
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

April 1992

Proving Properties of Real-Time Distributed Systems: A Proving Properties of Real-Time Distributed Systems: A

Comparison of Three Approaches Comparison of Three Approaches

Patrice Brémond-Grégoire
University of Pennsylvania

Susan B. Davidson
University of Pennsylvania, susan@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Patrice Brémond-Grégoire, Susan B. Davidson, and Insup Lee, "Proving Properties of Real-Time Distributed
Systems: A Comparison of Three Approaches", . April 1992.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-92-20.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/363
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76393441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/363
mailto:repository@pobox.upenn.edu

Proving Properties of Real-Time Distributed Systems: A Comparison of Three Proving Properties of Real-Time Distributed Systems: A Comparison of Three
Approaches Approaches

Abstract Abstract
Three formal methods for specifying properties of real-time systems are reviewed and used in a common
example. Two of them offer a graphical representation and the third is an algebraic language. The
example is that of an automatic railroad system with sensors to detect the train position and controls for
the gate mechanism. Associated with each formalism is a proof methodology which is described and
used to prove a safety property about the example. A comparison is made between the three formalisms
according to various criteria including the expressiveness, readability, maintainability of the language,
support for real-time concepts, method for expressing properties and proof mechanisms.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-92-20.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/363

https://repository.upenn.edu/cis_reports/363

Proving Properties of Real-Time Distributed
Systems: A Comparison of Three Approaches

MS-CIS-92-20
GRASP LAB 306

Patrice Brkmond-Grkgoire
Susan Davidson

Insup Lee

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

March 1992

Proving Properties of Real-Time Distributed
Systems: A Comparison of Three Approaches

Patrice Brkmond-Grkgoire, Susan Davidson, Insup Lee
Unversity of Pennsylvania

April 1992

Abstract

Three formal methods for specifying properties of real-time systems are re-
viewed and used in a common example. Two of them offer a graphical representa-
tion and the third is an algebraic language. The example is that of an automatic
railroad crossing system with sensors to detect the train position and controls for
the gate mechanism. Associated with each formalism is a proof methodology which
is described and used to prove a safety property about the example. A comparison
is made between the three formalisms according to various criteria including the
expressiveness, readability, maintainability of the language, support for real-time
concepts, method for expressing properties and proof mechanisms.

1 Introduction

As computers are being used more and more often to control critical systems, the need for

formal methods to specify the system behavior and formally prove the correctness of the

specification becomes more and more acute. Incorrect programs may have far reaching

consequences including the loss of property and even human life. This is particularly true

in the case of distributed real time systems, since they are used to control such things

as transportation systems and weapons. Real-time programs must not only perform

the correct function, they must do so in the prescribed time frame. This adds a new
dimension to the complexity of the problem.

A solution is to have a tool to allow us to specify systems and a methodology to

prove that , once implemented, they will exhibit all required properties, including the

temporal ones. This goal is still far away, but progress worth noting has been made in

the past few years.

April 1992 2

In this paper, we will survey three different formalisms to specify real-time distributed
systems. For each one, we briefly describe the syntax and semantics of the language and
use it to specify a common example. We then present the mechanisms available to prove
properties of the system and use those mechanisms to verify a safety assertion.

The system used as an example, a railroad crossing, must satisfy the following re-
quirements. There are two sensors to detect the position of the train. Each sensor has a
reaction time of a t most 50 time units. The first sensor is positioned in such a way that
the train will take at least 300 units of time to travel from the sensor to the crossing.
The second sensor is positioned to be reached as soon as the train exits the crossing.
The gates take a maximum of 50 units of time from when they start moving down until
it they are fully closed. The time taken by the gates to move up to a full open position
is not specified. In addition, there is a mechanism (outside of the scope of the specified
system) that prevents a new train from approaching the crossing until the previous one
has exited for a t least 100 units of time. Finally, a correct system must satisfy a safety
property that the train cannot be in the crossing if the gates are not down.

Before diving into the details of the three methods, we define the criteria that will be

used to compare them. We look at the expressive power of the language, as well as its
readability, maintainability and reusability of specifications. We compare their notion
of time and their support for synchronization and communication. We examine what
type of property can be formally expressed in each system. We look at such aspects of
the proof system as applicability, completeness, complexity and implementability.

The first system we study, Hierarchical Multi-State machines is an extension of finite
state automata. The distributed aspect of a system is captured by multiple states
being active simultaneously, as opposed to finite state machines which have only one
state active. The behavior and real-time aspects are expressed by a sophisticated set of
controls on the state transitions. The proof system consists of a set of rules that can be

used to manipulate and rewrite these transitions. In this methodology, safety properties
are represented by failure states. The proof strategy consists of attempting to build the
set of all possible transitions that leading from an initial state directly to a failure state.
The absence of such a transition proves the unreachability of the failure state.

The second system, modechart, is a graphical way of representing systems as a struc-
tured set of modes, a concept very similar to states. Distribution is specified by parallel
modes where several submodes are active simultaneously. Functionality is specified by
transitions between modes, and by actions. Actions are a means to formally state the
modification of state variables and to informally indicate the effects of the system on
its environment. Real-time aspects of a system are stipulated by associating delays and
deadline to the various transitions and actions. Tied to modechart is Real-Time Logic, a
model theoretic approach to specify properties of a real-time system. The proof method-

April 1992 3

ology for modechart consists of developing a computation graph, which is similar to a
computation tree except that folding occurs. The vertices of the graph represent all the
possible combinations of modes the system can reach in any execution. The edges are
labelled with timing information that capture, in a very special way, the minimum and
maximum timing constraint between points. Safety properties are proven if the graph
does not exhibit any path to an unsafe configuration.

In the third formalism, Calculus for Communicating Shared Resources or CCSR, sys-
tems are specified as algebraic expressions. The functionality is given by the specification
of sequence of actions which are in fact sets of simultaneous events. The distributed as-
pect is addressed by the stipulation of parallel behaviors via an operator. Each event in
the system is presumed to take a constant, minimum observable, amount of time, this
takes care of the real time aspect. CCSR is a much more powerful language than the
other two in that it allows us to model not only true parallelism, but also interleaving
with priority based preemption. The proof methodology of CCSR consists of algebraic
manipulations of the expression according to a set of axioms that preserve equivalence.
A system is said to be correct if it can be shown to be equivalent to another, simpler,
system which is known to be correct.

For now, let us see on what grounds we will compare these three systems.

2 Comparison criteria

In this section, we define the various criteria that we will be using later to compare the
three methods. We separate them in three groups: general criteria, real time properties
and the proof mechanism.

2.1 General criteria

This classification includes those properties of a formal language that are not particularly

specific of real-time systems.
Expressiveness: The capability of a language to precisely express the ideas and

concepts as desired by the author. It should be possible, without too much difficulty,
to describe exactly and unambiguously a solution to our small example. Long winded

discussion should not be required to enounce simple concepts. Most importantly all of
the aspects of the system should be specified using the apparatus of the formal method.
Side notes and informal English sentences should not be required except to help the
human reader understand the motivations of the author.

Readability: It is important that during and until long after the design of a system,
one can look a t the expression of the design and easily understand it. The notations

April 1992

should be clear, concise and intuitive.
Maintainability: The only systems that do not evolve are those that are not used.

The ease of maintenance is one of the most important characteristic of any development
system. It is important to be able to design a system where the interactions between
the various parts are very localized and/or identifiable. The total construction should
not have the intricacy of a card castle that will collapse at the first attempt to move one
of its pieces.

Modularity: The ability to define independent modules that interact in formally
identified ways. Tools that facilitate modularity are better suited for large system de-
velopment because independent modules can be assigned to different persons or teams.

Abstraction: the capability to abstract out the details of the implementation of
some subsystems and look at them as black boxes with specified input and output is
important for multiple reasons. They allow the specification of systems by successive re-
finements, while keeping the same formal expression at all levels. The resulting systems
are usually easier to understand because of the limited amount of information one has to
keep in mind while looking at one level of the system. Finally and maybe most impor-
tantly, abstraction is an effective way of achieving code reusability. Proven subsystems
can be identified and included in many independent designs.

Property assertions: An important aspect of proving correctness of a particular
system is the definition of what correct means. In this paper, we will adhere to the idea
that a correct system is one that satisfy a set of properties that we call requirements.
In order to be provable, properties must be formally (i.e. precisely and unambiguously)
expressed. In keeping with Alpern and Schneider [AS85], we define a safety property as
a property such that failure to satisfy the property can always be detected in a finite
amount of time. Conversely, failure to satisfy a liveness property cannot be detected by
looking at a partial execution.

2.2 Real-time concepts

In this section, we will specialize and look more particularly at the support for concepts
that are very common in real-time systems. Some of theses concepts are not unique to
real-time systems, but they are nevertheless very useful when studying them.

System state: A configuration of the system totally determines all of its possible
future behaviors. It is often important to identify such points as milestones when ana-
lyzing the behaviors of a system. When a given state has been thoroughly analyzed, it
does not need to be re-examined when encountered again later.

Notion of time: Time is obviously a key ingredient of real-time systems but there
are numerous ways to represent and manipulate it. It can be continuous or discrete.
When discrete, the granularity is important. It can be global, the whole system evolves

April 1992 5

to one synchronous clock, or distributed, different parts can evolve independently and
synchronize only when they need to communicate. Another important characteristic of
real-time formalisms is the kind of time expression one can define. Can one refer to the
exact time of occurrence of any event arbitrarily far in the past? What kind of time
expression are supported?

Delays and deadlines: These are ubiquitous concepts in real-time systems. The
ease with which one can specify maximums and minimums for time intervals and re-
covery mechanisms is an interesting point of comparison between real-time development
systems.

Synchronization: The ability to specify that two events happen at exactly the
same time. This too is an important aspect of real-time systems and must be supported
by any real-time formal development method.

2.3 The proof system

This discussion is devided into two parts. Before attempting to formally prove anything,
one must have a formal enunciation of the object of the proof. Therefore we first look
at how properties can be stated, and then at how they can be proven.

Specification of properties: Here we are interested in the semantics domain of
the property definition language (what can be expressed) as well as the syntax. The
property specification language can be the same as (or a subset of) the system definition
language or it can be a completely different language altogether. When the language
is different, the questions of readability, maintainability etc. should be posed all over
again. The specification of safety and liveness properties are very different in nature and

it is interesting to note whether the language supports them both. Finally, functional
versus operational style is another differenciating factor.

The proof mechanism: The most important quality of a proof system is soundness;
every provable fact must be true. Without soundness, there is no proof system. Another
important aspect is completeness, is every true fact provable. Convergence, the assurance
that steady progress can be made towards proving a true fact is an important point in
automating proof systems. Finally, the practicality of developing correct proofs manually
and developing automatic or semi automatic proof tools is a key to the usefulness of any
formal method.

Hierarchical Multi- S tate Machines (HMS)

HMS machines were introduced by A. Gabrielian and M.K. Franklin in 1988 as a "formal
theory of state-based executable specification of complex real-time systems" [GF88]; in

April 1992

this paper, they formally describe several extensions to finite-state automata:

- multiple simultaneously active states,

- multiple concurrent transitions, both deterministic and non-deterministic,

- transition control (enable or disable) based on state and temporal considerations,

- capability for states to hold and pass information in the form of tokens,

- hierarchies.

In a subsequent paper [FG89] the same authors take a subset of the above full HMS
for which they develop a proof system. Among the significant features that were excluded
from this second paper were the hierarchies and the capabilities for states to hold and
pass information in the form of tokens.

Since [FG89] contains a complete formal description of HMS machines, they are
presented here in a more informal manner, moving freely between syntax and semantics
to get more directly to the intuition behind the concepts.

3.1 Description of HMS

An HMS machine is composed of a set of states, a set of deterministic transitions and
a set of non-deterministic transitions. The machine evolves in discrete time. At any
given instant in time, a subset of the states are said to be marked (or true) and a
subset of the transitions are said to be enabled. All the deterministic transitions and an
arbitrary (possibly empty) subset of the non-deterministic transitions that are enabled
at an instant w.ill actually fire (and be marked) at the next instant, thus usually (but
not necessarily) changing the set of marked states. Note one major difference with finite
state automata: because of the possibly to control transitions based on the transitions
that fired a t a given point in time, it is possible that the set of active states do not

change between two successive instants without the machine being stuck.
The time is measured as follows: 0 is always the present. Past instants are denoted

by negative integers, relative to the present: smaller and smaller number denote more
and more distant past. The control of the machine can be made dependent of its history,
i.e. the states that were active and/or the transitions that fired in arbitrarily distant,
but always relative, past can be made to influence the set of enabled transitions. Time
expressions are always constant and hence the relevant history of any given machine is
bounded.

A transition, traditionally called y, is of the form

April 1992 7

Where id is the label of the transition. PRIMS(y) is a set of states called primaries,
CNTRLS(y) is a set of controls. For a transition to be enabled, all the states in
PRIMS(y) must be marked, and all the controls must be satisfied (see below). When a
transition fires, all the states in CNSQS(y), i.e. the consequences, become marked and
all the states of PRIMS(-/) that are not in any of the CNSQS set of any transition that
fire simultaneously become un-marked.

A control, c is an expression of the form (x, t) or (l x , t) where x can be either a state
or the label of a transition and t is a time expression (tl, t2), Itl, t2] or (t l , t2)! where
tl 5 t2 5 0. When tl = t2, t is used as an abbreviation for both (t, t) and [t, t], and t!
is used for (t, t)!.

A control c is said to be satisfied if and only if one of the following rules applies. (By
convention, x can be either a state or the label of a transition and the bounds t l and t 2
are always included.)

- c is (x, (tl , t2)) and x was marked sometime between tl and t2.

- c is (x, Itl, t2]) and x was marked at all times between t l and t2.

- c is (x, (tl , t2)!), x was not marked before tl and became marked sometime between
t l and t2.

- c is (i x , (tl , t2)) and x there was a time between t l and t2 were x was not marked.

- c is (lx, Itl, t2]) and x was not marked at any time between tl and t2.

- c is (i x , (t l , t2)!), x was marked before tl and became not marked sometime be-
tween t l and t2.

Interestingly enough, the initial state (or rather set of states) of an HMS machine is
not part of the specification of the machine. Rather one studies the behavior of an HMS
machine as a function of a set of states and transitions that are marked at the beginning
of the (recorded) history.

Similar to S-invariant in Petri nets [Rei85], 1-invariant sets of states in an HMS
machine are sets of states such that if one and only one state of the set is marked
at time 0, one and only one will be marked at any time during the execution of the
HMS machine. 1-Invariant sets play a significant role in the proof of properties of HMS
machines. More work needs to be done to define methods to discover and prove them.
One obvious case is when all the transitions in and out of a set of state form a single
cycle.

A safety property is specified as -t 11, 12,. . - ln where each li is either a state or the
negation of a state. The safety property is satisfied if, at the present time and at every

April 1992 8

instant in the future, there is an i such that either 1; is a state and that state is marked
or 1; is the negation of a state and that state is not marked.

Safety properties can be expressed in HMS machines by adding new states to repre-
sent the undesired situations, and adding transitions leading to the unsafe states. These
transitions can be easily derived from the formal safety property: they have an empty
set of primaries and one control of the form (l l i , 0) for each 1;. Safety verifications are
thus transformed into reachability problems.

A deadline is formally expressed as U(l t (1, V l2 V V 1,) before d) which means
that within d units of time after 1 is satisfied (marked if 1 is a state or unmarked if 1 is
the negation of a state) one of the 1; will be satisfied. Again this can be easily expressed
in an HMS machine by a "missed deadline" state. A transition to that state that has no
primary, a control of the form (1, -d) plus one control of the form (l l i , [-dl 01) for each
1;.

Let us now look at the specification of our railway crossing using HMS.

3.2 Railroad Crossing using HMS

The railroad crossing system is shown in figure 1. The conventions for this graphical
representation are as follows. Boxes represent states. Thick arrows link the primaries to
the consequences of transitions. Transitions without primaries originate from a cross-
bar. Non-deterministic transitions are characterized by a star near the arrow head.
Thin lines represent controls, they go from a state, or a transition, to a small oval on
the transition they control. Timing expressions are written next to a circled T located
on the control they apply to. We call the unshaded states functional states because they
are part of the specification of the functionality, while shaded states represent missed
deadlines and/or unsafe conditions.

Figure 1 expresses the following. When a train is nowhere to be seen, the Before
Crossing (BC) state is marked. Non-deterministically, a train will show up, that is the
sate Near Crossing (NC) will be marked and the state BC will be un-marked; this is
expressed by the transition t l . Any time after 300 units, the train will be In Cross (IC)
and this is expressed by the transition ta. After an unspecified amount of time, the train
will have past the crossing as expressed by the transition t3 and the state Past Cross
(PC). Finally, not earlier than 100 units after a train has past the crossing will another
train be able to approach the crossing, this is expressed by the transition t4.

One of the conditions for the correct evolution of the system is that one and only
one of the four states (BC, NC, IC, PC) be marked in the original markings of the HMS
machine, otherwise, trains could vanish non-deterministically. Unfortunately, there is
no way to express this constraint in the HMS formalism. Nevertheless it is easy to see
that this set of states does form a 1-invariant of the system.

April 1992

l ~ i ~ u r e 1: The railroad crossing using Hierarchical Multi State machines

April 1992 10

The pair of states Gate Up = T (GUT) and Gate Up = F (GUF) form a control
of the system, remembering whether the gate can be up (GUT) or should be down
(GUF). Transition t5 indicates that , at any time while the train is near crossing (NC
is marked), the control may switch from GUT to GUF. Transition t6 indicates that, at
any time while the train is past crossing (PC is marked), the control may switch back
from GUF to GUT. GUT and GUF form a second 1-invariant of the system.

Finally, the last four functional states describe the operation of the gate. Down is
marked when the gate is down. When GUT is marked, the gate will unconditionally
start moving up (transition tll). If GUF becomes marked while the gate is moving up, it
will immediately reverse direction and start moving down (MD) as dictated by transition
t8. After and undetermined amount of time, and if the state GUT is still marked, the
gate will be in the up (UP) position (transition t7). From that state, if GUF becomes
marked, the gate will unconditionally start moving down (MD) per transition t9. Finally,
transition tlo specifies that, after an undetermined amount of time moving down, the
gate will be in the down position.

At this point it is interesting to note that the four states UP, MD, DN and MU do
form a 1-invariant of the system. This is true because the transitions t7 and t8 have
conflicting controls, and cannot be simultaneously enabled. This, in turn, stems from
the fact that GUT and GUF form a 1-invariant of the system. This small example
illustrates the difficulty of discovering and proving 1-invariant.

In order for this system to work, some deadlines must be met. GUT must be marked
within 50 units of time of NC being marked. GUF must be marked within 50 units of
time of PC being marked. MD must not be marked for more than 50 time units, i.e.
the gate must not take more than 50 units to come down.

The unsafe crossing state (UC) is reached if a train is In Crossing (IC) and the gate
is not down (1DN). The safety property of the system states that there cannot be any
unsafe crossing unless a deadline has been missed.

3.3 The Proof System for HMS

Before talking about the proof system, we need to specify the notion of equivalence for
HMS machines. Two HMS machines are said to be equivalent if and only if they have
the same set of states and the set of all possible executions (i.e. sequences of sets of
marked states) is the same for both machines. In other words, the exact transitions that
fire at each step are unimportant as long as their short term (e.g. next state marking)
and long term (e.g. transition enabling) effects are the same.

The proof system for HMS consists of a large number of rewrite rules on the tran-
sitions. For the sake of space, we will only present those rules that will be used in the
proof of the example, but they are fairly typical and give a good idea of the system.

April 1992 11

Delay change: A delay can be extended to the beginning of times if the control
in which it appears specifies a state that cannot be reached (i.e. it is in no transition
consequents) or specifies a negated state that cannot be left (i.e. it is in no transition
primaries). Extending the delay may exhibit conflicting controls.

Case split: consists of replacing a transition that has a control requiring the entrance
of a state s during a given interval -e.g. c = (s, (t l , t2)!)- by a set of transitions,
corresponding to each transition that leads to s, with additional controls stating that
the corresponding transition (leading to s) has fired during the interval and that the
state s was not marked before entering the interval. Intuitively, for the state s to be
entered during the interval, it must not be marked before the interval and a transition
leading to it must fire during the interval. As the name indicate, case split is useful to
decompose a transition into several scenarios.

Control Addition: if a transition g has a control that requires that another tran-
sition y' fire during an interval t , then all the controls and all the primaries of y' must
have been true during an interval that is derived from t by sliding back in time by one
time unit, these new controls can be added to y. This is a key rule because it allows to
move back in time and explore the possible histories leading to a particular transition
being enabled.

Transition deletion: transitions can be deleted if they cannot be enabled. There
are several cases of this: if they have conflicting controls, if they have a control that
requires leaving a state s and there is no transition out of s, or if they would violate a
1-invariant of the system.

There is a set of 9 rules along the lines of the ones shown above that can be proven to
be complete in the sense that if a transition cannot enabled in any legitimate execution
of an HMS machine, it can be eliminated by applying the rewrite rules. The proof is
constructive and is based on the fact that the relevant history is limited since all the
time expressions are constants, and that all possible scenarios of transitions firing in that
interval can be embodied into a finite set of transitions. Each transition that cannot be
enabled will exhibit conflicting controls and hence can be deleted.

The rules that we have seen so far do preserve correctness i.e. an HMS machine
obtained by applying those rules is truly equivalent to the original HMS machine. This
is useful when attempting to simplify a design and there is a need to prove that the
resulting machine is equivalent to the original one. However, since safety problems
are transformed into reachability ~roblerns, reachability preserving transformations are
just as useful as equivalence preserving transformations. Delay sharpening is such a

transformation.
The idea behind Delay Sharpening it is that if a state is reachable then there is a

transition that is enabled and leads to it. This transition (say T) may have a number

April 1992 12

of controls and a number of primaries; for g to become enabled, at least one of them
has to be the last to become true. We can investigate all the possibilities of one of the
controls and/or primaries becoming true a t the instant prior to the transition firing.
This is done by splitting the transition into a set of transitions, one corresponding to
each possibility of one control or one primary changing to become true just before the
state under scrutiny being reached. This method does not preserve equivalence since
an enabled transition does not necessarily fire, but it does preserve reachability since a
transition must fire for a state to be reached.

Let us examine how this work on the example.

3.4 Proving correctness of the railway crossing

Proving correctness of the railway crossing means proving the unreachability of the state
SF (System Failure.) The only transition that leads to the SF state is tI6:

@{(iMDLl, O)(-MDL2,O)(-MDL3,O)(UC, 0)) -+ {SF)

Using the delay sharpening rule we obtain four transitions:

P){(iMDLl,O!)(~MDL2,O)(iMDL3,O)(UC, 0)) -+ {SF}

@{(iMDLl,O)(~MDL2,O!)(~MDL3,O)(UC, 0)) -+ {SF)

(I{(iMDLl,O)(iMDL2,0)(iMDL3,O!)(UC, 0)) -+ {SF)

O((iMDL1,O) (iMDL2,O)(iMDL3,0)(UC, O!)} -+ {SF)

The first three transitions can be eliminated by applying the transition deletion rule
since there is no transition leading out of a missed deadline state; for the same reason,
we can apply three times delay change to the fourth transition to obtain:

By applying case split, and since t15 is the only transition that leads to UC, we
obtain:

Since there is no transition leading out of UC, we can apply delay change and replace
('UC, -1) by (lUC, [-m, -11). Then using control addition with the controls that
makes t15 fire, we obtain:

April 1992 13

Delay sharpening will now give us two transitions:

and

At this point, the proof tree branches out. For the sake of space, we are going to
explore the simplest path and that will give us a good idea of how the proof goes. Case
split applied to (lDN, -I!) will add the controls (DN, -2) and (tll , -1) i.e. in order to
move out of DN at time -1, DN must have been marked at -2 and tll must have fired
at -1. The controls for t2 imply (GUT, -2) which we add. At this point, the transition
looks like this:

Again we apply delay sharpening to the pair (DN, -2) (GUT, -2) and follow one of
the branches:

We now apply case split, and since t6 is the only transition that leads to GUT, we
can add the controls (t6, -2) (lGUT, -3), then we add the controls that makes t6 fire:
(PC, -3). At this point, it is easy to see that, given (IC, - I) , either IC or NC has to be
marked at -3, which violates the 1-invariant of IC, PC, BC, NC.

The other branches eventually resolve in more or less the same way. The total proof
takes 104 steps, the proof tree has 8 main leaves and depth ranging from 19 to 35.

There are a number of remarks that can be made about this proof. One is that it is
fairly complex for a system that is rather simple. In particular, in all the applications of
case split we had to apply, only one transition was involved with the consequence that
the proof tree was not branching at this point; should there have been more transitions,
the tree would have grown exponentially. This is not surprising since state reachability
is an NP-complete problem.

There are a great deal of rules in the proof system, and choosing the right one is not
necessarily an easy task.

April 1992 14

The proof is heavily based on proving the violation of 1-invariant. In this specific
case, proving 1-invariant was trivial given the simple cyclic structure of the transitions
in and out of the states. In general, however, proving 1-invariant may be a difficult task
in itself.

Modechart

Modechart [JLM88] is a graphical language for the formal specification of the behavior of
real-time systems. Modechart is derived from Harel's statecharts [Har87, Har881. As the
names indicate, st atecharts deals with states and modechart deals with modes. Although
somewhat similar in their syntax, (statecharts uses rounded angles while modechart uses
square angles) the two languages are very different in their semantics. Statecharts, on the
one hand, was designed as an extension to finite state automata and state transitions are
taken according to external inputs; the semantics of a statecharts is the set of acceptable
sequences of inputs. Modechart, on the other hand, is intended for the formal description
of real-time systems, and the mode transitions are the consequences of event occurrences
and timing constraints; the semantics of a modechart is a set of set of events with their
time of occurrence .

In modechart, a system is defined as a hierarchy of modes. Each mode is represented
as a box and is given a name. The most basic modes are called primary modes and
have no internal structure. In figure 2, modes M1, M4, M5, M7 M8, MI0 and MI1 are
primary modes. There are two kinds of structured modes (modes that contain other
modes): serial and parallel. The hierarchy of modes is presented by the geometrical
inclusion of boxes within boxes.

Parallel modes are identified by the word parallel in the upper left corner. When a
system enters a parallel mode, all the children are entered simultaneously. When the
system exits a parallel mode, all the children are exited as well. There are no transitions
between children of a parallel mode.

Serial modes are identified by the word serial in the upper left corner. When a
system is in a serial mode, it is in exactly one of the children. As the system exits a

child of a serial mode, it must simultaneously enter another child or exit the serial mode
altogether. Transitions between children of a serial mode are allowed, but not required
because it is possible for different transitions to land on different modes of the same serial
mode, as, for example mode M3 of figure 2. A serial mode may have a distinguished
(initial) mode which is the mode which is entered by default when the serial mode is
entered via a transition that does not land on one of its descendents (e.g. a transition
that lands on the child of siblings in a parallel mode). Initial modes are identified by an
arrow, for example in figure 2, M1 and M7 are initial modes.

April 1992 15

MO

Serial
M2

Figure 2: An example of modechart specification

Modechart includes the notion of well-formedness. In order to be well formed, a

modechart must have: modes are properly nested; parallel modes with no initial state,
serial modes with at most one initial state, and the smallest mode that includes both the
source and the destination of a transition must be serial. In addition, serial modes must
comply with the Unambiguous Designation of Initial Mode (UDIM) condition. This
condition requires that, whenever a serial mode is entered, the child mode to be entered
be unambiguously identified either specifically by the transition, or by the presence of an
initial mode. In figure 2, for example, M3 complies with the UDIM condition because
it can only be entered explicitly by either the transition originating from M1 or the
transition originating from M11. This would not be the case if, for example, there was a
transition from MI0 to M6 or a descendent of M6 because M3 would have to be entered
simultaneously to M6, but its initial mode would not be uniquely identified.

Modechart includes the notion of action which allows a system to influence its envi-
ronment. While transitions are instantaneous, actions take a non zero, but finite amount
of system resources. Although the term is not formally defined, the intent is that actions
can be used to pace transitions and avoid infinitely many transitions occurring in a finite
amount of time. At most one action is associated with each mode. It is not clear why
this restriction is made, nor whether or not an action associated with a parent node is
automatically associated with the children or vice versa. In any case, multiple actions

April 1992 16

can be associated with the same mode by creating parallel children, but this mechanism
can become cumbersome if the mode is not a primary mode.

The action associated with a mode is started upon mode entry. Since actions are
not instantaneous, the question of what happens when an action is not completed at
the time a transition out of the mode is to be executed needs to be addressed. Three
interpretations are possible: the transition can be suspended until the action is com-
pleted, the action can be aborted or the action can be terminated in the next mode.
It is possible in modechart to express the first interpretation by expanding the mode
into a serial mode with two children, one where the action is in progress and one where
the action is completed, and disable the transition while the system is in the first child.
However there is no syntax available to differentiate between the second and third inter-
pretations. In our example, we will adhere to the second interpretation and assume that
the action ends concurrently with the mode exit. This avoids the anomaly of having an
action that never ends.

Modechart also includes the notion of state variables, of type boolean. Values are
assigned to these variables by actions.

Events play an important role in modechart. There are several categories of events:

- External events are identified by the Greek letter R followed by the event name in
uppercase letters.

- The start and end of actions are events identified by the name of the action pre-
ceded by 1 and J respectively.

- An event is associated to the change of the value of a variable, not to the assignment
of a value. e.g. (S:=T) represents the event of variable S changing from False to
True and (S:=F) represents the event of variable S changing from True to False.

- An event is associated with each transition being taken. (MI-M2) represents the
occurrence of a transition from mode M1 to mode M2.

- Finally, an event is associated with the entry and exit of each mode, these events
are denoted (M:=T) for the entry and (M:=F) for the exit of mode M.

A triggering condition is associated to each transition. A triggering condition is of
the form: cl V c2 V - V ck where each disjunct ck is either a time condition of the form
(r, d), in which case the transition is taken anytime between r and d time units after
entering the mode, or a conjunction of the form pl A p2 A . . . A p,, in which case the
transition occurs as soon as all the conjuncts are true. Each conjunct can be either a
state variable being True (S), a state variable being False (S), the system being in one
of several states (in(M1, M2, . Mk}), or the occurrence of an event E.

April 1992 17

The separation of timing expressions from triggering conditions is meant to simplify
the generation of computation graphs as we shall see, but it does seem somewhat un-
natural. It is however possible to achieve the result of composing triggering conditions
and delays by creating additional modes.

The semantics for modechart can be expressed in Real-Time Logics (RTL) [JMS
881. RTL extends natural number arithmetic without multiplication with an occurrence
function, denoted @ , which represents the relationship between the events and their
time of occurrence. The occurrence function is a mapping: 62 : E x Z+ --+ N, where
@(e, i) = t indicates that the event e occurred at time t for the i-th time. The @ functions
is monotone on its second argument, which means that occurrence i+1 of an event
cannot occur before occurrence i of that event. RTL includes existential and universal
quantification of integer variables, but there is no event variable. As an example, the
RTL formula:

expresses the fact that each occurrence of action A takes a t most 20 time units and that
it is followed within 50 time units by an occurrence of action B.

Now we can proceed to express our railroad crossing example using modechart.

4.1 The railroad crossing example using modechart

The railroad crossing system is made of two main modes in parallel: the Monitor which,
as its name indicates, keeps track of the train's position, and the Gate-Controller which
controls the operation of the gate. Initially, the train is Before Crossing, and the gate
is up, the Monitor and the Gate Controller are in the corresponding modes (BC and
UP respectively), as indicated by the arrows. The complete modechart specification is
shown in figure 3.

The Monitor works as follows. After and undetermined amount of time, as specified
by the timing constraint (0, m), the train approaches the crossing and the system moves
from mode BC to mode NC (Near Crossing). Upon entering the NC mode, the Action
A is executed which sets the state variable GATEUP to False; this action is completed
within 50 time units (deadline 50). After at least 300 time units, the train enters the
crossing and the monitor moves to the mode IC (In Crossing). Any time after that,
the train leaves the crossing, and the monitor moves to the mode PC (Past Crossing).
Upon entering PC, Action B is started which will set the state variable GATEUP to
True within 50 time units. Anytime after a delay of 100 time units, meant to simulate
inter-train separation, the monitor returns to the mode BC.

The Gate Controller works as follows. As soon as the variable GATEUP is set to
False, it moves from the mode U P to the mode MD (Move Down). Simultaneously

April 1992

- -

starts action C which physically moves the gate down and turns on the flashing red
lights. Upon completion of this action (i.e. the occurrence of the event JAction C), the
Controller moves to the mode DN (Down). As soon as the variable GATEUP changes its
value to True, the Controller executes a transition (DN-MU). Upon entering the mode
MU (Move Up), Action D is started, which moves the gate up and turns out the lights.
Upon completion of Action D (for which there is no deadline), the Controller moves
back to the mode UP. If GATEUP becomes False while the it is still in mode MU, the
Gate Controller would immediately move to mode MD.

It is worth mentioning that there is no way to specify what happens to Action D
when the transition (MU-MD) is executed. We assume that it is immediately terminated
(JAction D occurs); however, nothing allows us to specify this part of the behavior.

The final touch to our example is the safety assertion: the system will always be in
the mode DN whenever it is in the mode IC. This is expressed in RTL as follows:

Rallroad c2oasing
Panlid Manltw Gate Controller

Vi3j : @((DN := T) , j) 5 @((IC := T) , i) A @((IC := I?), i) < @((DN := F), j)

S d d
BC NC

For any occurrence i of the monitor entering mode IC, there is an occurrence j of the
controller entering mode DN which occurs before the entry of mode IC, and the cor-
responding exit of mode DN occurs after the corresponding exit of mode IC. In other
words, the gate goes down before IC and does not go up until after IC.

'8erlal
7

UP

Actlono (GATEUR-T)

Actlon A. set QATEUP := F, deadline 50
M a n B: set QATEUP := T, deadline 50
Actlon C: Move gate down, deadllne 50
Action D: Move gate up, no deadline

Figure 3: The railroad crossing in Modechart

April 1992 19

4.2 Proof method for Modechart

The methodology for proving properties of modechart specification is based on building
a computation graph, and on the notion of a distance between two points of the graph.

The computation graph is very similar to a computation tree in that each node (called
point) corresponds to the occurrence of an event and edges indicate direct or indirect
causality. The main difference is that folding occurs: when two points are proven to be
equivalent, they are merged together.It can be proven that the computation graph for
a modechart system is finite. Intuitively, this is due to the absence of true recursion,
and the fact that all the time expressions are constant. The maximum relevant history
is limited to the maximum non-infinite delay. Since the number of modes is constant
and each state variable has exactly two possible values, the number of different possible
configurations in that limited history is limited and hence, when folding occurs, the
graph is finite. A more formal proof can be found in [JS-881.

In the computation graph, each point is labelled with the state of the system (which
modes it is in and the value of each system variable) and the event(s) that occur at this
point. The computation tree is a spanning tree over the computation graph. Back edges
are created when folding occurs.

The building of the graph is based on the notion of distance between points. The
distance between two points A and B, noted distance(A, B), can be either a positive or a
negative number. A positive number indicates a delay, the earliest time event B can hap-
pen after the occurrence of event A (i.e. A is anterior to B). A negative number indicates
deadline, the earliest time B can happen before the occurrence of A (i.e. A is posterior
to B). The term distance is unfortunate here because dist ance(A, B) + distance(B, A) 5
0, which is surprising as one would expect distance(A, B) = distance(B, A), or, possibly,
distance(A, B) = -distance(B, A).

The distance function is calculated by adorning the computation tree with weighted
edges corresponding to the time constraints (delay or deadline); we call them timing
edges. If there is a minimum delay from event A to event B, then A must precede B in
the tree and there is a timing edge from A to B labelled with that delay. If there is a
deadline by which B must happen after A, then there is an edge from B to A weighted
with minus that deadline. We call the weight of a timing path the sum of the weights
of the timing edges along that path. By definition, if there is at least one timing path
from A to B then distance (A, B) is the maximum weight of all those paths; otherwise,

1s -00. distance(A, B) '
A couple of remarks about this adorned tree. Obviously, every edge in the underlying

computation tree will be adorned with a time delay of at least 0 since edges in the tree
represent causality. Less obvious is the fact that the sum of the edges of an adorned
cycle will be negative; otherwise, we would be facing a delay which is longer than the

April 1992 20

deadline between the earliest and the latest points in the cycle. This property insures
that the distance function is well defined.

The distance function allows us to prune out of the computation graph all the points
that cannot be part of a computation due to timing constraints. If the distance path
between two siblings A and B in the tree is strictly positive, then point B cannot be
reached since point A must happen before it.

Two points of the tree can be folded together if they adhere to the distance equiva-
lence condition. Intuitively, this means that the distance between the relevant events of
the histories of A and B and the potential successors of A and B respectively, is either
the same, or the difference is irrelevant because all the delays are already expired or one
of the deadline has expired and hence the corresponding mode has been exited in both
cases. Similarly, points with simultaneous events share the same deadline. The following
formal presentation of this condition is somewhat different from that of the article and,
hopefully, easier to grasp.

Consider a point A and let R(A) be the set of all of its predecessors, P, that mark an
event that can be simultaneous with the event of A -i.e. distance (P, A) = 0. For each
P in R(A) let E(P) be the corresponding event. The function & is naturally extended
to sets so that we can write & (R(A)) for the set of events possibly simultaneous to A
and preceding A in the computation graph. Similarly, let M(A) be the set of points
preceding A in the graph when a mode that is active in A was entered for the last time.
Formally, M (A) is the set of points P such that if M is a mode of A, (M:=T) is an event
of P and is not an event of any point of the tree between P (exclusive) and A (inclusive).
Finally, let us note S (A) the set of potential successors of a point A, i.e. the set of points
whose label differ from the label of A by exactly one component, or the occurrence of a
new event.

Two points A and B having the same label are said to be distance equivalent iff the
following two conditions are true:

1. for each pair of points PA in M(A), SA in S(A) and the corresponding pair PB in
M (B) and SB in S(B), let M be the corresponding mode, d the smallest deadline
and r the longest delay of any transition out of M:

(distance(PA, SA) = distance(PB, SB)

~distance(SA, PA) = distance(SB, PB))

V (d = ooA distance(PA,SA) >_ rAdistance(PB,SB) 2 r)
V (d # m A distance(PA, SA) > d A distance(PB, SB) > d)

2. E(R(A)) = &(R(B)) and for each pair of points PA in R(A), SA in S(A) and the

April 1992

corresponding pair PB in R(B) and SB in S(B) :

G distance(^^, SA) = distance(PB, SB) = 0

~distance(SA, PA) = distance(SB, PB))

V (distance(PA, SA) > 0 A distance(PB, SB) > 0)

Some simple properties of a modechart, can be proven by examining the graph. For
example, in the railroad example, we will see that there is no point where the Monitor
is in mode IC while the Gate Controller is not in mode DN.

Most properties expressed as RTL formulas require that the graph preserve a rela-
tionship between event occurrences. This means that, if we are interested in comparing
related occurrences of events e and g, for example @(e, i) and @(g, i+5), then in every
cycle of the graph the number of occurrences of e must be the same as the number of
occurrences of g. That being the case, the graph can be used to determine maximum
and minimum separation between events as well as inclusion and exclusion of intervals.

The set of properties that can be verified using Modechart computation graph is
a small subset of the set of properties that can be expressed in RTL. Since RTL is
undecidable, the fact is not surprising.

4.3 Proof of safety of the railroad crossing

In order to prove the safety of the railroad crossing, we construct the computation graph
shown in figure 4. We have used solid arrows to indicate edges of the computation graph
and dotted arrows to indicate timing only edges. To reduce clutter, only the edges that
bear a non-zero (timing) weight are labelled with their weight near the arrow head. Each
point of the graph is numbered and labeled with the set of modes the system is in (in our
case exactly two modes), the value of the unique state variable, GATEUP (abbreviated
as GUP on the graph) and the events that mark the start and end of actions. Points that
were potential successors of another point but were eliminated due to timing constraints
are shown crossed out. The numeric label in front of each point is used only for reference
purposes in commenting the proof. To reduce some of the complexity of the graph we
have not shown some of the points that would have been immediately crossed out.

Let us look at the graph in more detail. Point 1 is the initial state, hence all the
components are underlined. The only transition that can occur from this point is (BC-
NC) i.e. a train approaches the crossing, this leads to point 2 and the start of action A.
There are two possibilities after point 2: point 3 which is the end of action A, and point
4 where the train shows up in the crossing. Note that the edge from 3 to 2 is labeled

April 1992 22

with -50, which indicates the deadline in the execution of the action A, and that the
edge from 2 to 4 is labelled with 300, indicating the delay on the transition (NC-IC).
These two edges constitute a path from 2 to 4 with a total weight of 250, thus the point
4 is unreachable due to timing constraints and is crossed out.

10(

~X-T

Figure 4: Computation graph for the railroad crossing example

The edge from 2 to 3 is labelled > 0, to indicate that the action A is not instantaneous
and hence the events t A and J.A cannot be simultaneous. There is an edge from 3 to 5
and an edge from 5 to 3, both edge have a timing weight of 0 which show the constraint
that the action C is started immediately when the variable GATEUP changes from True
to False at the end of action A.

Again, point 7 is a potential successor of point 5, but is eliminated due to the timing
path 6-5-3-2-7 with a total weight of 200. The timing constraints are such that the gate
has to be down at least 200 time units before the train enters the crossing.

The only successor to point 6 is point 8: the train enters the crossing and the only
successor of point 8 is point 9: the train leaves the crossing. The delay of 100 on the
transition (PC-BC) combined with the deadline of 50 on action B, which starts at point
9 and ends at point 10, allow us to eliminate point 11. Point 10 (GATEUP becomes

April 1992 2 3

T) and point 11, start of action D are simultaneous. Two transitions are possible from
point 12: (MU-UP), the gate is fully up and (PC-BC) the train has left the scene and
the next one may show up at any time. At this point things become a bit complicated
and we are going to limit ourselves to the left most branch. Similar arguments can be
made for the other branches.

Since the action D is not instantaneous, points 12 and 13 cannot be simultaneous,
hence the > 0 label. The only transition out of point 13 is (PC-BD) which has a delay
of 100, but that's OK since point 15 has no sibling. The only transition that applies to
point 15 is (BC-NC) which leads to point 18.

At this point one would like to apply the distance equivalence condition and fold
points 18 and 2. Unfortunately it does not apply: R(18) = {13,15,18) and E(R(18)) =
{(MU - UP), J D, (PC - BC), (BC - NC), f A) while R(2) = {1,2) and I (R(2)) =

{(BC - NC),T A).
We go down one more step and compare points 23 and 5. Both nodes have the same

label hence the comparison is valid. -Both nodes have only one successor: S(23) = (27)
and S(3) = {5).

The modes of both points are NC and UP, M(23) = {13,18) M (3) = {1,2). It is
easy to see on the graph that distance(13,27) > 0, distance(l,5) > 0, distance(l8,27) >
0 and distance(2,5) > 0: the first part of the condition is satisfied. R(23) is (231, since
point 18 cannot be simultaneous with point 23 and E(R(23)) is (1 A, (GATEUP := F)}.
Similarly R(3) = (3) and E(R(3)) = {J, A, (GATEUP := F)). Again, by looking at the
graph we see that distance(23, 27) = distance(3, 5) = distance(27, 23) = distance(5, 3)
= 0. Hence the second part of the condition is satisfied. Points 3 and 23 are distance
equivalent and can be folded together as shown by the edge 18, 3 on the graph. Similar
arguments justify the other back edges of the graph. The graph is complete and it is
finite.

At this point it is obvious that all the points labelled with IC are either unreachable
(4, 7, 22) or labelled with IC as well, hence our safety property is satisfied.

One observation about this proof: while on this simple example we did not have to
look any deeper than one level below the siblings to detect unreachable points (case of
the path 20-25-17-22) it is not clear when one should stop, particularly when folding
occurs.

5 Calculus for Communicating Shared Resources

The third method for specifying and proving properties of real-time distributed system
that we are investigating, CCSR, has been developed by Richard Gerber and Insup
Lee at the University of Pennsylsania [GLSOa]. Unlike the previous two approaches,

April 1992 24

CCSR does not have a graphical representation. A system in CCSR is specified as an
algebraic expression. Superficially, CCSR resembles other process algebra like Hoare's
CSP [BHR84, Hoa851 and Milner's CCR [Mi189], but it is much more complete in its
treatment of inter-process relationships, not simply communication. In particular it
allows the definition of resources and allocation of events to resources which permits a
formal treatment of interleaving. A formal specification of CCSR in terms of operational
semantics can be found in [GLgOb]. What follows is more of an intuitive introduction

to it.
The atomic thing happening in a system is an event. Unlike modechart, events are

not. They take exactly one unit of time. Of course, several events may occur at the same
time. A simultaneous occurrence of multiple events is called an action and is written
as e l ... en. Most of the power of CCSR resides in its capability to express conditions

under which some actions may or may not happen in a system evolution.
As the name indicates, CCSR deals with resources. Events are executed by resources.

Each event in the system can be executed by one and only one resource. In addition, a
resource can execute at most one event at any point in time. In the case where no event

of a given resource is executed by any process, that resource is considered to idle.
Using resource, true parallelism, in which events execute on different resources, can

be distinguished from interleaving, in which events are executed sequentially on the same
resource. CCSR does not allow the specification of pools of similar resources allowing,
an event to occur as long as one of the resources able to execute it is free.

A process in CCSR is specified as an expression built out of actions, variables and
operators. As usual, it is assumed that there is an infinite, countable number of variables,
and that a variable stands for any CCSR expression. In the following description of the
CCSR operators we use P and Q as variables standing for any legal CCSR expression.

At any point in time the behavior of a CCSR process must be specified. A process

unable to perform any action is in a deadlock state. The canonical form of such a
process is NIL. On the other hand, one may want to specify that a process may wait,
not requiring any event, for a while. This is for example the case when a process is doing
internal calculation, or to specify a delay or a behavior taking more than a single unit
of time. This is expressed as an empty action and is written {) or 0. Note the difference
between 8 and NIL. While 0 allows progress to be made and merely marks one unit of
time, NIL indicates that nothing further may occur and, should this be the only choice,
the system will be totally unable to make any further progress.

The prefix operator (:) is used to specify the passing of time. For example, {a) : P
indicates that at the very next instant event a must be executed (not necessarily alone,
depending on the context), this will take one time unit, then the system will behave as
specified in P.

April 1992 2 5

The choice operator, written as +, indicates possible alternatives in the behavior
of a process. For example, ({a) : P) + ({b) : Q) specifies that a may be executed, in
which case the system will behave like P, or {b) will happen, in which case the system
will behave like Q immediately after. The decision between a and b is influenced by
the notions of synchronization and priority that we shall see later. If both actions are
equally likely in the context they are in, then the choice is non-deterministic.

Before we talk about the scope operator, we need look at the notion of termination.
The termination of a process is specified by including a check mark (J) as part of
an action. The rule for the propagation of termination depends on the operators that
compose the expression, and we shall see them as we study the operators.

The scope operator is a multi-purpose operator that is used to specify general timing
constraints. It has the form PAF(C, D, I) where P, C(Completion), D(Dead1ine) and
I(1nterrupt) are CCSR expression, t is a positive number or infinity and B is either {J)
or 0. The semantics is as follows. When P terminates (within t time units, or ever when
t = m) the system behaves as C. If t is finite and P does not terminate in t time units,
then, at time t+l, the system starts behaving as D. In addition, I is an alternative choice
at every step of the execution of P as well as to the start of D. Informally, t is a deadline
for the execution of P, C is the behavior to follow after a successful completion of P,
D is the exception behavior in case the deadline expires, and I is a potential interrupt
that can occur anytime. Of course it is rare for all these options to be used at the same
time, and NIL can be used to disable any of them. The superscript B is used to specify
the semantics of D with regard to termination. When B = { J), the scope operator
propagates the termination of P; when B = 8 , the termination of P always leads to the
start of Q and does not propagate.

The operators we have seen so far can only specify sequential behaviors. The parallel

operator allows us to specify multiple sequences of actions occurring in parallel. A
parallel process is of the form P I Q where P and Q are the two processes that execute
in parallel, I is the set of resources used by P and J is the set of resources used by Q.
At every instant, both P and Q must execute one action. P and Q must interleave to
execute actions of I n J and may communicate when P executes an action of I-J and Q
executes an action of J-I.

Note that the specification of the resource sets I and J as part of the parallel statement
is useful to formally manipulate CCSR expressions, but does not add to the expressive-
ness of the language. In fact all the "interesting" behaviors of the parallel construct
could be expressed similarly if I and J were defined as a function of P and Q.

Communication and synchronization between processes is specified via the notion of
connection sets. A connection set is a set of events such that any action of the system
contains either all or none of the events of the set. Obviously, for a connection set to be

April 1992 26

well formed, it must not contain two events from the same resource.
The hiding operator, noted "\", allows us to abstract out implementation details by

preventing the actual events being executed by a process from being visible by other
processes, hidden events cannot be used for synchronization. However, the semantics
of the hiding process does not imply freeing of resources and must not violate timing
properties. For these reasons and in order to be able to properly apply priorities, (as
we shall see), hidden events are replaced by canonical events, noted "rji", that indicate

that the resource j is busy executing an unknown event at priority i.
The T events are cumbersome to carry around, and are only useful in preventing a

parallel process from competing for a resource used by one of them a t the microscopic
level. The closure operator is an alternative at a macroscopic level: [PIJ indicates that
process P fully utilizes every resource of the set J, and therefore none is available to any
other process.

Powerful as they may be, the above operators do not allow us to specify infinite
behavior. This is done via the fixpoint operator fix(X.P), where X is a variable and
P may or may not contain X as a free variable. The semantics is the obvious one of
recursion. One can also use recursive definition of processes to achieve the same thing.

One of the most significant features of CCSR is the notion of priority and preemption.
Each event has a priority, which is a natural number. The priority of an action is a vector
of priorities, one component for each resource used in the action. Priorities are compared
resource wise. For a closed system, an action will preempt another one if and only if it
has higher priority in every resource. [GLSOa] gives a definition of preemption for non-

closed systems which is crucial to allow the algebraic manipulation of CCSR expression,
but, for the sake of space and since our example does not make use of priorities we will

not go into those details.
Let us now apply CCSR to the railroad crossing example.

5.1 Railroad crossing using CCSR

The following 6 function will be useful to simplify the expression of the example:

i f t = O

i f t = o o
P + (A : dt-l(A, P)) otherwise

The S function expresses a deadline: P will occur at the latest after t time units; the
function is extended to t = oo with the obvious semantics of an infinite deadline. A is
the action being executed while waiting.

The Railroad crossing defined using CCSR is shown in figure 5. It is worth noting
the terseness of the definition. Let us look at it more carefully.

April 1992 2 7

The definition for the Train works as follows. The idle action is always a choice until
the event nc! occurs, i.e. the train appears near the crossing. This event, followed by
idling for 299 units of time, totals up as a delay of 300. After that , the idling is again
an alternative until ic! occurs. Then more idle until pc! which will be followed by 99
units of time before the process starts again recursively.

def Train = & (T ~ , {nc!) : egg : 6S, (71, {ic!) : Sos(~l , {PC!) : T? : Train)))
def Control = hS, (T ~ , {nc?) : S49(72, {guf!) : Soo(7z, {PC?) : S49(72, {gut!) : Control))))
def Gate = 6, (T ~ , {guf?) : fix(GUF.{md!) : 648(73, {dn!) : Soo(73, {gut?)

: {mu!) : fix(MU.(B : MU) + ({up!) : Gate) + ({guf?) : GUF))))))

Resources :

Resource1 : nc!, ic!, pc!

Resource2 : nc? , guf ! , pc? , gut!

Resource3 : guf?, dn!, gut?, up!, md!, mu!

Connection sets:

Inter-resource:{nc!, nc?), {pc!, pc?), {guf!, guf?), {gut!, gut?)

Local: {ic!) , {up!), {dn!)

Priorities:

All events have priority 0.

Crossing = (Train 1 112 Control) 12 (I 3 Gate

Figure 5: The railroad crossing using CCSR
The control will also busy-wait doing nothing until nc? occurs. The connection set

insures that both events will occur simultaneously, or neither will occur. Within 49 units
of time after this point (i.e. a deadline of 50) the event gut! will occur. Then the control
will be able to idle until the event pc? occurs which is synchronized with pc!. Within
50 units after that, the event gut! will have occurred, after which the whole process will
start over again.

The gate process is a bit more complicated but essentially similar. Idle until the
event guf?, which is synchronized with guf!, occurs. The event md! indicates that the
gate starts moving down, and within 49 time units the event dn! occurs. At this point

April 1992 28

the process will idle until the event gut! occurs. The events gut! and gut? synchronize
and are followed by the event mu! which indicates that the gate starts moving up. The
gate moves up (as materialized by the fix point of the MU variable) until one of two
things happen: either the event guf? is executed and the system will loop back to move
the gate down (fix point of GUF) or the event up! will happen and the process will
repeat the whole gate behavior.

This example uses only a small subset of the features of CCSR. In particular there
is no interleaving, as shown by the resource assignments and priorities are essentially
unused.

Before we try to prove anything about this application, let us study the proof system
of CCSR.

5.2 Proof system for CCSR

The proof system for CCSR is based on the concept of strong bisimulation [Bo187, Mi1891,
extended to take priorities into account. Intuitively, two systems are strongly bisimilar
if they can mimic each other at every step. In other words, two processes P and Q are
strongly bisimilar iff every action that one can perform can be performed by the other
process and the two resulting processes are also strongly bisimilar. When the terms
bisimilar or bisimulation are used in the remainder of this paper they must be taken as
meaning strongly bisimilar and strong bisimulation.

The key property of the (prioritized) bisimulation is that it is a congruence with
regard to the CCSR operators. This will, of course, allow us to prove that two sets of
operands are bisimilar, and infer that the results of applying the same operator to both
sets of operands are bisimilar.

The proof system for CCSR is fully axiomatized. Because a formal presentation of
the 20 axioms would require new notation and would be extremely detailed, again we
will content ourselves with the intuition behind them.

Four axioms designate NIL as the identity element for choice, and a zero element for
the parallel, hide and closure operators. In addition, NIL as the first operand of a scope
operator forces the result to be the fourth operand (i.e. the interrupt branch).

The choice operator is idempotent.
Both choice and parallel operator are cornrnut ative and associative, although the

associativity for parallel requires recalculating the resource sets.
All the operators except prefix are distributive over choice. The reason prefix is

not distributive is subtle but interesting. The expression {a): (P + Q) requires a to
be executed, then a choice is made between P and Q the choice may be influenced by
the environment; the expression ({a) : P) + ({a) : Q) requires that a choice be made

April 1992 29

between the two branches at the time the event a is executed, since {a) appears at the
head of both branches, the choice will be totally non-deterministic.

Five of the axioms apply when every operand is a prefix expression and work by
examining these first actions.

For the choice operator, if one action preempts the other, the preempted branch can
be eliminated.

For the parallel operator, if the two actions are compatible (i.e. they will not require
that a resource execute two events) the two actions can be combined (union of the two
sets of events with J included iff it is present in both actions) as a single prefix and
the parallel operator will be applied to the tails. If the actions are not compatible, the
whole expression is equivalent to NIL.

The presence or absence of J in the first action of the first operand of the scope
operator combined to the value of the t parameter may allow us to reduce the operation
to a choice or "unroll77 the scope for one unit of time.

For the closure operator, a 7 is added to the action to saturate free resources and
the closure is applied to the tail unless one of the events is outside the set of closed
resources, in which case the whole expression is turned into NIL.

For the hide operator, if the connection sets can still be satisfied after application of
the operator, then T can be substituted for the hidden events and the operator is applied
to the tail, otherwise the whole expression is equivalent to NIL.

Finally, (immediately) nested hide operators can be absorbed if their resource set is
a subset of the resource set of the outer operator.

For expressions with finite behaviors, this set of axioms can be shown to be complete
and to converge to a normal form. This is not the case for infinite behaviors and it is
not even clear if the equivalence problem is decidable.

5.3 Proof of correctness of the railroad crossing

In order to prove the correctness of a CCSR expression, we need to compare it to another
expression that is known to be correct. In our case, we want to prove that, if we eliminate
all the details of the implementation, the system will be such that every execution of
the ic! event will be preceded by an execution of the dn! event and the next mu! event
will follow the pc! event. This is translated in CCSR as:

correctl sf {dn!) : {ic!} : {pc!) : {mu!) : correctl

Simple enough! Unfortunately, we cannot ignore the real-time aspects of the system
and in particular the minimum separations; hence, we will prove that:

[Crossing \ {nc? nc! guf? guf! pc! gut? gut! md!)]{lzs) = correct

April 1992 30

where LLcorrect" has the form:

def correct = OP : {dn!) : Oq : {ic!) : OT : ipc!) : (P : (mu!) : Ot : correct

with p, q, r, s, t E N U (00).

In order to make the proof more scrutable, we have decomposed the definitions of
the system; it is easy to see that the new definitions are equivalent to the previous ones.
In the body of the proof, we will omit the resource set indices of the parallel operator
because their value is obvious. We will use 7 to stand for { T ~ 7 2 r3). Finally, we will
use the following conventions: the prefix operator has the highest precedence, followed
by choice, parallel has the lowest; choice and parallel are left associative while prefix
associates to the right.

Train Sm(r1, {nc!) : T I)
def T1 = 7,299: T2

T2 d" bm(r1, {ic!} : T3)

T3 k! S,(T~, {pc!) : T4)
def T4 = T? : Train

def Cntrl = S,(T,, {nc?} : C1)

cl d'f 64g(~2 , {guf!} : C2)

C2 '%if S,(T~, {PC?) : C3)

~3 U S48(~2, {gut!) : Cntrl)

def Gate - 6,(7,, {guf?) : GI)

G1 dd {md!) : S4,(n, {dn!) : G2)

G2 2' S,(T~, {gut?) : {mu!) : G3)

G3 7-3 : G3 + {up!) : Gate + {guf?} : GI

We will detail the first steps of the proof, but later, for the sake of space and as we
are re-using the same mechanisms, we will skip over most of the details.

If we expand the definition of Crossing and apply the definition of S we obtain the
following expression:

Crossing = 71 : Train + {nc!} : T1 11 7 2 : Control + {nc!) : C1 1 1 T~ : Gate + Iguf?} : G1

By distributing the parallel operator over choice we obtain 8 terms:

(T ~ : Train) (r2 : Cntrl 11 7, : Gate) + (rl : Train)I {nc?} : C1 1 1 73 : Gate)

April 1992 3 1

+ ({nc!) : T l 11 {nc?) : C1 11 r3 : Gate) + ({nc!) : T1 11 7.2 : Cntrl 11 r3 : Gate)

+ (TI : Train (1 7 2 : Cntrl 11 {guf?) : G1) + (rl : Train (1 {nc?) : C1 (1 {guf?) : G1)

+ ({nc!) : T I 11 {nc?) : C1]I {guf?) : GI) + ({nc!) : T I 11 72 : Cntrl)I {guf?) : GI)

We take the union of the first actions and "push" the parallel operator down:

7 : (Train) (Cntrl 11 Gate) + {rl nc? 73) : (Train J J C1 1 1 Gate)

+ {nc!nc?r3) : (T1 I(C1 11 Gate) + {nc! 7 2 7-31 : (T1 (1 Cntrl 11 Gate)

+ {rl 7 2 guf?) : (Train 11 Cntrl 11 G1) + {rl nc? guf?) : (Train 11 C1 11 GI)

+ {nc!nc?guf?) : (TI (1 C1 1 1 GI) + {nc!r2guf?) : (T1 (1 Cntrl I(GI)

Using the fact that {nc! nc?) and {guf! guf?} are connection sets, we replace by
NIL all inconsistent actions, i.e. actions that contain one and only one element of either
set:

7 : (Train 11 Cntrl 1) Gate) + NIL + {nc! nc? 73) : (T I 11 C1 11 Gate)

+ NIL + NIL + NIL + NIL + NIL

Eliminating NIL from the choice and using the definition of Crossing, we obtain:

Crossing = (7 : Crossing) + {nc! nc? r3} : (T1 1) C1 1) Gate)

Making use of the definition of S will give us:

Crossing = S,(7, {nc! nc? r3) : (T I 1 1 C1 1) Gate))

The set of steps: expand 6, distribute parallel over choice, combine first actions,
eliminate inconsistent actions and, optionally apply the definition of 6 , will be repeatedly
used in the remainder of the proof, moving forward through the prefix expressions; we
will refer to it as expanding a term.

Expanding (T1 11 C1 I (Gate) once produces a choice of 50 terms, all of the form:

'Tk : {r1 guf! guf?) : (T ; ~ ~ - ~ : T2 11 C2 I(G1) where 0 5 k 5 49;

which we will process generically.
After four more applications of the expansion mechanism we get:

Crossing = S,(T, {nc! nc? 7-31 : rk : { T ~ guf! guf?} : { T ~ 7 2 rnd!) : T " " " ~ - ~ : XI

with 0 < k < 49 and 0 5 m 5 48 and XI T2 (1 C2 1 1 G2.

April 1992

Similarly expanding X1 in 8 steps produces:

XI = S,(T, {ic! 72 r3) : S,(T, {PC! PC? 7 3) : Tn : { T ~ gut!gut?) : {T] 72 mu!)

: (7' : { T ~ 72 UP!} : T=-~-P : Crossing + rg6-" : ~ 2))) ;

where 0 5 n 5 49 and 0 5 p 5 96 - n and X2 '!$ (Train 11 Cntrl 11 G3).

Expanding X2 and substituting X1 for its definition (T2 11 C2 (1 G2):

x 2 = S,(T,
{rl r2 up!} : Crossing

+{nc! nc? T ~) :

(79 : { T ~ 72 up!} : 7' : {rl guf! guf?) : {TI 72 md!) : 7"
: {7] 7 2 dn!) : 7295-q-r-S : X1

+
Tt : {T] gut! gut?) : { T ~ 72 mu!) : TU : {T] 7 2 dn!) : : XI)

+{nc! nc? up!) : 7 " : gut! gut?} : {TI 72 mu!) : Tw
: (71 72 dn!) : T ~ ~ - ' - " : X1)

w i th0 < q < 4 8 ; 0 5 r 5 4 8 - q ; 0 5 s 5 48; 0 < t 5 4 9 ; 0 5 u 5 4 8 ; 0 < v 5 4 9 ;
0 < w 5 48.

At this point, we define:

Crossingt U [Crossing \ {nc? nc! guf? guf! pc? gut? gut! rnd!)]jlz3),

XI' ef [XI \ {nc? nc! guf? guf! pc? gut? gut! rnd!)]j1231

and similarly for X2', We apply the hide operation that allow us to replace all the
hidden events by the appropriate T. We then apply the closure operator that allow us
to eliminate the 7 altogether and we obtain:

Crossingt = &,(0,0 : Ok : 0 : 0 : 0m : {dn!) : 0296-k-m : XI')

= S,(O,fla : {dn!) : 02"-" : Xl1)with3 < a 5 100

XI' = S,(0, {ic!) : S,(0, {pc!) : 0" : 0 : {mu!)
: (Q)P : 0 : 096-n-P : Crossing' + LJ9"-" : X2'))

= S,(0, {ic!) : S,(0, {PC!) : Ob : {mu!)

: (gggMb : Crossing' + 098 - b : X2')) with 2 5 b 5 51

X2' = S,(0,0 : Crossing' + 0 : (aq : 0 : 0' : 0 : 0 : 0"

April 1992

at : 0 : 0 : 0" : {dn!) : 0296-t-U : XI) +
0 : 0' : 0 : 0 : 0" : {dn!) : 0296-v-w : Xl')

Summing up the exponents and using the idempotence of choice twice we obtain:

X2' = 6,(0,0 : Crossing' + 0 : 0' : {dn!) : 0299-c : Xl') with 3 5 c 5 100

Substituting Crossing' for its value and using the idempotence of choice gives:

X2' = 6,(0,0 : Crossing')

and hence:

Xl' = 6,(0, {ic!) : 6,(0, {pc!) : fib : {mu!) : (099-b : Crossing' + flgSeb : crossingf))

It follows immediately from the definition of 6 that S,(A, A : P) = A : &,(A, P) and
that 6 is idempotent on its second argument therefore, using also the idempotence of
choice:

Xl' = &(0, {ic!) : &(0, {PC!} : fib : {mu!) : 099-b : Crossing1))

Moving into the expression for Crossing' we obtain:

Crossing' = 6,(0, Ba : {dn!) : 8296-a : 6,(0, {ic!) : 6,(0, {pc!) : Ob : Crossing')

Which is of the form:

Crossing' = Oa : {dn!) : Ob : {ic!) : Og : {PC!) : Om : {mu!) : 0" : Crossingt

Where a, b, g, m, n E N U {m)

One remark about this proof is that it depends heavily upon the trick of using integer
variables as exponents of the actions which is not part of the theory, the alternative,
expanding all the cases corresponding to all the possible combinations values of the
various exponents, would defy the purpose of getting to a simpler expression.

6 Comparing the three approaches

Let us now look at those three approaches, first in terms of the characteristics of the
languages, then in terms of the readability and maintainability of specifications. We
will also compare their notion of time, synchronization and communication, their way
of dealing with properties, and their proof systems.

April 1992

6.1 Expressiveness, readability and maintainability

All three approaches did allow us to adequately specify the railroad crossing example
without much difficulty. The resulting systems have a similar architecture, but they
differ in the way they relate to their environment. The HMS defines a closed system
without any formal way to specify interaction with an external environment, neither in
a proactive nor a reactive sense. Modechart does define external events whereby the
environment can influence the system; conversely actions can be used to specify the
effect of the system on its environment. In CCSR, the effect of the environment can be
specified via events, but there is no formal way for the system to impact its environment
except by leaving un-hidden events for the environment to synchronize with.

The concept of system state seems well supported in HMS, but this is somewhat
misleading because the history can have as much influence on the system behavior as
the current state. In modechart, the notion is even more diffuse because the true system
state includes not only the set of modes the system is in, but also the value of all the
state variables and possibly the set of actions that are in progress. This notion is totally
absent from CCSR. Interestingly enough, the decomposition of the railroad crossing
system definition that we made to make the proof more readable resembles strangely a

decomposition into states and transitions.
Modechart directly supports the notion of delay and deadline. These notions are also

adequately supported in HMS via controls. In CCSR, however, Scope can be used to
define deadlines, but it is very awkward to use, in the example, we defined the S function
which, strictly speaking, is an extension of the language, but simplified both the defini-
tion and the proof drastically. To define delays, we had to resort to the exponentiation
of events, again an extension of the language.

HMS has a very sophisticated transition control mechanism that makes it possible
to specify the behavior of the system based on a history of arbitrary length. This can
be considered good or bad; it is good in the sense that it affords a lot of flexibility in the
system definition, it is bad in that slight modifications of transition controls may have
far reaching consequences in the future. Fortunately the graphical representation of the
system should make such dependencies obvious.

Modechart is much more restrictive in that transition control is based only on the
present state and on the amount time spent since last entering each one of the current
modes. Controls based on more distant history must be implemented by setting state
variables and additional modes; this can become fairly cumbersome.

Like modechart, CCSR does not offer language constructs to test past history. This
can be accomplished by "firing off' separate processes to record events that will be used
in the future. This mechanism is very powerful and allows the specification of behaviors
based on unbounded history. For example, the expression fix(X.{a) : (X (1 S,(8, b :

April 1992 3 5

NIL))) implements an infinite counter that accepts {b) 's up to the number of {a}'s that
it has seen.

While all three systems support the notion of non-determinism, none support any
notion of probability which would be useful to study system efficiency and average
behavior, for example.

6.2 Readability, abstract ion and code reusability

The first thing that strikes one when looking at an HMS diagram is that it is very
busy and confusing with lines of different thickness all over. The corresponding set of
transitions is even more difficult to grasp. The modechart diagram, on the other hand
is very clear and understandable. Of course, not everything is said in the diagram itself,
variables and actions are defined separately, but this may be a good compromise after
all. CCSR lacks a visual representation and the algebraic expression is not very intuitive.
To be fair to CCSR, it must be mentioned that it is not meant to be a user's language.
Rather one would define a system in a language called CSR with a more traditional high
level, statement oriented syntax. CSR programs are then compiled into CCSR to allow
the algebraic manipulations of the proof system.

The restricted version of HMS presented here does not support hierarchies and there
is no base to support abstractions. A system specification is totally flat and transitions
can address directly any individual states without any kind of structure. Modechart does
support some level of abstraction; for example, one can refine a mode by structuring it
with sub-modes either to disable outgoing transitions until a given action is complete, or
to implement multiple concurrent actions. Such abstractions, however, are limited to a
single input and single output transition. CCSR offers the best support for abstraction
of the three languages. The definition of CCSR variables, combined with the hiding,
or rather leaving un-hidden, events offers a way to independently specify sub-systems
with a restricted set of externally accessible events. Unfortunately there is no distinction
between input events, where the environment influences the behavior of the abstraction,
and output events where the abstraction reacts upon the environment.

Code re-usability is often based on the abstraction mechanism. None of the systems
reviewed offer good support for code re-usability. Both modechart and CCSR lack a
renaming mechanism that would allow one to use multiple copies of the same abstraction
in the specification of a higher level system.

6.3 Time, Synchronization and Communication

All three systems support a discrete notion of time, but while such a restriction is fun-
damental to CCSR (an event duration is a quantum of time), it is less fundamental to

April 1992 3 6

HMS, where continuous time could be implemented at the expense of some additional
complexity in the proof system. In modechart, the restriction is purely incidental con-
tinuous time could be easily implemented. Of all three systems, only HMS allows some
level of time expressions. None support time variables.

Of all three systems, only CCSR support the notion of time-sharing or interleaving
via the use of resources. The other two systems assume total parallelism.

All three systems offer mechanisms for synchronization. In HMS, synchronization
between multiple transition is achieved by having mutual references on transition con-
trols - e.g. transition y~ has a control (y2,0) and transition yz has a control (yl,O).
A very similar technique of mutual referencing can be used in modechart. CCSR, of
course, directly supports synchronization via the concept of connection sets.

While full HMS offers communication via token passing, the restricted version for
which a proof system has been developed does not; as most other finite state machines,
it relies on the multiplication of states to store information. Modechart offers some
limited amount of information transfer through the use of the boolean state variables.
CCSR does not have the concept of information storing or passing; on the other hand,
it is the only one of the three systems that is not limited by a fixed number of states at
execution time. The infinite counter that we have seen earlier is a good example of that.

6.4 Specification of properties

Beyond the safety properties that we have been using so far, there are many other
classes of properties that one might interested in when studying a real-time system. For
example liveness, "something good will eventually happen", as opposed to safety which
is "something bad will never happen", separation: maximum and minimum elapsed time
between successive events, just to name just a few.

The richest system in the specification of properties is by far modechart. RTL allows
the specification of all sorts of properties including liveness and separation.

In HMS, safety and maximum separation properties are expressed using state ex-
pressions and are implemented as un-reachability of unsafe states. This method can be
extended to minimum separation fairly easily, but it not clear how one would go about
specifying liveness properties.

Unfortunately, CCSR does not include any formalism to specify properties. As we
have seen, one has to define a system which exhibits the required property and prove
that the two systems are equivalent. This is not necessarily a simple matter and the risk
of defining a reference system that does not have the required property is great.

April 1992

6.5 The proof systems

The first remark, which is common to all three formalisms is that proving a property is
even harder than specifying a system, and that the likelihood of developing an incorrect
proof is at least as great as the likelihood of a bug in the specification. This implies
that, without a good support tool, the usefulness of these methods is greatly reduced.
In that respect we attach a great deal of importance to the implementability of the proof
system. From that point of view, all three methodology are of exponential complexity,
which is not surprising since they all solve the reachability problem.

As mentioned in [FG89], while the proof system of HMS is complete, i.e. all the true
facts are provable, and while the proof of completeness is constructive, the number of
steps it requires makes it impractical for automation. One must rely on intuition and
a good choice of the rules to apply (out of a fairly large number of rules) to keep the
proof tree manageable. This leans towards the development of interactive tools where
the user drives the proof while the system insures the correctness, and of heuristics to
help decide which rule should be applied.

The proof system of modechart has been implement by Douglas Stuart [StuSO], which
clearly proves that it is implementable. The current version, although somewhat restric-
tive does allow to prove such properties as safety and maximum or minimum separation.
It is interesting to note that the definition of distance equivalence used in the implemen-
tation is a greatly simplified version of the one described in [JS88]; this new condition is
even less tight than the previous one, which could lead to bigger graphs, but it probably
covers most of the practical cases.

The proof system for CCSR is proven to be complete only for finite behaviors, the
completeness for infinite behaviors is still an open question. The implementation of a
tool for proving properties of CCSR expressions is a subject of current research. It is
interesting to note that CCSR roughly corresponds to a subset of CCS called "small
CCS" in [Bo187], and it is likely that similarly, if recursion through parallelism (i.e.
expressions similar to our infinite counter above) is avoided, a CCSR expression can be
transformed into a computation graph similar to the CCSR one and hence similar proof
algorithm can be utilized. In addition, using hiding and closure before implementing
the graph would lead to a much simpler graph.

7 Conclusion

Although widely different in their approach, the three methods that we have studied did
allow us to specify the common example without much difficulty, in fact, the underlying
structure of the three solutions was fairly similar. The proof mechanisms for all three
systems, on the other hand, was widely different except for the extreme difficulty of

April 1992 38

developing a proof manually. This highlights the need for tools to automate the process.
We also compared the three approached and saw that they have widely different ca-

pabilities and potentials for the implementation of large systems, but a common weak-
ness of all three approaches is the lack of support for abstraction and code re-usability;
without which those systems will remain toys for laboratories.

Much research still needs to be done before systems, methods and tools to specify
and prove properties of real-time distributed system are widely in use in the industry,
but the progress so far are encouraging.

References

[AS851 Bowen Alpern and Fred Schneider. Defining Liveness. Information Processing
Letter, 21:181-185, 1985.

[BHR84] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A Theory of Communicating
Sequential Processes. Journal of the ACM, 31(3):560-599, July 1984.

[Bo187] Tommasso Bolognesi. Fundamental Results for the Verification of Observa-
tional Equivalence. In Protocol Specification, Testing and Verification, North-
Holland, 1987.

[FG89] M.K. Franklin and A. Gabrielian. A Transformational Method for Verifying
Safety Properties in Real-Time Systems. In Proc. IEEE Real-Time Systems
Symposium, pages 112-123, December 1989.

[GF88] A. Gabrielian and M.K. Franklin. State-Based Specification of Complex Real-
Time Systems. In Proc. IEEE Real- Time Systems Symposium, December 1988.

[GLgOa] R. Gerber and I. Lee. A Proof System for Communicating Shared Resource.
In Proc. 11th IEEE Real- Time Systems Symposium, 1990.

[GLgOb] R. Gerber and I. Lee. CCSR: A Calculus for Communicating Shared Resources.
Technical Report MS-CIS-90- 16, University of Pennsylvania, Department of
Computer and Information Science, March 1990.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231-274, June 1987.

[Hart381 David Harel. On visual formalisms. Communications of the A CM, 31 (5):514-
530, May 1988.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

April 1992 39

[JLM88] F. Jahanian, R.S. Lee, and A. Mok. Semantics of Modechart in Real Time
Logic. In Proc. 21st Hawaii Int. Conj. on System Sciences, Jan. 88.

[JS88] F. Jahanian and D.A. Stuart. A Method for Verifying Properties of Modechart
Specifications. In Proc. IEEE Real- Time Systems Symposium, pages 12-21,
December 1988.

[Mi1891 R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Rei85] W. Reisig. Petri Nets: An Introduction. Springer, Berlin, 1985.

[Stu9O] Douglas Stuart. Implementing a Verifyer for Real-Time Systems. In Proc. 11 th
IEEE Real- Time Systems Symposium, 1990.

	Proving Properties of Real-Time Distributed Systems: A Comparison of Three Approaches
	Recommended Citation

	Proving Properties of Real-Time Distributed Systems: A Comparison of Three Approaches
	Abstract
	Comments

	tmp.1186152178.pdf.Vq9aU

