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Multiplicative Updates for Large Margin Classifiers

Fei Sha1, Lawrence K. Saul1, and Daniel D. Lee2

1 Department of Computer and Information Science
2 Department of Electrical and Systems Engineering

University of Pennsylvania
200 South 33rd Street, Philadelphia, PA 19104

{feisha,lsaul,ddlee}@seas.upenn.edu

Abstract. Various problems in nonnegative quadratic programming arise in the
training of large margin classifiers. We derive multiplicative updates for these
problems that converge monotonically to the desired solutions for hard and soft
margin classifiers. The updates differ strikingly in form from other multiplicative
updates used in machine learning. In this paper, we provide complete proofs of
convergence for these updates and extend previous work to incorporate sum and
box constraints in addition to nonnegativity.

1 Introduction

Many problems in machine learning involve optimizations with nonnegativity con-
straints. Examples include classification by support vector machines [22], density esti-
mation in Bayesian networks [1], and dimensionality reduction by nonnegative matrix
factorization [13]. The optimizations for these problems cannot be solved in closed form;
thus, iterative learning rules are required that converge in the limit to actual solutions.

The simplest such learning rule is gradient descent. Minimizing an objective func-
tion F (v) by gradient descent involves the additive update:

vi ← vi − η(∂F/∂vi) , (1)

where η > 0 is a positive learning rate, and all the elements of the parameter vector
v = (v1, v2, . . . , vN ) are updated in parallel. Gradient descent is not particularly well
suited to constrained optimizations, however, because the additive update in (1) can lead
to violations of the constraints.

For optimizations with nonnegativity constraints, an equally simple but more ap-
propriate learning rule involves the so-called Exponentiated Gradient (EG) [12]:

vi ← vie
−η(∂F/∂vi) . (2)

Equation (2) is an example of a multiplicative update. Because the elements of the expo-
nentiated gradient are always positive, this update naturally enforces the nonnegativity
constraints on vi. By taking the logarithm of both sides of (2), we can view the EG
update as an additive update3 in the log domain:

log vi ← log vi − η(∂F/∂vi) . (3)

3 This update differs slightly from gradient descent in the variable ui = log vi, which would
involve the partial derivative ∂F/∂ui =vi(∂F/∂vi) as opposed to what appears in (3).



Multiplicative updates such as EG typically lead to faster convergence than additive
updates [12] if the solution v

∗ of the optimization problem is sparse, containing a
large number of zero elements. Note, moreover, that sparse solutions are more likely to
arise in problems with nonnegativity constraints because in these problems minima can
emerge at v∗

i =0 without the the precise vanishing of the partial derivative (∂F/∂vi)|v∗

(as would be required in an unconstrained optimization).
The EG update in (2)—like gradient descent in (1)—depends on the explicit intro-

duction of a learning rate η > 0. The size of the learning rate must be chosen to avoid
divergent oscillations (if η is too large) and unacceptably slow convergence (if η is too
small). The necessity of choosing a learning rate can be viewed as a consequence of
the generality of these learning rules; they do not assume or exploit any structure in the
objective function F (v) beyond the fact that it is differentiable.

Not surprisingly, many objective functions in machine learning have structure that
can be exploited in their optimizations—and in particular, by multiplicative updates.
Such updates need not involve learning rates, and they may also involve intuitions rather
different from the connection between EG and gradient descent in (2–3). For example,
the Expectation-Maximization (EM) algorithm [2] for hidden Markov models and the
generalized iterative scaling (GIS) algorithm [8] for logistic regression can be viewed as
multiplicative updates, but unlike the EG update, they can not be cast as simple variants
of gradient descent in the log domain.

In this paper, we derive multiplicative updates for the various problems in nonneg-
ative quadratic programming that arise in the training of large margin classifiers [18,
19, 22]. Our multiplicative updates have the property that they lead to monotonic im-
provement in the loss function for these classifiers. Interestingly, their form is strikingly
different from those of other multiplicative updates used in machine learning, including
EG, EM, and GIS. A previous, shorter paper [21] presented our updates for nonnega-
tive quadratic programming in their simplest form. This paper has a stronger theoretical
component, not only providing complete proofs of convergence, but also deriving ex-
tensions that incorporate sum and box constraints in addition to nonnegativity. It also
includes the results of experiments on a larger and more difficult data set. The tech-
niques behind this work should be of general interest to researchers in machine learning
faced with problems in constrained optimization.

2 Nonnegative Quadratic Programming

We begin by studying the problem of nonnegative quadratic programming in its simplest
form. Consider the minimization of the objective function

F (v) =
1

2
v

T
Av + b

T
v , (4)

subject to the constraints that vi≥0 for all i. We assume that the matrix A is symmetric
and semipositive definite, so that the objective function F (v) is bounded below, and
its optimization is convex. Due to the nonnegativity constraints, however, there does
not exist an analytical solution for the global minimum (or minima), and an iterative
solution is needed.



2.1 Multiplicative Updates

Our multiplicative updates are expressed in terms of the positive and negative compo-
nents of the matrix A in (4). Let A+ and A

− denote the nonnegative matrices:

A+
ij =

{

Aij if Aij > 0,
0 otherwise,

and A−
ij =

{

|Aij | if Aij < 0,
0 otherwise.

(5)

It follows that A = A
+−A

−. In terms of these nonnegative matrices, the objective
function can be decomposed as the combination of three terms, which we write as

F (v) = Fa(v) + Fb(v) − Fc(v) (6)

for reasons that will become clear shortly. We use the first and third terms in (6) to
“split” the quadratic piece of F (v), and the second term to capture the linear piece:

Fa(v) =
1

2
v

T
A

+
v , (7)

Fb(v) = b
T
v , (8)

Fc(v) =
1

2
v

T
A

−
v . (9)

The gradient of F (v) can be similarly decomposed in terms of contributions from these
three pieces. We have chosen our notation in (4) and (8) so that bi = ∂Fb/∂vi; for the
quadratic terms in the objective function, we define the corresponding derivatives:

ai =
∂Fa

∂vi
= (A+

v)i , (10)

ci =
∂Fc

∂vi
= (A−

v)i . (11)

Note that these partial derivatives are themselves nonnegative:4 that is, ai≥0 and ci≥0.
In terms of these derivatives, our updates take the form:

vi ←− vi

[

−bi +
√

b2
i + 4aici

2ai

]

. (12)

These updates are meant to be applied in parallel to all the elements of v. They are re-
markably simple to implement, as they neither involve a learning rate nor other heuristic

4 Some of our proofs in the appendices rely additionally on the positivity of ai = (A+
v)i and

ci =(A−v)i whenever v has no zero elements. If A
+ and A

− are defined as in (5), then these
terms will be strictly positive as long as the matrix A has at least one positive and negative
element in each row. If A does not satisfy this condition, then A

+ and A
− can be redefined

(for example, by adding a small positive number to each element) so that the proofs remain
valid. In this case, the multiplicative updates are not changed in form, merely the definitions
of A

+ and A
−. Alternatively, in certain of these degenerate cases, the proofs can be modified

while keeping the original decomposition in (5).



criteria that must be tuned to ensure convergence. As we show later, moreover, these up-
dates are guaranteed to decrease the value of F (v) at each iteration.

The reader will recognize the factor multiplying vi on the right hand side of (12)
as the quadratic formula for the positive root of the polynomial aiz

2 + biz − ci. This
factor is guaranteed to be nonnegative, as we observed earlier that ai ≥ 0 and ci ≥ 0.
The updates thus naturally enforce the nonnegativity constraints on vi. The updates
are notable for their absence of a learning rate, but even beyond this, their basic form
is strikingly different than the EG update in (2). How does this seemingly mysterious
combination of partial derivatives [17] serve to minimize the objective function F (v)?

An intuition for these multiplicative updates can be gained by examining their fixed
points. One fixed point for (12) occurs at v∗i = 0; the other occurs when the positive
root of the polynomial aiz

2 + biz − ci = 0 is located at z = 1, since in this case the
multiplicative factor in (12) is equal to unity. The latter condition, together with the
definitions in (6–11), implies that (∂F/∂vi)|v∗ = ai+bi−ci = 0. Thus the two criteria
for fixed points are either (i) v∗i = 0, or (ii) (∂F/∂vi)|v∗ = 0. These are ultimately the
same criteria as the EG update in (2).

Further intuition is gained by considering the effects of the multiplicative update
away from its fixed points. Although the partial derivative ∂F/∂vi does not appear
explicitly in (12), there is a close link between the sign of this derivative and the effect
of the update on vi. In particular, using the fact that ∂F/∂vi = ai+bi−ci, it is easy to
show that the update decreases vi if ∂F/∂vi >0 and increases vi if ∂F/∂vi <0. Thus,
the multiplicative update in (12) moves each element vi in the same direction as the EG
update in (2), though not in general by the same amount.

The above intuitions are useful, but insufficient to establish that the updates con-
verge to global minima of F (v). In Appendix A, we prove the following theorem:

Theorem 1. The function F (v) in (4) decreases monotonically to the value of its global
minimum under the multiplicative updates in (12).

The proof of this theorem relies on the construction of an auxiliary function which
provides an upper bound on F (v). While many algorithms in machine learning [2, 5,
8, 9, 14, 17] are derived from auxiliary functions, the proof in this paper introduces a
particular inequality for nonnegative matrices that we have not seen in previous work.

2.2 Sum Constraint

The multiplicative updates in (12) can be extended to incorporate additional constraints
beyond nonnegativity. One such constraint is a linear equality of the form:

∑

i

βivi = β , (13)

with constant coefficients βi and constant sum β. We will refer to such a constraint as a
sum constraint. In what follows, we assume that the feasible region resulting from the
sum and nonnegativity constraints is not empty.



The sum constraint in (13) is enforced by introducing a Lagrange multiplier λ at
each iteration of the multiplicative updates. In particular, to incorporate the sum con-
straint, we consider the “extended” objective function:

F (v, λ) =
1

2
v

T
Av + b

T
v + λ

(

∑

i
βivi − β

)

. (14)

Suppose that λ is fixed to some value; then its overall effect in (14) is to alter the
coefficients of the term that is linear in vi by an amount λβi. As shorthand notation to
capture this effect in the multiplicative update, we let

ri(λ) =
−(bi + λβi) +

√

(bi + λβi)2 + 4aici

2ai
(15)

denote the positive root of the polynomial aiz
2 + (bi + λβi)z − ci, where as in the

previous section, ai = (A+
v)i and ci = (A−

v)i. Then, a multiplicative update that
decreases F (v, λ) for fixed λ is given by:

vi ←− viri(λ) . (16)

At each iteration, the unknown λ should be chosen so that the updated values of vi

satisfy the sum constraint in (13). In terms of the existing values of vi, this is done by
choosing λ to satisfy:

∑

i

βiviri(λ) = β . (17)

If λ is chosen at each iteration5 to enforce the constraint, such that F (v) = F (v, λ),
then the multiplicative updates in (16) will serve to minimize F (v) while preserv-
ing both the sum and nonnegativity constraints on vi. The proof of convergence in
Appendix A generalizes in a straightforward way to this case. Though impossible to
solve (17) for λ in closed form, a simple iterative procedure exists to compute a solu-
tion. In particular, in Appendix B, we prove the following:

Theorem 2. Equation (17) has a unique solution, λ∗, that can be computed by iterat-
ing:

λ←
1

R

(

∑

i
βiviri(λ)− β

)

+ λ , (18)

where R is any positive constant satisfying |
∑

i βivi
dri

dλ |<R for all λ.

2.3 Box Constraints

The multiplicative updates in (12) can also be extended to incorporate constraints of the
form vi≤κ for all i, where κ is a constant. These are referred to as box constraints, since
they bound vi from both above and below. A more general constraint is that each vi

has a different upper bound κi. By linearly rescaling the variables vi, however, this
problem can be transformed into the previous one. Interestingly, though box constraints

5 The required value of λ changes from one iteration to the next (though eventually it stabilizes).



are nonlinear, their handling is fairly trivial and indeed much simpler than enforcing
the linear sum constraint in the previous section. The simplest way to enforce the box
constraints is to clip the output of the updates in (12), such as:

vi ←− min

{

κ, vi

[

−bi +
√

b2
i + 4aici

2ai

]}

. (19)

This clipped update is also guaranteed to decrease the objective function F (v) in (4) if
it results in a change of vi. It is not straightforward, however, to combine this clipped
update with the sum constraint in the previous section. Thus, for problems in which
both sum and box constraints are active, we have developed an additional approach.

Recall that the multiplicative update in (12) increases vi if ∂F/∂vi < 0 and de-
creases vi if ∂F/∂vi > 0. Since increasing vi is equivalent to decreasing (κ−vi), we
devise a multiplicative update that “operates” on vi if ∂F/∂vi ≥ 0 and on (κ−vi) if
∂F/∂vi <0. In particular, at each iteration, we define the new variables:

v̂i =

{

vi if ∂F
∂vi
≥ 0,

κ−vi otherwise.
(20)

Note that since vi and v̂i are linearly related, minimizing F (v) is equivalent to mini-
mizing the quadratic form F̂ (v̂) obtained by the change of variables in (20). Let

F̂ (v̂) =
1

2
v̂

T
Âv̂ + b̂

T
v̂ , (21)

where the coefficientsÂij and b̂i are chosen such that F̂ (v̂)−F (v) is a constant that
does not depend on v. To compute these coefficients, we let si = sgn(∂F/∂vi) denote
the sign of ∂F/∂vi, with sgn(0) equal to 1. Then vi can be expressed in terms of v̂i as:

vi = v̂isi + κ(1−si)/2 . (22)

The coefficientsÂij and b̂i are obtained by substituting (22) into (4) and extracting the
coefficients of the terms v̂iv̂j and v̂i, respectively. This gives:

Âij = sisjAij , (23)

b̂i = bisi + (κ/2)
∑

j
si(1− sj)Aij . (24)

By constructing F̂ (v̂) in this way, we ensure that all the elements of its gradient are
nonnegative: ∂F̂ /∂v̂i ≥ 0. Thus, if we define matrices Â± from Â using the same
construction as in (5), and if we define âi = (Â+

v̂)i and ĉi = (Â−
v̂)i, then the

multiplicative update

v̂i ←− v̂i





−b̂i +
√

b̂2
i + 4âiĉi

2âi



 (25)

will decrease F̂ (v̂) by driving all the variables v̂i toward zero. Note that by decreas-
ing F̂ (v̂), the update also decreases F (v) since the two differ only by a constant.



Moreover, by enforcing the nonnegativity constraint on v̂i, the update enforces the box
constraint on vi: in particular, either vi decreases toward zero or increases toward κ.
To distinguish this scheme from the clipped multiplicative update in (19), we will refer
to (25) as the “flipped” multiplicative update, noting that the effect of the change of
variables in (20) is simply to reverse the direction of the multiplicative update.

Sum and box constraints can be jointly enforced by combining the ideas in this
section and the previous one. In this case, at each iteration the change of variables
in (20) is first used to obtain a quadratic formF̂ (v̂) with ∂F̂ /∂v̂i≥0 for all i. Next, the
sum constraint in (13) is rewritten in terms of the variables v̂i. Finally, the multiplicative
update in (16) is applied to the variables v̂i.

3 Large Margin Classifiers

The problems in nonnegative quadratic programming studied in Section 2 arise in the
training of large margin classifiers. These classifiers—though decades old—have gen-
erated renewed interest due to their underlying role in support vector machines (SVMs).
SVMs use kernel methods to map inputs into a higher, potentially infinite, dimensional
feature space. The maximum margin hyperplane in this feature space is then computed
as the decision boundary between classes. SVMs have been applied successfully to
many problems in machine learning and statistical pattern recognition [7, 18, 19, 22].

Computing the maximum margin hyperplane in SVMs gives rise to a quadratic
programming problem with nonnegativity constraints. There is a large literature on it-
erative algorithms for nonnegative quadratic programming in general and for SVMs as
a special case [3, 7, 18, 19]. In this section, we will begin by briefly reviewing the con-
strained optimizations that arise in SVMs, then show how the multiplicative updates
from Section 2 are applied to these problems. Finally, we will compare the updates to
other algorithms for training SVMs.

3.1 Costs and Constraints

Let {(xi, yi)}
N
i=1 denote a training set of labeled examples with binary labels yi = ±1,

and let K(xi,xj) denote the kernel used to compute dot products between inputs in the
feature space. We consider first the realizable setting where the examples are linearly
separable in the feature space generated by the choice of kernel. The decision rule of
the maximum margin classifier is given by the signed function:

y = sgn (K(w∗,x) + b∗) , (26)

where w
∗ is the normal vector to the maximum margin hyperplane and |b∗| is its dis-

tance from the origin. The vector w
∗ can be written as a weighted sum over examples,

w
∗ =

∑

i

α∗
i yixi , (27)

where the coefficients α∗i are non-zero only for the so-called support vectors that lie
closest to the hyperplane. By convention, the scale of w

∗ is set by requiring

yi[K(w∗,xi) + b∗] ≥ 1 (28)



for all examples in the training set, with equality holding only for support vectors.
A special case of the above occurs when we simply set b∗ = 0, constraining the

separating hyperplane to pass through the origin. In this case, the weight vector w
∗ for

the maximum margin classifier (assuming the examples remain linearly separable) is
obtained by minimizing the loss function:

L(α) =
1

2

∑

ij

αiαjyiyjK(xi,xj)−
∑

i

αi , (29)

subject to the nonnegativity constraints αi ≥ 0. The coefficients α∗i of the weight vec-
tor are determined by the minimum of this loss function, and the solution satisfies
yiK(w∗,xi)≥1 for all examples in the training set.

The optimization is only slightly changed when we no longer constrain the separat-
ing hyperplane to pass through the origin. In this case, the coefficients α∗i in (27) are
again obtained by minimizing (29), but subject to the sum constraint

∑

i

yiαi = 0 , (30)

in addition to the nonnegativity constraints αi ≥ 0. The threshold b∗ does not appear
in (29), but it can be computed from the optimal weight vector using (28). The classi-
fier with b∗ 6= 0 resulting from the additional sum constraint is guaranteed to have an
equal or larger margin than the one whose separating hyperplane is constrained to pass
through the origin.

In the realizable setting, there is no need to relax or soften the constraints in (28),
and the resulting classifiers are known as hard margin classifiers. For examples that
are not linearly separable, one must relax these constraints while attempting to mini-
mize the required degree of slack. The resulting classifiers are known as soft margin
classifiers. If a one-norm is used to penalize slack, then the problem for computing the
optimal classifier is hardly changed from the realizable setting. In this case, the weight
vector w

∗ is again obtained by minimizing (29), but now subject to the box constraints

0 ≤ αi ≤ κ (31)

in addition to the sum constraint in (30) and the nonnegativity constraints αi≥ 0. The
constant κ is a free parameter that measures the penalty per unit slack in the margin
constraints (28). The determination of the bias b∗ is somewhat more complicated for
soft margin classifiers; further details can be found in standard treatments [19].

3.2 Multiplicative Margin Maximization (M3 )

The optimizations required for large margin classifiers are special cases of the prob-
lems in nonnegative quadratic programming considered in Section 2. In particular, the
loss function in (29) is a special case of (4) with Aij = yiyjK(xi,xj) and bi = −1.
The simplest SVM occurs in the realizable setting where the separating hyperplane is
constrained to pass through the origin. This SVM can be trained by the update rule:

αi ←− αi

[

1 +
√

1 + 4(A+α)i(A−α)i

2(A+α)i

]

, (32)
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Fig. 1. Plots of the objective L(α) in (29) versus training time on USPS handwritten digits. Left:
SMO and the flipped M 3 update in (25). Right: Kernel Adatron and the clipped M3 update in (19).
The circles mark batches of one hundred M3 updates.

where A
± are defined as in (5). For hard margin classifiers whose separating hyper-

planes do not pass through the origin, the sum constraint in (30) corresponds to the
constraint in Section 2.2; for soft margin classifiers, the box constraints in (31) corre-
sponds to the constraints in Section 2.3. The multiplicative updates in these sections are
easily specialized to SVMs, and we refer to this general framework for training large
margin classifiers as Multiplicative Margin Maximization (M3 ).

We have applied M3 algorithms for SVMs to three well-known data sets. The first
two are the sonar [11] and breast cancer [15] data sets from the UCI Machine Learning
Repository. These are small data sets containing 208 and 683 examples, respectively.
The third data set is the collection of USPS handwritten digits [20]; this is a larger data
set, containing 7291 examples for training. All these data sets have been benchmarked
using SVMs. Using M3 algorithms, we obtained large margin classifiers with similar
error rates on training and test sets. This is not too surprising since the same maximum
margin hyperplane was being computed for all the benchmarks. Arguably, then, the
interesting comparisons are not in terms of error rates, but in terms of other criteria.
These are discussed next.

3.3 Comparison to Other Approaches

A large number of algorithms have been investigated for nonnegative quadratic pro-
gramming in SVMs. We have not attempted an exhaustive comparison, but instead have
focused on similarly motivated approaches (such as EG) and on competing approaches
that represent the state-of-the-art for large applications.

EG updates have been used to train SVMs [6]. These updates share many of the
advantages of M3 updates: natural handling of nonnegativity constraints, ease of imple-
mentation, and simple parallelization. A drawback of EG updates is the need to choose
a learning rate and the lack of theoretical guidance for choosing it; this issue does not
arise in M3 updates, which additionally provide a guarantee of monotonic convergence.
Note that both EG and M3 updates are complicated by the sum constraint in (30). It
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Fig. 2. Left: Percentage of misclassification against training time of the flipped M 3 algorithm and
SMO on USPS training data. Right: Percentage of misclassification against training time of the
clipped M3 algorithm and Kernel Adatron algorithm on the testing data.

is worth pointing out, however, that for many problems, the bias term in large margin
classifiers (though well motivated) does not have a significant effect on generalization.

EG and M3 updates for training SVMs are both applied in parallel to all the coeffi-
cients αi that appear in the loss function (29). Subset methods constitute a fundamen-
tally different approach to nonnegative quadratic programming. These methods split the
variables at each iteration into two sets: a fixed set in which the variables are held con-
stant, and a working set in which the variables are optimized by an internal subroutine.
At the end of each iteration, a heuristic is used to transfer variables between the two
sets and improve the objective function.

Two subset methods have been widely used for training SVMs. The first is the
method of sequential minimal optimization (SMO) [16], which updates only two coef-
ficients of the weight vector per iteration. In this case, there exists an analytical solution
for the updates, so that one avoids the expense of an iterative optimization within each
iteration of the main loop. SMO enforces the sum and box constraints for soft margin
classifiers. If the sum constraint is lifted, then it is possible to update the coefficients of
the weight vector sequentially, one at a time, with an adaptive learning rate that ensures
monotonic convergence. This approach is known as the Kernel Adatron [4, 10].

SMO and Kernel Adatron are among the most viable methods for training SVMs on
large data sets. Figures 1 and 2 compare the amount of CPU time for these approaches
and two types of M3 updates (flipped and clipped) on the USPS data set of handwrit-
ten digits. SVMs were trained to distinguish the digit “2” from the rest of the digits. A
Gaussian kernel K(xi,xj) = e−||xi−xj ||

2/2σ2

was used, with σ=6.0, and digit images
were smoothed prior to training and testing. The slack penalty was κ=10. Parameters
ensuring rapid convergence of SMO [16] and Kernel Adatron [4, 10] were set as in pre-
vious implementations. Note that SMO and the flipped M3 updates in (25) enforce both
sum and box constraints, while the Kernel Adatron and the clipped M3 updates in (19)
enforce only box constraints. On this data set, the figures show that the M3 updates take
one to two orders of magnitude longer to converge to solutions of similar quality, as



measured either by the minimum value of the objective function, L(α), or by the error
rates on the training and test sets.

From these results, it appears that the main utility of the M3 updates lies in their ap-
plication to small data sets [21], where computation time is not a primary concern. The
simple, parallel form of M3 updates makes them easy to implement in higher-level lan-
guages, such as MATLAB. The parallel form, however, also has its drawbacks. Parallel
M3 updates require more computation per iteration than subset methods, involving the
whole Gram matrix for each update. Also, on large data sets with redundant inputs, sub-
set methods such as SMO and Kernel Adatron appear to have the same advantages over
M3 updates as on-line learning algorithms have over batch algorithms. A final draw-
back of M3 updates, in their simplest form, is that they cannot set a variable directly to
zero. Despite these issues, however, we believe M3 updates provide an attractive starting
point for experimenting with large margin classifiers.

4 Conclusion

In this paper, we have derived multiplicative updates for nonnegative quadratic pro-
gramming by exploiting hidden structure in the objective function. Several interesting
questions remain. For example, the decomposition of A=A

+ −A
− could be achieved

in many ways; the particular scheme in (5) is probably not optimal. The optimal de-
composition and resulting performance of the algorithm are likely to depend on spe-
cific properties of the data set. Of potential interest is the algorithm’s behavior on data
sets (such as text documents6) with sparse inputs and unbalanced numbers of positive
and negative examples. The updates could also be used as part of a subset method, in-
stead of being applied completely in parallel. This might be one way to accelerate the
M3 updates for SVMs, by removing the need to multiply by the entire Gram matrix at
each iteration. Finally, we are interested in nonnegative quadratic programming prob-
lems that arise on graphs—in particular, problems with connections to inference and
learning in probabilistic graphical models.
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A Proof of Theorem 1

The proof of monotonic convergence is based on the derivation of an auxiliary function.
Similar proofs have been used for many models in statistical learning [5, 8, 9, 14, 17].

A.1 Monotonic Convergence

An auxiliary function G(ṽ,v) has the two crucial properties that F (ṽ)≤G(ṽ,v) and
F (v)=G(v,v) for all nonnegative ṽ,v. From such an auxiliary function, we can derive



the update rule v
′ = arg minṽG(ṽ,v) which never increases (and generally decreases)

the objective function F (v):

F (v′) ≤ G(v′,v) ≤ G(v,v) = F (v) . (33)

By iterating this procedure, we obtain a series of estimates that improve the objec-
tive function. For nonnegative quadratic programming, we derive an auxiliary function
G(ṽ,v) by decomposing F (v) in (4) into three terms and then bounding each term
separately:

F (v) =
1

2

∑

ij

A+
ijvivj −

1

2

∑

ij

A−
ijvivj +

∑

i

bivi , (34)

G(ṽ,v) =
1

2

∑

i

(A+
v)i

vi
ṽ2

i −
1

2

∑

ij

A−
ijvivj

(

1 + log
ṽiṽj

vivj

)

+
∑

i

biṽi . (35)

In the following, we show that F (ṽ) ≤ G(ṽ,v). We begin by focusing on the first term
on the right hand side of (34–35) and establishing that:

1

2

∑

ij

A+
ij ṽiṽj ≤

1

2

∑

i

(A+
v)i

vi
ṽ2

i . (36)

To this end, let δij denote the Kronecker delta function, and let K be the diagonal matrix
with elements

Kij = δij
(A+

v)i

vi
. (37)

Equation (36) is equivalent to the statement that the matrix (K −A
+) is semipositive

definite. To show this, we consider the matrix M whose elements

Mij = vi(Kij −A+
ij)vj (38)

are obtained by rescaling componentwise the elements of (K−A
+). Thus, (K−A

+)
is semipositive definite if M is semipositive definite. We note that for all vectors u:

u
T
Mu =

∑

ij

uiMijuj (39)

=
∑

ij

uiujvjδij(A
+
v)i −

∑

ij

vivjuiujA
+
ij (40)

=
∑
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vivjA
+
iju
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ij (41)

=
∑
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vivjA
+
ij
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1

2
u2
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2
u2

j − uiuj

]

(42)

=
1

2

∑

ij

A+
ijvivj(ui − uj)

2 (43)

≥ 0 . (44)



Thus, (K−A
+) is semipositive definite, proving the bound in (36). To bound the second

term on the right hand side of (34), we use the inequality: z ≥ 1 + log z. The second
term on the right hand side of (35) is obtained by substituting z = ṽiṽj/(vivj) into this
inequality:

ṽiṽj ≥ vivj

(

1 + log
ṽiṽj

vivj

)

. (45)

Combining (36) and (45), and noting that the third terms on the right hand sides of (34–35)
are the same, we have shown that:

F (ṽ) ≤ G(ṽ,v) . (46)

It is easy to verify that F (v) = G(v,v). Therefore, G(ṽ,v) is an auxiliary function,
and we can use it to improve F (v). Note that G(ṽ,v) diverges as ṽi→0; thus, except
in degenerate cases, its minimum occurs at positively valued ṽi. The minimization of
G(ṽ,v) is performed by setting its derivative with respect to ṽi to zero, leading to the
multiplicative updates in (12). Minimizing G(ṽ,v) with box constraints on ṽi leads to
the clipped multiplicative updates in (19).

A.2 Convergence to Global Minimum

The equality in (46) is satisfied if and only if ṽ = v, implying that the update rule
has reached a fixed point. The existence of an auxiliary function guarantees monotonic
convergence to a fixed point, though not (in general) convergence to a global mini-
mum. The optimization in nonnegative quadratic programming, however, is convex.
Using this, one can prove the second statement of Theorem 1, namely that under the
multiplicative updates, the objective function F (v) converges to the value of its global
minimum.

Let v
∗ be a fixed point that emerges from iteratively applying the update in (12)

to an initial vector v with no zero elements. By examining the sign of the gradient at
v
∗, we can show that F (v∗) represents a global minimum. In particular, if v∗

i 6= 0,
then as shown in Section 2.1, it follows that (∂F/∂vi)|v∗ =0. Alternatively, if v∗

i =0,
we can show that (∂F/∂vi)|v∗ ≥ 0. Together, these are precisely the conditions of the
Kuhn-Tucker Theorem, establishing that F (v) attains its global minimum value at v∗.

To prove the latter statement, we suppose that v∗
i = 0 occurs at a “reachable” fixed

point and show that (∂F/∂vi)|v∗ <0 leads to a contradiction. If the partial derivative is
negative at v∗

i = 0, then by continuity there exists an ε > 0 such that (∂F/∂vi)|v′ < 0
for all v

′ such that |v′ − v
∗|<ε. As observed in Section 2.1, the multiplicative update

increases vi if ∂F/∂vi < 0; thus in this region, the update will push vi to larger and
larger values until it escapes from the ε-region. This leaves only one scenario in which
v∗i = 0 could emerge as a reachable fixed point—namely, if an update from outside
the ε-region sets vi directly to zero. Examining the update rule, we see that this cannot
happen if the terms ai =(A+

v)i and ci =(A−
v)i are strictly positive when v does not

contain any zero elements. This is easily guaranteed by construction of the matrices A+
ij

and A−
ij ; see the footnote in Section 2.1. Thus, we have a contradiction.



B Proof of Theorem 2

First, we show that (17) has a unique solution. Computing the derivative of the left hand
side with respect to λ gives:

∑

i

βivir
′
i(λ) =

∑

i

β2
i vi

2ai

[

−1 +
bi + λβi

√

(bi + λβi)2 + 4aici

]

. (47)

Every term in this sum is strictly negative if ai > 0 and ci > 0, which can be assumed
without loss of generality. (See the footnote in Section 2.1.) Thus, the sum as a whole
is always negative, implying that the left hand side of (17) decreases monotonically
with λ. The existence of a solution to (17) is implied by the assumption of a non-empty
feasible region, while the monotonicity of the left hand side establishes uniqueness.

To prove convergence of (18), let λt denote the value after t iterations of the update
rule, and let λ∗ denote its fixed point. The proof is typical of fixed point theorems in
that we will show each update moves λt+1 closer to λ∗ than λt. To begin, note that:

∣

∣λt+1 − λ∗
∣

∣ =

∣

∣

∣

∣

λt − λ∗ +
1

R

(

∑

i
βivi[ri(λ

t)− ri(λ
∗)]

)

∣

∣

∣

∣

. (48)

Consider the final term on the right hand side of (48). By Taylor’s Theorem, there exists
a value λ̄ between λt and λ∗ such that:

∑

i

βivi[ri(λ
t)− ri(λ

∗)] =
∑

i

βivi(λ
t − λ∗)r′i(λ̄) . (49)

Substituting (49) into the right hand side of (48) and collecting terms, we obtain a
mapping of the form:

∣

∣λt+1 − λ∗
∣

∣ = |λt − λ∗|

∣

∣

∣

∣

1 +
1

R

∑

i
βivir

′
i(λ̄)

∣

∣

∣

∣

. (50)

We now exploit the fact that the left hand side of (17) decreases monotonically with λ,
and that its derivative is negative and bounded below. In particular, by setting

R =
∑

i

β2
i vi

ai
(51)

and appealing to the form of the derivative in (47), it is easily shown that the factor
multiplying |λt − λ∗| in (50) is less than unity. It follows that (48) is a contraction
mapping, with |λt+1−λ∗| < |λt−λ∗|. In practice, we have found the iterative procedure
in (18) to work well for solving (17), though more sophisticated root-finding methods
are certainly possible.
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