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A Framework for Scalable Cooperative Navigation of 
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Rafael Fierro, Peng Song, Aveek Das, and Vijay Kumar 
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3401 Walnut Street , Philadelphia, PA 19104 
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Abstract 

We describe a general framework for controlling and coordinating a group of non- 
holonomic mobile robots equipped with range sensors, with applications ranging from 
scouting and reconnaissance, to search and rescue and nlanipulation tasks. We first de- 
scribe a set of control laws that allows each robot to control its position and orientation 
with respect to neighboring robots or obstacles in the environment. We then develop 
a coordination protocol that allows the robots to automatically switch between the 
control laws to follow a specified trajectory. Finally, we describe two simple trajectory 
generators that are derived from potential field theory. The first allows each robot 
to plan its reference trajectory based on the information available to it. The second 
scheme requires sharing of information and results in a trajectory for the designated 
leader. Nurnerical simulatiorls illustrate the application of these ideas and demonstrate 
the scalability of the proposed framework for a large group of robots. 

1 Introduction 

It has long been recognized that  there are several tasks that  can be performed more effi- 
ciently and robustly using multiple robots. In fact, there is extensive literature on mobile 
robot control and the coordination of multiple robots, see for example [21]. Topics include 
cooperative manipulation, multi-robot navigation and planning, collaborative mapping and 
exploration, software architectures, and formation control. We are particularly interested 
in multi-robot navigation and planning, and formation control. The problem of multi-robot 
navigation is t o  generate collision-free paths for mobile robot,s to  reach their desired desti- 
nations. Previous approaches in this area can be broadly divided into two classes including 
graph based planners [4] and potential field methods [16, 171. Graph based planners gen- 
erally require an expensive precomputation step to construct the connectivity graph -the 
set of the collision free co~lfigurations of the robot, before the search for a path can actu- 
ally start .  Global knowledge of the environment and other robots is assumed in order to  
build the connectivity graph. As an elega.nt alternative, the potential field method applies 



repulsive potential functions around the obstacles while trying to place the goal location at  
the global minimum of the potential field. But the construction of a potential field with no 
other local minima than the goal configuration turns out to be difficult. Various techniques 
have been developed to overcome these difficulties [24, 5, 31. But largely because of the 
computational limitations, most of the work to date in the field of mobile robot navigation 
has been conducted for small scale laboratory environments. 

Formation control of multiple autonomous vehicles arises in many scenarios. For in- 
stance, military applications and intelligent vehicle highway systems (IVHS) require that 
vehicles maneuver while keeping a prescribed formation. In recent years, formation con- 
trol approaches have also been applied to t.he coordination of spacecraft and aircraft [13]. 
Two main approaches have been developed: leader-following and behavioral-based. In the 
leader-following approach one robot acts as a leader and generates the reference trajectory 
for the team of robots. In the behavioral-based a.pproach [2] a number of basic behaviors is 
prescribed, e.y., obstacle avoidance, keep formation, goal seeking. The overall control action 
(emergent behavior) is a weighted average of the control actions for each basic behavior. In 
this case, deriving control strategies for competing behaviors and implementing them in a 
decentralized fashion can be straightforward. However, formal analysis of the emergent team 
behavior is difficult and, in general, stability and performance cannot be guaranteed. 

when operating in unstructured or dynamic environments with many different sources 
of uncertainty, it is very difficult if not impossible to design controllers that will guarantee 
performance even in a local sense. In contrast, we also know that it is relatively easy to design 
reactive controllers or behaviors that react to simple stimuli from the environment. This is 
the basis for the subsumption architecture [6] and the paradigm for behavior-based robot,ics. 
while control and estimation theory allows us to model each behavior as a dynamical system, 
it does not give us the tools to model switches in behavior or the hierarchy that might be 
inherent in the switching behavior. 

The lack of a formal analysis of switching-based cooperative control has motivated this 
paper. Here we describe a framework for decentralized cooperative control of multi-robotic 
systems that emphasizes simplicity in planning, coordination, and control. The framework 
incorporates a two-level control hierarchy for each robot consisting of a trajectory generation 
level and a coordination level as illustrated in Figure 1. The trajectory generator derives 
the reference trajectory for the robot while the coordination level selects the appropriate 
controller (behavior) for the robot. 

The availability and sharing of information between the robots grea.tly influences the de- 
sign of each level. This is particularly true at  the trajectory generation level. The trajectory 
generator can be completely decentralized so that ea,cli robot generates its own reference 
trajectory based on the information available to it ,  t'hrough its sensors and through the com- 
munication network. Alternatively, a designated leader plans its trajectory and the other 
group members are able to  organize themselves to following the leader. The trajectory gen- 
erators are derived from potential field theory. Unlike 1221, they are simple goal-directed 
fields that are not specifically designed to avoid obstacles or neighboring robots. Instead, 
when a robot is close to an obstacle, it adopts a behavior that simula.tes the dynamics of a 
visco-elastic collision with the obstacle guarmteeing that the actual collision never happens. 



At the coordination level we assume range sensors that allow the estimation of position 
of neighboring robots and obstacles. This model is motivated by our experimental platform 
consisting of mobile robots equipped with omnidirectional cameras described in [8, 11. Each 
robot chooses from a finite set of modes or control laws that describe its interactions with 
respect its neighbors (robots and obstacles) and allow it to go to a desired goal position. 
Thus the overall goal of this level is to prescribe the rules of mode switching and thus the 
dynamics of the switched system [19]. 
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Figure 1: A formation control framework. 
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In the paper, we first described the three rnain components shown in Figure 1. First, 
in section 2 we present the suite of control modes and the strategy for switching between 
these modes in a stable manner. Second, in section 3, we describe an algorithm for se- 
lecting control modes based on the available information and the geometric, kinematic, and 
dynamic constraints of the robot system. The third component is the trajectory generator. 
In section 4 ,  we present a novel approach that combine potential functions and the dynam- 
ics of visco-elastic contact to generate the trajectory either for a designated leader or for 
each robot. In this way we are able to hierarchically compose planning and control in a 
distributed fashion. Finally, simulation results illustrate the benefits and the limitations of 
this methodology underlying the implementation of cooperative control of robot formations 
in section 5. 
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2 Formation Control 

In this section, we consider a group of n nonholonornic mobile robots and describe the 
controllers that specify t,he interactions between each robot and its neighbor. We will make 
two assumptions. First, we will assume that the robots are planar and have two independent 
inputs. This means we have to restrict the robot control laws to those that  regulate two 
outputs. Second, we assume that the robots are assigned integer valued labels from 1 through 
n which restrict the choice of control laws. Robot 1 is the leader of the group. A robot with 
a label i ,  ignores the movements of robots with labels that have values higher than i .  Thus, 
it can control its position and orientation with robots whose labels are lower than i .  The 
assignment and dynamic re-assignment of these labels are discussed later. 

We adopt a simple kinematic model for the nonholonomic robots. The kinematics of the 
ith robot are given by 

xi=uicosOi, y i = ~ i s i n # i ,  # = w i  (1) 

where xi - (xi, yi, Oi) E SE(2) .  Most commerciall~r available robots do not allow the direct 
control of forces or torques. Instea,d they incorporate motor controllers that allow the spec- 
ification of vi and wi. Thus we will treat these as our inputs. Again we point the reader to 
our previous work [Ill to illustrate the advantages and limitations of this simple model. 

In Figure 2, we show subgroups of two and three robots. Robot j can be designated as a 
follower of Robot i if i < j .  Let i < j < k. We first describe two controllers that allow robot 
j to follow i (Figure 2 (left)), and robot k to follow robots i and j (Figure 2 (right)). We 
then describe a third controller that describes possible interactions with an obstacle. (Figure 
3). 

Figure 2: The Separation Bearing and Separation Separation Controllers. 

Separation Bearing Control By using this controller (denoted SBijC here), robot R j  
follows Ri with a desired separation 1: and desired relative bearing $&, see Figure P(1eft). 
The control velocities for the follower are given by [lo] 

vj = sij cos -yij - lij sin yij(bij + wi) + vi cos(ei - Q ~ )  (2) 

1 
0 - - [ S . .  

3 - d  $3 sin yij + lij cos yij(bij + ui) + I U ~  sin(Qi - Q ~ > I  ( 3 )  



where d is a distance from the wheel axis to a reference point on the robot, and 

The closed-loop linearized system is 

Separation Separation Control By using this controller (denoted SikSjkC), robot Rk 
follows Ri and R j  with a desired separations 12 and Ifk,  respectively, see Figure 2(right). In 
t,his case the control velocities for the follower robot become 

s i k  sin yjk - s j k  sin yik + vi cos gilt sin yjk - vj cos Qjk sin yik 
'Uk = 

~in(7jX - ~ i k )  
(8) 

The closed-loop linearized system is 

Separation Distance-To-Obstacle Control In this case (denoted SD,C), the outputs 
of interest are the separation lij between the follower and the leader, and the distance S 
from an obstacle to  the follower. We define a virtual robot R, as shown in Figure 3, which 
moves on the obstacle's boundary with linear velocity v, and orientation 6,. For this case 
the velocity inputs for the follower robot R j  are given by [ll] 

sij cos 70, + Soj sin yij + vi cos $. . cos . 

vj = 23 03 

( ~ o j  - 7ij) (11) 

Thus, the linearized kinematics become 

d 
j = I (  - i ) ,  8 = ko(Go - 6), %j = W j .  ( l3) 

where s,j = k0(6, - 6), 6, is the desired distance from the robot R j  to an obstacle, and ki's 
are positive c,ontroller gains. 

It is worth noting that feedback I/O linearization is possible as long as d cos(yoj - y. .) # 0, 
+ 23 + 

i.e., the controller is not defined if yoj - yij = i k $ .  This occurs when vectors S and lij are 
collinear. Moreover, by using this controller a follower robot will avoid the nearest obstacle 
within its field-of-view while keeping a desired distance from the leader. This is a reasonable 
assumption for many outdoor environments of practical interest. Complex environments 
(e.g., star-like obstacles) that require a different strategy where a leader tracking may not 
be guaranteed are beyond the scope of tjhis paper. 
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Figure 3: The Separation Distance to Obstacle Control SDoC. 

2.1 Stability Analysis 

In this section we develop a general approach to build formations in a, modular fashion. The 
low-level control is coordinated by the protocol presented in next section. To be more specific, 
since each robot in the team is nonholonomic, it is able to control up two output variables [9], 
i.e., a robot can follow another robot maintaining a desired separa.tion and bearing, or follow 
two robots maintaining desired separations. Thus, a basic formation building block consists 
of a lead robot Ri, a first follower robot Rj, and a follower robot Rk. Figure 4 illustrates the 
basic formation and the actual robots we use in our experimental testbed. The basic idea is 
that R, follows a given trajectory g ( t )  E SE(2) ,  Rj  and Rk use SBC and SSC, respectively. 
In the following, we prove that the basic formation is stable, that is, distances and bearings 

Figure 4: The basic formation configuration. 
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reach their desired values asymptotically. Notice we are not showing that the whole group of 
robots will reach the goal position, instead the group navigates in formation going wherever 
the lead robot is going. Since we are using 110 feedback linearization [14], the linearized 
systems are given by (7) and (10) with outputs 

It is straightforward to show that the output vectors xl,2 will converge to the desired values 
arbitrarily fast. However, a complete stability analysis requires the study of the internal 
dynamics of the robots i.e., the heading angles Q j  and Qk which depend on the controlled 
angular velocities wj and wk. 

Theorem 2.1 Assume that the lead vehicle's linear velocity along the path is  lower bounded 
i.e., vi > Vmi, > 0,  i ts  angular velocity is  also bounded i.e., IwiII < W,,,, the relative velocity 
S, = vi - v j  and relative orientation So - Qi - Q j  are bounded by small positive nufmbers &I,  

E Z .  I j  the control velocities (2)- (3) are applied to Rj ,  and the control velocities ( 8 )  (9) 
are applied to  Rk then the formation is  stable, and the system outputs l i j ,  gi j ,  lik, and l j k  
converge exponentially to the desired values. 

Proof: Let the system error e = [el 0 . 0  esIT be defined as 

We need to show that the internal dynamics of Rj and Rk are stable which in formation 
control, is equivalent to show that the orientation errors e 3 ,  e~ are bounded. For the first 
follower Rj ,  we have 

e3 = wi - wj  

after some algebraic simplification, we obtain 

where 
1, 1 

gl ( t ,  e3)  = (1 - - d cos yij)wi - - d ( k l e l  sin yij + k2e2lij cos y i j )  

The nominal system i. e., gl ( t ,  e 3 )  = 0 is given by 

which is (locally) exponentially stable provided that the velocity of the lead robot vi > 0. 
Since w, is bounded, it can be shown that Ilgl(t, e3)1( 5 Sb By using stability theory of 
perturbed systems [15], and assuming that Ile3(to:~Il < clsr for some positive constant cl < 1, 
then 

3 5 1 ,  v t  2 t l  



for some finite time t l .  Now for the follower Rk, the error system becomes 

efj = wi - Wk 

as before and after some work, we obtain 

Vi  . 
e'6 = --slneg + g 2 ( e ~ , ~ i r  e4,e5, 6u,60) 

d 

where 

g2(t,e6) = ~i - ~ i 6 0  sin $jk co~(eg - $jk)  + dv cos(es + $ik) cos qjk - 
d[60 cos($jk - $ij) + sin($jk - $ij)] 

Again, the nominal system is given by (16) i.e., g2(t, e6) = 0, and it  is (locally) exponentially 
stable provided that the velocity of the lead robot vi > 0. Since l l ~ ~ l l  < Wmax, lldv 1 1  < ~ 1 ,  

and llSell < E ~ ,  it can be shown that Ig2(t, e6) 1 1  < 62. Assuming that I(e6(to) ( < C ~ T  for some 
positive constant c2 < 1, then 

for some finite time t2 .  

The above theorem shows that,  under some reasonable assumptions, the three-robot for- 
mation system is stable i.e., there exists a Lyapunov function V(t ,  e) in [0, m) x D, where 
D = {e E 8" llell < c}, such that ~ ( t , e )  < 0. Let 

be a Lyapunov function for the system error (14) then 

T T V i 
V = -e12Q12e12 - e4,Q4,e45 - -es sin es d (19) 

T -  where ey2 = [el e2], e,, = [e4 e5], and P12, P 4 ~ ,  QI2, and Q45 are 2 x 2 positive definite 
matrices. By looking a t  (18)-(19), we can study some particular formations of practical 
interest. 

Let us assume two robots in a linear motion leader-following formation i.e., ui is con- 
stant, and i~li = 0. Thus the Lyapunov function and its derivative become 



T Zl i 
V2 = -el2QI2el2 - -e3 sin e3 

d 
then the two-robot system is (locally) asymptotically stable i.e., e3 + 0 as t + oo 
provided that vi > 0 and Ile31( < sr. If wi is constant (circular motion), then e3 
is bounded. It is well-known that an optimal nonholonomic path can be planned by 
joining linear and circular trajectory segments. This result can be extended to n robots 
in a convoy-like formation (c.f., [7]. Let us consider a team of n robots where Ri follows 
RiPl under SBC. A Lyapunov function and its derivative can be given by 

where ei-1.i = [l:-,,i - li-,, n - $i-I,i]T is the output error, and PU = BiP1 - 8, is the 
orientation error between RiFl and Ri. 

A similar analysis can be carried out for the case of three robots in a parallel linear 
motion where ui = uj = constant, wi = w j  = 0, and 8,(to) = Bj(to). The Lyapunov 
function and its derivative are given by 

T 'l) i 
V3 = -e45Q45e45 - -e6 sin es 

d 

then the three-robot system is (locally) asymptotically stable i.e., e6 -+ 0 as t -+ oo 
provided that vi > 0, Ile6Jl < sr and lij < lik + ljlc Again, this result can be extended 
to n robots in parallel linear formation. 

So far, we have shown that under certain assumptions a group of robots can navigate main- 
taining a stable formation. However, in real situations mobile robotic systems are subject to 
sensor, actuator and communication constraints, and have to operate within unstructured 
environments. These problems have motivated the development of a switching parading that 
allo~vs robots change the shape of the formation on-the-fly. The basic idea is as follows. Sup- 
pose a two-robot (R1, R2) formation is following a predefined trajectory using SBC. If there 
is an obstacle in the field-of-view of the follower, it switches to SDoC. When the obstacle 
has been si~ccessfully negotiated, R2 switches back to SBC. Assume now a third robot R3 
joins the formation. Since R3 has some sensor constraints, it may see or follow R1, R2 or 
both. For avoiding inter-robot collisions, the preferred configuration is that R3 follows R1 
and Rg using SSC. Thus, if Rg sees only R2, it will follow R2 with desired values ( i .e .  1i3, 
$&) selected in a way that R3 is driven to the doma.in of controller SSC. Similarly, if R3 sees 
only R1, the desired output values (1&, $I&) are chosen sucli that R3 is driven to the domain 
of controller SSC. The interested reader is referred t,o [Ill for details. 



3 Coordination Protocol 

At the coordination level, for an n robot formation to  maintain a desired shape we need 
to model the choice of controllers between the individual robots as they move in a given 
environment. We use directed graphs as our tool for accomplishing this. 

Figure 5: Formation graph for 4 robots 

Formation control graphs When n > 3, we can construct more complex formations by 
using the three controllers discussed in Section 2. In Figure 5 for example, the formation 
of a group of four robots involves one separation-bearing control (R2 following R1) and two 
separation-separation controllers ( R j  following R1 and R2, and R4 following R2 and R3). 
We call such a directed graph 3C, with n nodes representing n robots and edges describing 
the control policy between the connected robots, a control graph. Any control graph can be 
represented by its adjacency ma t r i x  (see [20] for definition). For the example in Figure 5, 
this adjacency matrix is given by: 

Note that  this is a directed graph with the control flow from leader i to  follower j .  If a 
column k has a non zero entry in row i, then robot k is following i. A robot can have up 
to  2 leaders. The column with all zeros corresponds to the lead robot. A row with all zeros 
corresponds t o  a terminal follower. 

It  is clear that  the number of possible control graphs increases dramatically with the 
number of robots. For labeled robots with the constraint of leaders having lower labels than 
followers, n = 3 allows 3 control graphs, n = 4 results in 18 graphs, and n = 5 results in 180 
graphs. The nurnber of possible control graphs for 10 robots exceeds a billion. However, if 
we consider identical (unlabelled robots), the control graphs can be classified into a smaller 
number equivalence classes [lo]. Note that H nerd not be upper triangular in such a case. 
In either case, labelled or unlabelled, identifying the appropriate control graph for a given 
situation is an important and challenging problem. 

We now focus on the following problem. Given a distribution of n robots with known 
configurations with one lead robot and m obstacles, find an optimal formation control graph 



3-1 assigning a controller and leader(s) for each robot. The choice of 3-1 depends on constraints 
on the robot. We will consider the following two constraints. 

Sensor constraints: the range and field of view of the robot's sensor; 

Kinematic constraints: the relative position and orientation between neighboring robots 
and the rates of change of these quantities. 

Maintaining Formation Constraints We will assume that each robot has perfect in- 
formation about its own state. We will also make the very conservative assumption that 
the robots cannot communicate. Thus, the only channel of communication is indirect, via 
sensory observations. The sensor constraints indicate the observations that are possible. 
Control graphs that  are compatible with the sensor constraints have to be identified. (For 
example, a robot cannot follow a robot that it cannot see). The primary consideration with 
kinematic constraints is the possibility of collision. We want to ensure that the separation 
c,, between robots i and j is above a threshold. In ilddition, we will consider the rate of 
change of this separation and ensure that relative mot<ion between the robots do not cause 
this separation t o  decrease below the threshold rapidly. 

To formalize these ideas, consider first the dynamics of the group, where the formation 
configuration is given by 

x = [xl, 2 2 , .  . . xn] T 
(27) 

Then we can write 
x = [xl, x 2 , .  . . x,] T 

where robot j with control inputs uj  has dynamics xj  = f j (x ,  u j ) .  Suppose R j  has to 
maintain the formation separation constraint c(xi,  ~ j )  < 0 with a neighboring robot Ri. In 
order for R j  to consider choosing Ri as a leader (assuming it is observable by Rj) we need 
to define a measure for the rate of change of separation of R j  relative to  Ri. Let us replace 
c(xi,  xj) with cij for simplicity. We know: 

which can be written as: 
cij = CfiCij + CfjCij 

where, Cficij denotes the Lie derivative of cij along f ,. Now Rj can calculate instantaneous 
time to violation with R; as: 

In order t o  calculate Stij explicitly we can either instantaneously consider Ri to be static 
(xi = 0 in (29)) or assume Rj estimates x i .  We assunle R j  knows xj  accurately. The sign of 
6tij tells us if R j  is headed towards or away from Ri. S t i j  = 0 means violation has occurred. 
A smaller magnitude of Stij means violation is about to ha,ppen (negative sign) or has just 
happened (positive sign). This captures the fact that robots which are close but are facing 



away from each other are less important candidates than ones which are farther apart but 
are headed towards constraint violation. 

We are now ready to  present our algorithm for assigning a feasible formation control 
graph H given n robot configurations with one lead robot and arbitrary labels. In addition 
the control graph is optimal with respect to the choice of the maximum possible number 
of leaders with stable controllers (Section 2) for every robot. First, we build three n x n 
matrices C = [ci,], T = [6tij] and = [4ij]. The first two are described above and 4ij is the 
angular position of Ri relative to R j  (in its current configuration). 

control-graph-assignment algorithm { 
for each robot k E {1,2, . . . , n) { 

Step 1 
find set P of robots from row k of C & s.t,. 

cik < sensor-range & q5ik E sensor-field-o f -view M i  E P; 
find set Q of robots from column k of C & @ s.t. 

cik < sensor-range & q5ik E sensor- f ield-o f -uiew Mi E Q; 
if (P U Q) = 0 next k, goto Step 1; 
sort P U Q in ascending order of Stilc (i E (P U Q));  
let S = {j : 6tjk 5 0, j E (P u Q)); 
i f S = 0 {  

for i E (P u Q) s.t. 6tik least positive, assign H(i, kj = 1; 
next k ,  goto Step 1; ) 

if numO f Elements (S) = 1 { 
assign H(i, k) = 1 for S = {i); next k, goto Step 1; ) 

if numO f Elements(S) 2 2 { 
pick last two {i, j) E S (with i 5 j); 
if {i, j, k) satisfy triangle inequality { 

H ( i ,  k) = 1 & H(j, k) = 1; next k, goto Step 1; ) 
H ( j ,  k) = 1; next k, goto Step 1; } 

1 

There can be situations where a pair of robots (Ri, Rj) ,  that  are close to  each other, 
are facing each other and have symmetric configurations. This might cause a "tie" where 
R j  chooses Ri as a reference and Ri chooses R j  as a reference. If either of them is the 
lead robot or has another robot as a reference, the ttie can be resolved. If not, this is 
when communication between neighboring robots becomes necessary. It  will be clear in the 
examples below that such ties can be easily detected in the control graph. 

Examples We now look a t  two example situations with four robots. In one of them we 
will see the need for communication to break a tie as two robots try to  follow each other. In 
both each individual robot assumes it has unit linear velocity a t  the given instant. 

Example 1: The robot configurations (x, y in m., 0 in rad.) in Figure 6 are (0,3, O ) ,  
(2,3, O ) ,  (0 ,4,  n-), and (0 ,1 ,2 ) .  The sensors look ahead of the robot for a range of 3 m. and 



a field of view of T rad (facing forward). The robots themselves are assumed to occupy a 
circle of radius 0.5 m. The adjacency matrix of the output graph is given by 

Figure 6: Optimal control graph for Example 1 (left) and Example 2 (right) 

The interesting fact is that R3 is not a part of the formation as it cannot see any of the other 
robots and is outside the angular field of view of R1 and R 2  Robot R2 is the lead robot, R1 
follows R2 and R4 follows both R1 and Rp. 

Example 2: The robot configurations (same units as above) in Figure 6 are (1,0, :), 
(2 ,2 ,  0), (3, -1, T) ,  and (4,2, T).  The sensor constraints are same as in Example 1. The 
adjacency matrix of the output graph is given by 

The interesting thing to note in this example is that there is a tie regarding choosing a 
leader between Rp and robot R4 due to their symmetric configurations. However this can be 
easily detected in (33) as H2(2, 4) = Hp(4, 2) = 1. Thus given a graph U ,  communication is 
necessary between Ri and Rj whenever there is a tie i .e . ,  H(i, j )  = H ( j ,  i )  = 1. 

The above approach for choosing a formation control graph also works in the presence 
of obstacles which can be treated as virtual leaders (see section 2) if they satisfy the sensor 
constraints. We add an extra row before the present first row of the adjacency matrix for 
each obstacle and run the algorithm. 

The control graph assignment algorithm models the decentralized decision making for 
each individual robot. It runs at  the supervisory level and needs the current configurations 



of all the robots. This is especially useful in simulations of large formations in complex 
scenarios (Section 4) to keep track of individual choice of controllers and switching between 
them. 

4 Decentralized Navigation Using Contact Dynamics 
Models 

In this section, we propose a decentralized scheme for sensor-based navigation systerns. This 
approach demonstrates strong scalability and is flexible in terms of designing controllers for 
different navigation tasks. The key idea that distinguishes our approach from previous work 
is the use of rigid body contact dynamics models to embrace collisions between the robot 
and its surroundings instead of avoiding them. 

4.1 Modeling collisions 

Consider a group of mobile robots moving in an environment with the presence of obstacles, 
we first characterize the surrounding spatial division of each mobile robot with three zones 
as depicted in Figure 7. Use robot R1 as an example, the sensing zone denotes the region 
within which a robot can detect obstacles and other robots. The contact zone is a collision 
warning zone. The robot starts estimating the relative positions and velocities of any objects 
that  may appear inside its contact zone. The innermost circle is the protected zone which 
is modeled as a rigid core during a possible contact to provide a collision free environment 
for the actual robot. The ellipse within the protected zone represents the reachable region 
of the robot for a given time buffer. During the planning process, we will use the protected 
zone as an abstraction of the agent itself. 

-.. -.--.._ 

Figure 7: Zones for the computation of contact response. 

For the planar case, the dynamics equations of rrlotion for the i th  agent in a n-robot 
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group are given by 

where qi E R3 (R6 for the spatial case) is the vector of generalized coordinates for the 
i th  agent, Mi is an 3 x 3 positive-definite symmetric inertia matrix, hi(qi, qi) is a 3 x 1 
vector of nonlinear inertial forces, and ui is the 3 x 1 vector of applied (external) forces 
and torques which can be provided through the local controller. k is the number of the 
contacts between the i th  agent and all other objects which could be either obstacles or other 
robots. Fij = (FN,?, F ~ , ~ ~ ) ~  is a 2 x 1 vector of contact forces corresponding to  t,he j t h  
contact, and Wij E R3x2 is the Jacobian matrix that relates the velocity a t  the j th  contact 
point t o  the time derivatives of the generalized c,oordinates of the agent. For the time being, 
we will assume that rlonholonomic constraints a.re not present. 

We adopt a state-variable based compliant contact model described in [23] to  compute 
the contact forces. At the j th  contact of the agent i ,  the normal and tangential contact 
forces (Frv,ij and FT,ij are given by 

where the functions f N  and fT are the elastic stiffness terms and y~ and g~ are the damping 
terms in the normal and tangential directions respectively. Similar to  handling rigid body 
contact, these functions can be designed to  adjust the response of the robot when contact 
happens. GN,ij(q) and 6T,ij(4) are the local normal and tangential deformations which can 
be uniquely determined by the generalized coordi11a)tes of the system. It  is also possible to  
add on the frict,ional effects if desired. The details and variations on the compliant contact 
model are discussed in [18, 231. A key feature of this model is that it helps us resolve the 
ambiguous situations when there are more than three objects came into contact with one 
agent. 

Figure 8 shows an example of the army-ant scenario (marshaling) in which 25 robots 
trying to  team around a goal. The grouping is done dynamically using decentralized decision 
making. While the team is initialized with two groups, the groups merge around the goal 
location. A quadratic well type of potential function [16, 171 is constructed to  drive the 
robots toward the goal. The expression of the potential function is given by 

where q, is the coordinates of the goal. The input u, for the it11 agent can be obtained by 
the gradient of the potential function 

which is a proportional control law. Asymptotic stabilization can be achieved by adding 
dissipative forces t o  u [16]. Other types of potential fields, such as the conical well function 
[XI, can be used to  cover a larger environment. 



Figure 8: Example of large-scale exploration: the army-ant scenario with 25 holonomic 
agents 

Figure 9: Grouping of nonholonornic robots. 



This approach can be easily scaled up for even larger numbers of robots. A decentralized 
control structure appears naturally based on this approach. Each agent is guided by a local 
(decentralized) controller that uses the information obtained within its sensing zone. Explicit 
communications between robots are avoided. 

4.2 Decentralized control of nonholonomic agents 

The nonholononlic nature of most autonomous robots requires substantial care when devel- 
oping the local level controllers 14, 51. The dynamic model for a car-like nonholonomic agent 
can be expressed as 

where B is an input transformation matrix. X is the constraint forces due to the following 
nonholonornic constraints 

Ai (qi)qi = 0, or qi = Si(qi)vi. (40) 

We can project the contact forces c:=, WijFij onto the reduced space while eliminating the 
constraint forces Ai(qi)TXi in (39). The complete dynamics of the reduced system is given 

by 

where 51 = ST211S E is a symmetric, positive definite matrix. Note that the index 
i in the above equations is omitted for the sake of simplicity. We use 1/0 linearization 
techniques to generate a control law u that gives exponentially convergent solutions for the 
state variables (q, v )  [12]. The projected contact forces are treated as external disturbances 
during this process. Figure 9 shows the simulation results of an example for the grouping 
behavior of 4 nonholonomic agents. 

The contact mechanics based framework proposed here is highly flexible. Other naviga- 
tion behaviors such as the formation behaviors can be fully integrated with this framework. 
We will demonstrate this in the next section. 

5 Simulation Results 

The results obtained in previous sections are applied tlo a sirrlulation example which in- 
cludes four robots and an obstacle. First, the initial control graph is given by the algorithm 
presented in section 3. Second, the trajectory for the lead robot, R1, is generated by the 
technique discussed in section 4. Finally, the basic controllers and the switching strategy 
outlined in section 2 are implemented on R2,3,4 The desired shape of the formation is a 
dia,mond with inter-robot separation of 1.2 m. As it is shown in Figure 10, the robots are 
able to negotiate the obstacle, avoid collisions and keep formation. 



Trajeclor~es of R1, R2. R3, and R4 
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Figure 10: A 4-Robot example-Decentralized planner. 

Trajectories of R1. R2. R3, and R4 
I 

l 1  I 

Figure 11: A 4-Robot example-Centralized planner. 

We repeat the simulation experiment, but this time the lead robot's trajectory is gener- 
ated taking into account masses and inertias of the whole group. Thus, as it  can be seen in 
Figure 11 the behavior of the group after a collision is different from the previous case. 



6 Conclusions 

In this paper, we have presented a framework for controlling and coordinating a team of non- 
holonomic mobile robots. We have identified and integrated three fundamental components 
in formation control: reference trajectory generation, a coordination protocol that allows the 
robots to switch between control policies, and a suite of controllers that under reasonable 
assumptions guarantees stable formations. Our approach can easily scale to  any number of 
vehicles and is flexible enough to support many formation shapes. The framework described 
here can also be applied to other types of unmanned vehicles (e.g. ,  aircrafts, spacecrafts, and 
underwater vehicles). Currently, we are conducting experiments on a team of nonholonomic 
mobile robots, and applying similar ideas to formati011 flight on SE(3) .  
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