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Abstract. We present a general method for proving properties of typed A-terms. This method is 
obtained by introducing a semantic notion of realizability which uses the notion of a cover algebra 
(as in abstract sheaf theory). For this, we introduce a new class of semantic structures equipped 
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showing that the closure conditions on candidates of reducibility can be viewed as sheaf conditions. 
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to the second-order (polymorphic) A-calculus (with types -t and V2), for which it yields a new 
theorem. 
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1 Introduction 

Kleene, Kreisel, and others ([13], [16], [26]), introduced realizability , a certain kind of semantics 
for intuitionistic logic. Realizability can be used to  show that certain axioms are consistent with 
certain intuitionistic theories of arithmetic, or to  show that certain axioms are not derivable in 
these theories (see Kleene [14], Troelstra [26], Troelstra and van Dalen [27], and Beeson [I]). Tait 
[24], introduced reducibility (or computability), as a technique for proving strong normalization for 
the simply-typed X-calculus. Girard [7], introduced the method of the candidates of reducibility a 
technique for proving strong normalization for the second-order typed X-calculus (and F, ). Stat man 
[23] and Mitchell [20], observed that reducibility can be used to prove other properties besides strong 
normalization, for example, confluence. 

The above lead to  some natural observations: 

a There are some similarities between reducibility and realizability, but they remain somewhat 
implicit. 

a Proofs by reducibility use an interpretation of the types, but such interpretations are very 
syntactical. 

a Proofs by reducibility seem to involve the construction of certain kinds of models. 

a Proofs by reducibility use various inductive invariants (due to  Girard [6, 71, Tait [24,25], Krivine, 
[17]), but it is hard to see what they have in common. 

These observations suggest the following two questions which are the primary concerns of this 
paper: 

1. What is the connection between realizability and reducibility? 

2. Is is possible to give more "semantic" versions of proofs using reducibility? 

This paper provides some answers to the above questions. In order to do so, we found that it 
was necessary to step away from the syntax to have a clearer view. Thus, we define an abstract 
notion of semantic realizability which uses the notion of a cover algebra (covering families used in 
abstract sheaf theory). For this, we introduce a new class of structures equipped with preorders, 
called pre-applicative structures. These structures need not be extensional. Kleene's recursive 
realizability and a variant of Kreisel's modified realizability both fit into this framework. In this 
setting, it turns out that the family ( r l [ ~ ] ) ~ ~ ~  of sets of realizers associated with the types, is a 
sheaf. Actually, we consider abstract properties P of these sets of realizers. The main theorem is 
the following: provided that the abstract property P satisfies some fairly simple conditions (P1)- 
(P5), if a type a is provable and M is a proof for a ,  then the meaning A([M]lp of M is a realizer 
of a that satisfies the property P. As a corollary, considering the term model for the simply-typed 
X-calculus (with types -+, x, +, and I), we obtain simple proofs for strong normalization and 
confluence. This approach sheds some new light on the reducibility method and the conditions on 
the candidates of reducibility. These conditions can be viewed as sheaf conditions. 

In a recent paper, Hyland and Ong [ll] show how strong normalization proofs can be obtained 
from the construction of a modified realizability topos. Very roughly, they show how a suitable 



quotient of the strongly normalizing untyped terms can be made into a categorical (modified re- 
alizability) interpretation of system F. There is no doubt that Hyland and Ong's approach and 
our approach are related, but the technical details are very different, and we are unable to  make a 
precise comparison a t  this point. What we can say is that our aim is not t o  provide a new class of 
categorical models, but rather to  provide a better axiomatization of the conditions that make the 
proof go through. For this purpose, we believe that the notion of a cover algebra is particularly 
well suited. Clearly, further work is needed to  clarify the connection between Hyland and Ong's 
approach and ours. 

In order to  motivate our approach and to help the reader's intuition, we first sketch our approach 
for the simply-typed A-calculus A'. 

Recall that the types and the terms of A' are given by the following grammar: 

M - c I  x I ( M M )  1 (Ax:a.M). 

The type-checking rules are as usual (see section 2), and we let A, denote the set of A-terms of 
type a. 

It is important to  observe that there are two classes of terms: 

1. Those created by introduction rules, or I-terms, Ax: a. M ;  

2. Those created by elimination rules, M N .  

I-terms play a special role, because the only way to create a redex is to combine an I-term with 
some other term. Terms that are not I-terms, are called simple, or neutral: x, c, M N .  

Girard realized the importance of simple terms (see his (CR1-CR3)-conditions in Girard [7]). 
However, Koletsos [15] realized the following even more crucial fact: 

Crucial  Fact: M N  Ap Q, where Q is an I-term, only if M itself reduces to an I-term. 

Let P = (P,),ET be a family of properties of the simply-typed A-terms (that type-check). For 
example, M E P, holds iff M is strongly normalizing (SN), or M E P, holds iff confluence holds 
from M. In Gallier [5], we obtained the following theorem. 

Theorem A. Let P be a family satisfying the conditions: 

(P I )  z E P,, c E P,, for every variable x and constant c of type a. 

(P2) If M E  P, and M then N E P,. 

(P3) If M is simple, M E P,,,, N E P,, and (Ax: a. M1)N E P, whenever M f p Ax: a .  MI, 
then M N  E P,. 

(P4) If M E P,, then Ax: a. M E P,,, . 
(P5) If N E P, and M[N/x] E P,, then 

(Ax: a. M ) N  E P,. 

Then, P, holds for all terms of type a, i.e. P, = A,, for every a E I. 

In particular, SN and confluence are easily shown to satisfy conditions (P1)-(P5), and as a 
corollary, we obtain that SN and confluence hold for A'. 



The proof of Theorem A uses a version of reducibility in which the types are interpreted as 
follows: 

[a] = P,, a a base type, 

[a + T] = {M I M E P,,,, and for all N ,  

if N E [a] then M N  E I T ] ) .  

The other crucial concept used in the proof is the notion of a P-candidate, inspired by the work 
of Girard, Koletsos, and Mitchell. 

A family S = (Su)uET of nonempty sets of terms is a P-candidate iff it satisfies the following 
conditions: 

(Sl)  s, c p,. 
(S2) If M E S, and M -p N ,  then N E S,. 

(53) If M is simple, M E P,, and Xz: y. M' E S, whenever M f Xz: y.  MI, then M E So. 

Condition (S3) can be rewritten as follows: 

(S3) If M is simple, M E P,, and Q E S, whenever M L p  Q and Q is an I-term, then M E So. 

The advantage of the above formulation is that it applies to more general calculi, as long as the 
notion of an I-term is well-defined. 

We now take the (somewhat wild) step of relating the previous concepts to covers (in the sense 
of Grothendieck) and sheaves (see MacLane and Moerdijk [18]). We can think of the set 

as a cover of M.' Then, writing Cov,(C, M )  for "the set C covers M", condition (S3) can be 
formulated as: 

(S3) If Cov, (C, M),  and C c So, then M E S,. 

We can view S = as a functor 

S :  LToP + Sets, 

by letting S ( M )  = {o I M E S,), where L'T is basically the term model, with preorder N 5 M iff 
M N. Indeed, (S2) says that S ( M )  S ( N )  if N 5 M. Then, (S3) can be formulated as: 

(S3) If Cov,(C, M ) ,  and a E S ( N )  for every N E C,  then a E S(M).  

For those familar with sheaves, this looks like a "sheaf condition". Indeed, the covers arising 
in reducibility proofs satisfy some conditions defined by Grothendieck in the sixties! These are the 
conditions for Grothendieck topologies on sites (see MacLane and Moerdijk [18]). 

In order to  make all this clear, first, we need to define some appropriate semantic structures 
that will be our sites. Normally, sites are categories. Thus, we will consider semantic structures 

'When M is a simple term that is not stubborn, see section 12 for details. 



where the carriers are equipped with preorders. These preorders are a semantic version of reduction 

( -*-to 1. 
In order t o  understand what motivated the definition of the semantic structures used in this 

paper, it is useful to  review the usual definition of an applicative structure for the simply-typed A- 
calculus (for example, as presented in Gunter [lo]). For simplicity, we are restricting our attention 
to  arrow types. Let 7 be the set of simple types built up from some base types using the constructor 
+. Given a signature C of function symbols, where each symbol in C is assigned some type in 7, 
an applicative structure A is defined as a triple 

where 

is a family of nonempty sets called carriers, 

(appa~7),,,ET is a family of application operators, where each app07' is a total function 
appalT: Au'7 x Aa + AT; 

and Const is a function assigning a member of Aa to  every symbol in C of type a 

The meaning of simply-typed A-terms is usually defined using the notion of an environment, 
or valuation. A valuation is a function p: X -t U(Aa)aE7, where X is the set of term variables. 
Although when nonempty carriers are considered (which is the case right now), it is not really 
necessary t o  consider judgements for interpreting A-terms, since we are going to  consider more 
general applicative structures, we define the semantics of terms using judgements. Recall that a 
judgement is an expression of the form I' D M:  a, where I?, called a context, is a set of variable 
declarations of the form XI: ul, . . .,x,: a,, where the xi are pairwise distinct and the a; are types, 
M is a simply-typed A-term, and a is a type. There is a standard proof system that allows to  type- 
check terms. A term M type-checks with type a in the context I? (where I' contains an assignment 
of types t o  all the variables in M )  iff the judgement I' D M:  a is derivable in this proof system. 
Given a context I', we say that a valuation p satisfies I' iff p(x) E A" for every x: a E I' (in other 
words, p respects the typing of the variables declared in I'). Then given a context I' and a valuation 
p satisfying r, the meaning [I' D M:  a l p  of a judgement D M:  a is defined by induction on the 
derivation of I' D M :  a ,  according to  the following clauses: 

[I' D x: a l p  = p(x), if x is a variable; 

[I' D c: a l p  = Const(c), if c is a constant; 

[r D M N :  r]p = appa~'([I' D M: ( a  + ~ ) ] p ,  [I' D N: a]p), 

[I'DAx: a. M: ( a  + r)]p = f ,  where f is the unique element of Aa" such that appU7'( f ,  a )  = 
[r, x: a D M :  r]lp[x: = a], for every a E Aa. 

Note that in order for the element f E to  be uniquely defined in the last clause, we 
need to  make certain additional assumptions. First, we assume that we are considering extensional 
applicative structures, which means that for all f ,  g E A"", if app( f ,  a )  = app(g, a )  for all a E A", 
then f = g. This condition garantees the uniqueness o f f  if it exists. The second condition is more 
technical, and asserts that each Aa contains enough elements so that there is an element f E A"'T 
such that appa*T(f, a )  = [I', x: a D M:  r]p[x: = a], for every a E A". 



Note that each operator app"*T: A"-+T x A" + AT induces a function AudT + [Au + AT], 
where [Aa =+ AT] denotes the set of functions from A" to AT, defined such that 

fu.""(f )(a) = a ~ p " ' ~ ( f ,  a ) ,  

for all f E and all a E A". Then, extensionality is equivalent to  the fact that each fun"*T is 
injective. Note that funu*': A"" -t [A" + AT] is the "curried" version of appa3T: x A" t AT, 
and it exists because the category of sets is Cartesian-closed. 

The clause defining [I'D Ax: a. M: ( a  + r)]p suggests that a partial map abst"tT: [Au + AT] -+ 
A"", "abstracting" a function cp E [Au + AT] into an element ab~ t "?~(cp )  E AadT, can be defined. 
For example, the function cp defined such that y(a) = [I', x: a b M: r]lp[x: = a] would be mapped to  
[I' D Ax: a. M:  ( a  + r)]p. In order for the resulting structure to be a model of P-reduction, we just 
have to  require that fun".' and a b ~ t " ~ ~  satisfy the axiom 

whenever cp E [Au + AT] is in the domain of a b ~ t " ? ~ .  But now, observe that if pairs of operators 
f unulT, a b ~ t " 1 ~  satisfying the above axiom are defined, the injectivity of f unulT is superfluous for 
defining [r D Ax: a. M:  ( a  + r)]p. 

Thus, by defining a more general kind of applicative structure using the operators funatT and 
abstalT, we can still give meanings to A-terms, even when these structures are nonextensional. In 
particular, our approach is an alternative to the method where one considers applicative structures 
with meaning functions, as for example in Mitchell [20]. In particular, the term structure together 
with the meaning function defined using substitution can be seen to be an applicative structure 
according to our definition. In fact, this approach allows us to  go further. We can assume that 
each carrier A" is equipped with a preorder do, and rather than considering the equality 

we can consider inequalities 
f ~ n " ' ~ ( a b s t " ' ~ ( y ) )  y. 

This way, we can deal with intentional (nonapplicative) structures that model reduction rather 
than conversion. We learned from Gordon Plotkin that models of @-reduction (or @q-reduction) 
have been considered before, in particular by Girard [8], Jacobs, Margaria, and Zacchi [12], and 
Plotkin [22]. However, except for Girard who studies qualitative domains for system F, the other 
authors consider models of the untyped A-calculus. A brief presentation of these models can be 
found at the end of section 3. 

Let us now briefly discuss how to generalize the above approach to the second-order (polymor- 
phic) A-calculus (with types + and V2). For this, we generalize pre-applicative structures. We now 
have a type algebra T, that we use to interpret the (syntactic) types. Then, the set of realizers 
r[a]p associated with a type a depends on a valuation p that assigns a pair (s, S) to every type 
variable, where s is an element of the type algebra T, and S is the s-component of some sheaf 
S = (Ss)sET. In this setting, it turns out that the family ( r l [ ~ ] p ) , ~ ~  of sets of realizers associated 
with the types, is itself a sheaf. Actually, we consider abstract properties P of these sets of realiz- 
ers. The main theorem is the following: provided that the abstract property P satisfies some fairly 



simple conditions (P1)-(P5), if I' D M: a and p(y) E r[S]p for every y: 6 E r, then the meaning 
A[I' D M: u]p of I'D M: a is a realizer of a that satisfies the property P. As an application, consid- 
ering a suitable term model for the second-order X-calculus, we obtain a new theorem for proving 
properties of terms in ~ ' 7 ' ~ .  As a corollary, we obtain simple proofs for strong normalization and 
confluence. This approach sheds some new light on the reducibility method and the conditions on 
the candidates of reducibility. These conditions can be viewed as sheaf conditions. 

In order t o  understand what motivated our definition of second-order pre-applicative structures, 
it is useful t o  review the definition of an applicative structure for the second-order (polymorphic) 
X-calculus. In order to deal with second-order types, first, we need to provide an interpretation 
of the type variables. Thus, as in Breazu-Tannen and Coquand [2], we assume that we have an 
algebra of types T ,  which consists of a quadruple 

where T is a nonempty set of types, +:T x T + T is a binary operations on T, [T + T ]  is a 
nonempty set of functions from T to T, and V is a function V: [T + TI + T .  

Intuitively, given a valuation 9: V + T (where V is the set of type variables), a type a E 7 will 
be interpreted as an element [a]9 of T .  Then, a second-order applicative structure is defined as a 
tuple 

(T, (A')sET, ( ~ P P " ~ ? s , ~ E T ,  (~~PP')~E[T-T]) ,  

where 

T is an algebra of types; 

(AS),ET is a family of nonempty sets called carriers, 

(appS~t)s,tET is a family of application operators, where each appSit is a total function 
apps~t: AS't x AS + At; 

(taPPa)@EIT,Tl is a family of type-application operators, where each tappa is a total function 
tappa: A'(@) x T + U ( A @ ( ~ ) ) , ~ ~ ,  such that tappa( f ,  t )  E for every f E A'('), and 
every t E T .  

In order to  define second-order applicative structures using operators like fun and abs t ,  we 
need to define the curried version tfun' of tappa: A'(') x T + U ( A @ ( ~ ) ) , ~ ~ .  For this, we define 
a kind of dependent product na(AS),ET (see definition 14.2). Then, we have families of operators 
t funO: A'(') -t flQ(AS),ET, and t a b ~ t ' : n ~ ( A ~ ) ~ € ~  + A'('), for every E [T + TI. 

This paper is organized as follows. The syntax of the simply-typed X-calculus X ' ~ X ~ + ~ L  is 
reviewed in section 2. Pre-applicative structures for A' are defined in section 3, and some examples 
are given. The crucial notions of P-cover algebras and of P-sheaves are defined for A' in section 4. 
The notion of P-realizability is defined for A' in section 5. In section 6, it is shown how to interpret 
terms in A' in pre-applicative structures. The realizability theorem for the typed X-calculus A' 
is shown in section 7. Pre-applicative structures for the typed X-calculus X'lX*+3L are defined in 
section 8. The notions of P-cover algebras and P-realizability are extended to X ' ~ X ~ + ~ L  in section 
9. In section 10, it is shown how to interpret terms in X ' I ~ I + ~ '  in pre-applicative structures. The 
realizability theorem for the typed X-calculus X'7X7+7L is shown in section 11. Section 12 contains 
an application of the main theorem of section 11 to prove a general theorem about terms of the 



system A'I~I+V'. The syntax of the second-order A-calculus A'tv is reviewed in section 13. Pre- 
applicative structures for A'*v2 are defined in section 14. The notions of P-cover algebras and of 
P-sheaves are defined for A'vP in section 15. The notion of P-realizability for A'yV2 is defined in 
section 16. In section 17, it is shown how to interpret terms in in pre-applicative structures, 
and some examples are given. The realizability theorem for the second-order typed A-calculus A'?* 
is shown in section 18. Section 19 contains an application of the main theorem of section 18 to 
prove a new general theorem for A'*v2 (theorem 19.6). Section 20 contains the conclusion and 
some suggestions for further research. Extensional and Pq pre-applicative structures are defined in 
section 21. 

2 Syntax of the Typed A-Calculus A'lxi+~'- 

Let 7 denote the set of (simple) types, consisting of base types, including the special base type 
I, and compound types ( a  + T),  ( a  x T), and ( a  + T). The presentation will be simplified if we 
adopt the definition of simply-typed A-terms where all the variables are explicitly assigned types 
once and for all. More precisely, we have a family X = (Xo),EI of variables, where each X, is a 
countably infinite set of variables of type a, and X, n X, = 0 whenever a # T. Using this definition, 
there is no need to drag contexts along, and the most important feature of the proof, namely the 
reducibility method, is easier to grasp. 

Instead of using the construct case P of inl(x:  a )  =+ M I inr(y: T) + N ,  it will be more 
convenient and simpler to use a slightly more general construct [M, N], where M is of type a + 6 
and N is of type T + 6, even when M and N are not A-abstractions. This will be especially 
advantageous for the semantic treatment to follow. Then, we can define the conditional construct 
case P of in l ( z :  a )  + M I inr(y: T) + N ,  where P is of type a + T, as [Ax: c. M, Ay: T. NIP. The 
type-checking rules of the system are summarized in the following definition. 

Definition 2.1 The terms of the typed A-calculus are defined by the following rules. 

a ,  whenx EX,, 

(we can also have c: c, for a set of constants that have been preassigned types). 

with a #I, 

where x E Xu; 

M: T 
(abstraction) 

(Ax: a. M): a + T 

M : u + T  N : a  
(application) 

(MN): T 

M : a  N:T 
(pairing) 

(M, N ) : a x r  



M : a x r  M : a x r  
(projection) (projection) 

?rl (M): a ?r2(M): r 

M: a M: r 
(injection) ( injection) 

i n l (M) :  a + r inr(M):  a + r 
M : ( a  -t 6) N : ( r  + 6) 

( co-pairing ) 
[M, N]: ( a  + 7) + 6 

The standard elimination rule for + is: 
P :a+r  M:6  N:6 

( by-cases) 
(case P of inl(x:  a) + M I inr(y:  r )  + N):  6 

where x E X ,  and y E X,. 

We can design reduction rules so that the construct [Ax: a. M, Ay: r. N I P  behaves just like 
case P of in l (x :  a )  + M I inr(y:  r )  + N.  For this, we design more atomic reduction rules for 
[M, N]. These rules do not incorporate the /?-reduction step implicit in the traditional reduction 
rules. 

Definition 2.2 The reduction rules of the system X ' - X ~ + ~ L  are listed below: 

(Ax: a. M ) N  - M[N/x], 

m((M,  N ) )  - M ,  

7r2((M, N ) )  - N, 
[M, N ] i n l ( P )  - MP,  

[M, N] in r (P )  - N P ,  

v U ' T ( ~ ) ~  - v T ( ~ ) ,  

? r ~ ( ~ U X T ( M ) )  - v U ( ~ ) >  

T ~ ( V ~ X T ( M ) )  + vT(M), 

LM7 N l  VU+T - ~ 6 ( ~ ) .  

The traditional rules for the case construct are 

case i n l ( P )  of in l (x :  a )  + M I inr(y:  r )  + N - M[P/x],  

case i n r ( P )  of in l (x :  a )  + M I inr(y:  r )  J N - N[P/y].  

The above reduction rules can be simulated by the [-, -]-rules of definition 2.2 and /?-reduction 
as follows: 

[Ax: a. M, Ay: r. N ] i n l ( P )  - (Ax: a. M ) P  -0 M[P/x] ,  

[Ax: a. M, Xy: r. N] in r (P )  - (Ay: r. N ) P  -p N[P/y].  

The reduction relation defined by the rules of definition 2.2 is denoted as -p (even though 
there are reductions other that /?-reduction). From now on, when we refer to a A-term, we mean a 
A-term that type-checks. We let A, denote the set of A-terms of type a. 



Given two preordered sets (A", 5") and (AT, AT), we let [Aa + AT] be the set of monotonic 
functions w.r.t. du and dT, under the pointwise preorder induced by dr defined such that, f 3 g 
iff f (a )  5T g(a) for all a E Au. 

3 Pre-Applicat ive Structures for A' 

In this section, some new semantic structures called pre-applicative structures are defined. In order 
to simplify the presentation, we restrict our attention to the type constructor +, and we do not 
discuss extensional or Pq pre-applicative structures. We also show that the term model can be 
viewed as a pre-applicative P-structures. 

Definition 3.1 A pre-applicative P-structure is a structure 

A = (A, 5 ,  fun, abs t ) ,  

where 

A = (A"),ET is a family of (nonempty) sets called carriers; 

(<u)oET is a family of preorders, each 5" on Au; 

abstuyT: [Aa + AT] + a family of partial operators; 

 fun"^^: AUdT 4 [Au + AT], a family of (total) operators. 

It is assumed that fun  and abs t  are monotonic. Furthermore, the following condition is satisfied 

(1) f ~ n " ~ ~ ( a b s t " ~ ~ ( y ) )  cp, whenever ab~ t "?~(cp )  is defined for cp E [Au + AT]; 

The operators fun induce (total) operators 

app"": x Au -+ Ar , such that, for every f E and every a E A" , 

Then, condition (1) can be written as 

(I7)  appu~T(absta9T(cp), a)  2 y (a ) ,  for all a E A", for p E [Au + AT], whenever a b ~ t " ' ~ ( y )  is 
defined. 

We say that a pre-applicative P-structure is an applicative P-structure iff in conditions (1)-(3), 
is replaced by the identity relation =. 

Intuitively, A is a set of realizers. We will omit superscripts whenever possible. 

When A is an applicative @-structure, then, in definition 3.1, condition(1) amounts to 

(1) funu1r o a b ~ t " ~ ~  = i d  on the domain of definition of abst .  

In this case, abs t  is injective and fun is surjective on the domain of definition of abs t  (and left 
inverse to abst) .  

When we use a pre-applicative p-structure to interpret X-terms, we assume that the domain of 
abs t  is sufficiently large, but we have not elucidated this last condition yet. Given M E A"" and 
N E A", app(M, N) is also denoted as MN. 



We can also define extensional pre-applicative structures and pre-applicative ,&?-structures, but 
this will done later. 

Let us give an (important) example of a pre-applicative ,f3-structure. 

Definition 3.2 Let A" = A, be the set of all typed A-terms of type a. We let app be the obvious 
construct (app(M,N) = MN).  Define N 5 M iff M Ap N. Finally, we need to define abst .  
For every (type-preserving) substitution cp, for every term M: r and for every variable x of type a, 
consider the function cp[x: a D M: r] from A" to AT, defined such that, 

cp[x: a D M: r](N) = M[cp[x: = N]], 

for every N:  a. Given any such function cp[x: a D M: r], we let 

abst(cp[x: a D M: T]) = (Ax: a. M)[cp]. 

The structure just defined is denoted as C T p .  

Clearly, app(abst(cp[x: c D M:  r]) ,  N )  cp[x: a D M: r](N), since 

app(abst(cp[x: a D M: r]), N )  = ((Ax: a. M)[y])N -p M[p[x: = N]]. 

Indeed, (Ax: a. M)[cp] is a-equivalent to (Xy: a. M [y /x])[cp] for any variable y such that y 4 dom(cp) 
and y 6 cp(z) for every z E dom(cp), and for such a y, (Ay: a. M[y/x])[cp] = (Ay: a. M[y/x][cp]). Then, 
for this choice of y, 

The other conditions of definition 3.1 are easily verified. 

We learned from Gordon Plotkin that models of @-reduction (or pq-reduction) have been con- 
sidered before, in particular by Girard [8], Jacobs, Margaria, and Zacchi [12], and Plotkin [22]. In 
[8], definition 1.12, Girard defines a A-structure as a triple D = (X, H,  li) consisting of 

(i) a qualitative domain X ,  

(ii) a stable function H from X to X + X ,  and 

(iii) a stable function K from X + X to X,  

where X + X is the set of all traces of stable functions from X to X. Girard then shows 
that a A-structure D models P-reduction if H o K C Idx,x, and that D models 7-reduction if 
K o H c Idx (note that the partial order C corresponds to the opposite of our ordering 5 ) .  Girard 
also states that such structures have nice features, in particular because they can be approximated 
by finite A-structures. 

The major difference with our approach is that the above models are intended for the untyped 
A-calculus, and that we do not have a construct such as X + X. 

In [22], section 3, Plotkin introduces a notion of model of @-reduction that he calls an ordered 
A-interpretation. After Mitchell [20], Plotkin defines such a structure as a triple P = (P ,  ., [-I(.)), 
where P is a partial order, . is a monotonic application operation .: P x P --+ P ,  and [.]I(.) is a 



meaning function, that maps terms and environments to P, and such that some obvious conditions 
on [I(.) hold. If the condition 

holds, we say that P is a model of P-reduction. Plotkin then proceeds to  show that such models are 
sound and complete with respect to  Curry-style type inference systems (also know as systems for F- 
deducibility), for various type disciplines. The main difference with our approach is that Plotkin's 
structures are models of the untyped A-calculus, and that meaning functions are an intrinsic part 
of their definition. In our definition, the meaning function is not part of the definition, but it is 
uniquely defined. For our purposes, this is a much more suitable approach. 

Jacobs, Margaria, and Zacchi [12] define models of P-reduction, P-expansion, and p-conversion, 
quite similarly to  Girard, but using cpo's, with D + D the set of all Scott-continuous functions 
from D to  D. They proceed to show how to construct models of filters with polymorphic and 
intersection types. 

Other references to models of reduction can be found in Plotkin [22] .  

4 P-Cover Algebras and P-Sheaves 

In this section, we introduce the bare minimum of concepts needed for understanding the notion 
of a sheaf on a site. Usually, sites are defined as categories with a notion of a cover, also called 
a Grothendieck topology (see MacLane and Moerdijk [18 ] ) .  However, we are only dealing with 
very special categories, namely preorders, and in such a case, the definition of a Grothendieck 
topology can be simplified. For example, a sieve, rather than being a set of arrows, is just an ideal. 
Thus, we will define all the necessary concepts in terms of preorders, referring the interested reader 
to  MacLane and Moerdijk [18] for a general treatment. Originally, the concept of a Grothendieck 
topology was introduced in order to generalize the notion of an open cover, so that sheaves could be 
defined on domains that are not necessarily topological spaces. Thus, the terminology "topology" 
is not the most appropriate, since what is really been generalized is the notion of a cover, and not 
the notion of a topology, and following Grayson [9], we prefer to use the term cover algebra. First, 
we need some preliminary definitions before defining the crucial notion of a cover. From now on, 
unless specified otherwise, it is assumed that we are dealing with pre-applicative p-structures (and 
thus, we will omit the prefix 0).  

Definition 4.1 Given a pre-applicative structure A, for any M E A", a sieve on M is any subset 
C A" such that, N 5 M for every N E C, and whenever N E C and Q 5 N ,  then Q E C. 
In other words, a sieve on M is downwards closed and below M (it is an ideal below M ) .  The 
sieve {N I N 5 M )  is called the maximal (or principal) sieve on M.  A covering family on a 
pre-applicative structure A is a family Cov of binary relations Cov, on 2Au x A", relating subsets 
of A" called covers, to elements of A". Equivalently, Cov can be defined as a family of functions 
Cov,: A" + 22Au assigning to every element M E A" a set Cov(M) of subsets of A" (the covers of 
M). Given any M E A", the empty cover 0 and the principal sieve {N I N 3 M )  are the trivial 
covers. We let t r i v ( M )  denote the set consisting of the two trivial covers of M .  A cover which is 
not trivial is called nontrivial. 



In the rest of this paper, we will consider binary relations P C_ A x  7 ,  such that P ( M ,  a)  implies 
M E Au, and for every a E 7, there is some M E Au s.t. P (M,  a). Equivalently, P can be viewed 
as a family P = (Pa)aE7, where each Pu is a nonempty subset of Au. The intuition behind P is 
that it is a property of realizers. In this section, .we will only consider cover conditions for the arrow 

type. 

Definition 4.2 Let A be a pre-applicative structure and let P be a family P = (Pa)aEl, where 
each P, is a nonempty subset of Au. A P-cover algebru (or P-Grothendieck topology) on A is a 
family Cov of binary relations Cov, on 2Au x Au satisfying the following properties: 

(0) Cov,(C, M )  implies M E P, (equivalently, P ( M ,  a)). 

(1) If Cov(C, M ) ,  then C is a sieve on M (an ideal below M) .  

(2) If M E Po, then ~ o v ( { N  I N 5 M),  M )  ( M  E Po is covered by the principal sieve on M) .  

(5) If ~ o v ( M )  = t r i v ( M ) ,  then Cov(MN) = t r i v ( M N ) ,  and if Cov(C, M )  and Cov(D, M N )  
with C and D nontrivial, then for every Q E D, there is some M' E C such that Q 5 M'N. 

A triple (A, P, Cov), where A is pre-applicative structure, P is a property on A, and Cov is a 
P-Grothendieck topology, is called a P-site . 

Condition (0) is needed to restrict attention to  elements having the property P. Covers only 
matter for these elements. Conditions (1)-(2) are two of the conditions for a set of sieves to be a 
Grothendieck topology, in the case where the base category is a preorder (A, 5 ) .  Conditions (3)  
and (4)  are missing, because they are only needed for the sum type + (or the existential type). 
They are also conditions on a Grothendieck topology.2 Condition (5) is needed to take care of the 
extra structure. Note that it is not necessary to assume that covers are ideals (downwards closed), 
but this is not harmful. 

We need to  come up with a semantic characterization of the simple terms, and also of the notion 
of a stubborn element. This can be done as follows in terms of covers. 

Definition 4.3 We say that M E Au is simple iff Cov(C, M )  for a t  least two distinct covers C'. We 
say that M E Au is stubborn iff Cov(M) = t r i v ( M )  (thus every stubborn element is simple). We 
say that a P-site (A, P, Cov) is scenic iff all elements of the form app(M, N )  (or M N )  are simple. 

An an example, let us consider the pre-applicative structure C T p  of definition 3.2. Recall that 
an I-term is a term of the form Ax: a. M .  A simple term (or neutral term) is a term that is not an 
I-term. Thus, a simple term is either a variable x ,  a constant c, or an application M N .  A term M 
is stubborn iff it is simple and, either M is irreducible, or M' is a simple term whenever M f p MI 
(equivalently, M' is not an I-term). 

Let P be a (unary) property of typed A-terms. We define a cover algebra Cov on the structure 
C T p  as follows. 

(1) If M E P, and M is an I-term, then 

Cov(M) = {{N I M N)}. 

2Readers who are anxious to  see the full set of conditions should take a look a t  definition 9.1. 
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(2) If M E P, and M is a (simple and) stubborn term, then 

Cov(M) = (0, {N I M Ap N)).  

(3) If M E P, and M is a simple and non-stubborn term, then 

+ ~ o v ( M )  = {{N I M L p  N),  {N I M -p Q A p  N, for some I-term Q)). 

The conditions of definition 4.2 are easily verified. The above notion of a cover will be used in 
section 12 to  prove a general theorem about the simply typed A-calculus. 

From now on, we only consider scenic P-sites. In order for our realizability theorem to hold, 
realizers will have to  satisfy properties analogous to  the properties (P1)-(P5) mentioned in the 
introduction. 

Definition 4.4 Let (A, P ,  Cov) be a P-site. Properties (P1)-(P3) are defined as follows: 

( P I )  P ( M ,  a ) ,  for some stubborn element M E A". 

(P2) If P ( M ,  a )  and M N ,  then P ( N ,  a) .  

(P3) If Cov,,,(C, M ) ,  P ( N ,  o), and P ( M f N ,  T )  whenever M f  E C ,  then P ( M N ,  r ) .  

From now on, we only consider relations (families) P satisfying conditions (P1)-(P3) of definition 
4.4. Condition ( P l )  says that each P, contains some stubborn element. Finally, we are ready for 
the crucial notion of a sheaf property. This property is a crucial inductive invariant with respect 
to  the notion of realizability defined in section 5. 

Definition 4.5 Let (A, P, Cov) be a P-site. A function S :  A -+ 2T has the sheaf property (or is a 
P-sheaf) iff it satisfies the following conditions: 

(Sl)  If a E S (M) ,  then M E Po. 

(S2) If a E S ( M )  and M > N ,  then a E S(N) .  

(S3) If Cov,(C, M )  and a E S ( N )  for every N E C ,  then a E S ( M ) .  

A function S: A + 27 as in definition 4.5 can also be viewed as a family S = (Sa)oEl, where 
S, = { M  E A I a E S (M)) .  Then, the sets S, are called P-candidates. The conditions of definition 
4.5 are then stated as follows: 

(Sl)  s, c PC. 

(S2) If M E S, and M t N ,  then N E S,. 

(S3) If Cov,(C, M) ,  and C C S,, then M E S,. 

This second set of conditions is slightly more convenient for proving our results. Note that 
according to  the first definition, S can also be viewed as a mapping 

S :  A + Sets. 



Then, (S2) means that M >- N implies S ( M )  C S(N).  Thus, S is in fact a functor 

S :  AoP + Sets ,  

viewing AOP equipped with the preorder k, the opposite of the preorder 5 ,  as a category. It turns 
out that the conditions of definition 4.5 mean that this functor is a sheaf for the Grothendieck 
topology of definition 4.2. 

Note that condition (S3) is trivial when C is the principal cover on M ,  since in this case, M 
belongs to C. Thus, condition (S3) is only interesting when M is simple, and from now on, this 
is what we will assume when using condition (S3). Also, since Cov,(C, M) implies that P (M,  a), 
any P satisfying conditions (P1)-(P3) trivially satisfies the sheaf property. Finally, note that (S3) 
and (P I )  imply that S, is nonempty and contains all stubborn elements in P, (because stubborn 
elements have the empty cover). 

By (P3), if M E P,,, is stubborn and N E P, is any element, then M N  E P,. Furthermore, 
M N  is also stubborn. This follows from property (5) of a cover. Thus, if M E P,,, is stubborn 
and N E P, is any element, then M N  E P, is stubborn. 

We conclude this section by showing explicitly that definition 4.5 is indeed a sheaf condition (for 
a general and complete treatment, see MacLane and Moerdijk [18]). A pre-applicative structure 
A can be viewed as a category whose objects are the elements of A, and whose arrows are defined 
such that there is a single arrow denoted a + b from a to b iff a 5 b. Then, AOp is the category 
with the same objects as A but with the reverse arrows (i.e., there is an arrow from a to b in AOP 
iff a k b). 

Let F:AOP -+ S e t s  be a functor. Thus, F assigns a set F(a)  to every element a E A, and a 
function F(b + a): F(b) -+ F(a )  to every pair a ,  b E A such that a 3 b (with the usual functorial 
conditions). For the sake of brevity, let us denote F(b + a): F(b) i F(a)  as F:: F(b) i F(a).  
Given any a E A, for any x E F(a)  and any b E A such that b 5 a, F t ( x )  is a member of the set 
F(b) that we will also denote as xlb. We can think of xlb as the restriction of x E F(a)  to b. 

Definition 4.6 Given a site (A ,P ,  Cov) and a functor F :  AOp -+ Sets ,  for any a E A and any 
cover C of a (a set C such that Cov(C, a)), a family {x, ( x, E F(c), c E C )  is a matching family 
for C iff for every c E C ,  

x,ld=xd f o r e v e r y d 3 c .  

An amalgamation of a matching family {x, I x, E F(c), c E C )  is an element x E F(a)  such that 

xJc = x, for every c E C. 

The functor F is a sheaf iff for every a E A, every cover C of a (a set C such that Cov(C, a ) ) ,  and 
every family {x, I xc E F(c), c E C),  if {x, 1 x, E F(c),  c E C )  is a matching family for C,  then 
it has a unique amalgamation x E F(a).  The functor F is a P-sheaf iff it is a sheaf, and for every 
a E A, F(a)  & 7 and a E F(a)  implies that a E P,. 

Since a cover is a sieve, d 5 c for c E C implies that d E C ,  and so xd is a well defined element 
(of F(d)). If in A, any two elements have a greatest lower bound, it can easily be shown that 
{z, ( x, E F(c), c E C )  is a matching family for C iff for all c, d E C, then 



If the functor F is a sheaf and has the property that the maps F,b: F(b) -. F(a )  (with a 5 b) 
are inclusion maps, then for any matching family {x, I x, E F(c), c E C),  if x is its amalgamation, 
x lc = xc implies that x = x, for all c E C. Thus, in this case, a matching family consists of a single 
element x such that x E F(c) for all c E C. Then, the property of being a sheaf is equivalent to 
the following condition: For every a E A, for every cover C of a ,  

if x E F(c) for every c E C, then x E F(a).  

Now, the functor S: AoP -+ Sets defined earlier is such that M N implies S ( M )  S(N) .  Thus, 
it is indeed technically true that definition 4.5 means that the functor S is a P-sheaf with respect 
to  the Grothendieck topology defined by Cov. 

5 P-Realizability for the Arrow Type 

In this section, we define a semantic notion of realizability. This notion is such that realizers 
are elements of some pre-applicative structure. In the special case when only the arrow type is 
considered, the definition of realizability does not refer to covers. However, cover conditions are 
needed for proving lemma 5.2, which basically shows that the notion of a P-sheaf is an invariant 
w.r.t. realizability. The notion of P-realiaability is defined as follows. 

Definition 5.1 Let (A, P ,  Cov) be a P-site. The sets ria] of realizers of a are defined as follows: 

ria] = P,,, a a base type, 

ria -+ r] = {M I M E P,,,,, and for all N ,  if N E r[u] then MN E r[r]) 

Note that instead of defining the family of sets ria],  we could have defined a binary relation 
r such that M r a iff M E r[a]. This is the more standard way of defining realizability. Another 
important point worth noting is that in the definition of r[a -+ r], we are considering only those 
M such that M E P,,,,. One might be concerned that this will cause difficulties in proving lemma 
5.2, but conditions (PI-P3) have been designed to overcome this problem. 

Lemma 5.2 Given a scenic P-site (A, P ,  Cov), if P satisfies conditions (P1)-(P3), then ( r [ ~ ] ) , , ~ ~  
has the sheaf property, and each ria] contains all stubborn elements in Po. 

Pmof. We proceed by induction on types. If a is a base type, r[a] = Pa, and obviously, every 
stubborn element in Po is in r[a]. Since ria] = Po, (Sl)  is trivial, (S2) follows from (P2), and (S3) 
is also t r i ~ i a l . ~  

We now consider the induction step. 

(Sl). By the definition of r[u -+ 7-1)) (Sl) is trivial. 

(S2). Let M E r[a t r], and assume that M k M'. Since M E Po,, by (Sl),  we have 
M' E Po,, by (P2). For any N E r[a]], since M E r[a -+ 71, we have M N  E r[r], and since 
M k MI, by monotonicity of app, we have M N  2 M'N. Then, applying the induction hypothesis 
at type r ,  (S2) holds for r[r], and thus M'N E rir]. Thus, we have shown that M' E P,,,, and 

31n fact, if r[a] = PC, (S3) holds trivially even at noi~base types. This remark is useful if we allow type variables. 
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that if N E r[a], then M'N E r[r]. By the definition of ria + r], this shows that M' E ria + TI, 
and (S2) holds a t  type a i 7. 

(S3). Assume that Cov,,,(C, M) ,  and that M' E ria + r] for every M' E C ,  where M is 
simple. Recall that by condition (0) of definition 4.2, Cov,,,(C, M )  implies that M E P,,,. We 
prove that for every N ,  if N E r[a], then M N  E PIT]. First, we prove that M N  E P,, and for this 
we use (P3). 

First, assume that M E P,,, is stubborn, and let N be in r[a]. By (Sl), N E Po. By the 
induction hypothesis, all stubborn elements in P, are in r[r]. Since we have shown that M N  E P, 
is stubborn whenever M E Po,, is stubborn and N E P,, we have M E r[a + r] .  

Now, consider M E Po,, non stubborn. If M' E C, then by assumption, M' E r[a i T ] ,  and 
for any N E r[alJ, we have M'N E r[r]. Since by (S1 ), N E Po and M'N E P,, by (P3), we have 
M N E P,. Now, there are two cases. 

If r is a base type, then r[r] = P, and M N  E r[r]. 

If r is not a base type, then M N  is simple (since the site is scenic). Thus, we prove that 
M N  E r[r] using (S3) (which by induction, holds a t  type r ) .  Assume that Cov,(D, M N )  for any 
cover D of M N .  If M N  is stubborn, then by the induction hypothesis, we have M N  E r [ [~] .  
Otherwise, since Cov,,,(C, M )  and C and D are nontrivial, for every Q E D ,  by condition (5) of 
definition 4.2, there is some M' E C such that Q 5 M'N. Since by assumption, M' E ria + r] 
whenever M' E C, and N E r[a], we conclude that Ad'N E r[r]. By the induction hypothesis 
applied at  type r, by (S2), we have Q E r[r], and by (S3), we have M N  E r[[r]. 

Since M E P,,, and M N  E r[r] whenever N E r[a], we conclude that M E r[a + r]. 

We now need to  relate A-terms and realizers. 

6 Interpreting terms in A' in Pre-Applicative Structures 

We show how terms in A' are interpreted in pre-applicative structures. For this, we define a 
meaning function. 

Definition 6.1 Given a pre-applicative structure A,  a valuation, or environment, is any function 
p: X i A, such that p(x) E An if x: a. A meaning function for A is a partial function A[[-](-) 
from pairs of (a-equivalence classes of) terms and valuations to  A, such that A[M]p is defined 
whenever M :  a, in which case A[M]p E A". In addition, a meaning function satisfies the following 
conditions: 

~ ~ x I P  = P(X) 

A ~ M N I ~ P  = ~PP(AUMIP, ~ U N I P )  

 AX: a. M]p = abst( f ), 

where f is the function defined such that, f (a)  = A[M]p[x: = a ] ,  for every a E A". 

It is routine t o  show that the following property holds: 

~ [ M ] P I  = d[M]p2, whenever p ~ ( x )  = p2(x) for every z E F V ( M )  (independence) 



If we consider the pre-applicative structure A = LTp defined just after definition 3.1, then a 
valuation p is a substitution with an infinite domain. Using an induction on the structure of terms, 
it is easily verified that LTp[M]p = M[cp], where cp is the substitution defined by the restriction 
of p to FV(M).  

7 The Realizability Theorem For A' 

In this section, we prove the realizability lemma (lemma 7.6) for A', and its main corollary, 
theorem 7.7. First, we need some conditions relating the behavior of a meaning function and 
covering conditions. We will also need semantic conditions analogous to  the conditions (P4)-(P5) 
of the introduction. 

Definition 7.1 We say that a site (A, P, Cov) is well-behaved iff the following conditions hold: 

(1) For any a E Au, any cp E [Au + AT], if abst(cp) exists, CovT(C, a p p ( a b s t ( ~ ) ,  a)), and C is 
a nontrivial cover, then c 5 p(a) for every c E C. 

In view of definition 6.1, definition 7.1 implies the following condition. 

Definition 7.2 

(1) For any a E Au, if CovT(C, app(A[Ax: a. M]p,a)) and C is a nontrivial cover, then c 5 
A[[M]p[x: = a] for every c E C.  

For the proof of the next lemma, we need to add two new conditions (P4) and (P5) to (P1)-(P3). 

Definition 7.3 Given a well-behaved site (A,P,Cov), properties (P4) and (P5) are defined as 
follows: 

(P4) For every a E Au, if ~ ( a )  E PT, where 9 E [Au + AT] and abs t (p)  exists, then abst(cp) E 

P U - + T .  

(P5) If a E Po and cp(a) E PT, where q E [Au + AT] and abst(p)  exists, then app(abst(v), a)  E 

PT 

In view of definition 6.1, definition 7.3 implies the following conditions. 

Definition 7.4 

(P4) If A[M]p E PT, then A[Xx: a. M]p E P,,,. 

(P5) If a E Pu and A[M]p[x: = a] E PT, then app(A[Ax: a. M]p, a)  E PT. 

Lemma 7.5 Given a well-behaved scenic site (A, P ,  Cov) and a family P satisfying conditions 
(PI)-(P5), for every p such that p(y) E r[y] for: every y: y E F V ( M ) ,  if for every a, (a E r[a] 
implies A[M]p[x: = a] E r[r]), then A[Ax: a. M]p E r[a -, r]. 



Proof. We prove that A[Xx:a. M]p E Po,, and that for every every a ,  if a E r[a], then 
app(AI[Xx: a. M]p, a)  E r[r]. We will need the fact that the sets of the form r[a] have the prop- 
erties (S1)-(S3), but this follows from lemma 5.2, since (P1)-(P3) hold. First, we prove that 
A[Xx: a. M]p E P,,, . 

Since p(x) E r[y] for every x: y E FV(M),  letting a = p(x), by the assumption of lemma 7.5, 
A[M]p E r[r]. Then, by (Sl) ,  and by (P4), we have A[Ax: a. M]p E P,,,. 

Next, we prove that for every every a ,  if a E r[a], then app(A[Xx: a. M]p, a )  E r[r]. Let us 
assume that a E r[a]. Then, by the assumption of lemma 7.5, A[M]p[x: = a] f r[r]. Thus, by 
(Sl), we have a E P, and A[M]p[x: = a] E P,. By (P5), we have app(A[Xx: a. M]p, a )  E P,. Now, 
there are two cases. 

If T is a base type, then r[r] = P,. Since we just showed that app(A[Ax: a. M]p, a )  E P,, we 
have app(A[Xx: a. M]p, a )  E r[r]. 

If r is not a base type, then app(A[Ax: a. M]p, a )  is simple (since the site is scenic). Thus, 
we prove that app(A[Ax: a. M]p, a )  E r[r] using (S3). The case where app(A[Ax: a. M]p, a )  is 
stubborn is trivial. 

Otherwise, assume that Cov,(C, app(A[Ax: a. M]p, a)), where C is a nontrivial cover. By 
condition (1) of definition 7.2, c 5 A[M]p[x: = a] for every c E C, and since by assumption, 
A[M]p[x: = a] E r[r], by (S2), we have c E r[r]. Since c E r[r] whenever c E C ,  by (S3), we have 
app(A[Ax: a. M]p, a )  E r[r]. 

We now prove the main realizability lemma for A'. 

Lemma 7.6 Given a well-behaved scenic site (A ,P ,  Cov), if P is a family satisfying conditions 
(P1)-(P5), then for every term M of type a, for every valuation p such that p(y) E r[y] for every 
y: y E FV(M),  we have A[M]p E r[a]. 

Proof. We proceed by induction on the structure of M .  If M is a variable, then A[x]p = p(x) E 
r[a] by the assumption on p. 

If M = MINI,  where MI has type a --t T and N1 has type a ,  by the induction hypothesis, 

A[Ml]p E r[a --t T] and AINl]p E ria]. 

BY the definition of ria -t T], we get app(A[Ml]p,A[Nl]p) E r[r], i.e., A[(MINl)]p E r[r], by 
definition 6.1. 

If M =  AX:^. MI, consider any a E r[a] and any valuation p such that p(y) E r[y] for 
every y: y E FV(Ml)  - {x). Note that by (S3) and (PI) ,  r[a] is indeed nonempty. Thus, the 
valuation ~ [ x :  = a] has the property that p(y) E r[y] for every y: y E FV(Ml).  By the induction 
hypothesis applied t o  Ml and p[x: = a], we have AIMl]p[x: = a] E r[r]. Consequently, by lemma 
7.5, A[Ax: a. Ml]p E r[a -, r]. 

If M is a closed term of type a ,  the independence condition of definition 6.1 implies that A[M]p 
is independent of p, and thus we denote it as A[M]. We get the following important theorem for 
A'. 



Theorem 7.7 Given a well-behaved scenic site (A, P,  Cov), if P is a family satisfying conditions 
(PI)-(P5), then for every closed term M of type a, we have AIM]  E Po. (in other words, the 
realizer AIM] satisfies the unary predicate defined by P ,  i.e, every provable type is realizable). 

Proof. Apply lemma 7.6 to  the closed term M of type a and to any arbitrary valuation p. 

8 Pre- Applicat ive Structures for X'~x~+~L 

In this section, the pre-applicative structures of section 3 are generalized to  the types -+, x ,  +, I. 
There are various kinds of pre-applicative structures: pre-applicative p-structures, pre-applicative 
Pq-structures, extensional pre-applicative p-structures, and the corresponding so-called applicative 
versions. For simplicity, in this section, we only present pre-applicative structures. The definition 
of the other structures is given in an appendix (see section 21). We also show that the term model 
can be viewed as a pre-applicative p-structures, and that the HRO models of Kreisel and Troelstra 
[16, 261 can be viewed as an applicative p-structure. 

Definition 8.1 A pre-applicative /?-structure is a structure 

A = (A, fun, abst,  II, (-, -), i n l ,  i n r ,  [-, -1, ,v)  

where 

A = is a family of (nonempty) sets called carriers; 

(do),ET is a family of preorders, each Ao on A"; 

a b ~ t " ? ~ :  [A" + AT] + A"", a family of partial operators; 

-+ [Aa j AT], a family of (total) operators; 

(-, -)"?': A" x A' -+ A"'', a family of partial pairing operators; 

AUXT + Au x AT, a family of (total) projection operators; 
[-, -]"qT*s: A " + ~  x -+ A ( ~ + ~ ) + ' ,  a family of partial copairing operators; 

inl"vT: A" -+ A"+', a family of (total) operators; 

inray': AT -+ A"+', a family of (total) operators; 

v,: AL -+ A", is a family of (total) functions. 

We define c i n l :  A ( ~ + ~ ) ' ~  + [A" =+ As], c inr :  A ( " + ~ ) + ~  i [A7 + A" , and 
cinf  : A("+')" -+ [ A ~  + A ~ ]  as follows: For every h E A("+ T)+s, 

for every a E A", 
cinr(h)(b) = fun(h)(inr(b)), 

for every b E A', and 
cinf (h)(c) = fun(h)(v,+,(c)), 

for every c E A1. 



It is assumed that fun, abs t ,  II, (-, -), i n l ,  i n r ,  and [-, -1, and v, are monotonic. Further- 
more, the following conditions are satisfied 

(1) funu~T(abstu7T(cp)) 2 9, whenever a b ~ t ~ ? ~ ( c p )  is defined, for y E [Au + AT], and 
funuvT(vu+T(c)) k Xa E Au. vT (c), for c E AL; 

(2) IIUvT((a, b ) )  t- (a, b), for all a E An, b E AT, whenever (a, b) is defined, and I Iu lT(vuxT(~))  
(vu(c),  ~ T ( c ) ) ,  for every c E A'-;  

(3) cinl([f ,  g]) t- fun(f) ,  c inr([f ,  gl) t- fun(g), and cinf([f ,  gl) t- ~ s ,  whenever [f, gl is 
defined, 

The operators fun  induce (total) operators 

funu9T: Au+T + [Au + AT], such that, for every f E Au+T and every a E Au, 

Then, condition (1) can be written as 

(1') appu1T(abstu9T(cp), a )  t- cp(a), for all a E Au, and appu7T(vu,T(c), a )  t- vT(c ) ,  for every 
a E Au and every c E A', and condition (3) can be rewritten as 

(3') c in l ( [ f ,  gl)(a) k app(f, a) ,  for all a E Au, cinr([f ,  g])(b) t- app(g, b),  for all b E AT, 
and cinf  ([f, g])(c) t- ~ ' ( c ) ,  for all c E A', whenever [f, g] is defined, for f E AO" and 
g E A~". 

Finally, N 5 in l (Ml)  implies that N = inl(N1) for some N1 5 MI,  N 5 inr(Ml)  implies that 
N = inr(N1) for some N1 5 MI, and N 5 vu(Ml )  implies that N = vu(N1)  for some N1 5 MI. 

We say that a pre-applicative @-structure is an applicative 0-structure iff in conditions (1)-(3), 
k is replaced by the identity relation =. 

We will omit superscripts whenever possible. We can think of the elements of AL as error 
elements, and copies of these error elements exist at all types (given by the functions v,) .  

The projection operators II induce projections T:'~: AuXT + Au and 7~;'~: AuXT + AT, such 
that for every a E AuXT, if IIu9T(a) = (al ,  a2), then 

T:'~(U) = a1 and ~ g ' ~ ( a )  = a2. 

When A is an applicative ,f3-structure, then, in definition 8.1, conditions (1)-(3) amounts to 

(1) funuyT o a b ~ t ~ ? ~  = i d  on the domain of abs t ,  and funu!T o v,,, = Xa E A". v T ;  

(2) o (-, -)"yT = i d  on the domain of (-, -), and Hut7 o vuXT = ( v u ,  v T ) ;  

(3) ( c in l ,  c in r )  o [-, -1 = f un"vs x funT?' on the domain of definition of [-, -1, and 
cinf  o [-, -1 = X f E A'"'. Xg E AT". ~ 6 ,  where X f E A"+'. Xg E A ~ + ' .  ~6 denotes the constant 
function from AO'' x A ~ + '  to [AL + A'], whose value is v s  for all f E and g E A~". 

In view of (I) ,  from (3), we get 



( c in l ,  c i n r )  o ([-, -1 o ( a b s t ~ ' ~  x a b ~ t ~ ? ~ ) )  = i d  on the domain of definition of [-, -1 o 

(absta7% a b ~ t ~ ? ~ ) .  

However, we have no left inverse to v6, and we don't have an analogous identity for c inf .  

When we use a pre-applicative p-structure to interpret A-terms, we assume that (-, -) and 
[-, -1 are total, and that the domain of abs t  is sufficiently large, but we have not elucidated this 
last condition yet. Given M E Aa'7 and N E A", app(M, N )  is also denoted as M N .  

Let us give an (important) example of a pre-applicative P-structure. 

Definition 8.2 Let Aa = A. be the set of all typed A-terms of type a. We let app, T I ,  n2, (-, -), 
i n l ,  i n r ,  [-, -1, v, be the obvious constructs (for example, app(M, N )  = MN).  Define N 5 M 
iff M Ap N. The operator abs t  is defined as in definition 3.2. The structure just defined is 
denoted as LTo. 

Another interesting example is provided by an adapation of the so-called HRO-models (hered- 
itarily recursive operations), due to Kreisel and Troelstra [16, 261. These models are based on 
the Kleene partial applicative structure provided by acceptable Godel numberings of the partial 
recursive functions. Assume that we have such a Godel numbering, and denote the partial recursive 
function of index e as 9,. Recall that such a numbering induces a partial operation . : N x N -+ N 
(where N denotes the set of natural numbers) defined as follows: me n = pm(n),  whenever it is 
defined. A partial recusive function p, is recursive iff y,(n) is defined for all n E N. We also assume 
that we have a given pairing function p: N x N + N ,  with projection functions jl: N + N and 
j2: N + N, such that p(jl(m), j2(m)) = m for all m E N,  jl(p(m, n) )  = m, and j2(p(m, n))  = n, 
for all m, n E N.  In the rest of this section, we ignore the type I. 

Definition 8.3 We define an applicative structure as follows. Each Aa is a set of pairs of the form 
(n, a), where n E N ,  and we denote the subset {n I (n, a) E A") of N as dom(Aa). 

Let Aa = {(n, a )  I n E N), for every base type a, 

Aa-tT = {(e, a + T) I p, is total on dom(Aa)), 

A"'' = {(n, a x r) I ( j l (n) ,  a) E A" and (j2(n), T) E AT), 

and 
AU+T = ( ( ~ ( 0 ,  n), a + 7) I (n,  0) E Aa) U ( ( ~ ( 1 ,  n), + r) I (n, r) E AT).  

The preorder on each Aa is the identity relation. 

We let app((m, a + r), (n, a ) )  = (cp,(n), r), which is well-defined, by definition of Aa'T. II 
and (-, -) have an obvious definition in terms of p, j l ,  and j2. We let i n l ( (n ,  a ) )  = (p(0, n), a + r ) ,  
inr((n7 T))  = (p(1, n), a + r), and [(m, a + S), (n, r + S)] is defined as follows. Let q!I be the 
function defined such that q!I(p(O, s)) = ym(s) for all s E N,  and +(p(l, t)) = y,(t) for all t E N. 
Since 9, and 9, are partial recursive functions, .J, is a partial recursive function, and we let 

where e is some designated index for q!I (some index e such that 9, = $1. 



Note that fun: + [Au + AT] is the function defined such that fun((e, a + r))((n,  a ) )  = 
(cpe(n), 7). We still need to  define abst.  

For every m E N ,  for every e E N,  index of a total recursive function of m + 1 arguments, for 
every finite sequence p = (pl, . . . , p,) of natural numbers, let e[p] denote the function in [Aa + AT] 
defined such that 

e [~ l ( (n ,  0 ) )  = ( ~ e ( ~ l ,  ..-, ~ m , n ) ,  T),  

provided that cpe(pl,. . . , p,, n) E dom(AT), for all n E dom(AU). Then, by the s-rn-n-theorem, 

for all n E N, and we let abst(e[p]) = (s(e, m, pl, . . . , p,), a + T ) .  The above applicative structure 
is denoted as XFIRO. 

By an easy induction on types, we can show that Aa is nonempty for every type a. Indeed, 
each A"" is nonempty, since constant functions are total recursive, and the other cases are trivial. 
In the definition of [(m, a -t S), (n, r -t S)], since p, is total on d o m ( ~ ~ " )  and p, is total on 
d o m ( ~ " ~ ) ,  the function $J is total on dom(~("+~) '~ ) ,  and thus, [(m, a + S), (n,  r -t 6)] is well 
defined. We still need to  check that fun(abst(e[p])) = e[p] for every e[p] E [Au + AT]. For such a 
function e[p], 

fun(abst(9))((n, 0 ) )  = ( ~ s ( e , m , p l  ,...,pm) (n), T )  = (pe (~1 , .  . . , Pm, n), T), 

by the s-rn-n-theorem, and thus, fun(abst(e[p])) = e[p]. The other conditions of definition 8.1 are 
easily verified. These structures are not extensional. 

9 P-Realizability for the Arrow, Product, Sum, and I Types 

In this section, we extend the semantic notion of realizability defined in section 5 to the calculus 
X'~X*+~'.  This time, the definition of realizability for the sum type requires the notion of a cover. 
First, it is necessary to  extend definition 4.2 to take care of product and sum types. 

Definition 9.1 Let d be a pre-applicative structure and let P be a family P = where 
each Po is a nonempty subset of Aa. A P-cover algebra (or P-Grothendieck topology) on d is a 
family Cov of binary relations Cov, on 2Au x Aa satisfying the following properties: 

(0) Cov,(C, M )  implies M E Pa (equivalently, P (M,  a)).  

(1) If Cov(C, M) ,  then C is a sieve on M (an ideal below M).  

(2) If M E Po, then Cov({N I N 5 M),  M)  ( M  E Pa is covered by the principal sieve on M). 

(3) (stability) If ~ o v ( C ,  M )  and N 3 M ,  then Cov({Q 1 Q E C,  Q 5 N),  N). 

(4) (transitivity) If Cov(C, M), D is a sieve on M ,  and Cov({Q I Q E D, Q 5 N),  N )  for every 
N E C, then Cov(D, M). 

(5) If Cov(M) = t r i v ( M ) ,  then Cov(MN) = t r i v ( M N ) ,  and if Cov(C, M )  and Cov(D, M N )  
with C and D nontrivial, then for every Q E D,  there is some M' E C such that Q 3 M'N. 



(6) If Cov(M) = t r i v ( M ) ,  then Cov(al(M)) = t r iv (a l (M)) ,  Cov(?r2(M)) = triv(?r2(M)), and 
if Cov(C, M )  and ~ o v ( D ,  nl(M)) (resp. Cov(D, a2(M))) with C and D nontrivial, then for 
every Q E D ,  there is some M' E C such that Q 3 al(Mt)  (resp. Q 5 7r2(M1)). 

A triple (A ,P ,  Cov), where A is pre-applicative structure, P is a property on A, and Cov is a 
P-Grothendieck topology, is called a P-site. 

It is also necessary to  extend definition 4.3 to take care of product types. 

Definition 9.2 We say that M E A'-' is simple iff Cov(C, M )  for at  least two distinct covers C. 
We say that M E Aa is stubborn iff Cov(M) = t r i v ( M )  (thus every stubborn element is simple). 
We say that a P-site (A,P,Cov) is scenic iff all elements of the form app(M, N )  (or MN) ,  nl(M), 
and az(M) are simple. 

Definition 4.4 is extended as follows. 

Definition 9.3 Let (A, P, COV) be a P-site. Properties (P1)-(P3) are defined as follows: 

(PI )  P (M,  a ) ,  for some 'stubborn element M E An. 

(P2) If P ( M , a )  and M N ,  then P ( N , a ) .  

(P3) 
(1) If ~ov,,,(C, M ) ,  P (N ,  a ) ,  and P(MIN,  r) whenever M' E C ,  then P ( M  N, 7).  

(2) If CovUx,(C, M) ,  and P(al(M1), a )  and P(a2(M1), r )  whenever MI E C ,  then P(al (M), a )  
and P(a,(M), r). 

From now on, we only consider relations (families) P satisfying the conditions of definition 9.3. 

Note that (P3) still implies that if M E P,,, is stubborn and N E Po is any element, then 
M N  E P, is stubborn. It also implies that if M E Pox, is stubborn, then a l (M)  E P, is stubborn 
and 7r2(M) E P, is stubborn. This is a consequence of property (6) of definition 9.1. 

Definition 4.5 remains unchanged. However, for the reader's convenience, it is repeated. 

Definition 9.4 Let (A, P, Cov) be a P-site. A function S :  A -. 27 has the sheaf property (or is a 
P-sheaf ) iff it satisfies the following conditions: 

(Sl) If a E S (M) ,  then M E P,. 

(S2) If a E S ( M )  and M 2 N ,  then a E S(N) .  

(S3) If Cov,(C, M )  and u E S ( N )  for every N E C ,  then a E S(M) .  

A function S :  A + 27 as in definition 9.4 can also be viewed as a family S = (So)aE7, where 
S, = {M E A I a E S(M)).  Then, the sets S, are called P-candidates. The conditions of definition 
9.4 are then stated as follows: 

(Sl) s, c P O '  

(S2) If M E S, and M ? N ,  then N E S,. 
(S3) If Cov,(C, M) ,  and C S S,, then M E S,. 

We now generalize the definition of realizers to take into accounts the types x, +, and I. We 
define P -reaIizability as follows. 



Definition 9.5 Let (A, P, COV) be a P-site. The sets r [a]  of realizers of a  are defined as follows: 

.[.]I = Po, a  a base type, 

r [ a  + T ]  = { M  I M E P,,,, and for all N, if N E r [ a ]  then M N  E r [ r ] ) ,  

r [ a  x 70 = { M  I M E Pox,, m ( M )  E r i a ] ,  and n2(M)  E r [ r ] ) ,  
r [ a  + T ]  = { M  I ~ o v , + , ( { i n l ( M ~ )  I MI E r [ a ]  and M k i n l ( M l ) )  U 

{ i n r ( M 2 )  I M2 E r [ r ]  and M k i n r ( M 2 ) )  U 

{ v u + ~ ( M 3 )  I M3 E PL and M k V U + ~ ( M ~ ) ) ,  M ) ) .  

We now prove a generalization of lemma 5.2. 

Lemma 9.6 Given a scenic P-site (A,  P ,  Cov), if P satisfies conditions (P1)-(P3), then the family 
( r [ ~ ] ) , ~ ~  has the sheaf property, and each r [o]  contains all stubborn elements in P,. 

Proof. We proceed by induction on types. The base case is as in lemma 5.2. The induction 
step has more cases since we also need to deal with x  , +, and I. 

( S l ) .  This is trivial by the definitions of r [ a  -. T ] ,  r [ a  x T ] ,  and r [ a  + T ] ,  

(S2).  There are three cases depending on the type. 

1. Arrow type a  + r .  The proof is as in lemma 5.2. 

2. Product type a  x r. Assume that M k M' for M E r [ a  x  r ] .  We need to prove that 
M' E POX,, n l ( M 1 )  E r [ a ] ,  and n2(M1)  E r [ r ] .  Since M E r [ a  x r ] ,  by ( S l ) ,  M  E P,,,, and 
by (P2)  M' E Pox,. Since M E r [ a x r ] ,  we havenl(M) E r [ a ]  and n 2 ( M )  E r [ r ] .  But by 
monotonicity, n l ( M )  k ?rl(Mt)  and ?r2(M) k n 2 ( M 1 ) ,  and by the induction hypothesis, by (S2), 
we get n l ( M 1 )  E r [a]  and n 2 ( M 1 )  E r [ r ] .  

3. Sum type a  + r .  Assume that M k M t  for M E r ia  + r ] .  Since M E r [ a  + r ] ,  we have 

Cov,+,({inl(Ml) I MI E r [ a ]  and M ? i n l ( M l ) )  U 

{ i n r ( M 2 )  1 M2 E r [ r ]  and M i n r ( M 2 ) )  u 
{ v o + T ( M ~ )  I M3 E PL and M k V ~ + , ( M ~ ) ) ,  M ) ) .  

Consider the cover D of M :  

D = { i n l ( M l )  1 MI E r ia ]  and M k i n l ( M 1 ) )  U 

( i n r ( ~ 2 )  I MZ E r [ r ]  and M h i n r ( M 2 ) )  U 

{Vu+r(M3) 1 M3 E PL and M k v a S 7 ( M 3 ) ) .  

By property (3) of definition 9.1, for any M' E D ,  the set {Q ( Q E D ,  Q 5 M t )  is a cover of MI. 
Now, if M' 3 M ,  by property ( 1 )  of definition 9.1, M' E D ,  and it is clear that 

{ Q  I d2 E D ,  Q 3 MI)  = ( i n l ( M 1 )  I MI E r [a]  and M' k i n l ( M l ) }  u 
( i n r (M2)  I MZ E r [ r ]  and Mt  >- i n r ( M 2 ) }  u 
{ v ~ + ~ ( M ~ )  I M3 E PL and M' h v,+,(M3)).  



Then, we have 

~ov,+,({inl(Ml) I MI E r[a] and M' 2 inl(Ml))  U 

(inr(M2) I M2 E r[r] and M' inr(M2)) u 
{vo+T(M~) I M3 E PL and M' k v,+,(M~)), M')). 

showing that M' E r[a + r]. 
(S3). Let M be simple. There are three cases depending on the type of M 

1. Arrow type a + r. The proof is as in lemma 5.2. 

2. Product type a x T. Assume that Cov,,,(C, M )  and that M' E r[a x T] whenever M' E C,  
where M is simple. By property (0) of definition 9.1, we have M E P,,,. We need to show that 
n l (M)  E r[a] and n2(M) E r[~]. 

If M E P,,, is stubborn, we have shown that nl(M) E P, is stubborn and that n2(M) E P, is 
stubborn. By the induction hypothesis, all stubborn elements in P, are in r[a] and all stubborn 
elements in P, are in r[~]. Thus, when M is stubborn, nl(M) E r[a] and n2(M) E r[r]. 

Next, assume that M is not stubborn. Since M' E ria x T] whenever M' E C,  we have 
nl(M1) E r[a] and n2(M1) E r[~]. By (Sl), we have nl(M1) E P,, 7r2(M1) E P,, and by (P3)(2), 
we get n1(M) E Pa and n2(M) E P,. If a is a base type, then r[a] = Pa and nl(M) E r[a]. 
Similarly, if T is a base type, then r[r] = P, and 7r2(M) E r[~]. 

Let us now consider the case where a is not a base type, the case where T is not a base type 
being similar. Then, nl(M) E P, and nl(M) is simple (since the site is scenic). We use (S3) to 
prove that .rrl(M) E r[a]. Assume that Cov,(D,nl(M)) for any cover D of nl(M).  The case where 
r l ( M )  is stubborn follows from the induction hypothesis. Otherwise, since Cov,,,(C, M )  and C 
and D are nontrivial, by property (6) of definition 9.1, for every Q E D, there is some M' E C such 
that Q 5 nl(M1). By the assumption, M' E r[a x T]. This implies that nl(Mr) E r[u], and by the 
induction hypothesis and (S2), we have Q E r[a]. By (S3), we conclude that nl(M) E ria]. 

3. Sum type a + T. Assume that Cov,+,(C, M)  and that N E r[a + T] for every N E C. Let 

D = {inl(Ml)  I MI E ria] and M k inl(Ml)} U 

{inr(M2) 1 M2 E r[r] and M k in r (M2))  U 

{ v U + T ( ~ ~ )  I M3 E P~ and k v U + T ( ~ ~ ) } .  

Using the properties of 5 ,  it is clear that D is a sieve on M.  We need to prove that Cov,+,(D, M) ,  
since this is equivalent to M E ria + T]. Let N E C ,  and consider the set { Q  I Q E D, Q 5 N}. We 
prove that Cov({Q I Q E D, Q 5 N), N).  However, since N E C and by assumption, N E r[a + T] 
for every N E C ,  we have 

Cov,+,({inl(Ml) I M1 E ria] and N k inl(Ml)} u 
(inr(M2) I M2 E r [ ~ ]  and N 2 inr(M2)} U 

{Vu+r(M3) 1 M3 E PL and N 2 vU+,(M3)), N)}. 



Since N 5 M, it is clear that 

{Q I Q E D, Q 5 N) = (inl(M1) I MI E =[a] and N inl(Ml))  LI 
( i n r ( ~ 2 )  I M2 E r[r] and N 2 inr(M2)) u 
{va+T(M3) I M3 E PL and N ?Z V ~ + ~ ( M ~ ) ) .  

Then, by property (4) of definition 9.1, we have Cov,+,(D, M) ,  that is, M E ria + TI. 
We also need to extend definition 6.1 to give an interpretation to  the new terms. 

10 Interpreting X-Terms in X ' ~ X ~ + ~ L  

We extend definition 6.1 t o  take care of x , +, and I. 

Definition 10.1 Given a pre-applicative structure A, a valuation, or environment, is any function 
p: X -t A, such that p(x) E Aa if x: a. A meaning function for A is a partial function A[[-](-) 
from pairs of (a-equivalence classes of) terms and valuations to A,  such that A[M]p is defined 
whenever M: a, in which case A[M]p E Aa. In addition, a meaning function satisfies the following 
conditions: 

A[xIp = P(X) 

AIIMNIP = ~PP(A[M]P, AI[NIP) 

 AX: a. M]p = abst( f ) ,  

where f is the function defined such that, 
f ( a )  = A([M]p[x: = a], for every a E Aa 

Al[.rrl(M)IP = ~ ~ ( A ~ M I P )  

AUn2(M>lp = ~ ~ ( A U M I P )  

AI[(M1, M2)IIp = (A[MiIIp, AUM~IP) 

A[inl(M)]p = inl(A[M]p) 

A[inr(M)]p = inr(A[M]p) 

ADM, NIIP = IA~MIP,  ~ U ~ l l ~ l  
A ~ v ~ ( M ) B P  = v~(ABMIP). 

It is routine to  show that the following property holds: 

A6MIpl = A[[M]p2, whenever PI($) = p 2 ( ~ )  for every x E FV(M)  (independence) 

If we consider the pre-applicative structure A = CTp, then a valuation p is a substitution 
with an infinite domain. Using an induction on the structure of terms, it is easily verified that 
LTp[M]p = M[cp], where c p  is the substitution defined by the restriction of p to FV(M).  

As far as realizability is concerned, if M: a, then &'Tp[M]p is a typed X-term realizing a. 
Definition 9.5 is then a variant of Kreisel's modified realizability. 



It is also interesting to  see what happens if we try to interpret terms in the applicative structure 
'HRO of definition 8.3. A valuation is a function p such that p(x) = (k, a) for every x: a ,  where 
k E N. Thus, given a term M such that FV(M)  = {xl: 01,. . . , x,: a,}, a valuation p defines a 
finite sequence (pl, . . . , p,) of natural numbers, where p; = p(xi). It is easily shown by induction 
on the structure of M : a  that 'HRO[M]p = (cp,(pl,. . .,p,), a ) ,  where e is the index a total 
recursive function cp, in the arguments (pl,. . . ,p,). Thus, every typed A-terms can be interpreted 
in 'HRO, and 'HRO[M]p is given by a function recursive in the restriction of p to FV(M).  As 
far as realizability is concerned, if M: a, then 'HRO[M]p E ria] yields a realizer for a which is 
given by a recursive function of p. In this case, definition 9.5 is equivalent to Kleene's recursive 
realizability (for +, x , and +). 

11 The Realizability Theorem For X'jXj+jL 

In this section, we generalize the realizability lemma (lemma 7.6) and its main corollary (theorem 
7.7) to the calculus A'!Xf+!L. In order to do so, we need to add conditions to definition 7.1 to take 
care of x ,  +, and I. 

Definition 11.1 We say that a site (A, P, Cov) is well-behaved iff the following conditions hold: 

(1) For any a E Aa, any cp E [Aa * AT], if abst(q)  exists, Cov,(C, app(abst(cp), a)), and C is 
a nontrivial cover, then c 5 cp(a) for every c E C;  
For any a E A', any b E Aa, if CovT(C, app(v,,,(a), b)) and C is a nontrivial cover, then 
c 5 v,(a) for every c E C ;  

(2) If Cov,(C, nl((al, a2))) and C is a nontrivial cover, then c 5 al for every c E C. 
If Cov,(C, 7r2((al, a2))) and C is a nontrivial cover, then c 5 a2 for every c E C.  
If Cov, (C, nl(vUxT(a)))  and C is a nontrivial cover, then c 5 v,(a) for every c E C.  
If Cov,(C, n2(vUxT(a)))  and C is a nontrivial cover, then c 3 v,(a) for every c E C. 

(3) If Cov(p) = t r iv (p) ,  then Cov(app([f, 91, P)) = triv(app([f, g], P)), and if Cov,+,(C, p), 
~ o v s ( D ,  app([ f ,  g], p)), and C and D are nontrivial, then for every d E D,  either there 
is some inl(pl)  E C such that d 3 app(f,pl), or there is some inr(p2) E C such that 
d 5 a p p ( g , ~ ~ ) ,  or there is some ~ , , + ~ ( p ~ )  E C such that d 3 vS(p3), where f E A"'~ and 
g E A,+'. 

In view of definition 10.1, definition 11.1 implies the following conditions. 

Definition 11.2 

(1) For any a E A", if CovT(C, app(A[Ax: a. M]p, a))  and C is a nontrivial cover, then c 5 
AI[M]p[x: = a] for every c E C. 
For any b E Aa, if CovT(C, app(A[v,,,(M)]p, b ) )  and C is a nontrivial cover, then c 5 
A[vT(M)]p for every c E C ;  

(2) If Cova(C,nl(A[(Ml, M2)]p)) and C is a nontrivial cover, then c 5 AIM1]p for every 
c E C. 
If ~ov , (C ,  n2(A[(Ml, M2)]p)) and C is a nontrivial cover, then c 5 AI[M2]p for every 



c E  C .  
If cov,(C, nl(A[vux,(M)]p)) and C is a nontrivial cover, then c  5 A[V, (M)]~  for every 
c E C .  
If Cov,(C,n2(A[vux,(M)]p)) and C is a nontrivial cover, then c  5 A[v, (M)]~  for every 
c E  C .  

(3) If Cov(p) = t r i v (p ) ,  then Cov(a~p(A[[M, N]]p, p)) = tr iv(app(A[[M, N]]p, p)), and if 
Covu+,(C, P), Covs(D, app(A[[M, N]]p, p)), and C and D are nontrivial, then for every 
d E D,  either there is some inl(pl)  E  C such that d 5 app(AIM]p,pl), or there is some 
inr(p2) E C such that d 5 app(A[N]p,p2), or there is some vO+,(p3) E C such that 
d 5 ~ 6 ( ~ 3 ) -  

We also need to  add conditions to  definition 7.4 to  take care of x , +, and I. 

Definition 11.3 Given a well-behaved site (A, P,Cov), properties (P4) and (P5) are defined as 
follows: 

(P4) 
(1) For every a E Au, if ~ ( a )  E P,, where p E [Au + AT] and abs t (p)  exists, then abst(cp) E 

Po+, * 

(2) If a1 E P, and a2 E P,, then (al ,  a2) E  Pox,. 
(3) If a E Po, then in l ( a )  E Po+,, and if a E P,, then in r ( a )  E Po+,. 
(4) If a1 E Pu+s and a2 E  PC-+,, then [ a ~ ,  an] E P(a+7)-+6. 

(5) If a E PL, then v,(a)  E P,. 

(P5) 
(1) If a E Po and cp(a) E P,, where cp E [Au + AT] and abst(cp) exists, then a p p ( a b s t ( ~ ) ,  a)  E 

p, . 
(2) If a1 E Po and a2 E P,, then ~ ~ ( ( a l ,  a2)) E  Pu and n2((al, a2))  E P,. 
(3) IfCovu+,(C,~), f E Pods, g E PT4,  app(f,pl) E Pg whenever inl(p1) E C ,  app(g,p2) E P6 

whenever inr(p2) E C ,  and p3 E PL whenever vO+,(p3) E C ,  then app([ f ,  g], p) E P6. 
(4) If a E  PL and b E Po, then app(v,,,(a), b) E P,. 

If a E  PL, then ~ I ( v , x , ( ~ ) )  E P, and n2(vUx,(a)) E P,. 

It is easy to  verify that app([f, g], p) E P g  is stubborn if p E Po+, is stubborn, f E and 
g E  P74.  This follows from condition (3) of definition 11.1. 

In view of definition 10.1, definition 11.3 implies the following conditions. 

Definition 11.4 

(P4) 
(1) If A[M]p E P,, then A[Xx: o. M]p E Po,,. 
(2) If A[M]p E Po and A[N]p E P,, then A[(M, N)]p E Pox,. 
(3) If A[M]p E Pa, then inl(A[M]lp) E Po+,, and if A[M]p E P,, then inr(A[M]p) E Po+,. 
(4) If A[M]p E Pu-+s and AI[N]p E P T ~ ,  then A[[M, N]]p E P[,+,)-+s. 
( 5 )  If A[M]Ip E PL, then AKvU(M)llp E P,. 



0'5) 
(1) If a E Po and A[M]p[x: = a] E P,, then app(A[Xx: a. M]p, a )  E P,. 
(2) If A [ M b  E PO and A[N]p E P,, then ri(A[(M, N)]p) E Po and 7r2(A[(M7 N)]p) E P,. 
(3) If C~'JU+T(C,P)~ A[Mlp E Pu+67 d[N]p E PT+s, app(d[M]lp,pl) E Ps whenever in l (p l )  E 

C7 and app(A[N]p, p2) E Ps whenever inr(p2) E C ,  and p3 E Pl whenever vu+T(p3) E C, 
then ~PP(A[[M, Nllp, P) E Ps. 

(4) If A[M]p E PL and b E Po, then app(A[~,,,(M)]p, b) E P,. 
If ~ [ M I P  E PL, then ni(A[vuxT(M)]p) E Po and x2(A[voxT(M)]p) E P,. 

We have the following generalization of lemma 7.5. 

Lemma 11.5 Given a well-behaved scenic site (A, P ,  Cov), and a family P satisfying conditions 
(P1)-(P5), for every p, the following properties hold: (I) If p(y) E r[y] for every y: y E FV(M) ,  

and for every a,  (a E r[a] implies A[M]p[x: = a] E r[r]), then A[Xx: a.  M]p E r[a + T]. (2) If 
A[M]p E ria] and A[N]p E r[r], then A[(M, N)]p E r[a x r]; (3) If A[M]p E ria + S], and 
A[N]p E r[r -t 61, then A[[M, N]]p E r[(a + r )  -t 61. (4) If a E PL, then v,(a)  E r[o] for every 
a. 

Proof. It is similar to  the proof of lemma 7.5, except that we need to prove more clauses. By 
lemma 9.6, we know that the sets of the form r[a] have the properties (S1)-(S3). 

(1) This has already been proved in lemma 7.5. 

(2) We need to  show that A[(M, N)]p E PC,,, xl(A[(M, N)]p) E r[a], and xz(A[(M, N)]p) E 
rk7-1. Since A[M]p E ria] and A[N]p E r[r], by (Sl), A[M]p E P, and A[N]p E P,. By 
(P4)(2), we get A[(M, N)]p E Pox,. By (P5)(2), we also have 7rl(A[(M, N)]p) E P, and 
7r2(A[(M7 N)]p) E P,. If a is a base type then ria] = Po and xl(A[(M, N)]p) E r[a]. Similarly, 
if r is a base type then r [ ~ ]  = P, and x2(A[(M7 N)IJp) E r[r]. 

If both a and T are nonbase types, TI (A[(M, N)]p) E P, and 7r2(A[(M7 N)]]p) E P, are simple 
(since the site is scenic). We prove that 7r1(A[(M, N)]p) E r[a] and 7r2(A[(M, N)]p) E r[r] using 
(S3). We consider the case of 7rl(A[(M, N)]p), the case of 7r2(A[(M, N)]p) being similar. The case 
where 7rl(AI[(M, N)]p) is stubborn is trivial. Otherwise, assume that Cov,(C, 7rl(A[(M, N)np)), 
where C is a nontrivial cover. We need to prove that c E r[a] whenever c E C. By condition (2) 
of definition 11.2, c 5 A[M]p for every c E C .  Since A[M]p E r[a] and c 5 A[M]p, by (S2), we 
have c E r[a]. 

(3) We need to  prove that A[[M, N]]p E P~,+,),s7 and that app(A[[M, N]]p, p) E r[S], 
for every p E ria + r]. Since A[M]]p E ria + S] and A[N]p E r[r i S], by (S2), we have 
A[M]p E Po+s and A[N]p E PT+s, and by (P4)(4), we get A[[M, NlIp E P[,+,),s. 

Next, we prove that app(A[[M, N]]p, p) E Ps. Assume that the hypothesis of (3) holds. By 
assumption, p E ria + r] ,  A[M]p E r[a -+ S], and A[N]p E r [ ~  + 611. By (Sl),  we have p E PC+,, 
d[M]p E Puis7 and A[N]p E P,,s. If p is stubborn, we have shown that app(d[[M, N]Dp, p) E P6 
is stubborn, and thus app(A[[M, N]]p, p) E r[Sj by (S3). 



0 therwise, since p E r[o + TI, the cover C given by 

C = {inl(pi)  I pi E r[a] and p k inl(pl)) u 
( i n r ( ~ 2 )  I PZ E r[r] and p inr(p2)} u 
{vu+T(P~) I p3 E PL and p v ~ + , ( ~ ~ ) )  

is a nontrivial cover, and Cov,+,(C,p). Then, since by the assumptions of the lemma, A[Mlp E 
+ 61 and A[N]p E r[r -t 61, we have app(AIM]p,pl) E r[6] whenever inl(pl)  E C ,  

app(A[N]p,pz) E r[h] whenever inr(p2) E C, and p3 E PL whenever ~ , + ~ ( p 3 )  E C, since 
pi E r[a], p2 E r[r], and p3 E PL, by definition of C. Now (using Sl),  the conditions of (P5)(3) 
are met for C ,  and we have app(A[[M, N]]p, p) E Pa. If S is a base type, then r[S] = P6, and 

~PP(A[[M, NIIIP, P) E .as]. 
If 6 is not a base type, then app(A[[M, N]]p, p) is simple (since the site is scenic). We use 

(S3) to prove that app(A[[M, N]]p, p) E r[[S]. The case where app(A[[M, N]]p, p) is stubborn is 
trivial. 

Otherwise, assume that Cov6(D, app(A[[M, N]]p, p)), where D is a nontrivial cover. Since 
p E ria + T], the cover C given by 

C = {inl(pl) I pi E r[a] and p inl(pl))  u 
(inr(p2) 1 p2 E r[r] and p 2 inr(p2)) u 
{VU+T(P~)  ( p3 E PL and p k v , + , ( ~ ~ ) )  

is a nontrivial cover, and Cov,+,(C,p). Since C and D are nontrivial, by condition (3) of definition 
11.2, for every d E D,  either there is some inl(pl)  E C such that d 5 app(A[M]p, pi), or there 
is some inr(p2) E C such that d 5 app(A[N]p,p2), or there is some v0+,(p3) E C such that 
d 5 ~ 6 ( ~ 3 ) .  

In the first two cases, since by definition of C ,  pi E r[a] and p2 E r[r], and by assumption, 

A[M]P E r[o -t 61 and A[N]p E r[7 -+ 61, we have app(A[M]p,pl) E 461  and app(A[N]p,p2) E 
r[6], and by (S2), we get d E r[S]. In the third case, by definition of C, we have p3 E P1, and by 
(4) (of this lemma, to be proved next), we have v6(p3) E r[S]. Then, by (S2), in a,ll cases we get 
d E r[S]. Finally, by (S3), we have app(A[[M, N]]p, p) E r[S]. 

(4) We proceed by induction on a. When a is a base type, since v , (M)  E P, by (P4)(5) and 
since r[a] = Pa, we have v , (M)  E r[a]. 

1. Arrow type a + 7. We prove that app(v,,,(a), b) E r[r] for every b E r[a]. Since a E P1 
and by (Sl)  b E P,, by (P5)(4), we have app(v,,,(a), b) E P,. If r is a base type, r[r] = P, and 
app(v,,,(a), b) E r[r]. Otherwise, app(~,,,(a), b) E P, is a simple term and we use (S3). The 
case where app(v,,,(a), b) is stubborn is trivial. Otherwise, assume that Cov,(C, app(~,,,(a), b)) 
for some nontrivial cover C. Then, by condition (1) of definition 11.1, c 5 v,(a) for every c E C ;  
By the induction hypothesis, ~ , ( a )  E r[r], and by (S2), we have c E r[r]. Thus, by (S3), we have 

app(vo+r(a), b) E rl[rn. 

2. Produ.ct type a x r. We prove that n l (~ , , , ( a ) )  E r[a] and a2(v,,,(a)) E r([r]. Since 
a E PL,  by (P5)(4), we have nl(v,,,(a)) E P, and ~2(V,,,(a)) E P,. If a is a base type, 



then r[a] = P, and nl(v,,,(a)) E ria]. Similarly, if r is a base type, then r[r] = P, and 
~ 2 ( ~ u x r ( a ) )  E r[r]. 

If a is not a base type, then nl(v,,,(a)) E P, is a simple term and we use (S3). The case 
where nl(vUx,(a)) is stubborn is trivial. Otherwise, assume that Cov,(C, nl(v,,,(a))) where 
C is a nontrivial cover. Then, by condition (2) of definition 11.1, c 5 v,(a) for every c E C. 
Since by the induction hypothesis, v,(a) E r[a], by (S2), we have c E ria]. By (S3), we have 
nl(v,,,(a)) E r[a]. A similar argument applies to n2(voxr(a)).  

3. Sum type a +  r. By (P4)(5), since a E P*, we have v,+,(a) E Po+,. Let D be the following 
set: 

D = { i n l ( p ~ )  1 pi E ria] and v,+, (a) 2 inl(pl)} u 
( i n r ( ~ 2 )  I ~2 E rir] and vU+, (a) inr(p2)} IJ 

{vu+T(P~) 1 p3 E PL and v,+, (a) v ,+ , (~~) ) .  

By the properties of 3 ,  it is easy to verify that D is indeed a sieve. We need to prove that 
Cov,+,(D, v,+,(a)), since this is equivalent to v,+,(a) E r[a + T]. Now, since q li, v,+,(a) 
implies that q = v,+,(al) for some a1 3 a, and since a E P1, by (P2) we have a1 E P1. Thus, it 
is is clear that D = {q I q 5 v,+,(a)}, which is a principal sieve. However, since v,+,(a) E Po+,, 
by property (2) of definition 9.1, v0+,(a) E PC+, is covered by the principal sieve D, and thus 
Cov,+,(D, v,+,(a)). Therefore, we have v,+,(a) E ria + r]. 

Finally, we now prove the main realizability lemma for X ' ~ X ~ + ~ L  

Lemma 11.6 Given a well-behaved scenic site (A, P, COV), if P is a family satisfying conditions 
(P1)-(P5), then for every term M of type a ,  for every valuation p such that p(y) E r[y] for every 
y: y E FV(M),  we have A[M]p E r[a]. 

Proof. We proceed by induction on the structure of M. Some of the cases have already been 
covered in the proof of lemma 7.6, but we also need to handle the new terms. 

If M = (MI, Nl), where MI has type a and N1 has type r, then by the induction hypothesis, 
A[Ml]p E r[a] and A[Nl]p E r[r]. By lemma 11.5, we have A[(M1, Nl)]p E r[a x r]. 

If M = nl (MI) where MI has type a x r, then by the induction hypothesis, AIMl]p E r[a x r]. 
By the definition of ria x T ] ,  this implies that nl(AIMl]p) E r[a], that is, A[nl(M1)]p E ria], by 
definition 10.1. Similarly, we get A[n2(M1)]p E ria]. 

If M = in l (Ml)  where M has type a + r ,  then by the induction hypothesis, A([Ml]p E r[a]. 
By (P4)(3), we have inl(AIMl]p) E PC+, . Consider the cover D of inl(AIMl]p): 

D = (inl(p1) ( pl E ria] and inl(AIMl]p) k inl(pl)} u 
(inr(p2) 1 ~2 E r[r] and inl(A[Ml]p) k inr(p2)} u 
{ v u + ~ ( P ~ )  I ~3 E P_L and inl(A[Ml]p) k v,+,(p3)} 

We need to  show that Cov,+,(D, inl(AIMl]p)). We claim that 



By the properties of 5 ,  p 5 inl(AEIMl]p) implies that p = inl(pl)  and pl 5 A[M1]p. Since 
A[Mllp E r[a], and by (SZ), pl E r[a] whenever pl 5 AIMl]p, we do have 

However, by property (2) of definition 9.1, since inl(AIMl]p) E Po+, and D is a principal cover, 
C O V ~ + ~ ( D ,  inl(A[M~]p))  holds. Since by definition 10.1, A[inl(Ml)]p = inl(AIMl]p), we have 
A[inl(Ml)]p E ria + r] .  The case where M = inr(Ml)  is similar. 

If M = [MI, Nl] is of type ( a  + T) + 6, by the induction hypothesis applied MI, N1, we have 
d[Ml]p E r[a + S], and AINl]p E r[r -t 61. Thus, by lemma 11.5, we have A[[Ml, Nl]]p E 
r[(a + 7) + S]. 

If M = v u ( M l ) ,  then by the induction hypothesis, AIMl]p E r[l] = PL. By lemma 11.5 
(4), we have v,(A[Ml]p) E ria]. Since by definition 10.1, A[vU(Ml)]p = v,(AIMl]p), we have 
ABV~(MI)IP E ~ I I ~ D .  

Theorem 7.7 is generalized to  the calculus X ' ~ X ~ + ~ L  as follows. 

Theorem 11.7 Given a well-behaved scenic site (A, P ,  Cov), i f  P is a family satisfying conditions 
(P1)-(P5), then for every closed term M of type a, we have A[M] E Pa. ( in other words, the 
realizer A[M] satisfies the unary predicate defined by P ,  i.e, every provable type is realizable). 

Proof. Apply lemma 11.6 to the closed term M of type a and to any arbitrary valuation p. 

12 Applications to the System X'jXj+jL 

This section shows that theorem 11.7 can be used to prove a general theorem about terms of the 
system X'9X~+9-'-. AS a corollary, it can be shown that all terms of X'tX7S>L are strongly normalizing 
and confluent. 

In order t o  apply theorem 11.7, we define a notion of cover for the site A whose underlying 
pre-applicative structure is the structure CT0 of definition 8.2. 

Definition 12.1 An I-term is a term of the form either X X : ~ .  M ,  (M, N) ,  i n l ( M ) ,  in r (M) ,  
[M, N], or v u ( M ) .  A simple term (or neutral term) is a term that is not an I-term. Thus, a 
simple term is either a variable x, a constant c, an application M N ,  a projection r l ( M )  or na(M). 
A term M is stubborn iff it is simple and, either M is irreducible, or M' is a simple term whenever 
M f M' (equivalently, M' is not  an I-term). 

We define a cover algebra on the structure C'Tp as follows. Let P be a (unary) property of 
typed X-terms. 

Definition 12.2 The cover algebra Cov is defined as follows: 

(1) If M E P, and M is an I-term, then 

Cov(M) = {{N I M Lp N)}. 



(2) If M E P, and M is a (simple and) stubborn term, then 

Cov(M) = (0, {N I M A p  N } } .  

(3) If M E P, and M is a simple and non-stubborn term, then 

+ cov(M) = {{N I M Lp N}, {N I M -p  Q  --*'-'p N, for some I-term Q ) ) .  

Recall from definition 9.2 that M is simple iff it has at  least two distinct covers. Thus, definition 
12.2 implies that a term is simple in the sense of definition 12.1 iff it is simple in the sense of definition 
9.2. Similarly a term is stubborn in the sense of definition 12.1 iff it is stubborn in the sense of 
definition 9.2. Also, definition 12.1 implies that L 'Tp  is scenic. 

Properties (PI-P3) are listed below. 

Definition 12.3 Properties (P1)-(P3) are defined as follows: 

(PI )  x E P,, c E P,, for every variable x and constant c of type a. 

(P2) If M E P, and M -p N ,  then N E P,. 

(P3) If M is simple, then: 

(1) If M E Po+,, N E Po, (Ax: a. M')N E Pr whenever M f p Xz: a. MI, and v,,,(M1)N E 
+ P, whenever M -p v,,, (M'), then M N  E P,. 

(2) If M E Pox,, xl((M1, N')) E P, and a2((M1, N')) E P, whenever M f p (MI, N'), 
+ 

and n~(vux,(M'))  E P, and ~2(voxr (M' ) )  E P7 whenever M - p  vUx, (M'), then 
r l ( M )  E P, and wz(M) E P7. 

A careful reader will notice that conditions (P3) of definition 12.3 are not simply a reformulation 
of condition (P3) of definition 9.3. This is because according to definition 12.2, a non-stubborn 

+ term M is covered by the nontrivial cover {N 1 M -p Q  Lp N}, where Q is some I-term, 
but the conditions of definition 12.3 only involve reductions to I-terms. However, due to condition 
(P2) and the fact that a nontrivial cover is determined by the I-terms in it, the two definitions are 
indeed equivalent. 

If M E P,,, is a stubborn term and N E P, is any term, then M N  E P, by (P3). Furthermore, 
M N  is also stubborn since it is a simple term and since it can only reduce to  an I-term if M itself 
reduces to  a an I-term. Thus, if M E P,,, is a stubborn term and N E P, is any term, then M N  
is a stubborn term in P,. We can show in a similar fashion that (P3) implies that if M E Pox, is 
a stubborn term, then nl(M) is a stubborn term in P, and x2(M) is a stubborn term in P,. 

Properties (P4-P5) are listed below. 

Definition 12.4 Properties (P4) and (P5) are defined as follows: 

(P4) 
(1) If M E P,, then X X : ~ .  M E P,,,. 
(2) If M E P, and N E P,, then (M, N )  E Pox,. 



(3) If M E P,, then i n l ( M )  E Po+,, and if M E P,, then in r (M)  E Po+,. 
(4) If M E Pu,s and N E P,,s, then [M, N] E P(,+,),6. 
(5) If M E PL, then v u ( M )  E P,. 

(P5) 
(1) If N E Po and M[N/x] E P,, then (Ax: a. M ) N  E P,. 
(2) If M E P, and N E P,, then RI((M, N))  E P, and n2((M, N)) E P,. 
(3) If P E PC+,, M E PU4, N E P,+.s, MPl  E Ps whenever P L p  in l (P l ) ,  NP2 E P6 

whenever P Ap inr(Pz), and PI E PL whenever P zp v,+, (PI), then [M, N I P  E P6. 
(4) If MI E PL and N E P,, then v u + T ( M ~ ) N  E P,. If MI E PL, then r 1 ( ~ u x 7 ( M l ) )  E Pa 

and n2(vux,(M1)) E P T .  

Again, a careful reader will notice that conditions (P5) of definition 12.4 are not simply a 
reformulation of conditions (P5) of definition 11.4. However, because of (P2) and the fact that a 
nontrivial cover is determined by the I-terms in it, the two sets of conditions are equivalent. 

It is easy to  verify that [M, N I P  E P6 is a stubborn term in P6, if P E Po+, is stubborn, 
M E P,,s, and N E P7+$. Indeed, [M, NIP  E Pa can only reduce to an I-term if P does. We 
now show that the conditions of definition 9.1 and the conditions of definition 11.2 hold. 

Lemma 12.5 Definition 12.2 defines a cover aigebm, and the site (,Up, P ,  Cov) is scenic and 
well- behaved. 

Proof. Conditions (0)-(4) of definition 9.1 are easily verified. Let us verify conditions (5) and 

(6). 

(5) If Cov(M) = t r i v ( M ) ,  then Cov(MN) = t r i v ( M N ) ,  and if Cov(C, M )  and Cov(D, M N )  
with C and D nontrivial, then for every Q E D,  there is some M' E C such that Q 5 M'N. 

The first part says that if M is stubborn, then M N  is stubborn, which has already been 
verified. If the covers C and D are nontrivial, then by definition 12.1, M and M N  must be simple 
and non-stubborn terms. In this case, Q E D means that 

where P is an I-term. This can happen only if M f p  MI, where M' itself an I-term. In this case, 
there is some reduction + M N  -p M'N L p  P Lp Q, 

where M' is an I-term. Since M is simple and non-stubborn, definition 12.1 implies that M' E C. 

(6) If Cov(M) = t r i v ( M ) ,  then Cov(rl(M)) = t r i v ( r l ( M ) ) ,  Cov(ir2(M)) = t r i v ( r z ( M ) ) ,  and 
if ~ o v ( C ,  M )  and Cov(D, nl(M)) (resp. Cov(D, n2(M))) with C and D nontrivial, then for 
every Q E D, there is some M' E C such that Q 5 xl (MI) (resp. Q 5 r2(M1)). 

The first part says that if M is stubborn, then nl(M) and 7r2(M) are stubborn, which has 
already been verified. If the covers C and D are nontrivial, then by definition 12.1, M, nl (M), and 
r l (M) ,  must be simple and non-stubborn terms. In this case, Q E D means that 



where P is an I-term. This can happen only if M f p MI, where MI itself an I-term. In this case, 
there is some reduction 

n ( M )  f 0 *l(M1) - f i p  P -;P Q,  

where MI is an I-term. Since M is simple and non-stubborn, definition 12.1 implies that MI E C. 
The same argument applies to  n2(M). 

Let us now verify the conditions of definition 11.2. First, recall that for the structure LTp, for 
every valuation p (an infinite substitution) LTp[M]p = M [cp], where cp is the substitution defined 
by the restriction of p to  F V ( M ) .  Also app(M, N )  = M N ,  and recall that A" is the set of terms 
of type a. 

(1) For any a E A" , if CovT(C, app(CTp[Xx: a. M]p, a))  and C is a nontrivial cover, then c  5 
LTp[M]p[x: = a] for every c  E C. 
For any b E A", if C o ~ , ( C , a p p ( C l ~ ( [ ~ ~ , ~ ( M ) ] p ,  6 ) )  and C is a nontrivial cover, then 
c  5 LTp[v,(M)]p for every c E C; 

We have app(LTp[Ax: a. M]p, a)  = ((Ax: a. M)[y])a, where y is the substitution defined by the 
restriction of p t o  F V ( M )  - {x). By definition 12.1, since C is nontrivial, c E  C means that 

for some I-term Q. This can only happen if there is a reduction 

However, we have (M[cp])[a/x] = M[p[x: = a]] (using a suitable renaming of x). By the definition 
of CTpl[M]p, we have LTp[M]lp[x: = a] = M[y[x: = a]], and this part of the proof is complete. 
The proof for v,,,(M) is completely analogous. 

(2) If ~ov , (C ,  nl(Llp[(M1, M~)]P) )  and C is a nontrivial cover, then c  5 CTpl[Ml]p for every 
c E  C. 
If Cov,(C, n2(LTp[(M~, M2)]p)) and C is a nontrivial cover, then c 5 C7p[M2]p for every 
c E  C. 
If Cov, (C, nl(LTp[vu x, (M)]p)) and C is a nontrivial cover, then c  5 ,C7p[v,(M)]p for 
every c  E C. 
If Cov,(C,~2(Ll~~~,~,(M)]p)) and C is a nontrivial cover, then c 5 C ' ; ~ ~ [ V ~ ( M ) ] ~  for 
every c  E C.  

We have L7p[(M1, M2)]p = (MI, M2)[y], where cp is the substitution defined by the restriction 
of p t o  FV(Ml)  U FV(M2). By definition 12.1, since C is nontrivial, c E C means that 

for some I-term Q. This can only happen if there is a reduction 

Since LTp[Ml]p = Ml[cp], this part of the proof is complete. The other cases are entirely analogous. 



(3) If Cov(P) = t r i v ( P ) ,  then Cov(app(CTp[[M, N]]p, P ) )  = triv(app(CTp[[M, N]]p, P)), 
and if COV,+~(C, P) ,  Covg(D, app(LTp[[M, N]]p, P) ) ,  and C and D are nontrivial, then for 
every d E D ,  either there is some in l (P l )  E C such that d 5 app(LTpl[Mlp, PI), or there is 
some inr(Pz)  E C such that d 5 app(LTp[N]p, P2), or there is some V , + ~ ( P ~ )  E C such 
that d 3 vs(P3).  

The first part says that [M[cp], N[(p]]P is stubborn if P is stubborn, which has already been 
shown (where cp is the substitution defined by the restriction of p to  F V ( M )  U FV(N)) .  By 
definition 12.1, since D is nontrivial, d E D means that 

where Q is an I-term. This can happen only if either 

P Lp inl(Pl) ,  and 

or P Lp inr(P2) ,  and 

Or P $0 vU+7 (P3), and 

In each case, since C is nontrivial, by definition 12.1, we have in l (P l )  E C, in l (P2)  E C,  and 

~ a + 7 ( P 3 )  E C. 17 
Thus, the site (CTp, P ,  Cov), is scenic and well-behaved. Consequently, we can apply theorem 

11.7, and get a general theorem for proving properties of terms of the system In fact, 
for the structure LTp, for a property 'P satisfying conditions (P1)-(P5), by ( P I )  and (P3), every 
variable x of type a is stubborn (for every a).  Thus, we can apply lemma 11.6 with the valuation 
p such that p(x) = x for every variable x, since by lemma 9.6, r[a] contains every stubborn term. 
Consequently, we have the following theorem (compare with theorem A of the introduction). 

T h e o r e m  12.6 If P is  a family of X-terms satisfying conditions (P1)-(P5), then P, = A, for 
every type a ( in  other words, every term satisfies the unary predicate defined by P). 

Proof. By lemma 12.5, the site (C'Tp, P, Cov) is scenic and well-behaved. By the discussion 
just before stating theorem 12.6, the identity valuation p such that p(x) = x for every variable x, 
is such that p(x) E ria] for every x: a. Thus, we can apply lemma 11.6 to  any term M of type a 
and to  p, and we have LTp[M]p E r[a]. However, in the present case, CTp[M]p = M. Thus, 
M E r[a], and since r[a] c P,, we have M E P,, as claimed. 

As a corollary, strong normalization and confluence can be shown, see Gallier [5] for such a 

treatment. 

We now consider the generalization of the previous treatment to the second-order typed X- 
calculus X+?V2 



13 Syntax of the Second-Order Typed A-Calculus A',vZ 

In this section, we review quickly the syntax of the second-order typed A-calculus ~ ' 1 ~ ~ .  This 
includes a definition of the second-order types under consideration, of raw terms, or the type- 
checking rules for judgements, and of the reduction rules. For more details, the reader should 
consult Breazu-Tannen and Coquand [2]. For simplicity, we only consider the types + and V2, but 
the types x, +, and I, can also be handled, as in section 2. 

Let 7 denote the set of second-order types. This set comprises type variables X ,  type constants 
k, and compound types ( a  -t T ) ,  and VX. a. It is assumed that we have a set TC of type 
constants (also called base types of kind *). We have a countably infinite set V of type variables 
(denoted as upper case letters X, Y, Z), and a countably infinite set X of term variables (denoted 
as lower case letters x, y, z). We denote t h e  set of free type variables occurring in a type a as 
FTV(a).  We use the notation * for the kind of types. Since we are only considering second-order 
quantification over predicate symbols (of kind *) of arity 0, this is superfluous. However, it will 
occasionally be useful to consider contexts r in which type variables are explicitly present, since this 
makes the type-checking rules more uniform in the case of A-abstraction and typed A-abstraction. 
Thus, officially, a context r is a set {xl: 01, . . . , x,: a,), where XI , .  . ., x, are term variables, and 
01,. . .,a, are types. We let dom(I') = {xl, .  . .,x,}. As usual, we assume that the variables x j  
are pairwise distinct. We also assume that x 4 dom(I') in a context I', x: a. Informally, we will 
also consider contexts {XI: *, . . . , X,: *, XI: 01, . . . , x,: a,), where XI, .  . . , X, are type variables, 
and X I , .  . . ,x,  are term variables, with the two sets {XI, .  . .,X,) and {xl, .  . . ,x,) disjoint, the 
variables Xi pairwise distinct, and the variables x j  pairwise distinct. We assume that X $ dom(I') 
in a context r, X :  *. For the sake of brevity, rather than writing typed A-abstraction as AX: *. M ,  
it will be written as AX. M .  

It is assumed that we have a set Const of constants, together with a function Type: Const -+ 7, 
such that every constant c is assigned a closed type Type(c) in 7. The set TC of type constants, 
together with the set Const of constants, and the function Type, constitute a signature C. Let us 
review the definition of raw terms. 

Definition 13.1 The set of m w  terms is defined inductively as follows: every variable x E X is a 
raw term, every constant c E Const is a raw terms, and if M, N are raw terms and a, r are types, 
then (MN) ,  (MT), Ax: a. M ,  and AX. M ,  are raw terms. 

We let FV(M)  denote the set of free term-variables in M .  Raw terms may contain free variables 
and may not type-check (for example, (xx)). In order to define which raw terms type-check, we 
consider expressions of the form r D M:  a, called judgements, where l? is a context in which all the 
free term variables in M are declared. A term M type-checks with type a in the context I' iff the 
judgement I' D M: a is provable using axioms and rules summarized in the following definition. 

Definition 13.2 The judgements of the polymorphic typed A-calculus are defined by the 
following rules. 

r D x: a, when x: a E r ,  

r D c: Type(c), when c is a constant, 

~ , X : U D  M : r  
(abstraction) r D (AX: a. MI:  (U -+ T )  



I ' D M : ( u + T )  I ' D N : ~  
(application) r D (MN): T 

I ' ,X:AD M : a  
(V-intro) 

I' D (AX. M): VX. a 

provided that X 4 U2:TEr FTV(7); 

The reason why we do not officially consider that a context contains type variables, is that 
in the rule (V-elim), the type T could contain type variables not declared in r, and it would be 
necessary to  have a weakening rule to  add new type variables to a context (or some other mechanism 
to add new type variables to a context). As long as we do not deal with dependent types, this 
technical annoyance is most simply circumvented by assuming that type variables are not included 
in contexts. 

Definition 13.3 The reduction rules of the system A'~vZ are listed below: 

(Ax: u. M ) N  - M[N/x], 

(AX. M ) T  - M [ r / X ] .  

The reduction relation defined by the rules of definition 13.3 is denoted as -p .  From now on, 
when we refer to a A-term, we mean a A-term that type-checks. We let A(,, r) denote the set of 
judgements of the form I' b M :  a. 

14 Pre- Applicat ive Structures for ~ ' 7 ~ ~  

In this section, the definition of a pre-applicative structure (given in section 3) is generalized to 
For simplicity, only pre-applicative @-structures are defined. Pre-applicative @q-structures 

and extensional pre-applicative ,f3-structures are defined in an appendix (see section 21). The types 
x ,  +, and I, can easily be handled as in section 8, but for simplicity, we only deal with the 
types -+ and V2. Since we are dealing with type variables, in order to  interpret the types, we 
first need t o  define the notion of an algebra of (polymorphic) types. We also need to define the 
notion of a dependent product (see definition 14.2) in order to "curry" the map tapp': A'(@) x T -+ 

LI(A@'~')SET. 

Definition 14.1 An algebra of (polymorphic) types is a tuple 

where T is a nonempty set of types, -+:T  x T  -+ T  is a binary operations on T ,  [T =+ T ]  is a 
nonempty set of functions from T to T ,  and V is a function V: [T + T] -+ T .  



Intuitively, given a valuation 0: V + T, a type a E 7 will be interpreted as an element [ale of 
T .  

Given an indexed family of sets we let ~ ( A ; ) ; € I  be the product of the family (A;)iEI, 
and U(A;);Ez be the coproduct (or disjoint sum) of the family The disjoint sum U(Ai);Er 
is the set U{(a, i) I a E A;)iEI. If the sets A; are preorders, then n(Ai)iEl is a preorder under the 
product preorder, where (a;);EI 3 (b;);EI iff a j  5; bi for all i E I, and U(Ai)iEI is a preorder under 
the (disjoint) sum preorder, where (a, i) 3 (b, i) iff i = j and a 5; b. 

Before defining a pre-applicative structure, we need to  define the notion of a dependent product. 

Definition 14.2 Given an algebra of types T ,  and a T-indexed family of preorders (As, <"), for ev- 
ery function 9 E [T + TI, the dependent product na(AS)sET is the cartesian product n ( ~ ' ( ~ ) ) ~ ~ ~ ,  

T 
which is also described explicitly as the set of functions in ( u ( A ' ( ~ ) ) ~ ~ ~ )  defined as follows: 

H ( A ~ ) , , ~  = {f: T + U ( A @ ( ' ) ) ~ ~ T  I f ( t )  E A @ ( ~ ) ,  for all t E T ) .  
0 

The set na(AS)sET is given the preorder 5' defined such that, f 5' g iff f ( t )  5'(t) g(t), for every 
t E T.  

Given two preordered sets (AS, 5') and (At, d t ) ,  we let [AS + At] be the set of monotonic 
functions w.r.t. sS and 5t, under the pointwise preorder induced by 5t defined such that, f 5 g 
iff f (a )  dt g(a) for all a E AS. 

We are now ready to  define the semantic structures used in this paper. 

Definition 14.3 Given an algebra of types T,  a pre-applicative ,B-structure is a structure 

d =  (A, 5, fun, abst ,  t f un ,  t abs t ) ,  

where 

A = (AS),ET is a family of sets (possibly empty) called carriers; 

( sS)s fT is a family of preorders, each 5' on AS; 

abstslt: [AS + At] + AS't, a family of partial operators; 

funsyt: AS't -+ [AS At], a family of (total) operators; 

t abs t@:  no(As)sET + A'(@), a family of partial operators, for every a E [T + TI; 

tfunslt: A'(') -t no(AS),ET, a family of (total) operators, for every E [T + TI. 

It is assumed that fun, abst ,  t fun,  and t a b s t ,  are monotonic. Furthermore, the following 
conditions are satisfied 

(1) For all s , t  E T ,  if AS # 0 and At # 8, then AS't # 8, and f ~ n ~ ' ~ ( a b s t ~ ~ ~ ( c p ) )  2 cp, whenever 
a b ~ t ~ ? ~ ( q )  is defined for cp E [AS + At]; 

(2) If ~ ' ( ~ 1  # 0 for every t E T ,  then A'(") # 0, and tfuna(tabst'((p)) 9, whenever 
tabsta(cp) is defined for cp E na(AS)sET. 

The operators f u n  induce (total) operators 



aPPs*t: As+t x As + At, such that, for every f E AS't and every a E AS, 

Then, condition (1) can be written as 

(1') apps~t(absts9t(cp), a)  h cp(a), for every a E As, for cp E [As + At], whenever abstSlt(cp) is 
defined. 

The operators t f u n  induce (total) operators 

tappa: A"(@) x T t U ( A @ ( ~ ) ) , ~ ~ ,  such that, for every t E T, 

Then, condition (2) can be written as 

(2') tappa(tabsta(v),  s)  >- cp(s), for every s E T, whenever t abs t a (F )  is defined, for 9 E 

n a  ( A S ) s ~ ~ .  

We say that a pre-applicative @-structure is an applicative p-structure iff in conditions (1)-(2), 
is replaced by the identity relation =. 

We will omit superscripts whenever possible. Intuitively, A is a set of realizers. It is shown in 
section 17 how the term model can be viewed as a pre-applicative p-structure (see definition 17.5). 

When A is an applicative p-structure, then, in definition 14.3, conditions (1)-(2) amounts to 

(1) funs*t o abstsjt = id on the domain of definition of abst ;  

(2) t fun@ o t a b s t @  = id on the domain of definition of t abs t .  

In this case, abs t  is injective and fun is surjective on the domain of definition of abs t  (and 
left inverse to  abs t ) ,  t a b s t  is injective and t f u n  is surjective on the domain of definition of t a b s t  
(and left inverse to  tabs t ) .  

When we use a pre-applicative @-structure to  interpret A-terms, we assume that the domains 
of abs t  and t a b s t  are sufficiently large, but we have not elucidated this last condition yet. Given 
M E AS't and N E AS, app(M, N )  is also denoted as MN, and tapp(M,t) as M t .  

15 P-Cover Algebras and ?-Sheaves for ~ + l ~ ~  

In this section, we basically repeat the definitions for covers and sheaves given in section 9, except 
that we are dealing with a more general notion of pre-applicative structure (since we also have an 
algebra of types T). As in section 9, we define all the necessary concepts in terms of preorders, 
referring the interested reader to MacLane and Moerdijk [IS] for a general treatment. First, we 
need some preliminary definitions before defining the crucial notion of a cover. From now on, unless 
specified otherwise, it is assumed that we are dealing with pre-applicative p-structures (and thus, 
we will omit the prefix @). 



Definition 15.1 Given an algebra of types T and a pre-applicative structure A, for any M E As, 
a sieve on M is any subset C C As such that, N 5 M for every N E C,  and whenever N E C 
and Q 5 N, then Q E C. In other words, a sieve on M is downwards closed and below M (it is 
an ideal below M).  The sieve {N I N 5 M )  is called the maximal (or principal) sieve on M.  A 
covering family on a pre-applicative structure A is a family Cov of binary relations Cov, on 2AS x AS, 
relating subsets of As called covers, to elements of Ad. Equivalently, Cov can be defined as a family 
of functions Cov,: As + 22As assigning to  every element M E As a set Cov(M) of subsets of As (the 
covers of M). Given any M E AS, the empty cover 0 and the principal sieve {N I N -1 M )  are the 
trivial covers. We let t r i v ( M )  denote the set consisting of the two trivial covers of M.  A cover 
which is not trivial is called nontrivial. 

In the rest of this paper, we will consider binary relations P C Ax T, such that P ( M ,  s)  implies 
M E As, and for every s E T,  if AS # 0, then there is some M E AS s.t . P ( M ,  s). Equivalently, P 
can be viewed as a family P = (P,),ET, where each P, is a nonempty subset of AS (unless As = 0). 
The intuition behind P is that it is a property of realizers. For simplicity, we define the covering 
conditions only for the types + and V2 (but the types x, + and I, can also be handled. This 
treatment can be readily adapted from sections 9, 10, and 11). 

Definition 15.2 Given an algebra of types T, let A be a pre-applicative structure and let P be a 
family P = (P,),ET, where each P, is a nonempty subset of As (unless A" = 0). A P-cover algebra 
(or P-Grothendieck topology) on A is a family Cov of binary relations Cov, on 2AS x AS satisfying 
the following properties: 

(0) Cov,(C, M )  implies M E P, (equivalently, P (M,  s)). 

(1) If Cov(C, M) ,  then C is a sieve on M (an ideal below M).  

(2) If M E P,, then Cov({N ( N 3 M),  M )  ( M  E P, is covered by the principal sieve on M) .  

(3) (stability) If Cov(C, M )  and N 3 M ,  then Cov({Q I Q E C, Q 3 N), N). 

(4) (transitivity) If Cov(C, M) ,  D is a sieve on M ,  and Cov({Q I Q E D, Q 3 N),  N )  for every 
N E C, then Cov(D, M).  

(5) If ~ o v ( M )  = t r i v ( M ) ,  then Cov(MN) = t r i v ( M N ) ,  and if Cov(C, M )  and Cov(D, M N )  
with C and D nontrivial, then for every Q E D, there is some M' E C such that Q 5 M'N. 

(6) If Cov(M) = t r i v ( M ) ,  then Cov(Ms) = t r i v (Ms) ,  where s E T, and if Cov(C, M )  and 
Cov(D, Ms)  with C and D nontrivial, then for every Q E D, there is some M' E C such 
that Q i, M's. 

A triple (A, P ,  Cov), where A is pre-applicative structure, P is a property on A, and Cov is a 
P-Grothendieck topology, is called a P-site. 

Condition (0) is needed to  restrict attention to elements having the property P. Covers 
only matter for these elements. Conditions (1)-(4) are the conditions for a set of sieves to be 
a Grothendieck topology, in the case where the base category is a preorder (A, 3). Conditions 
(5)-(6) are needed to  take care of the extra structure. 

It  should be noted that conditions (3) and (4) are in fact only needed for the treatment of the 
sum type + (or the existential type). Also, it is not necessary to assume that covers are ideals 
(downwards closed), but this is not harmful. 



Definition 15.3 We say that M E AS is simple iff Cov(C, M)  for at least two distinct covers C.  
We say that M E AS is stubborn iff Cov(M) = (0, {Q I Q 3 M))  (thus every stubborn element is 
simple). We say that a P-site (A, P, COV) is scenic iff all elements of the form app(M, N )  (or M N ) ,  
or tapp(M, s)  (or Ms) ,  are simple. 

From now on, we only consider scenic P-sites. In order for our realizability theorem to hold, 
realizers will have to satisfy properties analogous to the properties (P1)-(P3). 

Definition 15.4 Given an algebra of types T, let (A,  P, COV) be a P-site. Properties (P1)-(P3) 
are defined as follows: 

(PI )  P (M,  s), for some stubborn element M E AS. 

(P2) If P ( M ,  s )  and M N ,  then P (N,  s). 

(P3a) If COV,,~ (C, M) ,  P ( N ,  s), and P(MIN, t )  whenever M' E C ,  then P ( M N ,  t ) .  

(P3b) If CovV(@)(C, M),  s E T, and P(M's, @(s)) whenever M' E C, then P (Ms ,  @(s)). 

From now on, we only consider relations (families) P satisfying conditions (P1)-(P3) of definition 
15.4. The sheaf property is defined as in section 9, except that a more general notion of pre- 
applicative structure is involved. 

Definition 15.5 Given an algebra of types T ,  let (A ,P ,  COV) be a P-site. A function S :  A + 2T 
has the sheaf property (or is a P-sheaf) iff it satisfies the following conditions: 

(S l )  If s E S(M) ,  then M E P,. 

(S2) If s E S ( M )  and M 5 N,  then s E S(N).  

(S3) If Cov,(C, Ad) and s E S ( N )  for every N E C ,  then s E S(M) .  

A function S: A + 2T as in definition 15.5 can also be viewed as a family S = (Ss)sET, where 
S, = {M E A I s E S(M)).  Then, the sets S, are called P-candidates. The conditions of definition 
15.5 are then stated as follows: 

(Sl) ss c ps. 
(S2) If M E S, and M N ,  then N E S,. 

(S3) If Covs(C, M) ,  and C C S,, then M E S,. 

This second set of conditions is slightly more convenient for proving our results. 

Note that (S3) and (PI )  imply that S, is nonempty and contains all stubborn elements in P, 
(unless AS = 0). By (P3a), if M E P,,t is stubborn and N E P, is any element, then M N  E Pt. 
Furthermore, M N  is also stubborn. This follows from property (5) of a cover. Thus, if M E P,,t is 
stubborn and N E P, is any element, then M N  E Pt is stubborn. Similarly, by (P3b) and property 
(6) of a cover, if M E PV(@) is stubborn and s E T,  then M s  E Pa(,) is stubborn. 



Definition 15.6 Given an algebra of types T and a P-site (A, P, Cov), we let Sheaf (A, P )  denote 
the sets of all P-sheaves on (A, P, COV), and 

~ h e a f ( A ,  P), = {S, I S, E S ,  for some sheaf S = (Ss)sET E Sheaf(A, P)}. 

Since P itself is a P-sheaf, the set Sheaf(A, P )  is nonempty. The fact that definition 15.5 is 
indeed a sheaf condition is shown exactly as in section 4 (except that a functor F is a P-sheaf iff 
it is a sheaf, and for every a E A, F(a)  & T and s E F(a)  implies that a E P,). 

16 P-Realirability For A'Y 

In this section, we define a semantic notion of realizability. This notion is such that realizers are 
elements of some pre-applicative structure. Since types can contain type variables, we first need to 
define an interpretation of the types. In order to define the set of realizers of a second-order type 
VX. a, we need to define sheaf-valuations (see definition 16.4). 

Definition 16.1 Given an algebra of polymorphic types T ,  it is assumed that we have a function 
TI :  TC -t T assigning an element TI(k)  E T to every type constant k E TC. A type valuation is 
a function 6: V -t T. Given a type valuation 6, every type a E 7 is interpreted as an element [a]6 
of T as follows: 

[XI6 = O(X), where X is a type variable, 

[k]O=TI(k), where k isa typecons tan t ,  

I[. - r ] O  = [a16 - [~]]6,  

[VX. all6 = Q(At E T. I[u]O[X: = t]). 

In the above definition, At E T. [u]O[X: = t] denotes the function @ from T to  T such that 
@(t) = [a]O[X: = t] for every t E T. We say that T is a type interpretation iff @ E [T - T ]  for 
every type a and every valuation 6. 

In other words, T  is a type interpretation iff [a]O is well-defined for every valuation 6. The 
following lemmas will be needed later. 

Lemma 16.2 For every type a E 7, and every pair of type valuations O1 and 02, if O1(X) = 02(X), 
for all X E FTV(a) ,  then I[a]Ol = [a]02. 

Proof. A straightforward induction on a. [7 

Lemma 16.3 Given a type interpretation T ,  for all a, T E 7, for every type valuation 6, we have 



Proof. The proof is by induction on a. The case where a = X is trivial, since then X [ r / X ]  = r ,  
and 

[X]O[X: = [r]O] = O[X: = [r]O](X) = [r]O. 

The induction steps are straightforward, and we only treat the case where a = VY. al. In this case, 

[(VY. U~)[T/X]]O = V(At E T. [al[r/X]]O[Y: = t]), 

(where the bound variable Y is renamed in a suitable fashion if necessary), and where At E 
T. [al[r/X]]6[Y: = t] denotes the function from T to  T such that a ( t )  = [al[r/X]]6[Y: = t] 
for every t E T . By the induction hypothesis, we have 

@(t) = [al[r/X]]6[Y: = t] = [a1]6[X: = [r]B, Y: = t]. 

Then, since 
[VY. al]BIX: = [T]B] = v ( ~ t  E T. [ ~ , ] e [ x :  = [T]B, Y :  = t]), 

we have 
[(vY- U~)[T/XI]B = ivy. al]e[x:  = O[T]B]. 

The next definition can be viewed as a semantic version of Girard7s "candidats de r6ductibilit6" 
(see Girard [7], Gallier [4]). 

Definition 16.4 Given a type interpretation T and a pre-applicative structure A, a sheaf-valuation 
is a pair p. = (6, q), where 6: V -+ T is a type valuation, and q: V -' (J Sheaf (A, P) is a function 
called a candidate assignment, such that: 

~ ( x )  = SB(X), where Ss(x) E Sheaf(A, P)s(x),  for some P-sheaf S = (Ss)sET E Sheaf (A, P ) ,  
for every X E V. 

Given p. = (6, q), for any s E T and any S E Sheaf(A, P), ,  for some s-component S = S, 
of some P-sheaf S = ( S s ) s c ~  E Sheaf(A, P ) ,  we let p[X: = (s, S)] = (O[X: = s], q[X: = S]) be 
the sheaf-valuation, such that, 6[X: = s](Y) = 6(Y) for every Y # X and B[X: = s](X) = s, and 
q[X: = S](Y) = q(Y) for all Y # X ,  and q[X: = S](X) = S. 

The notion of P-realizability is defined as follows. 

Definition 16.5 Given an algebra of types T, let (A, P ,  Cov) be a P-site. For every sheaf-valuation 
p. = (6, q),  the family ( r [ ~ ] p ) ~ ~ ~ ,  where for every a E 7, r[a]p is the set of realizers of a, is 
defined as follows: 

r[k]p = P[kle, k a constant type, 

r[X]p = q(X),  X a type variable, 

rl[a -+ TIP = {M I M E P~u,,le, and for all N,  if N E r[a]lp then M N  E r[r ] lp) ,  

r[VX. a]p. = {M I M E PpX.u16, and for every s E T ,  every S E Sheaf (A, P),, 

M s  E r[a]p[X: = (s, S)]). 



The following lemmas will be needed later. 

Lemma 16.6 For every type a E 7, every pair of sheaf-valuations pl = (01, ql) and p2 = (82, w), 
if &(X)  = &(X) and QI(X) = 72(X), for all X E FTV(a) ,  then r[a]pl = r[a]p2. 

Proof. A straightforward induction on a (and using lemma 16.2). CI 

Lemma 16.7 Given a type interpretation T and a P-site (A,P,  Cov), for all a, r E 7, for every 
sheaf-valuation p = (8, q), we have 

Proof. The proof is by induction on a. We only consider the case where where a = VY. 01, the 
other cases being straightforward. By definition 16.5, we have 

r I [ (vy .a l ) [ r /Xlb  = {M I M E P [ ( v ~ . ~ , ) [ x / ~ ] ~ e ,  and for every s E T, every S E Sheaf(A, P),, 
M s  E r[al[r/X]]]p[Y: = (s, S)]). 

By lemma 16.3, we have 
[(VY. a1)[r/X]]0 = IVY. a1]0[X: = [.]el, 

and by the induction hypothesis, we have 

r[al[r/X]]p[Y: = (s, S)] = r[al]p[Y: = (s, S) ,  X :  = ([r]O, r[r]p)]. 

However, by definition, 

r[W. ulgp[X: = ([rIO, rl[r]p)l = { M  I M E P ~ Y .  U1]8[x:=[T]8] , and for every s E T ,  
every S E Sheaf(A, P),, 

M s  E rI[ul]p[X: = (IKrBe, r [ ~ ] p ) ,  Y: = (s, S)]), 

and so, we have 
r[(VY. a1)[./X]]p = r[VY. a11p[X: = ( [~ ]0 ,  r[.]p)]. 

The following lemma shows that the notion of a P-sheaf is an inductive invariant. In Gallier 
[4], this is the lemma we call " Girard's t r i ~ k " . ~  

Lemma 16.8 Given a scenic P-site (A, P ,  Cov), for every sheaf valuation p, if P satisfies con- 
ditions (PI)-(P3), then the family ( r [ ~ ] p ) ~ ~ ~  is a P-sheaf, and if A[~]'  # 0, then each r[a]p 
contains all stubborn elements in P[,ls. 

Proof. We proceed by induction on types. If a is a base type, r[a]p = PIulB, and obviously, 
every stubborn element in PblB is in r[a]p. Since r[a]p = P[ulB, (Sl)  is trivial, (S2) follows 
from (P2), and (S3) is also trivial. If a = X is a type variable, then r[aJp = q(X), and since 
q(X)  = where SqX) E Sheaf(A, P )qX) ,  (Sl), (S2), and (S3) hold. The fact that every 
stubborn element in PqX) is in Sqx) follows from (PI) and (S3), as we already noted earlier. 

'Of course, this is unfair. Girard has many tricks! 



We now consider the induction step. 

(1) Type a + r. By the definition of r[a + TIP, (Sl) is trivial. 

(2) Type VX. a. By the definition of r p X .  a lp ,  (Sl)  is trivial. 

(1) Type a t r. 

Let M E ria + TIP, and assume that M M'. Since M E P[u,,le by (Sl),  we have 
M' E P[u,,~e by (P2). For any N E r[a]p, since M E ria + r]p, we have M N  E r[r]p, and since 
M 2 M', by monotonicity of app, we have MN M'N. Then, applying the induction hypothesis 
a t  type r, (S2) holds for r[r]p, and thus M'N E r [ ~ ] p .  Thus, we have shown that M' E P[u+71e 
and that if N E r[a]p, then M'N E r[r]p. By the definition of ria -+ r]p, this shows that 
M' E rl[a + TIP, and (S2) holds at  type a + r. 

(2) Type VX. a. 

Let M E r[VX. a lp ,  and assume that M > M'. Since M E PpX.ule, by (S l ) ,  we have 
M' E Ppx. ,le. For every s E T and every S E Sheaf (A,  P),, since M E r[VX. ajlp, we have 
M s  E r[a]p[X: = (s, S)], and since M k M', by monotonicity of tapp, we have M s  k M's. Then, 
applying the induction hypothesis to  a and p[X: = (s, S)], (S2) holds for r[a]p[X: = (s, S ) ] ,  and 
thus M's E r[a]p[X: = (s, S)]. By the definition of r p X .  a lp ,  this show that M' E r[VX. a lp .  

(1) Type a + r. 

Assume that COV[,,,~~(C, M), and that M' E r[a -+ r ]p  for every M' E C, where M is simple. 
Recall that by condition (0) of definition 15.2, COV[,,,~~(C, M )  implies that M E P[u+T18. We 
prove that for every N ,  if N E r[[a]lp, then M N  E r[rjlp. First, we prove that M N  E PLTIe, and 
for this we use (P3). 

First, assume that M E P[,+Tls is stubborn, and let N be in r[o]p. By (Sl),  N E P[ule. By the 
induction hypothesis, all stubborn elements in P[T18 are in r[r]p. Since we showed that M N  E P[+ 
is stubborn whenever M E P[u,Tle is stubborn and N E PlTIe, we have M E r[o -+ rjlp. 

Now, consider M E P[u,T18 non stubborn. If M' E C ,  then by assumption, M' E r[o -+ rjlp, 
and for any N E r[a]p, we have M'N E r[r]p. Since by (Sl),  N E P[ulB and M'N E P[T18, by 
(P3a), we have M N  E P[,le. Now, there are two cases. 

If T is a base type, then r[r]p = PfTIe and M N  E r[r]p. 

If r is not a base type, then M N  is simple (since the site is scenic). Thus, we prove that 
M N  E r[r]p using (S3) (which by induction, holds at type 7). Assume that COV[,]~(D, M N )  for 
any cover D of M N .  If M N  is stubborn, then by the induction hypothesis, we have M N  E r[r]p. 
Otherwise, since COV[,,,~~(C, M )  and C and D are nontrivial, for every Q E D ,  by condition (5) of 
definition 15.2, there is some M' E C such that Q 3 M'N. Since by assumption, M' E ria -+ r]p 
whenever M' E C, and N E r[a]p, we conclude that M'N E r[r]p. By the induction hypothesis 
applied at  type T,  by (S2), we have Q E r[r]p, and by (S3), we have M N  E r[r]p. 



Since M E and M N  E r[r]p whenever N E r[a]lp, we conclude that M E r[a -t ~ ] p .  

(2) Type VX. a. 

Assume that Covpx. ,le(C, M) ,  and that M' E r[VX. a l p  for every M' E C,  where M is simple. 
Recall that by condition (0) of definition 15.2, Covpx. ,le(C, M )  implies that M E PpX. ,]@. We 
prove that for every s E T and every S E Sheaf(A, P),, we have M s  E r[o]p[X: = (s, S)].  First, 
we prove that M s  E P[ulo[x:=sl, and for this, we use (P3). 

First, assume that M E P~X.ale is stubborn, and let s E T. By the induction hypothesis, 
all stubborn elements in P~,le[x,,sl are in r[a]p[X: = (s, S)]. Recall that we have shown that 
M s  E Pa(,) is stubborn whenever M E PV(@) is stubborn. Considering the function 9 such that 
9 (s )  = [a]O[X: = s] for every s E T, since we know that [VX. a18 = V(@), then M s  E P~ole[X:=sl is 
stubborn whenever M E PpX.ule is stubborn, and we have M E r[VX. a lp .  

Now, consider M E Ppx.,le non stubborn. If M' E C ,  then by assumption, M' E r[VX. a lp ,  
and for every s E T and every S E ~ h e a f ( A ,  P),, we have M's E rl[a]p[X: = (s, S)]. Since by 
(Sl), M's E P[,le[x,,sl, by (P3b), we have M s  E P~,le[x,,sl, where (P3b) is applied to  the function 
9 such that 9 ( s )  = [a]O[X: = s] for every s E T.  For such a 9, we have [VX. a18 = V(9). Now, 
there are two cases. 

If a is a base type, then rl[a]p[X: = (s, S)] = P[u]6[x:=s1, and M s  E r[o]p[X: = (s, S)]. 

If (T is not a base type, then M s  is simple (since the site is scenic). Thus, we prove that M s  E 
rl[(~]p[X: = (s, S)] using (S3) (which by induction, holds for a). Assume that Cov~ole[x,,sl(D, Ms)  
for any cover D of Ms. If M s  is stubborn, then by the induction hypothesis, we have M s  E 
r[u]p[X: = (s, S)]. Otherwise, since C O V ~ ~ . , ~ ~ ( C , M )  and C and D are nontrivial, for every 
Q E D, by condition (6) of definition 15.2, there is some M' E C such that Q 3 M's. Since by 
assumption, M' E r[VX. a l p  whenever M' E C ,  we conclude that M's E r[a]p[X: = (s, S)].  By 
the induction hypothesis applied at  type a ,  by (S2), we have Q E r[a]p[X: = (s, S)], and by (S3), 
we have M s  E r[a]p[X: = (s, S)]. 

We will now need to  relate X-terms and realizers. 

17 Interpreting ~ ' 1 ' ~  in Pre- Applicative Structures 

We show how judgements I? D M :  a are interpreted in pre-applicative structures. For this, we define 
valuations. 

Definition 17.1 Given a type interpretation T ,  given a pre-applicative structure A, a valuation 
is a pair p = (0, E), where 8: V -t T is a type valuation, and E: X -t U(At)tET is a partial function 
called an environment. 

Given p = (8, E), for any s E T and a E AS we let p[X:= s, x:= a] = (8[X:= s], E[x:= a]) 
be the valuation, such that, 8[X: = s](Y) = 8(Y) for every Y # X and O[X: = s](X) = s ,  and 
E[X: = a](y) = ~ ( y )  for all y # x, and E[X: = a](x) = a. 

Given a context I?, we say that p satisfies I', written as p I' (where p = (8,  E)) iff 

E(X) E for every x: a E I'. 



Note that if p satisfies a context I', this implies that A["]' # 8 for every x: a E r. Also, 
conditions (1)-(2) of definition 14.3 imply that the following conditions hold: 

For all types a,r E 'T, if A['-']' # 0 and A[']' # 0, then A['-"~]' # 8, and if ~ [ " [ ' / ~ ] l *  # 0 for 
every r E 7, then # 0. 

We are now ready to  interpret A-terms. 

Definition 17.2 Given a type interpretation T and a pre-applicative structure A, let AI :  Const -+ 

A be a function assigning an element AI(c) of to  every constant c E Const. For every 
valuation p = (8,  E), and every context I', if p r, we define the interpretation (or meaning) 
A[r  D M:  a l p  of a judgement I' D M: a inductively as follows: 

A i r  D z: a l p  = E(X) 

A[r D c: Type(c)]p = AI(c) 

A[r  D M N :  r]p = app["]'~ [T18(~[I' D M: ( a  -+ r)Ip, A i r  D M: a lp)  

d[r D Ax: u. M: ( a  + r)]p = abst["Ie~ [7]e(cp), 

where cp is the function defined such that,  
cp(a) = A[r,  x: a P M: r]p[x: = a], for every a E A["]* 

A[r  D MT: a[r/X]]p = tappa(A[r D M :  VX. alp,  [T]O), 

where is the function such that @(s) = [a]B[X: = s] for every s E T 

d[I' D AX. M:  VX. a l p  = t abs t a (y ) ,  

where cp is the function defined such that, 
cp(s) = Ai r ,  X :  * D M:  a]p[X: = s], for every s E T ,  and where 9 is the function such that 
@(s) = [a]B[X: = s] for every s E T. 

We are assuming that the domains of abs t  and t a b s t  are sufficiently large for the above defini- 
tions t o  be well-defined for all p, and I'D M:  a. In this case, we say that A is a pre-interpretation. 

The following lemma will be needed later. 

Lemma 17.3 For every pair of contexts I'l and r2, for every pair of valuations pl = (el, E ~ )  and 
p2 = (02, c2), for every pair of judgements I'l D M:  a and I'2 D M :  a, if pl b rl and p2 r2, 
r l ( x )  = r2(x), for all x E FV(M),  &(X)  = &(X), for all X E U ( F T V ( T ) ) , , , ~ ~  U FTV(M),  and 
el(,) = c2(x), for a12 x E FV(M),  then 

Proof. A straightforward induction on typing derivations (and using lemma 16.2). 

Let us give an (important) example of a pre-applicative structure. First, we review the notion 
of a substitution. 

Definition 17.4 A substitution cp is a function cp: V U X -. 7 U Terms, such that y (X)  E 7 
if X E V, cp(x) E Terms if x E X, and cp(x) # x only for finitely many variables. We let 
dom(cp) = {x E V U X I y(x) # x). We say that y is a type-substitution if dom(9)  Y. Given two 
contexts I' and A,  we say that cp satisfies l7 at A, denoted as A I t  r [y] ,  iff A D ~ ( x ) :  ~[cp] ,  for every 
x: a E r. 



The following definition shows how the term model can be viewed as a pre-applicative ,f3- 
structure. 

Definition 17.5 The algebra of second-order types T is defined as follows: 

T = {(a, I?) I a E T ,  I' a context) U {error).  

The operation + is defined as follows: 

a -+ b = ( a  t T, I?) iff a = (a, I'), b = (T, A), and I' = A, otherwise e r ror .  

We let AelTor - - 0 ,  and A ( ~ Y  r, be the set of all provable typing judgements of the form r~ M: a. 
We denote A ( U * ~ )  as A;. For [T + TI, we take the set of all functions 9 such that (T, I') H 

(a[r/X], I'), where a, r E 7 are any types, and X is any fixed variable that does not occur in r 
(and with e r r o r  H error) .  Then, V(9) = (VX. a, 

A type valuation is a function 0: V + T, such that O(X) = (ax, r x )  or O(X) = e r r o r  for 
every X E V, and such that the function X H ax defines an (infinite) type substitution that we 
denote as [O]. Then, for any type a E 7, by the definition of the operation -+, either [a]O = e r ro r ,  
or [a]O = (a[O], A) for some context A. A valuation p = (0, E) consists of a type valuation 0 
and of a partial function E: X -+ U(AS),ET. As noted just after definition 17.1, the conditions on B 
require that there is some single A such that, O(X) = (ax, A) iff ALx # 0, for every X E V, and 
O(c) = (a,, A) iff A 2  # 0, for every type constant c . ~  

Indeed, if O(X1) = (01, Al), O(X2) = (02, A2), # 0, # 0, X i  # X2, and AI # A2, 
since (al, Al) + (a2, A2) = e r r o r  and Aerror = 0, the condition on 0 would be violated. Thus, 
E is a partial function such that E(X) is of the form E(X) = A D M,: a,, when it is defined (where A 
is uniquely determined by 0). 

Given a context I?, according to definition 17.1, a valuation p = (0, E) satisfies (p 1 I') iff 
for every xi: a; E r, we have €(xi) E A ~ [ * ] ,  for the fixed context A determined by 8, as explained 
above. This means that ~ ( x ; )  = A D  M;: a;[O], for some M;. A valuation p = (0, E) such that p b I' 
defines a substitution [E]: X -+ Terms, such that [E](x) = Mz, where E(X) = A D M,: a[O], for every 
x : a  E r. 

Thus, the restriction of p to I' defines a substitution 9 as follows: ~ ( x )  = [E](x) for every 
x E dom(I'), and p ( X )  = [O](X) for every X E UaEr FTV(a) .  Also, p 'F r is just the condition 
A tt I'[cp] of definition 17.4, where A is the context uniquely determined by 8. 

Define I' D N: a 5 I' D M: a iff M N.  Finally, we need to define fun, abs t ,  t fun ,  and 
t a b s t .  

We define f un(r  D M:  a i T) as the function [I' D M:  a -+ T] from AF to A;, such that 

for every I' D N:  a E AF. 

We define tfun(I '  D M: VX. a )  as the function [I' D M:  VX. a] from T to U(AF)uET, such that 

[r t> M:VX. U](T) = I' D MT: U[T/X], 

5The choice of X is irrelevant as long as X does not occur in r, since X is bound in VX. a. 
6 ~ 0  a - - 0 when there is no provable judgement A D M: a for any M .  



for every r E T. In this case, the in t fun"  is the function from T to T induced by a ,  such that 
Q ( r )  = u [ r / X ]  for every r E T. 

For every pair of contexts I?, A, for every substitution cp such that A tt (I?, x: a)[cp], for every 
judgement I', x: o D M :  r ,  consider the function ~ [ r ,  x: o D M :  r]  A from A>['+'] to AP], defined such 
that, 

cp[r, x:  a D M :  rlA(A D N :  a[cp]) = A D M[cp[x: = N ] ] :  r[cp], 

for every A D N :  a [ ~ ]  E A?]. Given any such function cp[I', x: a D M :  rIA, we let 

For every pair of contexts r ,  A, for every substitution cp such that A tt ( r ,  X :  * ) [ c p ] ,  for every 
judgement r ,  X :  * D M :  a ,  consider the function y [ r ,  X: * D M :  aIA from T to U(Ag),,ET, defined 
such that, 

cp[r ,X:  *D  M :  aIA(r )  = A t> M [ v [ X :  = T I ] :  a [ y [ X :  = T I ] ,  
for every T E T. 

Given any such function cp[I',X: *D M :  a]*, we let 

t a b s t ( p [ r ,  X :  *D  M :  a ] ~ )  = A D (AX .  M)[cp]: V X .  ~ [ c p ] .  

The pre-applicative p-structure just defined is denoted as Up. 

It is clear that y [ r ,  x: a D M :  rIA is in [A"['+'] + A~[ '+ ']]~ .  Let us verify that 

Since 
fun(abst(y[I ' ,  x: U D  M :  rIA)) = f u n ( A  D (Ax:  a. M)[cp]: a[cp] --, r[cp]), 

f u n ( A  D (Ax:  a. M)[cp]: a[cp] + r [ y ] )  = [A  D (Ax:  a. M)[cp]: a[cp] -t ~ [ y ] ] ,  

[ A  D (Ax: a. M)[cp]: a[cp] --, r [ p ] ] ( A  D N :  a[cp]) = A D ( (Ax:  a. M ) [ y ] ) N :  r[cp], 

cp[I', x:  a D M :  rIA(A D N :  a [ p ] )  = A D M[cp[x: = N ] ] :  r[cp], 

and 
( (Ax:  a. M ) [ y ] ) N  -0 M[cp[x: = N ] ] ,  

the inequality holds. Indeed, (Ax:  a. M ) [ y ]  is a-equivalent to ( A y :  a. M [ y / x ] ) [ y ]  for any variable y 
such that y 4 dom(cp) and y 4 p( z )  for every z E dom(cp), and for such a y, (Ay: a .  M[y/x])[cp] = 
(Ay:a[cp]. M [ y / x ] [ q ] ) .  Then, for this choice of y, 

Regarding the definition of t a b s t ,  letting @ be the function from T to T induced by a ,  such 
that @(r)  = a [ r / X ]  for every r E T, it is clear that y [ r ,  X :  * D M :  aIA is in n G ( A i ) s E T .  Let us 
now verify that 

t f u n ( t a b s t ( y [ I ' ,  X :  *D M :  aIA))  cp[I', X :  *D  M :  aIA. 



Since 
tfun(tabst(cp[r, X: *D M: a ] ~ ) )  = t fun(A D (AX. M)[cp]: VX. a[cp]), 

t fun(A D (AX. M)[cp]: VX. o[cp]) = [A D (AX. M)[cp]:VX. a[y]], 

[A D  (AX. M)[cpl: VX. a[cpll(r) = A D ((AX. M)[cpl)r: ~[cpl[r/Xl,  

cp[I', X :  A D  M: aIA(r)  = A b M[(p[X: = r]]: a[cp[X: = r]], 

a[cpl[rlXl = a[cp[X: = TI], 

(by a suitable a-renaming on X),  and 

the inequality holds (the details of the verification using a-renaming are similar to the previous 
case). 

The other conditions of definition 14.3 are easily verified. 

As we already observed, a valuation p = (0, E) for the pre-applicative structure Lip, is char- 
acterized by a single context A such that, O(X) = (ox, A) iff A? # 0, and O(c) = (a,, A) 
iff A: # 0, for every type constant, and E is a partial function such that E(X) is of the form 
E(X) = A D M,: a,, when it is defined. Also, given a context r ,  a valuation p = (0, E) satisfies r 
(p I') iff A I t  I'[cp]. Then, by a simple induction on the typing derivation for I' D M: a ,  we can 
show that for any valuation p = (0, E) such that p + I', then 

where A is uniquely determined by 8, and where cp is the substitution defined by the restriction of 
p = (0, E) to I', as explained at the beginning of definition 17.5. 

18 The Realizability Theorem for X'I~ 

In this section, we prove the realizability lemma (lemma 18.6) for A+?", and its main corollary, 
theorem 18.7. First, we need some conditions relating the behavior of a meaning function and 
covering conditions. We will also need semantic conditions analogous to  the conditions (P4)-(P5). 

Definition 18.1 We say that a site (A,'P, Cov) is well-behaved iff the following conditions hold: 

(1) For any a E AS, any cp E [As + At], if abst(cp) exists, Covt(C, app(abst(v), a)), and C is a 
nontrivial cover, then c 5 y(a) for every c E C. 

(2) For any s E T, any cp E JJa(AS),ET, if t abs t (9 )  exists, Covq,)(C, tapp( tabs t (v) ,  s)), and 
C is a nontrivial cover, then c 5 y(s) for every c E C. 

In view of definition 17.2, definition 18.1 implies the following condition. 



Definition 18.2 

(1) For any a E A[~]', if C O V [ ~ ~ ~ ( C ,  app(A[I' D Ax: a. M: ( a  - r)]p, a)) and C is a nontrivial 
cover, then c 5 All?, x: a D M: r]p[x: = a] for every c E C. 

(2) For any s E T, if ~ o v [ , ~ ~ ~ ~ ~ ~ ~ ~ ( C ,  tapp(d[I' D AX. M: VX. alp,  s ) )  and C is a nontrivial cover, 
then c -1 A[r,X:  *D M: a]p[X: = s] for every c E C. 

For the proof of the next lemma, we need to  add two new conditions (P4) and (P5) to  (P1)-(P3). 

Definition 18.3 Given a well-behaved site (A, P,Cov), properties (P4) and (P5) are defined as 
follows: 

(P4a) For every a E AS, if y(a)  E Pt, where y E [As 3 At] and abs t (y)  exists, then abs t (y)  E 

ps-+t. 

(P4b) For every s E T ,  if cp(s) E Pq,), where cp E no(AS),ET and tabst(cp) exists, then 

tabst(cp) E Pv(o). 

(P5a) If a E Ps and p(a) E Pt ,  where q E [AS 3 At]  and abs t (y)  exists, then a p p ( a b s t ( ~ ) ,  a )  E Pt. 

(P5b) If s E T and y(s) E Pa(,), where cp E nQ(AS)sET and tabst(cp) exists, 
then tapp(tabst(  y),  s )  E Pa(,). 

In view of definition 17.2, definition 18.3 implies the following conditions. 

Definition 18.4 

(P4a) If A[r,  x: a D M :  r l p  E P[,le, then A i r  D Ax: a. M:  ( a  + r)]p E P[,,,le. 

(P4b) If A i r ,  X :  * D M: a l p  E P[ale, then A i r  D AX. M:  VX. a l p  E P[vx.a~e. 

(P5a) If a E P[,le and A i r ,  x: o D M:  r])p[x: = a] E P[71e, then app(A[r D Ax: a. M:  ( a  + r)]p, a) E 

Pi,] e - 
(P5b) If s E T and A i r ,  X :  *D M :  a]p[X: = s] E P[ale[X:=sl, then tapp(A[I' D AX. M :  VX. anp, s) E 

P[a]e[x:=s]. 

Lemma 18.5 Given a well-behaved scenic site (A, P, Cov) and a family P satisfying conditions 
(P1)-(P5), for every sheaf valuation p = (8, 77) and every valuation p = (8, 6 )  sharing the same type 
valuation 0, for every context r, if p r, then the following properties hold: (1) If p(y) E r[6]p 
for every y: S E I', x: a ,  if for every a ,  ( a  E r[a]p implies Ail?, x: a D M: r]p[x: = a] E r[r])p), then 
A[I' D Ax: a. M:  ( a  -+ r)]p E r[a -+ r]p; 

(2) If A[r ,  X:* D M :  a]p[X: = s] E r[a]p[X: = (s, S)], for every s E T and every S E 
sheaf (A, P),, then A[r  D AX. M :  VX. a l p  E r[VX. alp. 

Proof. (1) We prove that A[r  D Ax: a. M: ( a  + r)]p E P[u,718, and that for every every a ,  if 
a E rl[a]p, then app(A1I' D Ax: a. M: ( a  -t r)]p, a )  E r[r]p. We will need the fact that the sets of 
the form r[a]p have the properties (S1)-(S3), but this follows from lemma 16.8, since (P1)-(P3) 
hold. First, we prove that A[I' D Ax: a. M:  ( a  -t r)]p E P~,,,le. 



Since p(y) E r[S]p for every y: 6 E I', x: a, letting a = p(x), by the assumption of lemma 18.5, 
AII', x: a D M: r]p E r[r]p. Then, by (Sl), we have APT, x: a D M: r]p E PrTle, and by (P4a), we 
have A[I' D Ax: a. M:  ( a  -t r)]p E P[u,,le. 

Next, we prove that for every every a ,  if a E r[a]p, then app(A[I' D Ax: a. M:  ( a  -, r)]p, a)  E 
r[r]p. Assume that a E r[a]p. Then, by the assumption of lemma 18.5, A[r,  x: a D M:  r]p[x: = 
a] E r[r]p. Thus, by (Sl) ,  we have a E P[,le and A i r ,  x: a D M:  r]p[x: = a] E PrTle. By (P5a), we 
have app(A[I' D Ax: a. M:  ( a  -t r)]p, a)  E Now, there are two cases. 

If T is a base type, then r[r]p = PITle. Since app(A[r D Ax: a. M: ( a  -, r)]p, a)  E PrTle, we have 
app(A[I' D Ax: a. M: ( a  -+ r)]p, a )  E r[r]p. 

If r is not a base type, then app(A[I' D Ax: a. M: ( a  -, r)]p, a)  is simple (since the site is scenic). 
Thus, we prove that app(A[I' D  AX:^. M:  ( a  -t ~ ) ] p , a )  E r[r]p using (S3). By lemma 16.8, the 
case where app(A[I' D Ax: a. M:  ( a  -+ r)]p, a) is stubborn is trivial. 

Otherwise, assume that CovrTIe(C, app(A[I' D Ax: a. M:  ( a  -t r)]p, a)), where C is a nontrivial 
cover. By condition (1) of definition 18.2, c 5 A i r ,  x: a D M: r]p[x: = a] for every c E C, and since 
by assumption, A[I',x: a D M:r]p[x: = a] E r[r]p, by (S2), we have c E r[r]p. Since c E r[r]p 
whenever c E C, by (S3), we have app(A[I' D Ax: a. M: ( a  -, r)]p, a)  E r[r]p. 

(2) We prove that A i r  D AX. M:VX. a l p  E Ppx.,lo, and that for every s E T and every 
S E Sheaf(A, P),, tapp(A[r D AX. M: VX. alp,  s)  E r[a]p[X: = (s, S)].  By lemma 16.8, since 
(P1)-(P3) hold, the sets of the form r[a]p[X: = (s, S)] have the properties (S1)-(S3). First, we 
prove that A[I' D AX. M: VX. a l p  E PwX.a]B. 

By the assumption of lemma 18.5, A i r ,  X:  * D M:  a l p  E r[a]P[X: = (s, S)] for every s E T 
and every S E Sheaf(A, P),. In particular, this holds for s = B(X) and S = q ( X ) ,  and we have 
A[I',X:*D M:o]p E r[a]p. Then, by (Sl), we have A[I',X:*D M:a]p E P~a le ,  and by (P4b), we 
have A[I' D AX. M:  VX. a l p  E PpX.  

Next, we prove that tapp(A[r D AX. M:VX. alp,  s)  E r[a]p[X: = (s, S) ] ,  for every s E T 
and every S E Sheaf (A, P),. By the assumption of lemma 18.5, A i r ,  X: * D M: a]p[X: = s] E 
r[a]p[X: = (s, S)]. Thus, by (Sl), we have A[r, X:  *D M:  a]p[X: = s] E PralBIX:=s~. By (P5b), we 
have tapp(A[I' D AX. M: VX. a lp ,  s )  E P ~ a l ~ I X ~ = s l .  Now, there are two cases. 

If a is a base type, then r[a]p[X: = (s, S)] = P[,le[x,,,l. Since t a p p ( d [ r ~ A X .  M:VX.a]p, s)  E 
Pr,,le[x:,sl, we have tapp(A[I' D AX. M:VX. alp,  s) E r[a]lp[X: = (s, S)]. 

If a is not a base type, then tapp(A[r D AX. M:  VX. alp,  s)  is simple (since the site is scenic). 
Thus, we prove that tapp(A[r D AX. M:  VX. alp,  s)  E r[a]]p[X: = (s, S)],  using (S3). The case 
where tapp(d[I' D AX. M: VX. alp,  s) is stubborn is trivial. 

Otherwise, assume that Cov[,lo[x,,,l(C, tapp(d[I' D AX. M: VX. alp,  s)), where C is a nontrivial 
cover. By condition (2) of definition 18.2, c 5 A[r,  X :  * D M: a]p[X: = s] for every c E C,  and 
since by assumption, A[I',X:* D M:  a]p[X: = s] E r[a]p[X: = (s, S)] ,  by (S2), we have c E 
r[a]p[X: = (s, S)]. Since c E r[a]p[X: = (s, S)] whenever c E C ,  we deduce using (S3) that we 
have tapp(A[r D AX. M: VX. a lp ,  s )  E r[a]p[X: = (s, S)].  

We now prove the main realizability lemma for ~ ' 7 ' ~ .  



Lemma 18.6 Given a well-behaved scenic site (A, P, Cov) and a family P satisfying conditions 
(Pi)-(P5), for every sheaf valuation p = (8, 77) and every valuation p = (8, 6 )  sharing the same 
type valuation 0, for every context I?, if p p and p(y) E r[S]p for every y: S E r ,  then for every 
I' D M:  a, we have A[I' D M: a l p  E r[a]p. 

Proof. We proceed by induction on the derivation of I' D M: a. If M is a variable x, then 
A[I' D x: a l p  = E(X) E r[a]p, by the assumption on p. 

If M = MINI, where I' D MI: ( a  + T) and I? D N1: a ,  by the induction hypothesis, 

A[I' D Mi: ( a  + r)]p E ria + r]p and A[I' D N1: a l p  E r[a]p. 

By the definition of ria + r]p, we get app(A[I' D Ml : (a  + r)]p,A[I' D N1:a]p) E r[r]p, i.e., 
A[I' D (MI N1): ~ ] p  E r[r]p, by definition 17.2. 

If M = Ax: a. MI, where I' D Ax: a. MI: ( a  + T), consider any a E r[a]p and any valuation p 
such that p(y) E r[S]p for every y: 6 E I?. Note that by (S3) and (PI ) ,  r[a]lp is indeed nonempty. 
Thus, the valuation p[x: = a] has the property that p[x: = a](y) E r[S]p for every y: 6 E I?, x: a. 
Applying the induction hypothesis to  I?, x: a b Ml : T and to the valuations p ,  and p[x: = a], we have 

Since this holds for every a E r[a]p, by lemma 18.5 ( I ) ,  A[I' b Ax: a.  Ml : ( a  + r)]p E r[a + TIP. 
If M = M1r, where r D M1r: a [ r / X ]  and I' D MI: QX. a ,  by the induction hypothesis, 

A[r  D MI: VX. a l p  E r[QX. a lp .  

By the definition of r[QX. u]p, letting s = [r]B and S = r[r]Ip, we get 

tapp(A[I' D MI: QX. alp,  [TI@) E r[a]p[X: = (s, S)]. 

However, by lemma 16.7, we have 

which is just 

~ ~ ~ [ T ~ X I I P  = r[anp[X: = (s, S)I, 
since s = [r]8 and S = r[r]p, and thus, by definition 17.2, we have A[I' D (M1r):a[r/X]]p E 

r l [ u [ ~ l x l l ~ .  

If M = AX. MI, where I' D AX. MI: QX. a, consider any arbitrary s E T and any arbitrary 
S E Sheaf(A, P),. Since X $! dom(I'), by lemma 16.6, we have r[S]p = r[6]p[X: = (s, S)] for 
every y: 6 E (I', X :  *). Thus, we can apply the induction hypothesis to  r ,  X :  * D M1 : a ,  and to  the 
valuations p[X: = (s, S)] and p, and we have 

A[ r ,X :  * b  MI: a l p  E r[a]lp[X: = (s, S)]. 

Since the above holds for every s E T and every S E Sheaf(d, P),, by lemma 18.5 (2)) we have 
A[I' D AX. MI: QX. a l p  E r[QX. a]p. [7 

If M is a closed term of type a ,  lemma 17.3 implies that A[DM: a l p  is independent of p, and 
thus we denote it as AIM: a]. We obtain the following important theorem for A'vv2. 



Theorem 18.7 Given a well-behaved scenic site (A, P ,  Cov) and a family P satisfying conditions 
(PI)-(P5), for every judgement b M: a where M is closed, we have d [ M :  a] E PIole. (in other 
words, the realizer AIM: a] satisfies the unary predicate defined by P ,  i.e, every provable type is 
realizable). 

Proof. Apply lemma 18.6 to  the judgement DM: a, to any sheaf valuation p = (8, q) such that 
q(X) = Pe(x) for every X E V, and to  any valuation p. EI 

19 Applications to the System ~ ' 1 ' ~  

This section shows that theorem 18.7 can be used to prove a general theorem about terms of the 
system ~ ' 7 ~ ~ .  As a corollary, it can be shown that all terms of ~ ' 9 " ~  are strongly normalizing and 
confluent. 

In order to  apply theorem 18.7, we define a notion of cover for the site A whose underlying 
pre-applicative structure is the structure C T p  of definition 17.5. 

Definition 19.1 An I-term is a term of the form either Ax: a. M or AX. M.  A simple term (or 
neutral term) is a term that is not an I-term. Thus, a simple term is either a variable x ,  a constant 
c, an application M N ,  or a type application M r .  A term M is stubborn iff it is simple and, either 
M is irreducible, or M' is a simple term whenever M f M' (equivalently, M' is not an I-term). 

We define a cover algebra on the structure L T p  as follows. Let P be a (unary) property of 
typed second-order A-terms. 

Definition 19.2 The cover algebra Cov is defined as follows: 

(1) If I? b M: a E P(,, r) and M is an I-term, then 

(2) If I? D M: a E P(,, r) and M is a (simple and) stubborn term, then 

Cov(r D M: a )  = (0, {r D N:  a I M Lp N } ) .  

(3) If r D M: a E P(,, r) and M is a simple and non-stubborn term, then 

+ ~ o v ( I '  D M :  a )  = {{I' D N:  a I M Ap N),  {I' D N: a I M -p Q Ap N, for some I-term Q)). 

Recall from definition 15.3 that M is simple iff it has at least two distinct covers. Thus, 
definition 19.2 implies that a term is simple in the sense of definition 19.1 iff it is simple in the 
sense of definition 15.3. Similarly a term is stubborn in the sense of definition 19.1 iff it is stubborn 
in the sense of definition 15.3. Also, definition 19.1 implies that L T p  is scenic. 

Properties (PI-P3) are listed below. 



Definition 19.3 Properties (P1)-(P3) are defined as follows: 

(PI )  I', x: a D z: a E P(,, r), I' D c: a E P(,, r), for every variable x and constant c (such that 
Type(c) = 4. 

(P2) If I? D M:  a E P(,, r) and M -0 N, then I' D N: a E P(,, r). 

If M is simple, then: 
(P3a) If I' D M: ( a  -t 7) E P( ,,,, r ) ,  I' D N:  a E P(,, r), r D (Ax: a. Mf)N:  r E P(,, r) whenever 

M f Ax: a. M', then I' D M N :  r E P( ,  r). 

(P3b) If I' D M:VX. a E P(tlx.,, r), 7 E 7, r D (AX. M')T: a [ r / X ]  E P(u[T/x~, r) 
whenever M f, AX. MI, then I' D M r :  o [ r /X]  E P(,[,lxl,r). 

A careful reader will notice that conditions (P3) of definition 19.3 are not simply a reformulation 
of conditions (P3) of definition 15.4. This is because according to definition 19.2, I' D M:  a ,  where 

+ M is a non-stubborn term, is covered by the nontrivial cover {I'D N: a I M -+p Q -tip N),  where 
Q is some I-term, but the conditions of definition 19.3 only involve reductions to  I-terms. Ilowever, 
due to  condition (P2) and the fact that a nontrivial cover is determined by the I-terms in it, the 
two definitions are indeed equivalent. 

If I' D M: (o + 7) E P(,,,, r) where M is a stubborn term and I' D N: a E P(,, r) where N 
is any term, then r D M N :  r E P(,, r) by (P3a). Furthermore, M N  is also stubborn since it is a 
simple term and since it can only reduce to  an I-term if M itself reduces to a an I-term. Thus, 
if I' D M: ( a  -t T) E P(,,,, r) where M is a stubborn term and r D N:  a E P(,, r) where N is 
any term, then I' D MN:  r E P(,,r) where M N  is a stubborn term. We can show in a similar 
fashion that (P3b) implies that if I? D M:VX. a E P(vx.,, r) where M is a stubborn term, then 
r D MT: a [ r / X ]  E P(,[TIXl,r), where M T  is a stubborn term, for any T E 7. 

Properties (P4-P5) are listed below. 

Definition 19.4 Properties (P4) and (P5) are defined as follows: 

(P4a) If I', x: a D M: T E P(,, r), then I' D Ax: a. M: ( a  -+ r) E P( ,,,, r). 

(P4b) If I',X:*b M : a  E P(,, r ) ,  then I'D AX. M:vX. a E P(vx.,, r). 

(P5a) If I' D N: a E P(,, r) and I' D M[N/x]: r E P(,, r), then I' D (Ax: a. M )  N: r E P(,, r). 

(P5b) If T E 7 and I' D M[r/X]:  a [ r /X]  E P(,[,lx~, q ,  then (I' D AX. M)r :  a [ r / X ]  E P(,[,lxl, q. 

Again, a careful reader will notice that conditions (P5) of definition 19.4 are not simply a 
reformulation of conditions (P5) of definition 18.4. However, because of (P2) and the fact that a 
nontrivial cover is determined by the I-terms in it, the two sets of conditions are equivalent. 

We now show that the conditions of definition 15.2 and the conditions of definition 18.2 hold. 

Lemma 19.5 Definition 19.2 defines a cover algebra, and the site (Lip, P,Cov) is scenic and 
well-behaved. 



Proof. The verification is straightforward. As an illustration, let us verify the conditions of 
definition 18.2. First, recall that for the structure CTp, for every valuation p = (8, E) such that 

p I?, there is some A uniquely determined by 8, such that A H- r[cp], and 

where cp is the substitution defined by the restriction of p = (8, E) t o  r .  

(1) For any a E A [ ~ ] ~ ,  if CovITle(C,app(AII' D Ax: a. M:  ( a  -+ r))p,  a)) and C is a nontrivial 
cover, then c 5 A[r,  x: a D M: r]p[x: = a] for every c E C. 

We have app(A[r D Ax: u. M: ( a  -+ r)]p, a) = A D ((Ax: u. M)[cp])a: r[cp], where cp is the substi- 
tution defined by the restriction of p t o  I'. By definition 19.1, since C is nontrivial, c E C means 
that 

((Ax: a. M)[cpl)a f 0 Q c ,  

for some I-term Q. This can only happen if there is a reduction 

However, we have (M[cp])[a/x] = M[cp[x: = a]] (using a suitable renaming of x). By the definition 
of CTp[I', x: a D M :  r lp ,  we have C l p [ [ r ,  x: u D M: r)p[x: = a] = A D M[cp[x: = a]]: r[v], and this 
part of the proof is complete. 

(2) For any s E 7 ,  if Cov~,lo~x,,sl(C, t a p p ( d [ r ~  AX. M:  VX.u]p, s ) )  and C is a nontrivial cover, 
then c 5 A[r,  X :  * D M: u]lp[X: = s] for every c E C. 

We have tapp(A[r D AX. M:VX. ulp, s )  = A D ((AX. M)[y])s: (u[s/X])[cp], where cp is the 
substitution defined by the restriction of p to  r. By definition 19.1, since C is nontrivial, c E C 
means that 

((AX. M)[cpl)s f p Q 50 c, 

for some I-term Q. This can only happen if there is a reduction 

However, we have (M[cp])[s/X] = M[cp[X: = s]], and (u[s/X])[cp] = u[y[X: = s]], (using a suitable 
renaming of X) .  By the definition of L7p[r ,  X :  *D  M :  alp,  we have 

and the proof is complete. EI 

Thus, the site ( L l p ,  P, Cov), is scenic and well-behaved. Consequently, we can apply theorem 
18.7, and get a general new theorem for proving properties of terms of the system In fact, 
for the structure CTp, for a property P satisfying conditions (P1)-(P5), by (P I )  and (P3), every 
variable x is stubborn. Thus, for every context r ,  we can apply lemma 18.6 to  the sheaf valuation 
p = (8, q )  such that 8(X) = (X, T) and q(X) = Px for every type variable, and to  the valuation 
p = ( 6 ,  E) such that E(X) = x for every variable x, since by lemma 16.8, r[S]p contains every 
stubborn term, for every x: 6 E I?. Consequently, we have the following new theorem. 



T h e o r e m  19.6 If P is a family of A-terms satisfying conditions (P1)-(P5), then P(,, r) = A(,, r) 
for every type a (in other words, every term satisfies the unary predicate defined by P). 

Proof. By lemma 19.5, the site ( U p ,  P, Cov) is scenic and well-behaved. By the discussion 
just before stating theorem 19.6, for every context J?, if we consider the sheaf valuation p = (8, 7) 
such that 8(X) = (X, I') and q(X) = Px for every type variable, and the valuation p = (8, E )  such 
that ~ ( x )  = x for every variable x, we have p(x) E r[u]p for every x: 6 E I?. Thus, we can apply 
lemma 18.6 t o  any judgement I' D M :  a and to p and p just defined, and we have 

However, in the present case, LTp[I' D M: a l p  = I' D M: a. Thus, I' D M:  a E rl[a]p, and since 

r[a]p P(,, r), we have r D M: a E P(,, r), as claimed. 

As a corollary, we can prove strong normalization and confluence. We prove strong normaliza- 
tion below. For simplicity of notation, instead of using judgements I' D M: a ,  we will use the terms 
M.  Since we are concerned with reduction properties, this is not harmful at all. 

Theorem 19.7 The reduction relation A p  of the system A'yv2 is strongly normalizing. 

Proof. Let P be the family defined such that P, = SN, is the set of strongly normalizing terms 
of type a. By theorem 19.6, we just have to  check that P satisfies conditions (P1)-(P5). First, we 
make the following observation that will simplify the proof. Since there is only a finite number of 
redexes in any term, for any term M ,  the reduction tree7 for M is finitely branching. Thus, if M is 
any strongly normalizing term (abbreviated as SN term from now on), every path in its reduction 
tree is finite, and since this tree is finite branching, by Konig's lemma, this reduction tree is finite. 
Thus, for any SN term M ,  the depths of its reduction tree is a natural number, and we will denote 
it as d(M). We now check the conditions (P1)-(P5). (PI )  and (P2) are obvious. 

(P3a) Since M E SN,,, and N E SN,, d(M) and d(N) are finite. We prove by induction on 
d(M) + d(N) that M N  is SN. We consider all possible ways that M N  -p P. Since M is simple, 
M N  itself is not a redex, and so P = MIN1 where either N = N1 and M -p MI,  or M = M1 
and N -p N1. 

If MI is simple or MI = M ,  d(Ml) + d(N1) < d(M) + d(N), and by the induction hypothesis, 
P = MINI is SN. Otherwise, MI = Ax: a. MI, N1 = N ,  by assumption (Ax: a. Mt)N is SN, and so 
P is SN. Thus, P = MINI is SN in all cases, and M N  is SN. 

(P3b) Since M E SNvx.,, d(M) is finite. We prove by induction on d(M) that M T  is SN. We 
consider all possible ways that M T  -p P. Since M is simple, M T  itself is not a redex, and so 
P = M1r where M -p MI. 

If MI is simple, d(Ml) < d(M), and by the induction hypothesis, P = M l r  is SN. Otherwise, 
MI = AX. MI, by assumption (AX. M')T is SN, and so P is SN. Thus, P = M1r is SN in all cases, 
and M T  is SN. 

(P4) These cases are all similar, and hold because a reduction cannot apply at  the outermost 
level. 

7the tree of reduction sequences from M 
'the length of a longest path in the tree, counting the number of edges 



(P4a) Any reduction from Ax:a. M must be of the form Ax:a. M f p Ax: a. M' where 

M f p M'. We use a simple induction on d(M). 

(P4b) Similar to  (P4a). 

(P5a) Since N E SN, and M[N/x] E SN,, the term M itself is SN. Thus, d(M) and d(N) are 
finite. We prove by induction on d(M) + d(N) that (Ax: a. M ) N  is SN. We consider all possible 
ways that (Ax: a. M ) N  -p P. Either P = (Ax: a. Ml)N where M -p MI, or P = (Ax: a. M)Nl 
where N -p N1, or P = M[N/x]. In the first two cases, d(Ml) + d(N) < d(M) + d(N), 
d(M) + d(Nl) < d(M) + d(N), and by the induction hypothesis, P is SN. In the third case, by 
assumption M[N/x] is SN. But then, P is SN in all cases, and so (Ax: a. M ) N  is SN. 

(P5b) This case is quite similar to (P5a). Since M[r /X]  E SN,[,Ixl, the term M itself is 
SN. Thus, d(M) is finite. We prove by induction on d(M) that (AX. M ) r  is SN. We consider all 
possible ways that (AX. M ) r  -p P. Either P = (AX. Ml)r  where M -p MI, or P = M[r/X].  
In the first case, d(Ml) < d(M), and by the induction hypothesis, P is SN. In the second case, by 
assumption M[r /X]  is SN. But then, P is SN in all cases, and so (AX. M ) r  is SN. 

Confluence can be shown exactly as in Gallier [5 ] .  

20 Conclusion and Suggest ions for Further Research 

A semantic notion of realizability using the notion of a cover algebra was defined and investigated. 
For this, we introduced a new class of semantic structures equipped with preorders, called pre- 
applicative structures. In this framework, we proved a general realizability theorem. Applying 
this theorem to  the special cases of the term model for the simply-typed A-calculus and for the 
second-order A-calculus, we obtained some general theorems for proving properties of typed A-terms, 
including a new theorem for proving properties of terms in X'V@ (theorem 19.6). As corollaries, 
we obtain alternate proofs of strong normalization and confluence. 

This approach clarifies the reducibility method by showing that the closure conditions on can- 
didates of reducibility can be viewed as sheaf conditions. Indeed, cover conditions provide a clear 
axiomatization of the conditions needed for the proof of the realizability theorem. Our approach 
yields a clearer separation of the semantic versus the syntactic ingredients of the proof. For ex- 
ample, the fact that the sheaf property is an invariant with respect to the notion of realizability 
is a semantic property which has little to do with A-terms. In fact, this uses only part of the 
pre-applicative structure (app, tapp, nl,  wz, i n l ,  inr) .  On the other hand, at  some point, it is 
necessary to interpret A-terms in order to show what amouts to the soundness of our realizability in- 
terpretation, and it is in this part that substitution and reduction properties of X-terms play a role. 
In traditional presentations of proofs using reducibility, the underlying pre-applicative structure of 
the term model is only implicit, and it is harder to see that substitutions are really valuations. It 
is also practically impossible to  see that cover conditions are present. 

Extending the results of this paper to pre-applicative 07-structures and to typed A-calculi with 
7-like reductions should pose no problems for the types i ,  X ,  and v2. However, in view of results 
of Dougherty [3], there may be some difficulties in dealing with the sum type, since confluence fails 
(with the traditional orientation of 7-like rules). 



As we mentioned in the introduction, Hyland and Ong [ll] show how strong normalization 
proofs can be obtained from the construction of a modified realizability topos. Very roughly, 
they show how a suitable quotient of the strongly normalizing untyped terms can be made into a 
categorical (modified realizability) interpretakion of system F. There is no doubt that Hyland and 
Ong7s approach and our approach are related, but the technical details are very different, and we 
are unable to make a precise comparison a t  this point. Clearly, further work is needed to clarify 
the connection between Hyland and Ong's approach and ours. 

We have checked that in all proofs of reducibility that we are aware of, except for a recent paper 
by McAllester, KuEan, and Otth [19], and a recent paper by Michel Parigot [21], the conditions 
on sets of realizers are sheaf  condition^.^ However, the pre-applicative structures defined in this 
paper are not always general enough to carry out these proofs (for example, in the case of untyped 
A-terms and typing systems with intersection types). McAllester, KuEan, and Otth [19], prove 
various strong normalization results using another variation of the reducibility method, and we 
need to understand how this method relates to the method presented in this paper. 

We believe that nonextentional structures are interesting in their own right, and thus we think 
that it would be interesting to investigate classes of nonextentional structures more general than 
pre-applicative structures (perhaps using category theory). When dependent types are considered, 
we run into the problem that interpreting types requires interpreting terms. We were able to define 
cover conditions that seem adequate for proving a general realizability theorem, but we ran into 
problems in defining the meaning of terms. The problem has to do with type-conversion rules: a 
term no longer has a unique type, and we run into a coherence problem in attempting to define 
the meaning of term by induction on typing-derivations. Overcoming this difficulty seems to be 
the most pressing open problem. More generally, we believe that there is a deeper connection 
between realizability semantics and other kinds of semantics, and that the notion of a cover algebra 
plays a significant role in that connection. We believe that understanding this connection would 
be worthwhile. Another challenging question is to figure out whether it is possible to adapt the 
framework of this paper to  deal with other calculi, for example calculi for various systems of linear 
logic. 
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21 Appendix: Extensional and Pre- Applicat ive Structures 

We begin with extensional pre-applicative structures for X'tX~+. First, we define isotonicity. Given 
a monotonic function f :  Wl -+ W2, where Wl and W2 are preorders, we say that f is isotone iff 
f (wl) 5 f (w2) implies that wl 5 w2, for all wl, wz E Wl. 

Definition 21.1 A pre-applicative p-structure A is extensional iff fun, II, and ( c in l ,  c in r ) ,  are 
isotone, and the following conditions hold: 

9We need to examine more closely these approaches to determine whether they fit into our framework 



(3) ran( (c  inlu9'16, c inrav'16 )) c dam([-, -1 o (abstUl6 x a b ~ t ~ , ~ ) ) .  

When A is an applicative @-structure, conditions (1)-(3) hold, and the functions fun,  TI, and 
(c in l ,  c inr ) ,  are injective, we say that we have an extensional applicative @-structure. 

When A is an extensional pre-applicative @-structure, in view of condition (I) ,  abst(fun(f)) 
is defined for any f E A'"'. Observe that by condition (1) of definition 8.1, we have fun( f )  5 
fun(abst(fun( f ))), and since fun  is isotone, this implies that 

(1) abst(fun(f)) ? f ,  for all f E A0". 

Similarly, we can prove that 

(2) ( ~ ~ ( a ) ,  n2(a)) a, for all a E AaXT; and 

(3) [abst(cinl(h)),  abst(cinr(h))] k h, for all h E A(~+')'~. 

We will call the above inequalities the 7-like rules. 

In many cases, a pre-applicative p-structure that satisfies the 7-like rules is not extensional. 
This motivates the next definition. 

Definition 21.2 A pre-applicative @-structure A is a @q-structure if the following conditions hold: 

(1) ran(fun) C dom(abst), and abst(fun(f)) f ,  for all f E 

(2) ran(II) & dom((-, -)), and ( ~ ~ ( a ) ,  na(a)) a,  for all a E AaXT; and 

(3) r a n ( ( ~ i n l ~ ~ ' ~ ~ ,  ~ i n r ~ ' ~ ? ~ ) )  & dom([-, -1 o (abstap6 x abstT7')), and 

[abst(cinl(h)),  abst(cinr(h))] k h, for all h E A ( ~ + ~ ) ' ~ .  

When A is an applicative @-structure and in conditions (1)-(3)) 2- is replaced by =, we say that 
we have an applicative @q-structure. 

From the remark before definition 21.2, an extensional pre-applicative @-structure is a @q- 
structure. When A is an applicative @q-structure, conditions (1)-(3) of definition 21.2 amount 
to: 

(1) abstatT o funa*T = id ;  

(2) (-, o IIu7' = id ;  and 

(3) ([-, -1 o (abstag6 x abst'16)) o ( ~ i n l " ~ ' ~ ~ ,  c i n ~ ~ ~ ~ ' )  = id .  

This implies that fun, TI, and (c in l ,  c in r ) ,  are injective. Thus, an applicative @7-structure 
is extensional. In this case, (together with conditions (1)-(3) of definition 8.1 in the case of an 
applicative @-structure), we have dom(abst) = fun(Aa"), fun is a bijection between A"" and a 
subset of [Aa + AT] (with inverse abst) ,  II is a bijection between AaXT and a subset of A" x A' 
(with inverse (-, -)), and ( ~ i n l ~ ~ ~ ~ ~ ,  ~ i n r ~ ~ ' ~ ~ )  is a bijection between A ( " + ~ ) ' ~  and a subset of 
[A" + A ~ ]  x [A' =$- A'] (with inverse [-, -1 o ( a b ~ t " ? ~  x abstTv6)). 

Extensional pre-applicative structures and @q-structures for A'~X~+*' are defined just as in 
definition 21.1 and definition 21.2, and the same remarks apply. However, these remarks only 
apply for types different from I. 

We now define extensional pre-applicative structures for ~ ' 7 ~ ~ .  



Definition 21.3 A pre-applicative p-structure A is extensional iff fun and t f u n  are isotone, and 
the following conditions hold: 

When A is an applicative p-structure, conditions (1)-(2) hold, and the functions fun and t f u n  
are injective, we say that we have an extensaonal applicative p-structure. 

When A is an extensional pre-applicative p-structure, in view of condition (I) ,  abst(fun(f)) 
is defined for any f E AS't. Observe that by condition (1) of definition 14.3, we have fun( f )  5 
fun(abst(fun(f))), and since fun is isotone, this implies that 

(1) abst(fun(f)) f ,  for all f E AS't. 

Similarly, we can prove that 

(2) tabs t ( t fun( f ) )  f ,  for all f E A'(@). 

We will call the above inequalities the 7-like rules. 

In many cases, a pre-applicative /?-structure that satisfies the 7-like rules is not extensional. 
This motivates the next definition. 

Definition 21.4 A pre-applicative /?-structure A is a pq-structure if the following conditions hold: 

(1) ran(fun) C dom(abst), and abst(fun( f ) )  f ,  for all f E ASdt; 

(2) ran( t f  un) C dom(tabst), and tabs t ( t fun(  f )) f ,  for all f E A'('). 

When A is an applicative /?-structure and in conditions (1)-(2), > is replaced by =, we say that 
we have an applicative /?q-structure. 

The term model can easily be made into a pre-applicative Pq-structure (by adapting definition 
17.5). From the remark before definition 21.4, an extensional pre-applicative /?-structure is a /?7- 
structure. When A is an applicative /?I]-structure, conditions (1)-(2) of definition 21.4 amount 
to: 

(1) a b s t ' ~ ~  o funS7t = id ;  

(2) tabst '  o tfun" = id .  

This implies that fun and t fun ,  are injective. Thus, an applicative pq-structure is extensional. 
In this case, (together with conditions (1)-(4) of definition 14.3 in the case of an applicative 0- 
structure), we have dom(abst) = f w ~ ( A ~ ' ~ ) ,  fun is a bijection between AS't and a subset of 
[AS + At] (with inverse abst) ,  dom(tabst) = t fun(~ ' (@)) ,  and t f u n  is a bijection between A'(@) 
and a subset of nc9(AS)sET (with inverse t abs t ) .  
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