
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

August 2004

Platform-Independent Autonomy Modeling
Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

George J. Pappas
University of Pennsylvania, pappasg@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Presented at the 4th International Conference on Intelligent Systems Design and Applications 2004 (ISDA 2004), Budapest, Hungary, August 26-28,
2004.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/88
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Oleg Sokolsky and George J. Pappas, "Platform-Independent Autonomy Modeling", . August 2004.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76393401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/88
mailto:libraryrepository@pobox.upenn.edu

Platform-Independent Autonomy Modeling

Abstract
We describe an approach for high-level modeling behaviors of autonomous vehicles and an infrastructure for
executing these behaviors on a particular vehicle platform. The language directly represents behavioral
primitives and constraints on their composition. The control infrastructure maps these behavioral primitives
on the native vehicle interface in a model-driven fashion. As a result, the user is presented with an abstract
motion planning interface that hides the intricate details of the vehicle implementation.

Keywords
Autonomy, model-based design, behavioral modeling

Comments
Presented at the 4th International Conference on Intelligent Systems Design and Applications 2004 (ISDA
2004), Budapest, Hungary, August 26-28, 2004.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/88

http://repository.upenn.edu/cis_papers/88?utm_source=repository.upenn.edu%2Fcis_papers%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages

Platform-Independent Autonomy Modeling
Oleg Sokolsky and George Pappas

Department of Computer and Information Science
University of Pennsylvania

3330 Walnut St.
Philadelphia, PA 19104

Abstract— We describe an approach for high-level modeling
behaviors of autonomous vehicles and an infrastructure for
executing these behaviors on a particular vehicle platform.
The language directly represents behavioral primitives and con-
straints on their composition. The control infrastructure maps
these behavioral primitives on the native vehicle interface in a
model-driven fashion. As a result, the user is presented with an
abstract motion planning interface that hides the intricate details
of the vehicle implementation.

I. INTRODUCTION

Autonomous vehicles are bound to play a more and more
important roles in our lives. Already, unmanned aircraft are
employed by the army to perform reconnaissance missions and
look for explosives. Researchers use robots to explore narrow
shafts in ancient Egyptian pyramids. Control of autonomous
vehicles and vehicle formations is an important research area.
A number of research projects, for example [9], consider
intelligent highways, where cars can be driven autonomously,
the use of robots in emergency response scenarios, etc. A
variety of robotic platforms, both ground and aerial, that can
be used in autonomous navigation are available on the market.
Among them one can find fixed wing aircraft and helicopters;
wheeled and tracked ground vehicles; even legged robots.

Autonomous vehicles generally offer an interface that allows
them to be remotely controlled either by a human operator or a
computer-controlled motion planner. The degree of autonomy
that these vehicles offer varies greatly. Most are capable of
following a trajectory laid out by way points, while others
may in addition have a built-in capability to avoid obstacles.

In this paper, we describe a research effort recently initi-
ated at the University of Pennsylvania to provide platform-
independent means to control autonomous vehicles and their
formations based on high-level models. The effort builds upon
two kinds of expertise. One the one hand, we have studied
control of autonomous vehicles and their formations for a long
time [3], [5], [13]. This work has been done from the control-
theoretic and experimental perspective, without a significant
modeling component. However, this experience allowed us
to identify requirements for the modeling language and in-
frastructure. On the other hand, two long-standing lines of
modeling research concerned hierarchical hybrid systems [1],
[2] and resource constraint modeling [8], [11].

The overall structure of the approach is shown in Figure 1.
At design time, the framework is populated with the available
vehicles. Models of vehicles are entered and stored in the

database. Before a vehicle or formation is launched and navi-
gated, the database is queried and capabilities of the vehicle, in
terms of the available motion primitives, are presented to the
navigation component (which may be an automatic controller
or a human user). Using these components as building blocks,
the navigation component constructs the desired behavior of
the vehicle at run time. Internally, the high-level behavioral
primitives chosen by the navigation component are automati-
cally translated into the commands of the native vehicle control
interface and sent to the vehicle. Sensory data obtained from
the vehicle go through the reverse process.

The framework thus has two major components that are
described in more detail in the rest of the paper. Section II
presents the language for modeling autonomous behaviors.
Section III presents the design and execution framework for
supporting control of autonomous vehicles based on this
modeling approach. Finally, Section V describes our plans for
implementing the framework.

II. MODELING LANGUAGE FOR VEHICLE AUTONOMY

In order to formally describe diverse autonomous vehicles,
with various degrees of autonomy and capabilities, we need to
have a language, that can express motion primitive and offer
composition rules that allow to construct more complex motion
primitives from simpler ones. To increase the expressive power
of the language, we are aiming to go beyond motion primitives
and capture other aspects of a vehicle such as vehicle resource
constraints, payload constraints, dynamic constraints, as well
as all autonomy, sensor, collective and failure behaviors in a
modular fashion. Every vehicle is assembled from a collection
of modes that describe individual behaviors of the model, a
collection of elementary resources such as fuel and payload,
and a collection of sensors that are deployed on the vehicle.
Operationally, modes require access to resources with certain
parameters (for example, fuel consumption rate) in order for
the mode behaviors to be performed.

Every behavioral mode or primitive has associated pre-
conditions (when entering the behavior) and possibly non-
deterministic post-conditions (when exiting the behavior). In
addition to the array of behavioral (or capability) primitives,
the language is equipped with natural notions of composition
that will allow, among others, the description of sensor-based
autonomous behaviors (by composing a sensor primitive with
an autonomy primitive of a vehicle), collective team behav-
iors (by composing together different vehicles), or collective

Modeling
center

Run-time
translators

Navigation
interface

Vehicle
interface

Vehicle

 model instances

Model
database

run-time stage

design stage modeling
expert

Model
queries

Navigation
planner

Fig. 1. Architecture of the navigation infrastructure

Beh 1

Beh 2

Component

Res 1 Res 2

Comp 1

Comp 2

Comp 3

Beh 1

Beh 2

Beh 3

Res 1

Res 2

Res 3

Component

State State

Fig. 2. Agent structure and composition

sensing behaviors (by composing sensors). The modularity
of the language and the compositional semantics not only
results in a highly expressive language but also provides a
very efficient mechanism for representing platform behaviors
at different levels of autonomy. An important requirement for
an autonomy modeling language is that it is extensible. New
vehicles supporting different autonomy primitives become
available and should be easily incorporated into the modeling
framework. The structure of our language can naturally accom-
modate new behavioral primitives, new vehicles and sensors
with higher levels of autonomy, additional failure capabilities,
or next-generation support for sophisticated collective behav-
iors. This will allow our modeling framework to evolve with
technology developments.

The main building block of the language is an agent,
which has an interface capturing agent behaviors and agent re-
sources. We distinguish several types of agents. Agents of type
vehicle capture motion primitives of a platform. Agents
of type sensor capture sensing primitives. Composing a
vehicle agent together with a number of sensor agents we
obtain a composite agent of type platform. Composing
several platforms together we can get a team agent. At run
time, agents encapsulate state information. Agents can be

put together to form more complex agents. Agents and their
composition are illustrated in Figure 2. Each agent offers a
collection of behaviors that it can engage in, along with its
resources and state information. When agents are composed
together, their behaviors are composed concurrently to form
behaviors of the composite agent, and resources and state
of the agents are joined to form resources and states of the
composite agent. Note that not all agents have to participate
in every composite behavior and that agents may have shared
resources and state data.

Composition rules of the language include two kinds of
composition: agent composition and behavior composition.
Agents are always composed in parallel. Rules of agent com-
position ensure type compatibility. For example, only agents
of platform type can be used to produce a team agent, and
a platform agent should have exactly one vehicle agent in it.
When two agents are composed together, their behaviors are
composed using behavior composition rules. Behaviors can be
composed in parallel or sequentially. Behavior composition
rules are based on pre- and post-condition constraints that are
associated with each behavior. The notion of behavior compo-
sition that we employ is not unlike the approach used in hybrid
systems modeling, but has several important distinctions. In
hybrid systems formalisms such as CHARON [1], simple be-
haviors are given by differential and algebraic constraints, and
such behaviors are sequentially composed by means of discrete
switches that happen under certain conditions. State machines
formed in this way can then be composed concurrently, usually
in an unconstrained way. In our approach, instead of specifying
transitions, we are giving constraints that restrict switching and
allow the navigation to effect switches between any behaviors
whenever constraints are satisfied. Parallel composition is also
subject to constraints imposed by the resources in the model.

A. Constraints and resources

The basis for composition of behaviors is formed by pre-
and post-conditions that are associated with each behavior.
Pre-condition constraints are defined in terms of the state of

the model and availability of resources that are necessary for
a behavior to proceed. Post-conditions express the effect of
performing a behavior on the state and resources of the agent.
For composing behaviors in parallel, their pre-conditions have
to be simultaneously satisfied. For sequential composition,
the post-condition of the first behavior must satisfy the pre-
condition of the second behavior.

We distinguish two kinds of resources that are necessary
for a behavior to be feasible. These are serially reusable and
consumable resources. A serially reusable resource is can be
used by only one behavior at a time. Once a resource is
released, another behavior can use it. Serially reusable re-
sources are a uniform way to capture incompatible behaviors.
As an example, consider a camera that can point down to
observe objects on the ground, or point sideways to peek
into windows. Clearly, however, one camera cannot do both
simultaneously. A generalization of a serially reusable resource
is a multi-capacity resource, which can be used by multiple
behaviors simultaneously, as long as total usage does not
exceed the resource capacity. An example of such resource is
a power battery. Several agents may draw on the same battery.
However, the battery can provide a limited amount of current,
which limits the number of agents that rely on it. Consum-
able resources, by contrast, limit sequential composition of
behaviors, or the duration of a particular behavior. Using the
same battery as an example, the total amount of power that
the battery has is a consumable resource that gets depleted as
the behavior proceeds.

Constraints are, mathematically, predicates over the model
state. Evaluation of constraints can be done symbolically
during model construction, or using concrete values at run
time. Symbolic evaluation of constrains is used in deciding
which behaviors are compatible. Specifically, if a constraint
involves a serially reusable resource, we can easily decide
when two behaviors use the same resource and disallow their
parallel composition. When pre-conditions of two behaviors
cannot be fully resolved symbolically, the conjunction of the
pre-conditions is the pre-condition for the composite behavior.

B. Modeling autonomous behaviors

Behaviors that capture navigation primitives of vehicles are
usually defined over three-dimensional trajectories. All vehicle
agents, therefore, contain 3D points as their state. Additional
state information captures the state of consumable resources.
As an example, we consider modeling of a hypothetical UAV
airframe inspired by the UAV platform we have at Penn.
The vehicle agent is shown in Figure 3. The model specifies
parameters of the vehicle, model state that needs to be kept at
run-time, resources that the model has, and, finally, behaviors
of the model. Keywords of the language are highlighted in
bold face.

The model in Figure 3 specifies that the vehicle PennUAV
has its position and orientation as the state and fuel as its
consumable resource with the total capacity fuelTankCapac-
ity. At run time, remaining capacity of a resource represent
additional state information. Behaviors of the vehicle capture

the different flight modes available for the vehicle. One of the
behaviors is a take-off mode, which can be invoked when the
vehicle is on the ground. Other behaviors include cruising at
a specific speed with fixed orientation, turning to a specific
orientation, and straight-line navigation to a specified absolute
or relative position. Behaviors put constraints on the evolution
of state during a behavior, which in this case are specified by
differential inclusions. Note especially that the vehicle offers
waypoint navigation that is defined as a sequential composition
of single-point behaviors. Switching of primitive behaviors
in this sequential composition is controlled by constraints
that specify that the next waypoint has been reached before
switching to the next behavior. Such sequential composition
allows us to represent different levels of autonomy within the
same model. The navigation component will be able to use
less autonomous behaviors in addition to more autonomous
behaviors. We also establish a partial order on autonomous
behaviors to reflect that more autonomous behaviors have a
higher preference and should be used when there is a choice
between equally viable solutions.

Pre- and post-conditions of a behavior specify how this
behavior can be composed with other behaviors. In the vehicle
model above, behavior takeOff can happen when the vehicle
is on the ground, and once the behavior completes, the target
height has been reached. The precondition for the navigation
behaviors is that the vehicle is already flying. Therefore, a
navigation behavior can not occur simultaneously with take off
since their pre-conditions cannot both be satisfied in any state.
However, various navigation behaviors, for example, the one
that specifies the speed and the one that specifies the angular
direction, can be composed together since they have the same
precondition and do not share conflicting resources.

C. Modeling sensor behaviors

Simple vehicle sensors that provide scalar data such as
vehicle speed, orientation, fuel level, etc., are best modeled as
free variables of the model. These variables can be used in the
constraints on the model behaviors, as well as made available
to the navigation component for use in trajectory planning.
However, complex sensors such as cameras and GPS, which
have non-trivial behaviors and multiple operation modes, re-
quire special modeling facilities to adequately capture their
behaviors. For example, a camera may have a single-frame
mode, when it takes a picture upon receiving a command,
and a continuous mode, parameterized by the capture rate. In
addition, it may be oriented to point in different directions.
Depending on the camera, it may or may not be able to
take pictures during re-orientation. Camera control systems
may also interact with the GPS sensor on the vehicle and
be instructed to take a picture when a specific coordinate is
reached. The modeling language has to be able to capture all
of these aspects of sensor operation and use then in model
composition. The model of each sensor should include a
description of:

� Ability to detect objects of interest (for example, such
targets as ground vehicles).

vehicle pennUAV
�

parameters
wingSpan:distance; maxAirSpeed:speed; fuelTankCapacity:gallons;
maximumOperationalRange:range; maximumOperationalAltitude:distance

state
pos:location; theta:orientation

resources
consumable fuel limit MaxFuelCapacity

behaviors
takeOff(height:altitude)

pre pos.z � 0; post pos.z � height
diff pos.x � [speed min, speed max];
diff pos.y � [speed min, speed max]
diff pos.z � [climbRate min, climbRate max]
diff fuel � [-maxBurnRate, -minBurnRate]

cruise(v:speed)
pre pos.z � 0
diff pos.x � [xdot min, xdot max]
diff pos.y � [ydot min, ydot max]
diff fuel � [-maxEconRate, -minEconRate]

turn(heading:orientation)
pre pos.z � 0; direction � sign(heading-theta)
diff theta � [turnRate min*direction, turnRate max*direction]
diff fuel � [-maxEconRate, -minEconRate]

goToAbs(v:speed, target:location)
pre pos.z � 0; post pos � within (pos, tolerance)
diff pos.x � [xdot min, xdot max]
diff pos.y � [ydot min, ydot max]
diff pos.z � [zdot min, zdot max]
diff fuel � [-maxEconRate, -minEconRate]

goToRel(v:speed, relTarget:point)
pre pos.z � 0; post pos � within (pos, tolerance)
diff pos.x � [xdot min, xdot max]
diff pos.y � [ydot min, ydot max]
diff pos.z � [zdot min, zdot max]
diff fuel � [-maxEconRate, -minEconRate]

navigate(v:speed, wp:pointList)
seq goToRel(v, wp(i))

�
pos ��� wp(i � 1) �

�

Fig. 3. A model of an autonomous vehicle platform and its behaviors

� Ability to classify objects or targets.
� Information provided by the sensor (for example, target

bearing and range).
� Description of the quality of information (for example,

uncertainty associated with the estimates).

The emphases of the sensor modeling is on the functional
and behavioral aspects rather than on the physical attributes
of the sensor. The physical attributes, such as focal length
of the camera, the pixel size etc., are important since they
essentially derive the functional and behavioral characteristics.
The functional and behavior characteristics, however, are the
subjects of interest high-level modeling. Sensors commonly
found on autonomous vehicles can be broadly grouped into
three categories: imaging sensors, unidimensional signal sen-
sors, and discrete signal sensors. Examples of imaging sen-
sors include color video cameras, low-light TV cameras, and
infrared cameras. Examples of unidimensional signal sensors
include acoustic sensors, and radars. A discrete signal sensor,
for example, can be a laser ranging sensor or a GPS sensor.

The interfaces of the notional sensor model for each class
allow sensors to be controlled during navigation. Attributes
and behaviors of a notional imaging sensor mode are identified
in Table I.

Additional functional and behavioral characteristics that
provide the most benefits to the HURT sensor modeling will
be identified and modeled in the notional ontologies. The
prototype ontologies will include some physical attributes of
the sensor in order to derive the functional behaviors.

A model of a notional sensor platform is shown in Figure 4.
Note that this sensor platform description does not explicitly
model any properties that might be inferred (inherited) by
mounting it on a vehicle platform. A model of a notional
sensor will include as attributes the number of pixels in
the horizontal and vertical direction, the maximum field of
view in both directions. The abstract model will relate the
number of pixels that need to be subtended by the target for
detection and the number of pixels for classification. Note that
advanced sensor features, for example built-in automatic target

Functional � Behavioral Description
Characteristics
Function Target acquisition, situation awareness
Functional outputs An image which is a 2D projection of a

3D scene, annotated targets, tracks.
Spectral domain Color, intensity or infrared.
Control parameters Pan, tilt, zoom
Field-of-View coverage The reconnaissance and surveillance area
Viewing geometry Azimuth, and aspect angle, height
Operable time of day Day, night, dust etc.
Operable weather Sunny, cloud, fog, shadows, snow
Operable range Maximum and minimum distances

TABLE I

FUNCTIONAL AND BEHAVIORAL CHARACTERISTICS OF AN IMAGING

SENSOR

recognition, which themselves possess complex behaviors, can
be included as sub-agents of the sensor agent.

D. Internal vs. external composition

The composition rules of the language will allow us to
construct complex behaviors from simpler ones. For example,
composing a sensor behavior with an autonomy mode will
naturally result in sensor-based autonomous behaviors. In
another example, waypoint routing and obstacle avoidance can
be primitive behaviors of a platform that can be used separately
or, on some platforms, can be used together in a complex
behavior that follows waypoints while avoiding obstacles.
Rules of composition specify when complex behaviors can be
formed. For example, the behavior above may be used only
assuming that waypoints themselves are safe from obstacles by
a certain margin. This composition can be performed on two
levels. On the one hand, behaviors can be combined within the
model, by the modeler, and a composite behaviors presented
to the navigation component when the model is queried. We
call this composition internal. On the other hand, external
composition is performed by the navigation component at run-
time.

Both internal and external composition are important for
navigation. Internal navigation allows the navigation com-
ponent to use the highest degree of autonomy afforded by
the vehicle. Since details of composite behaviors are hidden,
navigation becomes simpler. On the other hand, external
composition may allow more precise control of the vehicle
since composition is performed based on the run-time data and
can be dynamically adjusted. Of course, more computation is
required to navigate the vehicle in this case.

E. Failure behaviors

Capturing failure modes in our behavior-based modeling
language is very natural as failures could be modeled as
restricting the available nominal autonomy or sensor modes.
In addition to this binary fault model, explicit failure behav-
iors could be modeled as additional primitives, resulting in
perhaps dramatic and structural changes in the nature of the
constraints. For example, an actuator could be inactive or stuck
at a particular level leading to structurally different dynamic

behavior for the platform. From the navigation perspective, a
failure will result in a change in the set of behaviors that can be
used in constructing plans. In addition to capturing nominal
and failure behaviors, also want to support the modeling of
fault-handling autonomy or reconfiguration-logic that may be
built into the vehicle controller.

III. MODEL-DRIVEN AUTONOMY CONTROL FRAMEWORK

High-level behavior-oriented models allow us to have a
uniform interface that is offered to the navigation component.
As illustrated by Figure 1, the interface is used in two phases.
The set-up phase allows the navigation component to explore
the capabilities of the available vehicles. The capabilities are
presented as available behaviors and constraints on their use.
Then, in the run-time phase, the navigation component sends
navigation commands to the vehicles by invoking behaviors
offered by each vehicle, according to the constraints of the
model.

A. Run-time navigation adapters

Since behaviors requested by the navigation component are
specified at the level of the abstract model, at run time these
behaviors have to be transformed into commands in the native
interface of the vehicle. By the same token, sensory data
provided by the vehicle has to be collected using the native
interface and delivered to the navigation component in an ab-
stract form. Components that perform this run-time translation
are called navigation adapters. An adapter is defined for each
vehicle and each model that can be applied to this vehicle. We
are exploring the use of meta-modeling techniques [12], [10]
for automatic generation of adapters.

IV. RELATED WORK

There has been much work on languages for autonomous
behaviors. We mention here the motion description lan-
guage introduced in [4], maneuver automata [6], and motion
graphs [7], among many others. The major difference between
their approaches and ours is that motion languages are used
in navigation planning. That is, the navigation component in
our architecture may well be using one of these languages to
come up with a sequence of behaviors needed to achieve a
certain goal. The primary intent of our language is to provide
an abstract interface for the navigation component that hides
the details of the platform interface, simplifying the control
task.

V. DEVELOPMENT PLANS AND CONCLUSIONS

The project described in this paper is currently in a very
early stage. We are taking a step-by-step approach, building
on our existing experience and gradually expanding it to
encompass new aspects. The primary goal of the first stage
of the project is to create a subset of the language that lets us
interface with the vehicles we currently have in the GRASP
lab. These vehicles include a one-quarter scale Piper Cub
J3 airframe, a blimp, a number of wheeled carts equipped
with omni-directional cameras and GPS sensors, and Sony

sensor EO
�

parameters
pixels pixelsHorizontal, pixelsVertical;
fieldOfView maxFOVhorizontal

state
isrState
ContactType

resources
consumable battery limit batteryCapacity

output
ContactType, Bearing, aBearingError, Range, RangeError,rawData,
detectionQuality, ...

behaviors
activeTarget(Bearing, BearingError, Range, RangeError)
passive(GridGranularity, TemporalGranularity, GridType, rawDataMatrix)
scanningMode(ContactType, Bearing, BearingError, Range, RangeError)

agent ATRprocessor
�

...
�

�

Fig. 4. A model of a notional sensor platform

AiBO robot dogs. An important criterion for success is to
be able to control these vehicles via the abstract interface as
efficiently as we can by existing controllers, specially crafted
to use native interfaces of the vehicles. At this stage, we will
manually construct the navigation adapters, using parts of the
existing controllers. From there, we will expand our work in
two directions. One direction is to accommodate more vehicles
into the framework, covering the full scope of diversity in
vehicle types and capabilities. The second direction is towards
automatic generation of navigation adapters.

To summarize, we believe that customizing hybrid systems
and resource-oriented modeling to the domain of autonomous
vehicles will allow us to develop an efficient abstract interface
for the uniform control of diverse vehicles with varying de-
grees of autonomy. We hope to demonstrate that concentrating
on a narrow domain will allow to more fully utilize the
potential of model-driven techniques.

Acknowledgments. The authors wish to thank Vijay Kumar
and C.J. Taylor from the GRASP lab at Penn for fruitful
discussions on sensor modeling. Research has been supported
in part by NSF grants CCR-0086147 and CCR-0209024, and
by ARO grant DAAD19-01-1-0473.

REFERENCES

[1] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivancic, V. Kumar,
I. Lee, P. Mishra, G. Pappas, and O. Sokolsky. Hierarchical modeling
and analysis of embedded systems. Proceedings of the IEEE, 90(1):11–
28, Jan. 2003.

[2] R. Alur, R. Grosu, I. Lee, and O. Sokolsky. Compositional refinement
for hierarchical hybrid systems. In Proceedings of Hybrid Systems:
Computation and Control, volume 2034 of Lecture Notes in Computer
Science, pages 33–48. Springer-Verlag, Mar. 2001.

[3] S. Bayraktar, G. Fainekos, and G. J. Pappas. Experimental cooperative
control of unmanned aerial vehicles. Submitted for publication.

[4] R. W. Brockett. Hybrid models for motion control systems. In
H. Trentelman and J. C. Willems, editors, Perspectives in Control, pages
29–54. Birkh, 1993.

[5] R. Fierro, A. Das, J. Spletzer, J. Esposito, V. Kumar, J. Ostrowski,
G. Pappas, C. Taylor, Y. Hur, R. Alur, I. Lee, G. Grudic, and B. Southall.
A framework and architecture for multirobot coordination. International
Journal of Robotics Research, 2002.

[6] E. Frazzoli, M. Dahleh, and E. Feron. A maneuver-based hybrid control
architecture for autonomous vehicle motion planning. In Software
Enabled Control: Information Technology for Dynamical Systems. IEEE
Press, 2003.

[7] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. In Proceedings
of the 29 �

�
annual conference on computer graphics and interactive

techniques, pages 473–482, 2002.
[8] I. Lee, A. Philippou, and O. Sokolsky. A general resource framework

for real-time systems. In Workshop on Radical Innovations of Software
and Systems Engineering in the Future, number 2941 in LNCS, pages
234–248. Springer, Oct. 2002.

[9] A. Puri, P. Varaiya, and V. Borkar. Driving safely in smart cars. In
Proceedings of Hybrid Systems III, number 1066 in LNCS, pages 362–
376, 1996.

[10] K. Schloegel, D. Oglesby, E. Engstrom, and D. Bhatt. Composable code
generation for model-based development. In Proceedings of 7 � �

Int’l
Workshop on Software and Compilers for Embedded Systems, 2003.

[11] O. Sokolsky, A. Philippou, I. Lee, and K. Christou. Modeling and
analysis of power-aware systems. In Proceedings of TACAS ’03, volume
2619 of LNCS, pages 409–425, Apr. 2003.

[12] J. Sztipanovits and G. Karsai. Model-integrated computing. IEEE
Computer, 30(4):110–112, Apr. 1997.

[13] H. Tanner, G. J. Pappas, and V. Kumar. Leader to formation stability.
IEEE Transactions on Robotics and Automation, 2004.

	University of Pennsylvania
	ScholarlyCommons
	August 2004

	Platform-Independent Autonomy Modeling
	Oleg Sokolsky
	George J. Pappas
	Recommended Citation

	Platform-Independent Autonomy Modeling
	Abstract
	Keywords
	Comments

	tmp.1111157518.pdf.YXO51

