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Abst rac t  

This paper presents an overview of ongoing research on surface exploration at  the GRASP 
Lab. We are investigating the necessary components and modules that must be embedded 
into a robot for it to  have the exploratory capabilities required to  recover mechanical prop- 
erties from a surface, given minimal a priori information. Eventually, this information will 
be used to  enable a robot to  stand and walk stably on a surface that is unknown and uncon- 
strained. A robot in the agricultural environment will specially benefit from such capabilities 
since it will need to  step and walk on soils with variable properties. The paper proposes a 
framework for the recovery of the attributes of interest, and describes the laboratory setup 
designed to  test the framework. The design and implementation of exploratory procedures 
(ep's) to  recover penetrability, material hardness and surface roughness by exploring the 
surface is also described. 



1 Introduction 

With the increase in applications of robots to  agriculture and other unstructured and possibly 
hazardous environments, there has been some emphasis on research in designing systems for 
sustained locomotion on unstructured terrain. While there has been a lot of discussion about 
the best form of locomotion, what is of particular relevance t o  the field of agriculture is that 
Bekker [I] has applied soil mechanics to show the superior mobility of legged locomotion in 
comparison to  wheeled or tracked locomotion. In the design of most of the legged robots, 
however, i t  is assumed that the material properties, the geometry, and conditions of the 
environment, are known a priori or are controllable [2]. The motivation for the research 
on surface exploration stems from the need to have a robotic system that actively explores 
the environment to  recover its characteristic properties, and then applies this information to  
successfully step or walk on surfaces with varying material properties. 

In this paper, we wish to report the results of some our investigations of the necessary 
components and modules that must be embedded into a robot with exploratory capabilities. 
We have limited ourselves to the specific task of exploring a surface to  recover mechanical 
properties for mobility purposes. We would like to be able to  predict if a certain surface is 
stable enough to  support the loads and forces exerted by a foot, when the robot is standing 
or walking on a surface, or carrying out certain tasks while in contact with the surface. 
We would also like to be able to predict if a surface can provide the required traction in 
such applications. We are particularly interested in investigating the behavior of soils and 
sands and recovering the properties that determine the stability of such material surfaces 
to  a nioving robot. In the next section, we propose a framework for the recovery of surface 
attributes for applications to robot mobility. 

2 Proposed Framework 

Our first objective was t o  identify the attributes that are needed to  determine the stability 
of surfaces during standing or walking. As described in our earlier work, this turns out 
to  be a classical problem of system identification and parameter estimation, and a detailed 
description of our investigations into the attributes of interest can be found in [3,4]. Guided 
by the goals of our application, we chose to  define the structure of our environment by the 
attributes of penetrability, hardness, con~pliance, compressibility, deformability and surface 
roughness. This choice of attributes was supported by a review of work in soil mechanics 
[5, 61 which showed that these are the important properties which determine the behavior of 
soils and sand with respect to stability and mobility. 

At present, the framework we propose is that for stable stepping and walking in an 
unknown environment, it is necessary to recover the attributes of penetrability, hardness, 
compliance, compressibility, deformability and surface roughness. These attributes must be 



recovered by "exploratory procedures" (ep's) that are built in to the mobile robotic system. 

2.1 Attributes and Exploratory Procedures 

Under the paradigm of exploratory robotics, the concept of ep's provides a solid framework 
for exploration and recovery of attributes - for details refer to our earlier work [3, 41. By 
ep we mean a procedure that is salient to the recovery of a specific attribute of interest. 
From a review of most available testing methods from scientific and engineering fields other 
than Robotics, most methods seemed completely unsuitable for Robotics applications. For 
example, soil engineers do most of their testing by taking soil samples and measuring the 
properties with specially designed equipment. The methodology of our research, therefore, is 
to design exploratory procedures that will attempt to recover the specific attributes of interest 
from the environment. These ep's are then to be implemented to predict the stability of a 
surface to a standing or walking robot. 

2.1.1 Penetrability 

In measuring the penetrability of a surface we are interested in determining whether the 
surface is penetrable or not. It would give the robot the ability to decide whether its foot 
would sink into a surface or find a stable footing. This is particularly of interest in detecting 
materials like quicksand, mud or soft snow, the surfaces of which would not support the 
weight of the robot and cause the foot to sink. 

The ep for penetrability is analogous to the penetration tests that are used to examine 
soil properties [5] .  Soil engineers usually press a sharp mechanical probe into the surface and 
measure the resistance to penetration of the probe into the surface. In the case of a robot 
foot, however, it is more important to determine whether the surface is penetrable or not, 
rather than how penetrable it is. If a surface merely deforms or gets compressed initially 
(like soft sand or soil, for example), but then offers a stable surface due to its compressive 
strength, then it is considered to be impenetrable. 

Our ep for penetrability, therefore, is designed to push the foot against the surface with a 
specified force. If the foot sinks below the surfa.ce, beyond a specified limit of stability, then 
the surface is classified is penetrable. On the other hand if the surface is able to withstand 
the force exerted by the foot, before the stability limit is reached, the surface is classified as 
impenetrable and the ep for hardness and compliance can then be implemented. 

2.1.2 Hardness and Compliance 

In measuring the attributes of hardness and compliance, we are highlighting those charac- 
teristics of an impenetrable surface that determine how the surface will behave when the 
foot exerts forces normal to it while standing or walking. Hardness and compliance can be 
interpreted in a number of ways [3, 71. Our interpretation is that hardness is the resistance 



(measure of deformation) to a load when the surface is rigid, while compliance is the same 
property measured for deformable surfaces. The basic concept of the ep for hardness and 
compliance is based on this interpretation. 

A viable way to measure hardness and compliance is to  measure the resistance to  a 
load as deformation in a compliant probe when it is pressed against a hard material with 
increasing pressure [8]. In the ep for hardness and compliance, the foot (that is rigid, but 
mounted on to  a compliant wrist) is pressed against the material surface and then moved 
into the surface with small increments. Deformation in the compliant wrist is measured with 
each movement. This ep gives a measure of the material hardness and compliance which 
is proportional to  the rate of deformation in the wrist. In addition, for materials that are 
compressive, the rate of deformation gives a measure of the compressibility and the extent 
of the maximum deformation is a measure of the compressive strength of the materials. 

In the execution of this ep, what the robot really measures is the stiffness of the envi- 
ronment, where the stiffness is proportional to the rate of deformation in the wrist. In the 
discussion of the implementation of this ep in Section 3.2.2 , we use some simple lumped- 
parameter dynamic models to  show why this assertion is more than just intuitive. 

2.1.3 Surface Roughness 

The surface roughness is a measure of the tangential forces due to friction that result when 
two surfaces in contact slide against each other. I t  would be of utmost importance to 
measure the surface roughness of surfaces to determine the forces that a robot should exert 
while walking on it. The knowledge of the roughness of a surface would give a walking robot 
the ability to  avoid slipping when walking from a very rough surface on to a very smooth 
and slippery surface. Of course, the roughness will also determine the amount of traction 
the surface can provide to a moving robot. 

The ep for surface roughness is very similar to the classical methods of measuring the 
coefficient of friction between the two surfaces. The ep is simply designed to  perform relative 
lateral motion between a surface of known roughness (in our case, the foot) and the unknown 
surface, while keeping them forced into contact. The measurement of tangential forces 
generated when this ep is carried out will give us a measure of the surface roughness. 

3 Test of the Framework 

To provide a robot the ability to sense the material properties of the surface while standing, 
or indeed walking on it, is the ultimate goal of this research. Keeping this in mind and to  test 
the framework proposed earlier, we have built a system and implemented the ep's described 
in the previous section with the intent to ultimately execute these ep's on the fly, that is, 
while the robot is in motion and the foot is executing the movements for walking. 
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Figure 1: (a) System Setup (b) A Typical Run 

3.1 System Setup 

The system setup is shown in Figure l(a). The primary sensing mechanism is a compliant 
wrist device that incorporates passive compliance and a sensing mechanism to  provide six 
degree-of-freedom flexibility and measurement (designed by Y. Xu and R.P. Paul [9]). This 
device is mounted on to a PUMA 560 robot arm and has a fixture that allows the prototype 
foot t o  be mounted on it. The passive compliance of the device allows the robot to avoid 
transition and excess impact forces as the robot makes contact with the environment. The 
six degree-of-freedom sensing mechanism allows the measurement of three translational and 
the three rotational deformations in the wrist, which can be translated into force and torque 
measurements since the effective stiffnesses in each degree-of-freedom are known. A hybrid 
position/force control algorithm has been implemented that allows force control in certain 
degrees-of-freedom while the others are position controlled. In the force controlled directions, 
the arm trajectory is modified by the sensed contact forces so that the effective stiffness is 
decreased. The device allows the robot to accurately sense when contact is made with the 
surface. More importantly, it allows the robot to exert forces specified up to a limit as well 
as to  maintain certain contact forces while the arm is in motion. Further details on the wrist 
can be found in [9]. 

The base of the compliant wrist is niounted on the PUMA 560 arm and our prototype 
foot has been mounted on the other end. The design of the foot is quite intuitive and we 
have just built a simple device that looks like a short ski. The foot is made of aluminum and 
the bottom surface (the one that interacts with the environment) is a well-machined metal 
surface. The dimensions of the foot are roughly 2.5in x 5in x .25in. 

While carrying out a typical implementation of the ep's described above, the robot arm 



Arm Trajectory Wrist Deformation 
mm 

Figure 2: Measurement of Penetrability (a) Plot of arm end-point position (in mm) vs time 
(1 unit = 28 nlilliseconds) (b) Plot of deformation in the wrist (in mm) due to  normal force 
vs time (1 unit = 28 milliseconds) 

pushes down on the surface to execute the ep's for penetrability, hardness and compliance 
(see Figure l(b)). The compliant wrist deforms in a direction normal to  the surface due 
to  the resultant normal forces. These deformations are recorded to  give a measure of the 
penetrability, hardness and compliance. The ep for surface roughness is then employed. Now, 
while keeping the wrist pushed against the surface with a constant force, the arm is moved 
relative to  the surface, thus sliding the foot over it. This causes the wrist to  deform laterally 
in a direction opposite to the motion of the arm. This deformation is due t o  the tangential 
friction on the foot due to the roughness of the surface. Therefore, a measure of this lateral 
deformation gives a measure of the surface roughness. 

3.2 Recovery of Attributes 

In this section, we would like to  particularly discuss the attributes of penetrability, hardness 
and surface roughness because those are the three mechanical properties that we have so far 
succeeded in recovering. 

3.2.1 Penetrability 

This ep involves pressing down on the surface till a certain maximum normal deformation 
is measured in the wrist (which means that the surface is impenetrable, and can support 



the weight exerted by the foot), or till the arm has moved too far down (which means that 
surface is penetrable and the foot will sink into the surface). In the actual implementation, 
the maximum allowable normal deformation will be the equivalent to the deformation cor- 
responding to  the maximum normal force that the foot will exert on the surface. How far 
the arm should move down will be dictated by the limit on the sinkage of the foot, such 
that robot does not become unstable and fall. For our implementation of this ep, we have 
restricted the maximum normal deformation to be about -1.lmm (which corresponds to a 
normal force of about 6 lbs) and the maximum distance moved by the arm to about 80mm. If 
we find, by monitoring the distance moved down by the arm and the amount of deformation 
in the wrist, that the wrist deformation is very small compared to the large distance moved 
down by the arm, we classify the material as penetrable. Hence, penetrability is measured 
as a combination of arm trajectory and wrist deformation in a given time interval. 

Some results from the ep for penetrability are shown in Figure 2. In the case of the 
penetrable surface, there is hardly any deformation in the wrist, in fact, only about -0.2mm 
(solid line in Figure 2(b)), even after the arm moves down the allowed 80mm (solid line 
in Figure 2(a)). On the other hand, for the impenetrable case, the arm moves down a 
very short distance (dotted line in Figure 2(a)) and most of the downward motion shows 
up as deformation in the wrist (dotted line in Figure 2(b)). Also, in the penetrable case 
the duration of the ep is very short as the wrist deforms rapidly and reaches the maximum 
permitted value. 

3.2.2 Hardness 

Our system can be modeled as a simple lumped-parameter dynamic model shown in Figure 
3(a). We assume that the dynamics of the environment are adequately modeled by a second 
order dynamic model. Let us consider the a.rm to be a rigid body with no vibrational modes 
and model it as a mass with a damper to the ground. The mass m, represents the effective 
moving mass of the arm. The viscous da.mper c, gives the appropriate rigid body mode 
to the arm. The compliant wrist sensor connects the arm and the environment with some 
compliance - it has stiffness k,  and damping c,. The environment is represented by a mass 
me and has a stiffness k ,  and damping c,. The state variables x ,  and x, measure the positions 
of the arm and environment masses, respectively. The actuator is represented by the input 
force F.  The contact force F, and the wrist deformation x ,  are related as follows: 

F, = k w z w  

also, 2 ,  = 2, - 2,  

therefore, F, = kw(xT  - x e )  

The governing equations for this system a.re: 

mrxT + k W ( z T  - 2,) = F - cTkT - cW(xT - k e )  (4) 
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Figure 3: (a) Model of system for measurement of hardness (b) Plot of deformation in the 
wrist (in mm) due to normal force vs time (1 unit = 28 milliseconds) 

mexe + k,(x, - x,) + kexe = cw(xr - 5 , )  - ce5,  ( 5 )  

For the implementation of our ep  for hardness, we can reasonably assume that x,. = xe = 
C, = c, = c, = 0 for the velocities and frequencies of this ep  are well within the dynamic 

range of the system. Therefore, the above equations reduce to: 

Substituting for x, in Equation (7 ) ,  using Equation (2) and differentiating, we get: 

Since k ,  is a known constant obtained by calibration, and x, is the constant commanded 
robot velocity, the environment stiffness, k, ,  that the e p  for hardness and compliance tries 
to measure, is just a function of x,, the rate of deformation of the wrist. 

In our system, the ep  for hardness involves moving down the arm such that the foot 
is pressed into the surface at a constant rate till the normal deformation experienced by 
the wrist is about -1.lmm (which corresponds to a normaa force of about 6 lbs). It is first 
determined if the foot has encountered the surface. Then the foot is slowly pushed against 
the surface at  a constant velocity ( 2 , ) .  The deformation history of the wrist is examined 



from the point the e p  begins till it ends when the wrist is experiencing a normal deformation 
of about -1.lmm. The steeper the slope (kW) of the normal deformation versus time curve, 
the harder is the material. 

The results from the e p  for hardness measurements is shown in Figure 3(b). The slope of 
the deformation versus time plot is clearly the steepest for the metal surface. The Styrofoam 
surface is less hard, however, the curve is still mostly linear. In the case of the softer cushion, 
while the slope is clearly the least, the curve does not stay linear. 

The interpretation of the changing slopes of these curves will help us in recovering at- 
tributes related to  compliance, compressibility and deformability. These curves are actually 
analogous to load-sinkage curves that recover soil properties. This e p  could thus be useful 
in measuring soil properties and its results could be interpreted to  examine the behavior of 
soils. However, the precise basis of such interpretations is still being investigated. 

3.2.3 Surface Roughness 

The lumped-parameter model of the last section is modified for the measurement of surface 
roughness as shown in Figure 4(a). The surface roughness generates the tangential friction 
force Ff at the interface of the wrist sensor and the surface (in our case, the interface is 
the foot). Now, the friction force, Ff, is the same as the contact force, F,, therefore, using 
Equation (1): 

since, Ff = F, 

Ff = kWzw 

To measure the tangential force in order to obtain a measure of the surface roughness, 
therefore, all the robot needs to  do is measure the deformation, x,, in the wrist sensor. In 
the implementation of the e p  for surface roughness, the robot records the wrist deformations, 
z,, in the direction opposite to the direction of lateral motion. This deformation is actually 
perpendicular to the deformation due to the normal force measured in the e p  for hardness. 
In our experiments, the robot also adjusts, according to the hardness of the material, the 
normal force with which the foot is pressed against the surface and laterally moved along it. 

The results of our e p  for surface roughness are shown in Figure 4(b). The solid line 
denoting the normal force is really a plot of the deformations due to the normal force in the 
wrist. The flat part of that curve corresponding to a deformation of about -0.4mm signifies 
the constant normal force of about 2 lbs maintained during the sliding motion of the foot 
over the surface. The two curves above the x-axis are the plots of tangential deformations 
due to frictional forces encountered during the ep. The lower of the two curves shows the 
wrist deformation corresponding to the surface roughness of a smooth plate. There is a 

constant deformation (corresponding to x, in Equation (10)) of about 0.2mm. The curve at 
the top of Figure 4(b) shows the wrist deforma.tion corresponding to  the surface roughness of 



7 kw rw 
d 
I mr 
d 

/ cr ICI 
ROBOT SENSOR 

Surface Roughness Meapurements 
rn 

m------. 
0.50 

0.40 

ENVIRONMENT 

(a> 

Figure 4: (a) Model of system for measurement of surface roughness (b) Plot of tangential 
and normal deformations (in mm) vs time (1 unit = 28 milliseconds) during surface roughness 
measurements 

the plate covered by a rough cloth. In this case, the tangential forces are larger for the same 
normal force, due t o  the increased roughness of the surface, and as a result, the deformation, 
x,, is larger, about 0.5mm. We have chosen an example where the material hardness is 
constant but the surfaces have different roughness properties. This shows conclusively that 
the robot is able to  distinguish between surfaces of different roughness. 

4 Conclusion 

The ability to  measure and sense the variation in the mechanical properties of different soil 
surfaces is indispensable to  mobility of robots in agricultural environments. To ensure that 
a robot does not slip and fall or sink and get stuck when standing or walking on a surface 
composed of soil or sand, the robot needs t o  measure the characteristic properties of the 
surface and continuously or periodically apply this information to adjust the forces it exerts 
on the surface during standing or walking. 

With this in mind, we have succeeded in designing and implementing ep's to recover 
the penetrability, hardness and surface roughness characteristics of a surface. The immedi- 
ate goal is to  also measure the compliance, deformability, compressibility and con~pressive 
strength and apply the information to predict the stability of surfaces to a standing or walk- 
ing robot. Ultimately, we would also like to account for variations in the geometry of the 



surface and, for example, also predict the stability of surfaces that are composed of rocks or 
pebbles. 
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