(I?). 

It is easy to verify that if A G A' and A I t  I'[p], then A' ~t I?[p]. 

Theorem 5.16 If C is the family of saturated sets, whenever r D M: A and A IF I'[p], then 
A D M[p] E [I' D A]pA. 

Proof. The proof is by induction on a deduction proving that A typelkind-checks in I?. 
Lemma 5.15 is crucial in taking care of the case where the last inference is the type or kind 
equality rule. 

As mentioned earlier, if we define A IF (M: A) [p] iff 

(I) p satisfies I' at A, and 

then, the main theorem reads as follows: 

Whenever I' D M: A and A Ik I?[p], then A Ik (M: A) [p], and this looks like a Kripke-style 
type soundness result. 

By letting [p] be the identity substitution and p, assign the canonical element canr(,),r 
to each x E dom(I'), can,,r to *, and cank;,d,r to kind, we obtain the fact that all valid 
terms of the theory of construction are SN. 

Theorem 5.17 Whenever I' D M: A, the term M is SN. This applies to kinds, types, and 
terms (proofs). 

An interesting consequence of theorem 5.17 is an elementary proof of the consistency of 
CC. There are other elementary methods for showing that CC is consistent, for example, 
the "proof-irrelevance semantics", which consists in interpreting types as Zermelo-Fraenkel 
sets, and * as the set {0,1) (for details, see Coquand [CoqSO]). What is more interesting, 
is that theorem 5.17 can be used to show in an elementary fashion that certain contexts are 
consistent, as shown in Coquand [CoqSO]. 



Definition 5.18 We say that a context A is consistent iff there is some valid type a (with 
A D a :  *) such that A D M:  a is not provable for any (proof) term M .  We also say that a 
type a is inhabited in the context A iff there is some (proof) term M such that A D M: a is 
derivable. 

Saying that CC is consistent means that the empty context is consistent, which is 
equivalent to the fact that some valid closed type is not inhabited. An elegant combinatorial 
proof of the consistency of CC using theorem 5.17 is given below. 

Lemma 5.19 The theory CC is consistent. Furthermore, the valid type (IIx:*)x is not 
inhabited. 

Proof. First, observe that the judgment x: * D x: * is derivable, and so t, (IIx: *)x: * is 
derivable. We make use of the following crucial fact: If M is a valid proof in some context 
A and M is a normal form w.r.t. P-reduction, then M is of the shape 

Axl: Al. . . . . AX,: A,. yNl . . . N,, 

where y is a variable possibly among XI, . . . , x,, and Nl, . . . , N, are normal forms (m, n > O ) ,  
but not necessarily of the same shape as M ,  since some N;'s could be products. 

The above fact is easily shown by induction on the size of M.  The case where M = 

M1M2 is the only interesting one. Because M is normal, MI cannot be an abstraction. 
However, it must be a proof, and by the induction hypothesis, it must be either a variable 
or an application of the form x Nl . . . N,. 

Now, assume that there is a valid closed proof M such that D M:  (IIx:*)x is derivable. 
By theorem 5.17 and by lemma 4.12, we can assume that M is in normal form. But then, 
it is easily seen that it must be the case that we have M = Ax: *. yNl . . . N, and that we 
have a derivation x: * D yNl . . . N,: x. However, it is a simple property of CC that for every 
judgment A D E, FV(E)  dom(A). This implies that y = x. However, x is now both a 
proof and a type, which is impossible by lemma 4.13. 

In Coquand [CoqSO], it is shown using theorem 5.17 that a nontrivial context Inf is 
consistent. The proof is elementary, except for the use of theorem 5.17. As we shall see 
below, there cannot be any elementary direct proof of the consistency of the context Inf 
(say in first-order Peano arithmetic, or even in classical higher-order arithmetic). Letting 
Void = (IIx:*)x (the "absurd" type), 

Inf = A:*, f : A t  A, R : A t A t * ,  

hl: (Vx: A)(Rxx + Void), 

ha: (Vx, y, z: A)(Rxy t Ryz -+ Rxz), 
h3: (Vx: A)Rx( fx) .  



The context Inf can be viewed as a kind of axiom of infinity. In turn, it can be 
shown that the consistency of this context implies the consistency of classical higher-order 
arithmetic. The proof is elementary, except for the use of theorem 5.17. Thus, by Godel's 
second incompleteness theorem, we obtain that strong normalization in CC (theorem 5.17) 
is not provable in classical higher-order arithmetic. 

Theorem 5.17 and the Church-Rosser property also imply the decidability of type- 
checking in CC. In fact, a stronger result holds. The main lines of a proof of the above 
result were given by the first author in a communication to the "Types forum". This proof 
is quite similar to a proof by Martin Lof [ML72]. 

Lemma 5.20 Given any context A = xl: Al, . . . , x,: A, and any expression M ,  it is decid- 
able whether A D, and if so, whether A D M :  kind or A D M: A for some A (which is given 
by the algorithm). 

Proof sketch. There are two kinds of problems: testing whether A D or A D  *: kind, and 
testing whether M kind/type-checks in the context A. We associate a complexity measure 
to  these two problems as follows. Let c((xl: Al,. . . , x,: A,)) = 1+ the sum of the sizes of 
each A; (and the same value for c((xl: A1,. . . , x,: A,),*)), and c((x1: Al, . . . , x,: A,), M) = 
the size of M+ the sum of the sizes of each A;. We proceed by induction on complexity 
measures. There are several cases. 

1. The problem is A D? or A D *: kind? and A = 8. The answer is yes. 

2. The problem is xl: Al, . . . , x,: A, D or xl: Al, . . . , x,: A, D *: kind and n > 0. Check 
whether A, is well formed in xl: Al, . . . , x,-1: A,-1. If the algorithm returns B, check that 
either the normal form of B is *, or that B is a kind. 

3. M is a variable x. Check whether A, is well formed in xl: Al, . . . , x,-1: An-1. If the 
algorithm returns B, check that the normal form of B is * or that B is a kind, and whether 
x is one of the xi. 

4. M is of the form (ITx: A)B. Check whether A is well formed in xl: Al, . . . , x,: A, 
and whether B is well formed in xl: Al, . . . , x,: A,, x: A. 

5. M is of the form Ax: A. N. Check whether A is well formed in xl: Al, . . . , x,: A, and 
whether N is well formed in xl: Al, . . . , x,: A,, x: A. If the answer to  the second problem is 
yes and the algorithm returns P, then xl: Al, . . . , x,: A, D M :  (IIx: A)P .  

6. M is of the form M1M2. This case requires the fact that every term has a unique 
normal form. First, we check whether both Ml and M2 are well-formed in xl: Al, . . . , x,: A,. 
If so, we check whether the normal form of the typelkind of MI is of the form (IIx: A ) P  and 
the normal form of the typelkind of M2 is P .  



A closer look at definition 5.5, especially the definitions of [I' D (IIx: K)D]pA and [I' D 

(nx: a) D]pA, suggests the definition of certain dependent products. Let A be a context and 
(IIx: K ) D  be a kind or a type such that A D (llx: K)D: r; ,  r; E {*,kind), with I( a kind. 

Definition 5.21 Let 
dAt E CK,AI, and let F 
CA,Al), and such that 
is defined as follows: 

d = ( d A ~ ) A ~ 3 A  be any A'-indexed family of candidates such that 
be any function with domain {(A'DA, C)  I A'DA: K,  A' 2 A, and C E 
F(A' D A, C) E CDIA/zl,Al. The dependent product n(A,  F; (IIx: IOD) 

n ( A 7  F; (IIx: KID) = {A' D M I A' D M: (IIx: K )  D, A' > A, and 
VA" 2 A', VA" D A E dAlr, vc E CA,All, 
A"D (MA) E F(A"D A,C)). 

Let A be a context and (Hz: a ) D  be a kind or a type such that A 0 (IIx: a)D: r; ,  

K E {*,kind), with a a type. 

Definition 5.22 Let A = ( d A ~ ) A ~ 3 A  be any A'-indexed family of candidates such that 
Ant E C,,At, and let F be any function with domain {A' D N ( A' D N: a, A' 3 A), and such 
that F(A'D N) E CDINlzl,Al. The dependent product n(A,  F ;  (IIx: u)D) is defined as follows: 

n ( A ,  F ;  (IIx: a).) = {AID M 1 A'D M: (IIx: a)D,  A' 2 A, and 

VA" 2 A', VA" D N E Ah", 
A"D (MN) E F(A" D N)). 

Then, we can express [I' D (IIx: I( )  D] pA and [I' D (IIx: a )  D]pA as dependent products: 

where F is the function such that 

(A' D A, C) H [[I?, x: K D D]p[x: = (A, C)]At, 

with A' D A: K[p] and C E C A , ~ l ,  and 

Ur (nx:  a)D]lpA = n ( ( [ r  D o ] ~ A ' ) A ~ ~ A ,  F ;  ((Hz: a)D) [p]), 

where F is the function such that 

with A' D N: a[p]. 

The definition of n ( d ,  F ;  (IIx: a)D) is inspired by the definition of the dependent prod- 
uct n ( A ,  F )  given by Coquand and Huet on page 107 of their paper [CH88]. The difference 



is that Coquand and Huet give a definition of n(A, F) for untyped A-terms. They have no 
definition analogous to our dependent product n(A,  F; (IIx: K)D)  where K is a kind. Also, 
Coquand and Huet's main theorem on page 109 of their paper [CH88], can be considered as 
a version of our theorem 5.16 for "stripped terms" (that is, valid terms of C C  from which 
type information has been erased). However, theorem 5.16 is a stronger result, since it yields 
theorem 5.17 as a corollary, whereas Coquand and Huet 's theorem only shows that the type 
erasure Erase(M) of any valid term of C C  is SN. As far as we know, there does not seem 
to be any way to infer from the fact that Erase(M) is SN that M itself must be SN. This 
is in contrast with the situation in Av (and system F,). 

We now examine the special case of LF,  and note that strong normalization holds as a 
corollary, but does not make any use of families of candidates. Only the canonical  can^,^ 

are needed. 

6 Strong Normalization in L F  

Since L F  can be viewed as a fragment of CC obtained by disallowing products and abstrac- 
tions over type variables, it follows immediately from theorem 5.17 that all valid terms of 
L F  are strongly normalizing (under P-reduction). However, it turns out that the powerful 
artillery of the CA,A is unnecessary to prove this result. In LF, we can only have products of 
the form (Hz: a)D, and abstractions of the form Ax: a. B,  when a is a type (but not a kind). 
Thus, we have a simpler definition of [I' D A]pA. Again, A is either a type family or a kind 
valid in I', and the definition only makes sense when p satisfies I' at A. 

Definition 6.1 In the clauses below, K stands for a kind, a for a type, A, B for type 
families, D for a kind or a type, M for a type family or a term (proof), and N for a term 
(proof). 

[I' D kind]pA = pc(kind), 

[I' D *I PA = PC(*), 

iII' D XI PA = pc(x), 
[I' D AB]pA = ([I' D AlJpA(A D B[p], [[I' D B]pA), 
[r D ANDPA = [r D A ~ P A ( A  D N[P]), 

[I' D (IIx:a)D]pA = {AID M I A'D M: ((IIx:a)D)[p], A' > A, and 

val1 2 A', valf D N E [r D a ] p ~ l l ,  

AN D (MN) E [I?, X: a D D]p[x: = N]AN), 
[r D AX: a. B]pA = A(A1 D N). [I', X: a D B]p[x: = N]A1, 

a function with domain 
{A'D N ( A'D N:a[p], A '>  A). 



Remarkably, the candidates, that is, the sets C E do not appear anywhere in these 
definitions. The only place where they play a role is in [I' D x]pA and [I' D *]PA. However, 
this role is very passive. In fact, all we need to establish strong normalization is to assign 
the canonical sets and functions  can^,^. More precisely, p,(lind) is the set  can,,^ of SN 
kinds, p,(*) is the set  can,,^ of SN types, and p,(x) = canr(,)[,l,A. Only the substitution 
component p, of p needs to be arbitrary for the proof to go through, the other component p, 
remaining constant (and determined by the canonical elements). Thus, the proof of strong 
normalization for L F  uses little more than is needed for the proof of strong normalization in 
the simply-typed X-calculus, namely the existence of the canonical sets and functions, which 
itself depends on the existence of the measure c(K), where K a kind. This is not surprising 
in view of another proof by Harper, Honsell, and Plotkin [HHP89], in which a mapping from 
L F  into the simply-typed X-calculus is used. It should be noted that their proof applies to P 
and q reduction, but we do not know presently how to extend our approach to q-reduction. 

Other Proofs 

This section lists other proofs of normalization or strong normalization that we are aware 
of, in chronological order. We apologize if we are unaware of other proofs not mentioned 
here. To us, the history of this proof seems sufficiently interesting to be told, especially in a 
preliminary report, even if it is incomplete. It has been reported that some of these proofs 
contain errors. We are indeed aware of some errors, and we will briefly mention what they 
are. We apologize for any (unintentional) omissions or misinterpretations. 

1. Coquand, January 1985 [Coq85]. This is Thierry Coquand's thesis. A proof of normal- 
ization is given, a well as some indications on how to extend it to strong normalization. 
There is a problem with the definition of the sets CA,a when A is a type family of kind 
(IIx: B)D. The members of CAYa are indeed functions, but only of one argument, the 
candidate argument. A similar problem arises in the definition of [I' D Ax: K. B]pA, 
where the argument A' D A is omitted. As a consequence, [I' D A]lpA is not always 
well-defined. 

Jutting, December 1986 [vBJ86]. This is a note attempting to correct Coquand's proof of 
normalization given in his thesis. The introduction mentions discussions with Coquand, 
leading to this note. As we see it, the definition of I[I'DA]pA is indeed repaired correctly. 
However, A is dropped from the C A , ~ ,  which becomes a family of sets of closed terms. 
To insure that each C E CA is nonempty (A a closed type family or closed kind), Jutting 
adds a countably infinite set of constants. Unfortunately, this causes a problem. Indeed, 
the language has now been enriched, new types can be formed, and some new closed 
types may not be inhabited. 

3. Coquand, 1987 [Coq87]. This is a note in which Coquand fixes the problem with 
the addition of new constants, and gives a proof of strong normalization for the first 



time. The proof uses infinite contexts, and basically Henkin's technique for adding new 
witnesses, so that all closed types are inhabited. 

4. Pottinger, February 1987 [Pot87]. This paper refers to Coquand 1987, and gives a proof 
of strong normalization apparently inspired by Coquand's proof. Infinite contexts are 
also used, as well as an idea due to Seldin. Although we need to examine it more closely, 
the proof seems correct, but rather difficult to follow. 

5. Seldin, November 1987 [Se187]. This is a report, "Mathesis: the Mathematical Founda- 
tions of Ulysses", in which a proof of strong normalization for a variant of the theory 
of constructions is given. We have not yet had the time to examine this proof carefully, 
but it appears that it also uses infinite contexts. It appears to be more along the line of 
Martin Liif's proof of normalization for F,, defined as a Prawitz-style natural deduction 
system. 

6. Zhaohui Luo, 1989 [Luo9O]. There is apparently a proof of strong normalization for an 
extension of C C  with universes, given in Luo's thesis. We do not have this document 
yet. 

7. Geuvers and Nederhof, June 1989 [GN89]. The authors present what they call a mod- 
ular proof of strong normalization, by reducing strong normalization in C C  to strong 
normalization in Girard's F,. This is accomplished by defining a mapping from C C  to 
F,, such that reduction of terms is preserved. Strong normalization for the terms of 
F, is itself reduced to strong normalization for the erased (raw) terms of F,, which is 
proved directly. 

8. Berardi, 1989 [Ber89]. Berardi gives a proof (apparently due to Terlouw) in an appendix 
of his thesis. 

Acknowledgment: We wish to thank Val Breazu-Tannen and Sunil Shende for many 
helpful comments. 
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