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Abstract Abstract 
The successful design and operation of autonomous or partially autonomous vehicles which are capable 
of traversing uncertain terrains requires the application of multiple sensors for tasks such as: local 
navigation, terrain evaluation, and feature recognition. In applications which include a teleoperation mode, 
there remains a serious need for local data reduction and decision-making to avoid the costly or 
impractical transmission of vast quantities of sensory data to a remote operator. There are several 
reasons to include multi-sensor fusion in a system design: (i) it allows the designer to combine 
intrinsically dissimilar data from several sensors to infer some property or properties of the environment, 
which no single sensor could otherwise obtain; and (ii) it allows the system designer to build a robust 
system by using partially redundant sources of noisy or otherwise uncertain information. 

At present, the epistemology of multi-sensor fusion is incomplete. Basic research topics include the 
following task-related issues: (i) the value of a sensor suite; (ii) the layout, positioning, and control of 
sensors (as agents); (iii) the marginal value of sensor information; the value of sensing-time versus some 
measure of error reduction, e.g., statistical efficiency; (iv) the role of sensor models, as well as a priori 
models of the environment; and (v) the calculus or calculi by which consistent sensor data are 
determined and combined. 
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1 Introduction and Summary 
The successful design and operation of autonomous or partially autonomous vehicles which are capable 
of traversing uncertain terrains requires the application of multiple sensors for tasks such as: local 
navigation, terrain evaluation, and feature recognition. In applications which include a teleoperation 
mode, there remains a serious need for local data reduction and decision-making to avoid the costly 
or impractical transmission of vast quantities of sensory data to a remote operator. There are several 
reasons to include multi-sensor fusion in a system design: (i) it allows the designer to combine intrinsically 
dissimilar data from several sensors to infer some property or properties of the environment, which no 
single sensor could otherwise obtain; and (ii) it allows the system designer to build a robust system by 
using partially redundant sources of noisy or otherwise uncertain information. 

At present, the epistemology of multi-sensor fusion is incomplete. Basic research topics include the 
following task-related issues: (i) the value of a sensor suite; (ii) the layout, positioning, and control 
of sensors (as agents); (iii) the marginal value of sensor information; the value of sensing-time versus 
some measure of error reduction, e.g., statistical efficiency; (iv) the role of sensor models, as well as a 
priori models of the environment; and (v) the calculus or calculi by which consistent sensor data are 
determined and combined. 

In our research on multi-sensor fusion, we have focused our attention on several of these issues. 
Specifically, we have studied the theory and application of robust fixed-size confidence intervals as a 
methodology for robust multi-sensor fusion. This work has been delineated and summarized in Kam- 
berova and Mintz (1990) and McKendall and Mintz (1990a, 1990b). As we noted, this previous research 
focused on confidence intervals as opposed to the more general paradigm of confidence sets. The basic 
distinction here is between fusing data characterized by an uncertain scalar parameter versus fusing data 
characterized by an uncertain vector parameter, of known dimension. While the confidence set paradigm 
is more widely applicable, we initially chose to address the confidence interval paradigm, since we were 
simultaneously interested in addressing the issues of: (i) robustness to nonparametric uncertainty in the 
sampling distribution; and (ii) decision procedures for small sample sizes. 

Recently, we have begun to investigate the multivariate (confidence set) paradigm. The delineation 
of optimal confidence sets with fixed geometry is a very challenging problem when: (i) the a priori 
knowledge of the uncertain parameter vector is not modeled by a Cartesian product of intervals (a 
hyper-rectangle); and/or (ii) the noise components in the multivariate observations are not statistically 
independent. Although it may be difficult to obtain optimal fixed-geometry confidence sets, we have 
obtained some very promising approximation techniques. These approximation techniques provide: 
(i) statistically efficient fixed-size hyper-rectangular confidence sets for decision models with hyper- 
ellipsoidal parameter sets; and (ii) tight upper and lower bounds to the optimal confidence coefficients 
in the presence of both Gaussian and non-Gaussian sampling distributions. 

In both the univariate and multivariate paradigms, it is assumed that the a priori uncertainty in 
the parameter value can be delineated by a fixed set in an n-dimensional Euclidean space. It is fur- 
ther assumed, that while the sampling distribution is uncertain, the uncertainty class description for 
this distribution can be delineated by a given class of neighborhoods in the space of all n-dimensional 
probability distributions. 

The following sections of this paper: (i) present a paradigm for multi-sensor fusion based on position 
data; (ii) introduce statistical and set-valued models for sensor errors and a priori environmental uncer- 



tainty; (iii) explain the role of confidence sets in statistical decision theory and sensor fusion; (iv) relate 
fixed-size confidence intervals to fixed-geometry confidence sets; and (v) examine the performance of 
fixed-size hyper-cubic confidence sets for decision models with spherical parameter sets in the presence 
of both Gaussian and non-Gaussian sampling distributions. 

2 Multi-Sensor Fusion of Position Data 

In this section we present a paradigm for multi-sensor fusion based on position data. Figure 1 depicts 
three spatial position sensors S,, i = 1,2,3, which measure the tw+dimensional spatial position of a 
potential target (shaded object) with reference to the indicated Cartesian coordinate system. The small 
rectangles denote the given set-valued descriptions of the a priori uncertainty in the spatial position of 
the sensors. The data sets Zi = (Zi1, Za, . . . , Z ~ N , ) ,  i = 1,2,3, denote noisy position measurements of 
one or more potential targets (objects of interest). The measurement noise of each sensor is in addition 
to, and generally independent of, the position uncertainty of the sensor. 

Figure 1: Multi-Sensor Fusion of Position Data 

In this context, the problem of multi-sensor fusion becomes: (i) test for consistency between data 
sets @1,g2,&); and (ii) combine the data (if any) which are consistent. For example, given three 
sensors with known positions, and a single measurement per sensor Zi = 0, + K, i = 1,2,3, the fusion 
problem becomes: 

(Test for Consistency:) Does 8, = Oj ,  1 5 i ,  j 5 3, i # j? 

(Data Fusion:) If 8 = = & = 4, how do we combine 21, Z2, and 23 to estimate the common 
value of the position parameter 0? 

In a very practical sense, this fusion problem is inherently multivariate, since: (i) spatial position is 
usually characterized by a t w ~  or three-dimensional parameter vector; and (ii) there is usually stochas 
tic dependence between the components of a position sensor noise vector when it is transformed into 
Cartesian coordinates. 

3 Sensor and Environmental Models 
In this section we introduce statistical and set-valued models for sensor errors and a priori environmental 
uncertainty. We focus our attention on location parameter models. Here, the term location denotes a 



sensor observation relation of the form Z = 8 + V, where 8 is an uncertain parameter, and V denotes 
observation noise whose characteristics are independent of 8. We assume that 8 E R, where R is a known 
subset of G ,  e.g., a given hyper-rectangle, or hyper-ellipsoid. Let F denote the joint CDF of the sensor 
noise V. We allow for uncertainty in our knowledge of F by modeling F as an unknown element of a 
known class of CDFs, F. In certain applications, the given uncertainty class 3 is a neighborhood in the 
space of all CDFs. 

These set-valued uncertainty models of the environment and the sensors are valuable in applications 
where there is relatively limited probabilistic information available. In particular, the uncertainty in 
the environmental parameter 6' is modeled entirely by a set of possible values, 52 c G. We make 
no probabilistic assumptions about 8. Further, we do not require a complete, or even a parametric 
specification, of F. The uncertainty classes 3 allow: 

a non-Gaussian sampling distributions, i.e., non-Gaussian sensor noise; 

a nonparametric uncertainty descriptions; and 

a the inclusion of sporadic sensor behavior, e.g., E-contamination models. 

4 Confidence Sets, Statistical Decision Theory, and Sensor 
Fusion 

Our approach to robust multi-sensor fusion makes use of robust fixed-geometry confidence sets. In this 
section we address this methodology and illustrate it with an example based on fixed-size confidence 
intervals. 

Let R = [-d, 4 C E', Z = 8 + V, and T denote a given uncertainty class for F. Let 6(Z) denote a 
decision rule which solves the following max-min problem: 

max min P[G(Z) - e 5 8 5 6(Z) + el, 
6 BEO,FEF 

where e > 0 is given. An interval [6(Z) - el S(Z) + e] which solves this max-min problem is called 
a Robust  Fixed-Size Confidence Interval of size 2e for 8. Here, 6 is robust with respect to the 
distributional uncertainty modeled by 3. Research on robust fixed-size confidence intervals appears in 
Zeytinoglu and Mintz (1988). These ideas extend immediately to (convex) sets in E". We refer to these 
extensions as robust fixed-geometry confidence sets. 

Based on robust fixed-geometry confidence sets, we obtain a methodology for multi-sensor fusion by 
constructing a robust test of hypothesis for the equality of location parameters. w e  illustrate the basic 
idea with a univariate example. 

Let Zi = 8; + V,, i = 1,2. Assume the I/, are i.i.d. with common CDF F E 3, where F is a given 
uncertainty class. Further, assume that 8; E [-dl dl, i = 1,2. Define: 2 = Zl - 22, 6 = 8' - 6'2, and 
$' = K - b, with CDF k. Let 9 denote the uncertainty class defined by the random variables where 
F ranges over all of 3. Observe that: 2 = 6 + P, where 6 E [-2d, 24 ,  and k E F. 

We construct a robust test of hypothesis for the equality of 8' and O2 by obtaining a confidence 
interval of width 2e. We reject the hypothesis: O1 = 02, if 0 # [6(2) - e, 6(2) + el. The value of the 
parameter e is used to select the size of the test. 

In obtaining the numerical results (performance bounds) displayed in the sequel, we make use of the 
specific structure of the confidence procedures delineated in Zeytinoglu and Mintz (1988), Kamberova 
and Mintz (1990) and McKendall and Mintz (1990b). We refer the reader to these papers for the details. 

5 Cartesian Products of Fixed-Size Confidence Intervals 
If Z = 6' -+ V E F, R is a hyper-rectangle, and the components of the noise vector V are independent 
random variables, then we can construct fixed-size hyper-rectangular confidence sets for 8. We illustrate 
these ideas with a two-dimensional example which is depicted in Figure 2: 



Z = B + V € E 2 ;  

l 8 , I < 4 , i = l 1 2 ;  

V,, i = 1,2 - independent random variables; 

A rectangular confidence set of size 2el x 2e2; 

The two-dimensional confidence set is based on the Cartesian product of the (independent) confi- 
dence intervals described previously. 

Figure 2: A Cartesian Product Paradigm 

6 A Non-Cartesian Product Paradigm 
In this section we consider a "small" modification to the problem statement which lead to a Cartesian 
product solution in the last example. The small modification entails the replacement of the rectangular 
R set in @ with a circular parameter space. In particular, if: 

Z = B + V E E ~ ;  

I e I S r ;  

&, i = 1,2 - independent independent random variables; 

A circular confidence set of radius re; 

A rectangular confidence set of size 2el x 2e2; 

then: the appropriate two-dimensional confidence sets (circular, and rectangular) for the circular pa- 
rameter space with independent noise components are still open questions - even when the K are 
i.i.d. N(0,  a2). The geometric components of this example appear in Figure 3. 



Figure 3: A Non-Cartesian Product Paradigm 

Although the problem of determining exact spherical confidence sets in conjunction with spherical 
parameter spaces is still open, there is a special class of noise distributions for which a partial answer can 
be obtained, namely the spherically symmetric distributions. In this instance, the decision rules must 
exhibit rotational invariance. To illustrate this point, we return to the previous example and assume that 
the &, i = 1,2, are i.i.d. N ( 0 ,  u2). In this case, the decision rule for locating the center of the circular 
(spherical) confidence region depends on the unit vector determined by the observation data (direction), 
and the modulus of the observation vector. This underlying spherical symmetry is a consequence of the 
intrinsic symmetry in the problem formulation. However, the form of the "retraction", i.e., the function 
that depends on the modulus of the observation vector is still an open question. The geometric 
components of this example appear in Figure 4. 

Figure 4: A Spherically Symmetric Paradigm 

7 Approximate Solutions for Non-Cart esian Decision Models 
We return to the problem stated in Section 6 for the case where the desired confidence set is a square. As 
noted previously, solution to  this non-Cartesian problem is still open. In order to  obtain an approximate 
solution, we replace the circular parameter set with its minimum bounding square and compute the 
optimal fixed-size confidence set with confidence coefficient 1 - a. This computation determines the 
size of the confidence set (2e x 2e). We next compute the performance (confidence coefficient) for this 
procedure against the parameter space defined by the square which is inscribed in the original circular 
parameter set. The optimal confidence coefficient for the original problem must lie between these two 



values, since the circle is contained between the two bounding squares. This inner-outer approximation 
technique easily extends to  F. The related sets are depicted in Figure 5. 

Figure 5: The Inner-Outer Approximation Technique 

Table 1 presents the results of the following computations: (i) We determined the percentage dif- 
ference between the upper and lower bounds to the optimal confidence coefficient based on the stated 
inner-outer approximation technique; (ii) We examined the 2-D and 3-D cases for values of 1 - a: 0.90 
and 0.95; (iii) We considered integer values of d / e  in the range 3 to 10, where 2d is the linear dimen- 
sion of the outer hyper-cube; and (iv) We considered observation noise distributions: Gaussian N(0,1), 
Laplacian L(0,1), and Cauchy C(0,l). 

2-Dimensional Case 

Table 1: Percentage difference between the upper and lower bounds to the optimal confidence coefficient. 

6 

d/e 

3 
4 
5 
6 
7 
8 
9 
10 

3-Dimensional Case 

d/e 

3 
4 
5 
6 
7 
8 
9 
10 

N(0,l) 
Conf. Coeff. 

0.90 
0 

1.36 
0.72 
0.43 
0.70 
0.47 
0.33 
0.24 

N(0,l) 

L(0,l) 
Conf. Coeff. 

0.95 
0 

0.65 
0.35 
0.21 
0.34 
0.22 
0.16 
0.11 

Conf. Coeff. 
0.90 
3.10 
1.35 
1.98 
1.12 
0.70 
0.87 
0.59 
0.69 

Conf. Coeff. 
0.90 

0 
1.37 
0.71 
0.42 
0.68 
0.45 
0.31 
0.22 

C(0,1) 

Conf. Coeff. 
0.95 
1.49 
0.65 
0.95 
0.54 
0.33 
0.42 
0.28 
0.33 

L(0,l) 

Conf. Coeff. 
0.95 

0 
0.66 
0.34 
0.20 
0.33 
0.21 
0.15 
0.11 

Conf. Coeff. 
0.90 

0 
1.32 
0.61 
0.33 
0.52 
0.33 
0.22 
0.15 

Conf. Coeff. 
0.90 
3.17 
1.36 
1.98 
1.10 
0.67 
0.84 
0.57 
0.66 

C(0,l) 

Conf. Coeff. 
0.95 

0 
0.63 
0.29 
0.16 
0.25 
0.16 
0.10 
0.07 

Conf. Coeff. 
0.95 
1.52 
0.65 
0.95 
0.53 
0.32 
0.41 
0.27 
0.32 

Conf. Coeff. 
0.90 
3.62 
1.31 
1.84 
0.92 
0.52 
0.64 
0.41 
0.47 

Conf. Coeff. 
0.95 
1.73 
0.63 
0.89 
0.44 
0.25 
0.31 
0.20 
0.23 



Remarks 
It is evident from the table that: (i) The percentage difference is at most weakly dependent on the tail 
behavior of the noise distribution; and (ii) The percentage differences between the 0.95 and 0.90 (1 -a) 
baseline cases is approximately double. 
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