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Abstract  

If active vision systems are to be used reliably in practical applications, it is 
crucial to understand their limits and failure modes. In the work presented here, 
we derive, theoretically and experimentally, bounds on the performance of an active 
vision system in a fixation task. In particular, we characterize the tracking limits that 
are imposed by the finite field of view. Two classes of target motion are examined: 
sinusoidal motions, representative for targets moving with high turning rates, and 
constant-velocity motions, exemplary for slowly varying target movements. For each 
class of motion, we identify a linear model of the fixating system from measurements 
on a real active vision system and analyze the range of target motions that can be 
handled with a given field of view. To illustrate the utility of such performance 
bounds, we sketch how the tracking performance can be maximized by dynamically 
adapting optical parameters of the system to the characteristics of the target motion. 

The originality of our work arises from combining the theoretical analysis of a 
complete active vision system with rigorous performance measurements on the real 
system. We generate repeatable and controllable target motions with the help of 
two robot manipulators and measure the real-time performance of the system. The 
experimental results are used to verify or identify a linear model of the active vision 
system. 

A major difference to related work lies in analyzing the limits of the linear models 
that we develop. Active vision systems have been modeled as linear systems many 
times before, but the performance limits at which the models break down and the 
system loses its target have not attracted rnuch attention so far. With our work we 
hope to demonstrate how the knowledge of such limits can be used to actually extend 
the performance of an active vision system. 

Keywords: Active vision! performance evaluation, tracking, real-time image processing. 
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Abstract 

If active vision systems are to be used reliably in practical applications, it is 
crucial to understand their limits and failure modes. In the work presented here, 
we derive, theoretically and experimentally, bounds on the performance of an active 
vision system in a fixation t,ask. In particular, we characterize the tracking limits that 
are imposed by the finite field of view. Two classes of target motion are examined: 
sinusoidal motions, representative for targets moving with high turning rates, and 
constant-velocity motions, exemplary for slowly varying target movements. For each 
class of motion, we identify a linear model of the fixating system from measurements 
on a real active vision system and analyze the range of target motions that can be 
handled with a given field of view. To illustrate the utility of such performance 
bounds, we sketch how the tracking performance can be extended by dynamically 
adapting some parameters of the system to the characteristics of the target motion. 

The originality of our work arises from combining the theoretical analysis of a 
complete active vision system with rigorous performance measurements on the real 
system. We generate repeatable and controllable target motions with the help of 
two robot manipulators and measure the real-time performance of the system. The 
experimental results are used to verify or identify a linear model of the active vision 
system. 

A major difference to related work lies in analyzing the limits of the linear models 
that we develop. Active vision systems have been modeled as linear systems many 
times before, but the performance limits at which the models break down and the 
system loses its target have not attracted much attention so far. With our work we 
hope to demonstrate how the knowledge of such limits can be used to actually extend 
the performance of an active vision system. 



1 Introduction 
Active vision systems are often designed and analyzed as linear systems, whose behavior, 
by definition, scales arbitrarily. However, as physical systems they are subject to  various 
nonlinearities that limit the kinds of input stimuli they can handle successfully. A tracking 
system, e.g., can follow targets only up to certain velocity and acceleration limits. If the 
target motion exceeds those limits, the tracking system will lose the target from its field of 
view and fail in its task. 

If active vision systems are to  serve reliably in practical applications, it is crucial to 
understand their limits and failure modes. In the work presented here, we derive bounds on 
the performance of an  active vision system in a fixation task. In particular, we characterize 
the tracking limits that  are imposed by the finite field of view. Two classes of target motion 
are examined: sinusoidal motions, representative for maneuvering targets, and constant- 
velocity motions, exemplary for more slowly varying target movements. For each class of 
motion, we verify or identify a linear model of the fixating system from measurements on 
a real active vision system and analyze the range of target motions that  can he handled 
with a given field of view. To demonstrate the usefulness of such performance bounds, we 
sketch how the tracking performance can be extended by dynamically adapting an optical 
parameter of the system to  the characteristics of the target motion. 

After a brief review of related work in Section 2, Section 3 introduces our experimen- 
tal setup. It consists of an active vision system and a robot manipulator that generates 
repeatable and controllable target motions. In Sections 4 and 5 ,  we examine the behavior 
of our experimental system for sinusoidal and constant-velocity target motions. Finally, 
Section 6 sketches an application of the derived performance bounds. 

Related work 
Although active vision and visual servoing have a long history (see [ll] for a recent review), 
experimental studies of the performance of the developed systems are rare. The tracking 
performance is often demonstrated with manually moved targets whose precise motion 
parameters are unknown. 

The lack of systematic experiments partly lies in the need for a mechanism that gener- 
ates controllable target motions. Probably the simplest form that such a mechanism can 
take are two light-emitting diodes that flash in counterphase and simulate a square wave 
trajectory [6]. .For repeatable (but not precisely calibratable) motions in the plane, toy 
train sets are sometimes used [I, 9, 151. Better calibrated planar trajectories are generated 
with rotating platforms or turntables [3, 5 .  10, 71 and X-Y-tables [4]. 

Under some circumstances, a degree of freedom in the active vision system itself can 
be used. In [16], the tilt axis of the neck produces relative target motions that are tracked 
with the vergence axes. The authors in [3] mount the camera on a gantry robot whose six 
degrees of freedom are divided into degrees for camera tracking motions and degrees for 
simulating target motions. The advantage of using a shared motion platform is that target 
and head motions are executed under the same system clock and can he correlated with 
each other easily. 



The largest design space for controlled experiments is achieved with a robot manipu- 
lator. The authors in [12] show the improvement in tracking performance of a series of 
controllers for a camera head by comparing the visual error in response to a light source 
moved by a robot arm. Likewise, the motion-based tracker of [8] pursues an object that  is 
moved on a circular trajectory by a robot arm. The authors in [14] test the performance 
of an  adaptive MIMO controller for a camera mounted on a robot arm by moving a target 
with a second robot arm and recording the relative transform between the end effectors. 

In our work, we use two Puma 560 manipulators. The robots allow us to position 
the head and the target in repeatable positions and to generate precisely specified target 
trajectories. The next section describes our setup in more detail. 

3 Experiment a1 setup 

The task in our experiments is fixation of a horizontally moving target by panning a camera. 
The input to  the system is the target's visual angle (relative to the camera pan axis), and 
the controlled output is the camera's pan angle. The goal of fixation is to  keep the target 
centered in the image by minimizing the difference between target angle and camera angle. 
the so-called visual error. The size of the visual error provides a measure of how well the 
system maintains fixation. 

3.1 Active vision system 

Our active vision configuration for the reported research consists of two principal com- 
ponents: a Helpmate Robotics BiSight binocular camera head with motorized 10:l zoom 
lenses, and a network of four C40 digital signal processors for image processing and head/lens 
control in real-time. The head controller and the DSP network communicate with each 
other through their host ~vorkstations via TCP/IP connections. 

The optics of the vision system, including lenses, cameras, and digitizer, has been 
completely calibrated so that it is known how the physical target motion translates into 
the observed target motion on the sensor plane. To locate the target in the image. a 
multi-scale normalized cross-correlation algorithm searches for a predefined target template 
within an image window. The search runs at  video field rate (60Hz) on the DSP network. 
A simple proportional control law computes setpoints for the camera vergence ases from 
the recovered target location. -4 detailed description and analysis of the whole system can 
be found in [2]. .' 

3.2 Target motion generation 

Besides a calibrated active vision system, performance measurements require a setup to 
generate controllable and repeatable target motions. We use two Puma 560 manipulators 
for this purpose. One robot arm statically holds the camera head in a repeatable position 
while the other arm moves the target (figure 1). 

Because the camera pan axes on the head are rotary degrees of freedom, suitable test 
stimuli are angular target motions, i.e., circular trajectories about the camera pan axis (for 
monocular tracking) or the head center (for binocular tracking). The circular trajectories 



Figure 1: Robot setup for controlled target motion experiments. One robot holds the 
camera in a repeatable position while the other arm moves the target on an arc around the 
camera. 

also minimize changes in the distance between target and cameras, preventing the target 
from going out of focus when higher focal lengths are used and the depth of field is small. 

Two kinds of motion have been used in our performance measurements. The first type 
has a sinusoidal angular velocity profile whereas the second type of motion moves the 
target a t  a constant angular velocity, with short ramp-up and ramp-down segments a t  the 
beginning and end of the motion. 

4 Sinusoidal motion 

Angular target motion with a sinusoidal velocity profile provides a continuum of velocities 
and accelerations to the fixating active vision system and can serve as representative for 
targets maneuvering with high turning rates. Moreover, it is also a stimulus well-suited for 
identifying the transfer function of a linear system. We measured the response of the active 
vision system t6 target motions over a range of amplitudes and frequencies (see table 1). 
The amplitude of the motion was reduced with increasing frequency to keep the target 
motion within the velocity and acceleration bounds of the robot arm. 

In the experiments, the target was tracked by a single camera at  a distance of 134cm 
with a focal length of 24.5mm. The head controller recorded the camera axis position (as 
reported by the axis encoders) and the visual error (as reported by the image processing). 
In addition, the robot's host workstation logged the cartesian position of the target in the 
robot coordinate system at 50Hz so that the amplitude and frequency of the motion could 
be verified independently. 

Figure 2 shows a typical experimental data set (1Hz target motion). It consists of 
camera position (top) and visual error (middle), both measured in degree and sampled 



I Amplitude (deg) / Period (sec) 

Table 1: Amplitudes and periods of sinusoidal target motions 

a t  565Hz (1.8ms). The visual error exhibits distinct steps because the image processing 
provides new values only at 60Hz. The camera, on the other hand, moves continously 
throughout the visual sampling interval. Note that although both camera position and 
visual error are recorded at the same time, they reflect system states a t  different times. 
The camera position measurement takes only a few microseconds whereas the visual error 
describes a system state 5Oms ago. 

The goal of the measurements is to estimate the gain and phase relationship between the 
input (the target motion) and the output (the camera motion) of the active vision system. 
However, the correspondence between the recorded camera motion and the target motion is 
prima facie unknown. The robot control, the head control, and the image processing all run 

-2l I I I I I I J 
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Figure 2: Camera position. visual error, and reconstructed target position for a 1Hz target 
motion. The camera lags the target by about 37" and is overshooting by 15% (1.2dB). 



on different workstations, under independent system clocks, so that the temporal relation 
of the target motion and camera motion records is uncertain. Therefore it is impractical 
to  work with the target motion as recorded by the robot's host workstation. Instead, the 
target motion can be reconstructed from the data captured by the camera head controller. 
The target angle a t  a given point in time equals the sum of the camera angle reported a t  
that  time and the visual error reported 50ms later. Figure 2 (bottom) shows an example 
of reconstructed target motion. Fitting sinusoids t o  the recorded camera position data 
and the reconstructed target position data finally yields the amplitude and phase values 
necessary to  compute the gain and the phase delay of the system response (sho~vn in the 
next section in figure 4). 

4.1 System identification 

The basic structure of our active vision system applied to  a fixation task is shown in figure 3. 
Because fixation strives to minimize positional deviation, input and output of the system 
are position measurements, namely the angular target position OT (input) and the camera 
pan angle Oc (output). 

T - Vision Control Actuation I 

Figure 3: Model of the active vision system for a fixation task 

The difference of target position and camera position determines the angular position 
of the target on the image plane. This position is measured by the vision component of 
the active vision system; the angular distance from the image center is the visual error. 
The computation causes a delay Tv of about 50ms (light integration in the sensor (16.ims), 
digitization (16.7ms), image processing (14.9ms) and transport of the visual error (1.8ms)). 
In addition, the offset of the lens nodal point from the camera pan axis introduces a scaling 
Kv of the visual error. In the reported experiments, the approximate scaling gain is 
Kv = 0.9. 

The visual error is converted by the control component into a camera position increment. 
The current implementation uses a simple proportional control scheme with a gain Kc = 
0.2. 

The actuation component mainly acts as an integrator for the position increments. 
Since the mechanical motor time constant for the pan axes is fairly small (tens of millisec- 
onds), the motor dynamics is basically invisible a t  low target frequencies. Bt higher target 
frequencies, the motor dynamics needs to  be taken into account. A first-order model with 
time constant TA and gain KA proves to  be adequate for the system identification, as we 
will see. 

Putting together the models for the individual components, we arrive a t  the folloiving 



closed-loop transfer function G(s) for the active vision system: 

The only unknown parameters in the transfer function are the actuation constants TA and 
KA.  A nonlinear least-squares fit of the transfer function to the measured system response 
yields TA = 0.025 and KA = 55. With these values, the transfer function describes the 
experimental data well except for the highest examined frequencies (figure 4). There are 
several sources of corruption of the experimental response. One basic problem is variable 
friction of the pan axes which changes the mechanical parameters of the system. Second, the 
time for the transmission of the visual error from the image processing platform to the head 
controller varies to  some extent, and with it the loop delay Tv. Finally, the experimental 
data becomes less reliable with increasing frequency as the mechanical imperfections start 
to deform the system response. 

The system response indicates two different behaviors of the system. For small target 
frequencies, the system basically has unit gain and linear phase. It will track the target 
with a constant delay of approximately 87ms. At high target frequencies, the first-order 
motor dynamics in the loop give the system a resonant peak around 2Hz. The system will 
first overshoot and, as the target frequency grows, will increasingly lag behind the target, 
eventually moving in counterphase to it. 

. . . . . .  . . .  
. . . .  . . . , .  
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Figure 4: Frequency response of the active vision system. The circles mark the measured 
data points. Overlayed is the fitted transfer function G(s). 



4.2 Limits of the fixation performance 

The transfer function G(s) describes the response of our fixating system to a moving target 
in terms of gain and phase. In particular, the response to  a target moving sinusoidally with 
frequency w is a sinusoidal camera motion, amplified by IG(iw) 1 and delayed by ~ G ( i w ) .  
The visual error E(t )  of the active vision system, i.e., the angular deviation of the target 
from the image center, is the difference of the target and camera motion, which is again a 
sinusoid of the same frequency and with amplitude A' and phase cP: 

E(t)  = Asinwt - IG(iw)[ . Asin(wt - ~ G ( i w ) )  = il1(w) sin(wt + Q(w)) 

The maximum of the visual error, E(w, A), is its amplitude A' 

If the active vision system were truly linear, the target motion could be scaled indefi- 
nitely, and the system would still respond to it, namely with an equally scaled visual error. 
In practice, of course, the system will lose the target as soon as the visual error exceeds 
one half the field of view, and the linear behavior will break down. 

We can now characterize the system limits by plotting the visual error over the am- 
plitude and frequency of the target motion (figure 5 ) .  The system will track all motions 
whose parameters (w,  -4) lie below the level contour for the visual error corresponding to 
one half the field of view. It is apparent that amplitude and frequency of the target motion 
can be traded off against each other in order to keep the visual error within the bounds of 
the system capabilities. 

Frequency (Hz) 

Figure 5 :  Lines of constant visual error for a range of target frequencies and amplitudes. 
The left-most line represents lo visual error. The error increases by lo with each line. 
Overlayed as circles are the target motion parameters used during system identification. 



5 Constant-velocity motion 

So far, we have analyzed the fixation performance of the active vision system for input 
stimuli that represent targets maneuvering with high turning rates. Another common class 
of motions are constant-velocity profiles, encountered, e.g., in tracking targets that pass the 
camera a t  a distance. In this section, we develop an alternative linear model of our fixating 
active vision system and measure experimentally the system response to constant-velocity 
target motions. 

5.1 A linear discrete-time model 

In the previous section, we identified a continous transfer function that describes the system 
behavior over a large range of frequencies. Tracking constant-velocity motions, however, 
involves mostly lower frequencies1, and we can work with a simpler model of the system that 
neglects the first-order dynamics of the actuation component. It models the pan axes as 
pure integrators that achieve the desired position increment within a single sampling period 
(one video field, 16.7ms). Since under this assumption all system components complete 
their work in multiples of the sampling period, a discrete-time model can be used. 

The input to the system is the angular target position OT, the output is the pan angle 
Bc of the camera. The image processing is represented by a delay element with a delay of 
3 sampling periods (light integration in the sensor (16.7ms), digitization (16.7ms), image 
processing (14.9ms), and transport of the visual error (1.8ms)) and a scaling gain Kv. The 
P-control corresponds to a proportional gain Kc, and the actuation is represented by an 
integrator. Figure 6 shows the complete model, combining Kv and Kc into a single gain 
K. The closed-loop transfer function of the model looks as follo~vs: 

Vision Control Actuation 

Figure 6: Linear discrete-time model of the active vision system 

To analyze the stability of the system as a function of K, we have to determine the poles 
of G(z), which are the roots of the third-order polynomial in the denominator, z3 - z2 + K. 
The polynomial has three real roots for K 5 4/27 and one real and two complex conjugate 
roots otherwise. Therefore the system is critically damped for a gain I( = 4/27 = 0.148. 
Simulations in Matlab show that the system remains stable until K = 0.618. 

'The Laplace transform of a ramp falls off with l/s2. 



5.2 Visual error 

A PI-position control system such as our implementation is a first-order system because 
the pan motor acts as an integrator of the position error. If the input to a first-order 
system is a position ramp, the steady-state error is nonzero and constant [13]. For the 
active vision system this means that a target moving with constant velocity will be tracked 
with a constant visual error. 

The previous subsection introduced a linear discrete-time model of the active vision 
system and analyzed its stability a s  a function of the control gain K. The steady-state 
error is defined as the value to which the output of the stable system converges. Let G(z) = 
K/(z3 - z2 + K) be the closed-loop transfer function of the tracker and R(z)  = Tz/(z  
be the z-transform of the unit-ramp input sequence r[n] = Tn. T is the sampling period of 
the system (1159.94s w 16.7ms). Then the system response in the z-domain, Y(z), is the 
product of G(z) and R(z): 

The steady-state ramp response error is defined in the time domain as lim,,,(r[n] - 
y[n]). To transform the system response Y(z) back into the time domain, we perform a 
partial-fraction expansion and, neglecting any decaying step and/or sinusoid terms, arrive 
a t  the steady-state response ys,[n]: 

The steady-state error for the unit ramp response is found as the difference of the input 
~ [ n ]  and the steady-state output yss[n]: 

1 1 
lim (r[n] - y[n]) = r[n] - yss[n] = T n  - (Tn - -) = - 

n--too K I( 

The steady-state error for the system response to a target moving with velocity v is simply 
the scaled error v - T / K .  

5.3 Experimental system response 

We have performed extensive experiments with constant-velocity target motions to verify 
the predicted tracking behavior. In these experiments, the target moved with a constant 
velocity through an arc while the visual error of the actively tracking camera was recorded. 
Five sets of experiments were run, using different focal lengths. -4 range of target velocities 
was examined for each focal length. Since different focal lengths translate the same visual 
error given in degrees into different errors when measured in pixels, the trackable target 
velocities are smaller for high focal lengths. Table 2 lists t.he examined combinations of 
focal length and target velocity. 

For each combination of focal length and target velocity: the target moved forward 
and backward through a 20"-arc with a radius of approximately 137cm. The active vision 
system tracked the target at 60Hz and recorded the visual error. 
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Table 2: Combinations of focal length and target velocity examined in the constant-velocity 
experiments 

Figure 7 shows the steady-state visual error for the various velocities and focal lengths. 
The superimposed lines are a linear least-squares fit to the data. The fitted slopes agree to 
within 5% with the predicted steady-state ramp response factor T / K  = (1/59.94)/0.2 = 
0.083. 

5.4 Limits of the fixation performance 

Unlike the visual error for sinusoidal motions, the visual error for constant-velocity motions 
is related to the motion parameters in a very simple way: it grows linearly with the target 
velocity v. The maximum trackable target velocity is therefore proportional to the field of 
view. The basic requirement for tracking a target moving at a constant velocity v is that 
the visual error v . T / K  be kept smaller than one half the field of view. 

For the values K = 0.2 and T = 1159.94s of our active vision system, v must be smaller 
than six times the field of view per second, restricting the target motion to one tenth of 
the field of view during a single video field or to half the field of view over a period of 
five video fields. This velocity limit makes sense in the light of an earlier result. The 
continuous transfer function developed in Section 4 characterizes the system behavior a t  
low frequencies as a pure delay of 87ms, i.e., the system lags the target by approximately 
five sampling periods. If the target moves from the image center more than half the field 
of view during this time, the system will lose it from view. 

6 Conclusions 

In this paper we have shown how to predict the performance hounds of a fixating active 
vision system for two classes of motion, sinusoidal (representing maneuvering targets) and 
constant-velocity (representing steady targets). For each class of motion, we have related 
the visual error to the field of view and derived bounds on the maximum target motion 
that can be tracked. 

The knowledge of the tracking limits can be used to maximize the performance of 
the active vision system while guaranteeing that the system does not lose the target. An 
example for this kind of edge-of-the-envelope operation is the task of maximizing the spatial 
resolution of the target image with the help of a zoom lens. Ideally, we \vould like to 
increase the focal length as much as possible to maintain a maximally magnified target 
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Figure 7: Steady-state ramp-response error as a function of target velocity, observed with 
five different focal lengths. The overlayed lines show linear least-squares fits. The bottom 
part of each graph corresponds to the forward motion, the top part to  the backward motion. 



image. However, as the image magnification grows, the velocity of the target in the image 
increases, and the visual error with it. 

Knowing the performance limits, we can now adapt the focal length to the characteristics 
of the target motion. The zoom control can be done dynamically, responding to changes in 
the target motion and assuring that the motion is always safely contained in the resulting 
field of view. 

Future work will address the analysis of active vision systems with more complex control 
laws. Predictive tracking, e.g., can reduce the visual error and extend the performance 
limits of the system. Other interesting questions arise from the motors in an active vision 
system. Besides the finite field of view, they constitute another nonlinear, saturating 
component whose influence on the system performance remains to be examined. 

The performance of an active vision system is a complex notion that goes beyond tradi- 
tional system measures and depends very much on the task. Performance is also laborious 
t o  measure rigorously. It requires a well-calibrated apparatus to precisely establish the 
value of all parameters that affect the performance. With our work we hope to identify 
these parameters and illustrate the challenges and benefits of a systematic performance 
evaluation. 
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