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Abstract 
We present a cache-based approach to handling the difficult problem 

of performing visually acceptable texture resampling/filtering while ray- 
tracing. While many good methods have been proposed t o  handle the  
error introduced by the ray-tracing algorithm when sampling in screen 
space, handling this error in texture space has been less adequately ad- 
dressed. Our solution is to  introduce the Convolution Mask Approxima- 
tion Module (CMAM). The  CMAM locally approximates the convolution 
region in texture space as a set of overlapping texture triangles by us- 
ing a texture sample caching system and ray tagging. Since the caching 
mechanism is hidden within the CMAM, the ray-tracing algorithm itself 
is unchanged while achieving an adequate level of texture filtering (area 
sampling as  opposed to point sampling/interpolation in texture space). 
The  CMAM is easily adapted t o  incorporate prefiltering methods such 
as MIP mapping and summed-area tables as  well as direct convolution 
methods such as ellipt,ical weighted average filtering. 
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I Introduction 

Texture resampling is a well researched area of computer graphics. Adequate 
methods exist for handling the introduction of aliasing errors while "shrinkwrap- 
ping" a digital image onto the surface of a computer-generated object[6, 4, 13, 
14, 18, 33, 11, 20, 17, 151. Also, there exists a codification of the steps needed to 
perform the process in an "ideal" (alias-free) manner[22, 241. These techniques 
rely on area information from the rendering algorithm in order to  perform their 
function and the assumption is made that this information is readily available. 
The renderer is expected to provide the pixel boundary in screen space and the 
compound mapping ( r )  from texture to screen space (surface parameteriza- 
tion combined with the view and screen projection). With this information the 
filtering module can calculate the pixel's extent in texture space (via inverse 
projection) and perform filtering within this extent. Exactly how each filtering 
method uses this informatioil is case dependent, but all the methods referenced 
require some notion of the pixel's inverse projection into texture space. 

Ray-tracing research has given us the ability to  accomodate many optical 
phenomena easily within a computer-modelled environment[32, 8, 7, 19, 281. A 
problem exists, however, in that the ray-tracing renderer neither explicitly com- 
putes the pixel boundary in screen space, nor explicitly constructs the compound 
mapping (the screen projection is replaced by the geometric ray intersection 
process). This appears to preclude using the well-established texture filtering 
algorithms without changing them severely or compromising the simplicity of 
the ray-tracer. 

We introduce and develop the Convolution Mask Approximation Module 
(CMAM) and show how this simple caching module and ray tagging system 
can be used to create an approximation to the texture space filter extent (con- 
volution region) that allows the ray-tracer to perform texture filtering without 
affecting its inherent simplicity. It will also be shown that this process adds 
only O(1) volume (time x space) complexity to the cost associated with any 
of the adapted t,exture filtering methods. We conclude with examples of how 
to use the CMAM in conjunction with MIP maps[33], summed-area tables[ll], 
and the EWA filtering technique[20]. 

2 Applying Textures while Ray-Tracing 

Applying textures while ray-tracing can be thought of as a multi-criteria sam- 
pling process. Since only a finite number of rays can be cast for any image, 
aliasing in screen space is always a concern - for example, undersampling the 
screen space image function can allow objects to  "fall between the cracks." In 
addition, the presence of texture mapping means that the sample locations will 



be used to acquire texture space information. Due to the projective native of 
the ray tracing "camera" geometry and the nonlinearity of many explicit surface 
parameterizations, samples that are well placed in screen space are not necessar- 
ily well placed in object space or in texture space (Figure I ) ,  therefore, essential 
texture information maybe missed. Neither area sampling nor increasing the 
sampling rate solves the problem. 

Object Space (World) 

' . Surface Param 

Texture Space (Image) 

Screen Space (One Pixel) 

Figure 1: Dense Screen Space Distribution: Sparse in Object and Texture Space 

Area sampling requires performing exact integration over the spatial extent 
of the projected pixel. No information is lost as with point sampling, but per- 
forming the integration is expensive, if not intractable. Two early attempts 
were made at performing this type of area sampling in a ray-style renderer: 
cone-tracing[l] and beam-tracing[23]. Cone-tracing treats each ray as a cone 
emanating from the chosen point and having a divergence angle. Beam-tracing 
projects a bundle of rays as a polygonal beam into the scene along the direction 
that the infinitesimally thin ray would travel. Both methods require many limit- 
ing assumptions to be made about the environment in order to  remain tractable. 
These limitations drastically effect the usefulness of the technique. 

Modifying the sampling rate (number of rays processed), using statistically 
significant samples in an attempt to adequately sample in screen or texture 
space, can minimize the affects of aliasing energy but does not remove the 
energy[l2, 25,7,  281. Since a good portion of the ray-tracer's running time can be 



attributed t o  intersection calculations[32] adding extra samples can significantly 
affect a ray-tracer's performance. It turns out that many computer graphics 
textures require ail infinite sampling rate to  be sampled adequately. 

Rather than modifying the sampling rate or allowing the limiting assump- 
tions of an area sampling ray-style renderer, our solution follows from texture 
filtering research by using a modified point/area sampling method based on a 
local set of known texture locations. This requires keeping a window of infor- 
mation on the texture sampling pattern for each textured object. 

3 Constructing the Convolution Region in Tex- 
ture Space 

The pixel's texture space extent (convolution region) is constructed by project- 
ing the pixel's boundary points into texture space (Figure 2). A ray-tracing 
algorithm could do this by firing rays through the corners of the pixel and 
then mapping the intersection points via the surface parameterization. This 

Object Space 

Screen Space 

Projection of Pixel 

into Texture Space 

via Inverse Compound 

Texture Space 

Figure 2: Convolution Region: Pixel Projection 

solution suffers from limitations[l, 231 due to the coupling of the rays and 
also precludes using any of the simple, stochastic approaches to screen-space 
antialiasing[l2, 25, 7,  281. The rays can still be treated independently if one 



is willing t o  redefine the manner in which the convolution region is defined 
(constructed). 

Ray Intersection/ 

Surface Param - 
Texture Space 

Screen Space (One Pixel) 

Figure 3: Convolution Region: Convex Hull of Texture Point Samples 

If we modify the definition of the convolution region to  include that area of 
texture space inside the convex hull of a set of texture space point samples (Fig- 
ure 3), an incremental approach to texture filtering while ray-tracing evolves. 

Adding s3 Incrementally 

Build the Convex 

Hull of the Convolution 

Region in Texture Space 

Figure 4: Incremental Construction of the Convolution Region 

Our incremental convex hull filtering method approximates the filtering re- 
gion in texture space as a set of (possibly) overlapping texture triangles (Figure 
4). The current sarnple location along with the two previous sample locations 
(provided the rays emanate from the same pixel) are used to give a local ap- 



proximation to  the texture area that needs to be filtered for this sample. This 
overestimates the convolution region by allowing for the inclusion of a texture 
sample more than once, but guarantees that only those samples inside the convex 
hull are included in the filtering operation. A non-incremental approach is not 
as useful because every point sample of texture space cannot easily/accurately 
be associated with a filtered texture intensity (filter values are only associated 
with areas incrementally bound by the point samples). 

3.1 Caching and the Convolution Mask Approximation 
Module 

Object Space (x,y,z) 

+ 
Surface Parameterization 

t 
Texture Space (u,v) 

+ 
CMAM Texture Access+ Texture Image 

+ 
Filtered Texture Intensity 

Figure 5: Placement of the Convolution Mask Approximation Module 

The convolution mask approximation module (CMAM) is a data structure 
and a set of routines that resides between the texture image (or data structure) 
and the surface parameterization (Figure 5) and implements the methodology 
described above. 

typedef f l o a t  Color [COLOR-SPACE] ; 

typedef s truct  cmam I 
/* Flag for  turning CHAW f i l t e r i n g  on */ 
in t  f i l t e r ;  

/ *  Ray IDS of cached samples */ 
in t  l a s t - i d ,  sec- last- id;  

/* Recursion l e v e l s  of cached samples * /  
i n t  l a s t  - l e v e l ,  sec- last  - level ;  

/* Sample (u ,v)  of cached samples */ 
f l o a t  la s t -u ,  sec-last-u; 



f l o a t  l a s t - v ,  sec- las t -v ;  

/* Texture d a t a  s t r u c t u r e  */ 
Color **map; 

/* Bounds of t e x t u r e  a r r ay  */ 
i n t  rows, c o l s ;  

3 Cmam, *Cmamptr; 

Filter 7 
l as t id  sec-last-id 

last _level sec-last-level 

Figure 6: CMAM and Associated Texture Data Structure 

last-u 

Instead of having the ray-tracer accessing the texture image directly and 
performing filtering itself, the CMAM takes the texture location, and returns 
the filtered texture value to  the ray-tracer. 

The convolution region is approximated as above with ray tagging being used 
to facilitate the process of finding related rays. Rays which are fired through 
pixels on the same scanline in screen space, and might ultimately be used to  
bound a region in texture space, are given the same ID and a starting recur- 
sion level of zero. IDS, levels, and sample locations are passed to  the CMAM 
which compares them with the most recent CMAM accesses. ID matching facil- 
itates the incremental building of the convolution area along the scanline. Level 
matching allows the accumulation of texture area information treating proxi- 

last-v sec-last-v 

map 

sec-last-u 

Texture Image or 

Prefiltering 

Data Structure 
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Figure 7: CMAM Approximation of Overlapping Texture Triangles 

mate groups of reflected/refracted rays as an approximation to  the travelling 
wavefront[l, 231. If the IDS and levels match then the region bounded by the 
samples in texture space is part of an approximation to the true convolution 
region. 

The CMAM then can use known filtering techniques such as MIP mapping, 
summed-area tables or an EWA scheme to filter the area and return a texture 
intensity (without any interdependence of the rays). No changes to the basic 
ray-tracing implementation are necessary. The ray-tracer acts as if it is point 
sampling in texture space. 

3.2 Using the  CMAM with Existing Techi~iques 

How the CMAM uses its local approximation of the convolution region is specific 
to  the type of texture filtering that is going to be performed. MIP mapping, 
summed-area tables, and EWA filtering require their convolution regions to  be 
described in different ways. When the texture sample is sent to the CMAM the 
ID is checked against the cached values. This current ID can match the IDS of 
both the cached samples, the ID of the most recently sample only, or any of the 
IDS in the cache. The problem the11 reduces to generating an area based on the 
number of cache hits counted and the texture space sampling pattern. 

3.2.1 MIP Map Approximation 



Zero Cache Hits  O n e  Cache Hit  T w o  Cache Hits  

Figure 8: MIP Map Approximation Using the CMAM 

Williams' MIP mapping[33] performs texture filtering by accessing a pre- 
filtered texture pyramid and performing trilinear interpolation. The pyramid is 
accessed with a d parameter which chooses the two levels which best approxi- 
mate the filtered region. Intra-level access is via the texture coordinate (u ,  v) 
and uses bilinear interpolation to reconstruct the texture value within the levels. 
The only hard part seems to be constructing d using the CMAM. 

We us the following MIP map level approximation algorithm. 

1. If the sample does not rnatch the most recent sample, use the highest 
level of the pyramid (the average intensity of the texture image) to trade 
blurring for aliasing (texture image with high frequencies), or use the 
lowest level of the pyramid (point sample) to trade aliasing for blurring 
(texture image with high frequencies). 

d = O  or d =  M A X L E V E L  

Point sampling trades aliasing for blurring, while using the fully averaged 
texture image trades blurring for aliasing. Since the human visual sustem 
is more tolerent of blurring than aliasing, we chose to  use the averaged 
texture image. 

2. If the sample matches the most recent sample use the length of the line 
between the two samples in the followiiig calculation: 

d = lg(1ength of line between samples) 

3. If the sample matches the both cached samples, fit an axis-aligned bound- 
ing box around the three samples. Use the length of the diagonal of this 
bounding box in the same calculation as above. 

d = lg(1ength of diagonal of bounding box) 



Z e r o  Cache Hits O n e  Cache Hit  T w o  C s i h e  H i t s  

Figure 9: Summed-Area Table Approximation Using the CMAM 

3.2.2 Summed- Area Table Approximation 

The summed-area table[ll] is not restricted to filtering square regions in 
texture space. It is accessed using the corners of the axis-aligned rectangular 
region that is t o  be convolved with a box or Gaussian filter. The summed-area 
table access is simple for the CMAM. 

1. If the sample does not match the most recent sample, use the texture 
space coordinate to either point sample or average the region from the 
origin of the summed-area table to the texture coordinate (same criteria 
as mentioned above). 

2. If the sample matches the most recent sample use the two texture space 
coordinates to create a rectangular region to be filtered using the summed- 
area table. 

3.  If the sample matches the both the cached samples, fit an axis-aligned 
bounding box around the three samples. Use the upper-right and lower- 
left coordinates to access the summed-area table. 

3.2.3 EWA Approximation 

The EWA algorithm[20] is a direct convolution algorithm (not prefiltering) 
and requires the semi-major and semi-minor axes of a texture space elliptical 
filtering region as well as a warped filter function. Since the ray-tracer lacks the 
inverse compound mapping T - l ,  computing the warped filter function can only 
be approximated. The axes for the texture space ellipse and the filter kernel 
access can be done as follows: 

1. No matches uses point sampling as with MIP maps or summed-area tables. 

2. If the sample matches the most recent sample use the two texture space 
coordinates to  create a line which represents the radius of a texture space 



Zero Cache Hits O n e  Cache Hit T w o  Cache Hits 

Figure 10: EWA Approximation Using the CMAM 

circle (degenerate ellipse). For each texture sample contained within the 
circle, use its distance from the center to access a circular symmetric filter 
kernal and weight the sample accordingly. 

3. If the sample matches both the cached samples, use the vector from the 
current sample to  one of the cached samples that is the longest as the 
semi-major axis of he texture space ellipse and the vector between the 
current point and the other cached sample as the semi-minor axis of the 
ellipse. The circularly symmetric filter kernel can then be accessed by the 
distance from the center of the ellipse to  the sample, normalized by the 
distance from the center of the ellipse to the boundary of the ellipse that 
runs through the sample point and its value used to weight the samples 
within the texture space ellipse. 

4 Convex Hull Weighting 

Since the CMAM caches only the last two texture samples it is possible that the 
area bounding the three most recent samples overlaps a region of the texture 
image that already has been included in the final filtered intensity for the current 
pixel. We have begun to investgate a method for incorporating the convex hull 
of the union of all the approximated convolutions into the CMAM. When a 
region is to be filtered, the region is differenced with the convex hull to  return 
that part of the convolution region which has not yet been incorporated into the 
filtered texture intensity (the DC value of the texture image is returned if the 
current region is completely enclosed within the convex hull of the approximate 
convolution region). This type of weighting will include each element of the 
texture image (within the true convolution region) at most once in the final 
filtered intensity, thereby yielding a better approximation to the true texture 
intensity. 



5 Conclusion 

The convolution mask approxiniation module provides a caching system which 
is useful for approximating the texture space extent of the screen space filter 
kernel. It uses ray cohereilce to locally approximate the filter extent as a set of 
triangular regions that tile areas of the true convolution region. Filtering then 
becomes possible using these areas to access either prefiltered data structures or 
a direct convolution filtering algorithm[33, 11, 201. With the use of the CMAM 
we are able to  perform texture filtering without changing the simplicity of the 
basic ray-tracing implementation or limiting any of its photo-realistic features. 
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Figure 12: Test Scene 1 with CMAM off 



Figure 13: Test Scene 2 with CMAM on 



Figure 14: Test Scene 2 with CMAM off 



Figure 15: Test Scene 3 with CMAM on 



Figure 16: Test Scene 3 w i t h  GbUMnff' 
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Figure 17: Test Scene 4 with CMAM on 



Figure 18: Test  Scene 4 with CMAM off 
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