
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

September 1990

Control Software of Robot Compliant Wrist System Control Software of Robot Compliant Wrist System

Yangsheng Xu
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Yangsheng Xu, "Control Software of Robot Compliant Wrist System", . September 1990.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-89-66.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/564
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/564
mailto:repository@pobox.upenn.edu

Control Software of Robot Compliant Wrist System Control Software of Robot Compliant Wrist System

Abstract Abstract
The compliant wrist combining passive compliants and sensor has been developed in GRASP laboratory.
The device provides the robot system the necessary flexibility which accommodates transitions as the
robot makes contact with the environment, corrects positioning error in automatic assembly, avoids high
impact forces and protects the surface from damage. The device also supplies the displacement sensing
of the passive compliance so that active feedback control is possible.

This report is intended to serve as a reference material to introduce the control software of the robot
compliant wrist system developed and implemented in the lab. The detail discussion on system
performance and parameters selection can be found in the thesis [3].

The rest of material is organized as follows.

Section 2 introduces the compliance control methods of robot manipulators. The historic development of
both passive and active compliance method is discussed. The advantages and disadvantages of the
methods are investigated. Based on the unsolved problems in this issue, the six-degree freedom
compliant wrist is developed, and the design feature is presented.

Section 3 discusses the hybrid position/force control scheme using the sensing information from the
device. The positioning error due to load or external force when robot moves in free space is
compensated for, so that the effective stiffness is increased. In force control when robot is constrained by
environment, the trajectory is modified by sensed force, so that the effective stiffness is decreased.

Section 4 deals with the implementation of the control scheme. Various programs have been developed
to perform the hybrid control operations, such as hybrid control demonstration, surface tracking, edge
tracking, insertion and pulling out, and writing operation. The programs have been successfully
implemented in the experiments. Definition and selection of the parameters in the programs are
discussed.

Section 5. is the source code of control scheme which has been implemented in PUMA 560 with index
machine in GRASP Laboratory. The control is executed on a MicroVax I1 using the RCI primitives of RCCL.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-89-66.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/564

https://repository.upenn.edu/cis_reports/564

Control Software Of
Robot Compliant Wrist System

MS-CIS-89-66
GRASP LAB 192

Yangsheng Xu

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

October 1989

CONTROL SOFTWARE OF ROBOT COMPLIANT WRIST SYSTEM

Yangsheng Xu

General Robotics and Active Sensory Perception Laboratory
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

Contents

1 INTRODUCATION

2 COMPLIANCE AND COMPLIANT WRIST

2.1 Passive and Active Compliance

2.2 Compliant Wrist Design .

3 HYBRID POSITION FORCE CONTROL

3.1 Position Control

3.2 Force Control ..

3.3 Hybrid Control . .

4 PROGRAMMING AND EXPERIMENTS

4.1 Hybrid Control Demonstration (HYBRI) .

4.2 Surface Tracking (SURE) .

4.3 Edge Tracking (EDGE) .

4.4 Insertion Operation (INSER and FUZZ) .

4.5 Writing on Board (WRIT) .

5 SOURCE CODE

6 BIBLIOGRAPHY

1

2

2

4

8

8

10

11

14

14

15

16

17

17

19

53

1. INTRODUCTION

The compliant wrist combining passive compliants and sensor has been developed in GRASP labora­

tory. The device provides the robot system the necessary flexibility which accommodates transitions as the

robot makes contact with the environment, corrects positioning error in automatic assembly, avoids high

impact forces and protects the surface from damage. The device also supplies the displacement sensing of

the passive compliance so that active feedback control is possible.

This report is intented to serve as a reference material to introduce the control software of the robot

compliant wrist system developed and implemented in the lab. The detail discussion on system perfor­

mance and parameters selection can be found in the thesis [3].

The rest of material is organized as follows.

Section 2 introduces the compliance control methods of robot manipulators. The historic develop­

ment of both passive and active compliance method is discussed. The advantages and disadvantages of the

methods are investigated. Based on the unsolved problems in this issue, the six-degree freedom compliant

wrist is developed, and the design feature is presented.

Section 3 discusses the hybrid position/force control scheme using the sensing information from the

device. The positioning error due to load or external force when robot moves in free space is compensated

for, so that the effective stiffness is increased. In force control when robot is constrained by environment,

the trajectory is modified by sensed force, so that the effective stiffness is decreased.

Section 4 deals with the implementation of the control scheme. Various programs have been

developed to perform the hybrid control operations, such as hybrid control demonstration, surface tracking,

edge tracking, insertion and pulling out, and writing operation. The programs have been successfully

implemented in the experiments. Definition and selection of the parameters in the programs are discussed.

Section 5. is the source code of control scheme which has been implemented in PUMA 560 with

index machine in GRASP Laboratory. The control is executed on a MicroVax IT using the RCI primitives

of RCCL.

- 2-

2. COMPLIANCE AND COMPLIANT WRIST

2.1 Passive and Active Compliance

Compliance is the ability of a robot manipulator to react to external forces or tactile stimuli during

the motion. Compliant motion control has been considered as one of key problems of robotic manipulation

since 1970. Modifying a trajectory by contact force seems easy for human being yet is very awkward for

robot manipulators. That is why today's robot can only perform simple tasks, such as pick-and-place opera­

tion, spray-painting, and welding, which do not require a sophisticated compliant motion ability [13]. How­

ever, many tasks of robot manipulation require compliant motion, such as assembly operations including

inserting electronic components on circuit boards, pressing bearing onto a shaft, placing armatures on

motors, and surface finishing operations including grinding, deburring, and routing.

Compliance can be specified in the joint servo, or by passive compliance provided in the manipula­

tors. The former is known as active compliance, while the latter is called passive compliance.

The passive compliance is a device or additional tool that provides a flexibility for the rigid robot and

usually are attached to the robot end-effector, such as at the hand, wrist, or fingers. The advantage of intro­

ducing such a flexibility in the system is primarily from the demand of robotic operations involved in con­

tacting the environment, especially, in assembly operation in robot manufacturing systems.

Passive compliance to provide adaptation for assembly operations has a number of advantages

including:

(1) the positioning tolerances in robot operation and the geometric uncertainties in the parts are relaxed;

(2) the high forces or moments normally produced in jamming or wedging are reduced;

(3) the assembled surfaces are protected from damage, such as a scraping or galling;

(4) automatic assembly is facilitated in more operations;

(5) expensive electronics normally required in precision operations are eliminated.

Passive compliance is not only beneficial for the self-correction of positioning errors in assembly, but

also for adaptation to the transient state control and force control. It has been known that the manipulator

works between constrained and unconstrained modes continuously. In the unconstrained mode, position is

controlled, while in constrained mode force is controlled. Between these two states, however, is a transi­

tion. In the transition, the force or velocity from which control is achieved may be discontinuous and the

control becomes uncertain. In this case, if there is a passive compliance near the contact point of the end­

effector, the kinetic energy can be absorbed and the possible high forces or moments can be avoided, and

thus the discontinuity is accommodated and preformance of the entire system is smoothed [1][2][5].

- 3 -

Another advantage of passive compliance is that a high gain of the force control can be selected

when the robot is equipped with such a device. It has been shown that the allowable force control gain is

proportional to the effective stiffness of the overall system [6]. Therefore, for the system including passive

compliance, the allowable force control gain is higher than that without passive compliance, which is desir­

able for improving sensitivity and performance of force control.

As we discussed previously, compliance may occur because the control system is programmed to

react to the sensed forces. In this case, the compliance is known as active compliance. Various approaches

to active compliance have been developed and involved nearly all control aspects of the robotics research.

We may categorize these control schemes as two basic issues: impedance control and hybrid control.

Impedance control specifies a linear relation between the force/torque and position/orientation (or

velocity/angular velocity), while hybrid control controls position/orientation along the specified degrees of

freedom and independently controls force/torque along the remaining degrees of freedom. The philosophy

of the impedance control technique is based on the fact that human muscle can be viewed as a generalized

spring with a controllable stiffness or damping, while the philosophy of the hybrid control technique is

based on the fact that human works usually by exerting force in some joints, such as wrist, and leaving

other joints free, such as shoulder for the motion. We discuss these two basic techniques respectively.

The hybrid control, or hybrid force/position control, is the one that allows force to be commanded

along certain degrees of freedom and allows position to be commanded along the remaining directions. A

number of approaches have been developed and main results have been contributed by several researchers:

Paul (1972) [9], Paul and Shimano (1976) [8] ("Compliance and Control") , Mason (1981) [13] ("Compli­

ance and Force Control") , Raibert and Craig (1981) [21] ("Hybrid Position/Force Control") a number of

papers have been published, such as [24] [25] [23] [26] [28].

In impedance control, a linear function is defined that relates the displacement or velocity variables

of the end-effector to the force variables. Principal results have been obtained by Salisbury (1980) [14]

[15] ("Stiffness Control") , Whitney (1977) [12] [11] ("Damping Control") , and Hogan (1982) [16] [17]

("Impedance Control") published for modifying the controller, stability analysis of the system and

improvement of the system behavior [18] [22] [30].

From our discussions above, a question may be raised for the active compliance techniques. Can we

specify compliance of an arbitrary magnitude whether the compliance is obtained by a gain in hybrid con­

trol or a linear relation in impedance control? From either theoretical analysis [11] [18] [19] or experimen­

tal work [6] [27] [28], it is clear that for the active compliance technique, the implementations may suffer

from sluggish behavior and stability problem must be taken into consideration, especially when environ­

ment is stiff.

A good hybrid or impedance control system requires either a small effective stiffness of the end­

effect or a small environment stiffness. For the stiff environment, the only choice is to reduce robot effec­

tive stiffness [11]. We also can not use a smaller sample time to remedy the situation, because the sample

time corresponds to the band width of the arm and its controller which is limited by the dynamic properties

as arm inertia and actuator torques limits. Therefore, Whitney [11] started from a survey of current

research approaches, based on an analysis of those control structures with a simple model, and suggested

-4-

only two remedies that one can consider: small arms or hands with higher bandwidth, or deliberate passive

compliance installed in the arm's wrist to make the effective stiffness small, such that a stiff environment

can be dealt with and a fast response of the system can be achieved.

When the robot continually works between constrained and unconstrained modes to implement posi­

tion and force control, there is the transition between these two modes. Traditionally the transition is

ignored with the energy of impact being absorbed in gear trains and structure. The system in the transient

state has not been modeled and therefore a very conservative speeds must be employed in order to avoid

damage.

Because of the reasons listed above, passive compliance is required not only for adaptation of assem­

bly operations, but also for improving system performance of the active compliance control.

Application of passive compliance alone, however, may also present problems. A main problem is

decreasing the positioning accuracy because the end-effector stiffness is reduced. A compliant system is

desirable only in force control mode, while in position control case, a stiff system is required. Therefore,

compensation for the position error due to presence of passive compliance is required. Passive compliance

may also cause an uncertainly problem in force control because force sensor is located far away from the

contact point where the force is exerted.

A natural solution is to combine sensor with the passive compliance. Only with a sensor, may we

detect the deflection of the device so that the adaptation of both position control and force control modes is

ideal. In this case, the active compliance methods can still be employed with consideration of passive com­

pliance instead of the rigid end-effector.

2.2 Compliant Wrist Design

Based on the discussions above, it becoming increasingly necessary to design a device combining

passive compliance and active sensing mechanism. The device must be simple and economical so that the

complexity of a sensing mechanism and expensive optical transducers are avoided. The device must pro­

vide six degrees of freedom passive compliance, instead of two or five degrees of freedom, so that it can

provide a spring-shock absorber analogues to accommodate the transition between force and position con­

trol modes. The compliance in and around each axis must be reasonable for most of operations. The device

also provides measurement of six degrees of freedom motion of the passive compliance, so that the active

control can be implemented.

Such a device has been developed in the GRASP Laboratory. In this section, we talk about the basic

design feature of the device. The detail kinematic analysis, dynamic parameters, and design consideration,

as well as the effect of the parameters on the system performance can be found in the thesis [3]. We have

designed two prototypes of the device. The control experiment was performed with the first prototype. The

kinematic design of the sensing mechanism for the second prototype is based on the kinematic sensitivity

ellipsoid theory which is discussed in the thesis [3].

- 5 -

The device includes two plates, upper plate and lower plate. The lower plate is attached to the robot

and the upper one is connected with the end-effector. The sensing mechanism installed between these two

plates must be capable of measuring six DOF motions of the upper plate with respect to the lower one. We

use six transducers at six joints of the mechanism. The task of the device system is to measure the joint

angles and then compute the position error of the end-point of the device in Cartesian space which

represents the 6 DOF deflections of the compliant wrist due to the external force. Therefore, computation

from the input data is direct kinematics.

We at first, intented to use a parallel mechanism constructed by LVDTs as displacement sensors.

However, computation of the direct kinematics is complicated for a parallel mechanism, while that of the

inverse kinematics is easy. On the contrary, for a serial mechanism, computation of the direct kinematics is

much easier than that of the inverse one. Additionally, for the parallel mechanism, a relatively high preci­

sion of machining and assemblying is required, thus the serial linkage is easier to fabricate than the parallel

one. Therefore, we chose the serial type of mechanism. A disadvantage is the error accumulation of a

serial mechanism, while a parallel mechanism compensates for the error. We, however, carefully calibrate

the mechanism and potentiometers and filter the data, so the designed precision of the device is obtained.

The transformation matrix of the wrist from the lower plate to the upper plate, Tw can be formed by

multiplying simple translational and rotational transformation matrices.

= Trans (-17,1 3,1 1,) Rot (z ,a1) Trans (-12,0,0) Rot (x ,a2) Trans (0,-13,0) Rot (x ,a3)

Trans (14,-ls,0) Rot (z ,a4) Trans (0,0,16) Rot (y ,as) Trans (0,15,0) Rot (z ,a6)

Trans (17,0,18)

The parameters in the above equation can be listed in the following table.

Table 1 The lengths of the sensing mechanism (in mm)

L1 L2 L3 L4 Ls L6 L 7 L8

23.0 22.0 15.0 15.0 26.0 26.0 35.0 13.0

Table 2 The initial position of the joint (in degree)

a 1 a2 a 3 a4 as a6

-90 0 ° 90 -90 90

When we design a passive compliance, we must consider several facts, such as the stiffness in three

directions and around three axes at the compliance center, the distance from bottom of the compliant wrist

device to the compliance center (or projection), and the overall strength and load capacity which are

- 6-

limited by the strength of the material.

We chose to use rubber material as the passive compliant element. The reason to choose rubber is

the simplicity of installing and the significant inherent damping which is rather important for the control

and device behavior from our analysis and simulation [1].

We chose a rubber structure that yields the reasonable stiffness in each direction and around each

axis. The device provides similar compliance in all six generalized components, which differs from the

RCC design where compliance is only presented in two to five components. In the RCC, compliance in the

approaching direction (usually referred to the Z direction) is not allowed to assure position control accu­

racy. We, however, intent to accommodate transition and absorb the kinetic energy as the robot makes con­

tact with environment, which requires the compliance in the Z direction. Moreover, since we provide sens­

ing and active feedback control in position control, the positioning errors can be compensated, and thus

avoiding compliance in the Z direction is unnecessary.

The stiffness in each direction must be reasonable. The stiffnesses in the lateral and torsional direc­

tions are low because the geometric tolerances is corrected usually in these directions. The stiffness in the

axial direction is high so that a high load capability and low positioning error are assured.

A major difference from most RCC device is that no attempt is made to locate the center of compli­

ance remotely, which is a source of instability as investigated in [28] and incompatible with a reasonable

size as shown in [10]. Since we introduce feedback control and the effective location of the compliance

center can be actively adjusted, it is unnecessary to exactly locate the compliance center at a certain point

of the device.

The stiffness in each direction was measured and the results are listed in Table 3. The stiffness of the

device can be represented in a form of matrix.

Kll 0 0 0 KbZ 0
0 Ku 0 -KbZ 0 0
0 0 Kaa 0 0 0

Kw = 0 -KZb 0 Kbb 0 0
KZb 0 0 0 Kbb 0
0 0 0 0 0 Ktt

Kll: Lateral force/lateral displacement;

K aa : Axial force/axial displacement;

K tt : Torsional torque/torsional angle;

K bb : Bending torque/bending angle;

KbZ: Bending torque/lateral displacement;

KZb: Lateral force/bending angle.

- 7 -

Table 3 Stiffness of the passive compliance

Kll Kaa K u Kbb Kbl Klb

(lbs/in) (lbs/in) (lbs-in/degree) (lbs-in/degree) (lbs) (lbs/degree)

2.54 31.75 0.50 3.00 9.77 0.27

(N/m) (N/m) (N-m/rad) (N-m/rad) (N) (N/rad)

441.00 5512.5 0.056 0.34 43.09 1.19

For the second prototype device, the sensing mechanism is designed based on the sensitivity ellipsoid

theory. The design goal is to find a mechanism configuration in which the motion at the end-point is

equally sensitive to the motion of each joint. In other words, given any arbitrary displacement at the end­

point of mechanism, if some joints present large motions, while the others are almost stationary, the sensi­

tivity of the instrument is poor.

We may evaluate the kinematic sensitivity of a mechanism by the procedure as follows. We partition

the inverse Jacobian matrix into the rotational part and translational part. Multiplying one of the matrices

by its transpose, two special matrices known as the sensitivity matrices corresponding to rotational and

translational parts are fonned. Then, the eigenvalue problems of these matrices are solved. The eigen­

values of these two matrices represent the kinematic sensitivity in space, and must satisfy a certain condi­

tion according to different design requirement. In our case, the isotropic sensitivity is desirable, thus each

eigenvalue has to be nearly equal.

For the passive compliance of the device, we tried to make different blocks to accommodate dif­

ferent operations, so that any of them can be sandwiched between the upper and lower plates of the device

without changing the sensing mechanism. For a block of the passive compliance, we used a partable struc­

ture assembled from several single pieces of rubber which is usually used as sandwich mounts of flex-bolt.

Basically, it consists of two partions. The upper one mainly contributes to the axial stiffness, and the lower

one provides the lateral and torsional stiffness. The bending stiffness is contributed by two parts.

- 8-

3. HYBRID POSITION FORCE CONTROL

3.1 Position Control

"Position Control" is the control mode that robot end-effector follows a specified trajectory. Being

equipped with the compliant wrist, the end-effector carrying a load or being acted on by an external force

will cause inaccurate positioning since the actual stiffness of the robot system is decreased. We propose to

utilize the sensed deflection of the compliant wrist and drive the robot in the opposite direction of observed

deflection in order to increase the overall stiffness of the system.

Two different control schemes, control in Cartesian coordinates and control in joint coordinates, are

investigated for position control. We first discuss the control scheme in Cartesian coordinates. We define

the transformation from the base coordinates to the lower plate of the compliant wrist device as T 6, that

from the lower plate to the upper plate of the compliant wrist as Tw, and that from the base to the upper

plate of the compliant device as B which is considered as the task coordinate transformation. The

kinematic relation at the initial state is

(1)

Supposing at the current state, the compliant wrist coordinate frame Tw is changed to T:' due to a load or

other external force, the task coordinate transformation is thus changed to B' and the kinematic relation

becomes

(2)

In order that the positioning ability of the robotic system is retained, it is our aim that the robot coor­

dinate transformation T 6 be modified to T;' such that the task coordinate transformation B remains

unchanging. Therefore, the control goal is

Equating (1) and (3) yields

or,

T;'T~ =B (3)

(4)

An alternative, which we use, is joint differential control utilizing the differential displacement of the

compliant wrist. There are two ways to obtain six components generalized differential displacement vector

L\Xw, i.e., three position displacements and three orientations (related to the initial position where
deflection is zero) from the wrist sensor.

.1Xw = (~ , ~y , ~z ,~ex ,~ey ,~ez)T

Firstly, L\Xw may be extracted from the updated transformation matrix of the compliant wrist Tw •

-9-

Using roll, pitch, yaw set to represent rotation [7], the transformation matrix Tw can also be written as

cos~ez COS~ey cos~ez si~ey si~ex-sin~ez cos~ex cos~ez sin~ey cos~ex+SiMez sin~ex Ax
s~ez coSL\ey SiMezSiMeysin~ex+cos~ez co~ex sin~ez sin~ey cos~ex-cos~ez sin~ex ~y

-sin~ey sin~ey sin~ex COS~ey cos~ex &
o 0 0 1

Therefore,

Ae . -1(ny)u z = SIn A8cosu y

Ae . -1(Oz)u x = SIn AScosu y

and,

!ix = Px

~y =Py

& =pz

Secondly, these six differential displacements may also be calculated from the sensing mechanism Jacobian

matrix Jw and ~9w which both depend upon sensing mechanism joint angles.

(5)

Joint differential control of the manipulator is defined as

(6)

where Jm and ~em are the Jacobian matrix and joint differential change of the manipulator respectively.

Since compensation of position error is desirable in position control and the manipulator must move in the

opposite direction of the wrist deflection,~ in (6) must be the same amount of ~w in (5) but with the

opposite sign if complete compensation is desired. Therefore,

(7)

More generally we may introduce a gain matrix Kp so that the desired joint command motion edes

becomes

(8)

- 10-

where 9traj is the desired joint angle, supplied by a trajectory generator function.

The matrix Kp in Equation (8) is actually a proportional gain of the control law. We may also extend

it to a full PID feedback control for this position control problem by modifying the control algorithm (8).

9des = 9traj-Jm-1AS

AS =Kp~w + KvMw +KIJ'!uwdt

For the detail discussions on the system analysis can be found in the thesis [3].

3.2 Force Control

(9)

(10)

When the end-effector is constrained by the environment, force control is highly desirable so that the

end-effector trajectory can be modified by the contact force during operations. For the robot with the com­

pliant wrist, the contact force can be identified by sensing information from the wrist device. We propose

to utilize this sensed force to drive the manipulator in the same direction as the force, i.e., the deflection of

the passive compliant mechanism such that the apparent stiffness is decreased and the desired contact force

is maintained.

Joint differential control scheme is employed to force control problem. Using the notations of the

last section, we can obtain the six component generalized displacement of the device L\Xw from either the

wrist Jacobian matrix Jw and the joint displacement AOw , or the transformation matrix Tw •

The manipulator differential control scheme from Equation (6) is

A9m =J;lL\X (11)

Since in this method, the manipulator is driven to a certain displacement in response to the sensed

deflection of the passive compliance, the control scheme actually controls the displacement, thereby

indirectly controls compliance of the system, and the contact force. The desired stiffness or compliance is

obtained by the ratio of the sensed force to the displacement response of the system. This displacement AX

relates to the exerted force Fw by the desired stiffness Kd

(12)

The measured displacement relates to the exerting force by the physical stiffness of the system which is

approximately the stiffness of the passive compliance of the wrist device, K w

Fw =Kw L\Xw

Substituting yields

~X=KF~w

where KF is the dimensionless ratio of stiffness.

Substituting Equation (14) to Equation (11) results in

(13)

(14)

(15)

- 11 -

(16)

The desired joint angles Sdes thus are

(17)

where Scurr is the current joint angles. Further, a full PID control can be employed as we discussed in posi­

tion control case. The derivation is analogous to that in Chapter 6 and is omitted for simplicity.

Comparing the control algorithm in position control (8) with that in force control (17), it is

worthwhile noting following points.

(1) The control algorithms are very similar, and both contain a dimensionless gain matrix Kp or Kp, but

with a different sign in front. Kp represents the gain controlling how much of the deflection to be

compensated in position control. Kp represents the gain relating the natural stiffness to the effective

stiffness of the system which may be determined based on different force control tasks. If complete

compensation in and around each direction is required in position control, the gain Kp is an identity

matrix. If the desired compliance level is as same as the natural compliance Kw , which is mainly

contributed by the passive compliant mechanism of the wrist, the gain matrix Kp is again an identity

matrix.

(2) The end-effector must be driven in the opposite direction to the displacement measured in position

control, but in the same direction for force control. Therefore, the updated differential displacement

89m is negative in Equation (8) while positive in Equation (17). As a result, the overall stiffness of

the system is increased in position control mode, but decreased in force control mode.

(3) The desired joint angles Odes is based on the specified joint angles 9 traj in position control (8), but

based on the current joint angles Scurr in force control (17). This rationale can be explained if we

consider the following case. Provided that the end-effector is in steady-state and a constant

deflection (i.e, constant force) exists in the compliant wrist, the manipulator should keep moving in

force control mode till the specified contact force is obtained, while it should stop if a constant com­

pensation has been achieved in position control mode.

3.3 Hybrid Control

"Hybrid control" or "hybrid positionlforce control" is the case where the degrees of freedom of end­

effector motion are partitioned into two orthogonal sets, one for position control and another for force con­

trol, by the constraints of force and position. As a robot is equipped with the compliant wrist, the desired

motion has to be capable of compensating for the position error due to the passive compliance exerted by

load or external forces in some degrees of freedom, and simultaneously has to be capable of responding to

the sensed force in the other degrees of freedom.

It has been known that every manipulator task can be broken down into elemental components that

are defined by a particular set of contacting surfaces. A generalized surface can be defined in a constraint

space having six degree of freedom, with position constraints along the normal to this surface and force

constraints along the tangents. These two types of constraints, force and position, partition the degrees of

- 12-

freedom of possible end-effector motion into two orthogonal sets, that must be controlled according to

position control scheme (8) and force control scheme (17) simultaneously. Since the desired angle 9des is

based on the trajectory specified angle atraj in position control (8), but based on the current angle Scurr in

force control (17), the hybrid control cannot be obtained simply by combining Equations (8) and (17). In

what follows, we present a hybrid control scheme for a robot system with consideration of an installed pas­

sive compliance.

At first, we partition ~w which is the Cartesian displacement determined from the wrist sensor into

two sets; ~X! corresponding to the component for which force control is required, and ~~ in the remain­

ing directions in which the position control is required. For example, if force in the Z direction and torques

around the X and Y directions are controlled, and the remaining directions are position controlled, we par­

tition

(18)

into

(19)

flX!= [/),x fly 00 0 fl9z] T

If the desired force Fd is given, the desired defonnation of the wrist device ~Xd can be computed by

~Xd = KwlFd (20)

where Kw is the actual stiffness of the compliant wrist device. Multiplying by a gain matrix, the desired

differential motion of the end-effector corresponding to position and force control schemes can be obtained

respectively.

(21)

(22)

to achieve the required position and force control.

From six component differential motions t1Xp and ~XF, we can form the 4x4 differential transform

matrices TM, and TM
F

respectively. When force control is considered in Cartesian space, the desired

motion of the end-effector TJj) is based on the last desired motion TJJs-l), then corrected by the differential

motion T AX, representing force control scheme, where the superscript j refers to time.

TJJ; = Tjk-l) * TAX
F

(23)

Since we must simultaneously consider the deflection of the end-effector in the presence of passive compli­

ance, the desired motion TJJ; in (23) has to be modified by the differential motion TAX, representing the

deflection of the compliant wrist in (21). The robot has to be driven in the opposite direction to compen­

sate for the deflection T!iX" thus the required motion T/IJ to yield the desired motion TJJ) is

T/IJ =TJj) * T~, (24)

- 13 -

The resultant motion of the end-effector not only provides the desired compliance in the specified degrees

of freedom, but compensates simultaneously for the deflection of the compliant wrist in other degrees of

freedom.

We also can derive a hybrid control scheme in joint space. The joint differential control scheme is

(25)

where Jrn is the manipulator Jacobian, and L\8 and~ are the joint differential motions and the correspond­

ing Cartesian differential motion of the end-effector. The desired joint angles of the end-effector must

move in the same direction as the differential joint angles caused by ~XF, based on the current desired

joint angles as in Cartesian space control (23).

(26)

Also, the end-effector motion must be modified by the differential joint angles which represents the

deflection of passive compliance ~p in (21),

(27)

Equations (26) and (27) represent the hybrid position/force control scheme in joint space in correspondence

with Equations (23) and (24) in Cartesian space.

- 14 -

4. PROGRAMMING AND EXPERIMENTS

Based on the control algorithm, software coding has been developed to perform various hybrid con­

trol operations and successfully implemented in experiments. In this section, we discuss the programming

work and the experiments where the software is implemented. The detail discussion on the experiments,

including the effect of the parameters on the system performance, can be found in the thesis [3].

Experiments with the compliant wrist have been performed on a PUMA 560. Before the experiment,

all six potentiometers were adjusted in a proper range and the compliant wrist sensor was calibrated care­

fully. The control was executed on a MicroVAX II using the ReI primitives of RCCL [29], which allows

the software to directly command robot joint angles. The software package allowed various parameters to

be set, and also allows trajectory and wrist displacement data to be logged to a file for subsequent analysis.

4.1 Hybrid Control Demonstration (HYBRI)

HYBRI is a package to demonstrate the hybrid position/force control scheme with a null desired

force. Any of six degrees of freedom can be assigned to perform force control or position control interac­

tively. The gains of position and force controls and poles of filters are specified prior to operation in the file

moveh.c.

When it is being executed, the robot stays at the original position, e.g., "ready position". One may

hold the end-point of the wrist by hand and move the lower plate related to the upper such that deflection of

the compliant wrist is sensed. At the same time, the robot moves in a way that, in some certain degrees of

freedom, it follows the force produced in the wrist. It allows one to lead the robot to move back and forth

in these degrees of freedom. In other degrees of freedom, it moves in the opposite direction of the

deflection to compensate for position errors. If a full position (or a full force) control is specified, the robot

invariantly compensates for the position error (or follows the force error) until the error becomes zero.

The parameters that must be specified at moveh.c are as follows.

(1) gainyr: position control gain for three rotational motions, usually can be set close to unity so that

the position error can be completely compensated for. That, however, causes the less damping sys­

tem;

(2) gainyt: position control gain for three translational motions, can be specified as gainyr. Since the

measuring systems for rotational motion and translational motion are different, the gain for transla­

tional motion usually is usually set two times higher than that for rotational motion;

(3) gainJr: force control gain for three rotational motions, can be set according to the desired compli­

ance and performance. the high gain produces a high effective compliance (Le., low effective stiff­

ness), which makes the system less damped.

(4) gainJt: force control gain for three translational motions, can be set as gainJr.

- 15 -

(5) fuzzJ: "fuzzy" limit for the joint motion (Le., potentiometer reading) of the wrist, is a measure of the

hysteresis in the device. It controls the difference between the current motion and the previous

motion of the joint Namely, when the difference of the motion in the sample interval is smaller than

this limit, the current motion is considered as the same as the previous one.

(6) fuzz_t: "fuzzy" limit for three translational motions in Cartesian space, is also a measure of the hys­

teresis in the device. However, it controls the absolute motion in Cartesian space. Namely, if the

value of the motion is smaller than this limit, the current motion is considered as zero.

(7) fuzz_r: "fuzzy" limit for three rotational motions in Cartesian space. (see (6)).

(8) s_x_t: selection switch in X direction to signify force or position control. 1 signifies position control,

and 0 signifies the force control. The default is the full position control case.

(9) sy_t: selection switch in Y direction. (see (7)).

(10) s_z_t: selection switch in Z direction. (see (7)).

(11) s_x_r: selection switch around X direction. (see (7)).

(12) sy_r: selection switch around Y direction. (see (7)).

(13) s_z_r: selection switch around Z direction. (see (7)).

(14) filtyyole: digital filter pole for position control loop, usually can be set as close to unity for good

performance. That, however, makes the response slow.

(15) filtJyole: digital filter pole for force control loop, usually can be set as 0.2 - 0.6. The system per­

formance is not quite sensitive to the filter pole in force control. (see the Chapter 7 in the thesis [3])

4.2 Surface Tracking (SURF)

SURF is a package to perform surface tracking operations. One may specify one degree of freedom

for force control, and other five degrees of freedom for position control. The degree of freedom specified

for force control does not have to be the normal direction of the surface to be tracked, but the direction at

which tracking force is controlled. The control gains, desired contact force, tracking velocity, approaching

velocity (the velocity prior to contact), turning force (the force that switches the controller from moving in

space to tracking), and poles of filters can all be specified interactively.

Supposing the surface is nearly horizontal and force at the Z direction is controlled, robot at first

moves towards the surface, upon contact with the surface, it will be switched by the turning contact force

from full position control to hybrid control. Immediately after the switch, tracking is started by moving

end-effector on the surface while keeping a constant contact force in the Z direction.

- 16-

The parameters besides those discussed in HYBRI are listed as follows.

(1) cf: the desired contact force, is evaluated indirectly as the desired deformation of the wrist device.

For that case that the surface is smooth, or the ideal performance is required, a high value is desir­

able. That, however, causes large friction, and also must be limited in the allowable range of the

deformation. The maximum ranges for translational and rotational motions are ±20mm , and ±200 .

(2) va: approaching velocity, is dependent on the task specification. For a large approaching velocity, a

large contact force is exerted at the moment of contact. In the program, it is specified in the Z axis as

approaching direction. It can also be specified in the other directions.

(3) vt: tracking velocity, is also dependent on the task. For the large friction surface, increasing the

tracking velocity may facilitate, and thus improve the tracking performance. This is specified in the

Y axis in the program. It can be also set in the other directions.

(4) if: turning force, is specified according to how much force to switch the controller from the full posi­

tion control to the hybrid control.

4.3 Edge Tracking (EDGE)

EDGE is a package to perform edge tracking operations. Edge tracking is one of the basic operations

of robot manipulation to perform two surface grinding, sliding assembly, as well as exploratory robotics

tasks. Any two of three translational components can be specified for force control and the remaining

directions are position controlled. A special tool is attached to the upper plate of the compliant wrist. The

feedback gains, desired contact forces in both sides of edge, filter poles, tracking and approaching veloci­

ties can be specified interactively.

The tracking process can be divided into three stages; approaching, searching, and tracking. The

robot at first approaches the edge. Upon making contact with one of the two sides which forms the edge,

moving in this direction stops and searching for the other side in that direction begins. When both of sides

are being contacted, the end-effector starts to follow the edge along the third direction which is perpendicu­

lar to normal directions of both sides that the edge is formed, and is position controlled.

The parameters besides those talked in the previous sections are listed as follows.

(1) vs: searching velocity, is specified in the X axis in the program to search for the second surface of

the edge.

(2) cfs: the desired contact force in the searching direction. In the program, that is specified in the X

axis.

(3) cfa: the desired contact force in the approaching direction. In the program, that is specified in the Z

axis.

- 17 -

4.4 Insertion Operation (INSER and FUZZ)

INSER is a package to perform insertion operation. The axial direction of hole must be specified for

position control so that shaft can be inserted at an exact position. In other directions, force is controlled so

that the shaft can be adapted to the contact force produced in operation and jamming is prevented.

The operation can be specified either inserting or pulling out. The approaching velocity, inserting

velocity, pulling out velocity, feedback gains in each direction, filter poles, desired contact forces for each

degree of freedom, and shaft location in the hole can be specified interactively.

FUZZ is a package to perform peg-and-hole operations with a fuzzy controller. The structure of pro­

gram is based on INSER, but the fuzzy decision rule is employed to assign the gains of force control in dif­

ferent directions. The fuzzy control is discussed in the Chapter 10 of the thesis [3].

The parameters besides those mentioned above are listed as follows.

(1) pull: switch to signify inserting or pulling out operation. 0 signifies inserting, and 1 signifies pulling

oul

(2) va: approaching velocity, is specified according to how fast you want the shaft approach to the hole.

(see also the parameters in WRIT, if the hole location is initially specified).

4.5 Writing on Board (WRIT)

WRIT is a package to perform writting operations on an arbitrary surface. The control scheme is the

same as that in swface tracking program SURF, but a general trajectory generation is also executed paral­

lelly for position compensation and force control in order to accomplish the writting or painting task.

The discussion in the section of hybrid control is focused on the compliant motion control at a cer­

tain configuration. Since operations are fulfilled by many sequential configurations of robot manipulators,

trajectory generation must be executed simultaneously with position compensation and force control.

We may specify any numbers of configurations being executed sequentially in operations. Each

configuration is defined by six Cartesian displacement of the end-effector, i.e., three translations and three

rotational motions with respect to the base coordinates. Supposing there are n configurations specified, and

Xi and Xf are denoted as the current configuration and designed configuration at the sequence i (i=l, ...,n),

a control algorithm based on the PID law can be derived.

L\x.(k+l) =k L\x.(k) + k (Ax·(k)_L\x.(k-l»)+k/ >.L\x.Ck)
I} Pi I} VJ I} I} iT' Ij

(28)

(29)

(30)

where i denotes the sequential desired configuration, j denotes each component of six displacements in

Cartesian space, k denotes the present time. kpJ , kvJ , and k/
i

are the proportional, derivative, and integral

- 18-

gains. The motion ~i)"+1) is controlled within a limited range for translation and rotation respectively so

that an excess velocity is prevented.

The operation can be specified as follows. The compliance at the direction of the surface nonnal has

to be sensitively controlled so that pen is prevented from being broken due to an excess contact force, or

being departed from the surface due to concavity of the surface. The position and orientation of the end­

effector in other directions has to be controlled so that pen is kept in a proper posture. The trajectory has to

be generated sequentially so that writting task can be accomplished. Based on this specification, we

designed a controller which controls force in the surface normal and controls position in the remaining

direction, and generates trajectory of the end-effector simultaneously. The velocity of writting operation is

determined by the trajectory generator. The tolerance of positioning error, maximum velocity in each axis,

desired contact force, approaching velocity, and other parameters can be specified interactively.

The parameters besides those discussed above are listed as follows.

(1) PPgain: proportional gain of the trajectory generation for the three translational motions. The large

gain causes a fast motion, which is limited by vlirn_r.

(2) PRgain: proportional gain of the trajectory generation for the three rotational motions.

(3) DPgain: derivative gain of the trajectory generation for the three translational motions.

(4) DRgain: derivative gain of the trajectory generation for the three rotational motions.

(5) IPgain: integral gain of the trajectory generation for the three translational motions.

(6) IRgain: integral gain of the trajectory generation for the three rotational motions.

(7) vlim_t: velocity limit for translational motion.

(8) vlim_r: velocity limit for rotational motion.

(9) errtolerance: the positioning error tolerance for the trajectory generation. Within this range, the des­

tination is considered to have been reached.

(10) deri_gainJt: derivative gain in force control loop for three translational motions.

(11) deri_gainJr: derivative gain in force control loop for three rotational motions.

(12) deri_gainyt: derivative gain in position control loop for three translational motions.

(13) deri_gainyr: derivative gain in position control loop for three rotational motions.

- 19-

5. SOURCE CODE

This is the source code of compliant wrist control designed and implemented in the GRASP Labora­

tory. The control is executed on a MicroVax II using RCI primitives of RCCL [29], and is implemented in

PUMA 560 with Index machine. The programs under the directory /randd/rw/webster are listed as follows.

makefile

hybri.c

moveh.c

surfc

moves.c

edge.c

moveg.c

inser.c

movei.c

fuzz.c

movefc

writ.c

movew.c

rw.h

recordd.c

filt.c

The user is suggested to read hybri.c and moveh.c in the beginning to learn the definitions of parame­

ters since some similar descriptions are omitted in the other programs for simplification.

11_1»·<··············
CFLAGS = -g -1/usr/taals/inelude
CLIBS = -laxvll

OBJSl = maveh.a hybri.a
OBJS2 = maves.a surf.a
OBJS3 = maveQ.a edge.a
OBJS4 = mavei.a inser.a
OBJS5 = mavef.a fuzz.o
OBJS6 = mavew.o writ.a
OBJS7 = mh.a test.a

REALOBJS
hybri: ${OBJS1} reeardd.h

ree ${CFLAGS} -0 hybri ${OBJS1} -1m REAL $(REALOBJS) ${CLIBS}
surf: ${OBJS2} reeordd.h

ree ${CFLAGS} -0 surf ${OBJS2} -1m REAL $ (REALOBJS) ${CL1BS}
edge: ${OBJS3} reeardd.h

ree ${CFLAGS} -0 edge ${OBJS3} -1m REAL $(REALOBJS) ${CLIBS}
inser: ${OBJS4} reeardd.h

ree ${CFLAGS} -0 inser ${OBJS4} -1m REAL $(REALOBJS) ${CLIBS}
fuzz: ${OBJS5} reeardd.h

ree ${CFLAGS} -0 fuzz ${OBJSS} -1m REAL $(REALOBJS) ${CL1BS}
writ: ${OBJS6} reeardd.h

ree ${CFLAGS} -0 writ ${OBJS6} -1m REAL $ (REALOBJS) ${CLIBS}
test: ${OBJS7} reeordd.h

ree ${CFLAGS} -0 test ${OBJS7} -1m REAL $(REALOBJS) ${CLIBS}

mave.a: recard.h
moved.a: reeardd.h

filt: filt.a
ee -0 filt filt.a /graspusr/pie/rabat/lib/libjae.a -1m

filt.a: filt.e
ee -e -I /graspusr/pie/rabat/h filt.e

/*
File: hybri.c
Remarks: Hybrid position force control for the null desired force

with the compliant wrist system (ref: moveh.c)

jang o[RW MAX JOINT]; /* previous joint angles of the wrist device */
rw theta cal[RW MAX JOINT], /* pots reading corresponding to

- - - - the home position angles of
each joint rw theta bar */

rw theta bar[RW MAX JOINT] = { /* home position-of the joint
- - - - in the wrist device */

*/

#include
#include
#include
#include
#include
'include

<stdio.h>
<rccl/rccl.h>
<rccl/rci.h>
<rccl/kine.h>
"rw.h"
"recordd.h"

DIFF

double
double

d_f, d_p, dvel; /* d f is the cartesian error updated in rw() */
/* representing force control, and d p is that*/
/* representing position compensation. dvel is*/
/* the cartesian error specified by trajectory*/
/* generator which is updated by drive() */

/*
* the first order digital filter
*/

'define FILTER(y, u, pole) (y=(l.O-pole)*(y*pole/(l.O-pole)+u))
/*
* the recording function
*/

#define NCOPY(a,b) for(i=O;i<N;i++)a[i]=b[i]

/* open RCI */
/* RCI controls arm */

/* calibrate the compliant wrist */

/* transform print routine */

/* record file variable */
/* user/interrupt coordination flag */
/* time maintained by interrupt function */
/* record file fp */

/* print-out switch during operation */
/* desired cartesian motion with consideration

of force control and trajectory
specification without position
compensation*/

/* required cartesian motion based on dangles
with consideration of position compensation
*/

RW THETA BAR 0,
RW-THETA-BAR-l,
RW=)HETA=BAR=2,
RW THETA BAR 3,
RW- THETA-BAR- 4,
RW-THETA-BAR-5

- --

i;
dummy(), drive();

verbose;
d_angles [N] ;

r_angles[N];

int
void

setbuf(stdout, NULL);
rw_ cal () ;

tw = newtrans("tw",rw); /* initialize the 4X4 matrix tw */
rw car update tw();
prlntrn(tw,stdout);
/*

* start the real-time process, and request arm power
*/

RCIopen();
RCIcontrol(dummy, drive);
chg.power_on.com = YES;

for (i = 0; i < RW_MAX_JOINT; ++i)
{

jang_o[i] = 0.0;

double

int
double

} ;
int rclconst();
struct _record rec;
int sync,

time;
FILE *recfp;

SNCS sncs;

/*
* Here is where we initialize everything needed to make the robot do
* what we want it to. We establish the position equation that the
* main program will continually move to.
*/

rw_init()
{

/* This is the distance from the center of the
last three joints of Puma 560 to the outer
surface of the flange to which the compliant
wrist is attached */

/* distance from the surface of the flange to
the mounting plate of the compliant wrist
in mm */

cartesian space displacements of the
compliant wrist device, first three are for
translational displacements and the other
three for rotational displacements */
tw is the 4x4 matrix of the compliant wrist
kinematics */

fuzz_j
fuzz_t
fuzz r

s_y_t,
s_z_t,
s_x_r,
s_y_r,
s z r;

#define mount dist 35.0

force control gain for translational motion*/
force control gain for rotational motion*/
position control gain for translational motion*/
position control gain for rotational motion*/
"fuzzy" limit for six joints of the wrist*/
"fuzzy" limit for three translational cartesian
space motion of the wrist*/
"fuzzy" limit for three rotational cartesian
space motion of the wrist*/

filt f pole,/* digital filter pole for force control loop*/
filt=p=pole,/* digital filter pole for position control 100p*/
s_x_t, /* selection of position control ot force control

1 signifies position control, and 0 signifies
force control. s x t is that for translational
motion in x aXis~ s_y_r is that for rotational
motion around y axis, so as the others */

#define N 6
'define dist of flange 55.88

double car_diffs[6]; /*

TRSF mem_tw, /*

*tw = &mem_tw;

extern double gain ft, /*
gain-fr, /*
gain=pt, /*
gain pr, /*
fuzz=j, /*
fuzz_t, /*

fuzz r, /*

#define FUZZ
#define FUZZ CARPOS
#define FUZZ=CAREUL

-/ . ··········.··· uiEIi
if «how. state & CALIB OK) == 0) {

fprintf(stderr~ "arm not calibrated\n");
exit (3);

jnts_to_angle(del_angle_vel, &qvel); /* assign the joint angles
pointed to by &qvel to an
array of double given by
del_angIe_vel */

Real-time drive function

if (initd == 0) {

enctoang(r angles, how.pos); /* get actual joint angles */
for (i=O; l<N: i++) {

d_angles[i] = r_angles[i];

read joint angles
compute Jacobian at this point
transform cartesian diff to joint space
compute new joint angles
output setpoint

jacobI (&q_f, &d_f, &sncs, 0.0);

/* output new joint angles */
/* tell user process we have data */

angtoenc(encs, r_angles);
sync++;
time++;

/*
* record the current angles of robot, and cartesian error of the
* wrist device
*/

NCOPY(rec.r angles, r angles);
NCOPY(rec.car_diffs, car_diffs);
rec.time = time;

/*
* digital filter. del force and del posn are input, and
* del f smth and del p smth are output. filter poles can be set
* in moveh.c - -
*/

for (i=O; i<N; i++) {
FILTER(del f smth[i], del force[i], filt f pole);
FILTER(del=p=smth[i], del=posn[i], filt_p_pole);
}

for (i=O; i<N; i++) {
chg.motion[i] .com = POS;
chg.motion[i] .value = encs[i];

/*
* control function. The final required motion r angles are computed
* by force control term del f srnth, position compensation term
* del p smth, and trajectory generation term del angle vel.
*/ - - - -

for (i=O; i<N; i++)
d angles[i] += del f smth[i] + del angle vel[i];

for (i=O;-i<N; i++) - - --
r_angles[i] = d_angles[i] + del_p_smth[i];

int i,
j;

void
dummy () {}

/*
* rw_cal reads the current pot settings to get the current joint
* angles. These are then subtracted from the "correct" angles to
* get the correction angles.
*/

rw_cal ()
{

/* compute sin/cos */
/* compute jacob terms */

/* jacobian inverse to
transform the cartesian
error d f to the joint
space error q f representing
force control-*/

/* jacobian inverse to
transform the cartesian
error d p to the joint
space error q p representing
position control */

/* assign the joint angles
pointed to by &q f to an
array of double given by
del force */

/* assign the joint angles
pointed to by &q_p to an
array of double given by
del_posn */

del_angle_vel[N];

initd = 0;
del f smth [N] ;
del=p=smth [N] :

del_force[N], del_posn[N],
encs [N] ;
q_f, CLP, qvel;
i;

int
double
double

car diffs[N];
r angles [N] ;
d=angles[N];

double
short
JNTS
int
static
static
static

}

initd++;
}

update sincos(&sncs, r angles);
uPdate=jacobian_terms(&sncs);

jacobI (&q_p, &d_p, &sncs, 0.0);

jnts_to_angle(del force, &q_f);

jnts_to_angle(del_posn, &q_p);

/*

*/
double
double
double
void
dri ve ()
{

jacobI (&qvel, &dvel, &sncs, 0.0); /* jacobian inverse to
transform the cartesian
error dvel to the joint
space error qvel
representing trajectory
generation */

/*
* Initialize the axvll board.
*/

if (ax init 0 < 0)
{ -

_ •••••••••.••...................

/*
* Real-time drive function

}

q_j6.conf = "blah";
initd++;

if (initd == 0) {
enctoang(r angles, how.pos); /* get actual joint angles */
for (i=O; I<N; i++) {

d_angles[i] = r_angles[i];

read joint angles
compute Jacobian at this point
transform cartesian diff to joint space
compute new joint angles
output setpoint

T6"'-1 */
T6err * Pd */

/* T6err
/* T6err

* where P. D and I are empirically determined control gains
*/

invert (&T6err,&T6);
trmultinp(&T6err,&Pd);

dvel.t.x = T6err.p.x * ppgain + (T6err.p.x - T6err deri.t.x) * DPgain
+ T6err integ.t.x * IPgain; -

dvel.t.y = T6err.p.y * ppgain + (T6err.p.y - T6err deri.t.y) * Dpgain
+ T6err integ.t.y * Ipgain; -

dvel.t.z = T6err.p.z * ppgain + (T6err.p.z - T6err deri.t.z) * DPgain
+ T6err_integ.t.z * IPgain; -

noatorpy(&rollerr, &pitcherr, &yawerr, &T6err);
/* get roll, pitch, yaw from transform T6err */

/*
* PIO controller for trajectory generation.
*/

/*
* set the max velocities for the motion along and around each axis
*/

if(dvel.t.x <= -VLIM_T)
dvel.t.x = -VLIM_T;
if(dvel.t.x >= VLIM T)
dvel.t.x = VLIM_T; ­
if(dvel.t.y <= -VLIM_T)
dvel.t.y = -VLIM T;
if(dvel.t.y >= VLIM_T)
dvel.t.y = VLIM T;
if(dvel.t.z <=--VLIM_T)
dvel.t.z = -VLIM_T;
if(dvel.t.z >= VLIM_T)
dvel.t.z = VLIM_T;

dvel.r.x = yawerr * PRgain + (yawerr - T6err deri.r.x) * ORgain +
T6err_integ.r.x * IRgain; -

dvel.r.y = pitcherr * PRgain + (pitcherr - T6err deri.r.y) * DRgain +
T6err integ.r.y * IRgain; -

dvel.r.z = rollerr * PRgain + (rollerr - T6err deri.r.z) * DRgain +
T6err_integ.r.z * IRgain; -

/* robot joint angles */
/* wrist joint angles */

del_angIe_vel [N];

q_j6;

initd = 0;
del f smth [N] ;
del-p-smth[N] ;
T6err=integ;

T6err_deri;

/* the error transform sum value for
* the integral term */

/* the error transform update value
* for the derivative term */

yawerr, pitcherr, rollerr; /* orentational error
* for trajectory generation
*/

del force[N],
del:=posn[N];
encs[N];
T6err;
q_f, qvel;
q-p;

JNTS
i;

int
double
double
OIFF

car_diffs [N];
r _angles [N] ;
d_angles[N);
error;

double
double
short
TRSF
JNTS
JNTS
static
int
static
static
static
static

float

static DIFF

*/
double
double
double
double
void
dri ve ()
{

e = T6"'-1 * Pd
xdot = P*e + D*de/dt + I*$ e dt

/*
* trajectory generation

for (i=O; i<6; i++)
*f++ = r_angles[i] - *g++;

/*

* do the forward kinematics to find current cartesian position,
* also updates all sin/cos values in sncs.
*/

jns_to_tr(&T6, &q_j6, &sncs);

if(dvel.r.x <= -VLIM_R)
dvel.r.x = -VLIM R;
if(dvel.r.x >= VLIM_R)
dvel.r.x = VLIM R;
if(dvel.r.y <=--VLIM_R)
dvel.r.y = -VLIM_R;
if(dvel.r.y >= VLIM_R)
dvel.r.y = VLIM R;
if(dvel.r.z <=--VLIM_R)
dvel.r.z = -VLIM R;
if(dvel.r.z >= VLIM R)
dvel.r.z = VLIM_R; -

/*
* update the privious error for derivative
*/

T6err deri.t.x = T6err.p.x;
T6err=deri.t.y = T6err.p.y;
T6err_deri.t.z = T6err.p.z;
T6err deri.r.x = yawerr;
T6err=deri.r.y = pitcherr;

&(jmin_c.th1);*f = &(q_j6.th1), *greal

/*
* copy the joint angles into a JNTS
*/

{

1'111>··············· ·······················.>/.·.·<.i ••••••• 1I:II
T6err deri.r.z rollerr; */

int i,
j;

fprintf(stderr,"Cannot initialize the axvll board\n");
exit(l);

if (ax init () < 0)
{ -

for (i = 0; i < RW_MAX_JOINT; ++i)
{

rw_pt 0 r (i) ;rw_theta_cal [i]

/*
* Initialize the axvll board.
*/

rw cal ()
{-

/*
* update the error integral
*/

T6err integ.t.x += T6err.p.x;
T6err-integ.t.y += T6err.p.y;
T6err-integ.t.z += T6err.p.z;
T6err-integ.r.x += yawerr;
T6err-integ.r.y += pitcherr;
T6err=integ.r.z += rollerr;

/*
* update Pd if there are several destinations specified
*/

error = fabs(T6err.p.x * T6err.p.x + T6err.p.y * T6err.p.y
+ T6err.p.z * T6err.p.z);

if (error < errtolerance) {
if (++itarg < ntarg)

Pd = target [itarg];

for (i=O; i<N; i++) {
FILTER(del f smth[i], del force[i], filt f pole);
FILTER(del=p=smth[i], del=posn[i], filt_p_pole);

}
update_jacobian_terms(&sncs);

jacobI (&q_f, &d f, &sncs, 0.0);

jacobI (&q_p, &d_p, &sncs, 0.0);

jnts to angle(del force, &q f);
jnts=to=angle(del=posn, &q_p);

jacobI (&qvel, &dvel, &sncs, 0.0);

jnts_to_angle(del_angle_vel, &qvel);

/* compute jacob terms */

/* transform diff in cartesian
space to joint space */

/* transform diff in cartesian
space to joint space */

/* delta joint to angles */
/* delta joint to angles */

/* transform diff in cartesian
space to joint space */

/* delta joint to angles */

/*
* This is the routine that has to figure out how to change the postion
* equation established in rw_init() so the robot is driven to where we
* want it to go.
*/

rw ()
{

int i;

static DIFF car_deri;
JNTS curr jnts;
JNTS diff-jnts;
if (rw_comp)
{

for (i=O; i<N; i++)
d angles[i] += del f smth[i] + del angle vel[i];

for (i=O;-i<N; i++) - - --
r_angles[i] = d_angles[i] + del_p_smth[i];

NCOPY(rec.r angles, r angles);
NCOPY(rec.car diffs, car diffs);
rec.time = time; -

bcopy(j6, &curr_jnts, sizeof(JNTS));
rw car update tw();
if-(ve;bose>l)

printrn(tw,stdout);
noatorpy(&car diffs[5],&car diffs[4],&car diffs[3],tw);
car diffs[O] ~ tw->p.x; -
car=diffs[l] = tw->p.y;
car_diffs[2] = tw->p.z - 62.0;

angtoenc(encs, r_angles);
sync++; /* tell user process we have data */
time++;

for (i=O; i<N; i++) {
chg.motion[i] .com = POS;
chg.motion[i] .value = encs[i];

void
dummy () {}

/*
* rw cal reads the current pot settings to get the current joint
* angles. These are then subtracted from the "correct" angles to
* get the correction angles.

if(car diffs[O] <= FUZZ CARPOS && car diffs[O] >= -FUZZ CARPOS
car_diffs[O] = 0.0; - -

if(car diffs[l] <= FUZZ CARPOS && car diffs[l] >= -FUZZ CARPOS
car diffs[l] = 0.0; - -

if(car_diffs[2] <= 0.5 * FUZZ CARPOS && car_diffs[2] >=
- 0.5 * FUZZ CARPOS)

car diffs[2] = 0.0;
if(car diffs[3] <= FUZZ CAREUL && car diffs[3] >= -FUZZ CAREUL

car diffs[3] = 0.0; -
if(car diffs[4] <= FUZZ CAREUL && car diffs[4] >= -FUZZ CAREUL

car_diffs[4] = 0.0; -
if(car diffs[5] <= FUZZ CAREUL && car diffs[5] >= -FUZZ CAREUL

car diffs[5] = 0.0; -
if (verbose) {

for (i=O; i<N; i++)
printf ("%10. 2f ", car diffs [i]) ;

putchar('\n'); -

_u•• u/u i •••••. ······cB
1*

printy (&T6, stdout);

jang += rw_theta bar[i];
return (jang);

jang = jang_o[i];
}
jang_o[i] = jang;

jang diff = (jang - jang o[i]);
if (jang_diff <= FUZZ &&-jang_diff >= -FUZZ)
{

jang = rw_raw_diff(i);

lifdef notdef
newdiff = rw raw diff(i);
rw_old_diff[l] = newdiff;

fendif

car diffs[O] * gain pt + car deri.t.x * deri gain pt;
car-diffs[l] * gain-pt + car-deri.t.y * deri-gain-pt;
(car diffs[2] + cf)-* gain ft + car deri.t.z
* deri gain ft; - -
dtor(car diffs[3]) * gain pr
+ car deri.r.x * deri gain pr;
dtor(~ar diffs[4]) * gain pr
+ car deri.r.y * deri gain pr;
dtor(~ar diffs[5]) * gain pr
+ car_deri.r.z * deri_gai~_pr;

d.r.x

d.r.y

* PD control for the hybrid control loop, force control in
* the z direction, and position is controlled in the others
*1

d.t.x
d.t.y
d.t.z

d.r.z

double jang,
jang_diff,
newdiff;

if (recfp && sync) {
fwrite(&rec, sizeof(rec), 1, recfp);
sync = 0;

double
rw jang(i)
int i;
{

1*
"* force control mode in hybrid control
*1

d f.t.x = 0.0;
d-f.t.y = 0.0;
d=f.t.z = d.t.z;
d_f.r.x = 0.0;
d f.r.y = 0.0;
d:=f.r.z = 0.0;

c1 = cos(rw jang(O»;
sl = sin(rw=jang(O»;

c2 = cos(rw_jang(l»;
s2 = sin(rw_jang(l»;

c3 = cos(rw jang(2»;
s3 = sin(rw=jang(2»;

c4 = cos(rw jang(3»;
s4 = sin(rw=jang(3»;

c5 = cos(rw jang(4»;
s5 = sin(rw=jang(4»;

c6 = cos(rw jang(5»;
s6 = sin(rw=jang(5»;

rw_car_update_tw()
{

double c1,
c2,
c3,
c4,
c5,
c6,
sl,
s2,
s3,
s4,
s5,
s6,
c23,
s23,
xl,
x2,
x3,
x4,
x5,
x6,
x7,
x8,
x9,
x10;

car diffs[O];
car-diffs[l];
car-diffs[2];
car=diffs[3];
car diffs[4];
car=diffs[5];

previous deflection for derivative term
1*

"* update the
"*1

car deri.t.x
car-deri.t.y
car-deri.t.z
car-deri.r.x
car-deri.r.y
car=deri.r.z

1*
* position control mode in hybrid control
*1

d_p.t.x = -d.t.x;
d_p.t.y = -d.t.y;
d_p.t.z = 0.0;
d p.r.x = -d.r.x;
d=p.r.y = -d.r.y;
d_p.r.z = -d.r.z;

int s;

1111I><·······<··········
c23 = cos(rw jang(l)+rw jang(2));
s23 = sin(rw=jang(1)+rw=jang(2));

xl = -c4*s5;
x2 = c4*c5*c6 - s4*s6;
x3 = c4*c5*s6 + s4*c6;
x4 = -s4*s5;
x5 = s4*c5*c6 + c4*s6;
x6 = s4*c5*s6 - c4*c6;
x7 = 18*x3 + 17*x1 - 15*s4 + 15;
x8 = 18*s5*s6 + 17*c5 - L6;
x9 = -18*x6 - 17*x4 - 15*c4 - L4 + 12;
x1D = 13*c2 + c23*x7 + s23*x8;

iElI

tw->n.x
tw->o.x
tw->a.x
tw->p.x

tw->n.y
tw->o.y
tw->a.y
tw->p.y

tw->n.z
tw->o.z
tw->a.z
tw->p. z

rw_close ()
{

c1*(c23*x1 + s23*c5) - sl*x4;
c1*(c23*x2 + s23*s5*c6) - sl*x5;
c1*(c23*x3 + s23*s5*s6) - sl*x6;
c1*(13*c2 + x7*c23 + s23*x8) + sl*x9 - 19;

sl*(c23*x1 + s23*c5) + c1*x4;
sl*(c23*x2 + s23*s5*c6) + c1*x5;
sl*(c23*x3 + s23*s5*s6) + c1*x6;
sl*(13*c2 + c23*x7 + s23*x8) - c1*x9 + L3;

s23*x1 - c23*c5;
s23*x2 - c23*s5*c6;
s23*x3 - c23*s5*s6;
s23*x7 - c23*x8 + 13*s2 + 11;

RClrelease(l);
RClclose (1);

rccl close ()

/*
* called on AC to close the record file if it was open
*/

void
qui t ()
{

if (recfp)
fclose(recfp);

_i ········<i·••·••·tUoy¢wi¢.?i/>···················· ································>···< ••••••••••·...._1I
/*

File: movew.c
Remarks: Writing (or drawing) operation on an unmodeled

surface with the compliant wrist system (ref: writ.c)

IPgain = 0.0000001;
IRgain = 0.00000001;
while (--ac> 0 && **++av == '-')

register char *p = *av;
*/

double atof () ;

rnain(ac, av)
int ac;
char **av;
{

#include <stdio.h>
#include " rw .h"
double gain ft,

gain=fr,
gain pt,
gain-pr,
deri=gain_ft,
deri gain fr,
deri-gain-pt,
deri-gain-pr,
fuzz=j, ­
fuzz t,
fuzz-r,
filt-f pole,
filt:=p=pole,
vlim_t,
vlim r,
cf, -
errtolerance;

while (*++p != '\0')
switch (*p) {
case 'v':

verbose++; break;
case 'P':

PPgain = atof(&p[l]); break;
case'S' :

PRgain = atof(&p[l]); break;
case 'D':

DPgain = atof(&p[l]); break;
case' E' :

DRgain = atof(&p[l]); break;
case'I':

IPgain = atof(&p[l]); break;
case' J' :

IRgain = atof(&p[l]); break;
case' R' :
if ((recfp = fopen (&P [1], "W"» == NULL)
fprintf(stderr,

"cant open file for write\n"
) ;
exit(3);
}

goto nextarg;

/*
* specify trajectory sequentially. the following one is
* for the cartoon of human's side view looking
*/

trsl(&target[O],-614.0, 150.0, 52.5);
rpy(&target[O], 0.0, 0.0, -180.0);
trsl(&target[l],-614.0+23.0, 150.0+48.0, 52.5);
rpy(&target[l], 0.0, 0.0, -180.0);
trsl(&target[2],-614.0+19.0, 150.0+55.0, 52.5);
rpy(&target[2], 0.0, 0.0, -180.0);
trsl(&target[3],-614.0+47.0, 150.0+105.0, 52.5);
rpy(&target[3], 0.0,0.0, -180.0);
trsl(&target[4],-614.0+7.0, 150.0+101.0, 52.5);
rpy(&target[4], 0.0, 0.0, -180.0);
trsl(&target[5],-614.0+5.0, 150.0+90.0, 52.5);
rpy (& t a rget [5], O. 0 , 0 . 0, -18 0 . 0) ;
trsl(&target[6],-614.0+9.0, 150.0+120.0, 52.5);
rpy(&target[6], 0.0, 0.0, -180.0);
trsl(&target[7],-614.0-22.0, 150.0+122.0, 52.5);
rpy(&target[7], 0.0, 0.0, -180.0);
trsl(&target[8],-614.0+12.0, 150.0+130.0, 52.5);
rpy (&target [8], 0.0, 0.0, -180.0);
trsl(&target[9],-614.0+6.0, 150.0+133.0, 52.5);
rpy(&target[9], 0.0, 0.0, -180.0);
trsl(&target[10],-614.0+10.0, 150.0+166.0, 52.5);

nextarg:
}
printf("proporl gain of translation is %f\n", PPgain);
printf("proporl gain of rotation is %f\n", PRgain);
printf ("integl gain of translation is %f\n", IPgain);
printf("integl gain of rotation is %f\n", IRgain);
printf("deri gain of translation is %f\n", DPgain);
printf("deri gain of rotation is %f\n", DRgain);

ntarg = 31;
itarg = 0;
rw_cornp = 0;
verbose;

FILE *recfp;
TRSF Pd;
TRSF target[31];
double ppgain, PRgain;
double DPgain, DRgain;
double IPgain, IRgain;

gain_pr = 0.3;
gain pt = 0.6;
gain:=fr = 0.005;
gain ft = 0.02;
deri-gain pr = 0.0;
deri-gain-pt = 0.0;
deri-gain-fr = 0.0;
deri-gain-ft = 0.0;
fuzz=j = -:-01;
fuzz r = 0.2;
fuzz-t = 0.2;
filt:=f_pole = 0.4;
filt p pole = 0.95;
vlirn-t-= 1.0;
vlirn=r = 0.2;
cf = 0.35;
errtolerance = 2.0;
PPgain = 0.035;
PRgain = 0.0001;
DPgain = 0.005;
DRgain = 0.0008;

int
int
int
int
extern
extern
extern
extern
extern
extern

IflAl«<··i...··········
rpy(&target[10], 0.0,0.0, -180.0);
trsl(&target[11],-614.0-60.0, 150.0+147.0, 52.5);
rpy(&target[ll], 0.0, 0.0, -180.0);
trsl(&target[12],-614.0, 150.0+147.0, 65.0);
rpy(&target[12], 0.0, 0.0, -180.0);
trsl(&target[13],-614.0, 150.0+187.0, 52.5);
rpy(&target[13], 0.0, 0.0, -180.0);
trsl(&target[14],-614.0, 150.0+187.0+40.0, 52.5);
rpy(&target[14], 0.0, 0.0, -180.0);
trsl(&target[15],-614.0-20.0, 150.0+187.0+30.0, 52.5);
rpy(&target[15], 0.0, 0.0, -180.0);
trsl(&target[16],-614.0-20.0, 150.0+187.0+30, 65.0);
rpy(&target[16], 0.0,0.0, -180.0);
trsl(&target[17],-614.0-30.0, 150.0+187.0-10.0, 52.5);
rpy (&target [17], 0 • 0, O. 0, -180. 0) ;
trsl(&target[18],-614.0-30.0, 150.0+187.0+40.0, 52.5);
rpy(&target[18], 0.0, 0.0, -180.0);
t r s 1 (&target [19] , - 614 •0- 50 • 0, 150 . 0+187 . 0+30 . 0, 52 • 5) ;
rpy(&target[19], 0.0, 0.0, -180.0);
trsl(&target[20],-614.0-50.0, 150.0+187.0-10.0, 52.5);
rpy (&target [20], 0.0, 0.0, -180.0);
trsl(&target[21],-614.0-50.0, 150.0+187.0-10.0, 65.0);
rpy(&target[21], 0.0, 0.0, -180.0);
trsl(&target[22],-614.0-20.0, 150.0+187.0, 52.5);
rpy(&target[22], 0.0,0.0, -180.0);
trsl(&target[23],-614.0-50.0, 150.0+187.0, 52.5);
rpy(&target[23], 0.0, 0.0, -180.0);
trsl(&target[24],-614.0-50.0, 150.0+187.0, 65.0);
rpy(&target[24], 0.0,0.0, -180.0);
trsl(&target[25],-614.0-70.0, 150.0+187.0, 52.5);
rpy (& target [25], O. 0, O. 0 , -180. 0) ;
trsl(&target[26],-614.0-60.0, 150.0+187.0+40.0, 52.5);
rpy (& t a rget [2 6], 0 • 0, O. 0 , -180. 0) ;
trsl(&target[27],-614.0-80.0, 150.0+187.0+30.0, 52.5);
rpy(&target[27], 0.0,0.0, -180.0);
trsl(&target[28],-614.0-80.0, 150.0+187.0-10.0, 52.5);
rpy(&target[28], 0.0,0.0, -180.0);
trsl(&target[29],-614.0-80.0, 150.0+187.0+42.0, 52.5);
rpy(&target[29], 0.0,0.0, -180.0);
trsl(&target[30],-614.0-80.0, 150.0+187.0+42.0, 65.0);
rpy(&target [30], 0.0, 0.0, -180.0);

Pd = target [0];

rw_comp = 0;

/*
* initialize the control loop.
*/

rw_in it () ;

/*
* start the complience. watch out.
*/

rw_comp = 1;

for (;;)
rw ();

.················fi),OV¢\tt~¢}>··············· . ·······························«<.·.............uD

11.< ··················>rwli:t U .·>····························................ . . .·.·.···.·..........•.......•.•«iuuuuD
/*

File: rw.h
Remarks: Kinematics and other parameters definitions of sensing

mechanism of the compliant wrist

/*
* pots reading to degree
*/

fdefine rw_ptod(p} (rw_vtod(rw_ptov(p}})

*include <rccl/rccl.h>
#include <local/axv11.h>

*/

#include <stdio.h>
*include <math.h>

/*

/*
* the joint angle actually used in the wrist kinematics
*/

double rw_jang () ;

extern double rw theta cal [] ,
rw=theta=bar[] ;

extern TRSF *tw;
extern TRSF *tw_inv;
extern TRSF *ee;

extern int rw_comp;
extern int rw(} ;
extern int rw cal () ;
extern int rclconst () ;

/*
* get the difference between the current reading and the calibrated value
*/

#define rw_raw_diff(i} ((rw_ptor(i) - rw_theta_cal[i]}

/*
* pots reading to rad
*/

'define rw_ptor(p} (dtor(rw_ptod(p}})

dtor (-90. O)
dtor (0. O)
dtor (0. O)
dtor(90.0}
dtor(-90.0}
dtor(90.0}

AX MAX CHANNE1

23.0
22.0
15.0
15.0
26.0
26.0
35.0
13.0
28.0

#define RW THETA BAR 0
#define RW-THETA-SAR-1
#define RW-THETA-BAR-2
fdefine RW-THETA-BAR-3
#define RW-THETA-SAR-4
#define RW=THETA=SAR=S

'define RW_MAX_JOINT

* Joint lengths in mm
*/

'define 11
#define 12
fdefine 13
'define 14
'define 15
#define 16
'define 17
fdefine 18
fdefine 19

/*
* degree to rad
*/

#define dtor (d) ((d) * (M_PI/180. O) }

/*
* rad to degree
*/

fdefine rtod (r) ((r) * (180. O/M_PI) }

/*
* voltage of pots range
*/

#define POT V01T RANGE 0.5

/*
* pots reading to voltage
*/

#define bvolt(p} (rw_rest_volt[(p)] - (POT_V01T_RANGE/2.0})

/*
* pots reading to voltage
*/

#define rw_ptov(p} ((double}ax_pot(p) * (1.25 / 4096.0)}

/*
* voltage to degree
*/

#define rw_vtod(v} ((v) * 27.0 / O.S}

lIlly··········
/*
* data saved during execution of carjd
*/

st ruct record {
int time;
float r angles[6];
float car_diffs[6];

} ;

11111>
/*

················//>·····»>·»£Jlt~¢i•••• i •••·••••·••••.•................... ·····································<»+HB
File: filt.c
Remarks: Filter the required data from recorded data file

*/

#include
#include
#include

#define N

main ()
{

<stdio.h>
IIrecord.h ll
lIrfms.hll

6

struct record rec;
int - i;
JOINT J;
TRANSFORM t6;

while (fread (&rec, sizeof (rec) , 1, stdin))
printf("%%t %d\n", rec.time);
putrec(rec.angles, lIa ll);
putrec(rec.del angles, lid");
for (i=O; i<N;-i++)

J.q[i] = rec.angles[i];
jnt to tr(&t6, &J);
printf(II\\e %f %f \f %f %f \f\n ll ,

t6.p.x, t6.p.y, t6.p.z, t6.o.x, t6.o.y, t6.o.z
) ;

}

putrec (v, name)
float *v;
char *name;
{

int i;

printf("%%%s II, name);
for (i=O; i<N; i++)

printf(ll%f ", v[i]);
putchar (' \n');

- 53 -

6. BIBLIOGRAPHY

[1] Y. Xu and R.P. Paul, "On position compensation and force control stability of a robot with a compli­

ant wrist", Proceedings of the IEEE International Conference on Robotics and Automation, P.1173­

1178,1988.

[2] R.P. Paul, Y. Xu, and X. Yun, "Terminal link force and position control of a robot manipulator",

Proceedings of Seventh CISM and IFToMM International Symposium on Theory and Practice of

Robots and Manipulators, Udine, Italy, 1988.

[3] Y. Xu, "Compliant wrist design and hybrid position/force control of robot manipulators", Ph.D

Dissertation, Department of Mechanical Engineering and Applied Mechanics, University of Pennsyl­

vania, 1989.

[4] Y. Xu, R.P. Paul, and X. Yun, "Hybrid position force control in presence of passive compliancert

Fifth International Symposium ofRobotics Research, Edited by Miura and Arimoto, MIT Press, 1989

[5] R.P. Paul, "Problems and research issues associated with the hybrid control of force and displace­

ment", Proceedings of the IEEE International Conference on Robotics and Automation, P.1966­

1971, 1987.

[6] R.K. Roberts, R.P. Paul and B.M. Hillberry, "The effect of wrist force sensor stiffness on the control

of robot manipulators", Proceedings of the IEEE International Conference on Robotics and Automa­

tion, P.269-274, 1985.

[7] R.P. Paul, "Robot Manipulators: Mathematics, Programming and Control", Cambridge, MIT press,

1981.

[8] R. Paul and B.E. Shimano, "Compliance and control", The 1976 Joint Automatic Controls Confer­

ence,AJbuquerque,~,P.694-699, 1976.

[9] R. Paul, Trajectory Calculation and Servoing of a Computer Controlled Arm, PhD thesis, Computer

Science Department, Stanford University, August 1972.

[10] D.E. Whitney and J.M. Rourke, "Mechanical behavior and design equations for elastomer shear pad

remote center complianceu
, ASME Journal of Dynamic System, Measurement, and Control, Vol.

108, P.223-232, 1986.

[11] D.E. Whitney, rtHistorical perspective and state of the art in robot force control", Proceedings of the

IEEE International Conference on Robotics and Automation, P.262-268, 1985.

[12] D.E. Whitney, "Force feedback control of manipulator fine motions", ASME Journal of Dynamic

Systems, Measurement and Control, P.91-97, June 1977.

- 54-

[13] M. Mason, "Compliance and force control for computer controlled manipulators", in Robot Motion

Planning and Control, M. Brady et aI, 00., The MIT Press, Cambridge, MA, 1982, P.373-404. ch.5.

[14] K. Salisbury, "Active stiffness control of a manipulator in cartesian coordinates", Proc. 19th IEEE

Conference on Decision and Control, Albuquerque, NM, December 1980, P.87-97.

[15] J.K. Salisbury, Kinematic and Force Analysis ofArticulated Hands, PhD thesis, Stanford University,

July 1982.

[16] N. Hogan and S.L. Cotter, "Cartesian impedance control of a nonlinear manipulator", Robotics

Research and Advanced Applications, ASME Winter Annual Meeting, Phoenix, AZ, November

1982, P.121-128.

[17] N. Hogan, "Impedance control of industrial robots", Robotics and Computer Integrated Manufactur­

ing, Vol. 1, No.1, 1984, P.97-113.

[18] H. Kazerooni, "On the stability of the robot compliant motion control (input output approach)",

Proceedings of the IEEE International Conference on Decision and Control, 1987.

[19] S.D. Eppinger and W.P. Seering, "On dynamic models of the robot force control", Proceedings of the

IEEE International Conference on Robotics and Automation, P.29-34, 1986.

[20] S.D. Eppinger and W.P. Seering, "Understanding bandwidth limitations in robot force control"

Proceedings of the IEEE International Conference on Robotics and Automation, P.904-909, 1987.

[21] M.H. Raibert and J.J. Craig, "Hybrid position/force control of manipulators", ASME Journal of

Dynamics System, Measurement, and Control, Vol. 102,1981, P.126-133.

[22] D.S. Seltzer, "Compliant robot wrist sensing for precision assembly", Robotics: Theory and Applica­

tion, P.161-168, 1986.

[23] A.K. Bejczy, T.J. Tarn, X. Yun and S. Han, "Nonlinear feedback control of puma 560 robot arm by

computer", Proceedings of the IEEE 24th Conference on Decision and Control, P.1680-1688, 1985.

[24] O. Khatib, "A unified approach for motion and force control of robot manipulators: the operational

space formulation", Proceedings ofthe IEEE Journal ofRobotics and Automation, P.43-53, 1987.

[25] O. Khatib and J. Burdick, "Manipulators motion and force control", Proceedings of the IEEE Inter­

national Conference on Robotics and Automation, 1986.

[26] C. Reboulet and A. Robert, "Hybrid control of a manipulator with an active compliant wrist",

Proceedings of the Third International Symposium on Robotics Research, 1985.

- 55-

[27] J-P. Merlet, tIC-surface applied to the design of an hybrid force-position robot controller", Proceed­

ings of the IEEE International Conference on Robotics and Automation, 1987.

[28] C.H. An and J.M. Hollerbach, "Dynamic stability issues in the force control of manipulator",

Proceedings of the IEEE International Conference on Robotics and Automation, P.890-896, 1987.

[29] V. Hayward, RCCL User's Guide, edited for CVaRL by John Lloyd, 1984.

[30] H. Hanafusa, K. Kobayashi and N. Terasaki, "Fine control of the object with articulated multi-finger

robot hands, 1983 International Conference on Advanced Robotics, Tokyo, Japan, P.245-252, Sep­

tember 1983.

.11<············· ···································.···.·.·IIB

atof(&p[l]); break;

atof(&p[l]); break;

case ' n' :

va = atof(&p[l]); break;
case's' :

atof(&p[l]); break;

cfs
case ' a' :

cfa
case ' m' :

filt_f_pole

File: moveg.c
Remarks: Edge tracking operation with the compliant wrist

system (ref: edge.c)
*/

/*

#include <stdio.h>
#include "rw.h"

int
int
extern

double gain_ft,
gain fr,
gain-pt,
gain-pr,
fuzz=j,
fuzz_t,
fuzz_r,
filt f pole,
filt=p:=pole,
vs,
vt,
va,
cfa,
cfs,
tfa,
tfs;
rw camp = 0;
verbose;

FILE *recfp;

main(ac, av)
int ac:
char **av;
{

double atof () ;

filt_p_pole = atof(&p[l]); break;
case ' R' :
if «recfp = fopen(&p[l], "W")) == NULL)
fprintf (stderr,

"cant open file for write\n"
) ;
exit(3);
}

goto nextarg;

nextarg:
}

printf("gain in posn control for posn is %f\n", gain pt);
printf(lIgain in posn control for rotn is %f\n", gain-pr);
printf("gain in force control for posn is %f\n", gai~ ft);
printf(lIgain in force control for rotn is %f\n", gain=fr);
printf("filt pole in posn control is %f\n", filt p pole);
printf("filt pole in force control is %f\n", filIl pole);
printf("fuzz level for translation is %f\n", fuzz:=t);
printf("fuzz level for rotation is %f\n", fuzz r);
printf(lIsearching velocity is %f\n", vs); -
printf ("tracking velocity %f\n", vt):
printf("approaching velocity %f\n", va);
printf("contact force in searching dir %f\n", cfs):
printf("contact force in approaching dir %f\n", cfa);

0.3;
0.98;

gain pr = 0.6;
gain=pt = 0.9;
gain fr = 0.005;
gain-ft = 0.05;
fuzz=j = .01;
fuzz r = 0.4;
fuzz-t = 0.4;
filt:=f_pole
filt p pole
vs =-0-:2;
vt = 0.2;
va = 0.6;
cfs = 1.2;
cfa = 1.0;
tfa = 0.45;
tfs = 0.65;

rw_comp = 0;

/*
* initialize the control loop.
*/

rw_init () ;

/*
* start the complience. watch out.
*/

rw_comp = 1;

for (::)
rw ();

while (--ac> 0 && **++av == '-')
register char *p = *av;

while (*++p!= '\0')
switch (*p) {
case 'v':

verbose++; break;
case'S' :

vs = atof{&p[l]): break:
case'T':

vt = atof{&p[l]); break:
case' A' :

IIB.<•.•. >················
.·········<~¢l';c.uu·········· ·····>···········>111:1

/*

*/

File: inser.c
Remarks: Insertion or pUlling operation with the compliant wrist

system (ref: movei.c)

/*
* Please check the file hybri.c. Since there are detail descriptions
* in hybri.c, those parameters appeared there are not defined here again
* for simplicity.
/ / user/interrupt coordination flag */

/* time maintained by interrupt function */
/* record file fp */

verbose;
d_angles [N] ;
r_angles[N];
sncs;

rw_theta_bar[RW_MAX_JOINT] = {
RW_THETA_BAR_O,
RW THETA BAR 1,
RW=THETA=:BAR=2,
RW THETA BAR 3,
RW_THETA-BAR-4,
RW-THETA-BAR-5- --

int
double
double
SNCS

} ;
int rclconst();
struct _record rec;
int sync,

time;
FILE *recfp;<stdio.h>

<rccl/rccl.h>
<rccl/rci.h>
<rccl/kine.h>
"rw.h"
"recordd.h"

#include
#include
#include
#include
#include
#include

#define N

#define dist of flange 55.88

#define mount dist 35.0

/* 2.2 in = 55.88 rom. This is the distance
from the center of the last three joints to
the outer surface of the flange */

/*
* Here is where we initialize everything needed to make the robot do
* what we want it to. We establish the position equation that the
* main program will continually move to.
*/

rw init()
{-

/*
* the first order digital filter
*/

#define FILTER(y, u, pole} (y=(1.0-pole}*(y*pole/(1.0-pole}tu})
setbuf(stdout, NULL};
rw_cal () ;#define NCOPY(a,b} for(i=O;i<N;itt}a[i]=b[i]

int
void

i;
dummy(}, drivel};

double car_diffs[6]; for (i = 0; i < RW_MAX_JOINT; t+i)
{

TRSF mem_tw,
*tw = &mem tw;

extern double gain ft,
gain-fr,
gain=:pt,
gain pr,
fuzz=:j,
fuzz_t,
fuz z r,
filt-f pole,
fi It=:p=:po Ie,
va,
tf,

pull;

#define FUZZ
#define FUZZ CARPOS
#define FUZZ-CAREUL

DIFF d;
DIFF d_f;
DIFF d_p, dvel;

fuzz_j
fuzz t
fuzz-r

/* approaching velocity */
/* turning force to siwtch from the full

* position control to hybrid control
*/

/* the switch to signify inserting or pulling
* out. ° signifies inserting, and 1 signifies
* pulling out
*/

jang_o[i] = 0.0;

tw = newtrans("tw",rw};
rw car update tw(};
printrn(tw,stdout};
/*

* start the real-time process, and request arm power
*/

RClopen () ;
RClcontrol(dummy, drive};
chg.power on. com = YES;
if ((how.state & CALIB OK) == O} {

fprintf(stderr~ "arm not calibrated\n"};
exit(3};

/*
* control the inserting velocity or pulling out velocity,
*/

if (pull == O.O)
dvel.t.z = va;
}

if (pull == 1.0) {
dvel.t.z = -O.2*va;
}

double
double

jang o[RW MAX JOINT];
rw_theta_cal[RW_MAX_JOINT1, /*

1111Iy·················· ··················«iU$¢f.¢ •••••••••uy··················........... ··························<··············«1&1
* Real-time drive function NCOPY(rec.car diffs, car diffs);

rec.time = ti;e; -

if (initd == 0) {
enctoang(r angles, how.pos); /* get actual joint angles */
for (i=O; I<N; i++) {

d_angles[i) = r_angles[i];

car diffs[N];
r_angles[N];
d_angles [N] ;

}
update sincos(&sncs, r angles);
update=jacobian_terms(&sncs);

read joint angles
compute Jacobian at this point
transform cartesian diff to joint space
compute new joint angles
output setpoint

i,
j;

/*
* Initialize the axvll board.
*/

if (ax init () < 0)
{ -

int

for (i=O; i<N; i++) {
chg.motion[i] •com = pas;
chg.motion[i] .value = encs[i];

angtoenc(encs, r_angles);
sync++; /* tell user process we have data */
time++;

rw cal ()
{-

/*
* rw_cal reads the current pot settings to get the current joint
* angles. These are then subtracted from the "correct" angles to
* get the correction angles.
*/

void
dummy () {}

/* compute sin/cos */
/* compute jacob terms */

initd = 0;
del f smth [N) ;
del=p=smth [N] ;

}
initd++;

del force[N), del angle vel[N);
del=posn[N]; - -
encs [N] ;
q_f, qvel;
q-p;
i;

int
double
double

double
double
short
JNTS
JNTS
int
static
static
static

*/
double
double
double
void
dri ve ()
{

for (i = 0; i < RW_MAX_JOINT; ++i)
{

fprintf(stderr,"Cannot initialize the axvll board\n");
exit(l);

/*
* When force is higher than the specified turning force,
* it is considered that the shaft is on the workpiece,
* and the controller is switched to hybrid mode
*/

if (car_diffs[2] > tf && car_diffs[2] < -tf) {
dvel.t.z = 0.0; rw_theta_cal [i] rw_ptor (i) ;

jacobI (&q_f, &d_f, &sncs, 0.0) ; /* transform diff in cartesian
space to joint space */

jacobI (&q_p, &d_p, &sncs, 0.0) ; /* transform diff in cartesian
space to joint space */

jnts_to_angle(del_force, &q_f) ; /* delta joint to angles */
jnts_to_angle(del_posn, &q-p) ; /* delta joint to angles */

jacobI (&qvel, &dvel, &sncs, 0.0) ; /* transform diff in cartesian
space to joint space */

jnts_to_angle(del_angle_vel, &qvel); /* delta joint to angles */

/*
* This is the routine that has to figure out how to change the postion
* equation established in rw init() so the robot is driven to where we
* want it to go. -
*/

rw ()
{

int i;

for (i=O; i<N; i++) {
FILTER(del f smth[i], del force[i), filt f pole);
FILTER(del=p=smth[i], del=posn[i), filt~_pole);

JNTS curr_jnts;
JNTS diff jnts;
if (rw_ comp)
{

for (i=O; i<N; i++)
d_angles[i] += del_f_smth[i] + del_angle_vel[i];

for (i=O; i<N; i++)
r angles[i] = d angles[i] + del p smth[i];

NCOPY(rec~r_angles, r_angles); --

bcopy(j6, &curr_jnts, sizeof(JNTS));
rw car update tW()i
if-(verbose>l)

printrn(tw,stdout);
noatorpy(&car diffs[S],&car diffs[4],&car diffs[3],tw);
car_diffs[O] ~ tw->p.x; -

11_'>< ms¢t;¢»><D

/*
* The contact between the shaft and hole does not occur.

if(car_diffs[O] <= FUZZ_CARPOS && car_diffs[O] >= -FUZZ_CARPOS
car diffs[O] = 0.0;

if(car diffs[l] <= FUZZ CARPOS && car diffs[l] >= -FUZZ CARPOS
ca r_ di f f s [1] = 0.0; - -

if(car diffs[2] <= FUZZ CARPOS && car diffs[2] >= -FUZZ CARPOS
ca r diffs [2] = 0.0; - -

if(car_diffs[3] <= FUZZ_CAREUL && car_diffs[3] >= -FUZZ CAREUL
car diffs[3] = 0.0;

if(car diffs[4] <= FUZZ CAREUL && car diffs[4] >= -FUZZ CAREUL
car_diffs[4] = 0.0; -

if(car diffs[5] <= FUZZ CAREUL && car diffs[5] >= -FUZZ CAREUL
car_diffs[5] = 0.0; -

if (verbose) {

for (i=O; i<N; i++)
printf("%10.2f ", car_diffs[i]);

put char (' \n');

/*
* position control in z direction for pulling out case, but force
* control in z direction for inserting case
*/

d f.t.x = d.t.x;
d-f.t.y = d.t.y;
d:=f • t . z = d. t . z * (1 . 0 - pu11) ;
d f.r.x = d.r.x;
d:=f.r.y = d.r.y;
d f.r.z = d.r.z;

car_diffs[l]
car_diffs[2]

tw->p.y;
tw->p.z - 62.0; d.r.x

d.r.y
d.r.z
}

d p.t.x
d:=p.t.y
d p.t.z
d=p.r.x
d_p.r.y

d_p.r.z

car diffs[2] * gain pt * pull;
dtor(car diffs[3]) *-gain fr;
dtor(car-diffs[4]) * gain-fr;
dtor(car=diffs[5]) * gain=fr * 3.0;

0.0;
0.0;
-d.t.z * pull;
0.0;
dtor(30.0) * gain_pr * (1.0 - pUll);/*30 degree is offset

in the ready position*/
0.0;

/*

jang = rw_raw_diff(i);

int s;

if (recfp && sync) {
fwrite(&rec, sizeof(rec), 1, recfp);
sync = 0;

jang diff = (jang - jang o[i]);
if (jang diff <= FUZZ &&-jang diff >= -FUZZ)
{- -

double jang,
jang diff,
newdlff;

#endif

#ifdef notdef
newdiff = rw raw diff(i);
rw_old_diff[l] = newdiff;

double
rw jang(i)
int i;
{

0.005) * gain_ft;

d.r.x
d.r.y
d.r.z

if

d.t.z
d.r.x
d.r.y
d.r.z

ca r di f f s [2] > O. 5 && ca r diffs [2] < - 0 . 5) {
d.t.x = (car diffs[O] + 0.005) * gain ft;
d.t.y = (car=diffs[l] + 0.005) * gain=ft;
i f (ca r diffs [0] < O. 0)

d~t.x = (car diffs[O]
car_diffs[l] <-0.0)

d.t.y = (car diffs[l] - 0.005) * gain ft;
car diffs[2] * gain ft; -
dtor(car diffs[3]) * ga n fr * 0.05;
dtor(car-diffs[4]) * ga n-fr * 0.05;
dtor(car=diffs[5]) * ga n=fr;

if (car diffs[2] < tf && car diffs[2] > -tf) {
-d.t.x = car diffs[O]-* gain ft;
d.t.y = car-diffs[l] * gain-ft;
d.t.z = car-diffs[2] * gain-ft * (1.0 - pull) + car diffs[2]

* gain pt * pull; - -
dtor(car_diffs[3]) * gain_fr;
dtor(car diffs[4]) * gain fr;
dtor(car=diffs[5]) * gain=fr * 10.0;

* The contact between the shaft and hole occurs, or the jamming is
* going to happen. Increasing the correction in the lateral direction
* is always desirable
*/

if (

jang = jang_o[i];
/*

* When the force between the contact surface is higher than
* this level, it is considered that jamming occurs, thus
* we increase large pushing force in the z direction, make
* a large rotation around the z axis, so as to avoid jamming
*/

if (car diffs[O] > 0.8 && car diffs[O] < -0.8 &&
car-diffs[l] > 0.8 && car-diffs[l] < -0.8) {

d.t.x = car diffs[O] * gain ft;
d.t.y = car-diffs[l] * gain-ft;
d.t.z = (car_diffs[2] + 0.005) * gain_ft * (1.0 - pull) +

}
jang_o[i] = jang;

jang += rw theta bar[i];
return(jang); -

}
rw car update tw()
{ - -

double c1,
c2,
c3,

1111111>·· i···············(?11

if (recfp)
fclose(recfp);

RClrelease(l)i
RClclose (1);

}
rccl_close ()
{

}

/*
* called on ~C to close the record file if it was open

*/
void
quit ()
{

c4,
c5,
c6,
sl,
s2,
s3,
s4,
s5,
s6,
c23,
s23,
xl,
x2,
x3,
x4,
x5,
x6,
x7,
x8,
x9,
x10;

c1 = cos(rw jang(O));
sl = sin(rw=jang(O));

c2 = cos(rw jang(l)):
s2 = sin(rw=jang(l)):

c3 = cos(rw jang(2));
s3 = sin(rw=jang(2));

c4 = cos(rw jang(3));
s4 = sin(rw=jang(3));

cS = cos(rw jang(4));
s5 = sin(rw=jang(4));

c6 = cos(rw jang(5));
s6 = sin(rw=jang(5));

c23 = cos(rw jang(l)+rw jang(2));
s23 = sin(rw=jang(1)+rw=jang(2));

xl = -c4*s5;
x2 = c4*c5*c6 - s4*s6;
x3 = c4*cS*s6 + s4*c6;
x4 = -s4*s5;
x5 = s4*c5*c6 + c4*s6;
x6 = s4*c5*s6 - c4*c6;
x7 = L8*x3 + 17*x1 - 15*s4 + 15;
x8 = L8*s5*s6 + 17*c5 - L6;
x9 = -L8*x6 - 17*x4 - LS*c4 - L4 + L2;
x10 = L3*c2 + c23*x7 + s23*x8;

tw->n.x = c1*(c23*x1 + s23*c5) - sl*x4;
tw->o.x = c1*(c23*x2 + s23*s5*c6) - sl*x5;
tw->a.x = c1*(c23*x3 + s23*s5*s6) - sl*x6;
tw->p.x = c1*(L3*c2 + x7*c23 + s23*x8) + sl*x9 - L9:

tw->n.y = sl* (c23*xl + s23*c5) + c1*x4;
tw->o.y = sl*(c23*x2 + s23*s5*c6) + cl*x5;
tw->a.y = sl* (c23*x3 + s23*s5*s6) + c1*x6i
tw->p.y = sl*(L3*c2 + c23*x7 + s23*x8) - c1*x9 + L3i

tw->n.z
tw->o.z
tw->a.z
tw->p.z

rw_close ()

s23*x1 - c23*c5i
s23*x2 - c23*s5*c6i
s23*x3 - c23*s5*s6;
s23*x7 - c23*x8 + 13*s2 + 11;

~l'tI<.i<.······················>······················ . ·······························<···> il~~¢i;¢?·<>···................... . /><~_

rw_comp = 0;

nextarg:
}

/*
* initialize the control loop.
*/

rw_init ();

printf("gain in posn control for posn is %f\n", gain_pt);
printf("gain in posn control for rotn is %f\n", gain pr);
printf("gain in force control for posn is \f\n", gai~ ft);
printf("gain in force control for rotn is %f\n", gain_fr);
printf("filt pole in posn control is %f\n", filt p pole);
printf("filt pole in force control is %f\n", fil~ I pole);
printf("approaching velocity is %f\n", va); --
printf("inserting or pulling out %f\n", pull);

atof(&p[l]); break;filt_f_pole
case ' n' :

filt_p_pole = atof(&p[l]); break;
case ' R' :
if «recfp = fopen(&p[l], "W")) == NULL)
fprintf (stderr,

"cant open file for write\n"
) ;
exit(3);
}

goto nextarg;

*/

double atof () ;

#include <stdio.h>
#include "rw.h"

/*
* File: movei.c

Remarks: Insertion or pulling operation with the compliant wrist
system (ref: inser.c)

main(ac, av)
int ac;
char **av;

double gain_ft,
gain fr,
gain_pt,
gain=pr,
fuzz_j,
fuzz_t,
fuzz_r,
filt f pole,
filt=~pole,
va,
tf,
pull;

int rw comp = 0;
int ver-bose;
extern FILE *recfp;

0.5;
0.97 ;

gain pr = 0.2;
gain=pt = 0.5;
gain_fr = 0.001;
gain ft = 0.004;
fuzz-j = .01;
fuzz=r = 0.2;
fuzz t = 0.2;
filt-f pole
filt=p=pole
va = 0.1;
tf = 0.4;
pull = 0.0;

/*
* start the complience. watch out.
*/

rw_comp = 1;

for (;;)
rw() ;

while (--ac> 0 && **++av == '-')
register char *p = *av;

whi Ie (*++p ! = , \ 0')
switch (*p) {
case 'v':

verbose++; break;
case' A' :

va = atof(&p[l]); break;
case 'P':

pull = atof(&p[l]); break;
case 'T':

gain_ft = atof(&p[l]); break;
case '0':

gain_fr = atof(&p[l]); break;
case 't':

gain_pt = atof(&p[l]); break;
case ' 0' :

gain_pr = atof(&p[l]); break;
case 'm':

.1)·.····<······················· ········/1111

/*
* Please check the file hybri.c. Since there are detail descriptions
* in hybri.c, those parameters appeared there are not defined here again
* for simplicity.
*/

/*

*/

File: fuzz.c
Remarks: Insertion or pulling operation using the fuzzy control

decision rule with the compliant wrist system (ref: movef.c)

} ;
int rclconst();
struct _record rec;
int sync,

time;
FILE *recfp;

RW_THETA_BAR_0,
RW THETA BAR 1,
RW-THETA-BAR-2,
RW-THE TA-BAR-3,
RW-THE TA-BAR-4,
RW=THETA=BAR=5

/* user/interrupt coordination flag */
/* time maintained by interrupt function */
/* record file fp */

/*
* the first order digital filter
*/

tdefine FILTER(y, u, pole) (y=(1.0-pole)*(y*pole/(1.0-pole)+u))

tdefine mount dist 35.0

fdefine dist_of_flange 55.88

fdefine N 6

i·,
dummy() , drive();

int
void

verbose;
d_angles [N];
r_angles [N] ;
sncs;

setbuf(stdout, NULL);
rw_cal ();

tw = newtrans("tw",rw);
rw car update tw();
prlntrn(tw,stdout);
/*

* start the real-time process, and request arm power
*/

RClopen();
RClcontrol(duromy, drive);
chg.power_on.com = YES;
if ((how.state & CALIB OK) == 0) {

fprintf(stderr-; " arm not calibrated\n");
exit(3);

jang_o[i) = 0.0;

for (i = 0; i < RW_MAX_JOINT; ++i)
{

/*
* Here is where we initialize everything needed to make the robot do
* what we want it to. We establish the position equation that the
* main program will continually move to.
*/

rw_init()
{

int
double
double
SNCS

/* current Puma 560 kinematic transform T6 */
/* desired Puma 560 kinematic transform T6 */

/* 2.2 in = 55.88 rom. This is the distance
from the center of the last three joints to
the outer surface of the flange */

for(i=O;i<N;i++)a(i]=b[i]

<stdio.h>
<rccl/rccl.h>
<rccl/rci.h>
<rccl/kine.h>
"rw.h"
" re cordd.h"

&mem tw;
gain_ft,
gain fr,
gain=pt,
gain pr,
fuz z=j,
fuzz_t,
fuzz_r,
filt f pole,
filt=p=pole,

car diffs(6];
PPg;in, PRgain;
DPgain, DRgain;
IPgain, IRgain;

mem_tw,
T6,
Pd,
*tw

extern double

double
double
double
double

fdefine NCOPY(a,b)

TRSF

'include
'include
'include
'include
#include
finclude

va,
pUll;

fdefine FUZZ
fdefine FUZZ CARPOS
fdefine FUZZ CAREUL

/*

DIFF
DIFF
DIFF

double
double

fuzz j
fuzz-t
fuzz-r

d·,
d f;
d=p, dvel;

jang o[RW MAX JOINT];
rw theta cal(RW MAX JOINT],
rw=theta=bar[RW=MAX=JOINT] =

*/
double
double
double
void

Real-time drive function:
read joint angles
compute Jacobian at this point
transform cartesian diff to joint space
compute new joint angles
output setpoint

car_diffs[N];
r angles [N] ;
d=angles[N] ;

-> mzz~¢><_

for (i=O; i<6; i++)
*f++ = r_angles[i] - *g++;

}

q j6.conf = "blah";
initd++;

if (initd == 0) {
enctoang(r_angles, how.pos); /* get actual joint angles */
for (i=O; i<N; i++) {

d_angles[i] = r_angles(i);

/*
* copy the joint angles into a JNTS
*/

{
/*

* make it go fast in inserting, while go slowly in pUlling out
* where the velocity should not be related to the initial position
*/

dvel.t.z = (dvel.t.z + va) * (1.0 - pUll) - 0.5 * va * pull;

/*
* update the error integral
*/

T6err integ.t.x += T6err.p.x;
T6err-integ.t.y += T6err.p.y;
T6err-integ.t.z += T6err.p.z;
T6err-integ.r.x += yawerr;
T6err=integ.r.y += pitcherr;
T6err_integ.r.z += rollerr;

/*
* update the privious error for derivative
*/

T6err deri.t.x = T6err.p.x;
T6err-deri.t.y = T6err.p.y;
T6err-deri.t.z = T6err.p.z;
T6err-deri.r.x = yawerr;
T6err-deri.r.y = pitcherr;
T6err-deri.r.z = rollerr;

dvel.r.x = yawerr * PRgain + (yawerr - T6err deri.r.x) * DRgain +
T6err integ.r.x * IRgain; -

dvel.r.y = pitcherr * PRgain + (pitcherr - T6err deri.r.y) * DRgain +
T6err_integ.r.y * IRgain; -

dvel.r.z = rollerr * PRgain + (rollerr - T6err deri.r.z) * DRgain +
T6err_integ.r.z * IRgain; -

+ T6err integ.t.x * IPgain;
dvel.t.y = T6er~.p.y * ppgain + (T6err.p.y - T6err deri.t.y) * DPgain

+ T6err integ.t.y * IPgain; -
dvel.t.z = T6err.p.z * 0.6 * ppgain + (T6err.p.z - T6err deri.t.z)

* DPgain + T6err_integ.t.z * Ipgain; -

&(jrnin_c.thl);

del_angle_vel[N);

/* transform representing trajectory generation*/

*f = &(q_j6.th1), *g

q_j6;

initd = 0;
del f smth(N);
del-p-smth [N) ;
T6err:~:)nteg ;

T6err_deri;

/* the error transform sum value for
* the intergal term */

/* the error transform update value
* for the derivative term */

yawerr, pitcherr, rollerr; /* orentational error
* for trajectory generation
*/

real

del force (N) ,
del=:posn(N);
encs [N) ;
T6err;
q_f, qvel;
q-p;
JNTS
i;

int
double
double
DIFF

float

static DIFF

double
double
short
TRSF
JNTS
JNTS
static
int
static
static
static
static

drive ()
{

/*
* do the forward kinematics to find current cartesian position,
* also updates all sin/cos values in sncs.
*/

jns_to_tr(&T6, &q_j6, &sncs);

/*
* trajectory generation

/*
* If the sensed force is higher than the turning force, it goes
* slowly, as well as indepedently of the hole location specification
* in case collision occurs
*/

if (car diffs[2] > 0.4) { /* 0.4 is the turning force, also can be
- specified interactively */

dvel.t.z = 0.2 * va * (1.0 - 2.0 * pull);

for (i=O; i<N; i++) {
FILTER(del f smth[i), del force[i], filt f pole);
FILTER(del=p=smth[i], del=posn[i), filt_p_pole);

e = T6"-1 * Pd
xdot = P*e + D*de/dt + I*$ e dt

* where P, D and I are empirically determined control gains
*/

invert (&T6err,&T6); /* T6err = T6"-1 */
trmultinp(&T6err,&Pd); /* T6err = T6err * Pd */
noatorpy(&rollerr, &pitcherr, &yawerr, &T6err);

/* get roll, pitch, yaw from transform T6err */

/*
* PID controller for trajectory generation. The purpose here is
* to find the location of the hole. If it is unnecessary to
* locate the hole, "dvel" can be specified in the way in inser.c
*/

dvel.t.x = T6err.p.x * PPgain + (T6err.p.x - T6err_deri.t.x) * DPgain

update jacobian terms (&sncs);
jacobI(&q_f, &d=f, &sncs, 0.0);

jacobI (&q_p, &d_p, &sncs, 0.0);

jnts_to_angle(del_force, &q_f);
jnts_to_angle(del_posn, &q_p);

jacobI (&qvel, &dvel, &sncs, 0.0);

jnts_to_angle(del_angle_vel, &qvel);

/* compute jacob terms */
/* transform diff in cartesian

space to joint space */
/* transform diff in cartesian

space to joint space */
/* delta joint to angles */
/* delta joint to angles */

/* transform diff in cartesian
space to joint space */

/* delta joint to angles */

_i.. >•••.•••.•...• ··· Ell
for (i=O; i<N; i++)

d angles[i] += del f smth[i] + del angle vel[i];
for (i=O;-i<N; i++) - - --

r angles[i] = d angles[i] + del p smth[i];
NCOPY(rec~r angles, r angles); --
NCOPY(rec.c~r diffs, car diffs);
rec.time = time; -

angtoenc(encs, r angles);
sync++; - /* tell user process we have data */
time++;

for (i=O; i<N; i++) {
chg.motion[i].com = POS;
chg.motion[i].value = encs[i];

void
dummy () {}

/*
* rw_cal reads the current pot settings to get the current joint
* angles. These are then subtracted from the "correct" angles to
* get the correction angles.
*/

rw_cal ()
{

int i,
j;

bcopy(j6, &curr jnts, sizeof(JNTS));
rw car update tw();
if-(verbose>l)

printrn(tw,stdout);
noatorpy(&car diffs[5],&car diffs[4],&car diffs[3],tw);
car_diffs[O] ~ tw->p.x; -
car diffs[l] = tw->p.y;
car=diffs[2] = tw->p.z - 62.0;

if(car diffs[O] <= FUZZ CARPOS &&
car-diffs[O] >= -FUZZ CARPOS)

-car diffs[O] = 0.0;
if(car diffs[l] <= FUZZ CARPOS &&

car-diffs[l] >= -FUZZ CARPOS)
-car diffs[l] = 0.0;

if(car diffs[2] <= FUZZ CARPOS &&
car-diffs[2] >= -FUZZ CARPOS)

-car_diffs[2] = 0.0;
if(car diffs[3] <= FUZZ CAREUL &&

car-diffs[3] >= -FUZZ CAREUL)
-car diffs[3] = 0.0;

if(car diffs[4] <= FUZZ CAREUL &&
car-diffs[4] >= -FUZZ CAREUL)

-car diffs[4] = 0.0;
if(car diffs[5] <= FUZZ CAREUL &&

car-diffs[5] >= -FUZZ CAREUL)
-car_diffs[5] = 0.0;

if (verbose) {
for (i=O; i<N; i++)

printf("%10.2f ", car_diffs[i]);
putchar (' \n');
printy(&T6, stdout);

car diffs[O] * gain ft;
car-diffs[l] * gain-ft;
car-diffs[2] * gain-pt;
dtor(car diffs[3]) * gain fr;
dtor(car=diffs[4]) * gain=fr;
dtor(car_diffs[5]) * gain_fr * 40.0;

/*
* Initialize the axv11 board.
*/

i f (ax_in it () < 0)
{

fprintf(stderr,"Cannot initialize the axv11 board\n");
exi t (1) ;

/*
* fuzzy controller.
*/

d.t .x
d.t.y
d.t.z
d.r.x
d.r.y
d.r.z

The fuzzy levels are empirically determined.

for (i = 0; i < RW_MAX_JOINT; ++i)
{

/*
* This is the routine that has to figure out how to change the postion
* equation established in rw init() so the robot is driven to where we
* want it to go. -
*/

rw ()
{

rw_theta_cal[i] rw_ptor(i);

if (car_diffs[2] > 0.6 && car_diffs[2] < -0.5) {
d.t.x = d.t.x * 2.0 * (1.0 + 2.0 * pull);
d.t.y = d.t.y * 2.0 * (1.0 + 2.0 * pull);
d.r.x = d.r.x * 2.0 * (1.0 + 2.0 * pull);
d.r.y = d.r.y * 2.0 * (1.0 + 2.0 * pull);
d.r.z = d.r.z * 5.0 * (1.0 + 2.0 * pull);

if (car_diffs[2] > 0.8 && car_diffs[2] < -0.7) {
d.t.x = d.t.x * 2.0;
d.t.y = d.t.y * 2.0;
d.r.x = d.r.x * 2.0;
d.r.y = d.r.y * 2.0;
d.r.z = d.r.z * 5.0;
}

int i;

JNTS curr jnts;
JNTS di ff- jnt s;
if (rw_comp)

/*
* regular hybrid controller
*/

d_f.t.x = d.t.x;

l{_/·.<·«·········· ·_w

dy.r.z = 0.0;

d_f.t.y
d f.t.z
d-f.r.x
d=f.r.y
d f.r.z

d_p.t.x
d_p.t.y
d_p.t.z
d_p.r.x
d_p.r.y

d.t·Yi
0.0;
d.r.x;
d.r.y;
d.r.z;

0.0;
0.0;
-d.t.z;
0.0;
dtor(30.0) * gain pr * (1.0 - pull); /* 30 degree is for

- * offset in ready
* position */ c1

51

s23,
xl,
x2,
x3,
x4,
x5,
x6,
x7,
x8,
x9,
x10;

cos(rw_jang(O));
sin(rw_jang(O));

c3 = cos(rw_jang(2));
s3 = sin(rw_jang(2));

if (recfp && sync) (
fwrite(&rec, sizeof(rec), 1, recfp);
sync = 0;

double
rw jang(i)
int i;
{

c2
s2

c4
s4

c5
s5

cos(rw jang(l))i
sin(rw=jang(l));

cos(rw jang(3));
sin(rw=jang(3));

cos(rw_jang(4));
sin(rw_jang(4));

double jang,
jang_diff,
newdiff;

int s;

#ifdef notdef
newdiff = rw_raw diff(i);
rw_old_diff[i] = newdiff;

#endif
jang = rw_raw_diff(i);

jang diff = (jang - jang o[i]);
if (jang diff <= FUZZ &&-jang diff >= -FUZZ)
{- -

jang = jang_o[i];

c6 = cos(rw_jang(5));
s6 = sin(rw_jang(5));

c23 = cos(rw_jang(1)+rw_jang(2));
s23 = sin(rw_jang(1)+rw_jang(2));

xl = -c4*s5;
x2 = c4*c5*c6 - s4*s6;
x3 = c4*c5*s6 + s4*c6;
x4 = -s4*s5;
x5 = s4*c5*c6 + c4*s6;
x6 = s4*c5*s6 - c4*c6i
x7 = L8*x3 + L7*x1 - L5*s4 + L5;
x8 = L8*s5*s6 + L7*c5 - L6;
x9 = -L8*x6 - L7*x4 - L5*c4 - L4 + L2;
x10 = L3*c2 + c23*x7 + s23*x8;

RClrelease(l);

}
jang_o[i] = jang;

jang += rw theta barril;
return(jang); -

rw car update_twO

double c1,
c2,
c3,
c4,
c5,
c6,
51,
52,
s3,
s4,
s5,
s6,
c23,

tw->n.x
tw->o.x
tw->a.x
tw->p.x

tw->n.y
tw->o.y
tw->a.y
tw->p.y

tw->n.z
tw->o.z
tw->a.z
tw->p.z

rw_close ()

c1*(c23*x1 + s23*c5) - sl*x4;
c1*(c23*x2 + s23*s5*c6) - sl*x5;
c1*(c23*x3 + s23*s5*s6) - sl*x6;
c1*(L3*c2 + x7*c23 + s23*x8) + sl*x9 - L9;

sl*(c23*x1 + s23*c5) + c1*x4;
sl*(c23*x2 + s23*s5*c6) + c1*x5;
sl* (c23*x3 + s23*s5*s6) + c1*x6;
sl* (L3*c2 + c23*x7 + s23*x8) - c1*x9 + L3;

s23*x1 - c23*c5;
s23*x2 - c23*s5*c6;
s23*x3 - c23*s5*s6;
s23*x7 - c23*x8 + L3*s2 + L1;

11111/>•.•.•.•.•......·.·.·<>······>··················· .
RClelose (1);

reel_close ()
{
}

/*
* called on AC to elose the record file if it was open
*/

void
qui t ()
{

if (reefp)
fclose (recfp) ;

·mzzi¢<D

1IIIt<>···•.•.•.•.•......••••••...<•••<.........v.>.ui...uD
/*

File: movef.c
Remarks: Insertion or pulling operation using the fuzzy control

decision rule with the compliant wrist system (ref: fUzz.c)
*/

#include <stdio.h>
#include "rw.h"

if ((recfp = fopen (&p[l], "w")) == NULL)
fprintf (stderr,

"cant open file for write\n"
) ;
exit(3);
}
qoto nextarq;

main(ac, av)
int ac;
char **av;

double

int
int
extern
extern
extern
extern
extern

qain ft,
gain-fr,
qain-pt,
gain:=pr,
fuzz j,
fuzz-t,
fuzz=r,
filt f pole,
filt:=p=:pole,
va,
pull;
rw_comp = 0;
verbose;

FILE *recfp;
TRSF Pd;
double PPqain,
double DPqain,
double IPqain,

PRqain;
DRgain;
IRgain;

nextarq:
}

printf(llproporl qain of translation is %f\n", PPqain);
printf(llproporl qain of rotation is %f\n", PRqain);
printf("inteql gain of translation is 'f\n", IPgain);
printf("inteql qain of rotation is %f\n", IRqain);
printf("deri qain of translation is 'f\n", DPqain);
printf("deri qain of rotation is %f\n", DRqain);
printf("approachinq velocity is %f\n", va);
printf("insertinq or pUllinq out %f\n", pUll);

/*
* specify the hole location
*/

rpy(&Pd, -0.017, -0.2, -179.47);
trsl(&Pd,-638.08, 132.033, -10.954);

rw_comp = 0;

/*
* initialize the control loop.
*/

rw_init () ;

double atof () ;

gain pr = 0.2;
qain-pt = 0.5;
qain=:fr = 0.001;
qain ft = 0.05;
fuzz-j = .01;
fuzz:=r = 0.3;
fuzz t = 0.3;
filt-f pole - 0.4;
filt_P_Pole = 0.97;
PPqaln-= 0.005;
PRgain = 0.001;
DPqain = 0.001;
DRqain = 0.0005;
IPqain = 0.0000001;
IRgain = 0.00000005;
va = 0.5;
pull = 0.0;

while (--ac> 0 && **++av == '-')
reqister char *p = *av;

while (*++p != '\0')
switch (*p) {
case'v':

verbose++; break;
case' A' :

va = atof(&p[l]); break;
case' P' :

pull = atof(&p[l]); break;
case 'R':

/*
* start the complience. watch out.
*/

rw_comp = 1;

for (;;)
rw ();

l_<··· ··································><.Y..UJi..............1lIJ
/*

File: writ.c
Remarks: Writing (or drawing) operation on an unmodeled

surface with the compliant wrist system (ref: movew.c)

'define FUZZ_CARPOS
'define FUZZ CAREUL
'define VLIM-T
'define VLIM:=R

fuzz t
fuzz r
vlim-t
vlim-r

/*
* Please check the file hybri.c. Since there are detail descriptions
* in hybri.c, those parameters appeared there are not defined here again
* for simplicity.
*/

*/

#include
#include
#include
#include
#include
#include

<stdio.h>
<rccl/rccl.h>
<rccl/rci.h>
<rccl/kine.h>
"rw.h ll

"recordd. h ll

DIFF
DIFF
DIFF

double
double

d;
d_f;
d_p, dvel;

jang_o[RW_MAX_JOINT];
rw theta cal[RW MAX JOINT],
rw-theta-bar[RW-MAX-JOINT] =

- - -RW_THETA_BAR_O,
RW THETA BAR 1,
RW-THETA- BAR-2,
RW=:THETA:=BAR=3,
RW_THETA_BAR_4,
RW THETA BAR 5

/*
* the first order digital filter
*/

#define FILTER(y, u, pole) (y=(l.O-pole)*(y*pole/(l.O-pole)+u))

#define dist_of_flange 55.88

#define mount dist 35.0

#define NCOPY(a,b)

/* user/interrupt coordination flag */
/* time maintained by interrupt function */
/* record file fp */

i;
dummy(), drive();

int
void

verbose;
dangles [N] ;
r:=angles [N] ;
sncs;

setbuf(stdout, NULL);
rw_cal ();

tw = newtrans("twlI,rw);
rw car update tw();
prlntrn (tw, stdout);
/*

* start the real-time process, and request arm power
*/

RClopen () ;
RClcontrol(dummy, drive);
chg.power_on.com = YES;
if ((how. state & CALIB OK) == 0) {

fprintf(stderr~ "arm not calibrated\n");
exit(3);

for (i = 0; i < RW MAX JOINT; ++i)
{ - -

jang_o[i] = 0.0;

};

int rclconst();
struct record reCi
int - sync,

time;
FILE *recfp;

/*
* Here is where we initialize everything needed to make the robot do
* what we want it to. We establish the position equation that the
* main program will continually move to.
*/

rw init ()
{-

int
double
double
SNCS

/* 2.2 in = 55.88 rom. This is the distance
from the center of the last three joints to
the outer surface of the flange */

/* array for the specified sequential configurations*/
/* the sequential number of the specified

* configurations */

/* current Puma 560 kinematic transform T6 */
/* desired Puma 560 kinematic transform T6 */

for(i=O;i<N;i++)a[i)=b[i]

gain ft,
gain-fr,
gain=pt,
gain pr,
deri-gain ft,
deri-gain- fr,
deri-gain-pt,
deri-gain-pr,
fuzz=:j, ­
fuzz_t,
fuz z r,
filt=f_pole,
filt p pole,
vlim-t~ /* velocity limit for translational motion */
vlim-r, /* velocity limit for translational motion */
ef, - /* desired contact force */
errtolerance;/* positioning error tolerance */

fuzz_j

car_diffs[6];
ppgain, PRgain;
DPgain, DRgain;
IPgain, IRgain;

mem_tw,
T6,
Pd,
*tw = &mem_tw;
target[31);
ntarg,

#define N 6

double
double
double
double

itarg;
extern double

TRSF

TRSF
int

#define FUZZ

for (i = 0; i < RW MAX JOINT; ++i)
{ - -

fprintf(stderr,"Cannot initialize the axv11 board\n");
exit(l);

/*
* extract the roll-pitch-yaw angles from transform tw
*/

noatorpy(&car_diffs[S],&car_diffs[4],&car_diffs[3],tw);

/*
* This is the routine that has to figure out how to change the postion
* equation established in rw init() so the robot is driven to where we
* want it to go. -
*/

rw ()
{

car_diffs[O] * (1.0 - s_x_t) * gain_ft;
car diffs[l] * (1.0 - s Y t) * gain ft;
car-diffs[2] * (1.0 - s-z-t) * gain-ft;
dtor(car_diffs[3]) * (1.0 - s_x_r) * gain_fr;
dtor(car diffs[4]) * (1.0 - s y r) * gain fr;
dtor(car=diffs[S]) * (1.0 - s=z=r) * gain=fr;

-car diffs[O] * s x t * gain pt;
-car-diffs[l] * s-y-t * gain-pt;
-car-diffs[2] * s-z-t * gain-pt;
-dtor(car diffs[3])-* s x r * gain pr;
-dtor(car-diffs[4]) * s-y-r * gain-pr;
-dtor(Car=diffs[S]) * s=z=r * gain=pr;

/*

d f.t.x
d_f.t.y
d f.t.z
d-f.r.x
d f.r.y
d-f.r.z

* compute the position control term. The negative sign is for
* position error compensation so that robot goes the opposite
* direction of the sensed displacement
*/

d_p.t.x
d_p.t.y
d_p.t.z
d_p.r.x
d p.r.y
dy.r.z

/*
* record function
*/

if (recfp && sync) {
fwrite(&rec, sizeof(rec), 1, recfp);
sync = 0;
}

/*
* compute the force control term, the specified force here is
* zero. Us" represents the selection function corresponding to
* the force control (s=O), or posn control (s=l).
*/

rw_ptor(i);rw_theta_cal[i]

int i;
JNTS curr jnts;
JNTS diff-jnts;
if (rw_ comp)
{

bcopy(j6, &curr_jnts, sizeof(JNTS));
rw car update tw();
if-(verbose>l)

printrn(tw,stdout);

/*

/*

/*
* This is routine to update the joint angles of the compliant wrist.
* tw() is computed based the angles updated here. Please also read rW.h
*/

double
rw jang(i)
int i;
{

double jang,
&& car_diffs[l] >= -FUZZ_CARPOS) jang diff,

newdlff;
&& car_diffs[2] >= -FUZZ_CARPOS)

int S·,
&& car_diffs[3] >= -FUZZ_CAREUL)

#ifdef notdef
&& car_diffs[4] >= -FUZZ CAREUL) newdiff = rw raw diff(i);

rw_old_diff[l] = newdiff;
&& car_diffs[S] >= -FUZZ CAREUL)

#endif
/*

&& car_diffs[O] >= -FUZZ CARPOSFUZZ CARPOS
= 0.0;
FUZZ CARPOS
= 0.0;
FUZZ CARPOS
= 0.0;
FUZZ CAREUL
= 0.0;
FUZZ CAREUL
= 0.0;
FUZZ CAREUL
= 0.0;

tw->p.x;
tw->p.y;
tw->p.z - 62.0;

car_diffs[O] <=
car diffs[O]

car diffs[l] <=
car_diffs[l]

car diffs[2] <=
car diffs[2]

car_diffs[3] <=
car diffs[3]

car_diffs[4] <=
car_diffs[4]

car diffs[S] <=
car_diffs[S]

* computer the translational error ftom tw
*/

car_diffs[O]
car_diffs[l]
car_diffs[2]

* fuzz out the device error caused by hystreresis of the device
*/

if(

if(

if(

if(

if(

if(

/*
* print out the caurrent cartesian error of the wrist
*/

if (verbose) {
for (i=O; i<N; i++)

printf(1I%10.2f II, car_diffs[i]);
putchar (' \n');

* redefine jang as the current change between the current
* displacement and the calibrated displacement where the wrist
* is at stationary, rw_raw diff(i) = rw_ptor(i) - rw_theta_cal (i)
*/

jang = rw_raw_diff(i);

/*
* record the difference between the current motion and previous
* one

111111>··· ···>·····>····< ..••/·.....ii.lI!_
jang = jang_o[i];

/* the current joint angles of the device is equal to the sum
* of the delta angles and the calibrated angles
*/

jang += rw_theta_bar[i];

/*
* if that doesn't make big difference, do do update the current
* motion since that is considered as the hystreresis of the device
*/

if (jang diff <= FUZZ && jang diff >= -FUZZ)
{- -

/*
* This is function to compted the cartesian displacement from the joint
* displacement measured by the compliant wrist device. The output is
* the 4X4 transform matrix tw representing the transformation from the
* center of the lower plate to the center of the upper plate of the wrist.
*/

c1*(c23*xl + s23*c5) - sl*x4;
c1*(c23*x2 + s23*s5*c6) - sl*xS;
c1*(c23*x3 + s23*sS*s6) - sl*x6;
c1*(L3*c2 + x7*c23 + s23*x8) + sl*x9 - L9;

cos(rw jang(3));
sin(rw:=jang(3));

cos(rw jang(4));
sin(rw:=jang(4));

cos(rw jang(S));
sin(rw:=jang(S));

c5
sS

c4
s4

c6
s6

c23 = cos(rw jang(l)+rw jang(2));
s23 = sin (rw:=jang (1)+rw:=jang(2));

tw->n.x
tw->o.x
tw->a.x
tw->p.x

xl = -c4*sS;
x2 = c4*cS*c6 - s4*s6;
x3 = c4*cS*s6 + s4*c6;
x4 = -s4*sS;
xS = s4*cS*c6 + c4*s6;
x6 = s4*cS*s6 - c4*c6;
x7 = L8*x3 + L7*x1 - LS*s4 + LS;
x8 = L8*sS*s6 + L7*cS - L6;
x9 = -L8*x6 - L7*x4 - LS*c4 - L4 + L2;
x10 = L3*c2 + c23*x7 + s23*x8;

/* update jang_o */

(jang - jang_o[i));
*/

jang_diff

jang_o[i] = jang;

ret urn (jang) ;

if (recfp)
fclose(recfp);

RClrelease(l);
RClclose (1);

rccl close ()
{
}

/*
* called on AC to close the record file if it was open
*/

void
quit ()
{

sl*(c23*x1 + s23*cS) + cl*x4;
sl*(c23*x2 + s23*sS*c6) + c1*x5;
sl*(c23*x3 + s23*sS*s6) + c1*x6;
sl*(L3*c2 + c23*x7 + s23*x8) - c1*x9 + L3;

s23*x1 - c23*c5;
s23*x2 - c23*sS*c6;
s23*x3 - c23*sS*s6;
s23*x7 - c23*x8 + L3*s2 + L1;

tw->n.y
tw->o.y
tw->a.y
tw->p.y

tw->n.z
tw->o.z
tw->a.z
tw->p.z

rw_close ()

double cl,
c2,
c3,
c4,
cS,
c6,
sl,
s2,
s3,
s4,
sS,
s6,
c23,
s23,
xl,
x2,
x3,
x4,
xS,
x6,
x7,
x8,
x9,
x10;

c1 = cos(rw_jang(O));
sl = sin(rw_jang(O));

c2 = cos(rw jang(l));
s2 = sin(rw=jang(l));

rw car_update_tw()

c3 = cos(rw_jang(2));
s3 = sin(rw_jang(2});

_i.i}.·<.·.·· ... ················<······<····)}·>_II

*/

main(ac, av)
int ac;
char **av;

#include <stdio.h>
#include " r w.h"

File: moveh.c
Remarks: Hybrid position force control for the null desired force

with the compliant wrist system (ref: hybri.c)

atof(&p[l]); break;

atof(&p[l]); break;

atof(&p[l]); break;

atof(&p[l]); break;

atof(&p[l]); break;

atof(&p[l]); break;

atof(&p[l]); break;

atof(&p[l]); break;

atof(&p[l]); break;

atof(&p[l]); break;

atof(&p[l]); break;

filt_f_pole
case 'm':

filt_p_pole = atof(&p[l]); break;
case' R' :
if ((recfp = fopen (&P [1], "w"» == NULL)
fprintf (stderr,

llcant open file for write\n"
) ;
exit(3);
}
goto nextarg;

case' n' :

case ' u' :

case' r' :

gain_ft
case 'w':

gain_fr
case' 0' :

gain_pt
case' q' :

gain_pr

fuzz r
case ' t' :

fuzz t
case' j': ­

fuzz_j

s x r
case'¥':

s y r
case' Z' :- -

s z r

gain_ft,
gain_fr,
gain pt,
gain=':pr,
fuzz_j,
fuzz_t,
fuzz_r,
filt f pole,
filt=':p=':pole,
s_x_t,
s_y_t,
s_z_t,
s_x_r,
s_y_r,
s z r;
rw_comp = 0;
verbose;

FILE *recfp;

/*

double

int
int
extern

double atof () ;

gain pr = 0.6;
gain-pt = 0.9;
gain=':fr = 0.01;
gain ft = 0.2;
fuzz-j = .01;
fuzz=':r = 0.5;
fuzz t = 0.5;
filt-f pole = 0.5;
filt=':p=':pole = 0.95;
s_x_t = 1.0;
s Y t = 1.0;
s-z-t = 1.0;
s_x_r = 1.0;
s_y_r = 1.0;
s z r = 1.0;

nextarg:
}

printf("gain in posn control for posn is %f\n", gain pt);
printf (llgain in posn control for rotn is %f\n ll

, gain=':pr);
printf(lIgain in force control for posn is %f\n", gain ft);
printf(llgain in force control for rotn is %f\n", gain-fr);
printf("filt pole in posn control is %f\n", filt_p_pole);
printf(llfilt pole in force control is %f\n", filt_f_pole);
printf(lIfuzz level for translation is %f\n", fuzz_t);
printf(lIfuzz level for rotation is %f\n ll

, fuzz_r);
printf(lIcontrol mode in x tran is %f\n", s x t);
printf(lIcontrol mode in y tran is %f\n", s-y-t);
printf(lIcontrol mode in z tran is %f\n ll

, s=z=t);
printf("control mode in x rot is %f\n", s x r)i
printf("control mode in y rot is %f\n", s-y-r);
printf(" control mode in z rot is %f\n ll

, s=z=r);

while (--ac> 0 && **++av == '-')
register char *p = *av;

while (*++p != '\0')
switch (*p) {
case'v':

verbose++; break;
case ' x' :

s_x_t = atof(&p[l]); break;
case'y':

s_y_t = atof(&p[l]); break;
case 'z':

s_z_t = atof(&p[l]); break;
case 'X':

rw_comp = 0;

/*
* initialize the control loop.
*/

rw_init () ;

/*
* start the complience. watch out.
*/

rw_comp = 1;

for (;;)
rw() ;

i::::::::0
:::

:
[
:
:
)
)
:
~
~
l
;
:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

::::::a:::

1111/········· ···········<.uD

/*
* Please check the file hybri.c. Since there are detail descriptions
* in hybri.c, those parameters appeared there are not defined here again
* for simplicity.
*/

/*

*/

File: surf.c
Remarks: Surface tracking operation with the compliant wrist

system (ref: moves.c)

int
struct
int

FILE

} ;
rcl const () ;
record rec;

sync,
time;
*recfp;

RW_THETA_BAR_l,
RW THETA BAR 2,
RW-THETA-BAR-3,
RW=THETA=BA~4,
RW THETA BAR 5- --

/* user/interrupt coordination flag */
/* time maintained by interrupt function */
/* record file fp */

/*
* the first order digital filter
*/

#define FILTER(y, u, pole) (y=(l.O-pole)*(y*pole/(l.O-pole)+u))
#define NCOPY(a,b) for(i=O;i<N;i++)a[i]=b[i]

double car_diffs[6];

#define mount_dist 35.0

'define dist of_flange 55.88

*tw_oinv;
i;
dummy(), drive();

verbose;
dangles [N] ;
r=angles[N];
sncs;

TRSF
int
void

jang_o[i] = 0.0;

/* specify approaching velocity at initial state */
dvel.t.z = va;

for (i = 0; i < RW MAX JOINT; ++i)
{ - -

setbuf(stdout, NULL);
rw_cal () ;

tw = newtrans("tw",rw);
rw car update tw();
printrn(tw,stctout);
/*

* start the real-time process, and request arm power
*/

RClopen();
RClcontrol(dummy, drive);
chg.power on. com = YES;
if ((how.state & CALIB_OK) == 0) {

fprintf(stderr, "arm not calibrated\n");
exit(3);

int
double
double
SNCS

/*
* Here is where we initialize everything needed to make the robot do
* what we want it to. We establish the position equation that the
* main program will continually move to.
*/

rw init ()
{-

/*
* Real-time drive function

/* derivative gain for force control in trans*/
/* derivative gain for force control in rotn*/
/* derivative gain for posn control in trans*/
/* derivative gain for posn control in rotn*/

/* approaching velocity */
/* tracking velocity */
/* desired contact force */
/* specified turning force */

/* 2.2 in = 55.88 rom. This is the distance
from the center of the last three joints to
the outer surface of the flange*/

fuzz_j
fuzz t
fuzz r

6

<stdio.h>
<rccl/rccl.h>
<rccl/rci.h>
<rccl/kine.h>
"rw.h"
"recordd.h"

#define N

TRSF mem_tw,
*tw = &mem tw;

extern double gain_ft,
gain fr,
gain:=pt,
gain pr,
deri-gain ft,
deri-gain-fr,
deri=gain=pt,
deri gain pr,
fuzz=j, ­
fuzz_t,
fuzz r,
filt-f pole,
filt=p=pole,
va,
vt,
cf,
tf;

'include
*include
.include
'include
'include
'include

#define FUZZ
'define FUZZ CARPOS
'define FUZZ CAREUL

DIFF
DIFF

double
double

d;
d_f, d_p, dvel;

jang_o[RW MAX JOINT];
rw theta cal[RW MAX JOINT],
rw=theta=bar[RW=MAX=JOINT] = {

RW_THETA_BAR_O,
*/

double

read joint angles
compute Jacobian at this point
transform cartesian diff to joint space
compute new joint angles
output setpoint

car_diffs[N];

11.11<»«········· ······································<.·••••••••.•••u_
r_angles[N];
d_angles[N];

if (initd == 0) {
enctoang(r angles, how.pos); /* get actual joint angles */
for (i=O; I<N; i++) {

d_angles[i] = r_angles[i];
}
initd++;

del force[N], del angle vel[N];
del=posn [N]; - -
encs [N];
q_f, qvel;
q-p;

fprintf(stderr,"Cannot initialize the axvll board\n");
exit(l);

if (ax init () < 0)
{ -

/*
* rw cal reads the current pot settings to get the current joint
* angles. These are then subtracted from the "correct II angles to
* get the correction angles.
*/

/*
* Initialize the axvll board.
*/

int i,
j;

rw cal ()
{-

initd = 0;
del f smth [N] ;
del'=p'=smth[N];

i;
int
double
double

double
double
short
JNTS
JNTS
int
static
static
static

double
double
void
drive()
{

void
dummy () {}

for (i=O; i<N; i++) {
chg.motion[i] .com = POS;
chg.motion[i] .value = encs[i];

for (i=O; i<N; i++) {
FILTER(del f smth[i], del force[i], filt f pole);
FILTER(del'=p=smth[i], del=posn[i], filt_p_pole);

/*
* if the sensed contact force is higher than the turning force
* tf, the motion in Z direction stops, and tracking begins.
*/

if (car diffs[4] > tf II car diffs[4] < -tf) {
dvel~t.z = 0.0; -
dvel.t.y = vt;

rw_ptor(i);

car_deri;

rw_theta_cal [i]

if(car diffs[O] <= FUZZ CARPOS && car diffs[O] >= -FUZZ CARPOS
car diffs[O] = 0.0; -

if(car diffs[l] <= FUZZ CARPOS && car diffs[l] >= -FUZZ CARPOS
car diffs[l] = 0.0; - -

if(car diffs[2] <= FUZZ CARPOS && car diffs[2] >= -FUZZ CARPOS
car diffs[2] = 0.0; - -

if(car diffs[3] <= FUZZ CAREUL && car diffs[3] >= -FUZZ CAREUL
car diffs[3] = 0.0; -

if(car_diffs[4] <= FUZZ_CAREUL && car_diffs[4] >= -FUZZ CAREUL
car diffs[4] = 0.0;

if(car diffs[5] <= FUZZ CAREUL && car diffs[5] >= -FUZZ CAREUL
car_diffs[5] = 0.0; -

for (i = 0; i < RW MAX JOINT; ++i)
{ - -

JNTS curr jnts;
JNTS diff-jnts;
if (rw comp)
{ -
bcopy(j6, &curr_jnts, sizeof(JNTS»;
rw car update tw();
if-(verbose>l)
printrn(tw,stdout);
noatorpy(&car diffs[5],&car diffs[4],&car diffs[3],tw);
car diffs[O] ~ tw->p.x; -
car-diffs[l] = tw->p.y;
car=diffs[2] = tw->p.z - 62.0;

int i;
static DIFF

/*
* This is the routine that has to figure out how to change the postion
* equation established in rw init() so the robot is driven to where we
* want it to go. -
*/

rw ()
{

/* transform d to j space */
/* transform d to j space */
/* delta j to angles */
/* delta j to angles */

/* compute sin/cos */
/* compute jacob terms */

/* transform d to j space */
/* delta j to angles */

}
update sincos(&sncs, r angles);
update=jacobian_terms(&sncs);

}

jacobI (&q_f, &d f, &sncs, 0.0);
jacobI(&q p, &d p, &sncs, 0.0);
jnts to angle (del force, &q f);
jnts=to=angle(del=posn, &q_p);

jacobI (&qvel, &dvel, &sncs, 0.0);
jnts_to_angle(del_angle_vel, &qvel);

}

for (i=O; i<N; i++)
d angles[i] += del f smth[i] + del angle vel[i];

for (i=O;-i<N; i++) - - --
r angles[i] = d angles[i] + del p smth[i];

NCOPY(rec~r angles, r angles); --
NCOPY(rec.car diffs, car diffs);
rec.time = time; -
angtoenc(encs, r angles);
sync++; - /* tell user process we have data */
time++;

-< ··>1.
1*

s;

jang_diff,
newdiff;

jang = rw_raw_diff(i);

jang = jang_o[i];

int

}
jang_o[i] = jang;

jang diff = (jang - jang o[i]);
if (jang diff <= FUZZ ,,-jang diff >= -FUZZ)
{- -

jang += rw theta bar[i];
return(jang); -

#ifdef notdef
newdiff = rw raw diff(i);
rw_old_diff[l] = newdiff;

#endif

rw car update_tw()

car_deri.t.x)car diffs[O] * gain pt + (car diffs[O]
* deri gain pt; - -

car diffs[l]-* gain pt + (car diffs[l] - car deri.t.y)
* deri_gain-pt ; - - -

(car diffs[2] + cf)* gain ft + (car diffs[2] - car deri.t.z)
* deri gain ft; - - -

dtor(car diffs[3]) * gain pr +
(car diffs[3] - car deri~r.x) * deri gain prj

dtor(car diffs[4]-10~0) * gain pr + - -
(car diffs[4] - car deri.r.y) * deri gain prj
1* 10.0 degree is for offset of ready-position, which

is also an example to have a specific initial position */
dtor(car diffs[5]) * gain pr +

(car_diffs[5] - car_deri~r.z) * deri_gain_pr;

if (verbose) {
for (i=O; i<N; i++)

printf("%10.2f ", car diffs[i]);
putchar('\n'); -
}

* PD controller
*/

d.t.x

d.t.y

d.r.x

d.r.y

d.t.z

d.r.z

/*

double jang,

if (recfp && sync) {
fwrite(&rec, sizeof(rec), 1, recfp);
sync = 0;

double c1,
c2,
c3,
c4,
c5,
c6,
sl,
s2,
s3,
s4,
s5,
s6,
c23,
s23,
xl,
x2,
x3,
x4,
x5,
x6,
x7,
x8,
x9,
x10;

c1 = cos(rw jang(O»;
sl = sin(rw=jang(O»;

c2 = cos(rw jang(l»;
s2 = sin(rw=jang(l»;

c3 = cos(rw jang(2»;
s3 = sin(rw=jang(2»;

c4 = cos(rw jang(3»;
s4 = sin(rw=jang(3»;

c5 = cos(rw jang(4»;
s5 = sin(rw=jang(4»;

car_diffs[O];
car diffs[l];
car_diffs[2];
car-diffs[3];
car-diffs[4];
car=diffs[5];

0.0;
0.0;
d.t.z;
0.0;
0.0;
0.0;

-d.t.x;
-d.t.y;
0.0;
-d.r.x;
-d.r.y;
-d.r.z;

* update the previous displacement
*/

car_deri.t.x
car deri.t.y
car-deri.t.z
car-deri.r.x
car deri.r.y
car=deri.r.z

1*
* hybrid position force controller. In Z axis force is controlled
* while in other degrees position is controlled
*/

d f.t.x
d=f.t.y
d f.t.z
d-f.r.x
d=f .r.y
d f.r.z

d_p.t.x
d_p.t.y
d p.t.z
d=p.r.x
d_p.r.y
d_p.r.z

double
rw_jang (i)

int i;
{

11111•••••••••..·.·····················
c6 = cos(rw jang(5));
s6 = sin(rw=jang(5));

c23 = cos(rw jang(l)+rw jang(2));
523 = sin(rw=jang(1)+rw=jang(2));

xl = -c4*s5;
x2 = c4*c5*c6 - s4*s6;
x3 = c4*c5*s6 + s4*c6;
x4 = -s4*s5;
x5 = s4*c5*c6 + c4*s6;
x6 = s4*c5*s6 - c4*c6;
x7 = L8*x3 + L7*x1 - L5*s4 + L5;
x8 = L8*s5*s6 + L7*c5 - L6;
x9 = -L8*x6 - L7*x4 - L5*c4 - L4 + L2;
x10 = L3*c2 + c23*x7 + s23*x8;

··.··.·..............i .• iiW •••/EIl

tw->n.x
tw->o.x
tw->a.x
tw->p.x

tw->n.y
tw->o.y
tw->a.y
tw->p.y

tw->n.z
tw->o.z
tw->a.z
tw->p.z

rw close ()

c1*(c23*x1 + s23*c5) - sl*x4;
c1*(c23*x2 + s23*s5*c6) - sl*x5;
c1*(c23*x3 + s23*s5*s6) - sl*x6;
c1*(L3*c2 + x7*c23 + s23*x8) + sl*x9 - L9;

sl*(c23*x1 + s23*cS) + c1*x4;
sl*(c23*x2 + s23*s5*c6) + c1*xS;
sl*(c23*x3 + s23*s5*s6) + c1*x6;
sl*(L3*c2 + c23*x7 + s23*x8) - c1*x9 + L3;

s23*x1 - c23*cS;
s23*x2 - c23*s5*c6;
s23*x3 - c23*s5*s6;
s23*x7 - c23*x8 + L3*s2 + L1;

RClrelease(l);
RClclose (1);

}

rccl_close ()
{
}

/*
* called on AC to close the record file if it was open
*/

void
qui t ()
{

if (recfp)
fclose(recfp);

11111.··············<·····

#include <stdio.h>
#include tlrw.h ll

main(ac, av)
int ac;
char **av;
{

File: moves.c
Remarks: Surface tracking operation with the compliant wrist

system (ref: surf.c)

0.3;
0.98;

atof(&p[l]); break;filt_f_pole

case ' c' :
cf = atof(&p[l]); break;

case ' T' :
gain_ft = atof(&p[l]); break;

case ' 0' :
gain_fr = atof(&p[l]); break;

case 't':
gain_pt = atof(&p[l]); break;

case '0':
gain_pr = atof(&p[l]); break;

case 'm':

case' n':

printf (I'gain in posn control for posn is %f\n ll , gain pt);
printf(llgain in posn control for rotn is %f\n ll , gain-pr);
printf(llgain in force control for posn is %f\n ll , gain ft);
printf("gain in force control for rotn is %f\n ll , gain-fr);
printf(llfilt pole in posn control is %f\n ll , filt p pole);
printf(tlfilt pole in force control is %f\n ll , filt f pole);
printf(lltracking velocity is %f\n", vt); --
printf(llapproaching velocity is %f\n ll , va);
printf(" contact force is %f\n ll , cf);
printf(tlturning force is %f\n ll , tf);

filt_p_pole = atof(&p[l]); break;
case ' R':
if ((recfp = fopen(&p[l], Ilw ll)) == NULL)
fprintf (stderr,

Ilcant open file for write\n ll
) ;
exit(3);
}

goto nextarg;

rw_comp = 0;

/*
* initialize the control loop.
*/

rw_init () ;

for (; ;)
rw ();

/*
* start the complience. watch out.
*/

rw_comp = 1;

nextarg:
}

gain_pr = 0.6;
gain pt = 0.9;
gain-fr = 0.005;
gain=ft = 0.05;
deri gain pr = -0.01;
deri-gain-pt = -0.1;
deri-gain-fr = 0.01;
deri-gain-ft = 0.1;
fuzz=j = -:-01;
fuzz_r = 0.4;
fuzz t = 0.4;
filt-f pole
filt=:p=pole
vt = 0.2;
va = 0.8;
cf = 0.7;
tf = 0.5;
while (--ac> 0 && **++av == '-')

register char *p = *av;

double atof () ;

gain_ft,
gain fr,
gain-pt,
gain=pr,
deri gain ft,
deri-gain-fr,
deri=gain=pt,
deri gain pr,
fuzz:=j, ­
fuzz_t,
fuzz r,
filt-f pole,
filt=p:=pole,
vt,
va,
cf,
tf;
rw_comp = 0;
verbose;

FILE *recfp;

*/

/*

double

int
int
extern

while (*++p != '\0')
switch (*p) {
case'v':

verbose++; break;
case 'V':

vt = atof(&p[l]); break;
case I A' :

va = atof(&p[l]); break;

_r ···· ··.·.· i>clIII
/*

*/

File: edge. c
Remarks: Edge tracking operation with the compliant wrist

system (ref: moveg.c)

/*
* Please check the file hybri.c. Since there are detail descriptions
* in hybri.c, those parameters appeared there are not defined here again
* for simplicity.
*/

/* user/interrupt coordination flag */
/* time maintained by interrupt function */
/* record file fp */

verbose;
d angles[N];
r=angles[N];
sncs;

} ;
rcl const () ;
record rec;

sync,
time;
*recfp;

jang_o[RW_MAX_JOINT];
rw theta cal[RW MAX JOINT],
rw-theta-bar[RW-MAX-JOINT] =

- - -RW_THETA_BAR_O,
RW THETA BAR 1,
RW=THETA=BAR=2,
RW_THETA_BAR_3,
RW THETA BAR 4,
RW-THETA-BAR- 5

- --

FILE

int
double
double
SNCS

int
struct
int

double
double

<stdio.h>
<rccl/rccl.h>
<rccl/rci.h>
<rccl/kine.h>
II r w.h"
"recordd.h"

#define N

#include
finclude
#include
#include
#include
#include

/*
* the first order digital filter
*/

#define FILTER(y, u, pole) (y=(1.0-pole)*(y*pole/(1.0-pole)+u))
Idefine NCOPY(a,b) for(i=O;i<N;i++)a[i]=b[i]

#define dist_of_flange 55.88

#define mount dist 35.0

/* 2.2 in = 55.88 rom. This is the distance
from the center of the last three joints to
the outer surface of the flange */

/*
* Here is where we initialize everything needed to make the robot do
* what we want it to. We establish the position equation that the
* main program will continually move to.
*/

rw_init()
{

TRSF *tw oinv;
int i; -
void dummy() , drive();

double car_diffs[6];

TRSF mem_tw,
*tw = &mem tw;

extern double gaIn_ft,
gain fr,
gain-pt,
gain-pr,
fuzz-j,
fuzz-t,
fuzz=r,
fil t f pole,
filt=p=pole,
va, /*
vs, /*
vt, /*
cfa, /*

cfs, /*

tfa, /*

tfs; /*

#define FUZZ fuzz-j
#define FUZZ CARPOS fuzz t
#define FUZZ CAREUL fuzz r

DIFF d;
DIFF d f;
DIFF d=p, dvel;

approaching velocity */
searching velocity */
tracking velocity */
desired contact force in the
approaching direction */
desired contact force in the
searching direction */
specified turning force in the
approaching direction */
specified turning force in the
searching direction */

setbuf(stdout, NULL);
rw_cal ();

for (i = 0; i < RW_MAX_JOINT; ++i)
{

jang_o[i] = 0.0;

tw = newtrans ("tw", rw);
rw_car_update_tw();
printrn(tw,stdout);
/*

* start the real-time process, and request arm power
*/

RClopen () ;
RClcontrol(dummy, drive);
chg.power_on.com = YES;
if ((how.state & CALIS OK) == 0) {

fprintf(stderr~ "arm not calibrated\n");
exit(3);

}
/*

* specify the approaching velocity
*/

dvel.t.z = va;

/*
* Real-time drive function

read joint angles

_UU/U> •.• i ..>.• >< ••·•.•.••••.•.•. / ·..·.·..··· . iD
compute Jacobian at this point
transform cartesian diff to joint space
compute new joint angles
output setpoint

r_angles[i] = d_angles[i] + del_p_smth[i];
NCOPY(rec.r angles, r angles);
NCOPY(rec.car diffs, car diffs);
rec.time = time; -

car diffs[N);
r_angles [N];
d_angles[N];

if (initd == 0) {
enctoang(r angles, how.pos); /* get actual joint angles */
for (i=O; I<N; i++) {

d_angles[i] = r_angles[i];

/* when the sensed contact force is higher than the specified
* turning force, the motion in the approaching direction stops,
* and the motion in the searching direction begains
*/

if (car diffs[4] > tfa II car diffs[4] < -tfa) {
dvel~t.z = 0.0; -
dvel.t.x = -vs;

}
update sincos(&sncs, r angles);
update=jacobian_terms(&sncs);

for (i=O; i<N; i++) {
chg.motion[i].com = POS;
chg.motion[i] .value = encs[i];

int i,
j;

fprintf(stderr,"Cannot initialize the axvll board\n");
exit(l);

if (ax_init() < 0)
{

angtoenc(encs, r angles);
sync++; - /* tell user process we have data */

time++;

/*
* Initialize the axvll board.
*/

void
dummy () {}

/*
* rw cal reads the current pot settings to get the current joint
* an~les. These are then subtracted from the "correct" angles to
* get the correction angles.
*/

rw_cal ()
{

/* compute sin/cos */
/* compute jacob terms */

del angle_vel[N];

initd = 0;
del f smth [N] ;
del=p=smth[N] ;

}
initd++;

del force [N) ,
del='posn[N];
encs [N);
q_f, qvel;
q p;
i;

int
double
double

double
double
short
JNTS
JNTS
int
static
static
static

*/
double
double
double
void
drive ()
{

for (i = 0; i < RW_MAX_JOINT; ++i)
{

/* when the sensed contact force in this drection is higher than
* the specified turning force in this direction, the motion in
* this searching direction stops, and the motion in the
* tracking direction begains
*/

rw_theta_cal [i] rw_ptor (i) ;

if (car diffs[O] > tfs I I car diffs[O] < -tfs) {
dvel.t.x-= 0.0; -
dvel.t.y = vt;

for (i=O; i<N; i++) {
FILTER(del f smth[i], del force[i], filt f pole);
FILTER(del=p=smth[i], del='posn[i], filt_p_pole);

}
for (i=O; i<N; i++)

d angles[i] += del f smth[i] + del angle vel[i];
for (i=O;-i<N; i++) - - --

bcopy(j6, &curr_jnts, sizeof(JNTS));
rw car update tw();
if-(verbose>l)

printrn(tw,stdout);

car_deri;
int i;
static DIFF

JNTS curr jnts;
JNTS di ff=jnts;

if (rw_ comp)
{

/*
* This is the routine that has to figure out how to change the postion
* equation established in rw_init() so the robot is driven to where we
* want it to go.
*/

rw ()
{

/* transform d to j space */
/* transform d to j space */
/* delta j to angles */
/* delta j to angles */

/* transform d to j space */
/* delta j to angles */

}
jacobI(&qf, &df, &sncs, 0.0);
jacobI (&q-p, &d p, &sncs, 0.0);
jnts to angle (del force, &q f);
jnts=to=angle(del=posn, &q_p);

jacobI (&qvel, &dvel, &sncs, 0.0);
jnts_to_angle(del_angle_vel, &qvel);

-» ······.·..>ili~J
noatorpy(&car diffs[5],&car diffs[4],&car diffs[3],tw);
car diffs[O] =tw->p.x; - -
car-diffs[l] = tw->p.y;
car=diffs[2] = tw->p.z - 62.0;

int s;

fendif

jang += rw theta barril;
return(jang); -

jang_o[i];jang
}
jang_o[i] = jang;

jang = rw raw diff(i);
jang diff ~ (jang - jang o[i]);
if (jang_diff <= FUZZ &&-jang_diff >= -FUZZ)
{

fifdef notdef
newdiff = rw raw diff(i);
rw_old_diff[l] = newdiff;

car diffs[O] <= FUZZ CARPOS && car diffs[O] >= -FUZZ CARPOS
car_diffs[O] = 0.0; - -

car diffs[l] <= FUZZ CARPOS && car diffs[l] >= -FUZZ CARPOS
car diffs[l] = 0.0; -

car_diffs[2] <= FUZZ_CARPOS && car_diffs[2] >= -FUZZ CARPOS
car diffs[2] = 0.0;

car_diffs[3] <= FUZZ_CAREUL && car_diffs[3] >= -FUZZ_CAREUL
car diffs[3] = 0.0;

car diffs[4] <= FUZZ CAREUL && car diffs[4] >= -FUZZ CAREUL
car diffs[4] = 0.0; -

car_diffs[5] <= FUZZ_CAREUL && car_diffs[5] >= -FUZZ CAREUL
car_diffs[5] = 0.0;

if(

if(

if(

if(

if(

if(

/*

double jang,
jang diff,
newdIff;

if (recfp && sync) {
fwrite (&rec, sizeof (rec), 1, recfp);
sync = 0;

double
rw jang(i)
int i;
{

c1 = cos(rw_jang(O))i
sl = sin(rw_jang(O));

c2 = cos(rw_jang(l));
52 = sin(rw_jang(l));

c3 = cos(rw_jang(2));
s3 = sin(rw_jang(2));

c4 = cos(rw_jang(3));
s4 = sin(rw_jang(3));

cS = cos(rw_jang(4));
s5 = sin(rw_jang(4));

c6 = cos(rw_jang(5));
s6 = sin(rw_jang(5));

double c1,
c2,
c3,
c4,
cS,
c6,
sl,
s2,
s3,
s4,
55,
56,
c23,
s23,
xl,
x2,
x3,
x4,
xS,
x6,
x7,
x8,
x9,
x10;

c23 = cos(rw_jang(1)+rw_jang(2));

rw car_update_tw ()

d.t.x;
0.0;
d.t.z;
0.0;
0.0;
0.0;

0.0;
-d.t.y;
0.0;
-d.r.x;
-d.r.y;
-d.r.z;

(car diffs[O] - cfs) * gain ft;
car diffs[l] * gain pt; -
(car diffs[2] + cfa) * gain ft;
dtor(car diffs[3]) * gain prj
dtor(car-diffs[4]-10.0) *-gain pr;
dtor(car=diffs[5]) * gain_prj -

if (verbose) {
for (i=O; i<N; i++)

printf("%10.2f ", car diffs[i]);
putchar('\n'); -

* Hybrid controller specified force control in the approaching
* and searching direction, while position control in the others
*/

d.t.x
d.t.y
d.t.z
d.r.x
d.r.y
d.r.z

d f.t.x
d=f.t.y
d f.t.z
d-f.r.x
d=f.r.y
d f.r.z

d_p.t.x
d p.t.y
d-p.t.z
d=p.r.x
d_p.r.y
d_p.r.z

1111 i.··········
s23 = sin(rw_jang(1}+rw_jang(2}};

xl = -e4*s5;
x2 = e4*e5*e6 - s4*s6;
x3 = e4*c5*s6 + s4*e6;
x4 = -s4*s5;
x5 = s4*e5*c6 + c4*s6;
x6 = s4*c5*s6 - c4*c6;
x7 = 18*x3 + 17*xl - 15*s4 + L5;
x8 = L8*s5*s6 + 17*c5 - L6;
x9 = -L8*x6 - L7*x4 - 15*c4 - L4 + L2;
xlD = 13*c2 + c23*x7 + s23*x8;

··········)~Ig~~q················· ·····························<\.1

tw->n.x
tw->o.x
tw->a.x
tw->p.x

tw->n.y
tw->o.y
tw->a.y
tw->p.y

tw->n.z
tw->o.z
tw->a.z
tw->p.z

rw close ()

cl*(c23*xl + s23*c5} - sl*x4;
cl*(c23*x2 + s23*s5*e6} - sl*x5;
el*(c23*x3 + s23*s5*s6} - sl*x6;
el*(13*c2 + x7*c23 + s23*x8} + sl*x9 - L9;

sl*(c23*xl + s23*c5} + cl*x4;
sl*(c23*x2 + s23*s5*e6} + c1*x5;
sl*(c23*x3 + s23*s5*s6} + cl*x6;
sl*(L3*c2 + e23*x7 + s23*x8} - cl*x9 + L3;

s23*xl - c23*c5;
s23*x2 - c23*s5*c6;
s23*x3 - c23*s5*s6;
s23*x7 - c23*x8 + L3*s2 + 11;

RClrelease(l}i
RClclose (I);

rcel close ()

/*
* called on AC to close the record file if it was open
*/

void
qui t ()
{

if (recfp)
fclose(recfp};

	Control Software of Robot Compliant Wrist System
	Recommended Citation

	Control Software of Robot Compliant Wrist System
	Abstract
	Comments

	Identification of Address Blocks Through Multiple Illuminations, Multiple Images and Multicolor Images

