
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

November 1993

Proving Properties of Typed Lambda-Terms Using Realizability, Proving Properties of Typed Lambda-Terms Using Realizability,

Covers, and Sheaves (Preliminary Version) Covers, and Sheaves (Preliminary Version)

Jean H. Gallier
University of Pennsylvania, jean@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Jean H. Gallier, "Proving Properties of Typed Lambda-Terms Using Realizability, Covers, and Sheaves
(Preliminary Version)", . November 1993.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-93-91.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/252
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F252&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/252
mailto:repository@pobox.upenn.edu

Proving Properties of Typed Lambda-Terms Using Realizability, Covers, and Proving Properties of Typed Lambda-Terms Using Realizability, Covers, and
Sheaves (Preliminary Version) Sheaves (Preliminary Version)

Abstract Abstract
We present a general method for proving properties of typed λ-terms. This method is obtained by
introducing a semantic notion of realizability which uses the notion of a cover algebra (as in abstract
sheaf theory). For this, we introduce a new class of semantic structures equipped with preorders, called
pre-applicative structures. These structures need not be extensional. In this framework, a general
realizability theorem can be shown. Kleene's recursive realizability and a variant of Kreisel's modified
realizability both fit into this framework. Applying this theorem to the special case of the term model,
yields a general theorem for proving properties of typed λ-terms, in particular, strong normalization and
confluence. This approach clarifies the reducibility method by showing that the closure conditions on
candidates of reducibility can be viewed as sheaf conditions. The above approach is applied to the
simply-typed λ-calculus (with types →, x, +, and ⊥), and to the second-order (polymorphic λ-calculus (with

types → and ∀2), for which it yields a new theorem.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-93-91.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/252

https://repository.upenn.edu/cis_reports/252

Proving Properties of Typed A-Terms
Using Realizability, Covers, and Sheaves

MS-CIS-93-91
LOGIC & COMPUTATION 73

Jean Gallier

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

November 1993

Proving Properties of Typed A-Terms
Using Realizability, Covers, and Sheaves

Preliminary Version

Jean Gallier*
Department of Computer and Information Science

University of Pennsylvania
200 South 33rd St.

Philadelphia, PA 19104, USA
e-mail: jeanQsaul .cis.upenn.edu

November 10, 1993

Abstract. We present a general method for proving properties of typed A-terms. This method is
obtained by introducing a semantic notion of realizability which uses the notion of a cover algebra
(as in abstract sheaf theory). For this, we introduce a new class of semantic structures equipped
with preorders, called pre-applicative structures. These structures need not be extensional. In
this framework, a general realizability theorem can be shown. Kleene's recursive realizability and a
variant of Kreisel's modified realizability both fit into this framework. Applying this theorem to the
special case of the term model, yields a general theorem for proving properties of typed A-terms, in
particular, strong normalization and confluence. This approach clarifies the reducibility method by
showing that the closure conditions on candidates of reducibility can be viewed as sheaf conditions.
The above approach is applied to the simply-typed A-calculus (with types -+, x, +, and I), and
to the second-order (polymorphic) A-calculus (with types -t and V2), for which it yields a new
theorem.

'This research was partially supported by ONR Grant N00014-88-K-0593.

1

1 Introduction

Kleene, Kreisel, and others ([13], [16], [26]), introduced realizability , a certain kind of semantics
for intuitionistic logic. Realizability can be used to show that certain axioms are consistent with
certain intuitionistic theories of arithmetic, or to show that certain axioms are not derivable in
these theories (see Kleene [14], Troelstra [26], Troelstra and van Dalen [27], and Beeson [I]). Tait
[24], introduced reducibility (or computability), as a technique for proving strong normalization for
the simply-typed X-calculus. Girard [7], introduced the method of the candidates of reducibility a
technique for proving strong normalization for the second-order typed X-calculus (and F,). Stat man
[23] and Mitchell [20], observed that reducibility can be used to prove other properties besides strong
normalization, for example, confluence.

The above lead to some natural observations:

a There are some similarities between reducibility and realizability, but they remain somewhat
implicit.

a Proofs by reducibility use an interpretation of the types, but such interpretations are very
syntactical.

a Proofs by reducibility seem to involve the construction of certain kinds of models.

a Proofs by reducibility use various inductive invariants (due to Girard [6, 71, Tait [24,25], Krivine,
[17]), but it is hard to see what they have in common.

These observations suggest the following two questions which are the primary concerns of this
paper:

1. What is the connection between realizability and reducibility?

2. Is is possible to give more "semantic" versions of proofs using reducibility?

This paper provides some answers to the above questions. In order to do so, we found that it
was necessary to step away from the syntax to have a clearer view. Thus, we define an abstract
notion of semantic realizability which uses the notion of a cover algebra (covering families used in
abstract sheaf theory). For this, we introduce a new class of structures equipped with preorders,
called pre-applicative structures. These structures need not be extensional. Kleene's recursive
realizability and a variant of Kreisel's modified realizability both fit into this framework. In this
setting, it turns out that the family (r l [~]) ~ ~ ~ of sets of realizers associated with the types, is a
sheaf. Actually, we consider abstract properties P of these sets of realizers. The main theorem is
the following: provided that the abstract property P satisfies some fairly simple conditions (P1)-
(P5), if a type a is provable and M is a proof for a , then the meaning A([M]lp of M is a realizer
of a that satisfies the property P. As a corollary, considering the term model for the simply-typed
X-calculus (with types -+, x, +, and I), we obtain simple proofs for strong normalization and
confluence. This approach sheds some new light on the reducibility method and the conditions on
the candidates of reducibility. These conditions can be viewed as sheaf conditions.

In a recent paper, Hyland and Ong [ll] show how strong normalization proofs can be obtained
from the construction of a modified realizability topos. Very roughly, they show how a suitable

quotient of the strongly normalizing untyped terms can be made into a categorical (modified re-
alizability) interpretation of system F. There is no doubt that Hyland and Ong's approach and
our approach are related, but the technical details are very different, and we are unable to make a
precise comparison a t this point. What we can say is that our aim is not t o provide a new class of
categorical models, but rather to provide a better axiomatization of the conditions that make the
proof go through. For this purpose, we believe that the notion of a cover algebra is particularly
well suited. Clearly, further work is needed to clarify the connection between Hyland and Ong's
approach and ours.

In order to motivate our approach and to help the reader's intuition, we first sketch our approach
for the simply-typed A-calculus A'.

Recall that the types and the terms of A' are given by the following grammar:

M - c I x I (M M) 1 (Ax:a.M).

The type-checking rules are as usual (see section 2), and we let A, denote the set of A-terms of
type a.

It is important to observe that there are two classes of terms:

1. Those created by introduction rules, or I-terms, Ax: a. M ;

2. Those created by elimination rules, M N .

I-terms play a special role, because the only way to create a redex is to combine an I-term with
some other term. Terms that are not I-terms, are called simple, or neutral: x, c, M N .

Girard realized the importance of simple terms (see his (CR1-CR3)-conditions in Girard [7]).
However, Koletsos [15] realized the following even more crucial fact:

Crucial Fact: M N Ap Q, where Q is an I-term, only if M itself reduces to an I-term.

Let P = (P,),ET be a family of properties of the simply-typed A-terms (that type-check). For
example, M E P, holds iff M is strongly normalizing (SN), or M E P, holds iff confluence holds
from M. In Gallier [5], we obtained the following theorem.

Theorem A. Let P be a family satisfying the conditions:

(P I) z E P,, c E P,, for every variable x and constant c of type a.

(P2) If M E P, and M then N E P,.

(P3) If M is simple, M E P,,,, N E P,, and (Ax: a. M1)N E P, whenever M f p Ax: a . MI,
then M N E P,.

(P4) If M E P,, then Ax: a. M E P,,, .
(P5) If N E P, and M[N/x] E P,, then

(Ax: a. M) N E P,.

Then, P, holds for all terms of type a, i.e. P, = A,, for every a E I.

In particular, SN and confluence are easily shown to satisfy conditions (P1)-(P5), and as a
corollary, we obtain that SN and confluence hold for A'.

The proof of Theorem A uses a version of reducibility in which the types are interpreted as
follows:

[a] = P,, a a base type,

[a + T] = {M I M E P,,,, and for all N ,

if N E [a] then M N E I T]) .

The other crucial concept used in the proof is the notion of a P-candidate, inspired by the work
of Girard, Koletsos, and Mitchell.

A family S = (Su)uET of nonempty sets of terms is a P-candidate iff it satisfies the following
conditions:

(Sl) s, c p,.
(S2) If M E S, and M -p N , then N E S,.

(53) If M is simple, M E P,, and Xz: y. M' E S, whenever M f Xz: y. MI, then M E So.

Condition (S3) can be rewritten as follows:

(S3) If M is simple, M E P,, and Q E S, whenever M L p Q and Q is an I-term, then M E So.

The advantage of the above formulation is that it applies to more general calculi, as long as the
notion of an I-term is well-defined.

We now take the (somewhat wild) step of relating the previous concepts to covers (in the sense
of Grothendieck) and sheaves (see MacLane and Moerdijk [18]). We can think of the set

as a cover of M.' Then, writing Cov,(C, M) for "the set C covers M", condition (S3) can be
formulated as:

(S3) If Cov, (C, M), and C c So, then M E S,.

We can view S = as a functor

S : LToP + Sets,

by letting S (M) = {o I M E S,), where L'T is basically the term model, with preorder N 5 M iff
M N. Indeed, (S2) says that S (M) S (N) if N 5 M. Then, (S3) can be formulated as:

(S3) If Cov,(C, M) , and a E S (N) for every N E C, then a E S(M).

For those familar with sheaves, this looks like a "sheaf condition". Indeed, the covers arising
in reducibility proofs satisfy some conditions defined by Grothendieck in the sixties! These are the
conditions for Grothendieck topologies on sites (see MacLane and Moerdijk [18]).

In order to make all this clear, first, we need to define some appropriate semantic structures
that will be our sites. Normally, sites are categories. Thus, we will consider semantic structures

'When M is a simple term that is not stubborn, see section 12 for details.

where the carriers are equipped with preorders. These preorders are a semantic version of reduction

(-*-to 1.
In order t o understand what motivated the definition of the semantic structures used in this

paper, it is useful to review the usual definition of an applicative structure for the simply-typed A-
calculus (for example, as presented in Gunter [lo]). For simplicity, we are restricting our attention
to arrow types. Let 7 be the set of simple types built up from some base types using the constructor
+. Given a signature C of function symbols, where each symbol in C is assigned some type in 7,
an applicative structure A is defined as a triple

where

is a family of nonempty sets called carriers,

(appa~7),,,ET is a family of application operators, where each app07' is a total function
appalT: Au'7 x Aa + AT;

and Const is a function assigning a member of Aa to every symbol in C of type a

The meaning of simply-typed A-terms is usually defined using the notion of an environment,
or valuation. A valuation is a function p: X -t U(Aa)aE7, where X is the set of term variables.
Although when nonempty carriers are considered (which is the case right now), it is not really
necessary t o consider judgements for interpreting A-terms, since we are going to consider more
general applicative structures, we define the semantics of terms using judgements. Recall that a
judgement is an expression of the form I' D M: a, where I?, called a context, is a set of variable
declarations of the form XI: ul, . . .,x,: a,, where the xi are pairwise distinct and the a; are types,
M is a simply-typed A-term, and a is a type. There is a standard proof system that allows to type-
check terms. A term M type-checks with type a in the context I? (where I' contains an assignment
of types t o all the variables in M) iff the judgement I' D M: a is derivable in this proof system.
Given a context I', we say that a valuation p satisfies I' iff p(x) E A" for every x: a E I' (in other
words, p respects the typing of the variables declared in I'). Then given a context I' and a valuation
p satisfying r, the meaning [I' D M: a l p of a judgement D M: a is defined by induction on the
derivation of I' D M : a , according to the following clauses:

[I' D x: a l p = p(x), if x is a variable;

[I' D c: a l p = Const(c), if c is a constant;

[r D M N : r]p = appa~'([I' D M: (a + ~)] p , [I' D N: a]p),

[I'DAx: a. M: (a + r)]p = f , where f is the unique element of Aa" such that appU7'(f , a) =
[r, x: a D M : r]lp[x: = a], for every a E Aa.

Note that in order for the element f E to be uniquely defined in the last clause, we
need to make certain additional assumptions. First, we assume that we are considering extensional
applicative structures, which means that for all f , g E A"", if app(f , a) = app(g, a) for all a E A",
then f = g. This condition garantees the uniqueness o f f if it exists. The second condition is more
technical, and asserts that each Aa contains enough elements so that there is an element f E A"'T
such that appa*T(f, a) = [I', x: a D M: r]p[x: = a], for every a E A".

Note that each operator app"*T: A"-+T x A" + AT induces a function AudT + [Au + AT],
where [Aa =+ AT] denotes the set of functions from A" to AT, defined such that

fu.""(f)(a) = a ~ p " ' ~ (f , a) ,

for all f E and all a E A". Then, extensionality is equivalent to the fact that each fun"*T is
injective. Note that funu*': A"" -t [A" + AT] is the "curried" version of appa3T: x A" t AT,
and it exists because the category of sets is Cartesian-closed.

The clause defining [I'D Ax: a. M: (a + r)]p suggests that a partial map abst"tT: [Au + AT] -+
A"", "abstracting" a function cp E [Au + AT] into an element ab~ t "?~(cp) E AadT, can be defined.
For example, the function cp defined such that y(a) = [I', x: a b M: r]lp[x: = a] would be mapped to
[I' D Ax: a. M: (a + r)]p. In order for the resulting structure to be a model of P-reduction, we just
have to require that fun".' and a b ~ t " ~ ~ satisfy the axiom

whenever cp E [Au + AT] is in the domain of a b ~ t " ? ~ . But now, observe that if pairs of operators
f unulT, a b ~ t " 1 ~ satisfying the above axiom are defined, the injectivity of f unulT is superfluous for
defining [r D Ax: a. M: (a + r)]p.

Thus, by defining a more general kind of applicative structure using the operators funatT and
abstalT, we can still give meanings to A-terms, even when these structures are nonextensional. In
particular, our approach is an alternative to the method where one considers applicative structures
with meaning functions, as for example in Mitchell [20]. In particular, the term structure together
with the meaning function defined using substitution can be seen to be an applicative structure
according to our definition. In fact, this approach allows us to go further. We can assume that
each carrier A" is equipped with a preorder do, and rather than considering the equality

we can consider inequalities
f ~ n " ' ~ (a b s t " ' ~ (y)) y.

This way, we can deal with intentional (nonapplicative) structures that model reduction rather
than conversion. We learned from Gordon Plotkin that models of @-reduction (or @q-reduction)
have been considered before, in particular by Girard [8], Jacobs, Margaria, and Zacchi [12], and
Plotkin [22]. However, except for Girard who studies qualitative domains for system F, the other
authors consider models of the untyped A-calculus. A brief presentation of these models can be
found at the end of section 3.

Let us now briefly discuss how to generalize the above approach to the second-order (polymor-
phic) A-calculus (with types + and V2). For this, we generalize pre-applicative structures. We now
have a type algebra T, that we use to interpret the (syntactic) types. Then, the set of realizers
r[a]p associated with a type a depends on a valuation p that assigns a pair (s, S) to every type
variable, where s is an element of the type algebra T, and S is the s-component of some sheaf
S = (Ss)sET. In this setting, it turns out that the family (r l [~] p) , ~ ~ of sets of realizers associated
with the types, is itself a sheaf. Actually, we consider abstract properties P of these sets of realiz-
ers. The main theorem is the following: provided that the abstract property P satisfies some fairly

simple conditions (P1)-(P5), if I' D M: a and p(y) E r[S]p for every y: 6 E r, then the meaning
A[I' D M: u]p of I'D M: a is a realizer of a that satisfies the property P. As an application, consid-
ering a suitable term model for the second-order X-calculus, we obtain a new theorem for proving
properties of terms in ~ ' 7 ' ~ . As a corollary, we obtain simple proofs for strong normalization and
confluence. This approach sheds some new light on the reducibility method and the conditions on
the candidates of reducibility. These conditions can be viewed as sheaf conditions.

In order t o understand what motivated our definition of second-order pre-applicative structures,
it is useful t o review the definition of an applicative structure for the second-order (polymorphic)
X-calculus. In order to deal with second-order types, first, we need to provide an interpretation
of the type variables. Thus, as in Breazu-Tannen and Coquand [2], we assume that we have an
algebra of types T , which consists of a quadruple

where T is a nonempty set of types, +:T x T + T is a binary operations on T, [T + T] is a
nonempty set of functions from T to T, and V is a function V: [T + TI + T .

Intuitively, given a valuation 9: V + T (where V is the set of type variables), a type a E 7 will
be interpreted as an element [a]9 of T . Then, a second-order applicative structure is defined as a
tuple

(T, (A')sET, (~ P P " ~ ? s , ~ E T , (~~PP')~E[T-T]) ,

where

T is an algebra of types;

(AS),ET is a family of nonempty sets called carriers,

(appS~t)s,tET is a family of application operators, where each appSit is a total function
apps~t: AS't x AS + At;

(taPPa)@EIT,Tl is a family of type-application operators, where each tappa is a total function
tappa: A'(@) x T + U (A @ (~)) , ~ ~ , such that tappa(f , t) E for every f E A'('), and
every t E T .

In order to define second-order applicative structures using operators like fun and abs t , we
need to define the curried version tfun' of tappa: A'(') x T + U (A @ (~)) , ~ ~ . For this, we define
a kind of dependent product na(AS),ET (see definition 14.2). Then, we have families of operators
t funO: A'(') -t flQ(AS),ET, and t a b ~ t ' : n ~ (A ~) ~ € ~ + A'('), for every E [T + TI.

This paper is organized as follows. The syntax of the simply-typed X-calculus X ' ~ X ~ + ~ L is
reviewed in section 2. Pre-applicative structures for A' are defined in section 3, and some examples
are given. The crucial notions of P-cover algebras and of P-sheaves are defined for A' in section 4.
The notion of P-realizability is defined for A' in section 5. In section 6, it is shown how to interpret
terms in A' in pre-applicative structures. The realizability theorem for the typed X-calculus A'
is shown in section 7. Pre-applicative structures for the typed X-calculus X'lX*+3L are defined in
section 8. The notions of P-cover algebras and P-realizability are extended to X ' ~ X ~ + ~ L in section
9. In section 10, it is shown how to interpret terms in X ' I ~ I + ~ ' in pre-applicative structures. The
realizability theorem for the typed X-calculus X'7X7+7L is shown in section 11. Section 12 contains
an application of the main theorem of section 11 to prove a general theorem about terms of the

system A'I~I+V'. The syntax of the second-order A-calculus A'tv is reviewed in section 13. Pre-
applicative structures for A'*v2 are defined in section 14. The notions of P-cover algebras and of
P-sheaves are defined for A'vP in section 15. The notion of P-realizability for A'yV2 is defined in
section 16. In section 17, it is shown how to interpret terms in in pre-applicative structures,
and some examples are given. The realizability theorem for the second-order typed A-calculus A'?*
is shown in section 18. Section 19 contains an application of the main theorem of section 18 to
prove a new general theorem for A'*v2 (theorem 19.6). Section 20 contains the conclusion and
some suggestions for further research. Extensional and Pq pre-applicative structures are defined in
section 21.

2 Syntax of the Typed A-Calculus A'lxi+~'-

Let 7 denote the set of (simple) types, consisting of base types, including the special base type
I, and compound types (a + T), (a x T), and (a + T). The presentation will be simplified if we
adopt the definition of simply-typed A-terms where all the variables are explicitly assigned types
once and for all. More precisely, we have a family X = (Xo),EI of variables, where each X, is a
countably infinite set of variables of type a, and X, n X, = 0 whenever a # T. Using this definition,
there is no need to drag contexts along, and the most important feature of the proof, namely the
reducibility method, is easier to grasp.

Instead of using the construct case P of inl(x: a) =+ M I inr(y: T) + N , it will be more
convenient and simpler to use a slightly more general construct [M, N], where M is of type a + 6
and N is of type T + 6, even when M and N are not A-abstractions. This will be especially
advantageous for the semantic treatment to follow. Then, we can define the conditional construct
case P of in l (z : a) + M I inr(y: T) + N , where P is of type a + T, as [Ax: c. M, Ay: T. NIP. The
type-checking rules of the system are summarized in the following definition.

Definition 2.1 The terms of the typed A-calculus are defined by the following rules.

a , whenx EX,,

(we can also have c: c, for a set of constants that have been preassigned types).

with a #I,

where x E Xu;

M: T
(abstraction)

(Ax: a. M): a + T

M : u + T N : a
(application)

(MN): T

M : a N:T
(pairing)

(M, N) : a x r

M : a x r M : a x r
(projection) (projection)

?rl (M): a ?r2(M): r

M: a M: r
(injection) (injection)

i n l (M) : a + r inr(M): a + r
M : (a -t 6) N : (r + 6)

(co-pairing)
[M, N]: (a + 7) + 6

The standard elimination rule for + is:
P :a+r M:6 N:6

(by-cases)
(case P of inl(x: a) + M I inr(y: r) + N): 6

where x E X , and y E X,.

We can design reduction rules so that the construct [Ax: a. M, Ay: r. N I P behaves just like
case P of in l (x : a) + M I inr(y: r) + N. For this, we design more atomic reduction rules for
[M, N]. These rules do not incorporate the /?-reduction step implicit in the traditional reduction
rules.

Definition 2.2 The reduction rules of the system X ' - X ~ + ~ L are listed below:

(Ax: a. M) N - M[N/x],

m((M, N)) - M ,

7r2((M, N)) - N,
[M, N] i n l (P) - MP,

[M, N] in r (P) - N P ,

v U ' T (~) ~ - v T (~) ,

? r ~ (~ U X T (M)) - v U (~) >

T ~ (V ~ X T (M)) + vT(M),

LM7 N l VU+T - ~ 6 (~) .

The traditional rules for the case construct are

case i n l (P) of in l (x : a) + M I inr(y: r) + N - M[P/x],

case i n r (P) of in l (x : a) + M I inr(y: r) J N - N[P/y].

The above reduction rules can be simulated by the [-, -]-rules of definition 2.2 and /?-reduction
as follows:

[Ax: a. M, Ay: r. N] i n l (P) - (Ax: a. M) P -0 M[P/x] ,

[Ax: a. M, Xy: r. N] in r (P) - (Ay: r. N) P -p N[P/y].

The reduction relation defined by the rules of definition 2.2 is denoted as -p (even though
there are reductions other that /?-reduction). From now on, when we refer to a A-term, we mean a
A-term that type-checks. We let A, denote the set of A-terms of type a.

Given two preordered sets (A", 5") and (AT, AT), we let [Aa + AT] be the set of monotonic
functions w.r.t. du and dT, under the pointwise preorder induced by dr defined such that, f 3 g
iff f (a) 5T g(a) for all a E Au.

3 Pre-Applicat ive Structures for A'

In this section, some new semantic structures called pre-applicative structures are defined. In order
to simplify the presentation, we restrict our attention to the type constructor +, and we do not
discuss extensional or Pq pre-applicative structures. We also show that the term model can be
viewed as a pre-applicative P-structures.

Definition 3.1 A pre-applicative P-structure is a structure

A = (A, 5 , fun, abs t) ,

where

A = (A"),ET is a family of (nonempty) sets called carriers;

(<u)oET is a family of preorders, each 5" on Au;

abstuyT: [Aa + AT] + a family of partial operators;

 fun"^^: AUdT 4 [Au + AT], a family of (total) operators.

It is assumed that fun and abs t are monotonic. Furthermore, the following condition is satisfied

(1) f ~ n " ~ ~ (a b s t " ~ ~ (y)) cp, whenever ab~ t "?~(cp) is defined for cp E [Au + AT];

The operators fun induce (total) operators

app"": x Au -+ Ar , such that, for every f E and every a E A" ,

Then, condition (1) can be written as

(I7) appu~T(absta9T(cp), a) 2 y (a) , for all a E A", for p E [Au + AT], whenever a b ~ t " ' ~ (y) is
defined.

We say that a pre-applicative P-structure is an applicative P-structure iff in conditions (1)-(3),
is replaced by the identity relation =.

Intuitively, A is a set of realizers. We will omit superscripts whenever possible.

When A is an applicative @-structure, then, in definition 3.1, condition(1) amounts to

(1) funu1r o a b ~ t " ~ ~ = i d on the domain of definition of abst .

In this case, abs t is injective and fun is surjective on the domain of definition of abs t (and left
inverse to abst) .

When we use a pre-applicative p-structure to interpret X-terms, we assume that the domain of
abs t is sufficiently large, but we have not elucidated this last condition yet. Given M E A"" and
N E A", app(M, N) is also denoted as MN.

We can also define extensional pre-applicative structures and pre-applicative ,&?-structures, but
this will done later.

Let us give an (important) example of a pre-applicative ,f3-structure.

Definition 3.2 Let A" = A, be the set of all typed A-terms of type a. We let app be the obvious
construct (app(M,N) = MN). Define N 5 M iff M Ap N. Finally, we need to define abst .
For every (type-preserving) substitution cp, for every term M: r and for every variable x of type a,
consider the function cp[x: a D M: r] from A" to AT, defined such that,

cp[x: a D M: r](N) = M[cp[x: = N]],

for every N: a. Given any such function cp[x: a D M: r], we let

abst(cp[x: a D M: T]) = (Ax: a. M)[cp].

The structure just defined is denoted as C T p .

Clearly, app(abst(cp[x: c D M: r]) , N) cp[x: a D M: r](N), since

app(abst(cp[x: a D M: r]), N) = ((Ax: a. M)[y])N -p M[p[x: = N]].

Indeed, (Ax: a. M)[cp] is a-equivalent to (Xy: a. M [y /x])[cp] for any variable y such that y 4 dom(cp)
and y 6 cp(z) for every z E dom(cp), and for such a y, (Ay: a. M[y/x])[cp] = (Ay: a. M[y/x][cp]). Then,
for this choice of y,

The other conditions of definition 3.1 are easily verified.

We learned from Gordon Plotkin that models of @-reduction (or pq-reduction) have been con-
sidered before, in particular by Girard [8], Jacobs, Margaria, and Zacchi [12], and Plotkin [22]. In
[8], definition 1.12, Girard defines a A-structure as a triple D = (X, H, li) consisting of

(i) a qualitative domain X ,

(ii) a stable function H from X to X + X , and

(iii) a stable function K from X + X to X,

where X + X is the set of all traces of stable functions from X to X. Girard then shows
that a A-structure D models P-reduction if H o K C Idx,x, and that D models 7-reduction if
K o H c Idx (note that the partial order C corresponds to the opposite of our ordering 5) . Girard
also states that such structures have nice features, in particular because they can be approximated
by finite A-structures.

The major difference with our approach is that the above models are intended for the untyped
A-calculus, and that we do not have a construct such as X + X.

In [22], section 3, Plotkin introduces a notion of model of @-reduction that he calls an ordered
A-interpretation. After Mitchell [20], Plotkin defines such a structure as a triple P = (P , ., [-I(.)),
where P is a partial order, . is a monotonic application operation .: P x P --+ P , and [.]I(.) is a

meaning function, that maps terms and environments to P, and such that some obvious conditions
on [I(.) hold. If the condition

holds, we say that P is a model of P-reduction. Plotkin then proceeds to show that such models are
sound and complete with respect to Curry-style type inference systems (also know as systems for F-
deducibility), for various type disciplines. The main difference with our approach is that Plotkin's
structures are models of the untyped A-calculus, and that meaning functions are an intrinsic part
of their definition. In our definition, the meaning function is not part of the definition, but it is
uniquely defined. For our purposes, this is a much more suitable approach.

Jacobs, Margaria, and Zacchi [12] define models of P-reduction, P-expansion, and p-conversion,
quite similarly to Girard, but using cpo's, with D + D the set of all Scott-continuous functions
from D to D. They proceed to show how to construct models of filters with polymorphic and
intersection types.

Other references to models of reduction can be found in Plotkin [22] .

4 P-Cover Algebras and P-Sheaves

In this section, we introduce the bare minimum of concepts needed for understanding the notion
of a sheaf on a site. Usually, sites are defined as categories with a notion of a cover, also called
a Grothendieck topology (see MacLane and Moerdijk [18]) . However, we are only dealing with
very special categories, namely preorders, and in such a case, the definition of a Grothendieck
topology can be simplified. For example, a sieve, rather than being a set of arrows, is just an ideal.
Thus, we will define all the necessary concepts in terms of preorders, referring the interested reader
to MacLane and Moerdijk [18] for a general treatment. Originally, the concept of a Grothendieck
topology was introduced in order to generalize the notion of an open cover, so that sheaves could be
defined on domains that are not necessarily topological spaces. Thus, the terminology "topology"
is not the most appropriate, since what is really been generalized is the notion of a cover, and not
the notion of a topology, and following Grayson [9], we prefer to use the term cover algebra. First,
we need some preliminary definitions before defining the crucial notion of a cover. From now on,
unless specified otherwise, it is assumed that we are dealing with pre-applicative p-structures (and
thus, we will omit the prefix 0).

Definition 4.1 Given a pre-applicative structure A, for any M E A", a sieve on M is any subset
C A" such that, N 5 M for every N E C, and whenever N E C and Q 5 N , then Q E C.
In other words, a sieve on M is downwards closed and below M (it is an ideal below M) . The
sieve {N I N 5 M) is called the maximal (or principal) sieve on M. A covering family on a
pre-applicative structure A is a family Cov of binary relations Cov, on 2Au x A", relating subsets
of A" called covers, to elements of A". Equivalently, Cov can be defined as a family of functions
Cov,: A" + 22Au assigning to every element M E A" a set Cov(M) of subsets of A" (the covers of
M). Given any M E A", the empty cover 0 and the principal sieve {N I N 3 M) are the trivial
covers. We let t r i v (M) denote the set consisting of the two trivial covers of M . A cover which is
not trivial is called nontrivial.

In the rest of this paper, we will consider binary relations P C_ A x 7 , such that P (M , a) implies
M E Au, and for every a E 7, there is some M E Au s.t. P (M, a). Equivalently, P can be viewed
as a family P = (Pa)aE7, where each Pu is a nonempty subset of Au. The intuition behind P is
that it is a property of realizers. In this section, .we will only consider cover conditions for the arrow

type.

Definition 4.2 Let A be a pre-applicative structure and let P be a family P = (Pa)aEl, where
each P, is a nonempty subset of Au. A P-cover algebru (or P-Grothendieck topology) on A is a
family Cov of binary relations Cov, on 2Au x Au satisfying the following properties:

(0) Cov,(C, M) implies M E P, (equivalently, P (M , a)).

(1) If Cov(C, M) , then C is a sieve on M (an ideal below M) .

(2) If M E Po, then ~ o v ({ N I N 5 M), M) (M E Po is covered by the principal sieve on M) .

(5) If ~ o v (M) = t r i v (M) , then Cov(MN) = t r i v (M N) , and if Cov(C, M) and Cov(D, M N)
with C and D nontrivial, then for every Q E D, there is some M' E C such that Q 5 M'N.

A triple (A, P, Cov), where A is pre-applicative structure, P is a property on A, and Cov is a
P-Grothendieck topology, is called a P-site .

Condition (0) is needed to restrict attention to elements having the property P. Covers only
matter for these elements. Conditions (1)-(2) are two of the conditions for a set of sieves to be a
Grothendieck topology, in the case where the base category is a preorder (A, 5) . Conditions (3)
and (4) are missing, because they are only needed for the sum type + (or the existential type).
They are also conditions on a Grothendieck topology.2 Condition (5) is needed to take care of the
extra structure. Note that it is not necessary to assume that covers are ideals (downwards closed),
but this is not harmful.

We need to come up with a semantic characterization of the simple terms, and also of the notion
of a stubborn element. This can be done as follows in terms of covers.

Definition 4.3 We say that M E Au is simple iff Cov(C, M) for a t least two distinct covers C'. We
say that M E Au is stubborn iff Cov(M) = t r i v (M) (thus every stubborn element is simple). We
say that a P-site (A, P, Cov) is scenic iff all elements of the form app(M, N) (or M N) are simple.

An an example, let us consider the pre-applicative structure C T p of definition 3.2. Recall that
an I-term is a term of the form Ax: a. M . A simple term (or neutral term) is a term that is not an
I-term. Thus, a simple term is either a variable x , a constant c, or an application M N . A term M
is stubborn iff it is simple and, either M is irreducible, or M' is a simple term whenever M f p MI
(equivalently, M' is not an I-term).

Let P be a (unary) property of typed A-terms. We define a cover algebra Cov on the structure
C T p as follows.

(1) If M E P, and M is an I-term, then

Cov(M) = {{N I M N)}.

2Readers who are anxious to see the full set of conditions should take a look a t definition 9.1.

13

(2) If M E P, and M is a (simple and) stubborn term, then

Cov(M) = (0, {N I M Ap N)).

(3) If M E P, and M is a simple and non-stubborn term, then

+ ~ o v (M) = {{N I M L p N), {N I M -p Q A p N, for some I-term Q)).

The conditions of definition 4.2 are easily verified. The above notion of a cover will be used in
section 12 to prove a general theorem about the simply typed A-calculus.

From now on, we only consider scenic P-sites. In order for our realizability theorem to hold,
realizers will have to satisfy properties analogous to the properties (P1)-(P5) mentioned in the
introduction.

Definition 4.4 Let (A, P , Cov) be a P-site. Properties (P1)-(P3) are defined as follows:

(P I) P (M , a) , for some stubborn element M E A".

(P2) If P (M , a) and M N , then P (N , a) .

(P3) If Cov,,,(C, M) , P (N , o), and P (M f N , T) whenever M f E C , then P (M N , r) .

From now on, we only consider relations (families) P satisfying conditions (P1)-(P3) of definition
4.4. Condition (P l) says that each P, contains some stubborn element. Finally, we are ready for
the crucial notion of a sheaf property. This property is a crucial inductive invariant with respect
to the notion of realizability defined in section 5.

Definition 4.5 Let (A, P, Cov) be a P-site. A function S : A -+ 2T has the sheaf property (or is a
P-sheaf) iff it satisfies the following conditions:

(Sl) If a E S (M) , then M E Po.

(S2) If a E S (M) and M > N , then a E S(N) .

(S3) If Cov,(C, M) and a E S (N) for every N E C , then a E S (M) .

A function S: A + 27 as in definition 4.5 can also be viewed as a family S = (Sa)oEl, where
S, = { M E A I a E S (M)) . Then, the sets S, are called P-candidates. The conditions of definition
4.5 are then stated as follows:

(Sl) s, c PC.

(S2) If M E S, and M t N , then N E S,.

(S3) If Cov,(C, M) , and C C S,, then M E S,.

This second set of conditions is slightly more convenient for proving our results. Note that
according to the first definition, S can also be viewed as a mapping

S : A + Sets.

Then, (S2) means that M >- N implies S (M) C S(N). Thus, S is in fact a functor

S : AoP + Sets ,

viewing AOP equipped with the preorder k, the opposite of the preorder 5 , as a category. It turns
out that the conditions of definition 4.5 mean that this functor is a sheaf for the Grothendieck
topology of definition 4.2.

Note that condition (S3) is trivial when C is the principal cover on M , since in this case, M
belongs to C. Thus, condition (S3) is only interesting when M is simple, and from now on, this
is what we will assume when using condition (S3). Also, since Cov,(C, M) implies that P (M, a),
any P satisfying conditions (P1)-(P3) trivially satisfies the sheaf property. Finally, note that (S3)
and (P I) imply that S, is nonempty and contains all stubborn elements in P, (because stubborn
elements have the empty cover).

By (P3), if M E P,,, is stubborn and N E P, is any element, then M N E P,. Furthermore,
M N is also stubborn. This follows from property (5) of a cover. Thus, if M E P,,, is stubborn
and N E P, is any element, then M N E P, is stubborn.

We conclude this section by showing explicitly that definition 4.5 is indeed a sheaf condition (for
a general and complete treatment, see MacLane and Moerdijk [18]). A pre-applicative structure
A can be viewed as a category whose objects are the elements of A, and whose arrows are defined
such that there is a single arrow denoted a + b from a to b iff a 5 b. Then, AOp is the category
with the same objects as A but with the reverse arrows (i.e., there is an arrow from a to b in AOP
iff a k b).

Let F:AOP -+ S e t s be a functor. Thus, F assigns a set F(a) to every element a E A, and a
function F(b + a): F(b) -+ F(a) to every pair a , b E A such that a 3 b (with the usual functorial
conditions). For the sake of brevity, let us denote F(b + a): F(b) i F(a) as F:: F(b) i F(a).
Given any a E A, for any x E F(a) and any b E A such that b 5 a, F t (x) is a member of the set
F(b) that we will also denote as xlb. We can think of xlb as the restriction of x E F(a) to b.

Definition 4.6 Given a site (A ,P , Cov) and a functor F : AOp -+ Sets , for any a E A and any
cover C of a (a set C such that Cov(C, a)), a family {x, (x, E F(c), c E C) is a matching family
for C iff for every c E C ,

x,ld=xd f o r e v e r y d 3 c .

An amalgamation of a matching family {x, I x, E F(c), c E C) is an element x E F(a) such that

xJc = x, for every c E C.

The functor F is a sheaf iff for every a E A, every cover C of a (a set C such that Cov(C, a)) , and
every family {x, I xc E F(c), c E C), if {x, 1 x, E F(c), c E C) is a matching family for C, then
it has a unique amalgamation x E F(a). The functor F is a P-sheaf iff it is a sheaf, and for every
a E A, F(a) & 7 and a E F(a) implies that a E P,.

Since a cover is a sieve, d 5 c for c E C implies that d E C , and so xd is a well defined element
(of F(d)). If in A, any two elements have a greatest lower bound, it can easily be shown that
{z, (x, E F(c), c E C) is a matching family for C iff for all c, d E C, then

If the functor F is a sheaf and has the property that the maps F,b: F(b) -. F(a) (with a 5 b)
are inclusion maps, then for any matching family {x, I x, E F(c), c E C), if x is its amalgamation,
x lc = xc implies that x = x, for all c E C. Thus, in this case, a matching family consists of a single
element x such that x E F(c) for all c E C. Then, the property of being a sheaf is equivalent to
the following condition: For every a E A, for every cover C of a ,

if x E F(c) for every c E C, then x E F(a).

Now, the functor S: AoP -+ Sets defined earlier is such that M N implies S (M) S(N) . Thus,
it is indeed technically true that definition 4.5 means that the functor S is a P-sheaf with respect
to the Grothendieck topology defined by Cov.

5 P-Realizability for the Arrow Type

In this section, we define a semantic notion of realizability. This notion is such that realizers
are elements of some pre-applicative structure. In the special case when only the arrow type is
considered, the definition of realizability does not refer to covers. However, cover conditions are
needed for proving lemma 5.2, which basically shows that the notion of a P-sheaf is an invariant
w.r.t. realizability. The notion of P-realiaability is defined as follows.

Definition 5.1 Let (A, P , Cov) be a P-site. The sets ria] of realizers of a are defined as follows:

ria] = P,,, a a base type,

ria -+ r] = {M I M E P,,,,, and for all N , if N E r[u] then MN E r[r])

Note that instead of defining the family of sets ria], we could have defined a binary relation
r such that M r a iff M E r[a]. This is the more standard way of defining realizability. Another
important point worth noting is that in the definition of r[a -+ r], we are considering only those
M such that M E P,,,,. One might be concerned that this will cause difficulties in proving lemma
5.2, but conditions (PI-P3) have been designed to overcome this problem.

Lemma 5.2 Given a scenic P-site (A, P , Cov), if P satisfies conditions (P1)-(P3), then (r [~]) , , ~ ~
has the sheaf property, and each ria] contains all stubborn elements in Po.

Pmof. We proceed by induction on types. If a is a base type, r[a] = Pa, and obviously, every
stubborn element in Po is in r[a]. Since ria] = Po, (Sl) is trivial, (S2) follows from (P2), and (S3)
is also t r i ~ i a l . ~

We now consider the induction step.

(Sl). By the definition of r[u -+ 7-1)) (Sl) is trivial.

(S2). Let M E r[a t r], and assume that M k M'. Since M E Po,, by (Sl), we have
M' E Po,, by (P2). For any N E r[a]], since M E r[a -+ 71, we have M N E r[r], and since
M k MI, by monotonicity of app, we have M N 2 M'N. Then, applying the induction hypothesis
at type r , (S2) holds for r[r], and thus M'N E rir]. Thus, we have shown that M' E P,,,, and

31n fact, if r[a] = PC, (S3) holds trivially even at noi~base types. This remark is useful if we allow type variables.

16

that if N E r[a], then M'N E r[r]. By the definition of ria + r], this shows that M' E ria + TI,
and (S2) holds a t type a i 7.

(S3). Assume that Cov,,,(C, M) , and that M' E ria + r] for every M' E C , where M is
simple. Recall that by condition (0) of definition 4.2, Cov,,,(C, M) implies that M E P,,,. We
prove that for every N , if N E r[a], then M N E PIT]. First, we prove that M N E P,, and for this
we use (P3).

First, assume that M E P,,, is stubborn, and let N be in r[a]. By (Sl), N E Po. By the
induction hypothesis, all stubborn elements in P, are in r[r]. Since we have shown that M N E P,
is stubborn whenever M E Po,, is stubborn and N E P,, we have M E r[a + r] .

Now, consider M E Po,, non stubborn. If M' E C, then by assumption, M' E r[a i T] , and
for any N E r[alJ, we have M'N E r[r]. Since by (S1), N E Po and M'N E P,, by (P3), we have
M N E P,. Now, there are two cases.

If r is a base type, then r[r] = P, and M N E r[r].

If r is not a base type, then M N is simple (since the site is scenic). Thus, we prove that
M N E r[r] using (S3) (which by induction, holds a t type r) . Assume that Cov,(D, M N) for any
cover D of M N . If M N is stubborn, then by the induction hypothesis, we have M N E r [[~] .
Otherwise, since Cov,,,(C, M) and C and D are nontrivial, for every Q E D , by condition (5) of
definition 4.2, there is some M' E C such that Q 5 M'N. Since by assumption, M' E ria + r]
whenever M' E C, and N E r[a], we conclude that Ad'N E r[r]. By the induction hypothesis
applied at type r, by (S2), we have Q E r[r], and by (S3), we have M N E r[[r].

Since M E P,,, and M N E r[r] whenever N E r[a], we conclude that M E r[a + r].

We now need to relate A-terms and realizers.

6 Interpreting terms in A' in Pre-Applicative Structures

We show how terms in A' are interpreted in pre-applicative structures. For this, we define a
meaning function.

Definition 6.1 Given a pre-applicative structure A, a valuation, or environment, is any function
p: X i A, such that p(x) E An if x: a. A meaning function for A is a partial function A[-
from pairs of (a-equivalence classes of) terms and valuations to A, such that A[M]p is defined
whenever M : a, in which case A[M]p E A". In addition, a meaning function satisfies the following
conditions:

~ ~ x I P = P(X)

A ~ M N I ~ P = ~PP(AUMIP, ~ U N I P)

 AX: a. M]p = abst(f),

where f is the function defined such that, f (a) = A[M]p[x: = a] , for every a E A".

It is routine t o show that the following property holds:

~ [M] P I = d[M]p2, whenever p ~ (x) = p2(x) for every z E F V (M) (independence)

If we consider the pre-applicative structure A = LTp defined just after definition 3.1, then a
valuation p is a substitution with an infinite domain. Using an induction on the structure of terms,
it is easily verified that LTp[M]p = M[cp], where cp is the substitution defined by the restriction
of p to FV(M).

7 The Realizability Theorem For A'

In this section, we prove the realizability lemma (lemma 7.6) for A', and its main corollary,
theorem 7.7. First, we need some conditions relating the behavior of a meaning function and
covering conditions. We will also need semantic conditions analogous to the conditions (P4)-(P5)
of the introduction.

Definition 7.1 We say that a site (A, P, Cov) is well-behaved iff the following conditions hold:

(1) For any a E Au, any cp E [Au + AT], if abst(cp) exists, CovT(C, a p p (a b s t (~) , a)), and C is
a nontrivial cover, then c 5 p(a) for every c E C.

In view of definition 6.1, definition 7.1 implies the following condition.

Definition 7.2

(1) For any a E Au, if CovT(C, app(A[Ax: a. M]p,a)) and C is a nontrivial cover, then c 5
A[[M]p[x: = a] for every c E C.

For the proof of the next lemma, we need to add two new conditions (P4) and (P5) to (P1)-(P3).

Definition 7.3 Given a well-behaved site (A,P,Cov), properties (P4) and (P5) are defined as
follows:

(P4) For every a E Au, if ~ (a) E PT, where 9 E [Au + AT] and abs t (p) exists, then abst(cp) E

P U - + T .

(P5) If a E Po and cp(a) E PT, where q E [Au + AT] and abst(p) exists, then app(abst(v), a) E

PT

In view of definition 6.1, definition 7.3 implies the following conditions.

Definition 7.4

(P4) If A[M]p E PT, then A[Xx: a. M]p E P,,,.

(P5) If a E Pu and A[M]p[x: = a] E PT, then app(A[Ax: a. M]p, a) E PT.

Lemma 7.5 Given a well-behaved scenic site (A, P , Cov) and a family P satisfying conditions
(PI)-(P5), for every p such that p(y) E r[y] for: every y: y E F V (M) , if for every a, (a E r[a]
implies A[M]p[x: = a] E r[r]), then A[Ax: a. M]p E r[a -, r].

Proof. We prove that A[Xx:a. M]p E Po,, and that for every every a , if a E r[a], then
app(AI[Xx: a. M]p, a) E r[r]. We will need the fact that the sets of the form r[a] have the prop-
erties (S1)-(S3), but this follows from lemma 5.2, since (P1)-(P3) hold. First, we prove that
A[Xx: a. M]p E P,,, .

Since p(x) E r[y] for every x: y E FV(M), letting a = p(x), by the assumption of lemma 7.5,
A[M]p E r[r]. Then, by (Sl) , and by (P4), we have A[Ax: a. M]p E P,,,.

Next, we prove that for every every a , if a E r[a], then app(A[Xx: a. M]p, a) E r[r]. Let us
assume that a E r[a]. Then, by the assumption of lemma 7.5, A[M]p[x: = a] f r[r]. Thus, by
(Sl), we have a E P, and A[M]p[x: = a] E P,. By (P5), we have app(A[Xx: a. M]p, a) E P,. Now,
there are two cases.

If T is a base type, then r[r] = P,. Since we just showed that app(A[Ax: a. M]p, a) E P,, we
have app(A[Xx: a. M]p, a) E r[r].

If r is not a base type, then app(A[Ax: a. M]p, a) is simple (since the site is scenic). Thus,
we prove that app(A[Ax: a. M]p, a) E r[r] using (S3). The case where app(A[Ax: a. M]p, a) is
stubborn is trivial.

Otherwise, assume that Cov,(C, app(A[Ax: a. M]p, a)), where C is a nontrivial cover. By
condition (1) of definition 7.2, c 5 A[M]p[x: = a] for every c E C, and since by assumption,
A[M]p[x: = a] E r[r], by (S2), we have c E r[r]. Since c E r[r] whenever c E C , by (S3), we have
app(A[Ax: a. M]p, a) E r[r].

We now prove the main realizability lemma for A'.

Lemma 7.6 Given a well-behaved scenic site (A ,P , Cov), if P is a family satisfying conditions
(P1)-(P5), then for every term M of type a, for every valuation p such that p(y) E r[y] for every
y: y E FV(M), we have A[M]p E r[a].

Proof. We proceed by induction on the structure of M . If M is a variable, then A[x]p = p(x) E
r[a] by the assumption on p.

If M = MINI, where MI has type a --t T and N1 has type a , by the induction hypothesis,

A[Ml]p E r[a --t T] and AINl]p E ria].

BY the definition of ria -t T], we get app(A[Ml]p,A[Nl]p) E r[r], i.e., A[(MINl)]p E r[r], by
definition 6.1.

If M = AX:^. MI, consider any a E r[a] and any valuation p such that p(y) E r[y] for
every y: y E FV(Ml) - {x). Note that by (S3) and (PI) , r[a] is indeed nonempty. Thus, the
valuation ~ [x : = a] has the property that p(y) E r[y] for every y: y E FV(Ml). By the induction
hypothesis applied t o Ml and p[x: = a], we have AIMl]p[x: = a] E r[r]. Consequently, by lemma
7.5, A[Ax: a. Ml]p E r[a -, r].

If M is a closed term of type a , the independence condition of definition 6.1 implies that A[M]p
is independent of p, and thus we denote it as A[M]. We get the following important theorem for
A'.

Theorem 7.7 Given a well-behaved scenic site (A, P, Cov), if P is a family satisfying conditions
(PI)-(P5), then for every closed term M of type a, we have AIM] E Po. (in other words, the
realizer AIM] satisfies the unary predicate defined by P , i.e, every provable type is realizable).

Proof. Apply lemma 7.6 to the closed term M of type a and to any arbitrary valuation p.

8 Pre- Applicat ive Structures for X'~x~+~L

In this section, the pre-applicative structures of section 3 are generalized to the types -+, x , +, I.
There are various kinds of pre-applicative structures: pre-applicative p-structures, pre-applicative
Pq-structures, extensional pre-applicative p-structures, and the corresponding so-called applicative
versions. For simplicity, in this section, we only present pre-applicative structures. The definition
of the other structures is given in an appendix (see section 21). We also show that the term model
can be viewed as a pre-applicative p-structures, and that the HRO models of Kreisel and Troelstra
[16, 261 can be viewed as an applicative p-structure.

Definition 8.1 A pre-applicative /?-structure is a structure

A = (A, fun, abst, II, (-, -), i n l , i n r , [-, -1, ,v)

where

A = is a family of (nonempty) sets called carriers;

(do),ET is a family of preorders, each Ao on A";

a b ~ t " ? ~ : [A" + AT] + A"", a family of partial operators;

-+ [Aa j AT], a family of (total) operators;

(-, -)"?': A" x A' -+ A"'', a family of partial pairing operators;

AUXT + Au x AT, a family of (total) projection operators;
[-, -]"qT*s: A " + ~ x -+ A (~ + ~) + ' , a family of partial copairing operators;

inl"vT: A" -+ A"+', a family of (total) operators;

inray': AT -+ A"+', a family of (total) operators;

v,: AL -+ A", is a family of (total) functions.

We define c i n l : A (~ + ~) ' ~ + [A" =+ As], c inr : A (" + ~) + ~ i [A7 + A" , and
cinf : A("+')" -+ [A ~ + A ~] as follows: For every h E A("+ T)+s,

for every a E A",
cinr(h)(b) = fun(h)(inr(b)),

for every b E A', and
cinf (h)(c) = fun(h)(v,+,(c)),

for every c E A1.

It is assumed that fun, abs t , II, (-, -), i n l , i n r , and [-, -1, and v, are monotonic. Further-
more, the following conditions are satisfied

(1) funu~T(abstu7T(cp)) 2 9, whenever a b ~ t ~ ? ~ (c p) is defined, for y E [Au + AT], and
funuvT(vu+T(c)) k Xa E Au. vT (c), for c E AL;

(2) IIUvT((a, b)) t- (a, b), for all a E An, b E AT, whenever (a, b) is defined, and I Iu lT(vuxT(~))
(vu(c), ~ T (c)) , for every c E A'-;

(3) cinl([f , g]) t- fun(f) , c inr([f , gl) t- fun(g), and cinf([f , gl) t- ~ s , whenever [f, gl is
defined,

The operators fun induce (total) operators

funu9T: Au+T + [Au + AT], such that, for every f E Au+T and every a E Au,

Then, condition (1) can be written as

(1') appu1T(abstu9T(cp), a) t- cp(a), for all a E Au, and appu7T(vu,T(c), a) t- vT(c) , for every
a E Au and every c E A', and condition (3) can be rewritten as

(3') c in l ([f , gl)(a) k app(f, a) , for all a E Au, cinr([f , g])(b) t- app(g, b), for all b E AT,
and cinf ([f, g])(c) t- ~ ' (c) , for all c E A', whenever [f, g] is defined, for f E AO" and
g E A~".

Finally, N 5 in l (Ml) implies that N = inl(N1) for some N1 5 MI, N 5 inr(Ml) implies that
N = inr(N1) for some N1 5 MI, and N 5 vu(Ml) implies that N = vu(N1) for some N1 5 MI.

We say that a pre-applicative @-structure is an applicative 0-structure iff in conditions (1)-(3),
k is replaced by the identity relation =.

We will omit superscripts whenever possible. We can think of the elements of AL as error
elements, and copies of these error elements exist at all types (given by the functions v,) .

The projection operators II induce projections T:'~: AuXT + Au and 7~;'~: AuXT + AT, such
that for every a E AuXT, if IIu9T(a) = (al , a2), then

T:'~(U) = a1 and ~ g ' ~ (a) = a2.

When A is an applicative ,f3-structure, then, in definition 8.1, conditions (1)-(3) amounts to

(1) funuyT o a b ~ t ~ ? ~ = i d on the domain of abs t , and funu!T o v,,, = Xa E A". v T ;

(2) o (-, -)"yT = i d on the domain of (-, -), and Hut7 o vuXT = (v u , v T) ;

(3) (c in l , c in r) o [-, -1 = f un"vs x funT?' on the domain of definition of [-, -1, and
cinf o [-, -1 = X f E A'"'. Xg E AT". ~ 6 , where X f E A"+'. Xg E A ~ + ' . ~6 denotes the constant
function from AO'' x A ~ + ' to [AL + A'], whose value is v s for all f E and g E A~".

In view of (I) , from (3), we get

(c in l , c i n r) o ([-, -1 o (a b s t ~ ' ~ x a b ~ t ~ ? ~)) = i d on the domain of definition of [-, -1 o

(absta7% a b ~ t ~ ? ~) .

However, we have no left inverse to v6, and we don't have an analogous identity for c inf .

When we use a pre-applicative p-structure to interpret A-terms, we assume that (-, -) and
[-, -1 are total, and that the domain of abs t is sufficiently large, but we have not elucidated this
last condition yet. Given M E Aa'7 and N E A", app(M, N) is also denoted as M N .

Let us give an (important) example of a pre-applicative P-structure.

Definition 8.2 Let Aa = A. be the set of all typed A-terms of type a. We let app, T I , n2, (-, -),
i n l , i n r , [-, -1, v, be the obvious constructs (for example, app(M, N) = MN). Define N 5 M
iff M Ap N. The operator abs t is defined as in definition 3.2. The structure just defined is
denoted as LTo.

Another interesting example is provided by an adapation of the so-called HRO-models (hered-
itarily recursive operations), due to Kreisel and Troelstra [16, 261. These models are based on
the Kleene partial applicative structure provided by acceptable Godel numberings of the partial
recursive functions. Assume that we have such a Godel numbering, and denote the partial recursive
function of index e as 9,. Recall that such a numbering induces a partial operation . : N x N -+ N
(where N denotes the set of natural numbers) defined as follows: me n = pm(n), whenever it is
defined. A partial recusive function p, is recursive iff y,(n) is defined for all n E N. We also assume
that we have a given pairing function p: N x N + N , with projection functions jl: N + N and
j2: N + N, such that p(jl(m), j2(m)) = m for all m E N, jl(p(m, n)) = m, and j2(p(m, n)) = n,
for all m, n E N. In the rest of this section, we ignore the type I.

Definition 8.3 We define an applicative structure as follows. Each Aa is a set of pairs of the form
(n, a), where n E N , and we denote the subset {n I (n, a) E A") of N as dom(Aa).

Let Aa = {(n, a) I n E N), for every base type a,

Aa-tT = {(e, a + T) I p, is total on dom(Aa)),

A"'' = {(n, a x r) I (j l (n) , a) E A" and (j2(n), T) E AT),

and
AU+T = ((~ (0 , n), a + 7) I (n, 0) E Aa) U ((~ (1 , n), + r) I (n, r) E AT).

The preorder on each Aa is the identity relation.

We let app((m, a + r), (n, a)) = (cp,(n), r), which is well-defined, by definition of Aa'T. II
and (-, -) have an obvious definition in terms of p, j l , and j2. We let i n l ((n , a)) = (p(0, n), a + r) ,
inr((n7 T)) = (p(1, n), a + r), and [(m, a + S), (n, r + S)] is defined as follows. Let q!I be the
function defined such that q!I(p(O, s)) = ym(s) for all s E N, and +(p(l, t)) = y,(t) for all t E N.
Since 9, and 9, are partial recursive functions, .J, is a partial recursive function, and we let

where e is some designated index for q!I (some index e such that 9, = $1.

Note that fun: + [Au + AT] is the function defined such that fun((e, a + r))((n, a)) =
(cpe(n), 7). We still need to define abst.

For every m E N , for every e E N, index of a total recursive function of m + 1 arguments, for
every finite sequence p = (pl, . . . , p,) of natural numbers, let e[p] denote the function in [Aa + AT]
defined such that

e [~ l ((n , 0)) = (~ e (~ l , ..-, ~ m , n) , T),

provided that cpe(pl,. . . , p,, n) E dom(AT), for all n E dom(AU). Then, by the s-rn-n-theorem,

for all n E N, and we let abst(e[p]) = (s(e, m, pl, . . . , p,), a + T) . The above applicative structure
is denoted as XFIRO.

By an easy induction on types, we can show that Aa is nonempty for every type a. Indeed,
each A"" is nonempty, since constant functions are total recursive, and the other cases are trivial.
In the definition of [(m, a -t S), (n, r -t S)], since p, is total on d o m (~ ~ ") and p, is total on
d o m (~ " ~) , the function $J is total on dom(~("+~) '~) , and thus, [(m, a + S), (n, r -t 6)] is well
defined. We still need to check that fun(abst(e[p])) = e[p] for every e[p] E [Au + AT]. For such a
function e[p],

fun(abst(9))((n, 0)) = (~ s (e , m , p l ,...,pm) (n), T) = (pe (~1 , . . . , Pm, n), T),

by the s-rn-n-theorem, and thus, fun(abst(e[p])) = e[p]. The other conditions of definition 8.1 are
easily verified. These structures are not extensional.

9 P-Realizability for the Arrow, Product, Sum, and I Types

In this section, we extend the semantic notion of realizability defined in section 5 to the calculus
X'~X*+~'. This time, the definition of realizability for the sum type requires the notion of a cover.
First, it is necessary to extend definition 4.2 to take care of product and sum types.

Definition 9.1 Let d be a pre-applicative structure and let P be a family P = where
each Po is a nonempty subset of Aa. A P-cover algebra (or P-Grothendieck topology) on d is a
family Cov of binary relations Cov, on 2Au x Aa satisfying the following properties:

(0) Cov,(C, M) implies M E Pa (equivalently, P (M, a)).

(1) If Cov(C, M) , then C is a sieve on M (an ideal below M).

(2) If M E Po, then Cov({N I N 5 M), M) (M E Pa is covered by the principal sieve on M).

(3) (stability) If ~ o v (C , M) and N 3 M , then Cov({Q 1 Q E C, Q 5 N), N).

(4) (transitivity) If Cov(C, M), D is a sieve on M , and Cov({Q I Q E D, Q 5 N), N) for every
N E C, then Cov(D, M).

(5) If Cov(M) = t r i v (M) , then Cov(MN) = t r i v (M N) , and if Cov(C, M) and Cov(D, M N)
with C and D nontrivial, then for every Q E D, there is some M' E C such that Q 3 M'N.

(6) If Cov(M) = t r i v (M) , then Cov(al(M)) = t r iv (a l (M)) , Cov(?r2(M)) = triv(?r2(M)), and
if Cov(C, M) and ~ o v (D , nl(M)) (resp. Cov(D, a2(M))) with C and D nontrivial, then for
every Q E D , there is some M' E C such that Q 3 al(Mt) (resp. Q 5 7r2(M1)).

A triple (A ,P , Cov), where A is pre-applicative structure, P is a property on A, and Cov is a
P-Grothendieck topology, is called a P-site.

It is also necessary to extend definition 4.3 to take care of product types.

Definition 9.2 We say that M E A'-' is simple iff Cov(C, M) for at least two distinct covers C.
We say that M E Aa is stubborn iff Cov(M) = t r i v (M) (thus every stubborn element is simple).
We say that a P-site (A,P,Cov) is scenic iff all elements of the form app(M, N) (or MN) , nl(M),
and az(M) are simple.

Definition 4.4 is extended as follows.

Definition 9.3 Let (A, P, COV) be a P-site. Properties (P1)-(P3) are defined as follows:

(PI) P (M, a) , for some 'stubborn element M E An.

(P2) If P (M , a) and M N , then P (N , a) .

(P3)
(1) If ~ov,,,(C, M) , P (N , a) , and P(MIN, r) whenever M' E C , then P (M N, 7).

(2) If CovUx,(C, M) , and P(al(M1), a) and P(a2(M1), r) whenever MI E C , then P(al (M), a)
and P(a,(M), r).

From now on, we only consider relations (families) P satisfying the conditions of definition 9.3.

Note that (P3) still implies that if M E P,,, is stubborn and N E Po is any element, then
M N E P, is stubborn. It also implies that if M E Pox, is stubborn, then a l (M) E P, is stubborn
and 7r2(M) E P, is stubborn. This is a consequence of property (6) of definition 9.1.

Definition 4.5 remains unchanged. However, for the reader's convenience, it is repeated.

Definition 9.4 Let (A, P, Cov) be a P-site. A function S : A -. 27 has the sheaf property (or is a
P-sheaf) iff it satisfies the following conditions:

(Sl) If a E S (M) , then M E P,.

(S2) If a E S (M) and M 2 N , then a E S(N) .

(S3) If Cov,(C, M) and u E S (N) for every N E C , then a E S(M) .

A function S : A + 27 as in definition 9.4 can also be viewed as a family S = (So)aE7, where
S, = {M E A I a E S(M)). Then, the sets S, are called P-candidates. The conditions of definition
9.4 are then stated as follows:

(Sl) s, c P O '

(S2) If M E S, and M ? N , then N E S,.
(S3) If Cov,(C, M) , and C S S,, then M E S,.

We now generalize the definition of realizers to take into accounts the types x, +, and I. We
define P -reaIizability as follows.

Definition 9.5 Let (A, P, COV) be a P-site. The sets r [a] of realizers of a are defined as follows:

.[.]I = Po, a a base type,

r [a + T] = { M I M E P,,,, and for all N, if N E r [a] then M N E r [r]) ,

r [a x 70 = { M I M E Pox,, m (M) E r i a] , and n2(M) E r [r]) ,
r [a + T] = { M I ~ o v , + , ({ i n l (M ~) I MI E r [a] and M k i n l (M l)) U

{ i n r (M 2) I M2 E r [r] and M k i n r (M 2)) U

{ v u + ~ (M 3) I M3 E PL and M k V U + ~ (M ~)) , M)) .

We now prove a generalization of lemma 5.2.

Lemma 9.6 Given a scenic P-site (A, P , Cov), if P satisfies conditions (P1)-(P3), then the family
(r [~]) , ~ ~ has the sheaf property, and each r [o] contains all stubborn elements in P,.

Proof. We proceed by induction on types. The base case is as in lemma 5.2. The induction
step has more cases since we also need to deal with x , +, and I.

(S l) . This is trivial by the definitions of r [a -. T] , r [a x T] , and r [a + T] ,

(S2). There are three cases depending on the type.

1. Arrow type a + r . The proof is as in lemma 5.2.

2. Product type a x r. Assume that M k M' for M E r [a x r] . We need to prove that
M' E POX,, n l (M 1) E r [a] , and n2(M1) E r [r] . Since M E r [a x r] , by (S l) , M E P,,,, and
by (P2) M' E Pox,. Since M E r [a x r] , we havenl(M) E r [a] and n 2 (M) E r [r] . But by
monotonicity, n l (M) k ?rl(Mt) and ?r2(M) k n 2 (M 1) , and by the induction hypothesis, by (S2),
we get n l (M 1) E r [a] and n 2 (M 1) E r [r] .

3. Sum type a + r . Assume that M k M t for M E r ia + r] . Since M E r [a + r] , we have

Cov,+,({inl(Ml) I MI E r [a] and M ? i n l (M l)) U

{ i n r (M 2) 1 M2 E r [r] and M i n r (M 2)) u
{ v o + T (M ~) I M3 E PL and M k V ~ + , (M ~)) , M)) .

Consider the cover D of M :

D = { i n l (M l) 1 MI E r ia] and M k i n l (M 1)) U

(i n r (~ 2) I MZ E r [r] and M h i n r (M 2)) U

{Vu+r(M3) 1 M3 E PL and M k v a S 7 (M 3)) .

By property (3) of definition 9.1, for any M' E D , the set {Q (Q E D , Q 5 M t) is a cover of MI.
Now, if M' 3 M , by property (1) of definition 9.1, M' E D , and it is clear that

{ Q I d2 E D , Q 3 MI) = (i n l (M 1) I MI E r [a] and M' k i n l (M l) } u
(i n r (M2) I MZ E r [r] and Mt >- i n r (M 2) } u
{ v ~ + ~ (M ~) I M3 E PL and M' h v,+,(M3)).

Then, we have

~ov,+,({inl(Ml) I MI E r[a] and M' 2 inl(Ml)) U

(inr(M2) I M2 E r[r] and M' inr(M2)) u
{vo+T(M~) I M3 E PL and M' k v,+,(M~)), M')).

showing that M' E r[a + r].
(S3). Let M be simple. There are three cases depending on the type of M

1. Arrow type a + r. The proof is as in lemma 5.2.

2. Product type a x T. Assume that Cov,,,(C, M) and that M' E r[a x T] whenever M' E C,
where M is simple. By property (0) of definition 9.1, we have M E P,,,. We need to show that
n l (M) E r[a] and n2(M) E r[~].

If M E P,,, is stubborn, we have shown that nl(M) E P, is stubborn and that n2(M) E P, is
stubborn. By the induction hypothesis, all stubborn elements in P, are in r[a] and all stubborn
elements in P, are in r[~]. Thus, when M is stubborn, nl(M) E r[a] and n2(M) E r[r].

Next, assume that M is not stubborn. Since M' E ria x T] whenever M' E C, we have
nl(M1) E r[a] and n2(M1) E r[~]. By (Sl), we have nl(M1) E P,, 7r2(M1) E P,, and by (P3)(2),
we get n1(M) E Pa and n2(M) E P,. If a is a base type, then r[a] = Pa and nl(M) E r[a].
Similarly, if T is a base type, then r[r] = P, and 7r2(M) E r[~].

Let us now consider the case where a is not a base type, the case where T is not a base type
being similar. Then, nl(M) E P, and nl(M) is simple (since the site is scenic). We use (S3) to
prove that .rrl(M) E r[a]. Assume that Cov,(D,nl(M)) for any cover D of nl(M). The case where
r l (M) is stubborn follows from the induction hypothesis. Otherwise, since Cov,,,(C, M) and C
and D are nontrivial, by property (6) of definition 9.1, for every Q E D, there is some M' E C such
that Q 5 nl(M1). By the assumption, M' E r[a x T]. This implies that nl(Mr) E r[u], and by the
induction hypothesis and (S2), we have Q E r[a]. By (S3), we conclude that nl(M) E ria].

3. Sum type a + T. Assume that Cov,+,(C, M) and that N E r[a + T] for every N E C. Let

D = {inl(Ml) I MI E ria] and M k inl(Ml)} U

{inr(M2) 1 M2 E r[r] and M k in r (M2)) U

{ v U + T (~ ~) I M3 E P~ and k v U + T (~ ~) } .

Using the properties of 5 , it is clear that D is a sieve on M. We need to prove that Cov,+,(D, M) ,
since this is equivalent to M E ria + T]. Let N E C , and consider the set { Q I Q E D, Q 5 N}. We
prove that Cov({Q I Q E D, Q 5 N), N). However, since N E C and by assumption, N E r[a + T]
for every N E C , we have

Cov,+,({inl(Ml) I M1 E ria] and N k inl(Ml)} u
(inr(M2) I M2 E r [~] and N 2 inr(M2)} U

{Vu+r(M3) 1 M3 E PL and N 2 vU+,(M3)), N)}.

Since N 5 M, it is clear that

{Q I Q E D, Q 5 N) = (inl(M1) I MI E =[a] and N inl(Ml)) LI
(i n r (~ 2) I M2 E r[r] and N 2 inr(M2)) u
{va+T(M3) I M3 E PL and N ?Z V ~ + ~ (M ~)) .

Then, by property (4) of definition 9.1, we have Cov,+,(D, M) , that is, M E ria + TI.
We also need to extend definition 6.1 to give an interpretation to the new terms.

10 Interpreting X-Terms in X ' ~ X ~ + ~ L

We extend definition 6.1 t o take care of x , +, and I.

Definition 10.1 Given a pre-applicative structure A, a valuation, or environment, is any function
p: X -t A, such that p(x) E Aa if x: a. A meaning function for A is a partial function A[-
from pairs of (a-equivalence classes of) terms and valuations to A, such that A[M]p is defined
whenever M: a, in which case A[M]p E Aa. In addition, a meaning function satisfies the following
conditions:

A[xIp = P(X)

AIIMNIP = ~PP(A[M]P, AI[NIP)

 AX: a. M]p = abst(f) ,

where f is the function defined such that,
f (a) = A([M]p[x: = a], for every a E Aa

Al[.rrl(M)IP = ~ ~ (A ~ M I P)

AUn2(M>lp = ~ ~ (A U M I P)

AI[(M1, M2)IIp = (A[MiIIp, AUM~IP)

A[inl(M)]p = inl(A[M]p)

A[inr(M)]p = inr(A[M]p)

ADM, NIIP = IA~MIP, ~ U ~ l l ~ l
A ~ v ~ (M) B P = v~(ABMIP).

It is routine to show that the following property holds:

A6MIpl = A[[M]p2, whenever PI($) = p 2 (~) for every x E FV(M) (independence)

If we consider the pre-applicative structure A = CTp, then a valuation p is a substitution
with an infinite domain. Using an induction on the structure of terms, it is easily verified that
LTp[M]p = M[cp], where c p is the substitution defined by the restriction of p to FV(M).

As far as realizability is concerned, if M: a, then &'Tp[M]p is a typed X-term realizing a.
Definition 9.5 is then a variant of Kreisel's modified realizability.

It is also interesting to see what happens if we try to interpret terms in the applicative structure
'HRO of definition 8.3. A valuation is a function p such that p(x) = (k, a) for every x: a , where
k E N. Thus, given a term M such that FV(M) = {xl: 01,. . . , x,: a,}, a valuation p defines a
finite sequence (pl, . . . , p,) of natural numbers, where p; = p(xi). It is easily shown by induction
on the structure of M : a that 'HRO[M]p = (cp,(pl,. . .,p,), a) , where e is the index a total
recursive function cp, in the arguments (pl,. . . ,p,). Thus, every typed A-terms can be interpreted
in 'HRO, and 'HRO[M]p is given by a function recursive in the restriction of p to FV(M). As
far as realizability is concerned, if M: a, then 'HRO[M]p E ria] yields a realizer for a which is
given by a recursive function of p. In this case, definition 9.5 is equivalent to Kleene's recursive
realizability (for +, x , and +).

11 The Realizability Theorem For X'jXj+jL

In this section, we generalize the realizability lemma (lemma 7.6) and its main corollary (theorem
7.7) to the calculus A'!Xf+!L. In order to do so, we need to add conditions to definition 7.1 to take
care of x , +, and I.

Definition 11.1 We say that a site (A, P, Cov) is well-behaved iff the following conditions hold:

(1) For any a E Aa, any cp E [Aa * AT], if abst(q) exists, Cov,(C, app(abst(cp), a)), and C is
a nontrivial cover, then c 5 cp(a) for every c E C;
For any a E A', any b E Aa, if CovT(C, app(v,,,(a), b)) and C is a nontrivial cover, then
c 5 v,(a) for every c E C ;

(2) If Cov,(C, nl((al, a2))) and C is a nontrivial cover, then c 5 al for every c E C.
If Cov,(C, 7r2((al, a2))) and C is a nontrivial cover, then c 5 a2 for every c E C.
If Cov, (C, nl(vUxT(a))) and C is a nontrivial cover, then c 5 v,(a) for every c E C.
If Cov,(C, n2(vUxT(a))) and C is a nontrivial cover, then c 3 v,(a) for every c E C.

(3) If Cov(p) = t r iv (p) , then Cov(app([f, 91, P)) = triv(app([f, g], P)), and if Cov,+,(C, p),
~ o v s (D , app([f , g], p)), and C and D are nontrivial, then for every d E D, either there
is some inl(pl) E C such that d 3 app(f,pl), or there is some inr(p2) E C such that
d 5 a p p (g , ~ ~) , or there is some ~ , , + ~ (p ~) E C such that d 3 vS(p3), where f E A"'~ and
g E A,+'.

In view of definition 10.1, definition 11.1 implies the following conditions.

Definition 11.2

(1) For any a E A", if CovT(C, app(A[Ax: a. M]p, a)) and C is a nontrivial cover, then c 5
AI[M]p[x: = a] for every c E C.
For any b E Aa, if CovT(C, app(A[v,,,(M)]p, b)) and C is a nontrivial cover, then c 5
A[vT(M)]p for every c E C ;

(2) If Cova(C,nl(A[(Ml, M2)]p)) and C is a nontrivial cover, then c 5 AIM1]p for every
c E C.
If ~ov , (C , n2(A[(Ml, M2)]p)) and C is a nontrivial cover, then c 5 AI[M2]p for every

c E C .
If cov,(C, nl(A[vux,(M)]p)) and C is a nontrivial cover, then c 5 A[V, (M)]~ for every
c E C .
If Cov,(C,n2(A[vux,(M)]p)) and C is a nontrivial cover, then c 5 A[v, (M)]~ for every
c E C .

(3) If Cov(p) = t r i v (p) , then Cov(a~p(A[[M, N]]p, p)) = tr iv(app(A[[M, N]]p, p)), and if
Covu+,(C, P), Covs(D, app(A[[M, N]]p, p)), and C and D are nontrivial, then for every
d E D, either there is some inl(pl) E C such that d 5 app(AIM]p,pl), or there is some
inr(p2) E C such that d 5 app(A[N]p,p2), or there is some vO+,(p3) E C such that
d 5 ~ 6 (~ 3) -

We also need to add conditions to definition 7.4 to take care of x , +, and I.

Definition 11.3 Given a well-behaved site (A, P,Cov), properties (P4) and (P5) are defined as
follows:

(P4)
(1) For every a E Au, if ~ (a) E P,, where p E [Au + AT] and abs t (p) exists, then abst(cp) E

Po+, *

(2) If a1 E P, and a2 E P,, then (al , a2) E Pox,.
(3) If a E Po, then in l (a) E Po+,, and if a E P,, then in r (a) E Po+,.
(4) If a1 E Pu+s and a2 E PC-+,, then [a ~ , an] E P(a+7)-+6.

(5) If a E PL, then v,(a) E P,.

(P5)
(1) If a E Po and cp(a) E P,, where cp E [Au + AT] and abst(cp) exists, then a p p (a b s t (~) , a) E

p, .
(2) If a1 E Po and a2 E P,, then ~ ~ ((a l , a2)) E Pu and n2((al, a2)) E P,.
(3) IfCovu+,(C,~), f E Pods, g E PT4, app(f,pl) E Pg whenever inl(p1) E C , app(g,p2) E P6

whenever inr(p2) E C , and p3 E PL whenever vO+,(p3) E C , then app([f , g], p) E P6.
(4) If a E PL and b E Po, then app(v,,,(a), b) E P,.

If a E PL, then ~ I (v , x , (~)) E P, and n2(vUx,(a)) E P,.

It is easy to verify that app([f, g], p) E P g is stubborn if p E Po+, is stubborn, f E and
g E P74. This follows from condition (3) of definition 11.1.

In view of definition 10.1, definition 11.3 implies the following conditions.

Definition 11.4

(P4)
(1) If A[M]p E P,, then A[Xx: o. M]p E Po,,.
(2) If A[M]p E Po and A[N]p E P,, then A[(M, N)]p E Pox,.
(3) If A[M]p E Pa, then inl(A[M]lp) E Po+,, and if A[M]p E P,, then inr(A[M]p) E Po+,.
(4) If A[M]p E Pu-+s and AI[N]p E P T ~ , then A[[M, N]]p E P[,+,)-+s.
(5) If A[M]Ip E PL, then AKvU(M)llp E P,.

0'5)
(1) If a E Po and A[M]p[x: = a] E P,, then app(A[Xx: a. M]p, a) E P,.
(2) If A [M b E PO and A[N]p E P,, then ri(A[(M, N)]p) E Po and 7r2(A[(M7 N)]p) E P,.
(3) If C~'JU+T(C,P)~ A[Mlp E Pu+67 d[N]p E PT+s, app(d[M]lp,pl) E Ps whenever in l (p l) E

C7 and app(A[N]p, p2) E Ps whenever inr(p2) E C , and p3 E Pl whenever vu+T(p3) E C,
then ~PP(A[[M, Nllp, P) E Ps.

(4) If A[M]p E PL and b E Po, then app(A[~,,,(M)]p, b) E P,.
If ~ [M I P E PL, then ni(A[vuxT(M)]p) E Po and x2(A[voxT(M)]p) E P,.

We have the following generalization of lemma 7.5.

Lemma 11.5 Given a well-behaved scenic site (A, P , Cov), and a family P satisfying conditions
(P1)-(P5), for every p, the following properties hold: (I) If p(y) E r[y] for every y: y E FV(M) ,

and for every a, (a E r[a] implies A[M]p[x: = a] E r[r]), then A[Xx: a. M]p E r[a + T]. (2) If
A[M]p E ria] and A[N]p E r[r], then A[(M, N)]p E r[a x r]; (3) If A[M]p E ria + S], and
A[N]p E r[r -t 61, then A[[M, N]]p E r[(a + r) -t 61. (4) If a E PL, then v,(a) E r[o] for every
a.

Proof. It is similar to the proof of lemma 7.5, except that we need to prove more clauses. By
lemma 9.6, we know that the sets of the form r[a] have the properties (S1)-(S3).

(1) This has already been proved in lemma 7.5.

(2) We need to show that A[(M, N)]p E PC,,, xl(A[(M, N)]p) E r[a], and xz(A[(M, N)]p) E
rk7-1. Since A[M]p E ria] and A[N]p E r[r], by (Sl), A[M]p E P, and A[N]p E P,. By
(P4)(2), we get A[(M, N)]p E Pox,. By (P5)(2), we also have 7rl(A[(M, N)]p) E P, and
7r2(A[(M7 N)]p) E P,. If a is a base type then ria] = Po and xl(A[(M, N)]p) E r[a]. Similarly,
if r is a base type then r [~] = P, and x2(A[(M7 N)IJp) E r[r].

If both a and T are nonbase types, TI (A[(M, N)]p) E P, and 7r2(A[(M7 N)]]p) E P, are simple
(since the site is scenic). We prove that 7r1(A[(M, N)]p) E r[a] and 7r2(A[(M, N)]p) E r[r] using
(S3). We consider the case of 7rl(A[(M, N)]p), the case of 7r2(A[(M, N)]p) being similar. The case
where 7rl(AI[(M, N)]p) is stubborn is trivial. Otherwise, assume that Cov,(C, 7rl(A[(M, N)np)),
where C is a nontrivial cover. We need to prove that c E r[a] whenever c E C. By condition (2)
of definition 11.2, c 5 A[M]p for every c E C . Since A[M]p E r[a] and c 5 A[M]p, by (S2), we
have c E r[a].

(3) We need to prove that A[[M, N]]p E P~,+,),s7 and that app(A[[M, N]]p, p) E r[S],
for every p E ria + r]. Since A[M]]p E ria + S] and A[N]p E r[r i S], by (S2), we have
A[M]p E Po+s and A[N]p E PT+s, and by (P4)(4), we get A[[M, NlIp E P[,+,),s.

Next, we prove that app(A[[M, N]]p, p) E Ps. Assume that the hypothesis of (3) holds. By
assumption, p E ria + r] , A[M]p E r[a -+ S], and A[N]p E r [~ + 611. By (Sl), we have p E PC+,,
d[M]p E Puis7 and A[N]p E P,,s. If p is stubborn, we have shown that app(d[[M, N]Dp, p) E P6
is stubborn, and thus app(A[[M, N]]p, p) E r[Sj by (S3).

0 therwise, since p E r[o + TI, the cover C given by

C = {inl(pi) I pi E r[a] and p k inl(pl)) u
(i n r (~ 2) I PZ E r[r] and p inr(p2)} u
{vu+T(P~) I p3 E PL and p v ~ + , (~ ~))

is a nontrivial cover, and Cov,+,(C,p). Then, since by the assumptions of the lemma, A[Mlp E
+ 61 and A[N]p E r[r -t 61, we have app(AIM]p,pl) E r[6] whenever inl(pl) E C ,

app(A[N]p,pz) E r[h] whenever inr(p2) E C, and p3 E PL whenever ~ , + ~ (p 3) E C, since
pi E r[a], p2 E r[r], and p3 E PL, by definition of C. Now (using Sl), the conditions of (P5)(3)
are met for C , and we have app(A[[M, N]]p, p) E Pa. If S is a base type, then r[S] = P6, and

~PP(A[[M, NIIIP, P) E .as].
If 6 is not a base type, then app(A[[M, N]]p, p) is simple (since the site is scenic). We use

(S3) to prove that app(A[[M, N]]p, p) E r[[S]. The case where app(A[[M, N]]p, p) is stubborn is
trivial.

Otherwise, assume that Cov6(D, app(A[[M, N]]p, p)), where D is a nontrivial cover. Since
p E ria + T], the cover C given by

C = {inl(pl) I pi E r[a] and p inl(pl)) u
(inr(p2) 1 p2 E r[r] and p 2 inr(p2)) u
{VU+T(P~) (p3 E PL and p k v , + , (~ ~))

is a nontrivial cover, and Cov,+,(C,p). Since C and D are nontrivial, by condition (3) of definition
11.2, for every d E D, either there is some inl(pl) E C such that d 5 app(A[M]p, pi), or there
is some inr(p2) E C such that d 5 app(A[N]p,p2), or there is some v0+,(p3) E C such that
d 5 ~ 6 (~ 3) .

In the first two cases, since by definition of C , pi E r[a] and p2 E r[r], and by assumption,

A[M]P E r[o -t 61 and A[N]p E r[7 -+ 61, we have app(A[M]p,pl) E 461 and app(A[N]p,p2) E
r[6], and by (S2), we get d E r[S]. In the third case, by definition of C, we have p3 E P1, and by
(4) (of this lemma, to be proved next), we have v6(p3) E r[S]. Then, by (S2), in a,ll cases we get
d E r[S]. Finally, by (S3), we have app(A[[M, N]]p, p) E r[S].

(4) We proceed by induction on a. When a is a base type, since v , (M) E P, by (P4)(5) and
since r[a] = Pa, we have v , (M) E r[a].

1. Arrow type a + 7. We prove that app(v,,,(a), b) E r[r] for every b E r[a]. Since a E P1
and by (Sl) b E P,, by (P5)(4), we have app(v,,,(a), b) E P,. If r is a base type, r[r] = P, and
app(v,,,(a), b) E r[r]. Otherwise, app(~,,,(a), b) E P, is a simple term and we use (S3). The
case where app(v,,,(a), b) is stubborn is trivial. Otherwise, assume that Cov,(C, app(~,,,(a), b))
for some nontrivial cover C. Then, by condition (1) of definition 11.1, c 5 v,(a) for every c E C ;
By the induction hypothesis, ~ , (a) E r[r], and by (S2), we have c E r[r]. Thus, by (S3), we have

app(vo+r(a), b) E rl[rn.

2. Produ.ct type a x r. We prove that n l (~ , , , (a)) E r[a] and a2(v,,,(a)) E r([r]. Since
a E PL, by (P5)(4), we have nl(v,,,(a)) E P, and ~2(V,,,(a)) E P,. If a is a base type,

then r[a] = P, and nl(v,,,(a)) E ria]. Similarly, if r is a base type, then r[r] = P, and
~ 2 (~ u x r (a)) E r[r].

If a is not a base type, then nl(v,,,(a)) E P, is a simple term and we use (S3). The case
where nl(vUx,(a)) is stubborn is trivial. Otherwise, assume that Cov,(C, nl(v,,,(a))) where
C is a nontrivial cover. Then, by condition (2) of definition 11.1, c 5 v,(a) for every c E C.
Since by the induction hypothesis, v,(a) E r[a], by (S2), we have c E ria]. By (S3), we have
nl(v,,,(a)) E r[a]. A similar argument applies to n2(voxr(a)).

3. Sum type a + r. By (P4)(5), since a E P*, we have v,+,(a) E Po+,. Let D be the following
set:

D = { i n l (p ~) 1 pi E ria] and v,+, (a) 2 inl(pl)} u
(i n r (~ 2) I ~2 E rir] and vU+, (a) inr(p2)} IJ

{vu+T(P~) 1 p3 E PL and v,+, (a) v ,+ , (~~)) .

By the properties of 3 , it is easy to verify that D is indeed a sieve. We need to prove that
Cov,+,(D, v,+,(a)), since this is equivalent to v,+,(a) E r[a + T]. Now, since q li, v,+,(a)
implies that q = v,+,(al) for some a1 3 a, and since a E P1, by (P2) we have a1 E P1. Thus, it
is is clear that D = {q I q 5 v,+,(a)}, which is a principal sieve. However, since v,+,(a) E Po+,,
by property (2) of definition 9.1, v0+,(a) E PC+, is covered by the principal sieve D, and thus
Cov,+,(D, v,+,(a)). Therefore, we have v,+,(a) E ria + r].

Finally, we now prove the main realizability lemma for X ' ~ X ~ + ~ L

Lemma 11.6 Given a well-behaved scenic site (A, P, COV), if P is a family satisfying conditions
(P1)-(P5), then for every term M of type a , for every valuation p such that p(y) E r[y] for every
y: y E FV(M), we have A[M]p E r[a].

Proof. We proceed by induction on the structure of M. Some of the cases have already been
covered in the proof of lemma 7.6, but we also need to handle the new terms.

If M = (MI, Nl), where MI has type a and N1 has type r, then by the induction hypothesis,
A[Ml]p E r[a] and A[Nl]p E r[r]. By lemma 11.5, we have A[(M1, Nl)]p E r[a x r].

If M = nl (MI) where MI has type a x r, then by the induction hypothesis, AIMl]p E r[a x r].
By the definition of ria x T] , this implies that nl(AIMl]p) E r[a], that is, A[nl(M1)]p E ria], by
definition 10.1. Similarly, we get A[n2(M1)]p E ria].

If M = in l (Ml) where M has type a + r , then by the induction hypothesis, A([Ml]p E r[a].
By (P4)(3), we have inl(AIMl]p) E PC+, . Consider the cover D of inl(AIMl]p):

D = (inl(p1) (pl E ria] and inl(AIMl]p) k inl(pl)} u
(inr(p2) 1 ~2 E r[r] and inl(A[Ml]p) k inr(p2)} u
{ v u + ~ (P ~) I ~3 E P_L and inl(A[Ml]p) k v,+,(p3)}

We need to show that Cov,+,(D, inl(AIMl]p)). We claim that

By the properties of 5 , p 5 inl(AEIMl]p) implies that p = inl(pl) and pl 5 A[M1]p. Since
A[Mllp E r[a], and by (SZ), pl E r[a] whenever pl 5 AIMl]p, we do have

However, by property (2) of definition 9.1, since inl(AIMl]p) E Po+, and D is a principal cover,
C O V ~ + ~ (D , inl(A[M~]p)) holds. Since by definition 10.1, A[inl(Ml)]p = inl(AIMl]p), we have
A[inl(Ml)]p E ria + r] . The case where M = inr(Ml) is similar.

If M = [MI, Nl] is of type (a + T) + 6, by the induction hypothesis applied MI, N1, we have
d[Ml]p E r[a + S], and AINl]p E r[r -t 61. Thus, by lemma 11.5, we have A[[Ml, Nl]]p E
r[(a + 7) + S].

If M = v u (M l) , then by the induction hypothesis, AIMl]p E r[l] = PL. By lemma 11.5
(4), we have v,(A[Ml]p) E ria]. Since by definition 10.1, A[vU(Ml)]p = v,(AIMl]p), we have
ABV~(MI)IP E ~ I I ~ D .

Theorem 7.7 is generalized to the calculus X ' ~ X ~ + ~ L as follows.

Theorem 11.7 Given a well-behaved scenic site (A, P , Cov), i f P is a family satisfying conditions
(P1)-(P5), then for every closed term M of type a, we have A[M] E Pa. (in other words, the
realizer A[M] satisfies the unary predicate defined by P , i.e, every provable type is realizable).

Proof. Apply lemma 11.6 to the closed term M of type a and to any arbitrary valuation p.

12 Applications to the System X'jXj+jL

This section shows that theorem 11.7 can be used to prove a general theorem about terms of the
system X'9X~+9-'-. AS a corollary, it can be shown that all terms of X'tX7S>L are strongly normalizing
and confluent.

In order t o apply theorem 11.7, we define a notion of cover for the site A whose underlying
pre-applicative structure is the structure CT0 of definition 8.2.

Definition 12.1 An I-term is a term of the form either X X : ~ . M , (M, N) , i n l (M) , in r (M) ,
[M, N], or v u (M) . A simple term (or neutral term) is a term that is not an I-term. Thus, a
simple term is either a variable x, a constant c, an application M N , a projection r l (M) or na(M).
A term M is stubborn iff it is simple and, either M is irreducible, or M' is a simple term whenever
M f M' (equivalently, M' is not an I-term).

We define a cover algebra on the structure C'Tp as follows. Let P be a (unary) property of
typed X-terms.

Definition 12.2 The cover algebra Cov is defined as follows:

(1) If M E P, and M is an I-term, then

Cov(M) = {{N I M Lp N)}.

(2) If M E P, and M is a (simple and) stubborn term, then

Cov(M) = (0, {N I M A p N } } .

(3) If M E P, and M is a simple and non-stubborn term, then

+ cov(M) = {{N I M Lp N}, {N I M -p Q --*'-'p N, for some I-term Q)) .

Recall from definition 9.2 that M is simple iff it has at least two distinct covers. Thus, definition
12.2 implies that a term is simple in the sense of definition 12.1 iff it is simple in the sense of definition
9.2. Similarly a term is stubborn in the sense of definition 12.1 iff it is stubborn in the sense of
definition 9.2. Also, definition 12.1 implies that L 'Tp is scenic.

Properties (PI-P3) are listed below.

Definition 12.3 Properties (P1)-(P3) are defined as follows:

(PI) x E P,, c E P,, for every variable x and constant c of type a.

(P2) If M E P, and M -p N , then N E P,.

(P3) If M is simple, then:

(1) If M E Po+,, N E Po, (Ax: a. M')N E Pr whenever M f p Xz: a. MI, and v,,,(M1)N E
+ P, whenever M -p v,,, (M'), then M N E P,.

(2) If M E Pox,, xl((M1, N')) E P, and a2((M1, N')) E P, whenever M f p (MI, N'),
+

and n~(vux,(M')) E P, and ~2(voxr (M')) E P7 whenever M - p vUx, (M'), then
r l (M) E P, and wz(M) E P7.

A careful reader will notice that conditions (P3) of definition 12.3 are not simply a reformulation
of condition (P3) of definition 9.3. This is because according to definition 12.2, a non-stubborn

+ term M is covered by the nontrivial cover {N 1 M -p Q Lp N}, where Q is some I-term,
but the conditions of definition 12.3 only involve reductions to I-terms. However, due to condition
(P2) and the fact that a nontrivial cover is determined by the I-terms in it, the two definitions are
indeed equivalent.

If M E P,,, is a stubborn term and N E P, is any term, then M N E P, by (P3). Furthermore,
M N is also stubborn since it is a simple term and since it can only reduce to an I-term if M itself
reduces to a an I-term. Thus, if M E P,,, is a stubborn term and N E P, is any term, then M N
is a stubborn term in P,. We can show in a similar fashion that (P3) implies that if M E Pox, is
a stubborn term, then nl(M) is a stubborn term in P, and x2(M) is a stubborn term in P,.

Properties (P4-P5) are listed below.

Definition 12.4 Properties (P4) and (P5) are defined as follows:

(P4)
(1) If M E P,, then X X : ~ . M E P,,,.
(2) If M E P, and N E P,, then (M, N) E Pox,.

(3) If M E P,, then i n l (M) E Po+,, and if M E P,, then in r (M) E Po+,.
(4) If M E Pu,s and N E P,,s, then [M, N] E P(,+,),6.
(5) If M E PL, then v u (M) E P,.

(P5)
(1) If N E Po and M[N/x] E P,, then (Ax: a. M) N E P,.
(2) If M E P, and N E P,, then RI((M, N)) E P, and n2((M, N)) E P,.
(3) If P E PC+,, M E PU4, N E P,+.s, MPl E Ps whenever P L p in l (P l) , NP2 E P6

whenever P Ap inr(Pz), and PI E PL whenever P zp v,+, (PI), then [M, N I P E P6.
(4) If MI E PL and N E P,, then v u + T (M ~) N E P,. If MI E PL, then r 1 (~ u x 7 (M l)) E Pa

and n2(vux,(M1)) E P T .

Again, a careful reader will notice that conditions (P5) of definition 12.4 are not simply a
reformulation of conditions (P5) of definition 11.4. However, because of (P2) and the fact that a
nontrivial cover is determined by the I-terms in it, the two sets of conditions are equivalent.

It is easy to verify that [M, N I P E P6 is a stubborn term in P6, if P E Po+, is stubborn,
M E P,,s, and N E P7+$. Indeed, [M, NIP E Pa can only reduce to an I-term if P does. We
now show that the conditions of definition 9.1 and the conditions of definition 11.2 hold.

Lemma 12.5 Definition 12.2 defines a cover aigebm, and the site (,Up, P , Cov) is scenic and
well- behaved.

Proof. Conditions (0)-(4) of definition 9.1 are easily verified. Let us verify conditions (5) and

(6).

(5) If Cov(M) = t r i v (M) , then Cov(MN) = t r i v (M N) , and if Cov(C, M) and Cov(D, M N)
with C and D nontrivial, then for every Q E D, there is some M' E C such that Q 5 M'N.

The first part says that if M is stubborn, then M N is stubborn, which has already been
verified. If the covers C and D are nontrivial, then by definition 12.1, M and M N must be simple
and non-stubborn terms. In this case, Q E D means that

where P is an I-term. This can happen only if M f p MI, where M' itself an I-term. In this case,
there is some reduction + M N -p M'N L p P Lp Q,

where M' is an I-term. Since M is simple and non-stubborn, definition 12.1 implies that M' E C.

(6) If Cov(M) = t r i v (M) , then Cov(rl(M)) = t r i v (r l (M)) , Cov(ir2(M)) = t r i v (r z (M)) , and
if ~ o v (C , M) and Cov(D, nl(M)) (resp. Cov(D, n2(M))) with C and D nontrivial, then for
every Q E D, there is some M' E C such that Q 5 xl (MI) (resp. Q 5 r2(M1)).

The first part says that if M is stubborn, then nl(M) and 7r2(M) are stubborn, which has
already been verified. If the covers C and D are nontrivial, then by definition 12.1, M, nl (M), and
r l (M) , must be simple and non-stubborn terms. In this case, Q E D means that

where P is an I-term. This can happen only if M f p MI, where MI itself an I-term. In this case,
there is some reduction

n (M) f 0 *l(M1) - f i p P -;P Q,

where MI is an I-term. Since M is simple and non-stubborn, definition 12.1 implies that MI E C.
The same argument applies to n2(M).

Let us now verify the conditions of definition 11.2. First, recall that for the structure LTp, for
every valuation p (an infinite substitution) LTp[M]p = M [cp], where cp is the substitution defined
by the restriction of p to F V (M) . Also app(M, N) = M N , and recall that A" is the set of terms
of type a.

(1) For any a E A" , if CovT(C, app(CTp[Xx: a. M]p, a)) and C is a nontrivial cover, then c 5
LTp[M]p[x: = a] for every c E C.
For any b E A", if C o ~ , (C , a p p (C l ~ ([~ ~ , ~ (M)] p , 6)) and C is a nontrivial cover, then
c 5 LTp[v,(M)]p for every c E C;

We have app(LTp[Ax: a. M]p, a) = ((Ax: a. M)[y])a, where y is the substitution defined by the
restriction of p t o F V (M) - {x). By definition 12.1, since C is nontrivial, c E C means that

for some I-term Q. This can only happen if there is a reduction

However, we have (M[cp])[a/x] = M[p[x: = a]] (using a suitable renaming of x). By the definition
of CTpl[M]p, we have LTp[M]lp[x: = a] = M[y[x: = a]], and this part of the proof is complete.
The proof for v,,,(M) is completely analogous.

(2) If ~ov , (C , nl(Llp[(M1, M~)]P)) and C is a nontrivial cover, then c 5 CTpl[Ml]p for every
c E C.
If Cov,(C, n2(LTp[(M~, M2)]p)) and C is a nontrivial cover, then c 5 C7p[M2]p for every
c E C.
If Cov, (C, nl(LTp[vu x, (M)]p)) and C is a nontrivial cover, then c 5 ,C7p[v,(M)]p for
every c E C.
If Cov,(C,~2(Ll~~~,~,(M)]p)) and C is a nontrivial cover, then c 5 C ' ; ~ ~ [V ~ (M)] ~ for
every c E C.

We have L7p[(M1, M2)]p = (MI, M2)[y], where cp is the substitution defined by the restriction
of p t o FV(Ml) U FV(M2). By definition 12.1, since C is nontrivial, c E C means that

for some I-term Q. This can only happen if there is a reduction

Since LTp[Ml]p = Ml[cp], this part of the proof is complete. The other cases are entirely analogous.

(3) If Cov(P) = t r i v (P) , then Cov(app(CTp[[M, N]]p, P)) = triv(app(CTp[[M, N]]p, P)),
and if COV,+~(C, P) , Covg(D, app(LTp[[M, N]]p, P)) , and C and D are nontrivial, then for
every d E D , either there is some in l (P l) E C such that d 5 app(LTpl[Mlp, PI), or there is
some inr(Pz) E C such that d 5 app(LTp[N]p, P2), or there is some V , + ~ (P ~) E C such
that d 3 vs(P3).

The first part says that [M[cp], N[(p]]P is stubborn if P is stubborn, which has already been
shown (where cp is the substitution defined by the restriction of p to F V (M) U FV(N)) . By
definition 12.1, since D is nontrivial, d E D means that

where Q is an I-term. This can happen only if either

P Lp inl(Pl) , and

or P Lp inr(P2) , and

Or P $0 vU+7 (P3), and

In each case, since C is nontrivial, by definition 12.1, we have in l (P l) E C, in l (P2) E C, and

~ a + 7 (P 3) E C. 17
Thus, the site (CTp, P , Cov), is scenic and well-behaved. Consequently, we can apply theorem

11.7, and get a general theorem for proving properties of terms of the system In fact,
for the structure LTp, for a property 'P satisfying conditions (P1)-(P5), by (P I) and (P3), every
variable x of type a is stubborn (for every a). Thus, we can apply lemma 11.6 with the valuation
p such that p(x) = x for every variable x, since by lemma 9.6, r[a] contains every stubborn term.
Consequently, we have the following theorem (compare with theorem A of the introduction).

T h e o r e m 12.6 If P is a family of X-terms satisfying conditions (P1)-(P5), then P, = A, for
every type a (in other words, every term satisfies the unary predicate defined by P).

Proof. By lemma 12.5, the site (C'Tp, P, Cov) is scenic and well-behaved. By the discussion
just before stating theorem 12.6, the identity valuation p such that p(x) = x for every variable x,
is such that p(x) E ria] for every x: a. Thus, we can apply lemma 11.6 to any term M of type a
and to p, and we have LTp[M]p E r[a]. However, in the present case, CTp[M]p = M. Thus,
M E r[a], and since r[a] c P,, we have M E P,, as claimed.

As a corollary, strong normalization and confluence can be shown, see Gallier [5] for such a

treatment.

We now consider the generalization of the previous treatment to the second-order typed X-
calculus X+?V2

13 Syntax of the Second-Order Typed A-Calculus A',vZ

In this section, we review quickly the syntax of the second-order typed A-calculus ~ ' 1 ~ ~ . This
includes a definition of the second-order types under consideration, of raw terms, or the type-
checking rules for judgements, and of the reduction rules. For more details, the reader should
consult Breazu-Tannen and Coquand [2]. For simplicity, we only consider the types + and V2, but
the types x, +, and I, can also be handled, as in section 2.

Let 7 denote the set of second-order types. This set comprises type variables X , type constants
k, and compound types (a -t T) , and VX. a. It is assumed that we have a set TC of type
constants (also called base types of kind *). We have a countably infinite set V of type variables
(denoted as upper case letters X, Y, Z), and a countably infinite set X of term variables (denoted
as lower case letters x, y, z). We denote t h e set of free type variables occurring in a type a as
FTV(a). We use the notation * for the kind of types. Since we are only considering second-order
quantification over predicate symbols (of kind *) of arity 0, this is superfluous. However, it will
occasionally be useful to consider contexts r in which type variables are explicitly present, since this
makes the type-checking rules more uniform in the case of A-abstraction and typed A-abstraction.
Thus, officially, a context r is a set {xl: 01, . . . , x,: a,), where XI , . . ., x, are term variables, and
01,. . .,a, are types. We let dom(I') = {xl, . . .,x,}. As usual, we assume that the variables x j
are pairwise distinct. We also assume that x 4 dom(I') in a context I', x: a. Informally, we will
also consider contexts {XI: *, . . . , X,: *, XI: 01, . . . , x,: a,), where XI, . . . , X, are type variables,
and X I , . . . ,x, are term variables, with the two sets {XI, . . .,X,) and {xl, . . . ,x,) disjoint, the
variables Xi pairwise distinct, and the variables x j pairwise distinct. We assume that X $ dom(I')
in a context r, X : *. For the sake of brevity, rather than writing typed A-abstraction as AX: *. M ,
it will be written as AX. M .

It is assumed that we have a set Const of constants, together with a function Type: Const -+ 7,
such that every constant c is assigned a closed type Type(c) in 7. The set TC of type constants,
together with the set Const of constants, and the function Type, constitute a signature C. Let us
review the definition of raw terms.

Definition 13.1 The set of m w terms is defined inductively as follows: every variable x E X is a
raw term, every constant c E Const is a raw terms, and if M, N are raw terms and a, r are types,
then (MN) , (MT), Ax: a. M , and AX. M , are raw terms.

We let FV(M) denote the set of free term-variables in M . Raw terms may contain free variables
and may not type-check (for example, (xx)). In order to define which raw terms type-check, we
consider expressions of the form r D M: a, called judgements, where l? is a context in which all the
free term variables in M are declared. A term M type-checks with type a in the context I' iff the
judgement I' D M: a is provable using axioms and rules summarized in the following definition.

Definition 13.2 The judgements of the polymorphic typed A-calculus are defined by the
following rules.

r D x: a, when x: a E r ,

r D c: Type(c), when c is a constant,

~ , X : U D M : r
(abstraction) r D (AX: a. MI: (U -+ T)

I ' D M : (u + T) I ' D N : ~
(application) r D (MN): T

I ' ,X:AD M : a
(V-intro)

I' D (AX. M): VX. a

provided that X 4 U2:TEr FTV(7);

The reason why we do not officially consider that a context contains type variables, is that
in the rule (V-elim), the type T could contain type variables not declared in r, and it would be
necessary to have a weakening rule to add new type variables to a context (or some other mechanism
to add new type variables to a context). As long as we do not deal with dependent types, this
technical annoyance is most simply circumvented by assuming that type variables are not included
in contexts.

Definition 13.3 The reduction rules of the system A'~vZ are listed below:

(Ax: u. M) N - M[N/x],

(AX. M) T - M [r / X] .

The reduction relation defined by the rules of definition 13.3 is denoted as -p . From now on,
when we refer to a A-term, we mean a A-term that type-checks. We let A(,, r) denote the set of
judgements of the form I' b M : a.

14 Pre- Applicat ive Structures for ~ ' 7 ~ ~

In this section, the definition of a pre-applicative structure (given in section 3) is generalized to
For simplicity, only pre-applicative @-structures are defined. Pre-applicative @q-structures

and extensional pre-applicative ,f3-structures are defined in an appendix (see section 21). The types
x , +, and I, can easily be handled as in section 8, but for simplicity, we only deal with the
types -+ and V2. Since we are dealing with type variables, in order to interpret the types, we
first need t o define the notion of an algebra of (polymorphic) types. We also need to define the
notion of a dependent product (see definition 14.2) in order to "curry" the map tapp': A'(@) x T -+

LI(A@'~')SET.

Definition 14.1 An algebra of (polymorphic) types is a tuple

where T is a nonempty set of types, -+:T x T -+ T is a binary operations on T , [T =+ T] is a
nonempty set of functions from T to T , and V is a function V: [T + T] -+ T .

Intuitively, given a valuation 0: V + T, a type a E 7 will be interpreted as an element [ale of
T .

Given an indexed family of sets we let ~ (A ;) ; € I be the product of the family (A;)iEI,
and U(A;);Ez be the coproduct (or disjoint sum) of the family The disjoint sum U(Ai);Er
is the set U{(a, i) I a E A;)iEI. If the sets A; are preorders, then n(Ai)iEl is a preorder under the
product preorder, where (a;);EI 3 (b;);EI iff a j 5; bi for all i E I, and U(Ai)iEI is a preorder under
the (disjoint) sum preorder, where (a, i) 3 (b, i) iff i = j and a 5; b.

Before defining a pre-applicative structure, we need to define the notion of a dependent product.

Definition 14.2 Given an algebra of types T , and a T-indexed family of preorders (As, <"), for ev-
ery function 9 E [T + TI, the dependent product na(AS)sET is the cartesian product n (~ ' (~)) ~ ~ ~ ,

T
which is also described explicitly as the set of functions in (u (A ' (~)) ~ ~ ~) defined as follows:

H (A ~) , , ~ = {f: T + U (A @ (')) ~ ~ T I f (t) E A @ (~) , for all t E T) .
0

The set na(AS)sET is given the preorder 5' defined such that, f 5' g iff f (t) 5'(t) g(t), for every
t E T.

Given two preordered sets (AS, 5') and (At, d t) , we let [AS + At] be the set of monotonic
functions w.r.t. sS and 5t, under the pointwise preorder induced by 5t defined such that, f 5 g
iff f (a) dt g(a) for all a E AS.

We are now ready to define the semantic structures used in this paper.

Definition 14.3 Given an algebra of types T, a pre-applicative ,B-structure is a structure

d = (A, 5, fun, abst , t f un , t abs t) ,

where

A = (AS),ET is a family of sets (possibly empty) called carriers;

(sS)s fT is a family of preorders, each 5' on AS;

abstslt: [AS + At] + AS't, a family of partial operators;

funsyt: AS't -+ [AS At], a family of (total) operators;

t abs t@: no(As)sET + A'(@), a family of partial operators, for every a E [T + TI;

tfunslt: A'(') -t no(AS),ET, a family of (total) operators, for every E [T + TI.

It is assumed that fun, abst , t fun, and t a b s t , are monotonic. Furthermore, the following
conditions are satisfied

(1) For all s , t E T , if AS # 0 and At # 8, then AS't # 8, and f ~ n ~ ' ~ (a b s t ~ ~ ~ (c p)) 2 cp, whenever
a b ~ t ~ ? ~ (q) is defined for cp E [AS + At];

(2) If ~ ' (~ 1 # 0 for every t E T , then A'(") # 0, and tfuna(tabst'((p)) 9, whenever
tabsta(cp) is defined for cp E na(AS)sET.

The operators f u n induce (total) operators

aPPs*t: As+t x As + At, such that, for every f E AS't and every a E AS,

Then, condition (1) can be written as

(1') apps~t(absts9t(cp), a) h cp(a), for every a E As, for cp E [As + At], whenever abstSlt(cp) is
defined.

The operators t f u n induce (total) operators

tappa: A"(@) x T t U (A @ (~)) , ~ ~ , such that, for every t E T,

Then, condition (2) can be written as

(2') tappa(tabsta(v), s) >- cp(s), for every s E T, whenever t abs t a (F) is defined, for 9 E

n a (A S) s ~ ~ .

We say that a pre-applicative @-structure is an applicative p-structure iff in conditions (1)-(2),
is replaced by the identity relation =.

We will omit superscripts whenever possible. Intuitively, A is a set of realizers. It is shown in
section 17 how the term model can be viewed as a pre-applicative p-structure (see definition 17.5).

When A is an applicative p-structure, then, in definition 14.3, conditions (1)-(2) amounts to

(1) funs*t o abstsjt = id on the domain of definition of abst ;

(2) t fun@ o t a b s t @ = id on the domain of definition of t abs t .

In this case, abs t is injective and fun is surjective on the domain of definition of abs t (and
left inverse to abs t) , t a b s t is injective and t f u n is surjective on the domain of definition of t a b s t
(and left inverse to tabs t) .

When we use a pre-applicative @-structure to interpret A-terms, we assume that the domains
of abs t and t a b s t are sufficiently large, but we have not elucidated this last condition yet. Given
M E AS't and N E AS, app(M, N) is also denoted as MN, and tapp(M,t) as M t .

15 P-Cover Algebras and ?-Sheaves for ~ + l ~ ~

In this section, we basically repeat the definitions for covers and sheaves given in section 9, except
that we are dealing with a more general notion of pre-applicative structure (since we also have an
algebra of types T). As in section 9, we define all the necessary concepts in terms of preorders,
referring the interested reader to MacLane and Moerdijk [IS] for a general treatment. First, we
need some preliminary definitions before defining the crucial notion of a cover. From now on, unless
specified otherwise, it is assumed that we are dealing with pre-applicative p-structures (and thus,
we will omit the prefix @).

Definition 15.1 Given an algebra of types T and a pre-applicative structure A, for any M E As,
a sieve on M is any subset C C As such that, N 5 M for every N E C, and whenever N E C
and Q 5 N, then Q E C. In other words, a sieve on M is downwards closed and below M (it is
an ideal below M). The sieve {N I N 5 M) is called the maximal (or principal) sieve on M. A
covering family on a pre-applicative structure A is a family Cov of binary relations Cov, on 2AS x AS,
relating subsets of As called covers, to elements of Ad. Equivalently, Cov can be defined as a family
of functions Cov,: As + 22As assigning to every element M E As a set Cov(M) of subsets of As (the
covers of M). Given any M E AS, the empty cover 0 and the principal sieve {N I N -1 M) are the
trivial covers. We let t r i v (M) denote the set consisting of the two trivial covers of M. A cover
which is not trivial is called nontrivial.

In the rest of this paper, we will consider binary relations P C Ax T, such that P (M , s) implies
M E As, and for every s E T, if AS # 0, then there is some M E AS s.t . P (M , s). Equivalently, P
can be viewed as a family P = (P,),ET, where each P, is a nonempty subset of AS (unless As = 0).
The intuition behind P is that it is a property of realizers. For simplicity, we define the covering
conditions only for the types + and V2 (but the types x, + and I, can also be handled. This
treatment can be readily adapted from sections 9, 10, and 11).

Definition 15.2 Given an algebra of types T, let A be a pre-applicative structure and let P be a
family P = (P,),ET, where each P, is a nonempty subset of As (unless A" = 0). A P-cover algebra
(or P-Grothendieck topology) on A is a family Cov of binary relations Cov, on 2AS x AS satisfying
the following properties:

(0) Cov,(C, M) implies M E P, (equivalently, P (M, s)).

(1) If Cov(C, M) , then C is a sieve on M (an ideal below M).

(2) If M E P,, then Cov({N (N 3 M), M) (M E P, is covered by the principal sieve on M) .

(3) (stability) If Cov(C, M) and N 3 M , then Cov({Q I Q E C, Q 3 N), N).

(4) (transitivity) If Cov(C, M) , D is a sieve on M , and Cov({Q I Q E D, Q 3 N), N) for every
N E C, then Cov(D, M).

(5) If ~ o v (M) = t r i v (M) , then Cov(MN) = t r i v (M N) , and if Cov(C, M) and Cov(D, M N)
with C and D nontrivial, then for every Q E D, there is some M' E C such that Q 5 M'N.

(6) If Cov(M) = t r i v (M) , then Cov(Ms) = t r i v (Ms) , where s E T, and if Cov(C, M) and
Cov(D, Ms) with C and D nontrivial, then for every Q E D, there is some M' E C such
that Q i, M's.

A triple (A, P , Cov), where A is pre-applicative structure, P is a property on A, and Cov is a
P-Grothendieck topology, is called a P-site.

Condition (0) is needed to restrict attention to elements having the property P. Covers
only matter for these elements. Conditions (1)-(4) are the conditions for a set of sieves to be
a Grothendieck topology, in the case where the base category is a preorder (A, 3). Conditions
(5)-(6) are needed to take care of the extra structure.

It should be noted that conditions (3) and (4) are in fact only needed for the treatment of the
sum type + (or the existential type). Also, it is not necessary to assume that covers are ideals
(downwards closed), but this is not harmful.

Definition 15.3 We say that M E AS is simple iff Cov(C, M) for at least two distinct covers C.
We say that M E AS is stubborn iff Cov(M) = (0, {Q I Q 3 M)) (thus every stubborn element is
simple). We say that a P-site (A, P, COV) is scenic iff all elements of the form app(M, N) (or M N) ,
or tapp(M, s) (or Ms) , are simple.

From now on, we only consider scenic P-sites. In order for our realizability theorem to hold,
realizers will have to satisfy properties analogous to the properties (P1)-(P3).

Definition 15.4 Given an algebra of types T, let (A, P, COV) be a P-site. Properties (P1)-(P3)
are defined as follows:

(PI) P (M, s), for some stubborn element M E AS.

(P2) If P (M , s) and M N , then P (N, s).

(P3a) If COV,,~ (C, M) , P (N , s), and P(MIN, t) whenever M' E C , then P (M N , t) .

(P3b) If CovV(@)(C, M), s E T, and P(M's, @(s)) whenever M' E C, then P (Ms , @(s)).

From now on, we only consider relations (families) P satisfying conditions (P1)-(P3) of definition
15.4. The sheaf property is defined as in section 9, except that a more general notion of pre-
applicative structure is involved.

Definition 15.5 Given an algebra of types T , let (A ,P , COV) be a P-site. A function S : A + 2T
has the sheaf property (or is a P-sheaf) iff it satisfies the following conditions:

(S l) If s E S(M) , then M E P,.

(S2) If s E S (M) and M 5 N, then s E S(N).

(S3) If Cov,(C, Ad) and s E S (N) for every N E C , then s E S(M) .

A function S: A + 2T as in definition 15.5 can also be viewed as a family S = (Ss)sET, where
S, = {M E A I s E S(M)). Then, the sets S, are called P-candidates. The conditions of definition
15.5 are then stated as follows:

(Sl) ss c ps.
(S2) If M E S, and M N , then N E S,.

(S3) If Covs(C, M) , and C C S,, then M E S,.

This second set of conditions is slightly more convenient for proving our results.

Note that (S3) and (PI) imply that S, is nonempty and contains all stubborn elements in P,
(unless AS = 0). By (P3a), if M E P,,t is stubborn and N E P, is any element, then M N E Pt.
Furthermore, M N is also stubborn. This follows from property (5) of a cover. Thus, if M E P,,t is
stubborn and N E P, is any element, then M N E Pt is stubborn. Similarly, by (P3b) and property
(6) of a cover, if M E PV(@) is stubborn and s E T, then M s E Pa(,) is stubborn.

Definition 15.6 Given an algebra of types T and a P-site (A, P, Cov), we let Sheaf (A, P) denote
the sets of all P-sheaves on (A, P, COV), and

~ h e a f (A , P), = {S, I S, E S , for some sheaf S = (Ss)sET E Sheaf(A, P)}.

Since P itself is a P-sheaf, the set Sheaf(A, P) is nonempty. The fact that definition 15.5 is
indeed a sheaf condition is shown exactly as in section 4 (except that a functor F is a P-sheaf iff
it is a sheaf, and for every a E A, F(a) & T and s E F(a) implies that a E P,).

16 P-Realirability For A'Y

In this section, we define a semantic notion of realizability. This notion is such that realizers are
elements of some pre-applicative structure. Since types can contain type variables, we first need to
define an interpretation of the types. In order to define the set of realizers of a second-order type
VX. a, we need to define sheaf-valuations (see definition 16.4).

Definition 16.1 Given an algebra of polymorphic types T , it is assumed that we have a function
TI : TC -t T assigning an element TI(k) E T to every type constant k E TC. A type valuation is
a function 6: V -t T. Given a type valuation 6, every type a E 7 is interpreted as an element [a]6
of T as follows:

[XI6 = O(X), where X is a type variable,

[k]O=TI(k), where k isa typecons tan t ,

I[. - r] O = [a16 - [~]]6,

[VX. all6 = Q(At E T. I[u]O[X: = t]).

In the above definition, At E T. [u]O[X: = t] denotes the function @ from T to T such that
@(t) = [a]O[X: = t] for every t E T. We say that T is a type interpretation iff @ E [T - T] for
every type a and every valuation 6.

In other words, T is a type interpretation iff [a]O is well-defined for every valuation 6. The
following lemmas will be needed later.

Lemma 16.2 For every type a E 7, and every pair of type valuations O1 and 02, if O1(X) = 02(X),
for all X E FTV(a) , then I[a]Ol = [a]02.

Proof. A straightforward induction on a. [7

Lemma 16.3 Given a type interpretation T , for all a, T E 7, for every type valuation 6, we have

Proof. The proof is by induction on a. The case where a = X is trivial, since then X [r / X] = r ,
and

[X]O[X: = [r]O] = O[X: = [r]O](X) = [r]O.

The induction steps are straightforward, and we only treat the case where a = VY. al. In this case,

[(VY. U~)[T/X]]O = V(At E T. [al[r/X]]O[Y: = t]),

(where the bound variable Y is renamed in a suitable fashion if necessary), and where At E
T. [al[r/X]]6[Y: = t] denotes the function from T to T such that a (t) = [al[r/X]]6[Y: = t]
for every t E T . By the induction hypothesis, we have

@(t) = [al[r/X]]6[Y: = t] = [a1]6[X: = [r]B, Y: = t].

Then, since
[VY. al]BIX: = [T]B] = v (~ t E T. [~ ,] e [x : = [T]B, Y : = t]),

we have
[(vY- U~)[T/XI]B = ivy. al]e[x: = O[T]B].

The next definition can be viewed as a semantic version of Girard7s "candidats de r6ductibilit6"
(see Girard [7], Gallier [4]).

Definition 16.4 Given a type interpretation T and a pre-applicative structure A, a sheaf-valuation
is a pair p. = (6, q), where 6: V -+ T is a type valuation, and q: V -' (J Sheaf (A, P) is a function
called a candidate assignment, such that:

~ (x) = SB(X), where Ss(x) E Sheaf(A, P)s(x), for some P-sheaf S = (Ss)sET E Sheaf (A, P) ,
for every X E V.

Given p. = (6, q), for any s E T and any S E Sheaf(A, P), , for some s-component S = S,
of some P-sheaf S = (S s) s c ~ E Sheaf(A, P) , we let p[X: = (s, S)] = (O[X: = s], q[X: = S]) be
the sheaf-valuation, such that, 6[X: = s](Y) = 6(Y) for every Y # X and B[X: = s](X) = s, and
q[X: = S](Y) = q(Y) for all Y # X , and q[X: = S](X) = S.

The notion of P-realizability is defined as follows.

Definition 16.5 Given an algebra of types T, let (A, P , Cov) be a P-site. For every sheaf-valuation
p. = (6, q), the family (r [~] p) ~ ~ ~ , where for every a E 7, r[a]p is the set of realizers of a, is
defined as follows:

r[k]p = P[kle, k a constant type,

r[X]p = q(X), X a type variable,

rl[a -+ TIP = {M I M E P~u,,le, and for all N, if N E r[a]lp then M N E r[r] lp) ,

r[VX. a]p. = {M I M E PpX.u16, and for every s E T , every S E Sheaf (A, P),,

M s E r[a]p[X: = (s, S)]).

The following lemmas will be needed later.

Lemma 16.6 For every type a E 7, every pair of sheaf-valuations pl = (01, ql) and p2 = (82, w),
if &(X) = &(X) and QI(X) = 72(X), for all X E FTV(a) , then r[a]pl = r[a]p2.

Proof. A straightforward induction on a (and using lemma 16.2). CI

Lemma 16.7 Given a type interpretation T and a P-site (A,P, Cov), for all a, r E 7, for every
sheaf-valuation p = (8, q), we have

Proof. The proof is by induction on a. We only consider the case where where a = VY. 01, the
other cases being straightforward. By definition 16.5, we have

r I [(vy .a l) [r /Xlb = {M I M E P [(v ~ . ~ ,) [x / ~] ~ e , and for every s E T, every S E Sheaf(A, P),,
M s E r[al[r/X]]]p[Y: = (s, S)]).

By lemma 16.3, we have
[(VY. a1)[r/X]]0 = IVY. a1]0[X: = [.]el,

and by the induction hypothesis, we have

r[al[r/X]]p[Y: = (s, S)] = r[al]p[Y: = (s, S) , X : = ([r]O, r[r]p)].

However, by definition,

r[W. ulgp[X: = ([rIO, rl[r]p)l = { M I M E P ~ Y . U1]8[x:=[T]8] , and for every s E T ,
every S E Sheaf(A, P),,

M s E rI[ul]p[X: = (IKrBe, r [~] p) , Y: = (s, S)]),

and so, we have
r[(VY. a1)[./X]]p = r[VY. a11p[X: = ([~]0 , r[.]p)].

The following lemma shows that the notion of a P-sheaf is an inductive invariant. In Gallier
[4], this is the lemma we call " Girard's t r i ~ k " . ~

Lemma 16.8 Given a scenic P-site (A, P , Cov), for every sheaf valuation p, if P satisfies con-
ditions (PI)-(P3), then the family (r [~] p) ~ ~ ~ is a P-sheaf, and if A[~]' # 0, then each r[a]p
contains all stubborn elements in P[,ls.

Proof. We proceed by induction on types. If a is a base type, r[a]p = PIulB, and obviously,
every stubborn element in PblB is in r[a]p. Since r[a]p = P[ulB, (Sl) is trivial, (S2) follows
from (P2), and (S3) is also trivial. If a = X is a type variable, then r[aJp = q(X), and since
q(X) = where SqX) E Sheaf(A, P)qX) , (Sl), (S2), and (S3) hold. The fact that every
stubborn element in PqX) is in Sqx) follows from (PI) and (S3), as we already noted earlier.

'Of course, this is unfair. Girard has many tricks!

We now consider the induction step.

(1) Type a + r. By the definition of r[a + TIP, (Sl) is trivial.

(2) Type VX. a. By the definition of r p X . a lp , (Sl) is trivial.

(1) Type a t r.

Let M E ria + TIP, and assume that M M'. Since M E P[u,,le by (Sl), we have
M' E P[u,,~e by (P2). For any N E r[a]p, since M E ria + r]p, we have M N E r[r]p, and since
M 2 M', by monotonicity of app, we have MN M'N. Then, applying the induction hypothesis
a t type r, (S2) holds for r[r]p, and thus M'N E r [~] p . Thus, we have shown that M' E P[u+71e
and that if N E r[a]p, then M'N E r[r]p. By the definition of ria -+ r]p, this shows that
M' E rl[a + TIP, and (S2) holds at type a + r.

(2) Type VX. a.

Let M E r[VX. a lp , and assume that M > M'. Since M E PpX.ule, by (S l) , we have
M' E Ppx. ,le. For every s E T and every S E Sheaf (A, P),, since M E r[VX. ajlp, we have
M s E r[a]p[X: = (s, S)], and since M k M', by monotonicity of tapp, we have M s k M's. Then,
applying the induction hypothesis to a and p[X: = (s, S)], (S2) holds for r[a]p[X: = (s, S)] , and
thus M's E r[a]p[X: = (s, S)]. By the definition of r p X . a lp , this show that M' E r[VX. a lp .

(1) Type a + r.

Assume that COV[,,,~~(C, M), and that M' E r[a -+ r]p for every M' E C, where M is simple.
Recall that by condition (0) of definition 15.2, COV[,,,~~(C, M) implies that M E P[u+T18. We
prove that for every N , if N E r[[a]lp, then M N E r[rjlp. First, we prove that M N E PLTIe, and
for this we use (P3).

First, assume that M E P[,+Tls is stubborn, and let N be in r[o]p. By (Sl), N E P[ule. By the
induction hypothesis, all stubborn elements in P[T18 are in r[r]p. Since we showed that M N E P[+
is stubborn whenever M E P[u,Tle is stubborn and N E PlTIe, we have M E r[o -+ rjlp.

Now, consider M E P[u,T18 non stubborn. If M' E C , then by assumption, M' E r[o -+ rjlp,
and for any N E r[a]p, we have M'N E r[r]p. Since by (Sl), N E P[ulB and M'N E P[T18, by
(P3a), we have M N E P[,le. Now, there are two cases.

If T is a base type, then r[r]p = PfTIe and M N E r[r]p.

If r is not a base type, then M N is simple (since the site is scenic). Thus, we prove that
M N E r[r]p using (S3) (which by induction, holds at type 7). Assume that COV[,]~(D, M N) for
any cover D of M N . If M N is stubborn, then by the induction hypothesis, we have M N E r[r]p.
Otherwise, since COV[,,,~~(C, M) and C and D are nontrivial, for every Q E D , by condition (5) of
definition 15.2, there is some M' E C such that Q 3 M'N. Since by assumption, M' E ria -+ r]p
whenever M' E C, and N E r[a]p, we conclude that M'N E r[r]p. By the induction hypothesis
applied at type T, by (S2), we have Q E r[r]p, and by (S3), we have M N E r[r]p.

Since M E and M N E r[r]p whenever N E r[a]lp, we conclude that M E r[a -t ~] p .

(2) Type VX. a.

Assume that Covpx. ,le(C, M) , and that M' E r[VX. a l p for every M' E C, where M is simple.
Recall that by condition (0) of definition 15.2, Covpx. ,le(C, M) implies that M E PpX. ,]@. We
prove that for every s E T and every S E Sheaf(A, P),, we have M s E r[o]p[X: = (s, S)]. First,
we prove that M s E P[ulo[x:=sl, and for this, we use (P3).

First, assume that M E P~X.ale is stubborn, and let s E T. By the induction hypothesis,
all stubborn elements in P~,le[x,,sl are in r[a]p[X: = (s, S)]. Recall that we have shown that
M s E Pa(,) is stubborn whenever M E PV(@) is stubborn. Considering the function 9 such that
9 (s) = [a]O[X: = s] for every s E T, since we know that [VX. a18 = V(@), then M s E P~ole[X:=sl is
stubborn whenever M E PpX.ule is stubborn, and we have M E r[VX. a lp .

Now, consider M E Ppx.,le non stubborn. If M' E C , then by assumption, M' E r[VX. a lp ,
and for every s E T and every S E ~ h e a f (A , P),, we have M's E rl[a]p[X: = (s, S)]. Since by
(Sl), M's E P[,le[x,,sl, by (P3b), we have M s E P~,le[x,,sl, where (P3b) is applied to the function
9 such that 9 (s) = [a]O[X: = s] for every s E T. For such a 9, we have [VX. a18 = V(9). Now,
there are two cases.

If a is a base type, then rl[a]p[X: = (s, S)] = P[u]6[x:=s1, and M s E r[o]p[X: = (s, S)].

If (T is not a base type, then M s is simple (since the site is scenic). Thus, we prove that M s E
rl[(~]p[X: = (s, S)] using (S3) (which by induction, holds for a). Assume that Cov~ole[x,,sl(D, Ms)
for any cover D of Ms. If M s is stubborn, then by the induction hypothesis, we have M s E
r[u]p[X: = (s, S)]. Otherwise, since C O V ~ ~ . , ~ ~ (C , M) and C and D are nontrivial, for every
Q E D, by condition (6) of definition 15.2, there is some M' E C such that Q 3 M's. Since by
assumption, M' E r[VX. a l p whenever M' E C , we conclude that M's E r[a]p[X: = (s, S)]. By
the induction hypothesis applied at type a , by (S2), we have Q E r[a]p[X: = (s, S)], and by (S3),
we have M s E r[a]p[X: = (s, S)].

We will now need to relate X-terms and realizers.

17 Interpreting ~ ' 1 ' ~ in Pre- Applicative Structures

We show how judgements I? D M : a are interpreted in pre-applicative structures. For this, we define
valuations.

Definition 17.1 Given a type interpretation T , given a pre-applicative structure A, a valuation
is a pair p = (0, E), where 8: V -t T is a type valuation, and E: X -t U(At)tET is a partial function
called an environment.

Given p = (8, E), for any s E T and a E AS we let p[X:= s, x:= a] = (8[X:= s], E[x:= a])
be the valuation, such that, 8[X: = s](Y) = 8(Y) for every Y # X and O[X: = s](X) = s , and
E[X: = a](y) = ~ (y) for all y # x, and E[X: = a](x) = a.

Given a context I?, we say that p satisfies I', written as p I' (where p = (8, E)) iff

E(X) E for every x: a E I'.

Note that if p satisfies a context I', this implies that A["]' # 8 for every x: a E r. Also,
conditions (1)-(2) of definition 14.3 imply that the following conditions hold:

For all types a,r E 'T, if A['-']' # 0 and A[']' # 0, then A['-"~]' # 8, and if ~ [" [' / ~] l * # 0 for
every r E 7, then # 0.

We are now ready to interpret A-terms.

Definition 17.2 Given a type interpretation T and a pre-applicative structure A, let AI : Const -+

A be a function assigning an element AI(c) of to every constant c E Const. For every
valuation p = (8, E), and every context I', if p r, we define the interpretation (or meaning)
A[r D M: a l p of a judgement I' D M: a inductively as follows:

A i r D z: a l p = E(X)

A[r D c: Type(c)]p = AI(c)

A[r D M N : r]p = app["]'~ [T18(~[I' D M: (a -+ r)Ip, A i r D M: a lp)

d[r D Ax: u. M: (a + r)]p = abst["Ie~ [7]e(cp),

where cp is the function defined such that,
cp(a) = A[r, x: a P M: r]p[x: = a], for every a E A["]*

A[r D MT: a[r/X]]p = tappa(A[r D M : VX. alp, [T]O),

where is the function such that @(s) = [a]B[X: = s] for every s E T

d[I' D AX. M: VX. a l p = t abs t a (y) ,

where cp is the function defined such that,
cp(s) = Ai r , X : * D M: a]p[X: = s], for every s E T , and where 9 is the function such that
@(s) = [a]B[X: = s] for every s E T.

We are assuming that the domains of abs t and t a b s t are sufficiently large for the above defini-
tions t o be well-defined for all p, and I'D M: a. In this case, we say that A is a pre-interpretation.

The following lemma will be needed later.

Lemma 17.3 For every pair of contexts I'l and r2, for every pair of valuations pl = (el, E ~) and
p2 = (02, c2), for every pair of judgements I'l D M: a and I'2 D M : a, if pl b rl and p2 r2,
r l (x) = r2(x), for all x E FV(M), &(X) = &(X), for all X E U (F T V (T)) , , , ~ ~ U FTV(M), and
el(,) = c2(x), for a12 x E FV(M), then

Proof. A straightforward induction on typing derivations (and using lemma 16.2).

Let us give an (important) example of a pre-applicative structure. First, we review the notion
of a substitution.

Definition 17.4 A substitution cp is a function cp: V U X -. 7 U Terms, such that y (X) E 7
if X E V, cp(x) E Terms if x E X, and cp(x) # x only for finitely many variables. We let
dom(cp) = {x E V U X I y(x) # x). We say that y is a type-substitution if dom(9) Y. Given two
contexts I' and A, we say that cp satisfies l7 at A, denoted as A I t r [y] , iff A D ~ (x) : ~[cp] , for every
x: a E r.

The following definition shows how the term model can be viewed as a pre-applicative ,f3-
structure.

Definition 17.5 The algebra of second-order types T is defined as follows:

T = {(a, I?) I a E T , I' a context) U {error).

The operation + is defined as follows:

a -+ b = (a t T, I?) iff a = (a, I'), b = (T, A), and I' = A, otherwise e r ror .

We let AelTor - - 0 , and A (~ Y r, be the set of all provable typing judgements of the form r~ M: a.
We denote A (U * ~) as A;. For [T + TI, we take the set of all functions 9 such that (T, I') H

(a[r/X], I'), where a, r E 7 are any types, and X is any fixed variable that does not occur in r
(and with e r r o r H error) . Then, V(9) = (VX. a,

A type valuation is a function 0: V + T, such that O(X) = (ax, r x) or O(X) = e r r o r for
every X E V, and such that the function X H ax defines an (infinite) type substitution that we
denote as [O]. Then, for any type a E 7, by the definition of the operation -+, either [a]O = e r ro r ,
or [a]O = (a[O], A) for some context A. A valuation p = (0, E) consists of a type valuation 0
and of a partial function E: X -+ U(AS),ET. As noted just after definition 17.1, the conditions on B
require that there is some single A such that, O(X) = (ax, A) iff ALx # 0, for every X E V, and
O(c) = (a,, A) iff A 2 # 0, for every type constant c . ~

Indeed, if O(X1) = (01, Al), O(X2) = (02, A2), # 0, # 0, X i # X2, and AI # A2,
since (al, Al) + (a2, A2) = e r r o r and Aerror = 0, the condition on 0 would be violated. Thus,
E is a partial function such that E(X) is of the form E(X) = A D M,: a,, when it is defined (where A
is uniquely determined by 0).

Given a context I?, according to definition 17.1, a valuation p = (0, E) satisfies (p 1 I') iff
for every xi: a; E r, we have €(xi) E A ~ [*] , for the fixed context A determined by 8, as explained
above. This means that ~ (x ;) = A D M;: a;[O], for some M;. A valuation p = (0, E) such that p b I'
defines a substitution [E]: X -+ Terms, such that [E](x) = Mz, where E(X) = A D M,: a[O], for every
x : a E r.

Thus, the restriction of p to I' defines a substitution 9 as follows: ~ (x) = [E](x) for every
x E dom(I'), and p (X) = [O](X) for every X E UaEr FTV(a) . Also, p 'F r is just the condition
A tt I'[cp] of definition 17.4, where A is the context uniquely determined by 8.

Define I' D N: a 5 I' D M: a iff M N. Finally, we need to define fun, abs t , t fun , and
t a b s t .

We define f un(r D M: a i T) as the function [I' D M: a -+ T] from AF to A;, such that

for every I' D N: a E AF.

We define tfun(I ' D M: VX. a) as the function [I' D M: VX. a] from T to U(AF)uET, such that

[r t> M:VX. U](T) = I' D MT: U[T/X],

5The choice of X is irrelevant as long as X does not occur in r, since X is bound in VX. a.
6 ~ 0 a - - 0 when there is no provable judgement A D M: a for any M .

for every r E T. In this case, the in t fun" is the function from T to T induced by a , such that
Q (r) = u [r / X] for every r E T.

For every pair of contexts I?, A, for every substitution cp such that A tt (I?, x: a)[cp], for every
judgement I', x: o D M : r , consider the function ~ [r , x: o D M : r] A from A>['+'] to AP], defined such
that,

cp[r, x: a D M : rlA(A D N : a[cp]) = A D M[cp[x: = N]] : r[cp],

for every A D N : a [~] E A?]. Given any such function cp[I', x: a D M : rIA, we let

For every pair of contexts r , A, for every substitution cp such that A tt (r , X : *) [c p] , for every
judgement r , X : * D M : a , consider the function y [r , X: * D M : aIA from T to U(Ag),,ET, defined
such that,

cp[r ,X: *D M : aIA(r) = A t> M [v [X : = T I] : a [y [X : = T I] ,
for every T E T.

Given any such function cp[I',X: *D M : a]*, we let

t a b s t (p [r , X : *D M : a] ~) = A D (AX . M)[cp]: V X . ~ [c p] .

The pre-applicative p-structure just defined is denoted as Up.

It is clear that y [r , x: a D M : rIA is in [A"['+'] + A~['+ ']]~ . Let us verify that

Since
fun(abst(y[I ' , x: U D M : rIA)) = f u n (A D (Ax: a. M)[cp]: a[cp] --, r[cp]),

f u n (A D (Ax: a. M)[cp]: a[cp] + r [y]) = [A D (Ax: a. M)[cp]: a[cp] -t ~ [y]] ,

[A D (Ax: a. M)[cp]: a[cp] --, r [p]] (A D N : a[cp]) = A D ((Ax: a. M) [y]) N : r[cp],

cp[I', x: a D M : rIA(A D N : a [p]) = A D M[cp[x: = N]] : r[cp],

and
((Ax: a. M) [y]) N -0 M[cp[x: = N]] ,

the inequality holds. Indeed, (Ax: a. M) [y] is a-equivalent to (A y : a. M [y / x]) [y] for any variable y
such that y 4 dom(cp) and y 4 p(z) for every z E dom(cp), and for such a y, (Ay: a . M[y/x])[cp] =
(Ay:a[cp]. M [y / x] [q]) . Then, for this choice of y,

Regarding the definition of t a b s t , letting @ be the function from T to T induced by a , such
that @(r) = a [r / X] for every r E T, it is clear that y [r , X : * D M : aIA is in n G (A i) s E T . Let us
now verify that

t f u n (t a b s t (y [I ' , X : *D M : aIA)) cp[I', X : *D M : aIA.

Since
tfun(tabst(cp[r, X: *D M: a] ~)) = t fun(A D (AX. M)[cp]: VX. a[cp]),

t fun(A D (AX. M)[cp]: VX. o[cp]) = [A D (AX. M)[cp]:VX. a[y]],

[A D (AX. M)[cpl: VX. a[cpll(r) = A D ((AX. M)[cpl)r: ~[cpl[r/Xl,

cp[I', X : A D M: aIA(r) = A b M[(p[X: = r]]: a[cp[X: = r]],

a[cpl[rlXl = a[cp[X: = TI],

(by a suitable a-renaming on X), and

the inequality holds (the details of the verification using a-renaming are similar to the previous
case).

The other conditions of definition 14.3 are easily verified.

As we already observed, a valuation p = (0, E) for the pre-applicative structure Lip, is char-
acterized by a single context A such that, O(X) = (ox, A) iff A? # 0, and O(c) = (a,, A)
iff A: # 0, for every type constant, and E is a partial function such that E(X) is of the form
E(X) = A D M,: a,, when it is defined. Also, given a context r , a valuation p = (0, E) satisfies r
(p I') iff A I t I'[cp]. Then, by a simple induction on the typing derivation for I' D M: a , we can
show that for any valuation p = (0, E) such that p + I', then

where A is uniquely determined by 8, and where cp is the substitution defined by the restriction of
p = (0, E) to I', as explained at the beginning of definition 17.5.

18 The Realizability Theorem for X'I~

In this section, we prove the realizability lemma (lemma 18.6) for A+?", and its main corollary,
theorem 18.7. First, we need some conditions relating the behavior of a meaning function and
covering conditions. We will also need semantic conditions analogous to the conditions (P4)-(P5).

Definition 18.1 We say that a site (A,'P, Cov) is well-behaved iff the following conditions hold:

(1) For any a E AS, any cp E [As + At], if abst(cp) exists, Covt(C, app(abst(v), a)), and C is a
nontrivial cover, then c 5 y(a) for every c E C.

(2) For any s E T, any cp E JJa(AS),ET, if t abs t (9) exists, Covq,)(C, tapp(tabs t (v) , s)), and
C is a nontrivial cover, then c 5 y(s) for every c E C.

In view of definition 17.2, definition 18.1 implies the following condition.

Definition 18.2

(1) For any a E A[~]', if C O V [~ ~ ~ (C , app(A[I' D Ax: a. M: (a - r)]p, a)) and C is a nontrivial
cover, then c 5 All?, x: a D M: r]p[x: = a] for every c E C.

(2) For any s E T, if ~ o v [, ~ ~ ~ ~ ~ ~ ~ ~ (C , tapp(d[I' D AX. M: VX. alp, s)) and C is a nontrivial cover,
then c -1 A[r,X: *D M: a]p[X: = s] for every c E C.

For the proof of the next lemma, we need to add two new conditions (P4) and (P5) to (P1)-(P3).

Definition 18.3 Given a well-behaved site (A, P,Cov), properties (P4) and (P5) are defined as
follows:

(P4a) For every a E AS, if y(a) E Pt, where y E [As 3 At] and abs t (y) exists, then abs t (y) E

ps-+t.

(P4b) For every s E T , if cp(s) E Pq,), where cp E no(AS),ET and tabst(cp) exists, then

tabst(cp) E Pv(o).

(P5a) If a E Ps and p(a) E Pt , where q E [AS 3 At] and abs t (y) exists, then a p p (a b s t (~) , a) E Pt.

(P5b) If s E T and y(s) E Pa(,), where cp E nQ(AS)sET and tabst(cp) exists,
then tapp(tabst(y), s) E Pa(,).

In view of definition 17.2, definition 18.3 implies the following conditions.

Definition 18.4

(P4a) If A[r, x: a D M : r l p E P[,le, then A i r D Ax: a. M: (a + r)]p E P[,,,le.

(P4b) If A i r , X : * D M: a l p E P[ale, then A i r D AX. M: VX. a l p E P[vx.a~e.

(P5a) If a E P[,le and A i r , x: o D M: r])p[x: = a] E P[71e, then app(A[r D Ax: a. M: (a + r)]p, a) E

Pi,] e -
(P5b) If s E T and A i r , X : *D M : a]p[X: = s] E P[ale[X:=sl, then tapp(A[I' D AX. M : VX. anp, s) E

P[a]e[x:=s].

Lemma 18.5 Given a well-behaved scenic site (A, P, Cov) and a family P satisfying conditions
(P1)-(P5), for every sheaf valuation p = (8, 77) and every valuation p = (8, 6) sharing the same type
valuation 0, for every context r, if p r, then the following properties hold: (1) If p(y) E r[6]p
for every y: S E I', x: a , if for every a , (a E r[a]p implies Ail?, x: a D M: r]p[x: = a] E r[r])p), then
A[I' D Ax: a. M: (a -+ r)]p E r[a -+ r]p;

(2) If A[r , X:* D M : a]p[X: = s] E r[a]p[X: = (s, S)], for every s E T and every S E
sheaf (A, P),, then A[r D AX. M : VX. a l p E r[VX. alp.

Proof. (1) We prove that A[r D Ax: a. M: (a + r)]p E P[u,718, and that for every every a , if
a E rl[a]p, then app(A1I' D Ax: a. M: (a -t r)]p, a) E r[r]p. We will need the fact that the sets of
the form r[a]p have the properties (S1)-(S3), but this follows from lemma 16.8, since (P1)-(P3)
hold. First, we prove that A[I' D Ax: a. M: (a -t r)]p E P~,,,le.

Since p(y) E r[S]p for every y: 6 E I', x: a, letting a = p(x), by the assumption of lemma 18.5,
AII', x: a D M: r]p E r[r]p. Then, by (Sl), we have APT, x: a D M: r]p E PrTle, and by (P4a), we
have A[I' D Ax: a. M: (a -t r)]p E P[u,,le.

Next, we prove that for every every a , if a E r[a]p, then app(A[I' D Ax: a. M: (a -, r)]p, a) E
r[r]p. Assume that a E r[a]p. Then, by the assumption of lemma 18.5, A[r, x: a D M: r]p[x: =
a] E r[r]p. Thus, by (Sl) , we have a E P[,le and A i r , x: a D M: r]p[x: = a] E PrTle. By (P5a), we
have app(A[I' D Ax: a. M: (a -t r)]p, a) E Now, there are two cases.

If T is a base type, then r[r]p = PITle. Since app(A[r D Ax: a. M: (a -, r)]p, a) E PrTle, we have
app(A[I' D Ax: a. M: (a -+ r)]p, a) E r[r]p.

If r is not a base type, then app(A[I' D Ax: a. M: (a -, r)]p, a) is simple (since the site is scenic).
Thus, we prove that app(A[I' D AX:^. M: (a -t ~)] p , a) E r[r]p using (S3). By lemma 16.8, the
case where app(A[I' D Ax: a. M: (a -+ r)]p, a) is stubborn is trivial.

Otherwise, assume that CovrTIe(C, app(A[I' D Ax: a. M: (a -t r)]p, a)), where C is a nontrivial
cover. By condition (1) of definition 18.2, c 5 A i r , x: a D M: r]p[x: = a] for every c E C, and since
by assumption, A[I',x: a D M:r]p[x: = a] E r[r]p, by (S2), we have c E r[r]p. Since c E r[r]p
whenever c E C, by (S3), we have app(A[I' D Ax: a. M: (a -, r)]p, a) E r[r]p.

(2) We prove that A i r D AX. M:VX. a l p E Ppx.,lo, and that for every s E T and every
S E Sheaf(A, P),, tapp(A[r D AX. M: VX. alp, s) E r[a]p[X: = (s, S)]. By lemma 16.8, since
(P1)-(P3) hold, the sets of the form r[a]p[X: = (s, S)] have the properties (S1)-(S3). First, we
prove that A[I' D AX. M: VX. a l p E PwX.a]B.

By the assumption of lemma 18.5, A i r , X: * D M: a l p E r[a]P[X: = (s, S)] for every s E T
and every S E Sheaf(A, P),. In particular, this holds for s = B(X) and S = q (X) , and we have
A[I',X:*D M:o]p E r[a]p. Then, by (Sl), we have A[I',X:*D M:a]p E P~a le , and by (P4b), we
have A[I' D AX. M: VX. a l p E PpX.

Next, we prove that tapp(A[r D AX. M:VX. alp, s) E r[a]p[X: = (s, S)] , for every s E T
and every S E Sheaf (A, P),. By the assumption of lemma 18.5, A i r , X: * D M: a]p[X: = s] E
r[a]p[X: = (s, S)]. Thus, by (Sl), we have A[r, X: *D M: a]p[X: = s] E PralBIX:=s~. By (P5b), we
have tapp(A[I' D AX. M: VX. a lp , s) E P ~ a l ~ I X ~ = s l . Now, there are two cases.

If a is a base type, then r[a]p[X: = (s, S)] = P[,le[x,,,l. Since t a p p (d [r ~ A X . M:VX.a]p, s) E
Pr,,le[x:,sl, we have tapp(A[I' D AX. M:VX. alp, s) E r[a]lp[X: = (s, S)].

If a is not a base type, then tapp(A[r D AX. M: VX. alp, s) is simple (since the site is scenic).
Thus, we prove that tapp(A[r D AX. M: VX. alp, s) E r[a]]p[X: = (s, S)], using (S3). The case
where tapp(d[I' D AX. M: VX. alp, s) is stubborn is trivial.

Otherwise, assume that Cov[,lo[x,,,l(C, tapp(d[I' D AX. M: VX. alp, s)), where C is a nontrivial
cover. By condition (2) of definition 18.2, c 5 A[r, X : * D M: a]p[X: = s] for every c E C, and
since by assumption, A[I',X:* D M: a]p[X: = s] E r[a]p[X: = (s, S)] , by (S2), we have c E
r[a]p[X: = (s, S)]. Since c E r[a]p[X: = (s, S)] whenever c E C , we deduce using (S3) that we
have tapp(A[r D AX. M: VX. a lp , s) E r[a]p[X: = (s, S)].

We now prove the main realizability lemma for ~ ' 7 ' ~ .

Lemma 18.6 Given a well-behaved scenic site (A, P, Cov) and a family P satisfying conditions
(Pi)-(P5), for every sheaf valuation p = (8, 77) and every valuation p = (8, 6) sharing the same
type valuation 0, for every context I?, if p p and p(y) E r[S]p for every y: S E r , then for every
I' D M: a, we have A[I' D M: a l p E r[a]p.

Proof. We proceed by induction on the derivation of I' D M: a. If M is a variable x, then
A[I' D x: a l p = E(X) E r[a]p, by the assumption on p.

If M = MINI, where I' D MI: (a + T) and I? D N1: a , by the induction hypothesis,

A[I' D Mi: (a + r)]p E ria + r]p and A[I' D N1: a l p E r[a]p.

By the definition of ria + r]p, we get app(A[I' D Ml : (a + r)]p,A[I' D N1:a]p) E r[r]p, i.e.,
A[I' D (MI N1): ~] p E r[r]p, by definition 17.2.

If M = Ax: a. MI, where I' D Ax: a. MI: (a + T), consider any a E r[a]p and any valuation p
such that p(y) E r[S]p for every y: 6 E I?. Note that by (S3) and (PI) , r[a]lp is indeed nonempty.
Thus, the valuation p[x: = a] has the property that p[x: = a](y) E r[S]p for every y: 6 E I?, x: a.
Applying the induction hypothesis to I?, x: a b Ml : T and to the valuations p , and p[x: = a], we have

Since this holds for every a E r[a]p, by lemma 18.5 (I) , A[I' b Ax: a. Ml : (a + r)]p E r[a + TIP.
If M = M1r, where r D M1r: a [r / X] and I' D MI: QX. a , by the induction hypothesis,

A[r D MI: VX. a l p E r[QX. a lp .

By the definition of r[QX. u]p, letting s = [r]B and S = r[r]Ip, we get

tapp(A[I' D MI: QX. alp, [TI@) E r[a]p[X: = (s, S)].

However, by lemma 16.7, we have

which is just

~ ~ ~ [T ~ X I I P = r[anp[X: = (s, S)I,
since s = [r]8 and S = r[r]p, and thus, by definition 17.2, we have A[I' D (M1r):a[r/X]]p E

r l [u [~ l x l l ~ .

If M = AX. MI, where I' D AX. MI: QX. a, consider any arbitrary s E T and any arbitrary
S E Sheaf(A, P),. Since X $! dom(I'), by lemma 16.6, we have r[S]p = r[6]p[X: = (s, S)] for
every y: 6 E (I', X : *). Thus, we can apply the induction hypothesis to r , X : * D M1 : a , and to the
valuations p[X: = (s, S)] and p, and we have

A[r ,X : * b MI: a l p E r[a]lp[X: = (s, S)].

Since the above holds for every s E T and every S E Sheaf(d, P),, by lemma 18.5 (2)) we have
A[I' D AX. MI: QX. a l p E r[QX. a]p. [7

If M is a closed term of type a , lemma 17.3 implies that A[DM: a l p is independent of p, and
thus we denote it as AIM: a]. We obtain the following important theorem for A'vv2.

Theorem 18.7 Given a well-behaved scenic site (A, P , Cov) and a family P satisfying conditions
(PI)-(P5), for every judgement b M: a where M is closed, we have d [M : a] E PIole. (in other
words, the realizer AIM: a] satisfies the unary predicate defined by P , i.e, every provable type is
realizable).

Proof. Apply lemma 18.6 to the judgement DM: a, to any sheaf valuation p = (8, q) such that
q(X) = Pe(x) for every X E V, and to any valuation p. EI

19 Applications to the System ~ ' 1 ' ~

This section shows that theorem 18.7 can be used to prove a general theorem about terms of the
system ~ ' 7 ~ ~ . As a corollary, it can be shown that all terms of ~ ' 9 " ~ are strongly normalizing and
confluent.

In order to apply theorem 18.7, we define a notion of cover for the site A whose underlying
pre-applicative structure is the structure C T p of definition 17.5.

Definition 19.1 An I-term is a term of the form either Ax: a. M or AX. M. A simple term (or
neutral term) is a term that is not an I-term. Thus, a simple term is either a variable x , a constant
c, an application M N , or a type application M r . A term M is stubborn iff it is simple and, either
M is irreducible, or M' is a simple term whenever M f M' (equivalently, M' is not an I-term).

We define a cover algebra on the structure L T p as follows. Let P be a (unary) property of
typed second-order A-terms.

Definition 19.2 The cover algebra Cov is defined as follows:

(1) If I? b M: a E P(,, r) and M is an I-term, then

(2) If I? D M: a E P(,, r) and M is a (simple and) stubborn term, then

Cov(r D M: a) = (0, {r D N: a I M Lp N }) .

(3) If r D M: a E P(,, r) and M is a simple and non-stubborn term, then

+ ~ o v (I ' D M : a) = {{I' D N: a I M Ap N), {I' D N: a I M -p Q Ap N, for some I-term Q)).

Recall from definition 15.3 that M is simple iff it has at least two distinct covers. Thus,
definition 19.2 implies that a term is simple in the sense of definition 19.1 iff it is simple in the
sense of definition 15.3. Similarly a term is stubborn in the sense of definition 19.1 iff it is stubborn
in the sense of definition 15.3. Also, definition 19.1 implies that L T p is scenic.

Properties (PI-P3) are listed below.

Definition 19.3 Properties (P1)-(P3) are defined as follows:

(PI) I', x: a D z: a E P(,, r), I' D c: a E P(,, r), for every variable x and constant c (such that
Type(c) = 4.

(P2) If I? D M: a E P(,, r) and M -0 N, then I' D N: a E P(,, r).

If M is simple, then:
(P3a) If I' D M: (a -t 7) E P(,,,, r) , I' D N: a E P(,, r), r D (Ax: a. Mf)N: r E P(,, r) whenever

M f Ax: a. M', then I' D M N : r E P(, r).

(P3b) If I' D M:VX. a E P(tlx.,, r), 7 E 7, r D (AX. M')T: a [r / X] E P(u[T/x~, r)
whenever M f, AX. MI, then I' D M r : o [r /X] E P(,[,lxl,r).

A careful reader will notice that conditions (P3) of definition 19.3 are not simply a reformulation
of conditions (P3) of definition 15.4. This is because according to definition 19.2, I' D M: a , where

+ M is a non-stubborn term, is covered by the nontrivial cover {I'D N: a I M -+p Q -tip N), where
Q is some I-term, but the conditions of definition 19.3 only involve reductions to I-terms. Ilowever,
due to condition (P2) and the fact that a nontrivial cover is determined by the I-terms in it, the
two definitions are indeed equivalent.

If I' D M: (o + 7) E P(,,,, r) where M is a stubborn term and I' D N: a E P(,, r) where N
is any term, then r D M N : r E P(,, r) by (P3a). Furthermore, M N is also stubborn since it is a
simple term and since it can only reduce to an I-term if M itself reduces to a an I-term. Thus,
if I' D M: (a -t T) E P(,,,, r) where M is a stubborn term and r D N: a E P(,, r) where N is
any term, then I' D MN: r E P(,,r) where M N is a stubborn term. We can show in a similar
fashion that (P3b) implies that if I? D M:VX. a E P(vx.,, r) where M is a stubborn term, then
r D MT: a [r / X] E P(,[TIXl,r), where M T is a stubborn term, for any T E 7.

Properties (P4-P5) are listed below.

Definition 19.4 Properties (P4) and (P5) are defined as follows:

(P4a) If I', x: a D M: T E P(,, r), then I' D Ax: a. M: (a -+ r) E P(,,,, r).

(P4b) If I',X:*b M : a E P(,, r) , then I'D AX. M:vX. a E P(vx.,, r).

(P5a) If I' D N: a E P(,, r) and I' D M[N/x]: r E P(,, r), then I' D (Ax: a. M) N: r E P(,, r).

(P5b) If T E 7 and I' D M[r/X]: a [r /X] E P(,[,lx~, q , then (I' D AX. M)r : a [r / X] E P(,[,lxl, q.

Again, a careful reader will notice that conditions (P5) of definition 19.4 are not simply a
reformulation of conditions (P5) of definition 18.4. However, because of (P2) and the fact that a
nontrivial cover is determined by the I-terms in it, the two sets of conditions are equivalent.

We now show that the conditions of definition 15.2 and the conditions of definition 18.2 hold.

Lemma 19.5 Definition 19.2 defines a cover algebra, and the site (Lip, P,Cov) is scenic and
well-behaved.

Proof. The verification is straightforward. As an illustration, let us verify the conditions of
definition 18.2. First, recall that for the structure CTp, for every valuation p = (8, E) such that

p I?, there is some A uniquely determined by 8, such that A H- r[cp], and

where cp is the substitution defined by the restriction of p = (8, E) t o r .

(1) For any a E A [~] ~ , if CovITle(C,app(AII' D Ax: a. M: (a -+ r))p, a)) and C is a nontrivial
cover, then c 5 A[r, x: a D M: r]p[x: = a] for every c E C.

We have app(A[r D Ax: u. M: (a -+ r)]p, a) = A D ((Ax: u. M)[cp])a: r[cp], where cp is the substi-
tution defined by the restriction of p t o I'. By definition 19.1, since C is nontrivial, c E C means
that

((Ax: a. M)[cpl)a f 0 Q c ,

for some I-term Q. This can only happen if there is a reduction

However, we have (M[cp])[a/x] = M[cp[x: = a]] (using a suitable renaming of x). By the definition
of CTp[I', x: a D M : r lp , we have C l p [[r , x: u D M: r)p[x: = a] = A D M[cp[x: = a]]: r[v], and this
part of the proof is complete.

(2) For any s E 7 , if Cov~,lo~x,,sl(C, t a p p (d [r ~ AX. M: VX.u]p, s)) and C is a nontrivial cover,
then c 5 A[r, X : * D M: u]lp[X: = s] for every c E C.

We have tapp(A[r D AX. M:VX. ulp, s) = A D ((AX. M)[y])s: (u[s/X])[cp], where cp is the
substitution defined by the restriction of p to r. By definition 19.1, since C is nontrivial, c E C
means that

((AX. M)[cpl)s f p Q 50 c,

for some I-term Q. This can only happen if there is a reduction

However, we have (M[cp])[s/X] = M[cp[X: = s]], and (u[s/X])[cp] = u[y[X: = s]], (using a suitable
renaming of X) . By the definition of L7p[r , X : *D M : alp, we have

and the proof is complete. EI

Thus, the site (L l p , P, Cov), is scenic and well-behaved. Consequently, we can apply theorem
18.7, and get a general new theorem for proving properties of terms of the system In fact,
for the structure CTp, for a property P satisfying conditions (P1)-(P5), by (P I) and (P3), every
variable x is stubborn. Thus, for every context r , we can apply lemma 18.6 to the sheaf valuation
p = (8, q) such that 8(X) = (X, T) and q(X) = Px for every type variable, and to the valuation
p = (6 , E) such that E(X) = x for every variable x, since by lemma 16.8, r[S]p contains every
stubborn term, for every x: 6 E I?. Consequently, we have the following new theorem.

T h e o r e m 19.6 If P is a family of A-terms satisfying conditions (P1)-(P5), then P(,, r) = A(,, r)
for every type a (in other words, every term satisfies the unary predicate defined by P).

Proof. By lemma 19.5, the site (U p , P, Cov) is scenic and well-behaved. By the discussion
just before stating theorem 19.6, for every context J?, if we consider the sheaf valuation p = (8, 7)
such that 8(X) = (X, I') and q(X) = Px for every type variable, and the valuation p = (8, E) such
that ~ (x) = x for every variable x, we have p(x) E r[u]p for every x: 6 E I?. Thus, we can apply
lemma 18.6 t o any judgement I' D M : a and to p and p just defined, and we have

However, in the present case, LTp[I' D M: a l p = I' D M: a. Thus, I' D M: a E rl[a]p, and since

r[a]p P(,, r), we have r D M: a E P(,, r), as claimed.

As a corollary, we can prove strong normalization and confluence. We prove strong normaliza-
tion below. For simplicity of notation, instead of using judgements I' D M: a , we will use the terms
M. Since we are concerned with reduction properties, this is not harmful at all.

Theorem 19.7 The reduction relation A p of the system A'yv2 is strongly normalizing.

Proof. Let P be the family defined such that P, = SN, is the set of strongly normalizing terms
of type a. By theorem 19.6, we just have to check that P satisfies conditions (P1)-(P5). First, we
make the following observation that will simplify the proof. Since there is only a finite number of
redexes in any term, for any term M , the reduction tree7 for M is finitely branching. Thus, if M is
any strongly normalizing term (abbreviated as SN term from now on), every path in its reduction
tree is finite, and since this tree is finite branching, by Konig's lemma, this reduction tree is finite.
Thus, for any SN term M , the depths of its reduction tree is a natural number, and we will denote
it as d(M). We now check the conditions (P1)-(P5). (PI) and (P2) are obvious.

(P3a) Since M E SN,,, and N E SN,, d(M) and d(N) are finite. We prove by induction on
d(M) + d(N) that M N is SN. We consider all possible ways that M N -p P. Since M is simple,
M N itself is not a redex, and so P = MIN1 where either N = N1 and M -p MI, or M = M1
and N -p N1.

If MI is simple or MI = M , d(Ml) + d(N1) < d(M) + d(N), and by the induction hypothesis,
P = MINI is SN. Otherwise, MI = Ax: a. MI, N1 = N , by assumption (Ax: a. Mt)N is SN, and so
P is SN. Thus, P = MINI is SN in all cases, and M N is SN.

(P3b) Since M E SNvx.,, d(M) is finite. We prove by induction on d(M) that M T is SN. We
consider all possible ways that M T -p P. Since M is simple, M T itself is not a redex, and so
P = M1r where M -p MI.

If MI is simple, d(Ml) < d(M), and by the induction hypothesis, P = M l r is SN. Otherwise,
MI = AX. MI, by assumption (AX. M')T is SN, and so P is SN. Thus, P = M1r is SN in all cases,
and M T is SN.

(P4) These cases are all similar, and hold because a reduction cannot apply at the outermost
level.

7the tree of reduction sequences from M
'the length of a longest path in the tree, counting the number of edges

(P4a) Any reduction from Ax:a. M must be of the form Ax:a. M f p Ax: a. M' where

M f p M'. We use a simple induction on d(M).

(P4b) Similar to (P4a).

(P5a) Since N E SN, and M[N/x] E SN,, the term M itself is SN. Thus, d(M) and d(N) are
finite. We prove by induction on d(M) + d(N) that (Ax: a. M) N is SN. We consider all possible
ways that (Ax: a. M) N -p P. Either P = (Ax: a. Ml)N where M -p MI, or P = (Ax: a. M)Nl
where N -p N1, or P = M[N/x]. In the first two cases, d(Ml) + d(N) < d(M) + d(N),
d(M) + d(Nl) < d(M) + d(N), and by the induction hypothesis, P is SN. In the third case, by
assumption M[N/x] is SN. But then, P is SN in all cases, and so (Ax: a. M) N is SN.

(P5b) This case is quite similar to (P5a). Since M[r /X] E SN,[,Ixl, the term M itself is
SN. Thus, d(M) is finite. We prove by induction on d(M) that (AX. M) r is SN. We consider all
possible ways that (AX. M) r -p P. Either P = (AX. Ml)r where M -p MI, or P = M[r/X].
In the first case, d(Ml) < d(M), and by the induction hypothesis, P is SN. In the second case, by
assumption M[r /X] is SN. But then, P is SN in all cases, and so (AX. M) r is SN.

Confluence can be shown exactly as in Gallier [5] .

20 Conclusion and Suggest ions for Further Research

A semantic notion of realizability using the notion of a cover algebra was defined and investigated.
For this, we introduced a new class of semantic structures equipped with preorders, called pre-
applicative structures. In this framework, we proved a general realizability theorem. Applying
this theorem to the special cases of the term model for the simply-typed A-calculus and for the
second-order A-calculus, we obtained some general theorems for proving properties of typed A-terms,
including a new theorem for proving properties of terms in X'V@ (theorem 19.6). As corollaries,
we obtain alternate proofs of strong normalization and confluence.

This approach clarifies the reducibility method by showing that the closure conditions on can-
didates of reducibility can be viewed as sheaf conditions. Indeed, cover conditions provide a clear
axiomatization of the conditions needed for the proof of the realizability theorem. Our approach
yields a clearer separation of the semantic versus the syntactic ingredients of the proof. For ex-
ample, the fact that the sheaf property is an invariant with respect to the notion of realizability
is a semantic property which has little to do with A-terms. In fact, this uses only part of the
pre-applicative structure (app, tapp, nl, wz, i n l , inr) . On the other hand, at some point, it is
necessary to interpret A-terms in order to show what amouts to the soundness of our realizability in-
terpretation, and it is in this part that substitution and reduction properties of X-terms play a role.
In traditional presentations of proofs using reducibility, the underlying pre-applicative structure of
the term model is only implicit, and it is harder to see that substitutions are really valuations. It
is also practically impossible to see that cover conditions are present.

Extending the results of this paper to pre-applicative 07-structures and to typed A-calculi with
7-like reductions should pose no problems for the types i , X , and v2. However, in view of results
of Dougherty [3], there may be some difficulties in dealing with the sum type, since confluence fails
(with the traditional orientation of 7-like rules).

As we mentioned in the introduction, Hyland and Ong [ll] show how strong normalization
proofs can be obtained from the construction of a modified realizability topos. Very roughly,
they show how a suitable quotient of the strongly normalizing untyped terms can be made into a
categorical (modified realizability) interpretakion of system F. There is no doubt that Hyland and
Ong7s approach and our approach are related, but the technical details are very different, and we
are unable to make a precise comparison a t this point. Clearly, further work is needed to clarify
the connection between Hyland and Ong's approach and ours.

We have checked that in all proofs of reducibility that we are aware of, except for a recent paper
by McAllester, KuEan, and Otth [19], and a recent paper by Michel Parigot [21], the conditions
on sets of realizers are sheaf condition^.^ However, the pre-applicative structures defined in this
paper are not always general enough to carry out these proofs (for example, in the case of untyped
A-terms and typing systems with intersection types). McAllester, KuEan, and Otth [19], prove
various strong normalization results using another variation of the reducibility method, and we
need to understand how this method relates to the method presented in this paper.

We believe that nonextentional structures are interesting in their own right, and thus we think
that it would be interesting to investigate classes of nonextentional structures more general than
pre-applicative structures (perhaps using category theory). When dependent types are considered,
we run into the problem that interpreting types requires interpreting terms. We were able to define
cover conditions that seem adequate for proving a general realizability theorem, but we ran into
problems in defining the meaning of terms. The problem has to do with type-conversion rules: a
term no longer has a unique type, and we run into a coherence problem in attempting to define
the meaning of term by induction on typing-derivations. Overcoming this difficulty seems to be
the most pressing open problem. More generally, we believe that there is a deeper connection
between realizability semantics and other kinds of semantics, and that the notion of a cover algebra
plays a significant role in that connection. We believe that understanding this connection would
be worthwhile. Another challenging question is to figure out whether it is possible to adapt the
framework of this paper to deal with other calculi, for example calculi for various systems of linear
logic.

Acknowledgment: I wish to express my gratitude to Jim Lipton, since I would not have been
able to write this paper without his inspiring suggestions and incisive questions. I also would like to
thank Philippe de Groote, Andre Scedrov, and Scott Weinstein, for some very helpful comments.

21 Appendix: Extensional and Pre- Applicat ive Structures

We begin with extensional pre-applicative structures for X'tX~+. First, we define isotonicity. Given
a monotonic function f : Wl -+ W2, where Wl and W2 are preorders, we say that f is isotone iff
f (wl) 5 f (w2) implies that wl 5 w2, for all wl, wz E Wl.

Definition 21.1 A pre-applicative p-structure A is extensional iff fun, II, and (c in l , c in r) , are
isotone, and the following conditions hold:

9We need to examine more closely these approaches to determine whether they fit into our framework

(3) ran((c inlu9'16, c inrav'16)) c dam([-, -1 o (abstUl6 x a b ~ t ~ , ~)) .

When A is an applicative @-structure, conditions (1)-(3) hold, and the functions fun, TI, and
(c in l , c inr) , are injective, we say that we have an extensional applicative @-structure.

When A is an extensional pre-applicative @-structure, in view of condition (I) , abst(fun(f))
is defined for any f E A'"'. Observe that by condition (1) of definition 8.1, we have fun(f) 5
fun(abst(fun(f))), and since fun is isotone, this implies that

(1) abst(fun(f)) ? f , for all f E A0".

Similarly, we can prove that

(2) (~ ~ (a) , n2(a)) a, for all a E AaXT; and

(3) [abst(cinl(h)), abst(cinr(h))] k h, for all h E A(~+')'~.

We will call the above inequalities the 7-like rules.

In many cases, a pre-applicative p-structure that satisfies the 7-like rules is not extensional.
This motivates the next definition.

Definition 21.2 A pre-applicative @-structure A is a @q-structure if the following conditions hold:

(1) ran(fun) C dom(abst), and abst(fun(f)) f , for all f E

(2) ran(II) & dom((-, -)), and (~ ~ (a) , na(a)) a, for all a E AaXT; and

(3) r a n ((~ i n l ~ ~ ' ~ ~ , ~ i n r ~ ' ~ ? ~)) & dom([-, -1 o (abstap6 x abstT7')), and

[abst(cinl(h)), abst(cinr(h))] k h, for all h E A (~ + ~) ' ~ .

When A is an applicative @-structure and in conditions (1)-(3)) 2- is replaced by =, we say that
we have an applicative @q-structure.

From the remark before definition 21.2, an extensional pre-applicative @-structure is a @q-
structure. When A is an applicative @q-structure, conditions (1)-(3) of definition 21.2 amount
to:

(1) abstatT o funa*T = id ;

(2) (-, o IIu7' = id ; and

(3) ([-, -1 o (abstag6 x abst'16)) o (~ i n l " ~ ' ~ ~ , c i n ~ ~ ~ ~ ') = id .

This implies that fun, TI, and (c in l , c in r) , are injective. Thus, an applicative @7-structure
is extensional. In this case, (together with conditions (1)-(3) of definition 8.1 in the case of an
applicative @-structure), we have dom(abst) = fun(Aa"), fun is a bijection between A"" and a
subset of [Aa + AT] (with inverse abst) , II is a bijection between AaXT and a subset of A" x A'
(with inverse (-, -)), and (~ i n l ~ ~ ~ ~ ~ , ~ i n r ~ ~ ' ~ ~) is a bijection between A (" + ~) ' ~ and a subset of
[A" + A ~] x [A' =$- A'] (with inverse [-, -1 o (a b ~ t " ? ~ x abstTv6)).

Extensional pre-applicative structures and @q-structures for A'~X~+*' are defined just as in
definition 21.1 and definition 21.2, and the same remarks apply. However, these remarks only
apply for types different from I.

We now define extensional pre-applicative structures for ~ ' 7 ~ ~ .

Definition 21.3 A pre-applicative p-structure A is extensional iff fun and t f u n are isotone, and
the following conditions hold:

When A is an applicative p-structure, conditions (1)-(2) hold, and the functions fun and t f u n
are injective, we say that we have an extensaonal applicative p-structure.

When A is an extensional pre-applicative p-structure, in view of condition (I) , abst(fun(f))
is defined for any f E AS't. Observe that by condition (1) of definition 14.3, we have fun(f) 5
fun(abst(fun(f))), and since fun is isotone, this implies that

(1) abst(fun(f)) f , for all f E AS't.

Similarly, we can prove that

(2) tabs t (t fun(f)) f , for all f E A'(@).

We will call the above inequalities the 7-like rules.

In many cases, a pre-applicative /?-structure that satisfies the 7-like rules is not extensional.
This motivates the next definition.

Definition 21.4 A pre-applicative /?-structure A is a pq-structure if the following conditions hold:

(1) ran(fun) C dom(abst), and abst(fun(f)) f , for all f E ASdt;

(2) ran(t f un) C dom(tabst), and tabs t (t fun(f)) f , for all f E A'(').

When A is an applicative /?-structure and in conditions (1)-(2), > is replaced by =, we say that
we have an applicative /?q-structure.

The term model can easily be made into a pre-applicative Pq-structure (by adapting definition
17.5). From the remark before definition 21.4, an extensional pre-applicative /?-structure is a /?7-
structure. When A is an applicative /?I]-structure, conditions (1)-(2) of definition 21.4 amount
to:

(1) a b s t ' ~ ~ o funS7t = id ;

(2) tabst ' o tfun" = id .

This implies that fun and t fun , are injective. Thus, an applicative pq-structure is extensional.
In this case, (together with conditions (1)-(4) of definition 14.3 in the case of an applicative 0-
structure), we have dom(abst) = f w ~ (A ~ ' ~) , fun is a bijection between AS't and a subset of
[AS + At] (with inverse abst) , dom(tabst) = t fun(~ ' (@)) , and t f u n is a bijection between A'(@)
and a subset of nc9(AS)sET (with inverse t abs t) .

References

[l] M. J. Beeson. Foundations of Constructive Mathematics. Springer-Verlag, Berlin, 1985.

[2] V. Breazu-Tannen and T. Coquand. Extensional models for polymorphism. Theoretical Com-
puter Science, 59235-114, 1988.

[3] D.J. Dougherty. Some lambda calculi with categorical sums and products. In C. Kirchner, ed-
itor, Rewriting Techniques and Applications, LNCS, Vol. 690, pages 137-151. Springer-Verlag,
1993.

[4] Jean H. Gallier. On Girard's "candidats de reductibilitd". In P. Odifreddi, editor, Logic And
Computer Science, pages 123-203. Academic Press, London, New York, May 1990.

[5] Jean H. Gallier. On the correspondence between proofs and A-terms. In P. DeGroote, editor,
The Curry-Howard Isomorphism, Cahiers du Centre de Logique. Universitd Catholique de
Louvain, 1993. To appear.

[6] Jean-Yves Girard. Une extension de 1'interprCtation de Godel B l'analyse, et son application B
l'hlimination des coupures dans l'analyse et la thCorie des types. In J.E. Fenstad, editor, Proc.
2nd Scand. Log. Symp., pages 63-92. North-Holland, 1971.

[7] Jean-Yves Girard. Interpre'tation fonctionnelle et e'limination des coupures de l'arithme'tique
d'odre supe'rieur. PhD thesis, Universith de Paris VII, June 1972. Th&se de Doctorat d7Etat.

[8] Jean-Yves Girard. The system F of variable types, fifteen years later. Theoretical Computer
Science, 45(2):159-192,1986.

[9] R. J . Grayson. Forcing in intuitionistic systems without power set. J. Symbolic Logic,
48(3):670-682, 1983.

[lo] C. A. Gunter. Semantics of Progmmming Languages. Foundations of Computing. MIT Press,
1992.

[ll] J. M. E. Hyland and C.-H. L. Ong. Modified realizability topos and strong normalization
proofs. In M Bezem and J.F. Groote, editors, Typed Lambda Calculi and Applications, volume
664 of Lecture Notes in Computer Science, pages 179-194. Springer Verlag, 1993.

[12] B. Jacobs, I. Margaria, and M. Zacchi. Filter models with polymorphic types. Theoretical
Computer Science, 95(1):143-158, 1992.

[13] S. C. Kleene. On the interpretation of intuitionistic number theory. J. Symbolic Logic, 10:109-
124, 1945.

[14] S. C. Kleene. Introduction to Metamathematics. North-Holland, seventh edition, 1952.

[15] G. Koletsos. Church-Rosser theorem for typed functional systems. J. Symbolic Logic,
50(3):782-790,1985.

[16] G. Kreisel. Interpretation of analysis by means of functionals of finite type. In A. Heyting,
editor, Constructivity in Mathematics, pages 101-128. North-Holland, 1959.

[17] J.L. Krivine. Lambda-Calcul, types et moddes. Etudes et recherches en informatique. Masson,
1990.

[18] S. MacLane and I. Moerdijk. Sheaves in Geometry and Logic. Springer Verlag, New York,
1992.

[19] D. McAllester, J. KuEan, and D. F. Otth. A proof of strong normalization for F2, F,, and
beyond. Technical report, MIT, Boston, Mass, 1993. Draft.

[20] J. C. Mitchell. A type-inference approach to reduction properties and semantics of polymorphic
expressions. In ACM Conference on LISP and Functional Programming, pages 308-319. ACM,
1986. Reprinted in Logical Foundations of Functional Programming, G. Huet, Ed., Addison
Wesley, 1990, 195-212.

[21] M. Parigot. Strong normalization for second-order classical natural deduction. In Eighth
Annual IEEE Symposium on Logic In Computer Science, pages 39-46. IEEE, 1993.

[22] G.D. Plotkin. A semantics for static type inference. Theoretical Computer Science, 1993. To
appear.

[23] R. Statman. Logical Relations and the Typed A-Calculus. Information and Control,
65(2/3):85-97,1985.

[24] W.W. Tait. Intensional interpretation of functionals of finite type I. J. Symbolic Logic, 32:198-
212, 1967.

[25] W.W. Tait. A realizability interpretation of the theory of species. In R. Parikh, editor, Logic
Colloquium, volume 453 of Lecture Notes in Math., pages 240-251. Springer Verlag, 1975.

[26] A. S. Troelstra. Metamathematical Investigation of intuitionistic arithmetic and analysis. Lec-
ture Notes in Mathematics No 344. Springer-Verlag, 1973.

[27] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics: An Introduction, Vol. I and
11, volume 123 of Studies in Logic. North-Holland, 1988.

	Proving Properties of Typed Lambda-Terms Using Realizability, Covers, and Sheaves (Preliminary Version)
	Recommended Citation

	Proving Properties of Typed Lambda-Terms Using Realizability, Covers, and Sheaves (Preliminary Version)
	Abstract
	Comments

	tmp.1184250039.pdf.Uvdly

