

University of Pennsylvania ScholarlyCommons

Senior Design Reports (CBE)

Department of Chemical & Biomolecular Engineering

4-2016

Cocoa Liquor, Butter, & Powder Production

Mack Asselstine University of Pennsylvania, wass@seas.upenn.edu

Joseph M. Mollo University of Pennsylvania, joe.m.mollo@gmail.com

Jesus M. Morales *University of Pennsylvania,* jmorales@seas.upenn.edu

Vasiliki Papanikolopoulos University of Pennsylvania, vpap@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cbe_sdr Part of the <u>Biochemical and Biomolecular Engineering Commons</u>

Asselstine, Mack; Mollo, Joseph M.; Morales, Jesus M.; and Papanikolopoulos, Vasiliki, "Cocoa Liquor, Butter, & Powder Production" (2016). Senior Design Reports (CBE). Paper 88. http://repository.upenn.edu/cbe_sdr/88

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cbe_sdr/88 For more information, please contact repository@pobox.upenn.edu.

Cocoa Liquor, Butter, & Powder Production

Abstract

This project recommends a design for a cocoa processing plant to produce cocoa liquor, powder, and butter from fermented cocoa beans, in accordance with US Patent 6,066,350. The recommended design minimizes the use of external utilities by optimizing various heat integration strategies. The plant has a capacity of 120,000 tonnes/year and will be located in Tema, Ghana. The proposed design yields 25,000 tonnes/year of alkalized cocoa liquor with 54% fat, 52,000 tonnes/year of cocoa butter, 36,000 tonnes/year of 3% fat alkalized cocoa powder, and 9,000 tonnes/year of below 0.5% fat alkalized cocoa powder. The cocoa butter and powders made in this process are of Food Grade quality and are compliant with FDA regulations, and have less than 1 PPM residual solvent concentrations. A total permanent investment of \$19M is required. Despite this, the process has an estimated IRR of 33.5% and an NPV of \$29M. It is recommended that the company bring this plant into operation and commence additional research, with emphasis in the cocoa powder market, and the effectiveness of solvent extraction and removal.

Disciplines

Biochemical and Biomolecular Engineering | Chemical Engineering | Engineering

University of Pennsylvania School of Engineering and Applied Science Department of Chemical and Biomolecular Engineering 220 South 33rd Street Philadelphia, PA 19104

April 12, 2016

Dear Dr. Holleran, Professor Fabiano, and Mr. Tieri,

Enclosed you will find a proposed design for the cocoa processing facility, specified in the problem statement provided by Mr. Stephen M. Tieri of DuPont. The proposed plant is for the industrial production of 120,000 tonnes/year of food-grade cocoa liquor, butter, and powder from fermented cocoa beans in Tema, Ghana. The overall process produces 25,000 tonnes/year of cocoa liquor, 52,000 tonnes/year of cocoa butter, 36,000 tonnes/year of low-fat cocoa powder, and 9,000 tonnes/year fat-free cocoa powder. The process implements solvent extraction technology as specified by U.S. Patent 6,610,343 issued to Cargill, Inc in 2003. Fermented cocoa beans are cleaned in a series of mechanical cleaners and a de-stoner. The beans are then processed via roasting, sterilizing, and de-shelling. The prepared nibs are ground into cocoa liquor, which is further treated with solvent to de-fat the cocoa powder. The cocoa powder and butter products are taken through flash and steam stripping towers to remove residual solvent.

This report contains a detailed process design and profitability analysis of the proposed plant. The calculations and sensitivity analyses that led to critical design decisions for the processes in this plant are included. Production was assumed to be 24 hours a day for 292 days a year.

Rigorous profitability analysis was performed to determine plant feasibility. The proposed plant is found to be economically feasible. The total permanent investment of the plant is \$19M, and the expected NPV is \$29M by 2033. It has an estimated IRR of 33.5% and the ROI is 33.7%. It is recommended to pursue plant production using the outlined process design, but continue to research the solvent extraction performance.

Sincerely,

Mack Asselstine

Joseph Mollo

Jesus Morales

Vasiliki Papanikolopoulos

Cocoa Liquor, Butter, & Powder Production

Mack Asselstine | Joe Mollo | Jesus Morales | Vasiliki Papanikolopoulos

Project submitted to:

Dr. Sean Holleran Prof. Leonard Fabiano

Project proposed by:

Mr. Stephen Tieri

Department of Chemical and Biomolecular Engineering School of Engineering and Applied Science University of Pennsylvania April 12, 2016

Section 1: Abstract	7
Section 2: Introduction and Background Information	8
2.1 Introduction	8
2.2 Objective Time Chart	10
2.3 Innovation Map	11
Section 3: Concept Stage	13
3.1 Market Analysis	13
3.2 Competitive Analysis	17
3.3 Customer Requirements	18
3.4 Preliminary Process Synthesis	19
3.5 Assembly of Database	22
Section 4: Process Flow Diagram & Material Balance	24
4.1 Section 100	25
4.2 Section 200	28
4.3 Section 300	31
4.4 Section 400	34
4.5 Section 500	37
4.6 Section 600	41
Section 5: Energy Balance & Utility Requirements	44
5.1 Heat Integration Strategy	44
5.2 Process Utilities	45
Section 6: Equipment List & Unit Descriptions	48
6.1 Unit Descriptions	48
6.2 Unit Specification Sheets	60
Section 100: Silos, Conveyors, Fine Cleaner, Coarse Cleaner, Destoner	60

Table of Contents

Section 200: Winnowers, Roaster, Sterilizer, Conveyors
Section 300: Pumps, Coarse Grinder, Fine Grinder74
Section 400: Pumps, Mixer, Reactor, Tower, Decanter, Heat Exchanger77
Section 500: Mixers, Dryers, Filters, Centrifuge, Pumps, Conveyors
Section 600: Heat Exchangers, Pumps, Decanter, Storage Tank, Stripping Column, Flash
Column
Section 7: Equipment Cost Summary
Section 8: Operating Cost - Cost of Manufacture
Section 9: Other Important Considerations
9.1 Plant Location, Layout & Startup129
9.2 Waste Management
9.3 Filter Buildup
9.4 Environmental Considerations
9.5 Process Controllability
9.6 FDA & Good Manufacturing Practices
9.7 Food Grade Quality
Section 10: Economic Analysis
10.1 Sensitivity Analyses
10.2 Economic Analysis134
Section 11: Conclusions and Recommendations141
Section 12: Acknowledgements
Section 13: References
Section 14: Appendices
Appendix A: Sample Calculations149
Appendix B: ASPEN Flowsheets, Input Summary, and Block Reports152

Appendix C: Material Safety Data Sheets	253
Appendix D: Supplemental Equipment Brochures	273

Tables:

Table 1. Stream Summary for Section 100. 2	27
Table 2. Stream Summary for Section 200	30
Table 3. Stream Summary for Section 300	33
Table 4. Stream Summary for Section 400	36
Table 5. Stream Summary for Section 5004	40
Table 6. Stream Summary for Section 6004	43
Table 7. Net Utility Requirements by Equipment Unit4	46
Table 8. Utility Costs per kg of Cocoa Powder4	47
Table 9. Equipment Cost Summary12	25
Table 10. Sensitivity Analysis of Utility and Commodity Prices	34
Table 11. Sensitivity Analysis of the Portion of Cocoa Liquor Sent for Processing	34

Figures:

Figure 1. Innovation Map for Cocoa Liquor, Butter, and Powder Production12
Figure 2. Cocoa Ingredients by absolute volume growth for 8 applications in China and India for
2013-201814
Figure 3. Cocoa Ingredients by percent volume share in three categories, Cocoa Powder, Butter,
and Liquor in 2013-2018 for India, China as compared to the rest of the world14
Figure 4. Process Flow Diagram for all bean cleaning operations including silo bean storage,
coarse cleaning, fine cleaning and destoning
Figure 5. Process Flow Diagram for bean processing including roasting, sterilizing, and
winnowing

Figure 6. Process Flow Diagram for shell burning and cocoa nib grinding into cocoa liquor32
Figure 7. Process Flow Diagram for alkalization of cocoa liquor
Figure 8. Process Flow Diagram for solvent extraction of cocoa butter from cocoa powder39
Figure 9. Process Flow Diagram for cocoa butter refining via flash evaporation and steam
stripping42
Figure 10. Input Summary136
Figure 11. Cost Summary140
Figure 12. Cash Flows143
Figure 13. Profitability Measures

Section 1: Abstract

This project recommends a design for a cocoa processing plant to produce cocoa liquor, powder, and butter from fermented cocoa beans, in accordance with US Patent 6,066,350. The recommended design minimizes the use of external utilities by optimizing various heat integration strategies. The plant has a capacity of 120,000 tonnes/year and will be located in Tema, Ghana. The proposed design yields 25,000 tonnes/year of alkalized cocoa liquor with 54% fat, 52,000 tonnes/year of cocoa butter, 36,000 tonnes/year of 3% fat alkalized cocoa powder, and 9,000 tonnes/year of below 0.5% fat alkalized cocoa powder. The cocoa butter and powders made in this process are of Food Grade quality and are compliant with FDA regulations, and have less than 1 PPM residual solvent concentrations. A total permanent investment of \$19M is required. Despite this, the process has an estimated IRR of 33.5% and an NPV of \$29M. It is recommended that the company bring this plant into operation and commence additional research, with emphasis in the cocoa powder market, and the effectiveness of solvent extraction and removal.

Section 2: Introduction and Background Information

2.1 Introduction

Cocoa powder and butter are traditionally produced by mechanically pressing cocoa liquor. This method of producing cocoa powder has numerous disadvantages, including long processing times and increased operating costs to reduce powder fat contents to 20% or lower. Low fat and fat-free cocoa powders, defined as having 3-5% and 0.5% fat by weight, are not feasible with batch pressing because the lower limit of extraction is 10-11%. In 2003, Cargill patented a process to extract cocoa butter from liquor using solvent extraction. The process uses a low molecular weight straight-chained alkane as the solvent. Cargill's solvent extraction process may be run continuously, eliminating long press times, and is able to produce low fat and fat-free cocoa powders (Purtle et al, 2003).

This project proposes a cocoa processing plant to produce solvent-extracted low fat and fat-free cocoa powder varieties using butane. Despite its flammability, the major advantage to using butane is that it is highly miscible in cocoa butter due its hydrocarbon properties. The price for butane is also expected to remain steady, and this makes it a suitable solvent for the proposed process.

The process begins with a traditional cocoa processing section, consisting of industrial scale cleaning and destoning units, roasters, winnowers, and alkalizing units. Cocoa beans from the Forastero trees in West Africa were used as they are the most common for large-scale processing ("Growing Cocoa", 2013). The process is run continuously over the course of the year and beans are assumed to be available year-round, sourced from a licensed buying company. A detailed justification for this assumption is found in Section 10.1.

To achieve the desired product requirements, a separation section is needed following traditional processing. Separation operations include centrifugation, evaporation, steam stripping, filtration, and cocoa powder drying. The final cocoa powder product is 3% or 0.5% cocoa butter by weight, and is sold at a competitive price.

The proposed plant will be located in Tema, Ghana and will produce approximately 120,000 tonnes/year of cocoa liquor, butter, and powder. This location was chosen due to both its abundance in cocoa beans and the commercial success of past and current cocoa processing endeavors.

2.2 Objective Time Chart

Project Name	Cocoa Liquor, Butter, and Powder Production
Project Advisors	Stephen M. Tieri, Dr. Sean Holleran, Professor Leonard Fabiano
Project Leaders	Mack Asselstine, Joseph Mollo, Jesus Morales, Vasiliki Papanikolopoulos
Specific Goals	Quantify the value of solvent extraction technology to separate cocoa butter and cocoa powder from cocoa liquor, and design a commercial plant to produce 120 MT/yr of cocoa liquor, butter and powder based on this technology.
Project Scope	 In-scope: Manufacturing process for cocoa butter and powder beginning from prepared cocoa liquor Design main process to include new solvent extraction technology as the final separation steps. Final product must be of Food Grade quality, fit for human consumption, and meet all FDA and other regulatory standards Maintain process integrity and by adhering to current good manufacturing practices and be as environmentally friendly as possible Determine if process with new solvent technology is best when compared to cost and production value of older processing methods Out-of-scope: Processing final cocoa powder into a variety of different products Flavored milk product, baking mixes and traditional chocolate Emerging technology in cocoa processing.
Deliverables	 Business opportunity assessment: What is the market for low-fat and fat-free grades of cocoa powder, and that for purified cocoa butter in general? How does the solvent extraction process compare to traditional processes? Technical Feasibility assessment: Is it technically feasible? Manufacturing capability assessment: Can the plant be built and the process utilized without significant capital investment? Product life-cycle assessment: Will the final product be of Food Grade Quality and meet FDA standards for a safe and consumable product?
Timeline	Complete design and economic analysis by April 12, 2016.

2.3 Innovation Map

The innovation map for this process is outlined below. Low fat and fat-free cocoa powders can be quickly produced in large quantities. Because this process is a more effective separation of cocoa butter from cocoa powders, butter yields are greater when solvent is used to process the cocoa. This improvement is a financial boon, as cocoa butter is the most lucrative product of this process. Mr. Todd Gusek, author of the Cargill 2003 patent, noted that the butter produced in this manner possesses a higher than normal cocoa butter cooling curve. This is advantageous to confectionaries as it allows the cocoa butter to solidify more readily at higher temperatures, making it less susceptible to melting.

The powder produced by this process also has advantages over the powder separated by traditional means. Most directly, lower fat content in the cocoa powder yields a healthier powder, both from the lack of fat and from the relative rise in antioxidant and flavanol content associated with it. Also, conventionally-produced powders tend to suffer from clumping as a result of their higher fat contents; manufacturers then add lecithin, an emulsifier, to avoid this issue. For this process, lecithin is no longer necessary, as the powder is already quite dispersible in liquids; the lack of this additive creates a more genuine tasting powder and a cheaper product.

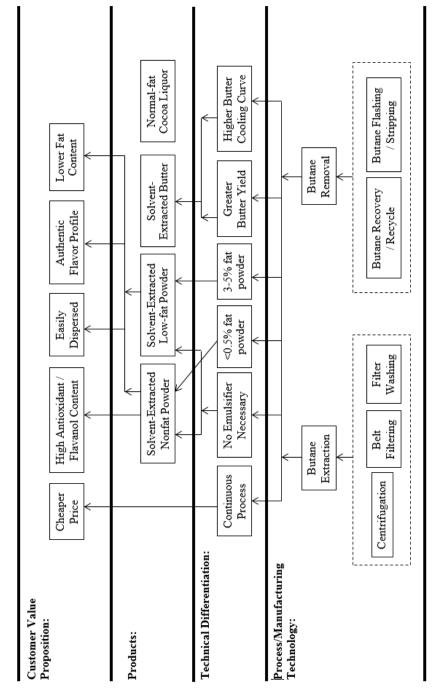


Figure 1. Innovation Map for Cocoa Liquor, Butter, and Powder Production from Solvent-Extraction Process

Section 3: Concept Stage

3.1 Market Analysis

Cocoa beans are processed into three main products: cocoa liquor, cocoa powder, and cocoa butter. Cocoa liquor is solid, unsweetened baking chocolate made from ground cocoa nibs, which can be transformed into cocoa powder and cocoa butter. Cocoa butter is the fat of the cocoa nib, and may be used in lotions and pharmaceutical products (Spiegel, 2014). It is also the main ingredient in white chocolate. Cocoa powder is the solid product of the cocoa nib and can be processed to have varying fat content. The powder is used in beverages, baking, and frequently as a dye. Chocolate is produced by combining both cocoa powder and butter with milk and sugar. With diverse applications for cocoa liquor, butter, and powder, cocoa bean processing is a complex undertaking that incorporates all corners of the world: farms largely in Africa and Central America, cocoa processing facilities concentrated in the Netherlands, and confectionaries all over the world.

China, India, and Brazil are emerging cocoa markets as recent years have given way to more disposable income. Chocolate products are becoming more popular in these countries. India is the fastest growing market for chocolate, at a rate of 17% since 2010 compared to a 9% growth rate in China (Pham, 2016). Lastly, in Brazil, by 2020, the premium chocolate market will grow 26% (Pekic, 2014).

The popular kinds of cocoa products in each country are different. Pastries and flavored milk are central to the Chinese market as displayed in Figure 2. Specifically, demand for chocolate flavored milk drinks is on the rise, where cocoa powder is the key ingredient. Alternatively, chocolate confectionery is central to the world market and India alike. Liquor is used to make the different varieties of chocolate products that target these markets.

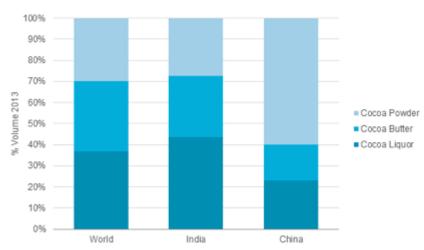

COCOA INGREDIENTS: ABSOLUTE VOLUME GROWTH BY APPLICATION 2013-2018

Figure 2. Cocoa Ingredients by absolute volume growth for 8 applications in China and India for 2013-2018 (Euromonitor)

Cocoa powder is the predominant cocoa ingredient in China, with 60% volume share (Euromonitor,

2014). Figure 3 also illustrates the resemblance between the cocoa market in India and the world market,

with cocoa liquor having the largest percentage volume, followed by cocoa butter.

COCOA INGREDIENTS: % VOLUME SHARE BY CATEGORY 2013-2018

Figure 3. Cocoa Ingredients by percent volume share in three categories, Cocoa Powder, Butter, and Liquor in 2013-2018 for India, China as compared to the rest of the world (Euromonitor)

For cocoa processing, addressing the cultural needs of these emerging markets will be key to the successful growth of the cocoa business in the future. The plant's cocoa powder and butter will be enticing products to manufacturers for these largely untapped markets.

On a per person basis, chocolate consumption in emerging markets is still relatively small compared to the rest of the world. China and India consume less than 2% of the world's largest chocolate markets, which are Western Europe and the United States (Pham, 2016). Assuming labeling regulations in Europe do not change during the lifespan of this processing facility, Mr. Todd Gusek suggested that solvent extracted cocoa powder and butter will be prohibited in these markets. However, cocoa liquor from the facility will meet the requirements to be sold in these countries.

Western Europe and the United States are dominating chocolate consumption, thus acknowledging their unique patterns is important when considering the production of cocoa liquor in the plant. In the Western Europe and US markets, there has been a shift in demand for healthier products. Chocolate companies are aware of health conscious consumers, and are targeting this market with low fat and sugar free options. Dark chocolate became a popular choice because of its high antioxidant levels and ability to lower blood pressure (DeNoon, 2003). Consumers are also seeking sugar free options. Hershey and Godiva sell sugar free chocolate while Bensdorp has ActicoaTM, a cocoa powder with cocoa flavanols that benefit the cardiovascular system and the body's blood circulation (Acticoa.com).

Also, sustainability is becoming more important to chocolate consumers. The documentary *The Dark Side of Chocolate* exposed the terrible implications of unregulated chocolate production in the form of child slavery. Thus, confectionaries are playing closer attention to their suppliers of cocoa products, in two respects - labor regulation and cocoa crop methods. The Fair Trade movement sources cocoa beans ethically, from small farmers that grow cocoa trees with limited chemical exposure. Its chocolate is sold at a premium due to the organic nature of the product and the regulation needed to support its system (Equal Trade, 2016).

Alkalization is the process of treating roasted cocoa nibs, or grounded cocoa liquor, with an alkalizing salt. Cocoa that has been treated with an alkalizing salt is also referred to as Dutch cocoa.

Alkalization raises the pH of the cocoa to 6.8 - 8.1, depending on reaction time and the concentration of alkaline (Miller et al). Not only does alkalization improve the taste of the cocoa by neutralizing the acidic bitterness of natural cocoa but, it also brings out a deep red or brown color in the powder. Due to these changes in taste and appearance, alkalized cocoa is preferred over natural cocoa.

3.2 Competitive Analysis

Cocoa processing facilities are spread out all over the world. Currently, there are no plants using solvent extraction to produce fat-free cocoa powder; however, there are a number of cocoa processing plants in Ghana. Barry Callebaut (67,000 tonnes/year capacity) and Cargill (65,000 tonnes/year) lead cocoa processing in Ghana. Overall, the Netherlands leads the world's grinding capacity with 530,000 tonnes/year, followed by the Ivory Coast with 440,000 tonnes/year, and United States with 405,000 tonnes/year (Nicholson et al, 2013).

The proposed facility, with an annual capacity of 120,000 tonnes of cocoa products will be the leading grinding facility in Ghana. To put this into perspective however, Olam, who recently acquired Archer Daniels Midland's cocoa business, now has a combined processing capacity of 700 MT (McFarlane and Hunt, 2015). Olam is an agri-business that focuses on supply chain management, processing and trading of soft commodities and Archer Daniels Midland is an agricultural processor. Barry Callebaut focuses on cocoa and chocolate manufacturing while Cargill is a provider of food, agriculture, financial and industrial products and services.

3.3 Customer Requirements

The leading confectionery customers are Mars, followed by Mondelez, Nestle, Meiji, Ferrero and Hershey (Market Research Academic, 2014). Their needs for cocoa butter, liquor and powder vary depending on the chocolate products they sell. However, there is a common trend that appeals to the increasingly health conscious consumer. Cocoa beverages, snacks, and candies all are moving towards fat free or low fat modifications.

The solvent extraction process for cocoa beans includes a number of confectionary requirements. In their current state, cocoa products contain much lecithin. Lecithin is a fatty substance that is widely used by confectionaries to make cocoa powder more soluble. In a candy bar, it keeps the cocoa and cocoa butter from separating. Lecithin is an expensive ingredient for both confectioneries and this facility, and is less desirable by the final consumers as it increases the fat content of cocoa powder.

An overall reduction in costs is possible using solvent extraction as will be outlined in the report. As this decrease in costs flows down the supply chain, this will ultimately allow chocolate products to profitably expand in developing and established markets.

Lastly, taste and chocolate performance are important factors in consumer's chocolates of choice. Solvent extracted cocoa powder and butter is higher performing than traditional cocoa powder and butter, and taste profile remains the same.

3.4 Preliminary Process Synthesis

Different decision pathways were evaluated in the design of this process. Because the solvent extraction of cocoa butter from cocoa liquor is the innovative and most critical aspect of this process, a traditional approach to the upstream processing was taken. In this manner, the preprocessing units were chosen to be similar to those of any large-scale cocoa processing plant.

One of the most important decisions was choosing a specific type of cocoa bean to use in the process. There are three main varieties of cocoa: Forastero, Criollo, and Trinitario. Forastero beans were chosen for this process because they comprise roughly 95% of the world cocoa market, they can be grown in numerous equatorial locations, they are more disease-resistant than Criollo beans, and they are less expensive than Trinitario beans.

Another key decision was the starting point at which the process would begin to operate on the beans. Cocoa beans must be fermented and roasted. Typical cocoa farming practices, especially those in Ghana, tend to lead towards fermenting the bean on-site, before selling it to either a private buyer or a government-controlled entity (Vigneri et al, 2007). Any large cocoa processor would need to purchase its feed from one of these intermediate entities. Ghana grows its cocoa beans in a primary, main season from September to March, and then alternately during a secondary, mid-season from May to August (ICCO, 2016). To have some influence on cocoa prices, these intermediates store the harvested cocoa year-round. Thus, it is assumed that a large-scale cocoa processing plant would be able to purchase its required fermented cocoa bean throughput at regular, two-week intervals throughout the year. While farmers have historically used jute bags to transport their product, bulk methods are becoming more popular. It is assumed that a "mega-bulk" transportation method, where beans are placed directly in the cargo holds of trucks and ships, may be employed in order to save on up to 33% of debagging and shipping costs (ICCO, 2016).

Uses for the process waste streams were also considered. The used solvent, approximately 43,164 kg/hr of butane, could potentially have been deemed a waste stream and dealt with as such. Economic analyses dictated that purifying and reclaiming the solvent for a recycle stream would create the most cost-

effective outcome. This decision was made due to the large quantity of solvent required for the process, and the need to separate the butter from the used solvent for product, which already made up the most expensive portion of the recovery cycle. This choice left the cocoa shells as the principal source of process waste. Certain sources indicated that these shells could be sold as mulch, or even ground into a mock-cocoa powder of sorts; however, these avenues did not possess significant economic value at the scale of this process. Many processors choose to burn the shells in order to generate heating utilities; that choice is mirrored here, as this combustion had the potential to generate 25,900 kg/hr of medium pressure steam, which was quite valuable for both heating and electric needs (Buhler).

The key choices regarding the downstream cocoa processing involved cocoa alkalization levels, solvent selection, and solvent removal. Profitability analyses were performed to determine whether or not the cocoa powder should be alkalized, and, if so, how much alkalization should occur. The significant factors in this decision were the costs of alkalization, the size of the potential increase in profit margin, and the market's need for alkalized powder. The point of alkalization was also carefully chosen. The process could have opted either for nib alkalization, which would occur before the grinding and milling stages, or for liquor alkalization, which would take place after these stages. Liquor alkalization was determined to be the more effective choice, as the alkalization reagent, a 10% by mass potassium carbonate solution fed in a 3:100 ratio with the cocoa, was much more likely to mix well with a slurry rather than a solid stream. Complete mixing was especially important in this scenario due to the relatively small amount of alkalizing agent, and the need for uniform flavor throughout the cocoa.

Patent literature stated that straight-chain alkanes with molecular weights less than 75 g/mol are best suited for this application. Butane and propane were mentioned as most effective, with butane appearing to be the more desirable of the two (Gusek et al). In order to choose from these two solvents, recovery costs were evaluated for each one, with equal efficacy in cocoa separation assumed. This analysis led to the choice of butane, as propane needed approximately 40°C of additional cooling to condense after being flashed away from the cocoa butter. Only pure solvents were considered as solvent mixtures would incur greater energy demands for separation. Multistage operations were required for separating the cocoa and removing the solvent,. To separate the powder from the dissolved butter, stages were set up in such a way to decrease the quantity being separated while also increasing the rigor of the separation. The first stage was chosen to be a large centrifuge, which would remove most of the dissolved butter. Subsequent belt filtering stages were added to finish the more difficult portion of the separation. The filter, with the countercurrent solvent washing, was the most effective choice for this task, as confirmed by patent literature (Gusek et al). To remove the solvent from the cocoa butter, volatility differences were exploited. Because butane is much more volatile than cocoa butter, a flash vessel was chosen as the first separation unit. This unit operation was selected as a cheap and effective way to take advantage of the significant volatility difference. To perform the smaller, more rigorous portion of the separation, a steam-based stripping column was chosen. Steam was selected for many reasons. Primarily, steam would allow for the least energy-intensive recovery of butane. Steam would be easy to acquire, and would minimize the introduction of air into the process (Dziugys et al).

3.5 Assembly of Database

Simulation Specifications

Thermophysical and transport property data for most of the continuous processes was obtained from Aspen Plus v8.8. These processes include mixing, centrifugation, filtering, flash evaporation, heat exchange, and steam stripping. The NRTL-RK thermodynamic model was used for these processes because the liquid and vapor mixtures formed are non-ideal. For the alkalizing process, the ELECNRTL model was chosen due to the formation of electrolyte solutions in water.

Additionally, cocoa butter is not chemically uniform, but rather composed of a variety of triglycerides and a negligible percentage free fatty acids. In Aspen Plus cocoa butter was modeled by its three main constituent triglycerides: POP, SOS, and POS. These triglycerides were assumed to have the largest effect on vapor and liquid mixture interactions because they make up over 80% by weight, of the cocoa butter ("Chocolate and Cocoa Manual", 2009). Sensitivities in Aspen Plus were performed with additional triglycerides to determine deviations in thermophysical behavior, especially freezing point. They were found to have a negligible effect on the liquid properties of the cocoa butter.

Raw Material Costs

The cost of cocoa beans for this facility was obtained from the daily price listing on the International Cocoa Organization's website for March 11, 2016, which was \$3,120.08/MT. Although cocoa bean prices are highly volatile, this price was within the range of \$2000-3500/MT, as suggested by Mr. Vincent Schoot Uiterkamp. Butane was priced using the OPIS North America LPG Report. The price on April 5, 2016 was \$0.25/kg. The price of ethylene glycol was obtained from the ICIS Chemical Business price report provided by Ms. Leela Landress. The price reported was \$493.96/MT. A price estimate for bulk regular grade potassium carbonate was obtained from Armand Products Company at \$2359/MT.The price of Bunker C fuel oil used to combust shell waste product was priced at \$180/MT according to Platt's Marine.

Utility and process water costs were also obtained from Dr. Warren Seider's profitability spreadsheet. Process water for the aqueous potassium carbonate solution costs \$0.27/m³. A value of \$0.07 per kWh of electricity was used. The cost of cooling water was reported as \$0.027/m³. The cost of refrigerating the ethylene glycol solution at 10°F was determined to be \$5.50/GJ. Process and utility steam at 150 psig was determined to cost \$15.30/1000kg.

Section 4: Process Descriptions, Flow Diagrams, and Material Balances

The overall process diagrams for the proposed cocoa processing facility are shown in Figures 4-9 (Sections 100-600). All processes are continuous and Section 100 shows bean storage and the initial bean cleaning process in three parallel trains. The roasting, sterilizing, and winnowing unit operations are presented in Section 200. Processing of cocoa nibs into cocoa liquor is shown in Section 300. Section 400 demonstrates the alkalization of cocoa liquor. Solvent extraction of cocoa butter from cocoa liquor is shown in Section 500. Lastly, Section 600 shows the purification of the butter and recovery of the solvent for recycle. Tables 1-6 show the material balance flows for all process streams. Component flows, stream temperatures, and pressures are also indicated.

4.1 Section 100

Trucks with a 40,000lb capacity arrive with hourly shipments of loose bulk cocoa beans. These shipments are transferred to a 570 m³ stainless steel cone bottom storage silo (S-101 or 102). Three storage silos are required for the plant: an operational tank, standby tank, and spare tank. The cocoa beans from this silo are fed directly into a screw conveyor (CY-101) to be transported 50 feet to the process. Due to equipment capacity constraints, the cocoa bean flow rate is split into three equal streams. Screw conveyors in each parallel train are used to transport the cocoa beans to a separator and classifier unit (C-101-103), which removes coarse debris via air aspiration. From the coarse cleaning, the beans are conveyed to a second air aspiration unit (C-104-106), or fine cleaner, to remove finer debris. Then, the beans are sent to a destoning unit to remove high density materials such as stones and metal pieces (C-107-109).

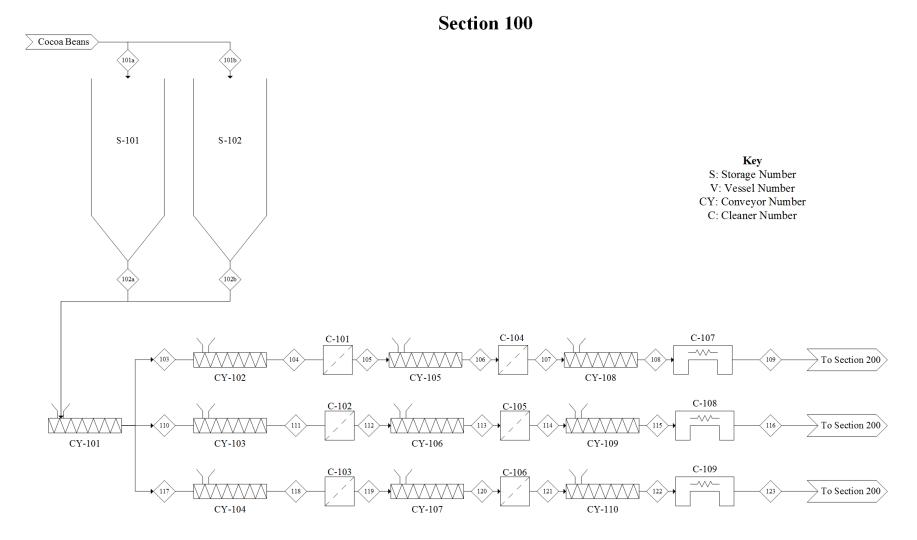


Figure 4. Process Flow Diagram for all bean cleaning operations including silo bean storage, coarse cleaning, fine cleaning, and destoning.

STREAM ID:	101a/b*	102a/b	103	104	105	106	107	108	109	110	111	112
Temperature (C)	21	21	21	21	21	21	21	21	21	21	21	21
Pressure (bar)	1	1	1	1	1	1	1	1	1	1	1	1
Total Flows (kg/hr)	492001	20500	6834	6834	6834	6834	6834	6834	6834	6834	6834	6834
Component Flows (kg/hr)												
Water	24108	1004	335	335	335	335	335	335	335	335	335	335
Fat	214020	8918	2973	2973	2973	2973	2973	2973	2973	2973	2973	2973
Protein	55990	2333	778	778	778	778	778	778	778	778	778	778
Starch	23616	984	328	328	328	328	328	328	328	328	328	328
Cellulose	61500	2563	854	854	854	854	854	854	854	854	854	854
Ash	18106	754	251	251	251	251	251	251	251	251	251	251
Other	94661	3944	1315	1315	1315	1315	1315	1315	1315	1315	1315	1315

Table 1.1 Stream Summary Table for Section-100. *The mass of beans fed to the silos is a kg/batch quantity as beans are supplied batch-wise every hour. Only one silo is used to feed into the process, thus either 102a or 102b will be the stream into the process.

Table 1.2 Stream Summary Table for Section-100. *The mass of beans fed to the silos is a kg/batch quantity as beans are supplied batch-wise every hour. Only one silo is used to feed into the process, thus either 102a or 102b will be the stream into the process.

STREAM ID:	113	114	115	116	117	118	119	120	121	122	123	
Temperature (C)	21	21	21	21	21	21	21	21	21	21	21	
Pressure (Bar)	1	1	1	1	1	1	1	1	1	1	1	
Total Flows (kg/hr)	6834	6834	6834	6834	6834	6834	6834	6834	6834	6834	6834	
Component Flows (kg/hr)												
Water	335	335	335	335	335	335	335	335	335	335	335	
Fat	2973	2973	2973	2973	2973	2973	2973	2973	2973	2973	2973	
Protein	778	778	778	778	778	778	778	778	778	778	778	
Starch	328	328	328	328	328	328	328	328	328	328	328	
Cellulose	854	854	854	854	854	854	854	854	854	854	854	
Ash	251	251	251	251	251	251	251	251	251	251	251	
Other	1315	1315	1315	1315	1315	1315	1315	1315	1315	1315	1315	

4.2 Section 200

The parallel roasters (R-200-202) were each maintained at 170°C by 581 kW of medium pressure steam produced by shell combustion. The steam heats up air flowing in a heat exchanger attached to the roaster. The heated air heats up the cocoa beans via countercurrent convection to produce the desired Maillard reaction flavor compounds and aromatics. Due to the complexity of the Maillard reaction mechanism, it was assumed that any changes in the fats and solids compositions were negligible. Changes in the water content of the cocoa bean to below 2% of the total weight were accounted for as steam evaporation.

Beans are conveyed from the roasters to the steam sterilization units (SZ-200-202). Low pressure process steam is used to sterilize the beans so that bacteria counts are 500 colony forming units per gram. Minimal moisture intake only on shell occurs. In addition, winnowing units (U-200-202) are necessary to remove the shells from the desired cocoa nib material needed for cocoa liquor.

Section 200

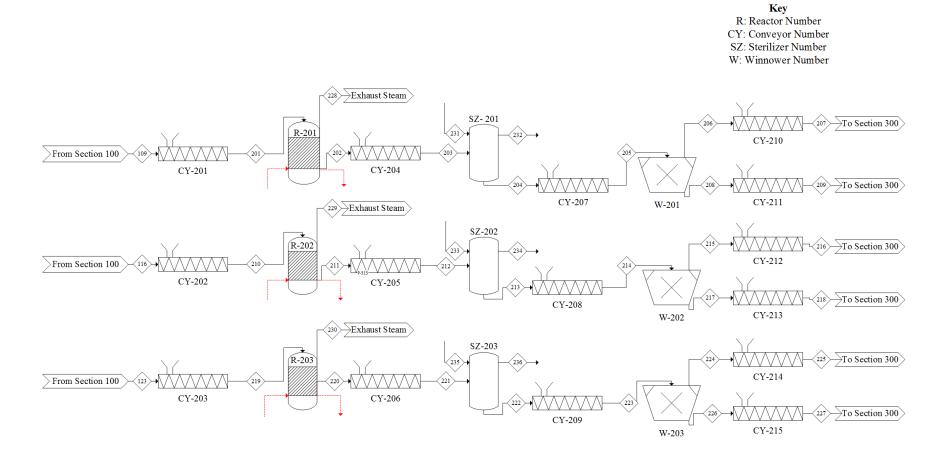


Figure 5. Process Flow Diagram for bean processing including roasting, sterilizing and winnowing.

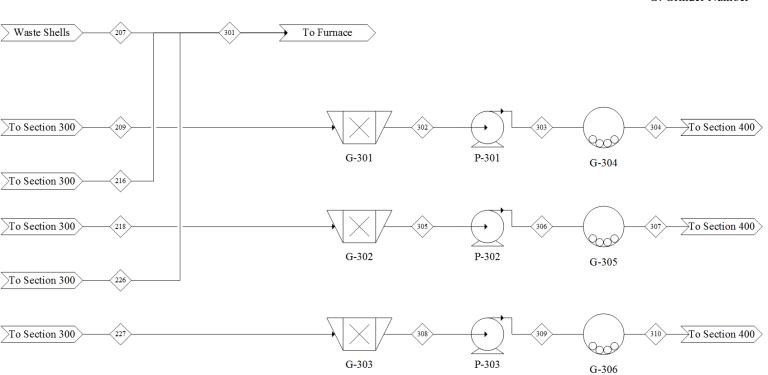
Table 2.1 Stream Summary Table for Section-200.

STREAM ID:	201	202	203	204	205	206	207	208	209	210	211	
Temperature (C)	21	121	121	138	138	23	23	23	23	21	121	
Pressure (bar)	1	1	1	2.50	2.50	1	1	1	1	1	1	
Total Flows (kg/hr)	6834	6628	6628	6666	6666	1327	1327	5340	5340	6834	6628	
Component Flows (kg/hr)												
Water	335	130	130	168	168	59	59	111	111	335	130	
Fat	2973	2972	2972	2989	2989	20	20	2958	2958	2973	2972	
Protein	778	778	778	778	778	145	145	633	633	778	778	
Starch	328	328	328	330	330	0	0	328	328	328	328	
Cellulose	854	854	854	848	848	352	352	500	500	854	854	
Ash	251	251	251	250	250	106	106	145	145	251	251	
Other	1315	1315	1315	1303	1303	645	6 45	665	665	1315	1315	

Table 2.2 Stream Summary Table for Section-200.

STREAM ID:	212	213	214	215	216	217	218	219	220	221	222		
Temperature (C)	121	138	138	23	23	23	23	21	121	121	138		
Pressure (bar)	1	2.50	2.50	1	1	1	1	1	1	1	2.50		
Total Flows (kg/hr)	6628	6666	6666	1327	1327	5340	5340	6834	6628	6628	6666		
Component Flows (kg/hr)													
Water	130	168	168	59	59	111	111	335	130	130	168		
Fat	2972	2989	2989	20	20	2958	2958	2973	2972	2972	2989		
Protein	778	778	778	145	145	633	633	778	778	778	778		
Starch	328	330	330	0	0	328	328	328	328	328	330		
Cellulose	854	848	848	352	352	500	500	854	854	854	848		
Ash	251	250	250	106	106	145	145	251	251	251	250		
Other	1315	1303	1303	6 45	645	66 5	66 5	1315	1315	1315	1303		

Table 2.3 Stream Summary Table for Section-200.


STREAM ID:	223	224	225	226	227	228	229	230	231	232	233	234	235	236
Temperature (C)	138	23	23	23	23	120	120	120	185	185	185	185	185	185
Pressure (bar)	2.50	1	1	1	1	1	1	1	10.30	1	10.30	1	10.30	1
Total Flows (kg/hr)	6666	1327	1327	5340	5340	205	205	205	928	894	928	894	928	894
Component Flows (kg/hr)														
Water	168	59	59	111	111	205	205	205	928	894	928	894	928	894
Fat	2989	20	20	2958	2958	0	0	0	0	0	0	0	0	0
Protein	778	145	145	633	633	0	0	0	0	0	0	0	0	0
Starch	330	0	0	328	328	0	0	0	0	0	0	0	0	0
Cellulose	848	352	352	500	500	0	0	0	0	0	0	0	0	0
Ash	250	106	106	145	145	0	0	0	0	0	0	0	0	0
Other	1303	645	645	665	665	0	0	0	0	0	0	0	0	0

4.3 Section 300

The cocoa shells are sent to an on-site packaged boiler room, where they are mixed with a bunker-C fuel oil. They are combined to create a fuel stream composed of 10% oil and 90% shells, and then combusted in a large furnace. The heat generated in this step is assumed to provide the latent heat of vaporization for approximately 25,900 kg/hr of steam at 150 psig, with 75% assumed efficiency in energy transfer.

Cocoa nibs are then conveyed (CY-210) to a coarse grinder (G-301). The cocoa mixture is pumped (P-301) to a second fine grinder (G-302) to produce the desired fluid cocoa liquor. The liquor is either pumped to the alkalization process or transferred to a blocking process for export. Because cocoa liquor possesses significant value even before it is separated into its constituents, a sizable portion of the liquor stream is sent to blocking. In accordance with the worldwide cocoa market, about 36% of the liquor is diverted for product.

Section 300

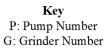


Figure 6. Process Flow Diagram for shell burning and cocoa nib grinding into cocoa liquor.

Table 3.1 Stream Summary Table for Section-300.

STREAM ID:	301	302	303	304	305	306	307	308	309	310
Temperature (C)	21	21	21	21	21	21	21	21	21	21
Pressure (bar)	1	1	1	1	1	1	1	1	1	1
Total Flows (kg/hr)	5340	5340	5340	5340	5340	5340	5340	5340	5340	5340
Component Flows (kg/hr)										
Water	111	111	111	111	111	111	111	111	111	111
Fat	2958	2958	2958	2958	2958	2958	2958	2958	2958	2958
Protein	633	633	633	633	633	633	633	633	633	633
Starch	328	328	328	328	328	328	328	328	328	328
Cellulose	500	500	500	500	500	500	500	500	500	500
Ash	145	145	145	145	145	145	145	145	145	145
Other	66 5	66 5	66 5	665	665	66 5				

4.4 Section 400

The cocoa liquor is pumped (P-402) at 13,400 kg/hr to a reactor (R-401) that combines it with potassium carbonate and water for alkalization. The potassium carbonate is added to the water in a 1:10 ratio; this degree of dilution helps to achieve a well-mixed slurry during the reaction. Additionally, FDA regulations stipulate that the alkalizing reagent mass must be no more than 3% of the cocoa mass. Together, these criteria determine the mass of alkalizing solution that may be added to the cocoa mass. This solution is mixed into the cocoa mass for 30 minutes in a stainless steel vertical pressure vessel (R-401), which raises the pH of the cocoa mass from 6 to 7. The mixture is then transferred to a flash vessel (T-401) where the excess water is separated from the cocoa liquor by vaporization. The duty required for this stage is 3194 kW. The water enters a heat exchanger (E-401), then a vessel (V-401) and finally is pumped (P-405) as wastewater.

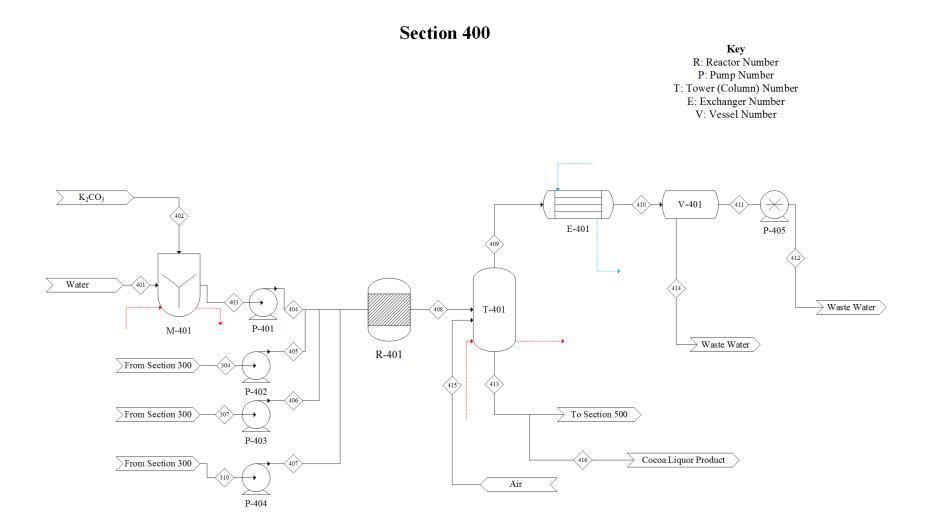


Figure 7. Process Flow Diagram for alkalization of cocoa liquor. Dashed red and blue lines indicate heat and cooling utility requirements.

STREAM ID:	401	402	403	404	405	406	407	408	409	410	411	412
Temperature (C)	20	20	22	22	95	95	95	95	95	30	28	183
Pressure (bar)	1	1	1	1.50	1.50	1.50	1.50	1.50	0.30	0.30	0.30	1.05
Total Flows (kg/hr)	4806	481	5286	5286	5340	5340	5340	21306	4985	4985	0.008	0.008
Component Flows (k	g/hr)											
Water	4806	0	4805	4805	160	160	160	5286	4985	4985	0.001	0.001
Fat	0	0	0	0	2883	2883	2883	8650	0	0	0	0
Powder	0	0	0	0	2296	2296	2296	6888	0	0	0	0
K^+	0	0	272	272	0	0	0	272	0	0	0	0
CO3 ²⁻	0	0	209	209	0	0	0	209	0	0	0	0
K2CO3 (S)	0	481	0	0	0	0	0	0	0	0	0	0
N ₂	0	0	0	0	0	0	0	0	0.02	0.02	0.006	0.006
0 ₂	0	0	0	0	0	0	0	0	0.007	0.007	0.001	0.001

Table 4.1 Stream Summary Table for Section-400. The term "powder" refers to cocoa solids with the following composition: The term "powder" refers to cocoa solids with the following compositions by weight: 12% protein, 6% starch, 9% cellulose, 3% ash, 12% other.

Table 4.2 Stream Summary Table for Section-400.

STREAM ID:	413	414	415	416
Temperature (C)	95	28	20	95
Pressure (bar)	0.30	0.30	1	0.30
Total Flows (kg/hr)	16320	4985	0.029	2954
Component Flows (kg	g/hr)			
Water	301	4985	0	55
Fat	8650	0	0	1565
Powder	6888	0	0	1247
K ⁺	116	0	0	21
CO3 ²⁻	89	0	0	16
K2CO3 (S)	275	0	0	50
N ₂	0	0.02	0.02	0
O ₂	0	0.006	0.007	0

4.5 Section 500

The alkalized liquor is pumped (P-501) at 13366 kg/hr to a mixer (M-501) to maintain the suspension of the cocoa solids in the butter. M-501 was sized with a residence time of 30 minutes; this duration allows for complete mixing, and also helps mitigate any deviations from steady state in the process. The liquor is then pumped (P-502) to a second mixer (M-502), which mixes it with 33,414 kg/hr of butane from the solvent recycle loop. This addition creates the 2.5:1 solvent to cocoa ratio necessary for the first separation stage as recommended by the patent literature. This mixture is then pumped (P-503) to a continuous centrifuge, where the stream's solids and liquids are separated. Meanwhile, the centrifuge is able to pull roughly 90% of the liquid out of the slurry. The liquid stream is pumped (P-504) to Section 600 for solvent recovery. This separation stage brings the fat content in the cocoa from 52% to 10%, as confirmed by Mr. Gusek.

The solid cake is conveyed (CY-501) to another mixer (M-503), where fresh butane from the recycle stream is added to bring the solvent to cocoa ratio back up to 1.8:1. The mixture is then filtered (FL-501) on a continuous vacuum belt. Once again, the solids remain entirely in the cake stream, while the butane is able to pull away approximately 69% of the fat and moisture content from the cocoa. The liquid stream is pumped (P-505) to Section 600. After this second stage, the fat content in the cocoa is lowered to 3.4%, while the moisture drops below 0.1%. A screw conveyor brings the low-fat cake to a splitter. Here, the cake can either be sent to a dryer (D-501), or alternately to a second mixer-filter (M-504, FL-502) to be processed into nonfat powder. The process equipment is sized so that the splitter may range from an 80-20 balance in favor of either fat content. Because the low-fat powder requires less energy to separate, retains its taste while adding health benefits, disperses without being dusty, and has wider market appeal, the splitter was set to produce 80% low-fat powder and 20% nonfat powder.

A more rigorous filtration step is required to bring the cocoa powder into the nonfat range. The last portion of fresh butane is sent down from the recycle loop in order to create a solvent to cocoa ratio of 1.2:1. However, this butane (Stream 627) is split in half before it reaches the mixer-filter; half of the stream is mixed with the solids, while the other half is used as a washing step at the end of the filter. This countercurrent washing and filtration is required to bring the fat content of the cocoa powder under 0.5%, as the filtration removes roughly 86% of the liquids present on the cake. In a manner similar to the low-fat case, the powder is conveyed (CY-505) to a dryer, where any excess butane is removed by dropping the pressure from 6 bar to 1.2 bar at constant temperature. Steam is used to maintain isothermal conditions in the dryers while the butane vaporizes. A residence time of 60 minutes is combined with thorough agitation to ensure that residual solvent levels do not exceed 1 PPM, the maximum tolerable level for the product.

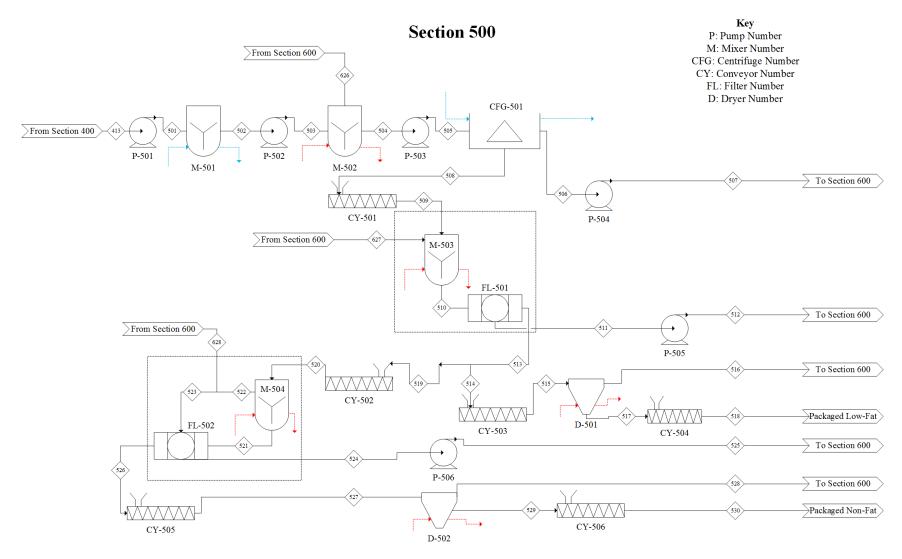


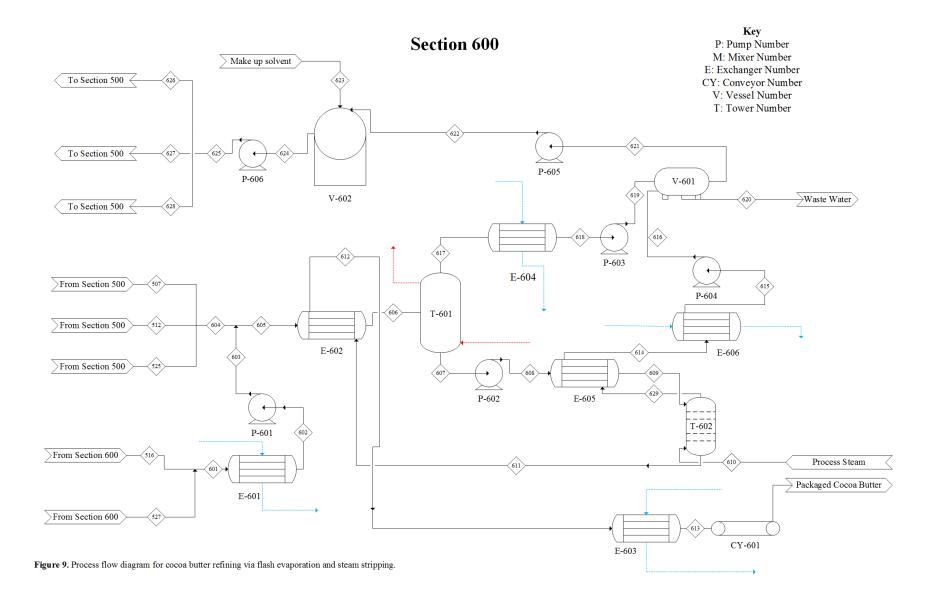
Figure 8. Process Flow Diagram for solvent extraction of cocoa butter from cocoa powder. Dashed boxes indicate mixer filter systems with or without wash stages.

Table 5.1 Stream Summary Table for Section-500. The term "powder" refers to cocoa solids with the following compositions by weight: 12% protein, 6% starch, 9% cellulose, 3% ash, 12% other.

STREAM ID:	501	502	503	504	505	506	507	508	509	510	511	512
Temperature (C)	95	50	50	50	50	50	50	50	50	50	50	50
Pressure (bar)	1.50	1.50	1.50	5	6	6	6	6	6	6	6	6
Total Flows (kg/hr)	13366	13366	13366	46780	46780	36588	36588	10192	10192	19182	9006	9006
Component Flows	(kg/hr)											
Water	334	334	334	334	334	301	301	34	34	34	23	23
Fat	690 5	6905	6905	690 5	690 5	6214	6214	690	690	690	476	476
Powder	5747	5747	5747	5747	5747	0	0	5747	5747	5747	0	0
Butane	0	0	0	33414	33414	30073	30073	3341	3341	12331	8507	8507
K₂CO₃ (S)	380	380	380	380	380	0	0	380	380	380	0	0

Table 5.2 Stream Summary Table for Section-500. The term "powder" refers to cocoa solids with the following compositions by weight: 12% protein, 6% starch, 9% cellulose, 3% ash, 12% other.

STREAM ID:	513	514	515	516	517	518	519	520	521	522	523	524
Temperature (C)	50	50	50	50	50	50	50	50	50	50	50	50
Pressure (bar)	6	6	6	1.20	1.20	1.20	6	6	6	6	6	6
Total Flows (kg/hr)	10176	8141	8141	3059	5082	5082	2035	2035	2415	380	380	1361
Component Flows (kg	g/hr)											
Water	11	9	9	0	9	9	2	2	2	0	0	2
Fat	214	171	171	0	171	171	43	43	43	0	0	37
Powder	5747	4598	4598	0	4598	4598	1149	1149	1149	0	0	0
Butane	3824	3059	3059	3059	0	0	765	765	1145	380	380	1322
K₂CO₃ (S)	380	304	304	0	304	304	76	76	76	0	0	0


Table 5.3 Stream Summary Table for Section-500. The term "powder" refers to cocoa solids with the following compositions by weight: 12% protein, 6% starch, 9% cellulose, 3% ash, 12% other.

STREAM ID:	525	526	527	528	529	530
Temperature (C)	50	50	50	50	50	50
Pressure (bar)	6	6	6	1.20	1.20	1.20
Total Flows (kg/hr)	1361	1434	1434	203	1231	1231
Component Flows (k	g/hr)					
Water	2	0.28	0.28	0	0.28	0.28
Fat	37	6	6	0	6	6
Powder	0	1149	1149	0	1149	1149
Butane	1322	203	203	203	0	0
K₂CO₃ (S)	0	76	76	0	76	76

4.6 Section 600

The volatilized butane streams from the dryers are condensed in a heat exchanger (E-601) with a 70/30 water to ethylene glycol solution at 10°F. The condensed liquid joins the extracted butter streams from centrifugation and mixing-filtering. The resulting stream at 48°C is then heated to 65°C by medium pressure steam in a second heat exchanger (E-602). The effluent mixture is then subjected to adiabatic flash evaporation (T-601) at 1.56 bar, resulting in 99.5% recovery of solvent overhead. The overhead vapor is completely condensed (T-606) in a 10:1 ratio of 10°F refrigerant to solvent. The bottoms product of the flash vessel is heated to 75°C before being introduced into the stripping column (T-602). The heat added to this stream is intended to promote removal of residual butane in cocoa butter. The steam stripping column deodorizes the cocoa butter feed and strips off remaining butane with medium pressure saturated steam. Residual butane concentrations do not exceed 500 PPB. The cocoa butter is cooled to 50°C using the feed of the stripping column as the cold side fluid. The product is then sent to final packaging in cardboard boxes.

The overhead of the stripping column is completely condensed with refrigerant (E-605) and sent to the decanter to purify butane stream before recycle. The decanter, operating at 50°C, is able to purge most of the water so that the residual water concentration in the recycled solvent is 2 PPM. The recycled solvent is then sent to a spherical solvent storage tank (V-602), where make-up solvent is added to account for losses in the decanter and final products. The throughput through this tank is recycled to Section 500 to be used for solvent extraction.

Table 6.1 Stream Summary Table for Section-600.

STREAM ID:	601	602	603	604	605	606	607	608	609	610	611	612	613	614
Temperature (C)	53	4	4	47	47	52	57	57	59	149	149	80	50	77
Pressure (bar)	1.20	1.20	6	6	6	6	1.60	6	6	4.50	3.9	3.9	3.9	3.7
Total Flows (kg/hr)	3262	3262	3262	469 55	50217	50217	6909	6909	6909	689	7402	7402	7402	196
Component Flows (kg	g/hr)	-					-							
Water	0	0	0	326	326	326	2	2	2	689	6 75	6 75	6 75	16
Butane	3262	3262	3262	39902	43164	43164	180	180	180	0	0	0	0	180
Fat	0	0	0	6727	6727	6727	6727	6727	6727	0	6727	6727	6727	0

Table 6.2 Stream Summary Table for Section-600.

STREAM ID:	615	616	617	618	619	620	621	622	623	624	625	626	62 7	628	629
Temperature (C)	32	32	57	10	10	50	50	50	50	50	50	50	50	50	101
Pressure (bar)	3.7	14	1.60	1.6	4	4	4	6	6	6	6	6	6	6	3.7
Total Flows (kg/hr)	196	196	43309	43309	43309	328	43176	43176	1	43177	43177	33398	9015	764	196
Component Flows (kg	y/hr)														
Water	16	16	325	325	325	327	13	13	0	13	13	10	3	0	16
Butane	180	180	42984	42984	42984	1	43163	43163	1	43164	43164	33387	9012	764	180
Fat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Section 5: Energy Balance and Utility Requirements

5.1 Heat Integration Strategy

Heat integration was limited in this process design. Utilities were minimized, where possible, as streams were evaluated for their capacity to cool or heat other process streams. Adding more heat exchangers to process streams that required large amounts of cooling was found to be effective at minimizing utility costs. This was especially the case in Section 600. The effluent of the stripping column (T-602), which is at 149°C, is used to partially vaporize the feed into the flash vessel (T-601). This transfer amounts to 355 kW and cools down the cocoa butter in this stream to 80°C. Furthermore, this reduces the utilities needed to cool the stripping column's effluent to 50°C for product packaging. An additional 7905 kg/hr of cooling water is necessary for this purpose.

Similarly, the bottoms product of the flash vessel in section 600 was used to cool down the overhead vapor of the stripping column. The bottoms stream reduces the temperature of the overhead vapor to 77°C. Utility costs for chilled water are reduced by nearly 53% with this heat integration. The resulting arrangement of heat exchangers also meets the minimum utility requirements provided the minimum temperature approach of 5.56°C.

Other streams in Section 600 could not be valued for their heating potential as there were more hot streams than cold streams available. The consequence of this is the use of refrigerant at 10°F and cooling water to completely condense the butane vapor streams. Compressors were alternatively considered, as a means to reduce refrigerant amounts, but immediately ruled out, as they would incur significant capital and operating costs to the facility.

Waste products produced in this facility were considered to provide a majority of the heating requirements needed for this process. The shells from units W-200, W-201, and W-202, sent to the on-site packaged boiler room, were combusted. The shells made up the balance of a stream containing 10% Bunker C fuel oil by mass. The fuel oil was necessary for making the stream easy to both combust and handle. The higher heating value from this combustion was exploited in producing medium pressure steam, which was

contained in a pressurized loop internal to the system and used for heat transfer and energy generation. For this steam, the only heat transfer occurring was assumed to be from the latent heat of vaporization. Because the furnace heat was only vaporizing pressurized, hot water, the unit generated 31,800 kg/hr of steam at 150 psig. This boiling was assumed to be 90% efficient (Woodbank). To minimize utility costs, this steam was sent to the roasters at roughly 2,820 kg/hr, where it heated inlet air, which then roasted the beans by convection. An efficiency of 75% was assumed during these heat transfer steps. Some of the medium pressure steam was also sent to the cocoa powder drying vessels; 591 kg/hr were sent to the low-fat drying vessel, and 157 kg/hr were sent to the nonfat drying vessel. These values ensured that the dryers operated isothermally as the butane evaporated from the product stream. Maximum values were used for each dryer. Depending on the cocoa powder product split fractions, the steam flows represent upper bounds. Another 13,350 kg/hr of the generated steam was sent to the process flash vessels, T-401 and T-601, again to ensure isothermal operation.

While some of the steam generated by the furnace was used in the process, the majority of it was converted to electricity. This conversion was executed by assuming that the excess steam was sold at \$15.30/1000 kg and that the resulting capital was used to purchase electricity at \$0.07/kWh, with a 40% efficiency in the transfer (Woodbank). In this manner, the furnace was able to generate approximately 1,273 kW of electricity using the surplus steam. After meeting the plant's electricity requirements, 583 kW of electricity remained. This electricity was sold at the aforementioned rate; the revenue of approximately \$286,000/yr was put towards the purchase of cooling utilities such as refrigerant and cooling water.

5.2 Process Utilities

Tables 7 summarizes the utilities and electricity needed for each equipment item. Net energy requirements after heat integration are also shown. Table 8 summarizes the net utilities needed per kg of cocoa butter. Cocoa powder, both low fat and fat-free, was chosen as the main product for the economic analysis.

Utility	Equipment Unit	Quantity (kg/yr)
Cooling Water	E-401	841,000,000
	E-603	55,000,000
	CFG-501	95,565,381
	M-501	125,900,000
	Total	1,117,000
		Quantity (GJ/yr)
Refrigeration at 10°F	E-601	11,000
leginger alloir ar 10 1	E-604	144,000
	Total	155,000
		Quantity (kWh/year)
Electricity	CY-101	33,000
successing	CY-102 to 203	50,000
	CY-204 to 206	
		13,000
	CY-207 to 209	13,000
	CY-210,212,214	4,000
	CY-211,213,215	11,000
	CY-501	5,800
	CY-502	1,50
	CY-503	4,800
	CY-504	3,200
	CY-505	1,100
	CY-506	1,00
	C-101 to 103	4,90
	C-104 to 106	26,100
	C-107 to 109	2,500
	W-201 to 203	877,000
	G-301 to 303	141,000
	G-304 to 306	340,000
	P-301 to 303	2,500
	M-401	28,000
	P-401	3,200
	P-402 to 404	700
	P-501	9,50
	P-502	3,900
	P-503	3,500
	P-504	18,500
	P-505	6,100
	P-506	5,30
	P-601	39,800
	P-602	31,600
	P-603	110,000
	P-604	10,700
	P-605	103,000
	P-606	16,200
	CFG-501	1,800,000
	FL-501	385,700
	FL-502	385,700
	M-501	60,500
	M-502	27,900
	M-503	6,000

 Table 7. Net Utility Requirements by Equipment Unit.

	M-504	3,000
	D-501	5,700
	D-502	5,700
	Subtotal	4,600,000
	Shell: Electricity	-4,600,000
	Net Utility Required	0
		Quantity (kg/yr)
Medium Pressure Steam	R-201 to 203	19,800,000
	D-501	5,900,000
	D-502	1,600,000
	T-401	40,400,000
	T-601	53,200,000
	Subtotal	120,800,000
	Shell: Medium Pressure Steam	-120,800,000
	Net Utility Required	0

Table 8. Utility Costs per kg of Cocoa Powder

Utility	Unit	Ratio (per kg of Cocoa Powder)	Utility Cost (\$ per Unit)
Cooling Water	kg	21.6	2.7x10 ⁻⁵
Chilled Water	GJ	1.12x10 ⁻⁵	6.70
Refrigeration at 10°F	GJ	1.55x10 ⁻³	5.50

Section 6: Equipment List & Unit Descriptions

6.1 Unit Descriptions

Silos

Two truncated cone silos, each with a maximum working volume of 819 m³, are used to store cocoa beans when they are delivered in bulk to the processing facility. A third silo is necessary if any maintenance on the other two silos must be done. The cocoa beans are stored, at 21°C and 3 psig, in stainless steel silos to meet Food Grade standards. There are two picking seasons for cocoa beans in Ghana, but a Licensed Buying Company in Ghana will supply this cocoa processing facility every hour. Mr. Stephen Tieri recommended this as an acceptable length of storage after determining reasonably sized storage units for the company's product requirements and accounting for variations in the supply of raw materials. The combined bare module cost for the silos is \$191,511.

Cleaners

Three types of cleaners were used in the preprocessing of the cocoa beans coarse cleaners, fine cleaners, and destoners. Based on industry-reported capacities, this process called for three parallel cleaning streams (Buhler). For each of these units, the mass balances remain unchanged, as the waste percentage present in the dried, fermented beans is assumed to be negligibly low. All of these units were constructed with stainless steel and designed to run at room temperature and atmospheric pressure. Coarse cleaners were modeled as vibrating screens with 2 decks. The top deck was designed to filter out large pieces of debris and let cocoa beans through to the second screen, which would only allow finer sand grains and jute fibers through to a waste drawer. A load heuristic of 0.86 tons/hr-m²-mm was observed; assuming 20-mesh screens, an area of 11 m² was required (Rao).

Fine cleaners were installed as the next step in the cleaning process; these units were designed to remove lighter dust particles from the cocoa beans. These units were modeled and costed according to the cyclone units in Seider, et. al. Specifications obtained from the cocoa preprocessing industry indicated that air intake could be calculated based on an air to cocoa mass ratio of 1:2.34 (Buhler). This heuristic called for an air intake of 2,041 m³/hr. Typical cyclone parameters dictated that a motor of approximately 3.75 kW would be necessary to achieve this intake (Pentz).

The final cleaning step was comprised of three destoners in parallel. These units, which contain both a vibrating screen and an air intake system, were specified using an industry brochure which may be found in Appendix D. These industry specifications called for an active area of 0.78 m², a pressure gradient of 12 mbar across the screen, and 70 m³/min of aspiration. These cleaning steps have a power demand of approximately 14.5 kW, and a total bare module cost of \$319,300 as calculated by the equations given in Seider, et. al.

Roasters

A roaster was present in each of the three preprocessing streams. These reactors were modeled as convection-heated, stainless steel vessels in which the fermented beans would undergo a series of Maillard reactions. The Maillard reactions, which are largely responsible for the flavors and aromas inherent to cocoa, require a temperature of 120°C and a residence time of 30 minutes (Buhler). Because the pressure of this vessel remained approximately atmospheric, a height to diameter ratio of 1:1 was determined to be safely permissible; the residence time defined the height and diameter as 1.67 m (Buhler). The roasters

were also designed to reduce the moisture content in the beans; they were heated such that 205 kg/hr of water would be boiled out of the solids stream.

In order to heat the roasters, medium pressure saturated steam was sent from the furnace at 941 kg/hr for each of the roasters. The heat released by the condensation of this steam was used to heat process air from 125°C to 170°C at roughly 41,000 kg air/hr for each roaster. This air was sent to contact the beans. As the air dropped back to 125°C, the beans absorbed the heat convectively, rising to 120°C and engaging the roasting process. These flow rates were calculated assuming a 75% efficiency of heat transfer; surplus steam is sent to the reactors to ensure that sufficient heating occurs. The bare module cost of these vessels was calculated to total \$537,400.

Sterilizers

Three sterilizers were required for this process. The sterilizers were designed as a final cleaning step for the cocoa beans, maintaining bacterial counts below 500 colony forming units per gram ("Cocoa", 2016). The sterilizers were modeled as vertical, stainless steel pressure vessels. A residence time of 5 min was assumed to find a maximum working volume of 1.25m³. Medium pressure process steam at 927.92 kg/hr is added to the vessel. Bean moisture intake was assumed to be minimal and only on the shell. A 3:1 height to diameter aspect ratio was used to determine the dimensions of each sterilizer. Furthermore, the height is 2.27m and the diameter is 0.76m. The total bare module costs for the sterilizers is \$325,19.

Winnowers

A winnowing step was required after each of the three sterilizers. This step was designed to take place after roasting occurred; pre-roasted beans allow the shell removal process to be less energy-intensive. Because air currents comprise the main component of the winnowing process, the winnowers were modeled as air cyclones. Shell separation patents maintained an acceptable range of 1,360-2,040 m³/hr of air, linearly scaled to a range of 50-150 kg shells/hr (Kopp). An aspiration rate of 1,360 m³/hr was chosen, as only 48 kg shells/hr were entering each winnower. Power requirements were extrapolated from a winnower manufacturer, who quoted a rate of 150 kW/(8000kg/hr) (Buhler). The total bare module cost of the winnowing machines was calculated to be \$7,400 using the cyclone model presented by Seider, et. al.

Grinders

Like many other cocoa preprocessing arrangements, this process required two grinding steps: coarse and fine. Following the three parallel upstream flows, three grinders of each type were needed. The coarse grinders were characterized by an inlet flow of 5,340 kg/hr of cocoa nibs and a desired outlet particle diameter of 5 mm, thus dictating cone crushers as the most applicable choice for modeling purposes (Seider et al). This outlet particle size was ideal for feeding into the fine grinding steps, which brought the particles down to an average size of 10 μ m (Buhler). In order to achieve such a small size, it was necessary to model the fine grinders as ball mills (Seider et al). The grinding steps required a power input of 206 kW, with a total bare module cost of \$1,487,000.

Alkalizing Reactor

The reactor is required to alkalize cocoa liquor. The reaction is a neutralization reaction, resulting in a pH shift from 6 to 7 and improvements in taste and color of the cocoa mass. The alkalizing agent, potassium carbonate, is fed in a 3:97, potassium carbonate-to-cocoa mass ratio. The potassium carbonate was previously dissolved in a 1:10, potassium carbonate-to-water ratio. The reactor is constructed using stainless steel because it comes in contact with food, and is a closed vessel operating at 95°C and 1.5 bar. The residence time of the reactor is 30min. There is an associated heat duty of 667 kW.

Flash Evaporator Vessels

The purpose of isothermal flash evaporator T-401 is to reduce the moisture content of the alkalized cocoa liquor to 2% after having added 4805 kg/hr of water during the alkalization reaction. There is a pressure decrease from 1.50 bar to 0.30 bar, resulting in 4985 kg/hr of water being flashed off as vapor in the overhead. The bottoms stream is 16320 kg/hr of alkalized cocoa liquor. The evaporator operates at 95°C and has an associated heat duty of 3194 kW. The evaporator was constructed using stainless steel 304. The height is 3.7m and the diameter is 1m.

The purpose of T-601 is to isothermally vaporize most of the butane from the cocoa butter. The pressure is reduced from 6 to 1.6 bar, which results in 99.6% of the butane to flash off the cocoa butter. The flash vessel operates at 57°C and has an associated heat duty of 4211 kW. The height of the vessel is 10 m and the diameter is 2.5 m.

Heat duty requirements of flash vessels T-401 and T-601 are serviced with 5761 kg/hr and 7595 kg/hr of steam, respectively.

Pumps

Nineteen pumps were required in this process; these pumps were mainly used to move slurry and liquid streams through the process. Pressure losses were assumed to be 0.4 bar through the pumps. Because the head values were relatively small, the pump size factors, calculated according to Seider, et. al., were all near the lower limits of the costing and power correlations. For pumps that fell below the lower limit of these correlations, costs were assumed to be equal to those at the limit; these values represent conservative estimates for the pump requirements. Both the pumps and motors were costed and analyzed according to Seider, et. al. All pumps were characterized as centrifugal, 3,600 rpm, VSC units. Each pump was constructed from stainless steel with a TEFC motor, in order to provide sufficient cleanliness and prevent the introduction of air into the process. The total bare module cost of the centrifugal pumps for this process is \$313,500.

The Nash liquid ring pump is water sealed and has a suction volume of 1 ft3/min. The pumps are constructed from stainless steel 304, which is resistant to rust and easier to maintain at food grade quality levels than is carbon steel. The total bare module cost of the Nash liquid ring pump is \$32,100.

Mixers

The purpose of the mixer included in the alkalization process was to dissolve potassium carbonate in a solution of water. Water was added in a 110, potassium carbonate-to-water ratio. The mixer was constructed using stainless steel 304 because the resulting alkalizing stream will come into contact with food material. The mixer was designed as a closed hopper and agitator at atmospheric pressure, with a residence time of 30 minutes. The bare module cost of this mixer was \$123,900.

Section 500 required four mixers, which are each modeled as agitated, closed, vertical, stainless steel vessels. The mixers were sized with 30 minute residence times, in order to allow for proper mixing as well as disturbances to the steady-state process (Gusek). The first mixer, M-501, was required to maintain the suspension of the cocoa powder in the liquor stream. The power requirement was calculated using a heuristic of 0.75 kW/100 gal (Seider, et. al.). A turbine agitator was needed for this vessel, as the required power exceeded the limits of the propeller agitator. This mixer also required 17,960 kg/hr of cooling water to reduce the temperature of the liquor from 95°C to 50°C so that any butane added to the process would not vaporize. The final three mixers were all used for adding recycled butane to achieve desired solvent to cocoa ratios before the separation stages. For mixing the miscible butter and butane flows, a heuristic of 0.5 hp/1000 gal was employed; thus, propeller agitators were sufficient for these vessels (Seider, et. al.). The total bare module cost of the mixers in this section is \$1,033,400.

Filters

Belt filters were used as the second and third stages for removing butter from the cocoa powder. The first filter, FL-501, was used to create the low fat powder, while the second filter, FL-502, was used for the production of fat-free powder. The process was designed such that varying amounts of each type of powder could be produced; potential low fat-free production ratios may range from 41 to 14, depending on market conditions. To allow versatility in these ratios, FL-502 was sized to accommodate up to 80% of the powder entering Section 500. While the filters are sized similarly, Fl-502 is unique due to the implementation of its washing machinery. Patent literature dictated that a stage modeled as a mixer and filter and series would be sufficient for reducing the fat content in the powder down to a range of 3-5%. However, to bring the fat content below this range, countercurrent solvent washing was necessary. FL-501 requires a solvent to cocoa mass ratio of 1.81:1 to reduce the fat content to 3.4%. FL-502 requires a ratio of 1.21, with the butane split equally between the inlet stream and the wash, to bring the fat content under 0.5% (Gusek).

BHS Sonthofen was instrumental in outlining the unit specifications and operating conditions; Mr. Barry Perlmutter provided these parameters in a unit quotation, which is given in Appendix D. Each filter has an active area of 98 m², requires 55 kW for operation, and moves at approximately 10 m/min (BHS Sonthofen). These filters operate at 50°C and 6 bar in order to maintain butane in the liquid state. Mr. Perlmutter quoted a bare module cost of \$900,000 for each filter before the addition of any optional equipment pieces; purchase costs were modeled as a vacuum belt filter, as outlined in Seider, et. al.

Like the centrifuge, the filters produce both wet cake and liquid streams. Again, powder and potassium carbonate were assumed to solely exist in the cake, while the filtration was assumed to significantly lower the proportions of butter, water, and solvent present. FL-501 had an inlet of 19,180 kg/hr of slurry; the filter was able to remove 69% of the liquid content, leaving 10,180 kg/hr of cake to be split between the low fat and fat-free processing streams. With the process set to create 20% of its powder at the fat-free specification, FL-502 removed 87% of the liquids from a 2,800 kg/hr inlet stream. Of the 1525 kg/hr of butane in this inlet stream, 380 kg/hr was mixed into the inlet, and another 380 kg/hr was used as the wash.

Centrifuge

The centrifuge was used as the first stage in separating the cocoa powder from the solvent and butter mixture. This process unit was modeled as a food-grade horizontal decanter, running continuously. The centrifuge takes on a 46,780 kg/hr flow of alkalized cocoa liquor and solvent, separating the inlet into liquid and cake outlets. The cocoa powder and potassium carbonate were assumed to exist solely in the cake phase, while the water, butter, and butane were assumed to comprise both the liquid phase and the cake fluid, as stated by Mr. Tieri. Based on Cargill's patent literature and Mr. Gusek's advice, this stage was expected to remove roughly 90% of the inlet liquid phase, bringing the fat content of the cocoa from 52% to 10% with an inlet solvent to cocoa mass ratio of 2.51 (Purtle et al, 2003). This separation produced 10,190 kg/hr of cake and 36,590 kg/hr of liquids.

The Alfa Laval Foodec 800 was used as a reference for this unit, as recommended by Mr. Ivan Gottberg of Alfa Laval. This model has a 480 mm diameter bowl constructed from duplex stainless steel, turning at a maximum of 3,500 rpm (Alfa Laval). Mr. Gottberg stated that a centrifuge of this size was appropriate given the inlet flow, and provided a bare module cost of approximately \$300,000. The purchase cost was obtained using the costing of a continuous scroll solid bowl, as given in Seider, et. al.

Because centrifuging butane pressurized to 6 bar posed a significant risk for vaporization, a jacket of cooling water was added to the unit. The Foodec 800 requires 250 kW; this wattage was assumed to enter the process stream completely, as recommended by Mr. Richard Bockrath. To ensure isothermal centrifuging at 50°C, cooling water was sent to the unit at 13,630 kg/hr.

Conveyors

There are 32 screw conveyors required in this process design. It was assumed that conveyor troughs were 30% full, and the screw was rotating at 50 rpm (Seider, et al). The screw diameters range from 15cm to 36 cm. Screw conveyors CY-503 and CY-505 were assumed to be completely full so as to maintain the back pressure of belt filters FL-501 and FL-502. This was recommended by Professor Len Fabiano so that the linear velocity of the powder entering the dryer could be controlled. The total bare module cost for these conveyors is \$207,000.

Dryers

The dryers were modeled similarly to the mixers; both were vertical, closed, stainless steel vessels with propeller agitators. The vessels were sized to allow a 60 minute residence time; patent literature stated that agitation and pressure drop for this time period would be sufficient to vaporize the butane present with little need for temperature increase (Purtle et al., 2003). The dryers were maintained at 50°C and 1.2 bar; medium pressure steam was used to hold the vessels at this temperature by offsetting the enthalpy requirements of the butane vaporization. Cargill's patent dictated that this method would be able to create a product with a butane mass fraction of 1 PPM (Purtle et al., 2003). This fraction was recommended by Mr. Tieri to be the safe limit for food products. The total bare module cost of these vessels is \$513,000.

Heat Exchangers

There are 7 stainless steel heat exchangers in this process. All heat exchangers are countercurrent, shell and tube vessels with floating heads. Two of the heat exchangers are heat integrated, and the other

exchangers have cooling water, chilled water, or refrigerant requirements. The combined bare module cost of these heat exchangers \$1,368,586.

Decanters

There are two decanters in this process, both of which discharge wastewater. V-401 is required to induce a phase split between the water liquid and vapor that had been removed from the cocoa liquor in T-401. The decanter operates at 30°C and 0.3 bar. The liquid bottoms is 4985 kg/hr of water that is discharged as waste. The overhead is a 0.008 kg/hr vapor stream of water and air that is fed to the Nash liquid ring pump. The decanter is constructed using carbon steel because the decanter only contacts waste, and not food material. The height is 12 ft and the column diameter is 3.5 ft.

Similarly, V-601 is required to purge water from the solvent recycle stream. The decanter operates at 50°C and 4 bar. The resulting concentration of water to outlet stream 621 is 301 PPM, making the decanter 96% efficient at purging water from recycle. The decanter is constructed as a stainless-steel. The length of the decanter is 7.30m and the diameter is 1.50m. The combined bare module costs for both decanters is \$222,745.

Stripping Column

The stripping column's purpose was to remove residual butane from cocoa butter using 689 kg/hr of medium pressure process steam. The column was a modeled as a stainless-steel multi-stage tray tower with 3 theoretical stages and operating at 3.7 bar. The tray efficiency was assumed to be 70%; therefore, 5 actual trays were used for the column. The cocoa butter stream (609) entered above the top tray while steam entered on the bottom stage. The final cocoa butter product, the liquid bottoms of this column, has less than

500 PPB of butane. The height of the stripping column is 4.27m and the column diameter is 1.83m. The total bare module cost for the stripping column is \$672,972.

6.2 Unit Specification Sheets

Section 100:

	SILO 1		
Identification:	ltem Item No. No. Required		Silo S-101 or 102 2
Function:	Storage and t	ransition from batch to	continuous
Operation:	Batch in and	continuous out	
Туре:	Truncated Co	nical Silo	
Stream ID	Inlet	Out	tlet
	101a/b	102	a/b
Temperature (C)	21	2	1
		Flowrate (kg/hr)	20500
Composition (kg	/batch)		
		Water	1004
	492001	Fat	8918
		Protein	2333
		Starch	984
		Cellulose	2563
		Ash	754
		Other	94661
Design Data:	Construction Material		Stainless Steel
	Max working volume (m ^s)		819
	Hours of storage (max)		24
Total Purchase C	Cost:	\$	59,427
Bare Module Cos	st:	\$	63,837
Comments:		made of stainless stee [®] and volume of bin is sig.	

	CON	VEYOR 1		
Identification:	ltem Item No. F	No. Required	Conveyor CY-101 1	
Function:	To tra proce		ns from the silo into th	e
Operation:	Cont	inuous		
Туре:	Scre	w Conveyor		
Stream ID	Inlet		Outlet	
	102a/b		103, 110, 117	
Flow rate (kg/hr)	20500		20500	
Water	1004		1004	
Fat	8918		8918	
Protein	2333		2333	
Starch	984		984	
Cellulose	2563		2563	
Ash	754		754	
Other	3944		3944	
Temperature (C)	21		21	
Pressure (bar)	1		1	
Design Data:	Length (m)			16
	Diameter (cm)			36
	Velocity (m/s)			0.08
Total Purchase C	ost:	\$		9,925
Equipment Bare	Module Cost:	\$	1	7,164
Comments:		doesn't include m gh is 30% full and	otor, drive, lid. screw is rotating at 50	rpm.

CONVEYOR 2					
Identification:	Item Item No. No. Required	<i>Conveyor</i> CY-102 until 110 9			
Function:	To transport cocoa b	eans between upstream units			
Operation:	Continuous				
Туре:	Screw Conveyor				
Stream ID	Inlet	Outlet			
	103, 110, 117, 105, 112, 119, 107, 114, 121	104, 111, 118, 106, 113, 120, 108, 115, 122			
Flow rate (kg/hr)	6834	6834			
Water	335	335			
Fat	2973	2973			
Protein	778	778			
Starch	328	328			
Cellulose	854	854			
Ash	251	251			
Other	1315	1315			
Temperature (C)	21	21			
Pressure (bar)	1	1			
Design Data:	Length (m)				
	Diameter (cm)	2			
	Velocity (m/s)	0.0			
Total Purchase C	ost:	\$ 3,61			
Equipment Bare	Module Cost:	\$ 6,25			
Cost doesn't include motor, drive, lid. Comments: Trough is 30% full and screw is rotating at 50 rpm.					

FINE CLEANER 1					
Identification:	Item Item No. No. Required	Cleane C-104 3	er until 106		
Function:	To fine clean the	cocoa beans			
Operation:	Continuous				
Туре:	Cyclone Separate	or			
Stream ID Flow rate (kg/hr)	Inlet 106,113,120 6834	Outlet 107,114,121 6834			
Water	335	335			
Fat	2973	2973			
Protein	778	778			
Starch	328	328			
Cellulose	854	854			
Ash	251	251			
Other	1315	1315			
Temperature (C)	21	21			
Pressure (bar)	1	1			
Design Data:					
Airfl	ow (m³/hr)		2041		
Total Purchase Cost:		\$	2,672		
Equipment Bare Mod	ule Cost:	\$	2,871		
Utilities Required/Yea	r (kWh)		26147		

COARSE CLEANER 1					
Identification:	Item Item No. C-101 until No. Required 3				
Function:	To coarse clear	n the cocoa beans			
Operation:	Continuous				
Туре:	Vibrating Scree	n - 2 Deck			
Stream ID	Inlet	0	utlet		
	104,111,118	105,1	112,119		
Flow rate (kg/hr)	6834	6	834		
Water	335	3	335		
Fat	2973	2	973		
Protein	778	7	778		
Starch	328	3	328		
Cellulose	854	8	354		
Ash	251	2	251		
Other	1315	1	315		
Temperature (C)	21		21		
Pressure (bar)	1		1		
Design Data:	Screen Area (m²)		11		
	Load (Metric tonnes/hr-m ² -mm)		0.86		
	Screen Type		20-Mesh		
Total Purchase (Cost:	\$	49,387		
Equipment Bare	Module Cost:	\$	91,779		
Utilities Require	d/Year (kWh)		4909		

DESTONER 1					
Identification:	Item Item No. No. Require	ed	Destone C-107 u 3	er Intil 109	
Function:	To destone	the cocoa bean	mixture		
Operation:	Continuous				
Туре:	Vibrating S	creen - 1 Deck			
Stream ID	Inlet		Outlet		
	108, 115, 122		109,116,123		
Flow rate (kg/hr)	6834		6834		
Water	335		335		
Fat	2973		2973		
Protein	778		778		
Starch	328		328		
Cellulose	854		854		
Ash	251		251		
Other	1315		1315		
Temperature (C)	21		21		
Pressure (bar)	1		1		
Design Data:	Screen Area (cm²)			7800	
	Air Pressure (mBar)			12	
	Aspiration (m³/min)			70.00	
Total Purchase C	Cost:	\$		6,342	
Equipment Bare	Module Cost:	\$		11,785	
Utilities Required	d/Year (kWh)			2454	
Comments:	Screen mo	del - MTSD-65/12	20		

Section 200:

	WINNOWER	1	
Identification:	Item Item No. No. Required	Winnower W-201 until 203 3	
Function:	To separate	the cocoa nibs from tl	he cocoa shells
Operation:	Continuous		
Туре:	Cyclone Sep	parator	
Stream ID	Inlet	Ou	tlet
	205,214,223	206,215,224	208,217,226
Flow rate (kg/hr)	6666	1327	5340
Water	168	59	111
Fat	2989	20	2958
Protein	778	145	633
Starch	330	0	328
Cellulose	848	352	500
Ash	250	106	145
Other	1303	645	665
Temperature (C)	21	2	3
Pressure (bar)	1		1
Design Data:			
Airflow (m³/hr)			
Total Purchase Cost:		\$	2,291
Equipment Bare Modu	lle Cost:	\$	2,461
Utilities Required/Year (kWh) 87651			

	ROASTER 1	
Identification:	ltem Item No. No. Required	Roaster R-201 until 203 3
Function:	To roast the coco	a beans
Operation:	Continuous	
Туре:	Vessel	
Stream ID	Inlet	Outlet
	201,210,219	202,211,220
Flow rate (kg/hr)	6834	6628
Water	335	130
Fat	2973	2972
Protein	778	778
Starch	328	328
Cellulose	854	854
Ash	251	251
Other	1315	1275
Temperature (C)	21	121
Pressure (bar)	1	1
Design Data:	Residence time (min)	30
	Diameter (m)	2
	Height (m)	2
Utilities Required	Year (kg)	6598908
Total Purchase Co	ost:	\$ 40,086
Equipment Bare M	Nodule Cost:	\$ 179,132
Comments:	205 kg/hr of stear	m is boiled off.

	STERILIZER 1				
Identification:	ltem Item No. No. Required			Cleane SZ-201 3	r until 203
Function:	To sterilize the	cocoa be	ans		
Operation:	Continuous				
Туре:	Vessel				
Stream ID	Inlet		Ou	tlet	
	203,212,221		204,2	13,222	
Flow rate (kg/hr)	6628		66	66	
Water	130		10	68	
Fat	2972		29	89	
Protein	778		7	78	
Starch	328		33	30	
Cellulose	854		84	48	
Ash	251		25	50	
Other	1315		13	03	
Temperature (C)	121		13	38	
Pressure (bar)	1		2.	5 0	
Design Data:	Residence time (min)				5
	Steam Flow rate (kg/hr)				928
	Diameter (m)				0.76
	Height (m)				2
Total Purchase C	ost:	\$			24,257
Equipment Bare	Module Cost:	\$			108,397
Comments:	34 kg/hr of stea stream.	ım conde	nses into	the proc	ess

		CONVEYOR 1		
Identification:		Item Item No. No. Required		Conveyor CY-201 until 203 3
Function:		To transport coc	oa beans betwee	n upstream units
Operation:		Continuous		
Туре:		Screw Conveyor		
Stream ID	In	let	O	utlet
	109,1	16,123	201,2	210,219
Flow rate (kg/hr)	68	334	6	834
10/		25	-	25
Water		35	-	335
Fat		973		973
Protein		78	-	78
Starch	-	28	-	328
Cellulose	_	54	-	354
Ash	-	51		251
Other	13	315	1	315
Temperature (C)	2	21	:	21
Pressure (bar)		1		1
Design Data:	Length (m)			5
	Diameter (cm)			26
	Velocity (m/s)			0.05
Total Purchase Cost:		\$		3,619
Equipment Bare	Module Cost:		\$	6,259
Comments:			lude motor, drive, ull and screw is re	lid. otating at 50 rpm.

	CONVE	YOR 2		
Identification:	ltem Item No No. Rec			onveyor /-204 until 206
Function:	Convey	roasted beans to	sterilizing u	nits
Operation:	Continu	ous		
Туре:	Screw (Conveyor		
Stream ID	Inlet		Outlet	:
	202,211,220		203,212,2	221
Flow rate (kg/hr)	6628		6628	
Water	130		130	
Fat	2,972		2,972	
Protein	778		778	
Starch	328		328	
Cellulose	854		854	
Ash	251		251	
Other	1,315		1,315	
Temperature (C)	121		121	
Pressure (bar)	1		1	
Design Data:	Length (m)			5
	Diameter (cm)			26
	Velocity (m/s)			0.05
Total Purchase (Cost:	\$		3,619
Equipment Bare	Module Cost:	\$		6,259
Comments:		esn't include moto is 30% full and sc		ng at 50 rpm.

	C	ONVEYOR 3		
Identification:	lte	em em No. 5. Required		Conveyor CY-207 until 209 3
Function:	Co	onvey sterilized be	ans to winnow	/er
Operation:	Ce	ontinuous		
Туре:	S	rew Conveyor		
Stream ID	Inlet		Ou	tlet
	204,213,	222	205,2	14,223
Flow rate (kg/hr)	6666		66	66
Water	168		10	58
Fat	2,989)	2,9	989
Protein	778		7	78
Starch	330		3	30
Cellulose	848		84	48
Ash	250		2	50
Other	1,303	\$	1,3	303
Temperature (C)	138		1:	38
Pressure (bar)	2.50		2.	50
Design Data:	Length (m)			5
	Diameter (cm)			26
	Velocity (m/s)			0.05
Total Purchase C	ost:	\$		3,619
Equipment Bare	Module Cost:	\$		6,259
Comments:		ost doesn't include ough is 30% full a		

	СС	NVEYOR 4		
Identification:		m m No. . Required		Conveyor CY-210,212,214 3
Function:	To	convey the shells	to the furnac	e
Operation:	Co	ontinuous		
Туре:	Sc	rew Conveyor		
Stream ID	Inlet		Ou	tlet
	206,215,2	224	207,2	16,225
Flow rate (kg/hr)	1327		13	27
Water	59		5	9
Fat	20		2	0
Protein	145		14	45
Starch	0		(D
Cellulose	352		3	52
Ash	106		10	06
Other	645		64	45
Temperature (C)	23		2	3
Pressure (bar)	1			1
Design Data:	Length (m)			5
	Diameter (cm)			16
	Velocity (m/s)			0.03
Total Purchase C	ost:	\$		2,172
Equipment Bare	Module Cost:	\$		3,756
Comments:		ost doesn't include ough is 30% full ar		

	CONV	EYOR 5			
Identification:	Item Item No. R	No. lequired		Conveyor CY-211,213, 3	215
Function:	То со	nvey the cocoa ni	bs to Secti	ion 300	
Operation:	Conti	nuous			
Туре:	Screv	v Conveyor			
Stream ID	Inlet		Ou	tlet	
	208,217,226		209,2	18,227	
Flow rate (kg/hr)	5340		53	340	
Water	111		1	11	
Fat	2,958		2,9	958	
Protein	633		6	33	
Starch	328		32	28	
Cellulose	500		50	00	
Ash	145		14	45	
Other	665		6	65	
Temperature (C)	23		2	23	
Pressure (bar)	1			1	
Design Data:	Length (m)				5
	Diameter (cm)				23
	Velocity (m/s)				0.05
Total Purchase Co	ost:	\$		3	,257
Equipment Bare M	Module Cost:	\$		5	,633
Comments:	Cost doesn't include motor, drive, lid. Trough is 30% full and screw is rotating at 50 rpm				pm.

Section 300:

PUMP 1					
Identification:	ltem Item No. No. Require	ed	<i>Pump</i> P-301 until 303 3		
Function:	Pump coar	sely ground co	coa to fine grinder		
Operation:	Continuous	;			
Туре:	Cei	ntrifugal, 3600	RPM, VSC, 75 Hp		
Stream ID	Inlet		Outlet		
	302,305,308		303,306,309		
Pressure (bar)	1		1		
Design Data:	Flow Rate	(kg/hr)	5340		
	Brake Pow	er (kW)	0.15		
	Pump Hea	d (m)	1		
	Motor Effic	iency	0.75		
	Constructio	on Material	Stainless Steel		
Utilities required/year:	(kWh)		3964		
Purchase Cost:		\$	2,900		
Bare Module Cost:		\$	13,395		
Associated Costs:	Motor	\$	407		
Total Bare Module Cost:		\$	13,802		
Comments:			with lower limit of size an upper estimate.		

	COARSE GRIND	ER 1		
Identification:	Item Item No. No. Required		Grinde G-301 3	er until 303
Function:	To coarse grin	d the cocoa bear	IS	
Operation:	Continuous			
Туре:	Cone Crusher			
Stream ID Flow rate (kg/hr)	Inlet 209,218,228 5340		Outlet 2,305,308 5340	
Water Fat	111 2958		111 2958	
Protein	633		633	
Starch	328		328	
Cellulose	500		500	
Ash	145		145	
Other	665		665	
Temperature (C)	23		23	
Pressure (bar)	1		1	
Design Data:				
	et particle size (mm)			5
Total Purchase Cost:		\$		11,575
Equipment Bare Mod		\$		17,282
Utilities Required/Yea	r (kWh)			141195
Comments:	The cone crus ball mill of the	her is small enou fine grinder.	ıgh to fit ir	nto the

	FINE GRINDER 1	
Identification:	Item Item No. No. Required	Grinder G-304 until 306 3
Function:	To fine grind the o	cocoa beans
Operation:	Continuous	
Туре:	Ball Mill	
Stream ID Flow rate (kg/hr)	Inlet 303,306,309 5340	Outlet 304,307,310 5340
Water Fat	111 2958	111 2958
Protein	633	633
Starch	328	328
Cellulose	500	500
Ash Other	145 665	145 665
Temperature (C)	21	21
Pressure (bar)	1	1
Design Data:		
	Outlet particle size (mm)	0.01
Total Purchase Cost		\$ 193,642
Equipment Bare Mo		\$ 478,424
Utilities Required/Ye	ear (kWh)	339914

Section 400:

PUMP 1					
Identification:	ltem Item No. No. Requi	red	<i>Pump</i> P-401 1		
Function:	To pump p	ootassium carbona	ate solution to R-401		
Operation:	Continuou	s			
Туре:	Centrifuga				
Stream ID	Inlet		Outlet		
	403		404		
Pressure (bar)	1		1.50		
Design Data:	Flow Rate	(kg/hr)	5286		
	Brake Hor	sepower (kW)	0.27		
	Pump Hea	ad (m)	5		
	Efficiency		0.75		
	Constructi	ion Material	Stainless Steel		
Utilities Required/Year (kWh)			3230		
Purchase Cost:		\$	3,300		
Bare Module Cost:		\$	14,100		
Associated Costs:	Motor	\$	1,600		
Total Bare Module Cost:		\$	15,700		
Comments:	Enclosure	Туре			

PUMP 2					
Identification:	ltem Item No. No. Requir	red	<i>Pump</i> P-402 1		
Function:	Pump Coo	oa Liquor to Alkali:	zation Reactor		
Operation:	Continuou	s			
Туре:	Centrifuga				
Stream ID	Inlet		Outlet		
	304		405		
Pressure (bar)	1		1.50		
Design Data:	Flow Rate	(kg/hr)	5340		
	Brake Hor	sepower (kW)	0.0337		
	Pump Hea	ad (m)	2		
	Efficiency		0.75		
	Constructi	on Material	Stainless Steel		
Utilities Required/Year (kWh)			700		
Purchase Cost:		\$	4,400		
Bare Module Cost:		\$	20,400		
Associated Costs:	Motor	\$	200		
Total Bare Module Cost:		\$	20,600		
Comments:	Enclosure	Туре			

PUMP 3					
Identification:	ltem Item No. No. Requir	ed	<i>Pump</i> P-403 1		
Function:	Pump Coc	oa Liquor to Alkali	zation Reactor		
Operation:	Continuous	5			
Туре:	Centrifugal				
Stream ID	Inlet		Outlet		
	307		406		
Pressure (bar)	1		1.50		
Design Data:	Flow Rate	(kg/hr)	5340		
	Brake Hors	sepower (kW)	0.0337		
	Pump Hea	d (m)	2		
	Efficiency		0.75		
	Construction	on Material	Stainless Steel		
Utilities Required/Year (kWh)			700		
Purchase Cost:		\$	4,400		
Bare Module Cost:		\$	20,400		
Associated Costs:	Motor	\$	200		
Total Bare Module Cost:		\$	20,600		
Comments:	Enclosure	Туре			

PUMP 4					
Identification:	ltem Item No. No. Requir	red	<i>Pump</i> P-404 1		
Function:	Pump Coc	oa Liquor to Alkali	zation Reactor		
Operation:	Continuou	s			
Туре:	Centrifuga				
Stream ID	Inlet		Outlet		
	310		407		
Pressure (bar)	1		1.50		
Design Data:	Flow Rate	(kg/hr)	5340		
	Brake Hors	sepower (kW)	0.0337		
	Pump Hea	ad (m)	2		
	Efficiency		0.75		
	Constructi	on Material	Stainless Steel		
Utilities Required/Year (kWh)			700		
Purchase Cost:		\$	4,400		
Bare Module Cost:		\$	20,400		
Associated Costs:	Motor	\$	200		
Total Bare Module Cost:		\$	20,600		
Comments:	Enclosure	Туре			

	PUMP 5		
Identification:	Item Pump Item No. P-405 No. Required 1		
Function:	Vacuum Pull Wator Vapor		
Operation:	Continuous		
Туре:	Liquid Ring, Water Sealed		
Stream ID	Inlet	Outlet	
	411	412	
Pressure (bar)	0.30	1.05	
Design Data:	Flow Rate (kg/hr)	0.008	
	Efficiency	0.8	
	Construction Material	Stainless Steel	
Utilities Required/Year (kWh)		0.679	
Purchase Cost:	\$	10,000	
Bare Module Cost:	\$	32,100	
Total Bare Module Cost:	\$	32,100	
Comments:	Suction Volume of 1 ft³/min		

	MIXER 1		
Identification:	Item Item No. No. Required		<i>Mixer</i> M-401 1
Function:	Mix water and po	tassium carbona	ate to form solution
Operation:	Continuous		
Туре:	Vertical Pressure	Vessel	
Stream ID	Inlet	Inlet	Outlet
	401	402	403
Quantity (kg/hr)	4805	481	5286
Composition (kg/hr)			
Potassium Carbonate	0	481	0
Water	4805	0	4805
K+	0	0	272
CO3	0	0	209
Temperature (C)	20	20	21.6
Pressure (bar)	1.01	1.01	1.01
Design Data:			
Construction Material			Stainless Steel
Utilities Required/Year (kWh)			27822
Purchase Cost:		\$	26,800
Bare Module Cost:		\$	121,000
Associated Costs:	Agitator (\$/year) \$ 1,70		
	Hopper	\$	1,300
Total Bare Module Cost:		\$	124,000
Comments:	Closed Vessel at	Atmospheric Pr	ressure

		REACTOR 1			
Identification:		ltem Item No. No. Required			<i>Reactor</i> R-401 1
Function:		To alkalize Coco	oa Liquor		
Operation:		Continuous			
Туре:		Vertical Tower			
Stream ID	In	let		Out	tlet
	404	405,406,407		40	08
Flow rate (kg/hr)	5286	16020		213	306
10/-+	1005	400		50	00
Water	4805	480 8649		52 86	
Fat Powder	0	0010			
Powaer K+	272	6888 0		68 27	
K+ CO3	272	0		20	_
003	205	0		20	15
Temperature (C)	22	95		9	5
Pressure (bar)	1.50	1.50		1.{	50
Design Data:	Residence Time	(min)			30
	Diameter (m)				1
	Height (m)				4
	Volume (m³)				3
	Heat Duty (kW)				667
	Construction Mat	terial			Stainless Steel
Purchase Cost:			\$		37,500
Toal Bare Module	e Cost:		\$		161,300
Comments:		Closed Vessel			

	H20	EVAPORATOR 1		
Identification:		ltem Item No. No. Required		Distillation Column T-401 1
Function:		To remove water	from Cocoa Liq	uor
Operation:		Continuous		
Туре:		Flash Vessel		
Stream ID	Fe	eed	Bottoms	Overhead
	408	415	413	409
Flow rate (kg/hr)	21306	0.029	16320	4168
Water	5286	0	301	4985
Fat	8650	0	8650	0
Powder	6888	0	6888	0
Potassium Carbonate	0	0	275	0
K+	272	0	116	0
CO3	209	0	89	0
Nz	0	0.022	0	0.022
O2	0	0.007	0	0.007
Temperature (C)	95	20	95	95
Pressure (bar)	1.50	1	0.30	0.30
Design Data:	Height (m)			4
	Column Diamete	er (m)		1
	Heat Duty (kW)			3194
Purchase Cost:			\$	21,900
Bare Module Cost:			\$	91,300
Comments:		Closed Vessel B	elow Atmospher	ric Conditions

		DECANTER 1		
Identification:		ltem Item No. No. Required		<i>Decanter</i> V-401 1
Function:		Phase Split Betw	veen Water Liqu	id and Vapor
Operation:		Continuous		
Туре:		Condenser		
Stream ID		Feed	Bottoms	Overhead
		410	414	411
Flow rate (kg/hr)		4985	4985	0.008
Water		4985	4985	0.001
Nz		0	0.021	0.006
O ₂		0	0.006	0.001
Temperature (C)		30	28	28
Pressure (bar)		0.3	0.3	0.3
Design Data:	Height (m)			4
	Column Diame	eter (m)		1
Purchase Cost:			\$	37,500
Bare Module Cost	:		\$	156,200
Comments:		Closed Vessel be	low Atmospher	ic Conditions

	HEAT EXCHANG	ER 1	
Identification:	Item Item No. No. Requir	Heat Exchanger E-401 1	
Function:		s feed 409 to 410	
Operation:	Continuous	3	
Туре:	Floating He	ead, Shell and Tube	
Stream ID	Tube Side	SI	nell Side
Inlet	Ethylene Glycol/Water (30	:70)	409
Outlet	Ethylene Glycol/Water (30	:70)	410
Flow rate (kg/hr)	120000		4985
Inlet Temperature (C)	25		95
Outlet Temperature (C)	46		30
Design Data:	Surface Area (m²)		44
	Length (m)		3
	U (W/m²-C)		2.38
	Fouling Resistance (m ² -C/W)	0.00053
	LMTD (C)		32
	Heat Duty (kW)		2852
	Construction Materials		Stainless Steel 304
Utilities Required/Yea	r (kWh)		19986816
Purchase Cost:		\$	21,000
Bare Module Cost:		\$	157,200

Section 500:

	MIXER 1	
Identification:	ltem Item No. No. Required	<i>Mixer</i> M-501 1
Function:		naintain solid suspension
Operation:	Continuous	
Туре:	Vertical pressure vessel	
Stream ID	Inlet	Outlet
	501	502
Quantity (kg/hr)	16320	16320
Composition (kg/hr)		
Fat	8650	8650
Powder	6888	6888
Potassium Carbonate	480	480
Water	301	301
Butane	0	0
Temperature (C)	95	50
Pressure (bar)	1.50	2
Design Data:		
	Construction Material	Stainless Steel
	Diameter (m)	1.23
	Height (m)	3.69
Purchase Cost:	\$	44,612
Bare Module Cost:	\$	199,358
Associated Costs:	turbine agitator \$	15,701
Total Bare Module Cost:	\$	215,059
Utilities Required/Year:		125960510
Cooling Water (kg)		125900000
Electricity (kWh)		60510
Comments:	Closed vessel	

	MIXER 2		
Identification:	ltem		Mixer
	Item No.		M-502
	No. Required		1
Function:	Mix liquid butane	with cocoa liqu	ior
Operation:	Continuous		
Туре:	Vertical pressure	vessel	
Stream ID	Int	et	Outlet
	503	626	504
Quantity (kg/hr)	16320	30460	46780
Composition (kg/hr)			
Fat	8650	0	8650
Powder	6888	0	6888
Potassium Carbonate	480	0	480
Water	301	0	301
Butane	0	30460	30460
Temperature (C)	50	50	50
Pressure (bar)	2	6	5
Design Data:			
	Construction Mate	erial	Stainless Steel
	Diameter (m)		2.58
	Height (m)		7.74
Purchase Cost:		\$	125,896
Bare Module Cost:		562,587	
Associated Costs:	propeller agitator \$ 4,71		
Total Bare Module Cost:	\$ 567,299		
Utilities Required/Year:			
Electricity (kWh)			27890
Comments:	Closed vessel		

	MIXER 3				
Identification:	Mixer				
	Item Item No.		M-503		
	No. Required		1		
Function:	Create solvent:co	ocoa ratio of 1.	B:1 with fresh butane		
Operation:	Continuous				
Туре:	Vertical pressure	vessel			
Stream ID	In	let	Outlet		
	509	627	510		
Quantity (kg/hr)	10192	8990	19182		
Composition (kg/hr)					
Fat	690	0	690		
Powder	5747	0	5747		
Potassium Carbonate	380	0	380		
Water	34	0	34		
Butane	3341	8990	12331		
Temperature (C)	50	50	50		
Pressure (bar)	6	6	6		
Design Data:					
	Construction Mat	terial	Stainless Steel		
	Diameter (m)		1.55		
	Height (m)		4.64		
Purchase Cost:		\$	58,404		
Bare Module Cost:		260,998			
Associated Costs:	propeller agitator	\$	3,631		
Total Bare Module Cost:	\$ 264,629				
Utilities Required/Year:					
Electricity (kWh)			6021		
Comments:	Closed vessel in	art of first mixe	r-filter separation		
comments.	ciused vessel, p	an or mst mixe	-inter separation		

	MIXER 4		
Identification:	lt a sec		Mixer
	ltem Item No.		M-504
	No. Required		1
Function:	Create solvent:co	ocoa ratio of 1.	2:1 with fresh butane
Operation:	Continuous		
Туре:	Vertical pressure	vessel	
Stream ID	In	let	Outlet
	520	522	521
Quantity (kg/hr)	2035	380	2415
Composition (kg/hr)			
Fat	43	0	43
Powder	1149	0	1149
Potassium Carbonate	76	0	76
Water	2	0	2
Butane	765	380	1145
Temperature (C)	50	50	50
Pressure (bar)	6	6	6
Design Data:			
	Construction Mat	terial	Stainless Steel
	Diameter (m)		1.22
	Height (m)		3.67
Purchase Cost:		\$	44,334
Bare Module Cost:		\$	198,113
Associated Costs:	propeller agitator	\$	3,321
Total Bare Module Cost:	\$ 201,434		
Utilities Required/Year:			
Electricity (kWh)			2977
Comments:	Closed vessel. p	art of second n	nixer-filter separation

		DRYER 1		
Identification:		ltem Item No. No. Required		Dryer D-501 1
Function:		Vaporize butane	off of low fat coc	oa powder
Operation:		Continuous		
Туре:		Vertical pressure	e vessel	
Stream ID		Inlet	Outlet (vap)	Outlet (liq)
		515	516	517
Quantity (kg/hr)	8141	3059	5082
Composition (kg/hr)			
Water	•	9	0	9
Powder		4598	0	4598
Butane		3059	3059	0
Fat		171	0	171
Potassium Carb	onate	304	0	304
Temperature (C))	50	50	50
Pressure (bar)		6	1.20	1.20
Design Data:	Diameter (m)			1.52
	Height (m)			5
	Residence Time	e (min)		60
	Construction M	aterial		Stainless Steel
Purchase Cost	:		\$	56,992
Bare Module C	ost:		\$	254,680
Associated Cos	sts:	propeller agitato	r \$	3,593
Total Bare Mod	ule Cost:		\$	258,273
Utilities Requir	ed/Year:			
Steam	(kg)			5873000
Electricity	(kWh)			5661
Comments:		Closed vessel, i	sothermal	

		DRYER 2		
Identification:		Item Item No.		Dryer D-502
F (1)		No. Required		1
Function:		-	off of nonfat coc	oa powder
Operation:		Continuous		
Type: Stream ID		Vertical pressure		Outlat (lin)
Stream ID		Inlet	Outlet (vap)	Outlet (liq)
Quantity (kg/hr)	527 1434	528 203	529 1231
Composition ((g/hr)			
Water		0	0	0
Powder		1149	0	1149
Butane		203	203	0
Fat		6	0	6
Potassium Carb	onate	76	0	76
Temperature (C))	50	50	50
Pressure (bar)		6	1.20	1.20
Design Data:	Diameter (m)			1.52
	Height (m)			5
	Residence Time	e (min)		60
	Construction Ma	aterial		Stainless Steel
Purchase Cost	:		\$	56,992
Bare Module C	ost:		\$	254,680
Associated Cos	sts:	propeller agitato	r \$	3,593
Total Bare Mod	ule Cost:		\$	258,273
Utilities Requir	ed/Year:			
Steam	(kg)			1557000
Electricity	(kWh)			5661
Comments:		Closed vessel, i	sothermal	

	FILTER 1		
Identification:	ltem Item No. No. Required		Filter FL-501 1
Function:	Filter butter and	solvent from pow	der cake
Operation:	Continuous		
Туре:	Rubber belt vac	uum filter	
Stream ID	Inlet	Outlet (cake)	Outlet (liq)
	510	513	511
Quantity (kg/hr)	19182	10176	9006
Composition (kg/hr)			
Fat	690	214	476
Powder	5747	5747	0
Potassium Carbonate	380	380	0
Water	34	11	23
Butane	12331	3824	8507
Temperature (C)	50	50	50
Pressure (bar)	6	6	6
Design Data:			
Amount of solids in feed			6127
Filter Area (m²)			98
Belt Speed (m/min)			10
Purchase Cost:		\$	697,790
Bare Module Cost:	\$ 900,000		
Utilities Required/Year:	(kWh)		385700
Comments:	BHS Sonthofen	filter	

	FILTER 2		
Identification:	Item Filter		
	Item No.		FL-502
	No. Required		1
Function:	Wash remaining	butter from powd	er cake
Operation:	Continuous		
Туре:	Rubber belt vac	uum filter	
Stream ID	Inlet	Outlet (cake)	Outlet (liq)
	521, 523	526	524
Quantity (kg/hr)	2795	1434	1361
Composition (kg/hr)			
Fat	43	6	37
Powder	1149	1149	0
Potassium Carbonate	76	76	0
Water	2	0	2
Butane	1525	203	1322
Temperature (C)	50	50	50
Pressure (bar)	6	6	6
Design Data:			
Amount of solids in feed			1225
Filter Area (m²)			98
Belt Speed (m/min)			10
Purchase Cost:		\$	697,790
Bare Module Cost:	\$ 900,000		
Utilities Required/Year:	(kWh)		385700
	BHS Sonthofen filter. 380 kg/hr of solvent enters		
Comments:	as wash in strea	am 523	

CENTRIFUGE 1					
Identification:	ltem Item No. No. Required		<i>Centrifuge</i> CFG-501 1		
Function:	Separate powde	er from butter dis	solved in solvent		
Operation:	Continuous				
Туре:	Food-grade hori	zontal decanter			
Stream ID	Inlet	Outlet (cake) Outlet (liq)		
	505	508	506		
Quantity (kg/hr)	46780	10192	36588		
Composition (kg/hr)					
Powder	5747	5747	0		
Butane	33414	3341	30073		
Water	334	34	300		
Fat	6905	690	6215		
Potassium Carbonate	380	380	0		
Temperature (C)	50	50	50		
Pressure (bar)	6	6	6		
Design Data:					
Amount of solids in feed (kg/hr)			6127		
Motor Speed (rpm)			3477		
Bowl Material		[Duplex Stainless Steel		
Bowl Diameter (mm)			480		
Purchase Cost:		\$	125,130		
Bare Module Cost:		\$	300,000		
Utilities Required/Year:					
Cooling Water (kg)			95565000		
Electricity (kWh)			1753200		
Comments:	Continuous scro	oll solid bowl, Al	fa Laval Foodec 800		

PUMP 1					
Identification:	ltem Item No. No. Requir	Pump P-501 1			
Function:	Pump alka	alized liquor to co	oling/agitation vessel		
Operation:	Continuou	s			
Туре:	Ce	entrifugal, 3600 F	RPM, VSC, 75 Hp		
Stream ID	Inlet		Outlet		
	413		501		
Pressure (bar)	0.30		1.50		
Design Data:	Flow Rate	(kg/hr)	13366		
	Brake Pov	ver (kW)	0.60		
	Pump Hea	ad (m)	7		
	Motor Effic	ciency	0.79		
	Constructi	on Material	Stainless Steel		
Utilities Required/Year:	(kWh)		9495		
Purchase Cost:		\$	2,900		
Bare Module Cost:	\$		13,395		
Associated Costs:	Motor \$		474		
Total Bare Module Cost:		\$	13,869		
Comments:	TEFC Enclosure. Costed with lower limit of size factor correlation; cost is an upper estimate.				

PUMP 2					
Identification:	ltem Item No. No. Requir	<i>Pump</i> P-502 1			
Function:	Pump lique	or to solvent mixi	ng vessel		
Operation:	Continuous	5			
Туре:	Ce	ntrifugal, 3600 R	PM, VSC, 75 Hp		
Stream ID	Inlet		Outlet		
	502		503		
Pressure (bar)	1.50		1.50		
Design Data:	Flow Rate	(kg/hr)	13366		
	Brake Pow	ver (kW)	0.24		
	Pump Hea	d (m)	3		
	Motor Effic	ciency	0.76		
	Construction	on Material	Stainless Steel		
Utilities Required/Year:	(kWh)		3872		
Purchase Cost:		\$	2,900		
Bare Module Cost:	\$		13,395		
Associated Costs:	Motor \$		431		
Total Bare Module Cost:		\$	13,826		
Comments:	TEFC Enclosure. Costed with lower limit of size factor correlation; cost is an upper estimate.				

PUMP 3					
Identification:	ltem Item No. No. Require	<i>Pump</i> P-503 1			
Function:	Pump solve	ent and liquor to	centrifuge		
Operation:	Continuous				
Туре:	Cer	ntrifugal, 3600 I	RPM, VSC, 75 Hp		
Stream ID	Inlet		Outlet		
	504		505		
Pressure (bar)	5		6		
Design Data:	Flow Rate (kg/hr)	46780		
	Brake Powe	er (kW)	3		
	Pump Head	i (m)	17		
	Motor Effic	iency	0.84		
	Constructio	n Material	Stainless Steel		
Utilities Required/Year:	(kWh)		49379		
Purchase Cost:		\$	3,637		
Bare Module Cost:		\$	16,801		
Associated Costs:	Motor	\$	747		
Total Bare Module Cost:		\$	17,548		
Comments:	TEFC Encl	osure			

PUMP 4					
Identification:	ltem Item No. No. Require	<i>Pump</i> P-504 1			
Function:	Pump centr	rifuged liquids to	recovery section		
Operation:	Continuous				
Туре:	Centrifugal,	3600 RPM, VS	C, 75 Hp		
Stream ID	Inlet		Outlet		
	506		507		
Pressure (bar)	6		6		
Design Data:	Flow Rate ((kg/hr)	36588		
	Brake Powe	er (kW)	1		
	Pump Head	d (m)	8		
	Motor Effici	iency	0.81		
	Constructio	n Material	Stainless Steel		
Utilities Required/Year:	(kWh)		18520		
Purchase Cost:		\$	3,300		
Bare Module Cost:	\$		15,242		
Associated Costs:	Motor	\$	533		
Total Bare Module Cost:		\$	15,775		
Comments:	TEFC Encl	osure			

PUMP 5					
Identification:	Item Item No. No. Required		<i>Pump</i> P-505 1		
Function:	Pump filter	red liquids to rec	overy section		
Operation:	Continuous	3			
Туре:	Centrifugal	, 3600 RPM, VS	С, 75 Нр		
Stream ID	Inlet		Outlet		
	511		512		
Pressure (bar)	6		6		
Design Data:	Flow Rate	(kg/hr)	9006		
	Brake Pow	/er (kW)	0.38		
	Pump Hea	d (m)	8		
	Motor Effic	iency	0.78		
	Constructio	on Material	Stainless Steel		
Utilities Required/Year:	(kWh)		6081		
Purchase Cost:		\$	2,900		
Bare Module Cost:	\$		13,395		
Associated Costs:	Motor \$		451		
Total Bare Module Cost:		\$	13,846		
Comments:	TEFC Enclosure. Costed with lower limit of size factor correlation; cost is an upper estimate.				

PUMP 6				
Identification:	Item Item No.		Pump P-506	
Function:	No. Requir Pump filte	red liquids to rec	overv section	
Operation:	Continuou		,	
Туре:	Centrifuga	I, 3600 RPM, VS	C, 75 Hp	
Stream ID	Inlet		Outlet	
	524		525	
Pressure (bar)	6		6	
Design Data:	Flow Rate	(kg/hr)	1361	
	Brake Pov	ver (kW)	0.33	
	Pump Hea	ad (m)	8	
	Motor Effic	ciency	0.77	
	Constructi	on Material	Stainless Steel	
Utilities Required/Year:	(kWh)		5275	
Purhase Cost:		\$	2,900	
Bare Module Cost:	\$		13,395	
Associated Costs:	Motor \$		445	
Total Bare Module Cost:		\$	13,840	
Comments:	TEFC Enclosure. Costed with lower limit of size factor correlation; cost is an upper estimate.			

	CO	NVEYOR 1		
Identification:		n n No. Required	Convey CY-501 1	or
Function:	Cor	vey centrifuged soli	ds to first mixer-filt	er
Operation:	Cor	ntinuous		
Туре:	Scr	ew Conveyor		
Stream ID	Inlet 508		Outlet 509	
Flow rate (kg/hr)	10192		10192	
Water	34		34	
Fat	690		690	
Powder	5747		5747	
Butane	3341		3341	
K2CO3 (S)	380		380	
Temperature (C)	50		50	
Pressure (bar)	6		6	
Design Data:	Length (m)			5
200-gii Duui	Diameter (cm)			31
	Velocity (m/s)			0.05
Total Purchase C		\$		4,343
Equipment Bare	Module Cost:	\$		7,511
Comments:	Cost doesn't include motor, drive, lid. Trough is 30% full and screw is rotating at 50 rpm.			

	C	ONVEYOR 2		
Identification:	Ite	em em No. 5. Required		<i>Conveyor</i> CY-502 1
Function:	Co	onvey low-fat cake t	o second mix	ker-filter
Operation:	Co	ontinuous		
Туре:	So	rew Conveyor		
Stream ID	Inlet		Ou	tlet
	519		52	20
Flow rate (kg/hr)	2035		20	35
Water	2		2	2
Fat	43		4	3
Powder	1149		11	49
Butane	765		76	5
K2CO3 (S)	76		7	6
Temperature (C)	50		5	0
Pressure (bar)	6		6	5
Design Data:	Length (m)			5
	Diameter (cm)			18
	Velocity (m/s)			0.03
Total Purchase C	lost:	\$		2,533
Equipment Bare	Module Cost:	\$		4,382
Comments:	Cost doesn't include motor, drive, lid. Trough is 30% full and screw is rotating at 50 rpm			

CONVEYOR 3					
Identification:		n n No. Required	Con CY-5	veyor 503	
Function:	Con	ivey low fat cake to s	solvent dryer		
Operation:	Con	itinuous			
Туре:	Scr	ew Conveyor			
Stream ID	Inlet		Outlet		
	514		515		
Flow rate (kg/hr)	8141		8141		
Water	9		9		
Fat	171		171		
Powder	4598		4598		
Butane	3059		3059		
K2CO3 (S)	304		304		
Temperature (C)	50		50		
Pressure (bar)	6		6		
Design Data:	Length (m)			5	
	Diameter (cm)			28	
	Velocity (m/s)			0.05	
Total Purchase	Cost:	\$		3,981	
Equipment Bare	e Module Cost:	\$		6,885	
Cost doesn't include motor, drive, lid. Comments: Trough is 30% full and screw is rotating at 50 rpm.					

CONVEYOR 4					
Identification:	ltem			Conveyor CY-504	
	ltem N No. Re			1	
Function:		y low fat powder to	packagin	g units	
Operation:	Contin	uous			
Туре:	Screw	Conveyor			
Stream ID	Inlet		Out	let	
	517		51	8	
Flow rate (kg/hr)	5082		508	32	
Water	9		9		
Fat	171		17	1	
Powder	4598		4598		
Butane	0		0		
K₂CO₃ (S)	304		30	4	
Temperature (C)	50		50)	
Pressure (bar)	1.20		1.2	0	
Design Data:	Length (m)			5	
	Diameter (cm)			23	
	Velocity (m/s)			0.05	
Total Purchase	Cost:	\$		3,257	
Equipment Bare	e Module Cost:	\$		5,633	
Cost doesn't include motor, drive, lid. Comments: Trough is 30% full and screw is rotating at 50 rpm					

CONVEYOR 5					
Identification:	lt	em em No. o. Required		Conveyor CY-505 1	
Function:	С	onvey nonfat powder	to solvent o	lryer	
Operation:	С	ontinuous			
Туре:	S	crew Conveyor			
Stream ID	Inlet	t	Ou	tlet	
	526		52	27	
Flow rate (kg/hr)	1434	ļ	14	34	
Water	0.28		0.3	28	
Fat	6		6	6	
Powder	1149)	1149		
Butane	203		203		
K2CO3 (S)	76		7	6	
Temperature (C)	50		5	0	
Pressure (bar)	6		6	6	
Design Data:	Length (m)			5	
	Diameter (cm)			16	
	Velocity (m/s)			0.03	
Total Purchase	Cost:	\$		2,172	
Equipment Bare	e Module Cost:	\$		3,756	
Cost doesn't include motor, drive, lid. Comments: Trough is 30% full and screw is rotating at 50 rpm.					

	CONVEYO	R 6	
Identification:	Item Item No. No. Required	ł	Conveyor CY-506 1
Function:	Convey nonf	fat powder to packagii	ng units
Operation:	Continuous		
Туре:	Screw Conve	eyor	
Stream ID	Inlet	Οι	ıtlet
	529	5	30
Flow rate (kg/hr)	1231	12	231
Water	0.28	0.	28
Fat	6		6
Powder	1149	11	149
Butane	0		0
K2CO3 (S)	76	7	76
Temperature (C)	50	Ę	50
Pressure (bar)	1.20	1.	20
Design Data:	Length (m)		5
	Diameter (cm)		16
	Velocity (m/s)		0.03
Total Purchase	Cost:	\$	2,172
Equipment Bar	e Module Cost:	\$	3,756
Comments:		include motor, drive, % full and screw is ro	

Section 600:

HEAT EXCHANGER 1					
Identification:	ltem Item No. No. Requ	ired	<i>Heat E</i> E-601 1	xchanger	
Function:	Condense	es feed 601 to 602			
Operation:	Continuo	JS			
Туре:	Floating I	Head, Shell and Tube	<u>,</u>		
Stream ID	Tube Side	9	Shell Side		
Inlet	Ethylene Glycol/Water (3	0:70)	601		
Outlet	Ethylene Glycol/Water (3	0:70)	602		
Flow rate (kg/hr)	35750		3262		
Inlet Temperature (C)	-12		53		
Outlet Temperature (C)	0		4		
Design Data:	Surface Area (m²)			140	
	Length (m)			6	
	U (W/m²-C)			315	
	Fouling Resistance (m ² -C/\	N)		0.00053	
	LMTD (C)			31	
	Heat Duty (kW)			423	
	Construction Material		Stainless S	Steel 316	
Utilities Required/Year	(kWh)			2961581	
Purchase Cost:		\$		31,419	
Bare Module Cost:		\$		205,175	

	HEAT EXCHANG	ER 2	
Identification:	ltem Item No. No. Require	ed	Heat Exchanger E-602 1
Function:	Partially va	aporizes feed into	flash T-601
Operation:	Continuous	6	
Туре:	Floating He	ead, Shell and Tu	be
Stream ID	Tube Side		Shell Side
Inlet	605		611
Outlet	606		612
Flow rate (kg/hr)	50217		7402
Inlet Temperature (C)	149		47
Outlet Temperature (C)	80		52
Design Data:	Surface Area (m²)		38
	Length (m)		5
	U (W/m ² -C)		174
	LMTD (C)		59
	Fouling Resistance (m ² -C/W)	0.0007
	Heat Duty (kW)		355
	Construction Materials		Stainless Steel 316
Utilities Required/Year	(kWh)		0
Purchase Cost:		\$	20,467
Bare Module Cost:		\$	135,533

	HEAT EXCHANG	ER 3	
Identification:	ltem Item No. No. Require	ed	Heat Exchanger E-603 1
Function:	Cools coco	oa butter before pa	ckaging
Operation:	Continuous	3	
Туре:	Floating He	ead, Shell and Tub	e
Stream ID	Tube Side		Shell Side
Inlet	Cooling Water		612
Outlet	Cooling Water		613
Flow rate (kg/hr)	7905		7402
Inlet Temperature (C)	32		80
Outlet Temperature (C)	48		50
Design Data:	Surface Area (m²)		28
	Length (m)		5
	U (W/m²-C)		256
	LMTD (C)		21
	Fouling Resistance (m ² -C/W)	0.00053
	Heat Duty (kW)		144
	Construction Materials		Stainless Steel 316
Utilities Required/Yea	r (kWh)		1009152
Purchase Cost:		\$	19,271
Bare Module Cost:		\$	127,069

	HEAT EXCHAN	GER 4	
Identification:	ltem Item No. No. Requ	ired	Heat Exchanger E-604 1
Function:	Condense	es vapor effluent from	m T-601
Operation:	Continuou	IS	
Туре:	Floating H	lead, Shell and Tub	e
Stream ID	Tube Side	1	Shell Side
Inlet	Ethylene Glycol/Water (3	0:70)	617
Outlet	Ethylene Glycol/Water (3	0:70)	618
Flow rate (kg/hr)	400000		43308
Inlet Temperature (C)	-12		56.9
Outlet Temperature (C)	2		8.3
Design Data:	Surface Area (m²)		823
	Length (m)		6
	U (W/m ² -C)		162
	LMTD (C)		17
	Fouling Resistance (m ² -C/V	V)	0.00061
	Heat Duty (kW)		5670
	Construction Materials		Stainless Steel 316
Utilities Required/Yea	(kWh)		39735360
Purchase Cost:		\$	91,880
Bare Module Cost:		\$	635,819

	HEAT EXCHANG	ER 5	
Identification:	Item Item No. No. Require	ed	Heat Exchanger E-605 1
Function:		overhead of stri	ipping column
Operation:	Continuous	5	
Туре:	Floating He	ead, Shell and Tu	ıbe
Stream ID	Tube Side		Shell Side
Inlet	608		609
Outlet	609		614
Flow rate (kg/hr)	6909		196
Inlet Temperature (C)	57		101
Outlet Temperature (C)	59		77
Design Data:	Surface Area (m²)		3
	Length (m)		2.4
	U (W/m ² -C)		122
	LMTD (C)		28
	Fouling Resistance (m ² -C/W)	0.0007
	Heat Duty (kW)		8
	Construction Materials		Stainless Steel 316
Utilities Required/Year	(kWh)		0
Purchase Cost:		\$	18,075
Bare Module Cost:		\$	132,630

	HEAT EXCHAN	IGER 6	
Identification:	lt		Heat Exchanger
	Item Item No.		E-606
	No. Required		1
		ondenses butane ov	erhead from stripping
Function:	column		
Operation:	Continuous		
Туре:	Floating Head	, Shell and Tube	
Stream ID	Tube Side	S	hell Side
Inlet	Chilled Water		614
Outlet	Chilled Water		615
Flow rate (kg/hr)	3034		196
Inlet Temperature (C)	7		71
Outlet Temperature (C)	13		30
Design Data:	Surface Area (m²)		4.1
	Length (m)		2.40
	U (W/m ² -C)		133
	LMTD (C)		44
	Fouling Resistance (m ² -C/	N)	0.0007
	Heat Duty (kW)	-	23
	Construction Materials		Stainless Steel 316
Utilities Required/Year	r (kWh)		161184
Purchase Cost:		\$	18,075
Bare Module Cost:		\$	132,630

	PUM	P 1	
Identification:	ltem Item No. No. Require	ed	<i>Pump</i> P-601 1
Function:	To pump fe	ed into E-602	
Operation:	Continuous	;	
Туре:	Centrifugal	Pump	
Stream ID	Inlet		Outlet
	602		603
Pressure (bar)	1.50		6
Design Data:	Flow Rate	(kg/hr)	3262
	Brake Pow	er (kW)	3
	Pump Hea	d (m)	83
	Motor Effic	iency	0.83
	Constructio	on Material	Stainless Steel
Utilities Required/Year (kWh)		39805
Purchase Cost:		\$	2,903
Bare Module Cost:		\$	13,410
Associated Costs:	Motor	\$	1,828
Total Bare Module Cost:		\$	15,238
Comments:	Totally End	losed, Fan cool	ed, 1 to 250 Hp, 3600 RPM

	PUM	P 2	
Identification:	ltem Item No. No. Requir	ed	Pump P-602 1
Function:	To pump fl	ash liquid effluer	nt to T-602
Operation:	Continuous	6	
Туре:	Centrifugal	Pump	
Stream ID	Inlet		Outlet
	607		608
Pressure (bar)	1.60		6
Design Data:	Flow Rate	(kg/hr)	6909
	Brake Pow	er (kW)	2
	Pump Hea	d (m)	35
	Motor Effic	iency	0.83
	Constructio	on Material	Stainless Steel
Utilities Required/Year (k	Wh)		31606
Purchase Cost:		\$	2,908
Bare Module Cost:		\$	13,432
Associated Costs:	Motor	\$	1,779
Total Bare Module Cost:		\$	15,211
Comments:	Totally End	losed, Fan cool	ed, 1 to 250 Hp, 3600 RPM

	PUM	Р 3	
Identification:	Item Item No. No. Required		Pump P-603 1
Function:	To pump c	ondensed butan	e to V-601
Operation:	Continuou	s	
Туре:	Centrifuga	l Pump	
Stream ID	Inlet		Outlet
	618		619
Pressure (bar)	1.60		4
Design Data:	Flow Rate	(kg/hr)	43308
	Brake Pov	ver (kW)	7
	Pump Hea	id (m)	42
	Motor Effi	ciency	0.86
	Constructi	on Material	Stainless Steel
Utilities Required/Year (kWh)			109605
Purchase Cost:		\$	3,939
Bare Module Cost:		\$	18,195
Associated Costs:	Motor	\$	3,396
Total Bare Module Cost:		\$	21,591
Comments:	Totally En	closed, Fan cool	ed, 1 to 250 Hp, 3600 RPM

	PUM	P 4	
Identification:	ltem Item No. No. Required		<i>Pump</i> P-604 1
Function:	To pump o	verhead of T-602	2 to V-601
Operation:	Continuous	s	
Туре:	Centrifuga	l Pump	
Stream ID	Inlet		Outlet
	615		616
Pressure (bar)	3.70		4
Design Data:	Flow Rate	(kg/hr)	196
	Brake Pow	ver (kW)	0.76
	Pump Hea	d (m)	5
	Motor Effic	ciency	0.80
	Constructi	on Material	Stainless Steel
Utilities Required/Year (kWh))		10652
Purchase Cost:		\$	2,900
Bare Module Cost:		\$	13,395
Associated Costs:	Motor	\$	473
Total Bare Module Cost:		\$	13,868
Comments:	Totally En	closed, Fan cool	ed, 1 to 250 Hp, 3600 RPM

	PUM	P 5	
Identification:	Item Item No. No. Required		<i>Pump</i> P-605 1
Function:	To pump re	ecycled butane to	o storage <mark>t</mark> ank
Operation:	Continuous	3	
Туре:	Centrifugal	Pump	
Stream ID	Inlet		Outlet
	621		622
Pressure (bar)	1.60		4
Design Data:	Flow Rate	(kg/hr):	43176
	Brake Pow	ver (kW):	7
	Pump Hea	d (m):	38
	Motor Effic	iency	0.86
	Constructi	on Material:	Stainless Steel
Utilities Required/Year (kW	h)		103088
Purchase Cost:		\$	3,939
Bare Module Cost:		\$	18,195
Associated Costs:	Motor	\$	3,396
Total Bare Module Cost:		\$	21,591
Comments:	Totally End	closed, fan coole	ed, 1 to 250 Hp, 3600 RPM

PUMP 6					
Identification:	Item Item No. No. Requir	ed	<i>Pump</i> P-606 1		
Function:	To pump re	ecycled butane t	o section 500		
Operation:	Continuous	3			
Туре:	Centrifugal	Pump			
Stream ID	Inlet		Outlet		
	624		625		
Pressure (bar)	5.70		6		
Design Data:	Flow Rate	(kg/hr)	43176		
	Brake Pow	/er (kW)	1		
	Pump Hea	d (m)	6		
	Motor Effic	iency	0.86		
	Constructio	on Material	Stainless Steel		
Utilities Required/Year (kW	/h)		16195		
Purchase Cost:		\$	3,237		
Bare Module Cost:		\$	14,951		
Associated Costs:	Motor	\$	1,477		
Total Bare Module Cost:		\$	16,428		
Comments:	Totally End	closed, Fan cool	ed, 1 to 250 Hp, 3600 RPM		

DECANTER 1						
Identification:		ltem			Decanter	
		Item No.			V-601	
		No. Required	1		1	
Function:		To purge wat	er from but	ane recycle		
Operation:		Continuous				
Туре:		Horizontal Pr	ressure Ves	ssel		
Stream ID		Inl	et	(Dutlet	
		619	616	621	620	
Flow rate (kg/h	r)	43308	196	43176	328	
Water		324	15	13	327	
Butane		42984	181	43163	1	
Fat		Trace	Trace	0	0	
Temperature (C)		9.90	32.30	50	50	
Pressure (bar)		4	4	4	4	
Design Data:	Length (m)				7.30	
	Diameter (m)				1.50	
	Material			Stai	nless Steel 316	
Purchase Cost:	chase Cost: \$ 73				73,031	
Bare Module Co	ost:			\$	222,745	

	\$1	ORAGE TANK	(1		
Identification:		Storage Ta V-602 1	nk		
Function:		To add butane	to recycle s	tream	
Operation:		Continuous			
Туре:		Spherical (30-2	200 psig)		
Stream ID	Inl	et		Outlet	
	622	623		624	
Flow rate (kg/hr)	43176	1		43177	
Water	13	0		13	
Butane	43163	1		43164	
Fat	0	0		0	
Temperature (C)	50	50		53	
Pressure (bar)	6	6		6	
Design Data:	Construction Mat	erial		Stainless Stee	el 316
	Max working volu	ıme (m³)			20
	Residence Time	(min)			15
Purchase Cost:			\$	3	7,521
Bare Module Cos	t:		\$	4	0,305

	STRI	PPING COLUMN	1	
Identification:		ltem Item No. No. Required		Stripping Column T-602 1
Function:		To desolventize	residual butane from cocoa	butter
Operation:		Continuous		
Туре:		Multi-stage Strip	ping Column	
Stream ID		Top Feed	Bottoms	Overhead
		609	611	629
Flow rate (kg/hr)		6909	7402	196
Water		1	675	15
Butane		181	0	181
Fat		6727	6727	Trace
Temperature (C)		59	149	101
Pressure (bar)		6	3.9	3.7
Design Data:	Height (m)	4.27	Tray Efficiency	0.7
	Column Diameter (m)	1.83	Tray Spacing (m)	0.61
	Number of Trays	5	Top Stage Pressure (bar)	3.7
	Feed Stage	1	Stage Pressure Drop (bar)	0.1
	Material	SS 316		
Medium Pressure Pro	cess Steam (kg/hr)			689
Purchase Cost:			\$	150,598
Bare Module Cost:			\$	672,972
Comments:		Steam entering p	process is accounted for in	material balance

FLASH EVAPORATOR COLUMN 1							
Identification:		ltem Item No. No. Required		Flash Vessel T-601 1			
Function:		To evaporate buta	ine from cocoa	butter product			
Operation:		Continuous					
Туре:		Vertical Flash Ve	ssel				
Stream ID		Inlet		Outlet			
		606	607	617			
Flow rate (kg/	hr)	50217	43309	6909			
Water		326	325	2			
Butane		43164	42984	180			
Fat		6727	Trace	6727			
Temperature (C)	52	57	57			
Pressure (bar)		6	1.60	1.60			
Utilities Requi	red/Year <mark>(kWh)</mark>			29510688			
Design Data:	Height (m)			10			
	Column Diameter (m)		2.50			
	Material			Stainless Steel 316			
Purchase Cost	:		\$	156,214			
Bare Module (Cost:		\$	698,069			

Section 7: Equipment Cost Summary

Table 9 details the itemized and total bare module costs for all equipment units in the plant. The total bare module cost for this cocoa processing facility is \$12.7M. The costs are a result of the stainless steel construction of all equipment units. This constraint must be set to reduce the risk of contamination in the plant, and ensure that the plant's products are of Food Grade quality.

The Pannevis filters were the greatest equipment costs in the process (\$1.8M), accounting for 16% of the total bare module costs. The filters were essential in the solvent extraction technology exploited in this process. The packaged steam boiler had the second greatest equipment cost, but was necessary to reduce overall utility costs in this process.

Table 9. Equipment Cost St	ummary.					
Unit Name	С,	F _{BM}	Associated Costs	C _{BM}	Quantity	Total CBM
Storage Tanks						
Silos (S-101,102,Spare)	650 107		¢0	\$c2.027	2	\$101 S11
	\$59,427	1	\$0 50	\$63,837	3	\$191,511
V-602	\$37,521	1	\$0	\$40,305	1	\$40,305
Subtotal						\$231,816
Cleaners						
C-101-103	\$49,387	1.86	\$0	\$91,779	3	\$275,337
C-104-106	\$2,672	1.00	50 S0	\$2.871	3	\$8,612
C-107-109	\$6,342	1.86	\$0 \$0	\$11,785	3	\$35,356
SZ-201-203	\$24,257	4.47	\$0 \$0	\$108,397	3	\$325,190
Subtotal		4.47	50	\$100,007	5	\$644,495
Sabiolas						0011,100
Conveyors						
CY-101	\$9,924	1.61	\$0	\$17,164	2	\$34,328
CY-102-209	\$3,619	1.61	\$0	\$6,259	18	\$112,662
CY-210,212,214	\$2,172	1.61	\$0	\$3,756	3	\$11,268
CY-211,213,215	\$3,257	1.61	\$0	\$5,633	3	\$16,899
CY-501	\$4,343	1.61	\$0	\$7,511	1	\$7,511
CY-502	\$2,533	1.61	\$0	\$4,382	1	\$4,382
CY-503	\$3,981	1.61	\$0	\$6,885	1	\$6,885
CY-504	\$3,257	1.61	\$0	\$5,633	1	\$5,633
CY-505	\$2,172	1.61	\$0	\$3,756	1	\$3,756
CY-506	\$2,172	1.61	\$0	\$3,756	1	\$3,756
Subtotal					32	\$207,080
Roasters						
R-201-203	\$40,086	4.47	\$0	\$179,132	3	\$537,396
Subtotal						\$537,396
Winnowers and Grinders						
W-201-203	\$2,291	1.07	\$0	\$2,461	3	\$7,382
G-301-303	\$11,575	1.49	\$0	\$17,282	3	\$51,847
G-304-306	\$193,642	2.47	\$0	\$478,424	3	\$1,435,272
Subtotal						\$1,494,501
Mixing Tanks						
M-401	\$26,800	4.51	\$3,000	\$120,868	1	\$123,868
M-501 M-502	\$44,612 \$125,896	4.47 4.47	\$15,701 \$4,712	\$199,358 \$562,587	1	\$215,059 \$567,299
M-502 M-503	\$58,404	4.47	\$3,631	\$260,998	1	\$264,629
M-504	\$44,334	4.47	\$3,321	\$198,113	1	\$201,434
Subtotal	••••		**,	•••••	-	\$1,372,289
Reactor						
R-401	\$37,500	4.3	\$0	\$161,250	1	\$161,250
Subtotal						\$161,250
Flash Vessels						
T-401	\$21,900	4.17	\$0	\$91,323	1	\$91,323
T-601	\$156,214	4.17	\$0	\$698,069	1	\$698,069
Subtotal	,24 ,				-	\$789,392

Pumps						
P-301-303	\$2,900	3.4	\$407	\$13,395	3	\$41,406
P-401	\$3,300	3.4	\$1,600	\$14,100	1	\$15,700
P-402-404	\$4,400	3.4	\$200	\$20,400	3	\$61,800
P-405	\$10,000	3.21	\$0	\$32,100	1	\$32,100
P-501	\$2,900	3.4	\$474	\$13,395	1	\$13,869
P-502	\$2,900	3.4	\$431	\$13,395	1	\$13,826
P-503	\$3,637	3.4	\$747	\$16,801	1	\$17,548
P-504	\$3,300	3.4	\$533	\$15,242	1	\$15,776
P-505	\$2,900	3.4	\$451	\$13,395	1	\$13,846
P-506	\$2,900	3.4	\$445	\$13,395	1	\$13,840
P-601	\$2,903	3.4	\$1,828	\$13,410	1	\$15,238
P-602	\$2,908	3.4	\$1,779	\$13,432	1	\$15,211
P-603	\$3,939	3.4	\$3,396	\$18,195	1	\$21,591
P-604	\$2,900	3.4	\$473	\$13,868	1	\$14,341
P-605	\$3,939	3.4	\$3,396	\$18,195	1	\$21,591
P-606	\$3,237	3.4	\$1,477	\$16,428	1	\$17,905
Subtotal					20	\$345,588
Heat Exchangers						
E-401	\$21,100	3.17	\$0	\$157,155	1	\$157,155
E-601	\$31,419	3.17	\$0	\$205,175	1	\$205,175
E-602	\$20,467	3.17	\$0	\$135,533	1	\$135,533
E-603	\$19,271	3.17	\$0	\$127,069	1	\$127,069
E-604	\$91,880	3.17	\$0	\$635,819	1	\$635,819
E-605	\$18,075	3.17	\$0	\$132,630	1	\$132,630
E-606	\$18,075	3.17	\$0	\$132,360	1	\$132,360
Subtotal						\$1,368,586
Decanters						
V-401	\$37,500	4.17	\$0	\$156,200	1	\$156,200
V-601	\$73,031	3.05	\$0	\$222,745	1	\$222,745
Subtotal						\$378,945

Filters FL-501-502 Subtotal	\$697,790	1.29	\$0	\$900,000	2	\$1,800,000 \$1,800,000
Centrifuge CFG-501 Subtotal	\$125,130	2.4	\$0	\$300,000	1	\$300,000 \$300,000
Dryers D-501-502 Subtotal	\$56,992	4.47	\$3,593	\$254,680	2	\$512,954 \$512,954
Stripping Column T-602 Subtotal	\$150,598	4.3	\$0	\$672,972	1	\$672,972 \$672,972
Furnace Packaged Steam Boiler Subtotal	\$351,628	2.35	\$0	\$827,205	1	\$827,205 \$827,205
Refrigerator Refrigerant Chiller Subtotal	\$519,491	2.35	\$0	\$1,220,803	1	\$1,220,803 \$1,220,803
TOTAL						\$12,704,022

Section 8: Operating Cost - Cost of Manufacture

The plant's variable costs are broken down into raw materials, utility costs, labor costs, and other general expenses that scale with production. The general summary of all costs and investments is shown in the Economic Analysis section, Figure 11.

Section 9: Other Important Considerations

9.1 Plant Location, Layout and Startup

The solvent extraction processing facility will be built in Ghana. There were two considerations that led to this decision, labor cost and cocoa bean supply. Ghana and Brazil are two very different countries, excluding the fact that their environment makes them ideal locations for cocoa trees. In Ghana, cocoa is central to the economy; production accounts for around a sixth of the country's GDP (WorldAtlas, 2015).

Labor costs in Ghana and Brazil differ. In Ghana, a high skilled worker's pay is approximately \$417/month whereas a high skilled worker's pay in Brazil is \$891/month (GIPC, 2016). A low skilled worker's wage in Brazil is \$265/month as compared to a salary of \$165/month in Ghana for a semi-skilled worker (Trading Economics, 2016). The solvent extraction processing facility will hire 4-6 skilled workers to maintain the continuous process and 6-10 semi-skilled workers to manage loading, the control room, and other such tasks. In terms of labor costs, a facility in Ghana will cost less to operate.

Though Brazil is an up and coming market for chocolate, it is not yet ready to export chocolate. BMI Research conducted an analysis on the Brazilian market and concluded that Brazil will not reaffirm itself as a net exporter over the coming years because of limited production growth (BMI Research, 2016). Brazil is projected to collect 216,000 tonnes/year in 2023/24 (Pekic, 2014). This is a fourth of the amount that Ghana is estimated to collect this year (Dunn, 2016), who is the second largest producer to the Ivory Coast. Brazil has also experienced a recent depression that BMI concludes will influence future projections for local chocolate consumption. In 2020, the local consumption is expected to reach 270,000 tonnes (BMI Research, 2016). The solvent extraction processing facility will have a capacity of 120,000 tonnes per year. If it were to serve the Brazilian market, this would constitute a 44% share of the market which is too large to expect reasonable.

Logistically, farmers in Ghana sell their supply of cocoa beans to a Licensed Buying Company, which then distributes to processing companies. From them, the facility will be receiving a truckloads of

cocoa beans to feed into the process. The plant will largely involve three streams in parallel with equipment spaced out 5 feet with 10-15 feet in between the three parallel units.

9.2 Water Management

To treat cocoa liquor with potassium carbonate as an alkalizing salt, a 10% solution of potassium carbonate dissolved in water is needed. With 401.8 kg/hr of potassium carbonate being added, a 4018 kg/hr stream of process water will be added without recycle. 4168 kg/hr of water vapor will be flashed off of the alkalized cocoa liquor product to be condensed. During the solvent recovery process, 150 kg/hr of 20 psig steam at 130°C will be added.

9.3 Filter Buildup

Both filters following centrifugation will be cleaned and maintained by plant personnel to prevent sediment buildup. The lifespan of each filtered will be monitored as well, with replacements occurring as needed.

9.4 Environmental Considerations

Butane added during the solvent extraction process will be recovered to mitigate the need for waste disposal or dumping of butane. For every 1 kg of butane added, 0.994 kg of butane will be recovered and recycled. Primary wastewater treatment will be employed on the recycle purge stream for this event before dumping. Cocoa shells will be burned as biofuel to generate steam. This steam will be used during the upstream sterilizing and roasting events. Excess steam will be sold to purchase electricity. While the burning of any fuel contributes to pollution, replacing some of the need for coal with cocoa bean shells will result in a net reduction of the plant's carbon foot-print.

9.5 Process Controllability

During the centrifugation process to separate the powder product, heat is transferred to the liquor/butane slurry. If butane is heated in presence of air, there is a risk of explosion. As a safety precaution, the centrifuge was designed to maintain butane in the liquid state if the full wattage of the centrifuge was applied to the liquor/butane slurry. To perform this task cooling coils were incorporated into the centrifuge design. The cooling coils' energy removal was designed to be equal to the full wattage of the centrifuge.

Every piece of equipment that comes in contact with food material is constructed with Stainless Steel 304. This allows the machinery to be more easily cleaned and maintained, limiting contamination from rust or buildup of other foreign substances.

9.6 FDA and Good Manufacturing Practices

All plant personnel will be educated regarding maintaining a safe and clean working environment. Any person who is shown have, or appears to have, an illness, open lesion, or any other abnormal source of microbial contamination will be excluded from operations until conditions have normalized. All personnel will be expected to report any such conditions to their supervisor. Additionally, all personnel will be responsible for proper sanitation, removal of jewelry, and the wearing of garments such as hairnets and gloves, when appropriate, to prevent cross-contamination of food.

Grounds and plant vicinity will also be maintained according to FDA standards. Waste and litter will be properly removed. All roads, yards, and parking lots will be maintained to remove any sources of contamination in areas where food is exposed. All fermented cocoa beans will be inspected, sterilized, and covered. Lastly, sanitation stations and drinking water will be accessible in all areas of the plant.

9.7 Food Grade Quality

Following the FDA's regulations for food grade quality, all shipments of fermented cocoa beans will be inspected. A shipment of fermented cocoa will be considered defect, and excluded from operations, if more than 4% of beans are moldy, if more than 4% of beans are insect-infested or insect-damage, if more than 6% of beans are insect-infested or moldy, or if an average of at least 10 mg of mammalian excreta per pound is present. All percentages are based on total bean count, not mass.

Regarding the alkalization process, in accordance with FDA regulations the total neutralizing value of anhydrous potassium carbonate to cocoa will not exceed a 3:100 by mass ratio. No product containing more than 10% fat will be marketed as low fat. No product containing more than 0.5% fat will be marketed as fat-free.

Section 10: Economic Analysis

The economic analysis of this project is summarized in Tables 10-13. Based on the norm in the commodity food industry, a conservative plant life of 17 years was chosen. The net present value of the project turns positive in 6 years of plant startup. At the end of the plant life, the NPV is expected to be \$29M with an IRR of 33.5%. Additionally, the ROI after the third production year is 33.7%. These values indicate that the proposed design is profitable and feasible. Sensitivity analyses were performed to determine the robustness of these profits.

10.1 Sensitivity Analyses

Multiple sensitivity analyses were performed during the economic evaluation of this project. A primary analysis was able to evaluate the approximate profitability of the process; initially, no differences in price were assumed between the low fat and fat-free powders. This assumption was made because the powders are often seen as different items, suited for individual purposes. Due to the steam and electricity provided by the combusted shells, additional production costs for the fat-free powder were initially assumed to be negligible. The initial analysis was performed assuming that 79% of the cocoa liquor would be sent for processing, leaving the other 21% to be packaged and sold as liquor. These values were chosen based on current industry practices ("Chocolate and Cocoa", 2016). This analysis showed great promise for the profitability of the plant; however, the return on investment was shown to be quite sensitive to the selling prices of the products. Conservative price estimates placed the ROI at approximately 34%, assuming sale prices of \$2.82/kg, \$3.20/kg, and \$6.11/kg for cocoa powder, liquor, and butter respectively. The sensitivity analysis based around these points is given in Table 10.

% change in price:	1	5	10
Powder 10%		49%	97%
Liquor	Liquor 11%		102%
Butter	Butter 45%		500%
Bean 64%		324%	655%
Utilities 0%		1%	2%

Table 10. Sensitivity analysis of utility and commodity prices. The price of each item was changed by 1%, 5%, and 10% in each direction, while the resulting percent changes in ROI were monitored.

While the commodity prices had very large impacts on the overall profitability, the required utilities showed a lower degree of sensitivity. Altering the utility requirements by 10% only produced a 1-2% change in ROI for the process.

A secondary sensitivity analysis was performed on the split fraction of cocoa liquor sent for additional processing. As designed, the process allows a capacity of up to 80% of the alkalized liquor to be sent for separation. This split fraction value was cycled through all possible values, and the resulting ROI values were recorded in Table 11.

Table 11. Sensitivity analysis of the portion of cocoa liquor sent for processing. A split fraction of 0.73 was set as a lower limit because any lower value would produce negative ROI. A fraction of 0.79 was set as a ceiling because the process equipment does not have sufficient capacity to handle more liquor.

Split Fraction:	0.73	0.74	0.75	0.76	0.77	0.78	0.79
ROI:	2%	8%	14%	20%	26%	28%	34%

Based on the above analysis, greatest profitability is achieved by separating the most cocoa liquor possible. Thus, the split fraction was chosen to be 79%. While greater profitability may be achieved by exceeding this fraction, a large plant would also need to consider its effect on the overall market. Current specifications show this process to produce approximately 3.5% of the total world grindings, in the average proportions of the world manufacturers ("Chocolate and Cocoa", 2016). Further research may

also be needed before choosing to increase the split fraction due to the inevitable increase in bare module costs.

Section 10.2: Economic Analysis

An economic analysis was used to determine the ratio of low fat to fat-free cocoa powder produced. Process equipment allows for up to a 4:1 ratio in favor of either type of powder. For the process mass balances, the ratio of low fat to fat-free powders was set at 4:1. This value was chosen because the low fat powder seems to be equally desirable given the current market conditions; the low fat powder presents both health benefits and superior dissolving properties. Mr. Todd Gusek noted that the fat-free cocoa powder had the potential disadvantages of being as dusty and bitter, thus the low-fat product was more favorable. This split fraction could change if the market dictated a higher selling price for the fat-free cocoa powder. Operating the additional filtration equipment required for the production of fat-free powder was costed at \$54,620/yr for the necessary steam and electricity. However, because this technology is able to process 4924 kg/hr of fat-free powder, the marginal processing costs are less than \$0.01/kg. Thus, the balance between the low fat and fat-free powders should simply be a function of market prices and rates of demand.

General Information

Process Title: Cocoa Liquor, Powder, and Butter Production Product: Low Fat Cocoa Powder Plant Site Location: Tema, Ghana Site Factor: 0.92 Operating Hours per Year: 7008 Operating Days Per Year: 292 Operating Factor: 0.8000

Product Information

This Process will Yield

5,080 kg of Low Fat Cocoa Powder per hour 121,918 kg of Low Fat Cocoa Powder per day 35,600,000 kg of Low Fat Cocoa Powder per year

Price

\$2.82 /kg

Chronology

		Distribution of	B 1 <i>C</i>	D : 0	D 1 (D)
		Distribution of	Production	Depreciation	Product Price
Year	Action	Permanent Investment	Capacity	5 year MACRS	
2017 De	sign		0.0%		
2018 Co	Instruction	100%	0.0%		
2019 Pro	oduction	0%	45.0%	20.00%	\$2.82
2020 Pro	oduction	0%	67.5%	32.00%	\$2.82
2021 Pro	oduction	0%	90.0%	19.20%	\$2.82
2022 Pro	oduction		90.0%	11.52%	\$2.82
2023 Pro	oduction		90.0%	11.52%	\$2.82
2024 Pro	oduction		90.0%	5.76%	\$2.82
2025 Pro	oduction		90.0%		\$2.82
2026 Pro	oduction		90.0%		\$2.82
2027 Pro	oduction		90.0%		\$2.82
2028 Pro	oduction		90.0%		\$2.82
2029 Pro	oduction		90.0%		\$2.82
2030 Pro	oduction		90.0%		\$2.82
2031 Pro	oduction		90.0%		\$2.82
2032 Pro	oduction		90.0%		\$2.82
2033 Pro	oduction		90.0%		\$2.82

Figure 10.1 Input Summary

Raw Materials

Raw Material:	Unit:	Required Ratio:	Cost of Raw Material:
1 Cocoa Beans	kg	4.06 kg per kg of Low Fat Coco	a Pow \$3.380 per kg
2 Butane	kg	0.000197 kg per kg of Low Fat Coco	a Pow \$0.25 per kg
3 Potassium Carbonate	kg	0.095 kg per kg of Low Fat Coco	a Pow \$2.36 per kg
4 Process Steam	kg	0.688 kg per kg of Low Fat Coco	a Pow \$0.02 per kg
5 Process Water	kg	0.952 kg per kg of Low Fat Coco	a Pow \$0.00 per kg
6 Bunker C Fuel Oil	kg	0.088 kg per kg of Low Fat Coco	a Pow \$0.18 per kg

Total Weighted Average:

\$13.973 per kg of Low Fat Cocoa Powder

Byproducts

Byproduct:	Unit:	Ratio to Product Byr	product Selling Price	
1 Cocoa Liquor	kg	0.705 kg per kg of Low Fat Cocoa Pow	\$3.200 per kg	
2 Cocoa Butter	kg	1.47 kg per kg of Low Fat Cocoa Pow	\$6.110 per kg	
3	kg	0.25 kg per kg of Low Fat Cocoa Pow	\$3.290 per kg	

Total Weighted Average:

\$12.060 per kg of Low Fat Cocoa Powder

Utility:	Unit:	Required Ratio	Itility Cost
1 High Pressure Steam	lb	0 lb per kg of Low Fat Cocoa Powd	\$0.000E+00 per lb
2 Low Pressure Steam	lb	0 lb per kg of Low Fat Cocoa Powd	\$0.000E+00 per lb
3 Process Water	kg	0 kg per kg of Low Fat Cocoa Pow	\$0.000E+00 per kg
4 Cooling Water	kg	31.46 kg per kg of Low Fat Cocoa Pow	\$2.700E-05 per kg
5 Electricity	kWh	0 kWh per kg_of Low Fat Cocoa Po	\$0.000E+00 per kWh
6 Refrigeration at 10 F	GJ	0.00435 GJ perkg of Low Fat Cocoa Pow	\$6.700 per GJ
7 Chilled Water	GJ	0.0000163 GJ per kg of Low Fat Cocoa Pow	\$5.50 per GJ

Figure 10.2 Input Summary

/ariable Costs				
General Expenses:				
Selling / Transfer E	xpenses:	1.00% of S	ales	
Direct R	Direct Research: Allocated Research:		ales	
Allocated R			ales	
Administrative I	Expense:	2.00% of S	ales	
Management Incentive Comp	ensation:	1.25% of S	ales	
Working Capital				
Accounts Receivable	ц,	30	Days	
Cash Reserves (excluding Raw Materials)	⇔	0	Days	
Accounts Payable	⇔	0	Days	
Low Fat Cocoa Powder Inventory	⇒	4	Days	
Raw Materials	⇔	2	Days	
Total Permanent Investment				

5.00% of Total Bare Module Costs	Cost of Site Preparations:
5.00% of Total Bare Module Costs	Cost of Service Facilities:
\$0	Allocated Costs for utility plants and related facilities:
18.00% of Direct Permanent Investment	Cost of Contingencies and Contractor Fees:
2.00% of Total Depreciable Capital	Cost of Land:
\$0	Cost of Royalties:
10.00% of Total Depreciable Capital	Cost of Plant Start-Up:

Figure 10.4 Input Summary

Costs			
Operations			
	Operators per Shift:		(assuming 4 shifts)
	Direct Wages and Benefits:		/operator hour
	Direct Salaries and Benefits:		of Direct Wages and Benefits
	Operating Supplies and Services:		of Direct Wages and Benefits
	Technical Assistance to Manufacturing:) per year, for each Operator per Shift
	Control Laboratory:	\$65,000.00) per year, for each Operator per Shift
Maintenance			
	Wages and Benefits:	3.50%	of Total Depreciable Capital
	Salaries and Benefits:	25%	of Maintenance Wages and Benefits
	Materials and Services:	100%	of Maintenance Wages and Benefits
	Maintenance Overhead:		of Maintenance Wages and Benefits
Operating Overho	ead		
	General Plant Overhead:	7.10%	o of Maintenance and Operations Wages and Bene
	Mechanical Department Services:	2.40%	of Maintenance and Operations Wages and Bene
	Employee Relations Department:		of Maintenance and Operations Wages and Bene
	Business Services:		o of Maintenance and Operations Wages and Bene
David Trans			
Property Taxes a		20/	of Total Devensional Constant
	Property Taxes and Insurance:	2%	of Total Depreciable Capital
Straight Line Dep			
Direct Plant:	8.00% of Total Depre	ciable Capital,	less 1.18 times the Allocated Costs
			for Utility Plants and Related Facilities
Allocated Plant:	6.00% of 1.18 times the	he Allocated C	osts for Utility Plants and Related Facilities
Other Annual Ex		_	
Rent	al Fees (Office and Laboratory Space):	\$0	
	Licensing Fees:	\$0	
	Miscellaneous:	\$0)
Depletion Allowa			
	Annual Depletion Allowance:	\$0	

Figure 10.5 Input Summary

Variable Cost Summary

Variable Costs at 100% Capacity:

General Expenses

5	elling / Transfer Expenses:	\$ 1,003,920
[lirect Research:	\$ 4,818,816
A	llocated Research:	\$ 501,960
A	dministrative Expense:	\$ 2,007,840
Ν	Nanagement Incentive Compensation:	\$ 1,254,900
Total General	Expenses	\$ 9,587,436
Raw Materials	\$13.973466 per kg of Low Fat	\$497,455,400
Byproducts	\$12.060200 per kg of Low Fat	(\$429,343,120)
<u>Utilities</u>	\$0.030084 per kg of Low Fat	\$1,070,993
Total Variable	Costs	\$ 78,770,709

Figure 11.1 Cost Summary

Fixed Cost Summary

Operations

Direct Wages and Benefits	\$ 86,528
Direct Salaries and Benefits	\$ 12,979
Operating Supplies and Services	\$ 5,192
Technical Assistance to Manufacturing	\$ 960,000
Control Laboratory	\$ 1,040,000
Total Operations	\$ 2,104,699
Maintenance	
Wages and Benefits	\$ 665,278
Salaries and Benefits	\$ 166,319
Materials and Services	\$ 665,278
Maintenance Overhead	\$ 33,264
Total Maintenance	\$ 1,530,139
Operating Overhead	
General Plant Overhead:	\$ 66,108
Mechanical Department Services:	\$ 22,347
Employee Relations Department:	\$ 54,935
Business Services:	\$ 68,902
Total Operating Overhead	\$ 212,292
Property Taxes and Insurance	
Property Taxes and Insurance:	\$ 380,159
Other Annual Expenses	
Rental Fees (Office and Laboratory Space):	\$ -
Licensing Fees:	\$ -
Miscellaneous:	\$ -
Total Other Annual Expenses	\$
Total Fixed Costs	\$ 4,227,288

Figure 11.2 Cost Summary

Investment Summary

Total Bare	Module Costs:		
	Fabricated Equipment	\$ 13,859,531	
	Process Machinery	\$ 552,668	
	Spares	\$ -	
	Storage	\$ 231,816	
	Other Equipment	\$ -	
	Catalysts	\$ -	
	Computers, Software, Etc.	\$ -	
	Total Bare Module Costs:		\$ 14,644,015
Direct Perr	nanent Investment		
	Cost of Site Preparations:	\$ 732,201	
	Cost of Service Facilities:	\$ 732,201	
	Allocated Costs for utility plants and related facilities:	\$ -	
	Direct Permanent Investment		\$ 16,108,417
Total Depre	eciable Capital		
	Cost of Contingencies & Contractor Fees	\$ 2,899,515	
	Total Depreciable Capital		\$ 19,007,932
<u>Total Perm</u>	anent Investment		
	Cost of Land:	\$ 380,159	
	Cost of Royalties:	\$ -	
	Cost of Plant Start-Up:	\$ 1,900,793	
	Total Permanent Investment - Unadjusted		\$ 21,288,884
	Site Factor		0.92
	Total Permanent Investment		\$ 19,585,773

Figure 11.3 Cost Summary

		2018	2019	2020
	Accounts Receivable	\$ 3,713,129	\$ 1,856,564	\$ 1,856,564
	Cash Reserves	\$ -	\$ -	\$ -
	Accounts Payable	\$ -	\$ -	\$ -
	Low Fat Inventory	\$ 495,084	\$ 247,542	\$ 247,542
	Raw Materials	\$ 1,226,602	\$ 613,301	\$ 613,301
	Total	\$ 5,434,815	\$ 2,717,407	\$ 2,717,407
	Present Value at 15%	\$ 4,725,926	\$ 2,054,750	\$ 1, 786, 740
Total Capital Investment			\$ 28,153,189	

Figure 11.4 Cost Summary

	Cash Flow Summary													
	Percentage of	Product Unit							Depletion					Cumulative Net Present
Year	Design Capacity	Price	Sales	Capital Costs	Working Capital	Var Costs	Fixed Costs	Depreciation	Allowance	Taxible Income	Taxes	Net Earnings	Cash Flow	Value at 15%
2017	0%		-	-	-	-	-	-	-	-	-	-	-	-
2018	0%		-	(19,585,800)	(5,434,800)	-	-	-	-	-	-	-	(25,020,600)	(21,757,000)
2019	45%	\$2.82	45,176,400	-	(2,717,400)	(35,446,800)	(4,227,300)	(3,801,600)	-	1,700,700	(425,200)	1,275,500	2,359,700	(19,972,800)
2020	68%	\$2.82	67,764,600	-	(2,717,400)	(53,170,200)	(4,227,300)	(6,082,500)	-	4,284,500	(1,071,100)	3,213,400	6,578,500	(15,647,300)
2021	90%	\$2.82	90,352,800	-	-	(70,893,600)	(4,227,300)	(3,649,500)	-	11,582,400	(2,895,600)	8,686,800	12,336,300	(8,593,900)
2022	90%	\$2.82	90,352,800	-	-	(70,893,600)	(4,227,300)	(2,189,700)	-	13,042,200	(3,260,500)	9,781,600	11,971,300	(2,642,100)
2023	90%	\$2.82	90,352,800	-	-	(70,893,600)	(4,227,300)	(2,189,700)	-	13,042,200	(3,260,500)	9,781,600	11,971,300	2,533,500
2024	90%	\$2.82	90,352,800	-	-	(70,893,600)	(4,227,300)	(1,094,900)	-	14,137,000	(3,534,300)	10,602,800	11,697,600	6,931,000
2025	90%	\$2.82	90,352,800	-	-	(70,893,600)	(4,227,300)	-	-	15,231,900	(3,808,000)	11,423,900	11,423,900	10,665,500
2026	90%	\$2.82	90,352,800	-	-	(70,893,600)	(4,227,300)	-	-	15,231,900	(3,808,000)	11,423,900	11,423,900	13,912,900
2027	90%	\$2.82	90,352,800	-	-	(70,893,600)	(4,227,300)	-	-	15,231,900	(3,808,000)	11,423,900	11,423,900	16,736,700
2028	90%	\$2.82	90,352,800	-	-	(70,893,600)	(4,227,300)	-	-	15,231,900	(3,808,000)	11,423,900	11,423,900	19,192,200
2029	90%	\$2.82	90,352,800	-	-	(70,893,600)	(4,227,300)	-	-	15,231,900	(3,808,000)	11,423,900	11,423,900	21,327,400
2030	90%	\$2.82	90,352,800	-	-	(70,893,600)	(4,227,300)	-	-	15,231,900	(3,808,000)	11,423,900	11,423,900	23,184,100
2031	90%	\$2.82	90,352,800	-	-	(70,893,600)	(4,227,300)	-	-	15,231,900	(3,808,000)	11,423,900	11,423,900	24,798,700
2032	90%	\$2.82	90,352,800	-	-	(70,893,600)	(4,227,300)	-	-	15,231,900	(3,808,000)	11,423,900	11,423,900	26,202,600
2033	90%	\$2.82	90,352,800	-	10,869,600	(70,893,600)	(4,227,300)	-	-	15,231,900	(3,808,000)	11,423,900	22,293,500	28,585,000

Figure 12. Cash Flows

Profitability Measures

The Internal Rate of Return (IRR) for this project is	33.50%
The Net Present Value (NPV) of this project in 2017 is	\$ 28,585,000

ROI Analysis (Third Production Year)

Annual Sales	90,352,800
Annual Costs	(75,120,926)
Depreciation	(1,566,862)
Income Tax	(3,416,253)
Net Earnings	10,248,759
Total Capital Investment	30,455,403
ROI	33.65%

Figure 13. Profitability Measure

Section 11: Conclusions and Recommendations

Based on the profitability analysis, this process merits further research and development. Tema should be investigated as a probable plant location, as the return on investment value was calculated to be 33.7%. While the ROI was very sensitive to the commodity prices of cocoa, sensitivity analyses showed the separation process to be profitable, as long as at least 73% of the total amount of alkalized cocoa liquor is sent for separation. As designed, this process has a throughput of 52,000 tonnes/year of cocoa butter, 36,000 tonnes/year of low fat cocoa powder, 9,000 tonnes/year of fat-free cocoa powder, and 25,000 tonnes/year of cocoa liquor. All of these cocoa products are alkalized in order to appeal to a wide market.

The net present value of this project is expected to turn positive in 2023; this value is projected to grow to approximately \$29M by the end of the project's lifespan; however, a few opportunities for increased profitability should be considered. Further research should be conducted regarding larger separation equipment, as throughput is positively correlated with profitability. Additional market research should also be performed with regards to the sale price of fat-free powder compared to low fat powder, as these markets determine the desired powder breakdown. With these additional opportunities in mind, it is recommended that this process undergo further investigation, with extensive research into the effectiveness of solvent extraction and removal.

Section 12: Acknowledgements

We would like to thank Dr. Sean Holleran and Professor Len Fabiano for the help and guidance they have provided us in completing this project. We would also like to thank Mr. Stephen Tieri, the project author, for providing us with invaluable information and support. We would also like to thank Mr. Adam Brostow of Air Products, Mr. Bruce Vrana of DuPont, Dr. Ed Steve of CDI Corporation, Mr. Robert Luo of GSK, and Dr. Richard Bockrath of Rebel Consulting for all of their guidance during weekly design meetings. Each of these consultants contributed to our project's progress. Additionally, we would like to thank Dr. Warren Seider and Dr. Daeyeon Lee for their insights surrounding separations, design, and costing. Also, we would like to thank Ms. Judith Currano for providing the compositions of cocoa butter, liquor, and power. Lastly, we would like to especially thank the cocoa experts that gave us insights regarding our process design, including Mr. Vincent Schoot Uiterkamp, Mr. Todd Gusek, and Mr. Marcello Murru of Cargill.

Section 13: References

"Battery and Energy Technologies." Electropaedia. Web. < http://www.mpoweruk.com/energy_efficiency.htm>.

"Brazil | Economic Indicators." *Trading Economics*. Web. 10 Apr. 2016. http://www.tradingeconomics.com/brazil/indicators.

"Brazil Labour Costs | 1988-2016 |." *Trading Economics*. 10 Apr. 2016. Web. http://www.tradingeconomics.com/brazil/labour-costs>.

"Bühler Energy Solutions in Shell Burning." *Bühler*. 1 Jan. 2016. Web. <<u>http://www.buhlergroup.com/global/en/industry-solutions/processed-food/chocolate/buehler-energy-solutions/shell-burning.htm#.Vvbt_nrfT-s></u>.

"Cocoa & Chocolate Manual." *DeZaan*. N.p., n.d. Web. 10 Apr. 2016. <file://base/root/homedir/deZaan-Cocoa-Manual.pdf>.

"Cocoa Product Pricing." Alibaba. N.p., n.d. Web. 10 Apr. 2016

"Cocoa Sterilizing & Alkalizing Equipment." *Koco Inc*. 2014. Web. http://koco-usa.com/areasofexpertise_cocoaprocessing_alkalizingexpertise.htm>.

"Cyclone Plans." *Cyclone and Dust Collection Research*. 18 Feb. 2014. Web. http://billpentz.com/woodworking/cyclone/cyclone_plan.cfm#cyclone_sizing>.

DeNoon, Daniel J. "Dark Chocolate Is Healthy Chocolate." *WebMD*. 27 Aug. 2003. Web. <<u>http://www.webmd.com/diet/20030827/dark-chocolate-is-healthy-chocolate?page=1></u>.

Dunn, Katherine. "Cocoa Purchases by Ghanaian Cocoa Board at 560,000 Metric Tons in February." *Commoditiescontrol.com*. 1 Mar. 2016. Web. http://www.commoditiescontrol.com/commodity-market/dowjonescommoditiesnews/cocoa-purchases-by-ghanaian-cocoa-board-at-560000-metric-tons-in-february-lender-20160301DN004912.html.

"Ethylene Glycol." ICIS.com. Web. < http://www.icis.com/chemicals/ethylene-glycol/asia/?tab=tbc-tab2>.

"Foodec 800." *Foodec* 800 (n.d.): n. pag. Alfa Laval. Web. 10 Apr. 2016. http://www.alfalaval.com/globalassets/documents/products/separation/centrifugal-separators/decanters/foodec_800.pdf>.

Gaca, Pawel, and Joel Gawler. "Patent WO2013128146A1 - Cocoa Powder and Processes for Its Production." *Google Books*. 6 Sept. 2013. Web. http://www.google.com/patents/WO2013128146A1?cl=en.

"Ghana Faces Huge Shortfall in Cocoa Crop." *Wall Street Journal*. Web. http://www.wsj.com/articles/ghana-faces-massive-shortfall-in-cocoa-crop-1434719593.

"Global Trends and Developments in Cocoa Ingredients (World)."*Euromonitor*. N.p., May 2014. Web. 10 Apr. 2016. http://www.euromonitor.com/global-trends-and-developments-in-cocoa-ingredients-world/report.

"Growing Cocoa." *International Cocoa Organization*. 26 Mar. 2013. Web.<http://www.icco.org/about-cocoa/growing-cocoa.html>.

Gusek, Todd, Ian Charles Purtle, Frans Bodenheim, and Bassam F. Jirjis. "Patent US6610343 - Method for Processing Cocoa Mass." *Google Books*. 26 Aug. 2003. Web. http://www.google.com/patents/US6610343.

"Industry Forecast - Cocoa Outlook - Brazil - Q2 2016." BMI Research (2016). Web.

Jenkins, Bryan, and James Ebeling. "Thermochemical Properties of Biomass Fuels." *California Agriculture* (1985). Web. https://ucanr.edu/repositoryfiles/ca3905p14-62863.pdf>.

Kazimieras Dziugys, Steponas, and Algis Dziugys. "Method for Preparing Cacao-beans for Producing Food Products." *Google Patents*. 16 Mar. 2006. Web. https://patents.google.com/patent/WO2006028360A1/en?q=steam+sterilization&q=cocoa&q=moisture+gain>.

Kopp, Gabriele Margarete, Jozef Christiaan Hennen, Milena Seyller, and Bernhard Brandstetter. "Patent EP2241190A1 - Process for Producing High Flavour Cocoa." *Google Books*. 20 Oct. 2010. Web. http://www.google.com/patents/EP2241190A1?cl=en>.

Kopp, Gabriele M., Stephen M. Pearson, and Manoj Shah. "Patent US8067051 - Process for Milling Cocoa Shells." *Google Books*. 29 Nov. 2011. Web. 11 Apr. 2016. http://www.google.com/patents/US8067051.

"Labour & Employment." *Ghana Investment Promotion Centre (GIPC)*. 1 Apr. 2013. Web. <<u>http://www.gipcghana.com/invest-in-ghana/doing-business-in-ghana/cost-of-doing-business/labour-and-employment.html></u>.

Miller, Kenneth B., William Jeffrey Hurst, Mark J. Payne, David A. Stuart, Joan Apgar, Daniel S. Sweigart, and Boxin Ou. "Impact of Alkalization on the Antioxidant and Flavanol Content of Commercial Cocoa Powders." *J. Agric. Food Chem. Journal of Agricultural and Food Chemistry* 56.18 (2008): 8527-533. Web.

Nicholson, Marcy, and Josephine Mason. "ADM and Cargill's Cocoa Operations." *Chicago Tribune*. 02 Oct. 2013. Web. http://articles.chicagotribune.com/2013-10-02/news/sns-rt-cargill-cocoaadm-factbox-20131002_1_petra-foods-barry-callebaut-icco-.

"Our Story." ActicoaTM. Web. <http://www.acticoa.com/story>.

"Potassium Carbonate." *Hawley's Condensed Chemical Dictionary* (2007): n. pag. Armand Products. Web. 10 Apr. 2016. http://www.armandproducts.com/pdfs/POTCARB_price_list.pdf>.

"Patent US6610343 - Method for Processing Cocoa Mass." *Google Books*. 26 Aug. 2003. Web. http://www.google.com/patents/US6610343>.

Pekic, Vladimir. "Uncertain Future for Brazilian Cocoa Production." *ConfectioneryNews.com.* 13 Oct. 2014. Web. http://www.confectionerynews.com/Commodities/Brazil-s-cocoa-production-to-fall-next-decade>.

Pham, Peter. "Is 2016 the Year for Sweet Commodities?" *Forbes*. 18 Jan. 2016. Web. http://www.forbes.com/sites/peterpham/2016/01/18/is-2016-the-year-for-sweet-commodities/#1a20c5fe537f>.

"Products That Can Be Made from Cocoa." *International Cocoa Organization*. 3 July 2003. Web. http://www.icco.org/faq/52-by-products/115-products-that-can-be-made-from-cocoa.html>.

Puro, George. "Chocolate Candy in the U.S." Packaged Facts (2014). Market Research. Web.

Rao, A.V. Ramana, CH. Bhanu Prakash, and G.H. Tammi Raju. "Selection of Vibratory Motors for Vibrating Feeder by Analytical Approach for Material Handling Plants." *International Journal of Engineering Trends and Technology* (2014). Web. http://www.ijettjournal.org/volume-10/number-13/IJETT-V10P331.pdf>.

"Reference Information - Ingredient Bulk Density Table." *Brabender*. Web. http://www.sawyerhanson.com/uploads/Brabender%Ingredient%bulk%density%table.pdf>.

Spiegel, Alison. "What's The Deal With Cocoa Butter?" *The Huffington Post*. 24 Oct. 2014. Web. http://www.huffingtonpost.com/2014/10/24/cocoa-butter_n_6031286.html.

"The Sweet Lure of Chocolate." *The Exploratorium*. Web. http://www.exploratorium.edu/exploring/exploring_chocolate/choc_2.html>.

Tawiah, Anang. "The Sad Story of Ghana's Cocoa Industry and the Way Forward." *Ghana Business News*. Web. 10 Apr. 2016. https://s.com/2015/06/22/the-sad-story-of-ghanas-cocoa-industry-and-the-way-forward/www.ghanabusinessnew>.

"Top 10 Cocoa Producing Countries." *WorldAtlas*. 22 Apr. 2015. Web. http://www.worldatlas.com/articles/top-10-cocoa-producing-countries.html>.

"Trading & Shipping." *International Cocoa Organization*. 1 May 2015. Web. http://www.icco.org/about-cocoa/trading-a-shipping.html>.

Vigneri, Marcella, and Paulo Santos. "Ghana and the Cocoa Marketing Dilemma: What Has Liberalisation without Price Competition Achieved?" *ODI Project Briefing*. Dec. 2007. Web. http://www.odi.org/sites/odi.org.uk/files/odi-assets/publications-opinion-files/592.pdf>.

The Wall Street Journal. Dow Jones & Company, n.d. Web. http://online.wsj.com/mdc/public/page/2_3023-cashprices.html?mod=mdc_pastcalendar>.

"What Time of Year Is Cocoa Harvested?" *International Cocoa Organization*. 23 July 2014. Web. http://www.icco.org/faq/58-cocoa-harvesting/131-what-time-of-year-is-cocoa-harvested.html.

Wissgott, Ulrich. "Patent US4784866 - Process of Alkalization of Cocoa in Aqueous Phase." *Google Books*. 15 Nov. 1988. Web. http://www.google.com/patents/US4784866>.

Section 14: Appendices

Appendix A - Sample Calculations

Silo Capacity Calculation

The plant's capacity per day was calculated to determine the maximum working volume for a truncated cone silo. R_1 , the radius of the cylindrical tank was 20 times larger the than the bottom radius of the small cone. The height of the cone was assumed to be 3 times the small cone radius.

 $\frac{20500 \, kg * 24 \, hours * 1 \, m^3}{hour * day * 721 \, kg} * 1.2 = 819 \, m^3$

Silo Volume = Cylindrical Storage Tank Volume + Truncated Cone Hopper Volume

$$819 m^{3} - (3.14 * R_{1}^{2} * H_{1}) - (0.33 * 3.14 * H_{2})(R_{1}^{2} + R_{1} * R_{2} + R_{2}^{2}) = 0$$

where R1=20*R2 and H2=3*R2.

Screw Conveyor Calculations

Conveyor Diameter

From Sieder et al, the conveyor diameter was calculated when the screw conveyor trough was 30% full, and the auger was spinning at 50 rpm.

$$Conveyor \ Diameter = \left(Volumetric \ Flow \ Rate^{\frac{1}{3.06}}\right)$$
$$Conveyor \ Diameter \rightarrow \left(\frac{20500 \ kg * 35.3147 \ ft^3 * m^3 * hr}{hr * m^3 * 720.85 \ kg * 627.182}\right)^{1/3.06} * \frac{12 \ in}{1 \ foot} = 14 \ in$$

Conveyor Velocities

Example with CY-101:

 $\frac{Volumetric \ Flowrate}{Conveyor \ Cross - Sectional \ Area} = \frac{\frac{20500 \ kg * m^3 * 1 \ hr * 1 \ min}{hr * 720.85 \ kg * 60 \ min \ * 60 \ sec}}{3.14 * (0.11778^2)} = 0.08 \ \frac{m}{s}$

Pump Horsepower Calculations

For calculating the horsepower of pumps and pump motors the pump head was obtained from ASPEN Example with P-501:

$$\frac{Volumetric Flowrate * Pump Head * Density}{33000 * Pump Efficiency} = \frac{\left(38.57 \frac{gal}{min}\right) * (21.64 ft) * \left(12.73 \frac{lb}{gal}\right)}{33000 * (0.401)}$$
$$= 0.803 Hp$$

<u>Pump Motor Horsepower Calculation</u> Example with P-501:

$$\frac{Pump \ Horsepower}{Motor \ Efficiency} = \frac{0.802 \ Hp}{0.793} = 1.01 \ Hp$$

Horizontal Pressure Vessel Dimension Calculations

For calculating the dimensions of of horizontal pressure vessels a residence time of 5 minutes was assumed and an aspect ratio of 3 to 1 was used.

Example with T-601:

$$\label{eq:Volume} \begin{split} \textit{Volume} = \textit{Volumetric Flowrate} * \textit{Residence Time} * 2 = (215.83m^3)(5min) * 2 \\ = 35.97m^3 \end{split}$$

Diameter =
$$(\frac{4}{3} * \frac{Volume}{\pi})^{1/3} = (\frac{4}{3} * \frac{35.97m^3}{\pi})^{1/3} = 2.48m$$

Furnace Calculations

$$Q = Weighted Avg HHV * (Mass of Shells + Mass of Fuel) * 1000 * \left(\frac{0.9}{3600}\right) = \left(18.65\frac{MJ}{kg}\right) * (3979.81 kg + 442.2 kg) * 1000 * \left(\frac{0.9}{3600}\right) = 20617 kW$$

Heat Exchanger Calculation

The surface area for the heat exchangers in this process were calculated using the heat duty and overall heat transfer coefficient from Aspen Plus Heat Exchanger Design and Rating. The inlet and outlet temperatures were determined from the simulation.

$$Q = UA\Delta T_{LM} = UA \frac{((T_{hi} - T_{co}) - (T_{ho} - T_{ci}))}{\ln (\frac{T_{hi} - T_{co}}{T_{ho} - T_{ci}})}$$

For heat exchanger E-603,

$$U=174 \text{ W/m}^2\text{-K}$$
$$T_{hi}=149^{o}\text{C}$$

$$T_{hi} = 80^{\circ}C$$
$$T_{ci} = 47^{\circ}C$$
$$T_{co} = 52^{\circ}C$$

Therefore, from the parameters given:

$$A = 38m^2$$

Stripping Column Calculation

The diameter of the stripping column was determined from the column flooding velocity. The equations shown calculate the flooding velocity and diameter given the provided parameters. The actual velocity was determined to be 85% of the flooding velocity.

$$U_{f} = C_{SB}F_{ST}F_{F}F_{HA}\sqrt{\frac{\rho_{L}-\rho_{V}}{\rho_{V}}}$$
$$F_{LG} = \frac{L}{V}\sqrt{\frac{\rho_{V}}{\rho_{L}}}$$

CSB - Determined according to Figure 19.4 in Seider, et. al

$$F_{ST} = \left(\frac{\sigma}{20}\right)^{0.2}$$

$$F_{HA} = 1.0$$

$$F_F = 1.0$$

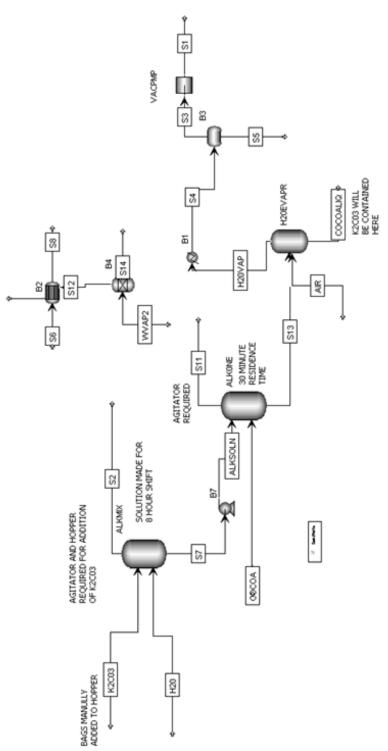
$$D = \sqrt{\frac{4V}{0.9 * \pi * \rho_V * U}}$$

For stripping column T-602,

$$\sigma = 8.40 \text{ dyne/cm}$$

$$F_{-ST} = 0.841$$

$$F_{LG} = 3.71$$


$$C_{SB} = 0.06 \text{ ft/s for 2ft tray spacings}$$

$$U_{F} = 2.26 \text{ ft/s}$$

$$U = 0.85*U_{F} = 1.92 \text{ ft/s}$$

$$D = 6\text{ft} = 1.83\text{m}$$

Alkalization Flowsheet

Alkalization Input Summary

;Input Summary created by Aspen Plus Rel. 34.0 at 02:22:58 Tue Apr 12, 2016 ;Directory \\base\root\homedir Filename C:\Users\jmorales\AppData\Local\Temp\~apb9f4.txt

DYNAMICS

DYNAMICS RESULTS=ON

IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar'

DEF-STREAMS MIXCISLD ALL

SIM-OPTIONS MASS-BAL-CHE=YES ATM-PRES=1.026675560

MODEL-OPTION

DATABANKS 'APV88 ASPENPCD' / 'APV88 AQUEOUS' / 'APV88 SOLIDS' & / 'APV88 INORGANIC' / 'APV88 BIODIESEL' / & 'NISTV88 NIST-TRC' / 'APV88 PURE32'

PROP-SOURCES 'APV88 ASPENPCD' / 'APV88 AQUEOUS' / 'APV88 SOLIDS' & / 'APV88 INORGANIC' / 'APV88 BIODIESEL' / & 'NISTV88 NIST-TRC' / 'APV88 PURE32'

COMPONENTS SOLVENT C6H14-1 / TAG-SOS C57H108O6-3 / TAG-POP C53H100O6-5 / TAG-POS C55H104O6-3 / POWDER SN / WATER H2O / "K2CO3(M)" K2CO3 / N2 N2 / O2 O2 / K+K+/ "K2CO3(S)" K2CO3 / CO3-- CO3-2

CISOLID-COMPS POWDER "K2CO3(S)"

HENRY-COMPS GLOBAL O2 N2

HENRY-COMPS HC-1 N2 O2

SOLVE RUN-MODE MODE=SIM

CHEMISTRY GLOBAL PARAM GAMMA-BASIS=UNSYMMETRIC DISS "K2CO3(M)" CO3-- 1 / K+ 2 SALT "K2CO3(S)" CO3-- 1 / K+ 2 K-SALT "K2CO3(S)" A=-175.998001 B=17765.230469 C=21.686489 & D=0 FLOWSHEET BLOCK ALKONE IN=ALKSOLN COCOA OUT=S11 S13 BLOCK H20EVAPR IN=AIR S13 OUT=H20VAP COCOALIO BLOCK ALKMIX IN=H20 K2C03 OUT=S2 S7 BLOCK B7 IN=S7 OUT=ALKSOLN BLOCK B3 IN=S4 OUT=S3 S5 BLOCK VACPMP IN=S3 OUT=S1 BLOCK B1 IN=H20VAP OUT=S4 BLOCK B2 IN=S12 S6 OUT=S10 S8 BLOCK B4 IN=WVAP2 OUT=S12 S14 PROPERTIES ELECNRTL HENRY-COMPS=GLOBAL CHEMISTRY=GLOBAL & FREE-WATER=STEAMNBS TRUE-COMPS=YES PROPERTIES ENRTL-SR / IDEAL / NRTL-RK / SOLIDS / SRK **STRUCTURES** STRUCTURES TAG-POP C1 O2 S / O2 C3 S / C3 O4 D / C3 & C5 S / C5 C6 S / C6 C7 S / C7 C8 S / C8 C9 & S / C9 C10 S / C10 C11 S / C11 C12 S / C12 C13 & S / C13 C14 S / C14 C15 S / C15 C16 S / C16 & C17 S / C18 C19 S / C1 C20 S / C20 O21 S / O21 & C22 S / C22 O23 D / C24 C25 S / C25 C26 S / & C26 C27 S / C27 C28 S / C28 C29 S / C29 C30 S / & C30 C31 D / C31 C32 S / C32 C33 S / C33 C34 S / & C34 C35 S / C35 C36 S / C36 C37 S / C37 C38 S / & C38 C39 S / C20 C40 S / C40 O41 S / O41 C42 S / & C42 O43 D / C42 C44 S / C44 C45 S / C45 C46 S / & C46 C47 S / C47 C48 S / C48 C49 S / C49 C50 S / & C50 C51 S / C51 C52 S / C52 C53 S / C53 C54 S / & C54 C55 S / C55 C56 S / C56 C57 S / C57 C58 S STRUCTURES TAG-POS C1 O2 S / O2 C3 S / C3 O4 D / C3 & C5 S / C5 C6 S / C6 C7 S / C7 C8 S / C8 C9 & S / C9 C10 S / C10 C11 S / C11 C12 S / C12 C13 & S / C13 C14 S / C14 C15 S / C15 C16 S / C16 & C17 S / C18 C19 S / C1 C20 S / C20 O21 S / O21 & C22 S / C22 O23 D / C24 C25 S / C25 C26 S / & C26 C27 S / C27 C28 S / C28 C29 S / C29 C30 S / & C30 C31 D / C31 C32 S / C32 C33 S / C33 C34 S / & C34 C35 S / C35 C36 S / C36 C37 S / C37 C38 S / & C38 C39 S / C20 C40 S / C40 O41 S / O41 C42 S / & C42 O43 D / C42 C44 S / C44 C45 S / C45 C46 S / & C46 C47 S / C47 C48 S / C48 C49 S / C49 C50 S / & C50 C51 S / C51 C52 S / C52 C53 S / C53 C54 S / & C54 C55 S / C55 C56 S / C56 C57 S / C57 C58 S / & C58 C59 S / C59 C60 S STRUCTURES TAG-SOS C1 O2 S / O2 C3 S / C3 O4 D / C3 & C5 S / C5 C6 S / C6 C7 S / C7 C8 S / C8 C9 & S / C9 C10 S / C10 C11 S / C11 C12 S / C12 C13 & S / C13 C14 S / C14 C15 S / C15 C16 S / C16 & C17 S / C17 C18 S / C18 C19 S / C19 C20 S / & C20 C21 S / C1 C22 S / C22 O23 S / O23 C24 S / & C24 O25 D / C24 C26 S / C26 C27 S / C27 C28 S / & C28 C29 S / C29 C30 S / C30 C31 S / C31 C32 S / & C32 C33 S / C33 C34 D / C34 C35 S / C35 C36 S / & C36 C37 S / C37 C38 S / C38 C39 S / C39 C40 S / & C40 C41 S / C41 C42 S / C22 C43 S / C43 O44 S / &

O44 C45 S / C45 O46 D / C45 C47 S / C47 C48 S / & C48 C49 S / C49 C50 S / C50 C51 S / C51 C52 S / & C52 C53 S / C53 C54 S / C54 C55 S / C55 C56 S / & C56 C57 S / C57 C58 S / C58 C59 S / C59 C60 S / & C60 C61 S / C61 C62 S / C62 C63 S

ESTIMATE ALL

PROP-DATA PCES-1 IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST ZC / VB / RKTZRA / VLSTD / DGFORM / RGYR PVAL TAG-SOS .1359747040 / 682.7863210 / .1031860170 / & 320.7959360 / -1.0133515E+5 / 1.27116033E-9 PVAL TAG-POP .1381455880 / 636.8003180 / .1043993550 / & 302.0326180 / -1.3615171E+5 / 1.23386352E-9 PVAL TAG-POS .1369844490 / 661.5363710 / .1039441350 / & 312.4879070 / -1.3212955E+5 / 1.25671708E-9 PROP-LIST TC / DHVLB / VLSTD PVAL POWDER 3808.986400 / 1.82873667E+5 / 0.0 PROP-LIST RKTZRA / VLSTD PVAL "K2CO3(M)" .2918596200 / 298.9063450 PVAL "K2CO3(S)" .2918596200 / 298.9063450 **PROP-DATA DHVLWT-1** IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST DHVLWT PVAL POWDER 1.82873667E+5 2599.850000 .3800000000 0.0 & 2599.850000 PROP-DATA KLDIP-1 IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST KLDIP PVAL TAG-SOS -3.954762758 .0277353126 -7.1975769E-5 & 8.28421805E-8 -3.583321E-11 540.5892920 661.9410630 PVAL TAG-POP -3.900779259 .0280167558 -7.4416988E-5 & 8.76583747E-8 -3.880642E-11 527.6972860 647.7813660 PVAL TAG-POS -3.917742515 .0278008098 -7.2976298E-5 & 8.49559300E-8 -3.716939E-11 534.1885140 655.0009430 PVAL POWDER -1.689294218 2.45223901E-3 -1.2410738E-6 & 2.7549006E-10 -2.301472E-14 2599.850000 3768.165040 **PROP-DATA MULAND-1** IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST MULAND PVAL "K2CO3(M)" 81.17750888 -12127.32210 -10.25255770 & 1126.850000 1706.850000 PVAL "K2CO3(S)" 81.17753568 -12127.32210 -10.25255770 & 1126.850000 1706.850000 PROP-DATA MUVDIP-1

IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar &

INVERSE-PRES='1/bar' PROP-LIST MUVDIP PVAL TAG-SOS 8.52443691E-6 .9836995870 0.0 0.0 0.0 & 6.85000000 826.8500000 PVAL TAG-POP 8.86181224E-6 .9826356120 0.0 0.0 0.0 & 6.85000000 826.8500000 PVAL TAG-POS 8.67415723E-6 .9831844010 0.0 0.0 0.0 & 6.85000000 826.8500000 **PROP-DATA SIGDIP-1** IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST SIGDIP PVAL TAG-SOS 15.21267550 1.222222220 -7.3253955E-9 & 8.06112577E-9 -3.0009643E-9 540.5892920 652.4956980 PVAL TAG-POP 16.94811190 1.222222210 4.52918561E-8 & -4.9850805E-8 1.85629697E-8 527.6972860 638.4790290 PVAL TAG-POS 16.02907920 1.222222220 1.98528163E-8 & -2.1849025E-8 8.13483157E-9 534.1885140 645.6256810 **PROP-DATA HOCETA-1** IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' **PROP-LIST HOCETA** BPVAL WATER WATER 1.70000000 **PROP-DATA HENRY-1** IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST HENRY BPVAL N2 SOLVENT 9.903673535 -275.5899960 -.2019300000 & -4.0560000E-3 -60.00000000 25.00000000 0.0 BPVAL N2 WATER 164.9940745 -8432.770000 -21.55800000 & -8.4362400E-3 -.150000000 72.85000000 0.0 BPVAL O2 SOLVENT -84.86162646 3068.500000 14.19100000 0.0 & 10.0000000 40.0000000 0.0 BPVAL O2 WATER 144.4080745 -7775.060000 -18.39740000 & -9.4435400E-3 .850000000 74.85000000 0.0 **PROP-DATA NRTL-1** IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST NRTL BPVAL SOLVENT WATER 0.0 1512.000000 .200000000 0.0 0.0 & 0.0 0.0 55.00000000 BPVAL WATER SOLVENT 0.0 3040.000000 .200000000 0.0 0.0 & 0.0 0.0 55.00000000 BPVAL N2 O2 -2.164500000 30.29660000 .1000000000 0.0 0.0 & 0.0 - 208.3142000 - 157.1450000 BPVAL O2 N2 2.238770000 13.59570000 .1000000000 0.0 0.0 & 0.0 - 208.3142000 - 157.1450000 **PROP-DATA VLCLK-1**

```
IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar'
```

PROP-LIST VLCLK BPVAL K+ CO3-- 19.73097000 74.55601000

PROP-DATA GMELCC-1 IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST GMELCC PPVAL WATER (K+ CO3--) .7833727000 PPVAL (K+ CO3--) WATER .6027880000

PROP-DATA GMELCD-1 IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST GMELCD PPVAL WATER (K+ CO3--) 0.0 PPVAL (K+ CO3--) WATER -1173.117000

PROP-DATA GMENCC-1 IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST GMENCC PPVAL WATER (K+ CO3--) .7833727000 PPVAL (K+ CO3--) WATER .6027880000

PROP-DATA GMENCD-1 IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST GMENCD PPVAL WATER (K+ CO3--) 0.0 PPVAL (K+ CO3--) WATER -1173.117000

PROP-SET PS-1 TEMP KVL GAMMA KVL2 BETA MASSFRAC & SUBSTREAM=MIXED COMPS=SOLVENT TAG-POS PHASE=V L1 L2

PROP-SET PS-2 TEMP KVL GAMMA KVL2 BETA MOLEFRAC & SUBSTREAM=MIXED COMPS=SOLVENT TAG-SOS PHASE=V L1 L2

PROP-SET PS-3 TEMP KVL GAMMA KVL2 BETA MOLEFRAC & SUBSTREAM=MIXED COMPS=SOLVENT TAG-SOS PHASE=V L1 L2

PROP-SET PS-4 TEMP KVL GAMMA KVL2 BETA MOLEFRAC & SUBSTREAM=MIXED COMPS=SOLVENT TAG-POS PHASE=V L1 L2

PROP-SET PS-5 PL UNITS='psi' SUBSTREAM=MIXED COMPS=WATER & PHASE=L

STREAM AIR SUBSTREAM MIXED TEMP=25. PRES=14.7 <psia> MOLE-FLOW N2 0.79 <mol/hr> / O2 0.21 <mol/hr>

STREAM ALKSOLN SUBSTREAM MIXED PRES=29.0075 <psi> VFRAC=0. & MASS-FLOW=4419.58 MASS-FLOW WATER 4017.8 / "K2CO3(M)" 401.78 STREAM COCOA

SUBSTREAM MIXED TEMP=50. PRES=7.5 MASS-FLOW=16019.23 MASS-FRAC TAG-SOS 0.1242 / TAG-POP 0.1782 / TAG-POS & 0.2376 / POWDER 0.43 / WATER 0.03

STREAM H20

SUBSTREAM MIXED TEMP=20. PRES=14.7 <psi>MASS-FLOW=4017.8 MASS-FLOW WATER 4017.8

STREAM K2C03

SUBSTREAM MIXED TEMP=20. PRES=14.7 <psi>MASS-FLOW=401.78 MASS-FRAC "K2CO3(S)" 1.

STREAM S6 SUBSTREAM MIXED TEMP=25. PRES=65. <psia> MASS-FLOW=120000. MASS-FLOW WATER 1.

STREAM WVAP2 SUBSTREAM MIXED TEMP=95. PRES=0.3 <atm> MASS-FLOW WATER 4200. / N2 0.02 / O2 0.007

BLOCK B4 SEP

PARAM

FRAC STREAM=S12 SUBSTREAM=MIXED COMPS=SOLVENT TAG-SOS & TAG-POP TAG-POS POWDER WATER "K2CO3(M)" N2 O2 K+ & "K2CO3(S)" CO3-- FRACS=1. 1. 0. 0. 1. 1. 1. 1. 1. & 1. 1. 1. 1.

BLOCK B1 HEATER PARAM TEMP=60. PRES=0. DPPARMOPT=NO

BLOCK ALKONE FLASH2 PARAM TEMP=95. PRES=1.5

BLOCK ALKMIX FLASH2 PARAM PRES=0. psi> DUTY=0.

BLOCK B3 FLASH2 PARAM PRES=0. DUTY=0. PROPERTIES NRTL-RK HENRY-COMPS=HC-1 FREE-WATER=STEAMNBS & SOLU-WATER=3 TRUE-COMPS=YES

BLOCK H20EVAPR FLASH2 PARAM TEMP=95. PRES=4.5 <psi>

BLOCK B2 HEATX PARAM MIN-OUT-TAPP=10. <K> CALC-TYPE=DESIGN & U-OPTION=PHASE F-OPTION=CONSTANT CALC-METHOD=SHORTCUT FEEDS HOT=S12 COLD=S6 OUTLETS-HOT S10 OUTLETS-COLD S8 HOT-SIDE DP-OPTION=CONSTANT DPPARMOPT=NO COLD-SIDE DP-OPTION=CONSTANT DPPARMOPT=NO TO-PARAM CURVE=YES BLOCK B7 PUMP PARAM PRES=1.5 EFF=0.75

BLOCK VACPMP COMPR PARAM TYPE=ISENTROPIC PRES=15.3 <psia> SEFF=0.8 SB-MAXIT=30 & SB-TOL=0.0001

DESIGN-SPEC CTW-FLOW

DEFINE CTWFLOW STREAM-VAR STREAM=S6 SUBSTREAM=MIXED & VARIABLE=MASS-FLOW UOM="kg/hr" DEFINE VAPFRAC STREAM-VAR STREAM=S4 SUBSTREAM=MIXED & VARIABLE=VFRAC SPEC "VAPFRAC" TO "0.01" TOL-SPEC "0.0001" VARY STREAM-VAR STREAM=S6 SUBSTREAM=MIXED VARIABLE=MASS-FLOW & UOM="kg/hr" LIMITS "100000" "200000"

EO-CONV-OPTI

TRANSFER TS4 SET STREAM WVAP2 EQUAL-TO STREAM H20VAP

STREAM-REPOR MOLEFLOW MASSFLOW MASSFRAC

PROPERTY-REP PCES NOPARAM-PLUS

PROP-TABLE BINRY-1 FLASHCURVE
IN-UNITS MET PRESSURE=psia TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar'
PROPERTIES SRK FREE-WATER=STEAMNBS SOLU-WATER=3 & TRUE-COMPS=YES
MASS-FLOW SOLVENT 1 / TAG-POS 1
STATE VFRAC=0.0
VARY PRES
RANGE LIST=14.69594878
VARY MASSFRAC COMP=SOLVENT
RANGE LOWER=0.0 UPPER=1.0 NPOINT= 100
PARAM NPHASE=3
TABULATE PROPERTIES=PS-1

PROP-TABLE BINRY-2 FLASHCURVE
IN-UNITS MET PRESSURE=psia TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar'
PROPERTIES SRK FREE-WATER=STEAMNBS SOLU-WATER=3 & TRUE-COMPS=YES
MOLE-FLOW SOLVENT 1 / TAG-SOS 1
STATE VFRAC=0.0
VARY PRES
RANGE LIST=14.69594878
VARY MOLEFRAC COMP=SOLVENT
RANGE LOWER=0.0 UPPER=1.0 NPOINT= 51
PARAM NPHASE=3
TABULATE PROPERTIES=PS-2

PROP-TABLE BINRY-3 FLASHCURVE IN-UNITS MET PRESSURE=psia TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROPERTIES SRK FREE-WATER=STEAMNBS SOLU-WATER=3 & TRUE-COMPS=YES MOLE-FLOW SOLVENT 1 / TAG-SOS 1 STATE VFRAC=0.0 VARY PRES RANGE LIST=14.69594878 VARY MOLEFRAC COMP=SOLVENT RANGE LOWER=0.0 UPPER=1.0 NPOINT= 51 PARAM NPHASE=3 TABULATE PROPERTIES=PS-3 **PROP-TABLE BINRY-4 FLASHCURVE** IN-UNITS MET PRESSURE=psia TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROPERTIES SRK FREE-WATER=STEAMNBS SOLU-WATER=3 & TRUE-COMPS=YES MOLE-FLOW SOLVENT 1 / TAG-POS 1 STATE VFRAC=0.0 VARY PRES RANGE LIST=14.69594878 VARY MOLEFRAC COMP=SOLVENT RANGE LOWER=0.0 UPPER=1.0 NPOINT= 100 PARAM NPHASE=3 TABULATE PROPERTIES=PS-4 **PROP-TABLE PURE-1 PROPS**

INOT TABLE FORD TEROTS
IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar'
MOLE-FLOW WATER 1
PROPERTIES ELECNRTL HENRY-COMPS=GLOBAL CHEMISTRY=GLOBAL & FREE-WATER=STEAMNBS SOLU-WATER=3 TRUE-COMPS=YES
VARY TEMP
RANGE LOWER=0 UPPER=60. NPOINT= 50
VARY PRES
RANGE LIST=1.013250000
PARAM
TABULATE PROPERTIES=PS-5

DISABLE DESIGN-SPEC CTW-FLOW

Alkalization Block Reports

BLOCK: B1 MODEL: HEATER

INLET STREAM: H20VAP OUTLET STREAM: S4 PROPERTY OPTION SET: ELECNRTL ELECTROLYTE NRTL / REDLICH-KWONG HENRY-COMPS ID: GLOBAL CHEMISTRY ID: GLOBAL - TRUE SPECIES
 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(KMOL/HR)
 232.987
 232.987
 0.00000

 MASS(KG/HR)
 4197.34
 4197.34
 0.216684E-15

 ENTHALPY(CAL/SEC)
 -0.370435E+07
 -0.438027E+07
 0.154310

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***TWOPHASE TP FLASHSPECIFIED TEMPERATUREC60.0000PRESSURE DROPBAR0.0MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

*** RESULTS ***OUTLET TEMPERATUREC60.000OUTLET PRESSUREBAR0.31026HEAT DUTYCAL/SEC-0.67592E+06OUTLET VAPOR FRACTION0.89664E-05

V-L PHASE EQUILIBRIUM :

COMP	F(I)	X(I) $Y(I)$	K(I)	
TAG-SOS	0.24765E	E-13 0.24766E	-13 0.17954E-28	0.72495E-15
TAG-POP	0.13692E	C-12 0.13692E	-12 0.42557E-27	0.31082E-14
TAG-POS	0.92954E	C-13 0.92955E	-13 0.13954E-27	0.15011E-14
WATER	1.0000	1.0000	0.64453 0.644	53
N2	0.33907E-05	0.78706E-06	0.29038 0.36	895E+06
O2	0.90134E-06	0.31775E-06	0.65086E-01 0	20483E+06

BLOCK: B2 MODEL: HEATX

HOT SIDE:

_____ INLET STREAM: S12 OUTLET STREAM: S10 PROPERTY OPTION SET: ELECNRTL ELECTROLYTE NRTL / REDLICH-KWONG HENRY-COMPS ID: GLOBAL CHEMISTRY ID: GLOBAL - TRUE SPECIES COLD SIDE: -----INLET STREAM: S6 **OUTLET STREAM: S**8

PROPERTY OPTION SET: ELECNRTL ELECTROLYTE NRTL / REDLICH-KWONG HENRY-COMPS ID: GLOBAL CHEMISTRY ID: GLOBAL - TRUE SPECIES
 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(KMOL/HR)
 6894.00
 6.00000

 MASS(KG/HR)
 124197.
 124197.
 0.285889E-13

 ENTHALPY(CAL/SEC)
 -0.130097E+09
 -0.130097E+09
 -0.105631E-08

*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR

*** INPUT DATA ***

FLASH SPECS FOR HOT SIDE:	
TWO PHASE FLASH	
MAXIMUM NO. ITERATIONS	30
CONVERGENCE TOLERANCE	0.000100000

30

0.000100000

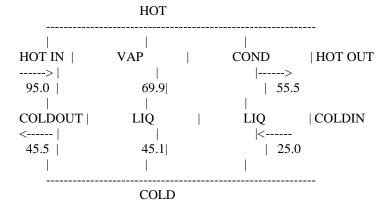
FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED MIN OUTLET TEMP APPR SPECIFIED VALUE C 10.0000 LMTD CORRECTION FACTOR 1.00000

PRESSURE SPECIFICATION:		
HOT SIDE PRESSURE DROP	BAR	0.0000
COLD SIDE PRESSURE DROP	BAR	0.0000

HEAT TRANSFER COEFFICIENT SPECIFICATION:

HOT LIQUID	COLD LIQUID	CAL/SEC-SQCM-K	0.0203
HOT 2-PHASE	COLD LIQUID	CAL/SEC-SQCM-K	0.0203
HOT VAPOR	COLD LIQUID	CAL/SEC-SQCM-K	0.0203
HOT LIQUID	COLD 2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT 2-PHASE	COLD 2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT VAPOR	COLD 2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT LIQUID	COLD VAPOR	CAL/SEC-SQCM-K	0.0203
HOT 2-PHASE	COLD VAPOR	CAL/SEC-SQCM-K	0.0203
HOT VAPOR	COLD VAPOR	CAL/SEC-SQCM-K	0.0203


*** OVERALL RESULTS ***

STREAMS:

S12>	HOT	> S10
T= 9.5000D+01		T = 5.5491D + 01
P= 3.1026D-01		P= 3.1026D-01

V= 1.0000D+00	V= 5.8296D-06
S8 < COLD	< S6
T= 4.5483D+01	T= 2.5000D+01
P= 4.4816D+00	P = 4.4816D + 00
V= 0.0000D+00	V= 0.0000D+00
DUTY AND AREA:	
CALCULATED HEAT DUTY	CAL/SEC 681174.6446
CALCULATED (REQUIRED) AREA	A SOM 121.3350
ACTUAL EXCHANGER AREA	SQM 121.3350
PER CENT OVER-DESIGN	0.0000
HEAT TRANSFER COEFFICIENT:	
AVERAGE COEFFICIENT (DIRTY) CAL/SEC-SOCM-K 0.0203
UA (DIRTY) CAL/SEC-	
UA (DIRTT) CAL/SLC-	K 24055.5100
LOG-MEAN TEMPERATURE DIFFE	RENCE
LMTD CORRECTION FACTOR	1.0000
LMTD (CORRECTED) C	27.6526
NUMBER OF SHELLS IN SERIES	1
NUMBER OF STIELES IN SERIES	1
PRESSURE DROP:	
HOTSIDE, TOTAL BAR	0.0000
COLDSIDE, TOTAL BAR	0.0000
*** ZONE RESULTS **	**
ZONE RESULTS	

TEMPERATURE LEAVING EACH ZONE:

ZONE HEAT TRANSFER AND AREA:

ZON	NE HEAT D	UTY AI	REA LI	MTD A	VERAGE U	UA
	CAL/SEC	SQM	C C	AL/SEC-S	QCM-K CAL/	SEC-K
1	13255.609	1.8277	35.7233	0.0203	371.0631	
2	667919.035	119.5073	27.5291	0.0203	24262.2536	5

HEATX COLD-TQCU B2 TQCURV INLET

PRESSURE PROFILE: CONSTANT2

PRESSURE DROP: 0.0 BAR PROPERTY OPTION SET: ELECNRTL ELECTROLYTE NRTL / REDLICH-KWONG HENRY-COMPS ID: GLOBAL CHEMISTRY ID: GLOBAL - TRUE SPECIES

! DUTY ! PRES ! TEMP ! VFRAC ! 1 1 1 1 1 ! ! ! ! ! ! ! ! 1 ! CAL/SEC ! BAR ! C ! ! ! ! ! ! ! 0.0 ! 4.4816 ! 45.4832 ! 0.0 ! ! 3.2437+04 ! 4.4816 ! 44.5081 ! 0.0 ! ! 6.4874+04 ! 4.4816 ! 44.5081 ! 0.0 ! ! 9.7311+04 ! 4.4816 ! 43.5328 ! 0.0 ! ! 1.2975+05 ! 4.4816 ! 42.5576 ! 0.0 ! !-----! ! 1.6218+05 ! 4.4816 ! 41.5823 ! 0.0 ! ! 1.9462+05 ! 4.4816 ! 40.6069 ! 0.0 ! ! 2.2706+05 ! 4.4816 ! 39.6316 ! 0.0 ! ! 2.5950+05 ! 4.4816 ! 38.6561 ! 0.0 ! ! 2.9193+05 ! 4.4816 ! 37.6807 ! 0.0 ! !-----! ! 3.2437+05 ! 4.4816 ! 36.7052 ! 0.0 ! ! 3.5681+05 ! 4.4816 ! 35.7298 ! 0.0 ! ! 3.8924+05 ! 4.4816 ! 34.7543 ! 0.0 ! ! 4.2168+05 ! 4.4816 ! 33.7788 ! 0.0 ! ! 4.5412+05 ! 4.4816 ! 32.8033 ! 0.0 ! !-----! ! 4.8655+05 ! 4.4816 ! 31.8278 ! 0.0 ! ! 5.1899+05 ! 4.4816 ! 30.8523 ! 0.0 ! ! 5.5143+05 ! 4.4816 ! 29.8768 ! 0.0 ! ! 5.8386+05 ! 4.4816 ! 28.9014 ! 0.0 ! ! 6.1630+05 ! 4.4816 ! 27.9260 ! 0.0 ! !-----! ! 6.4874+05 ! 4.4816 ! 26.9506 ! 0.0 ! ! 6.8117+05 ! 4.4816 ! 25.9753 ! 0.0 !

HEATX HOT-TQCUR B2 TQCURV INLET

PRESSURE PROFILE:CONSTANT2PRESSURE DROP:0.0BARPROPERTY OPTION SET:ELECNRTL ELECTROLYTE NRTL / REDLICH-KWONGHENRY-COMPS ID:GLOBALCHEMISTRY ID:GLOBAL - TRUE SPECIES

! DUTY	! PRES	! TEMP	!	VFRAC	!
!!	!	!!			
!!	!	!!			
!!	!	!!			
! CAL/SEC	C ! BAR	! C	!	!	
!!	!	!!			

!===========	!	!		:=!==========
! 0.0 ! 0.3				
! 3.2437+04 !	0.3103 !	69.8502 !	0.9705 !	
! 6.4874+04 !	0.3103 !	69.8502 !	0.9207 !	
! 9.7311+04 !	0.3103 !	69.8502 !	0.8709 !	
! 1.2975+05 !	0.3103 !	69.8502 !	0.8211 !	
!+	+	+	!	
! 1.6218+05 !	0.3103 !	69.8502 !	0.7713 !	
! 1.9462+05 !	0.3103 !	69.8501 !	0.7215 !	
! 2.2706+05 !	0.3103 !	69.8501 !	0.6717 !	
! 2.5950+05 !	0.3103 !	69.8501 !	0.6219 !	
! 2.9193+05 !	0.3103 !	69.8501 !	0.5720 !	
!+	+	+	!	
! 3.2437+05 !	0.3103 !	69.8501 !	0.5222 !	
! 3.5681+05 !	0.3103 !	69.8501 !	0.4724 !	
! 3.8924+05 !	0.3103 !	69.8500 !	0.4226 !	
! 4.2168+05 !	0.3103 !	69.8500 !	0.3728 !	
! 4.5412+05 !	0.3103 !	69.8500 !	0.3230 !	
!+	+	+	!	
! 4.8655+05 !	0.3103 !	69.8499 !	0.2732 !	
! 5.1899+05 !	0.3103 !	69.8498 !	0.2234 !	
! 5.5143+05 !	0.3103 !	69.8497 !	0.1736 !	
! 5.8386+05 !	0.3103 !	69.8495 !	0.1237 !	
! 6.1630+05 !				
!+	+	+	!	
! 6.4874+05 !				
! 6.8117+05 !	0.3103 !	55.4912 !	5.8296-06 !	

BLOCK: B3 MODEL: FLASH2

INLET STREAM: S4 OUTLET VAPOR STREAM: S3 OUTLET LIQUID STREAM: S5 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG HENRY-COMPS ID: HC-1

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(KMOL/HR)
 232.987
 232.987
 0.00000

 MASS(KG/HR)
 4197.34
 4197.34
 -0.433368E-15

 ENTHALPY(CAL/SEC)
 -0.438027E+07
 -0.438027E+07
 -0.627222E-12

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***TWO PHASE PQ FLASHPRESSURE DROPBAR0.0SPECIFIED HEAT DUTYCAL/SEC0.0

30 0.000100000

*** RESULTS ***	
OUTLET TEMPERATURE C	58.684
OUTLET PRESSURE BAR	0.31026
VAPOR FRACTION	0.77879E-05

V-L PHASE EQUILIBRIUM :

COMP	F(I)	X(I) Y(I	I) K(I)		
TAG-SOS	0.24765E	-13 0.24766	E-13 0.1407	0E-28	0.56811E-15
TAG-POP	0.13692E	-12 0.13692	E-12 0.3359	3E-27	0.24535E-14
TAG-POS	0.92954E	-13 0.92955	E-13 0.1097	5E-27	0.11806E-14
WATER	1.0000	1.0000	0.60640	0.60640)
N2	0.33907E-05	0.87794E-06	0.32266	0.367	51E+06
O2	0.90134E-06	0.34886E-06	0.70941E-0	0.2	0335E+06

BLOCK: B4 MODEL: SEP

INLET STREAM:WVAP2OUTLET STREAMS:S12S14PROPERTY OPTION SET:ELECNRTL ELECTROLYTE NRTL / REDLICH-KWONGHENRY-COMPS ID:GLOBALCHEMISTRY ID:GLOBAL - TRUE SPECIES

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 232.987 232.987 0.00000 MASS(KG/HR) 4197.34 4197.34 0.176251E-11 ENTHALPY(CAL/SEC) -0.370435E+07 -0.370435E+07 0.983026E-13

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

FLASH SPECS FOR STREAM S12 TWO PHASE TP FLASH PRESSURE DROP BAR MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

0.0 30 0.000100000

FLASH SPECS FOR STREAM S14 TWO PHASE TP FLASH PRESSURE DROP BAR MAXIMUM NO. ITERATIONS

0.0 30

0.000100000

FRACTION OF FEED)			
SUBSTREAM= MIX	KED			
STREAM= S12	CPT= SOLV	ENT	FRACTION=	1.00000
TAG	-SOS	1	.00000	
TAG	-POP	0	0.0	
TAG	-POS	0	0.0	
POW	DER		1.00000	
WAT	ER	1	.00000	
K2C0	D3(M)		1.00000	
N2		1.000	000	
O2		1.000	000	
K+		1.000	000	
K2C0	D3(S)	1	.00000	
CO3-	-	1.00	0000	

*** RESULTS ***

HEAT DUTY CAL/SEC -0.36392E-06

COMPONENT = TAG-SOS STREAM SUBSTREAM SPLIT FRACTION S12 MIXED 1.00000

COMPONENT = TAG-POP STREAM SUBSTREAM SPLIT FRACTION S14 MIXED 1.00000

COMPONENT = TAG-POS STREAM SUBSTREAM SPLIT FRACTION S14 MIXED 1.00000

COMPONENT = WATER STREAM SUBSTREAM SPLIT FRACTION S12 MIXED 1.00000

COMPONENT = N2 STREAM SUBSTREAM SPLIT FRACTION S12 MIXED 1.00000

COMPONENT = O2 STREAM SUBSTREAM SPLIT FRACTION S12 MIXED 1.00000

BLOCK: B7 MODEL: PUMP

INLET STREAM:S7OUTLET STREAM:ALKSOLNPROPERTY OPTION SET:ELECNRTL ELECTROLYTE NRTL/REDLICH-KWONGHENRY-COMPS ID:GLOBALCHEMISTRY ID:GLOBAL - TRUE SPECIES

*** MASS AND ENERGY BALANCE ***

IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 231.743 231.743 0.00000 MASS(KG/HR) 4419.58 4419.58 -0.205788E-15 ENTHALPY(CAL/SEC) -0.445961E+07 -0.445959E+07 -0.396152E-05

*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR

*** INPUT DATA ***OUTLET PRESSURE BAR1.50000PUMP EFFICIENCY0.75000DRIVER EFFICIENCY1.00000

FLASH SPECIFICATIONS:LIQUID PHASE CALCULATIONNO FLASH PERFORMEDMAXIMUM NUMBER OF ITERATIONS30TOLERANCE0.000100000

*** RESULTS *** VOLUMETRIC FLOW RATE L/MIN 68.4220 PRESSURE CHANGE BAR 0.48647 NPSH AVAILABLE M-KGF/KG 9.36761 FLUID POWER KW 0.055475 BRAKE POWER KW 0.073967 ELECTRICITY KW 0.073967 PUMP EFFICIENCY USED 0.75000 NET WORK REQUIRED KW 0.073967 HEAD DEVELOPED M-KGF/KG 4.60789

BLOCK: H20EVAPR MODEL: FLASH2

INLET STREAMS: AIR S13 OUTLET VAPOR STREAM: H20VAP OUTLET LIQUID STREAM: COCOALIQ PROPERTY OPTION SET: ELECNRTL ELECTROLYTE NRTL / REDLICH-KWONG HENRY-COMPS ID: GLOBAL CHEMISTRY ID: GLOBAL - TRUE SPECIES

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 326.527 323.692 0.868168E-02 MASS(KG/HR) 20438.8 20438.8 -0.124595E-14 ENTHALPY(CAL/SEC) -0.632528E+07 -0.568245E+07 -0.101628

*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR

UTILITIES CO2E PRODUCTION	0.00000	KG/HR
TOTAL CO2E PRODUCTION	0.00000	KG/HR

*** INPUT DATA *** TWO PHASE TP FLASH SPECIFIED TEMPERATURE C SPECIFIED PRESSURE BAR MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

95.0000 0.31026 30 0.000100000

*** RESULTS *** OUTLET TEMPERATURE C OUTLET PRESSURE BAR HEAT DUTY CAL/SEC VAPOR FRACTION

0.31026 0.64282E+06 0.88170

95.000

V-L PHASE EQUILIBRIUM :

COMP	F(I) 2	X(I) $Y(I)$	K(I)	
TAG-SOS	0.83307E-	02 0.71551E-	-01 0.24765E-	-13 0.34612E-12
TAG-POP	0.12757E-	01 0.10957	0.13692E-12	2 0.12496E-11
TAG-POS	0.16456E-	01 0.14134	0.92954E-13	0.65767E-12
WATER	0.92997	0.53458	1.0000 1.8	8706
N2	0.29423E-05	0.63782E-11	0.33907E-05	0.53162E+06
O2	0.78212E-06	0.28123E-11	0.90134E-06	0.32049E+06
K+	0.21654E-01	0.95306E-01	0.0000 0	.0000
CO3	0.10827E-01	0.47653E-01	0.0000	0.0000

BLOCK: VACPMP MODEL: COMPR

INLET STREAM:S3OUTLET STREAM:S1PROPERTY OPTION SET:ELECNRTL ELECTROLYTE NRTL / REDLICH-KWONGHENRY-COMPS ID:GLOBALCHEMISTRY ID:GLOBAL - TRUE SPECIES

 *** MASS AND ENERGY BALANCE ****

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(KMOL/HR)
 0.181448E-02
 0.181448E-02
 0.00000

 MASS(KG/HR)
 0.403418E-01
 0.403418E-01
 -0.172002E-15

 ENTHALPY(CAL/SEC)
 -17.5378
 -16.9319
 -0.345445E-01

*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR

*** INPUT DATA ***

ISENTROPIC CENTRIFUGAL COMPRESSOR

OUTLET PRESSURE BAR	1.05490
ISENTROPIC EFFICIENCY	0.80000
MECHANICAL EFFICIENCY	1.00000

*** RESULTS ***

INDICATED HORSEPOWER REQUIREMENT KW 0.0025365 BRAKE HORSEPOWER REQUIREMENT KW 0.0025365 NET WORK REQUIRED KW 0.0025365 POWER LOSSES KW 0.0 ISENTROPIC HORSEPOWER REQUIREMENT KW 0.0020292 CALCULATED OUTLET TEMP C 213.865 ISENTROPIC TEMPERATURE C 183.347 EFFICIENCY (POLYTR/ISENTR) USED 0.80000 OUTLET VAPOR FRACTION 1.00000 HEAD DEVELOPED, M-KGF/KG 18,465.1 MECHANICAL EFFICIENCY USED 1.00000 INLET HEAT CAPACITY RATIO 1.35249 INLET VOLUMETRIC FLOW RATE, L/MIN 2.68518 OUTLET VOLUMETRIC FLOW RATE, L/MIN 1.15887 INLET COMPRESSIBILITY FACTOR 0.99852 OUTLET COMPRESSIBILITY FACTOR 0.99833 AV. ISENT. VOL. EXPONENT 1.35168 AV. ISENT. TEMP EXPONENT 1.35249 AV. ACTUAL VOL. EXPONENT 1.45635 AV. ACTUAL TEMP EXPONENT 1.45668

BLOCK: ALKONE MODEL: FLASH2

INLET STREAMS: ALKSOLN COCOA OUTLET VAPOR STREAM: S11 OUTLET LIQUID STREAM: S13 PROPERTY OPTION SET: ELECNRTL ELECTROLYTE NRTL / REDLICH-KWONG HENRY-COMPS ID: GLOBAL CHEMISTRY ID: GLOBAL - TRUE SPECIES

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 326.526 326.526 0.00000 MASS(KG/HR) 20438.8 20438.8 0.00000 ENTHALPY(CAL/SEC) -0.646947E+07 -0.632528E+07 -0.222878E-01

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***TWO PHASE TP FLASHSPECIFIED TEMPERATURE CSPECIFIED PRESSURE BAR1.50000MAXIMUM NO. ITERATIONS30

0.000100000

*** RESULTS ***OUTLET TEMPERATURE95.000OUTLET PRESSUREBAR1.50001.5000HEAT DUTYCAL/SECVAPOR FRACTION0.0000

V-L PHASE EQUILIBRIUM :

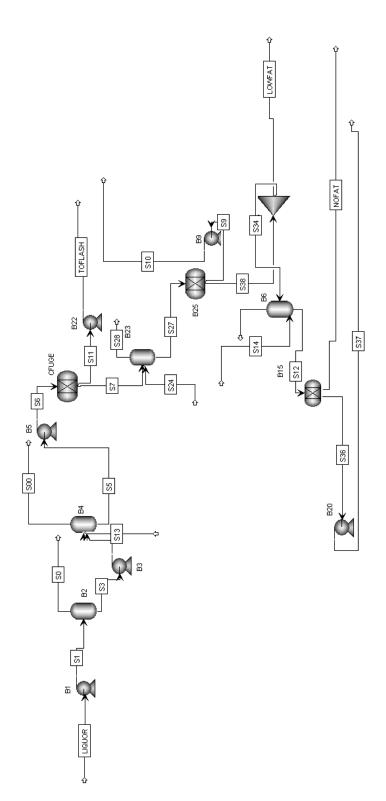
COMP	F(I)	X(I) Y(I)	K(I)	
TAG-SOS	0.83307E-	02 0.83307E-	02 0.10647E-1	4 0.66826E-13
TAG-POP	0.12758E-	01 0.12758E-	01 0.58434E-1	4 0.23949E-12
TAG-POS	0.16456E-	01 0.16456E-	01 0.39821E-1	4 0.12653E-12
WATER	0.92997	0.92997	1.0000 0.56	5223
K+	0.21654E-01	0.21654E-01	0.0000 0.0	0000
CO3	0.10827E-01	0.10827E-01	0.0000 0	.0000

BLOCK: ALKMIX MODEL: FLASH2

INLET STREAMS: H20 K2C03 OUTLET VAPOR STREAM: S2 OUTLET LIQUID STREAM: S7 PROPERTY OPTION SET: ELECNRTL ELECTROLYTE NRTL / REDLICH-KWONG HENRY-COMPS ID: GLOBAL CHEMISTRY ID: GLOBAL - TRUE SPECIES

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 225.929 231.743 -0.250891E-01 MASS(KG/HR) 4419.58 4419.58 0.205788E-15 ENTHALPY(CAL/SEC) -0.445960E+07 -0.445961E+07 0.873179E-06

*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR


*** INPUT DATA ***TWOPHASE PQ FLASHPRESSURE DROPBAR0.0SPECIFIED HEAT DUTYCAL/SEC0.0MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

*** RESULTS ***OUTLET TEMPERATURECOUTLET PRESSUREBAR1.0135VAPOR FRACTION0.0000

V-L PHASE EQUILIBRIUM :

COMP	F(I)	X(I)	Y(I)	K(I)
WATER	1.0000	0.96237	1.0000) 1.0391
K+	0.0000	0.25089E-01	0.0000	0.0000
CO3	0.0000	0.12545E-0	1 0.0000	0.0000 0

Solvent Extraction Flowsheet

Solvent Extraction Input Summary

;Input Summary created by Aspen Plus Rel. 34.0 at 02:52:28 Tue Apr 12, 2016 ;Directory \\base\root\homedir Filename C:\Users\jmorales\AppData\Local\Temp\~apba02.txt

DYNAMICS

DYNAMICS RESULTS=ON

IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar'

DEF-STREAMS MIXCISLD ALL

SIM-OPTIONS MASS-BAL-CHE=YES NPHASE=3

MODEL-OPTION

DATABANKS 'APV88 PURE32' / 'APV88 SOLIDS' / 'APV88 BIODIESEL' & / 'NISTV88 NIST-TRC' / 'APV88 EOS-LIT' / & 'APV88 NRTL-SAC' / 'APV88 INORGANIC' / NOASPENPCD

PROP-SOURCES 'APV88 PURE32' / 'APV88 SOLIDS' / 'APV88 BIODIESEL' & / 'NISTV88 NIST-TRC' / 'APV88 EOS-LIT' / & 'APV88 NRTL-SAC' / 'APV88 INORGANIC'

COMPONENTS POS C55H104O6-3 / SOS C57H108O6-3 / POP C53H100O6-5 / PROPANE C3H8 / WATER H2O / POWDER SN / TAG-PLIS C55H102O6-3 / TAG-PLIP C53H98O6-5 / TAG-PPS C53H102O6-13 / TAG-PSS C55H106O6-11 / TAG-POS2 C55H104O6-3 / TAG-POP2 C53H100O6-5 / TAG-SOS2 C57H108O6-3 / BUTANE C4H10-1 / POTAS-01 K2CO3

CISOLID-COMPS POWDER POTAS-01

SOLVE

RUN-MODE MODE=SIM

FLOWSHEET

BLOCK B9 IN=S9 OUT=S10 BLOCK B2 IN=S1 OUT=S0 S3 BLOCK B4 IN=S4 S13 OUT=S00 S5 BLOCK B1 IN=LIQUOR OUT=S1 BLOCK B3 IN=S3 OUT=S4 BLOCK B5 IN=S5 OUT=S6 BLOCK CFUGE IN=S6 OUT=S7 S11 BLOCK B22 IN=S11 OUT=TOFLASH BLOCK B23 IN=S7 S24 OUT=S28 S27 BLOCK B25 IN=S27 OUT=S9 S38 BLOCK B8 IN=S38 OUT=LOWFAT S34 BLOCK B15 IN=S12 OUT=NOFAT S36 BLOCK B20 IN=S36 OUT=S37 BLOCK B6 IN=S14 S34 OUT=S2 S12

PROPERTIES NRTL-RK

PROPERTIES NRTL / PENG-ROB / UNIF-LL / UNIFAC

STRUCTURES

STRUCTURES POP C1 O2 S / O2 C3 S / C3 O4 D / C3 C5 & S / C5 C6 S / C6 C7 S / C7 C8 S / C8 C9 S / & C9 C10 S / C10 C11 S / C11 C12 S / C12 C13 S / & C13 C14 S / C14 C15 S / C15 C16 S / C16 C17 S / & C18 C19 S / C1 C20 S / C20 O21 S / O21 C22 S / & C22 O23 D / C24 C25 S / C25 C26 S / C26 C27 S / & C27 C28 S / C28 C29 S / C29 C30 S / C30 C31 D / & C31 C32 S / C32 C33 S / C33 C34 S / C34 C35 S / & C35 C36 S / C36 C37 S / C37 C38 S / C38 C39 S / & C20 C40 S / C40 O41 S / O41 C42 S / C42 O43 D / & C42 C44 S / C44 C45 S / C45 C46 S / C46 C47 S / & C47 C48 S / C48 C49 S / C49 C50 S / C50 C51 S / & C51 C52 S / C52 C53 S / C53 C54 S / C54 C55 S / & C55 C56 S / C56 C57 S / C57 C58 S STRUCTURES POS C1 O2 S / O2 C3 S / C3 O4 D / C3 C5 & S / C5 C6 S / C6 C7 S / C7 C8 S / C8 C9 S / & C9 C10 S / C10 C11 S / C11 C12 S / C12 C13 S / & C13 C14 S / C14 C15 S / C15 C16 S / C16 C17 S / & C18 C19 S / C1 C20 S / C20 O21 S / O21 C22 S / & C22 O23 D / C24 C25 S / C25 C26 S / C26 C27 S / & C27 C28 S / C28 C29 S / C29 C30 S / C30 C31 D / & C31 C32 S / C32 C33 S / C33 C34 S / C34 C35 S / & C35 C36 S / C36 C37 S / C37 C38 S / C38 C39 S / &

C20 C40 S / C40 O41 S / O41 C42 S / C42 O43 D / & C42 C44 S / C44 C45 S / C45 C46 S / C46 C47 S / & C47 C48 S / C48 C49 S / C49 C50 S / C50 C51 S / & C51 C52 S / C52 C53 S / C53 C54 S / C54 C55 S / & C55 C56 S / C56 C57 S / C57 C58 S / C58 C59 S / & C59 C60 S STRUCTURES SOS C1 O2 S / O2 C3 S / C3 O4 D / C3 C5 & S / C5 C6 S / C6 C7 S / C7 C8 S / C8 C9 S / & C9 C10 S / C10 C11 S / C11 C12 S / C12 C13 S / & C13 C14 S / C14 C15 S / C15 C16 S / C16 C17 S / & C17 C18 S / C18 C19 S / C19 C20 S / C20 C21 S / & C1 C22 S / C22 O23 S / O23 C24 S / C24 O25 D / & C24 C26 S / C26 C27 S / C27 C28 S / C28 C29 S / & C29 C30 S / C30 C31 S / C31 C32 S / C32 C33 S / & C33 C34 D / C34 C35 S / C35 C36 S / C36 C37 S / & C37 C38 S / C38 C39 S / C39 C40 S / C40 C41 S / & C41 C42 S / C22 C43 S / C43 O44 S / O44 C45 S / & C45 O46 D / C45 C47 S / C47 C48 S / C48 C49 S / & C49 C50 S / C50 C51 S / C51 C52 S / C52 C53 S / & C53 C54 S / C54 C55 S / C55 C56 S / C56 C57 S / & C57 C58 S / C58 C59 S / C59 C60 S / C60 C61 S / & C61 C62 S / C62 C63 S ESTIMATE ALL ZC SOS DEFINITI ZC POS DEFINITI ZC POP DEFINITI VL POP LEBAS TLOWER=0. TUPPER=1000. VL POS LEBAS TLOWER=0. TUPPER=1000. VL SOS LEBAS TLOWER=0. TUPPER=1000. NRTL POP WATER UNIFAC NRTL POS WATER UNIFAC NRTL SOS WATER UNIFAC NRTL POP PROPANE UNIFAC NRTL POS PROPANE UNIFAC NRTL SOS PROPANE UNIFAC NRTL PROPANE WATER UNIFAC NRTL TAG-POS2 WATER UNIFAC NRTL TAG-POP2 WATER UNIFAC NRTL TAG-SOS2 WATER UNIFAC NRTL POP BUTANE UNIFAC NRTL POS BUTANE UNIFAC NRTL SOS BUTANE UNIFAC NRTL BUTANE WATER UNIFAC

PROP-DATA PCES-1

IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar'

PROP-LIST VB / VLSTD PVAL POS 1246.600000 / 673.1506610 PVAL SOS 1298.400000 / 699.1022110 PVAL POP 1202.200000 / 651.7593830 PVAL TAG-PLIS 660.3451080 / 311.6667970 PVAL TAG-PLIP 635.6195440 / 301.2137180 PVAL TAG-PPS 637.9978740 / 303.6761370 PVAL TAG-PSS 662.8517900 / 314.1849610 PVAL TAG-POS2 661.5363710 / 312.4879070 PVAL TAG-POP2 636.8003180 / 302.0326180 PVAL TAG-SOS2 682.7863210 / 320.7959360 PROP-LIST VLSTD / DHVLB PVAL POWDER 0.0 / 1.82873667E+5 PROP-LIST VLSTD PVAL POTAS-01 298.9063450 **PROP-DATA REVIEW-1** IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST DGFORM / RKTZRA / ZC PVAL POS -1.3212955E+5 / .1556661540 / .1369844490 PVAL SOS -1.0133515E+5 / .1554476570 / .1359747040 PVAL POP -1.3615171E+5 / .1565208420 / .1381455880 PROP-LIST RKTZRA PVAL POTAS-01 .2918596200 PROP-LIST RKTZRA / ZC PVAL TAG-PLIS .1037800070 / .1363626340 PVAL TAG-PLIP .1042286230 / .1374945390 PVAL TAG-PPS .1050448290 / .1394666880 PVAL TAG-PSS .1045672400 / .1382323210 PVAL TAG-POS2 .1039441350 / .1369844490 PVAL TAG-POP2 .1043993550 / .1381455880 PVAL TAG-SOS2 .1031860170 / .1359747040 PROP-LIST TC PVAL POWDER 3808.986400 PROP-DATA TDE-1 IN-UNITS MET PRESSURE='N/sqm' TEMPERATURE=K DELTA-T=C & MOLE-ENTHALP='J/kmol' MOLE-VOLUME='cum/kmol' & DIPOLEMOMENT='(J*cum)**.5' PDROP=bar INVERSE-PRES='1/bar' PROP-LIST OMEGA / ZC / VC / PC / TC / MUP / DGFORM / & DHFORM / MW / TB / FREEZEPT / SG / VLSTD PVAL PROPANE 0.15232 / 0.27656 / 0.19986 / 4256007.6 / & 369.922 / 0 / -24071479.5 / -104514034.8 / 44.097 / & 231.063 / 85.51 / 0.507404 / 0.086997

PROP-DATA USRDEF

IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar &

INVERSE-PRES='1/bar' PROP-LIST SG / DHFORM / DGFORM PVAL POS .855 / -510968 / -132130 PROP-LIST SG PVAL SOS 0.855 PVAL POP 0.855

;TDE Aly-Lee ideal gas Cp

; "Heat capacity (Ideal gas)"

PROP-DATA CPIALE-1

IN-UNITS MET MOLE-HEAT-CA='J/kmol-K' PRESSURE=bar & TEMPERATURE=K DELTA-T=C PDROP=bar INVERSE-PRES='1/bar' PROP-LIST CPIALEE PVAL PROPANE 34416.46 185574.7 968.5094 60044.63 320.9865 & 0 8.31447 50 1500

;TDE equation for liquid Cp

; "Heat capacity (Liquid vs. Gas)"

PROP-DATA CPLTDE-1

IN-UNITS MET MOLE-HEAT-CA='J/kmol-K' PRESSURE=bar & TEMPERATURE=K DELTA-T=C PDROP=bar INVERSE-PRES='1/bar' PROP-LIST CPLTDECS PVAL PROPANE 79345.31 39.69736 -0.1860955 0.001270954 & 1763.136 369.9221 4 81.226 362.5237

;ThermoML polynomials for solid Cp

; "Heat capacity (Crystal 1 vs. Gas)"

PROP-DATA CPSTML-1 IN-UNITS MET MOLE-HEAT-CA='J/kmol-K' PRESSURE=bar & TEMPERATURE=K DELTA-T=C PDROP=bar INVERSE-PRES='1/bar' PROP-LIST CPSTMLPO PVAL PROPANE -17141.72 1318.497 -7.537733 0.02007234 0 5 & 20 85.4

;TDE Watson equation for heat of vaporization

; "Enthalpy of vaporization or sublimation (Liquid vs. Gas)"

PROP-DATA DHVLTD-1

IN-UNITS MET PRESSURE=bar TEMPERATURE=K DELTA-T=C & MOLE-ENTHALP='J/kmol' PDROP=bar INVERSE-PRES='1/bar'

PROP-LIST DHVLTDEW

PVAL PROPANE 17.19878 0.8109019 -0.8060312 0.3963184 & 369.9221 4 81.226 369.9221

PROP-DATA DHVLWT-1

IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST DHVLWT PVAL POWDER 1.82873667E+5 2599.850000 .3800000000 0.0 & 2599.850000

;TDE expansion for liquid molar density

; "Density (Liquid vs. Gas)"

PROP-DATA DNLEXS-1

IN-UNITS MET PRESSURE=bar TEMPERATURE=K DELTA-T=C & MOLE-DENSITY='kmol/cum' PDROP=bar INVERSE-PRES='1/bar' PROP-LIST DNLEXSAT PVAL PROPANE 5.003515 9.978195 2.82091 -0.1586089 & 0.9601595 0 0 369.9221 6 81.226 369.9221

PROP-DATA KLDIP-1

IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST KLDIP PVAL POS -3.917742515 .0278008098 -7.2976298E-5 & 8.49559300E-8 -3.716939E-11 534.1885140 655.0009430 PVAL SOS -3.954762758 .0277353126 -7.1975769E-5 & 8.28421805E-8 -3.583321E-11 540.5892920 661.9410630 PVAL POP -3.900779259 .0280167558 -7.4416988E-5 & 8.76583747E-8 -3.880642E-11 527.6972860 647.7813660 PVAL POWDER -1.689294218 2.45223901E-3 -1.2410738E-6 & 2.7549006E-10 -2.301472E-14 2599.850000 3768.165040 PVAL TAG-PLIS -3.936878875 .0279370930 -7.3338798E-5 & 8.53842247E-8 -3.735940E-11 534.1885140 654.8610670 PVAL TAG-PLIP -3.909101280 .0280809914 -7.4600288E-5 & 8.78896324E-8 - 3.891569E-11 527.6972860 647.6357410 PVAL TAG-PPS -3.831512574 .0275146423 -7.3055004E-5 & 8.60171357E-8 -3.806405E-11 527.6972860 648.4773570 PVAL TAG-PSS -3.859238478 .0273784985 -7.1836171E-5 & 8.35889029E-8 -3.655425E-11 534.1885140 655.6695200 PVAL TAG-POS2 -3.917742515 .0278008098 -7.2976298E-5 & 8.49559300E-8 -3.716939E-11 534.1885140 655.0009430 PVAL TAG-POP2 -3.900779259 .0280167558 -7.4416988E-5 & 8.76583747E-8 -3.880642E-11 527.6972860 647.7813660 PVAL TAG-SOS2 -3.954762758 .0277353126 -7.1975769E-5 & 8.28421805E-8 -3.583321E-11 540.5892920 661.9410630

;ThermoML polynomials for liquid thermal conductivity

; "Thermal conductivity (Liquid vs. Gas)"

PROP-DATA KLTMLP-1 IN-UNITS MET PRESSURE=bar TEMPERATURE=K & THERMAL-COND='Watt/m-K' DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST KLTMLPO PVAL PROPANE 0.2112341 0.0003791233 -0.0000049826 & 0.0000000078865 4 93.158 348.1805

;ThermoML polynomials for vapor thermal conductivity

; "Thermal conductivity (Gas)"

PROP-DATA KVTMLP-1

IN-UNITS MET PRESSURE=bar TEMPERATURE=K & THERMAL-COND='Watt/m-K' DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST KVTMLPO PVAL PROPANE 0.003479318 -0.00002229721 0.0000002664949 & -9.226184E-11 4 170.524 810.1497

PROP-DATA MULAND-1 IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST MULAND PVAL POTAS-01 81.17750888 -12127.32210 -10.25255770 & 1126.850000 1706.850000

;PPDS9 equation for liquid viscosity

; "Viscosity (Liquid vs. Gas)"

PROP-DATA MULPPD-1

IN-UNITS MET PRESSURE=bar TEMPERATURE=K VISCOSITY='N-sec/sqm' & DELTA-T=C PDROP=bar INVERSE-PRES='1/bar' PROP-LIST MULPPDS9 PVAL PROPANE 0.0000105115 2.950715 0.01638895 401.5804 & 56.94282 83.5 369.9221

PROP-DATA MUVDIP-1 IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST MUVDIP PVAL POS 8.67415723E-6 .9831844010 0.0 0.0 0.0 & 6.850000000 826.8500000 PVAL SOS 8.52443691E-6 .9836995870 0.0 0.0 0.0 & 6.850000000 826.8500000 PVAL POP 8.86181224E-6 .9826356120 0.0 0.0 0.0 & 6.850000000 826.8500000

;ThermoML polynomials for vapor viscosity

; "Viscosity (Gas)"

PROP-DATA MUVTML-1

IN-UNITS MET PRESSURE=bar TEMPERATURE=K VISCOSITY='N-sec/sqm' & DELTA-T=C PDROP=bar INVERSE-PRES='1/bar'
PROP-LIST MUVTMLPO
PVAL PROPANE 0.00000100184 0.0000000149211 4.638362E-11 & -5.472325E-14 4 240 548.7791

PROP-DATA SIGDIP-1

IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST SIGDIP PVAL POS 16.02907920 1.222222220 1.98528163E-8 & -2.1849025E-8 8.13483157E-9 534.1885140 645.6256810 PVAL SOS 15.21267550 1.222222220 -7.3253955E-9 & 8.06112577E-9 -3.0009643E-9 540.5892920 652.4956980 PVAL POP 16.94811190 1.222222210 4.52918561E-8 & -4.9850805E-8 1.85629697E-8 527.6972860 638.4790290 PVAL TAG-PLIS 16.03646570 1.222222200 5.91071476E-8 & -6.5049440E-8 2.42183902E-8 534.1885140 645.4872180 PVAL TAG-PLIP 16.95634330 1.222222210 2.87937828E-8 & -3.1691854E-8 1.18011031E-8 527.6972860 638.3348750 PVAL TAG-PPS 17.03143550 1.222222230 -2.2198724E-8 & 2.44392755E-8 -9.1041961E-9 527.6972860 639.1679900 PVAL TAG-PSS 16.10597110 1.222222220 1.94303038E-8 & -2.1388649E-8 7.96601941E-9 534.1885140 646.2875040 PVAL TAG-POS2 16.02907920 1.222222220 1.98528163E-8 & -2.1849025E-8 8.13483157E-9 534.1885140 645.6256810 PVAL TAG-POP2 16.94811190 1.222222210 4.52918561E-8 & -4.9850805E-8 1.85629697E-8 527.6972860 638.4790290 PVAL TAG-SOS2 15.21267550 1.222222220 -7.3253955E-9 & 8.06112577E-9 -3.0009643E-9 540.5892920 652.4956980

;TDE Watson equation for liquid-gas surface tension

; "Surface tension (Liquid vs. Gas)"

```
PROP-DATA SIGTDE-1
IN-UNITS MET PRESSURE=bar SURFACE-TENS='N/m' TEMPERATURE=K &
```

DELTA-T=C PDROP=bar INVERSE-PRES='1/bar' **PROP-LIST SIGTDEW** PVAL PROPANE -3.073397 0.9198636 0.5972451 -0.7755341 & 369.9221 4 81.226 369.9221 ;TDE Wagner 25 liquid vapor pressure ; "Vapor pressure (Liquid vs. Gas)" **PROP-DATA WAGN25-1** IN-UNITS MET PRESSURE='N/sqm' TEMPERATURE=K DELTA-T=C & PDROP=bar INVERSE-PRES='1/bar' **PROP-LIST WAGNER25** PVAL PROPANE -6.791833 1.628582 -1.67124 -2.052027 & 15.26384 369.9221 81.226 369.9221 PROP-DATA NRTL-1 IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' **PROP-LIST NRTL** 25.0000000 25.0000000 BPVAL PROPANE POS 0.0 -2959.132310 .300000000 0.0 0.0 & 0.0 25.0000000 25.0000000 BPVAL POS WATER 0.0 715.6057000 .3000000000 0.0 0.0 0.0 & 25.0000000 25.0000000 BPVAL WATER POS 0.0 15835.11090 .300000000 0.0 0.0 0.0 & 25.0000000 25.0000000 25.0000000 25.0000000 BPVAL PROPANE SOS 0.0 -3107.795450 .3000000000 0.0 0.0 & 0.0 25.0000000 25.0000000 BPVAL SOS WATER 0.0 720.0897280 .3000000000 0.0 0.0 0.0 & 25.0000000 25.0000000 BPVAL WATER SOS 0.0 16457.14100 .3000000000 0.0 0.0 0.0 & 25.0000000 25.0000000 25.0000000 25.0000000 BPVAL PROPANE POP 0.0 -2810.251010 .3000000000 0.0 0.0 & 0.0 25.0000000 25.0000000 BPVAL POP WATER 0.0 710.8481750 .300000000 0.0 0.0 0.0 & 25.0000000 25.0000000 BPVAL WATER POP 0.0 15213.34970 .300000000 0.0 0.0 0.0 &

25.00000000 25.00000000 DDVAL DRODANE WATER 0.0.1800.070780. 200000000 0.0.0.0

BPVAL PROPANE WATER 0.0 1899.070780 .300000000 0.0 0.0 & 0.0 25.00000000 25.00000000

BPVAL WATER PROPANE 0.0 1384.028300 .300000000 0.0 0.0 & 0.0 25.00000000 25.00000000

BPVAL WATER TAG-POS2 0.0 15835.11090 .300000000 0.0 0.0 & 0.0 25.0000000 25.0000000 BPVAL TAG-POS2 WATER 0.0 715.6056630 .300000000 0.0 0.0 & 0.0 25.0000000 25.0000000 BPVAL WATER TAG-POP2 0.0 15213.34970 .3000000000 0.0 0.0 & 0.0 25.0000000 25.0000000 BPVAL TAG-POP2 WATER 0.0 710.8481100 .300000000 0.0 0.0 & 0.0 25.0000000 25.0000000 BPVAL WATER TAG-SOS2 0.0 16457.14100 .3000000000 0.0 0.0 & 0.0 25.0000000 25.0000000 BPVAL TAG-SOS2 WATER 0.0 720.0897060 .3000000000 0.0 0.0 & 0.0 25.0000000 25.0000000 BPVAL POS BUTANE 0.0 18411.94060 .300000000 0.0 0.0 0.0 & 25.0000000 25.0000000 BPVAL BUTANE POS 0.0 -2155.138420 .300000000 0.0 0.0 0.0 & 25.0000000 25.0000000 BPVAL SOS BUTANE 0.0 21952.32180 .300000000 0.0 0.0 0.0 & 25.0000000 25.0000000 BPVAL BUTANE SOS 0.0 -2273.541080 .3000000000 0.0 0.0 0.0 & 25.0000000 25.0000000 BPVAL POP BUTANE 0.0 15382.04740 .3000000000 0.0 0.0 0.0 & 25.0000000 25.0000000 BPVAL BUTANE POP 0.0 -2036.520180 .300000000 0.0 0.0 0.0 & 25.00000000 25.00000000 BPVAL WATER BUTANE 0.0 1763.960710 .300000000 0.0 0.0 & 0.0 25.0000000 25.0000000 BPVAL BUTANE WATER 0.0 1916.981850 .300000000 0.0 0.0 & 0.0 25.0000000 25.0000000 **PROP-DATA PRKBV-1** IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' PROP-LIST PRKBV BPVAL PROPANE BUTANE 3.30000000E-3 0.0 0.0 -273.1500000 & 726.8500000 BPVAL BUTANE PROPANE 3.30000000E-3 0.0 0.0 -273.1500000 &

726.8500000

PROP-SET PS-5 TEMP KVL GAMMA BETA MASSFRAC SUBSTREAM=MIXED & COMPS=POS WATER PHASE=V L1 L2

PROP-SET PS-6 PL UNITS='psia' SUBSTREAM=MIXED COMPS=POS & TAG-POS2 TAG-POP2 POP PHASE=L

PROP-SET PS-7 RHO UNITS='gm/ml' SUBSTREAM=MIXED COMPS=POS & TAG-POS2 POP TAG-POP2 SOS TAG-SOS2 PHASE=L

PROP-SET PS-8 CP UNITS='Btu/lb-R' SUBSTREAM=MIXED COMPS=POS &

TAG-POS2 POP TAG-POP2 SOS TAG-SOS2 PHASE=L

PROP-SET PS-9 PL UNITS='bar' SUBSTREAM=MIXED COMPS=PROPANE & PHASE=L

STREAM LIQUOR

SUBSTREAM MIXED TEMP=95. PRES=1.013250000 MASS-FLOW=8600. MASS-FRAC POS 0.2366 / SOS 0.1237 / POP 0.1775 / WATER & 0.0024 / POWDER 0.43 / POTAS-01 0.0298 SUBSTREAM CISOLID TEMP=30.00000000 PRES=1.013250000 & MOLE-FLOW=36758.22998 MASS-FRAC POWDER 0.533333

STREAM S10 SUBSTREAM MIXED TEMP=50. VFRAC=0.

STREAM S13

SUBSTREAM MIXED TEMP=50. VFRAC=0. MASS-FLOW=21500. MASS-FLOW BUTANE 1.

STREAM S14

SUBSTREAM MIXED TEMP=50. VFRAC=0. MASS-FLOW=490. MASS-FRAC BUTANE 1.

STREAM S24

SUBSTREAM MIXED TEMP=50. VFRAC=0. MASS-FLOW=5804. MASS-FRAC BUTANE 1.

BLOCK B8 FSPLIT FRAC LOWFAT 0.2

BLOCK B15 SEP

PARAM FRAC STREAM=NOFAT SUBSTREAM=MIXED COMPS=POS SOS POP & WATER POWDER BUTANE POTAS-01 FRACS=0.133 0.133 0.133 & 0.133 1. 0.133 1.

BLOCK B25 SEP

PARAM

FRAC STREAM=S38 SUBSTREAM=MIXED COMPS=POS SOS POP WATER & POWDER BUTANE POTAS-01 FRACS=0.31 0.31 0.31 0.31 1. & 0.31 1.

BLOCK CFUGE SEP

PARAM PRES=0. NPHASE=1 PHASE=L MAXIT=100 FRAC STREAM=S7 SUBSTREAM=MIXED COMPS=POS SOS POP WATER & POWDER BUTANE POTAS-01 FRACS=0.1 0.1 0.1 0.1 1. 0.1 & 1. FLASH-SPECS S7 KODE=NOFLASH BLOCK-OPTION FREE-WATER=NO

BLOCK B2 FLASH2 PARAM TEMP=50. PRES=2.

BLOCK B4 FLASH2 PARAM TEMP=50. VFRAC=0.

BLOCK B6 FLASH2 PARAM TEMP=50. PRES=6.

BLOCK B23 FLASH2 PARAM TEMP=50. PRES=6.

BLOCK B1 PUMP PARAM PRES=2.

BLOCK B3 PUMP PARAM PRES=2.

BLOCK B5 PUMP PARAM PRES=6. EFF=0.75

BLOCK B9 PUMP PARAM PRES=6. EFF=0.75

BLOCK B20 PUMP PARAM PRES=6.

BLOCK B22 PUMP PARAM PRES=6. EFF=0.75

EO-CONV-OPTI

```
CALCULATOR C-1
DEFINE TEMPPUMP STREAM-VAR STREAM=S1 SUBSTREAM=MIXED &
VARIABLE=TEMP UOM="C"
F TEMPPUMP=95
F
WRITE-VARS TEMPPUMP
```

STREAM-REPOR MOLEFLOW MASSFLOW MASSFRAC

PROPERTY-REP PCES PARAM-PLUS

PROP-TABLE BINRY-1 FLASHCURVE

PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 & TRUE-COMPS=YES MASS-FLOW POS 1 / WATER 1 STATE VFRAC=0.0 VARY PRES RANGE LIST=1.013250000 VARY MASSFRAC COMP=POS RANGE LOWER=0.0 UPPER=1.0 INCR=0.005 PARAM NPHASE=3 TABULATE PROPERTIES=PS-5 **PROP-TABLE PURE-1 PROPS** IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' MOLE-FLOW POS 1 / TAG-POS2 1 / TAG-POP2 1 / POP 1 PROPERTIES NRTL-RK FREE-WATER=STEAM-TA SOLU-WATER=3 & TRUE-COMPS=YES VARY TEMP RANGE LOWER=0 UPPER=200. INCR=5. VARY PRES RANGE LIST=1.013250000 PARAM TABULATE PROPERTIES=PS-6 **PROP-TABLE PURE-2 PROPS** IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' MOLE-FLOW POS 1 / TAG-POS2 1 / POP 1 / TAG-POP2 1 / & SOS 1 / TAG-SOS2 1 PROPERTIES UNIFAC FREE-WATER=STEAM-TA SOLU-WATER=3 & TRUE-COMPS=YES VARY TEMP RANGE LOWER=0 UPPER=250. INCR=5. VARY PRES RANGE LIST=1.013250000 PARAM TABULATE PROPERTIES=PS-7 **PROP-TABLE PURE-3 PROPS** IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' MOLE-FLOW POS 1 / TAG-POS2 1 / POP 1 / TAG-POP2 1 / & SOS 1 / TAG-SOS2 1 PROPERTIES UNIFAC FREE-WATER=STEAM-TA SOLU-WATER=3 & TRUE-COMPS=YES VARY TEMP RANGE LOWER=0 UPPER=150. INCR=5. VARY PRES

RANGE LIST=1.013250000 PARAM TABULATE PROPERTIES=PS-8

PROP-TABLE PURE-4 PROPS

IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' MOLE-FLOW PROPANE 1 PROPERTIES NRTL-RK FREE-WATER=STEAM-TA SOLU-WATER=3 & TRUE-COMPS=YES VARY TEMP RANGE LOWER=0 UPPER=100.0000000 NPOINT= 50 VARY PRES RANGE LIST=1.013250000 PARAM TABULATE PROPERTIES=PS-9

Solvent Extraction Block Report

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA *** OUTLET PRESSURE BAR 2.00000 DRIVER EFFICIENCY 1.00000

FLASH SPECIFICATIONS:3 PHASE FLASHMAXIMUM NUMBER OF ITERATIONS30TOLERANCE0.000100000

*** RESULTS ***	
VOLUMETRIC FLOW RATE L/MIN	91.4395
PRESSURE CHANGE BAR	0.98675
NPSH AVAILABLE M-KGF/KG	9.25127
FLUID POWER KW	0.15038
BRAKE POWER KW	0.45987
ELECTRICITY KW	0.45987
PUMP EFFICIENCY USED	0.32700
NET WORK REQUIRED KW	0.45987
HEAD DEVELOPED M-KGF/KG	6.41908

BLOCK: B2 MODEL: FLASH2

INLET STREAM: S1 OUTLET VAPOR STREAM: S0 OUTLET LIQUID STREAM: S3 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(KMOL/HR)
 36797.8
 36797.8
 0.00000

 MASS(KG/HR)
 0.437217E+07
 0.437217E+07
 0.00000

 ENTHALPY(CAL/SEC)
 -638554.
 690985.
 -1.92412

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA *** THREE PHASE TP FLASH SPECIFIED TEMPERATURE C SPECIFIED PRESSURE BAR MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

50.0000 2.00000 30 0.000100000

*** RESULTS *** OUTLET TEMPERATURE C OUTLET PRESSURE BAR HEAT DUTY CAL/SEC VAPOR FRACTION 1ST LIQUID/TOTAL LIQUID

50.000 2.0000 0.13295E+07 0.0000 1.0000

V-L1-L2 PHASE EQUILIBRIUM :

COMPF(I)X1(I)X2(I)Y(I)K1(I)K2(I)POS0.3610.3610.3610.648E-150.600E-160.600E-16SOS0.1830.1830.1830.156E-150.285E-160.285E-16POP0.2800.2800.2800.106E-140.126E-150.126E-15WATER0.1750.1750.1751.000.1910.191

BLOCK: B3 MODEL: PUMP

INLET STREAM: S3 OUTLET STREAM: S4 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

 *** MASS AND ENERGY BALANCE ***

 IN OUT RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(KMOL/HR)
 36797.8
 36797.8
 0.00000

 MASS(KG/HR)
 0.437217E+07
 0.437217E+07
 0.00000

 ENTHALPY(CAL/SEC)
 690985.
 691254.
 -0.389094E-03

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA *** OUTLET PRESSURE BAR 4.42000 DRIVER EFFICIENCY 1.00000

FLASH SPECIFICATIONS:3 PHASE FLASHMAXIMUM NUMBER OF ITERATIONS30TOLERANCE0.000100000

*** RESULTS *** VOLUMETRIC FLOW RATE L/MIN 91.4395 PRESSURE CHANGE BAR 2.42000 NPSH AVAILABLE M-KGF/KG 18.8838 FLUID POWER KW 0.36881 BRAKE POWER KW 1.12784 ELECTRICITY KW 1.12784 PUMP EFFICIENCY USED 0.32700 NET WORK REQUIRED KW 1.12784 HEAD DEVELOPED M-KGF/KG 15.7428

BLOCK: B4 MODEL: FLASH2

INLET STREAMS: S4 S13 OUTLET VAPOR STREAM: S00 **OUTLET LIQUID STREAM: S5** PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

*** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE MOLE(KMOL/HR) 37167.7 37167.7 0.195760E-15 MASS(KG/HR) 0.439367E+07 0.439367E+07 0.00000 ENTHALPY(CAL/SEC) -0.282906E+07 -0.283553E+07 0.228183E-02

*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR

*** INPUT DATA *** THREE PHASE TV FLASH SPECIFIED TEMPERATURE C 50.0000 VAPOR FRACTION 0.0 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000

*** RESULTS *** OUTLET TEMPERATURE C OUTLET PRESSURE BAR HEAT DUTY CAL/SEC -6470.2 VAPOR FRACTION 0.0000 **1ST LIQUID/TOTAL LIQUID**

V-L1-L2 PHASE EQUILIBRIUM :

COMP F(I) X1(I) X2(I) Y(I) K1(I) K2(I) POS 0.627E-02 0.629E-02 0.716E-03 0.660E-21 0.105E-18 0.922E-18 SOS 0.318E-02 0.318E-02 0.371E-03 0.114E-21 0.357E-19 0.307E-18 POP 0.487E-02 0.487E-02 0.543E-03 0.151E-20 0.309E-18 0.277E-17 0.304E-02 0.116E-02 0.996 0.256E-01 22.1 0.257E-01 WATER BUTANE 0.983 0.985 0.247E-02 0.974 0.990 394.

50.000

5.0233

0.99810

BLOCK: B5 MODEL: PUMP

S5 INLET STREAM: **OUTLET STREAM:** S6 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(KMOL/HR)
 37167.7
 37167.7
 0.00000

 MASS(KG/HR)
 0.439367E+07
 0.439367E+07
 0.00000

 ENTHALPY(CAL/SEC)
 -0.283553E+07
 -0.282740E+07
 -0.286536E-02

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***OUTLET PRESSURE BAR20.0000DRIVER EFFICIENCY1.00000

FLASH SPECIFICATIONS:33 PHASE FLASH30MAXIMUM NUMBER OF ITERATIONS30TOLERANCE0.000100000

*** RESULTS *** VOLUMETRIC FLOW RATE L/MIN 866.334 PRESSURE CHANGE BAR 14.9767 NPSH AVAILABLE M-KGF/KG 0.0 FLUID POWER KW 21.6247 BRAKE POWER KW 34.0748 ELECTRICITY KW 34.0748 PUMP EFFICIENCY USED 0.63463 NET WORK REQUIRED KW 34.0748 HEAD DEVELOPED M-KGF/KG 263.734

BLOCK: B6 MODEL: FLASH2

INLET STREAMS: S14 S34 OUTLET VAPOR STREAM: S2 OUTLET LIQUID STREAM: S12 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 23.8486 23.8486 -0.148969E-15 MASS(KG/HR) 1810.02 1810.02 0.00000 ENTHALPY(CAL/SEC) -198613. -198802. 0.951830E-03

*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR

*** INPUT DATA *** THREE PHASE TV FLASH SPECIFIED TEMPERATURE C VAPOR FRACTION 0.0 MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

*** RESULTS *** OUTLET TEMPERATURE C OUTLET PRESSURE BAR HEAT DUTY -189.23 CAL/SEC VAPOR FRACTION 0.0000 1ST LIQUID/TOTAL LIQUID

V-L1-L2 PHASE EQUILIBRIUM :

COMP F(I)X1(I) X2(I) Y(I) K1(I) K2(I) 0.822E-03 0.830E-03 0.178E-03 0.864E-22 0.104E-18 0.484E-18 POS 0.416E-03 0.420E-03 0.911E-04 0.149E-22 0.355E-19 0.164E-18 SOS POP 0.637E-03 0.643E-03 0.137E-03 0.197E-21 0.306E-18 0.144E-17 WATER 0.133E-01 0.100E-02 0.998 0.253E-01 25.2 0.253E-01 BUTANE 0.985 0.997 0.180E-02 0.975 0.978 540.

50.0000

50.000

5.0954

0.98768

0.000100000

30

BLOCK: B7 MODEL: PUMP

_____ INLET STREAM:

S27 OUTLET STREAM: **S**8

PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

*** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.**

TOTAL BALANCE MOLE(KMOL/HR) 172.111 172.111 0.00000 MASS(KG/HR) 12424.8 12424.8 0.00000 ENTHALPY(CAL/SEC) -0.155045E+07 -0.154748E+07 -0.191849E-02

*** CO2 EQUIVALENT SUMMARY *** 0.00000 FEED STREAMS CO2E KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR

TOTAL CO2E PRODUCTION 0.00000 KG/HR

*** INPUT DATA *** OUTLET PRESSURE BAR 18.2000 DRIVER EFFICIENCY 1.00000

FLASH SPECIFICATIONS:33 PHASE FLASH30MAXIMUM NUMBER OF ITERATIONS30TOLERANCE0.000100000

*** RESULTS ***	
VOLUMETRIC FLOW RATE L/MIN	282.840
PRESSURE CHANGE BAR	13.1162
NPSH AVAILABLE M-KGF/KG	0.0
FLUID POWER KW	6.18296
BRAKE POWER KW	12.4496
ELECTRICITY KW	12.4496
PUMP EFFICIENCY USED	0.49664
NET WORK REQUIRED KW	12.4496
HEAD DEVELOPED M-KGF/KG	182.679

BLOCK: B8 MODEL: FSPLIT

INLET STREAM: S38 OUTLET STREAMS: LOWFAT S34 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE

 MOLE(KMOL/HR)
 75.5395
 75.5395
 0.00000

 MASS(KG/HR)
 6509.88
 6509.88
 0.139710E-15

 ENTHALPY(CAL/SEC)
 -577144.
 -577144.
 0.00000

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

FRACTION OF FLOW STRM=LOWFAT FRAC= 0.80000

*** RESULTS ***

STREAM= LOWFAT SPLIT= 0.80000 KEY= 0 STREAM-ORDER= 1
S34 0.20000 0 2
BLOCK: B9 MODEL: PUMP
INLET STREAM: S9
OUTLET STREAM: S9 OUTLET STREAM: S10
PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG
TROTERT OF HON SET. MRTE-RR RENON (MRTE)/ REDEICH-RWONG
*** MASS AND ENERGY BALANCE ***
IN OUT RELATIVE DIFF.
TOTAL BALANCE
MOLE(KMOL/HR) 96.5719 96.5719 0.00000
MASS(KG/HR) 5914.91 5914.91 0.00000
ENTHALPY(CAL/SEC) -970424970435. 0.114287E-04
*** CO2 EQUIVALENT SUMMARY ***
FEED STREAMS CO2E 0.00000 KG/HR
PRODUCT STREAMS CO2E 0.00000 KG/HR
NET STREAMS CO2E PRODUCTION 0.00000 KG/HR
UTILITIES CO2E PRODUCTION 0.00000 KG/HR
TOTAL CO2E PRODUCTION 0.00000 KG/HR
*** INPUT DATA ***
OUTLET PRESSURE BAR 18.0000
PUMP EFFICIENCY 0.75000
DRIVER EFFICIENCY 1.00000
FLASH SPECIFICATIONS:
3 PHASE FLASH
MAXIMUM NUMBER OF ITERATIONS 30
TOLERANCE 0.000100000
*** RESULTS ***
VOLUMETRIC FLOW RATE L/MIN 186.389
PRESSURE CHANGE BAR -0.20000
NPSH AVAILABLE M-KGF/KG 251.253
FLUID POWER KW-0.062130BRAKE POWER KW-0.046597
ELECTRICITY KW -0.046597
PUMP EFFICIENCY USED 0.75000
NET WORK REQUIRED KW -0.046597
HEAD DEVELOPED M-KGF/KG -3.85596
BLOCK: B15 MODEL: SEP

INLET STREAM:S12OUTLET STREAMS:NOFATS36

PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 23.8486 23.8486 0.297939E-15 MASS(KG/HR) 1810.02 1810.02 0.00000 ENTHALPY(CAL/SEC) -198802. -198756. -0.229979E-03

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

FLASH SPECS FOR STREAM NOFAT THREE PHASE TP FLASH PRESSURE DROP BAR MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

0.0 30 0.000100000

FLASH SPECS FOR STREAM S36 THREE PHASE TP FLASH PRESSURE DROP BAR MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

0.0 30 0.000100000

FRACTION OF FEED

SUBSTREAM= MIXED STREAM= NOFAT CPT= POS FRACTION= 0.14110 SOS 0.14110 POP 0.14110 WATER 1.00000 POWDER 1.00000 BUTANE 0.14110 POTAS-01 1.00000

*** RESULTS ***

HEAT DUTY CAL/SEC 45.720

COMPONENT = POS STREAM SUBSTREAM SPLIT FRACTION

MIXED S36 0.85890 COMPONENT = SOSSTREAM SUBSTREAM SPLIT FRACTION NOFAT MIXED 0.14110 S36 MIXED 0.85890 COMPONENT = POPSTREAM SUBSTREAM SPLIT FRACTION NOFAT MIXED 0.14110 S36 0.85890 MIXED COMPONENT = WATERSTREAM SUBSTREAM SPLIT FRACTION NOFAT MIXED 1.00000 COMPONENT = POWDER STREAM SUBSTREAM SPLIT FRACTION NOFAT MIXED 1.00000 COMPONENT = BUTANE STREAM SUBSTREAM SPLIT FRACTION NOFAT MIXED 0.14110 S36 MIXED 0.85890 COMPONENT = POTAS-01 STREAM SUBSTREAM SPLIT FRACTION NOFAT MIXED 1.00000 BLOCK: B20 MODEL: PUMP -----**INLET STREAM:** S36 **OUTLET STREAM:** S37 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG *** MASS AND ENERGY BALANCE *** OUT IN **RELATIVE DIFF.** TOTAL BALANCE MOLE(KMOL/HR) 14.6170 14.6170 0.00000 871.812 MASS(KG/HR) 871.812 0.00000 ENTHALPY(CAL/SEC) -143035. -143002. -0.230646E-03 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR

0.14110

NOFAT MIXED

UTILITIES CO2E PRODUCTION 0.00000 KG/HR

TOTAL CO2E PRODUCTION 0.00000 KG/HR

*** INPUT DATA ***OUTLET PRESSURE BAR6.00000DRIVER EFFICIENCY1.00000

FLASH SPECIFICATIONS:33 PHASE FLASH30MAXIMUM NUMBER OF ITERATIONS30TOLERANCE0.000100000

*** RESULTS ***	
VOLUMETRIC FLOW RATE L/MIN	27.0861
PRESSURE CHANGE BAR	0.90462
NPSH AVAILABLE M-KGF/KG	2.69474
FLUID POWER KW	0.040838
BRAKE POWER KW	0.13812
ELECTRICITY KW	0.13812
PUMP EFFICIENCY USED	0.29566
NET WORK REQUIRED KW	0.13812
HEAD DEVELOPED M-KGF/KG	17.1957

BLOCK: B22 MODEL: PUMP

INLET STREAM: S11

OUTLET STREAM: TOFLASH

PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA *** OUTLET PRESSURE BAR 18.0000 DRIVER EFFICIENCY 1.00000

FLASH SPECIFICATIONS: 3 PHASE FLASH

MAXIMUM NUMBER OF ITERATIONS 30 TOLERANCE 0.000100000

*** RESULTS *** VOLUMETRIC FLOW RATE L/MIN 764.046 PRESSURE CHANGE BAR -2.00000 NPSH AVAILABLE M-KGF/KG 300.340 FLUID POWER KW -2.54682 BRAKE POWER KW -1.58064ELECTRICITY KW -1.58064 PUMP EFFICIENCY USED 0.62064 NET WORK REQUIRED KW -1.58064 HEAD DEVELOPED M-KGF/KG -39.7630

BLOCK: B23 MODEL: FLASH2

INLET STREAMS: S7 S24 OUTLET VAPOR STREAM: S28 OUTLET LIQUID STREAM: S27 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 172.111 0.00000 MASS(KG/HR) 12424.8 12424.8 0.00000 ENTHALPY(CAL/SEC) -955784. -0.155045E+07 0.383545

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***THREE PHASE TV FLASHSPECIFIED TEMPERATURE C50.0000VAPOR FRACTION0.0MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

*** RESULTS *** OUTLET TEMPERATURE C OUTLET PRESSURE BAR HEAT DUTY CAL/SEC VAPOR FRACTION 1ST LIQUID/TOTAL LIQUID

50.000 5.0838 0.0000 0.0000 0.99276

V-L1-L2 PHASE EQUILIBRIUM :

COMPF(I)X1(I)X2(I)Y(I)K1(I)K2(I)POS0.170E-020.171E-020.300E-030.178E-210.104E-180.595E-18SOS0.860E-030.865E-030.154E-030.307E-220.355E-190.200E-18POP0.132E-020.132E-020.229E-030.406E-210.306E-180.177E-17WATER0.824E-020.103E-020.9970.253E-0124.70.254E-01BUTANE0.9880.9950.193E-020.9750.980506.

BLOCK: B25 MODEL: SEP

INLET STREAM: S8 OUTLET STREAMS: S9 S38 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

FLASH SPECS FOR STREAM S9 THREE PHASE TP FLASH PRESSURE DROP BAR 0.0 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR STREAM S38 THREE PHASE TP FLASH PRESSURE DROP BAR 0.0 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FRACTION OF FEED

SUBSTREAM= MIXED STREAM= S38 CPT= POS FRACTION= 0.30000

SOS	0.30000
POP	0.30000
WATER	1.00000
POWDER	1.00000
BUTANE	0.30000
POTAS-01	1.00000

*** RESULTS ***

HEAT DUTY CAL/SEC -92.121

COMPONENT = POS

STRE	AM	SUB	STREAM	SPLIT FRACTION
S9	MĽ	XED	0.	70000
S38	MI	XED	0	.30000

COMPONENT = SOS

STRE	AM	SUBS	TREAM	SPLIT FRACTION
S9	MĽ	XED	0.7	70000
S38	MI	XED	0.	.30000

COMPONENT = POP

STREAMSUBSTREAMSPLIT FRACTIONS9MIXED0.70000S38MIXED0.30000

COMPONENT = WATER

STREAM SUBSTREAM SPLIT FRACTION S38 MIXED 1.00000

COMPONENT = POWDER

STREAM SUBSTREAM SPLIT FRACTION S38 MIXED 1.00000

COMPONENT = BUTANE

STREAMSUBSTREAMSPLIT FRACTIONS9MIXED0.70000S38MIXED0.30000

COMPONENT = POTAS-01

STREAM SUBSTREAM SPLIT FRACTION S38 MIXED 1.00000

BLOCK: CFUGE MODEL: SEP

INLET STREAM:S6OUTLET STREAMS:S7S11

PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

INLET PRESSURE DROP BAR 0.0

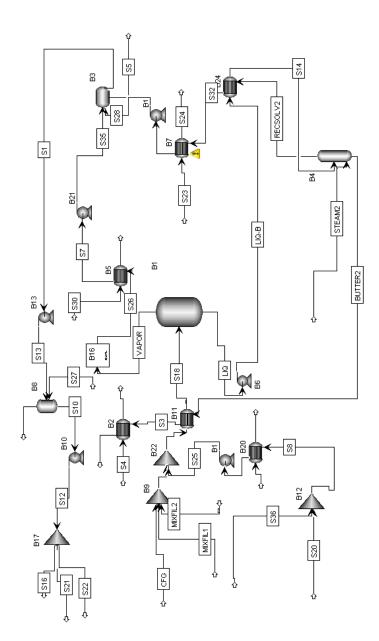
FLASH SPECS FOR STREAM S11 THREE PHASE TP FLASH PRESSURE DROP BAR MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

0.0 30 0.000100000

FRACTION OF FEED SUBSTREAM- MIXED

SUBSTREAM= MILLED						
STREAM= S7	CPT= POS	FRACTION=	0.100000			
SOS		0.100000				
POP		0.100000				
WATER		1.00000				
POWDER		1.00000				
BUTANE		0.100000				
PC	DTAS-01	1.00000				

*** RESULTS ***


HEAT DUTY CAL/SEC 0.18298E+36

COMPONENT = POSSTREAMSUBSTREAMSPLIT FRACTIONS7MIXED0.100000S11MIXED0.90000

COMPONENT = SOSSTREAM SUBSTREAM SPLIT FRACTION **S**7 MIXED 0.100000 S11 MIXED 0.90000 COMPONENT = POPSTREAM SUBSTREAM SPLIT FRACTION **S**7 MIXED 0.100000 MIXED S11 0.90000 COMPONENT = WATER STREAM SUBSTREAM SPLIT FRACTION **S**7 MIXED 1.00000 COMPONENT = POWDER STREAM SUBSTREAM SPLIT FRACTION **S**7 MIXED 1.00000 S11 CISOLID 1.00000 COMPONENT = BUTANE STREAM SUBSTREAM SPLIT FRACTION **S**7 MIXED 0.100000 S11 MIXED 0.90000 COMPONENT = POTAS-01 STREAM SUBSTREAM SPLIT FRACTION

S7 MIXED 1.00000

Butter Recovery Flowsheet

Butter Recovery Input Summary

;Input Summary created by Aspen Plus Rel. 34.0 at 03:21:13 Tue Apr 12, 2016 ;Directory \\base\root\homedir Filename C:\Users\jmorales\AppData\Local\Temp\~apb6d.txt

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' & HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C & VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum' & MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' & MOLE-VOLUME='cum/kmol' HEAT=Gcal MOLE-CONC='mol/l' & PDROP=bar

DEF-STREAMS MIXCISLD ALL

MODEL-OPTION

DESCRIPTION "

"

Chemical Simulation with Metric Units : C, bar, kg/hr, kmol/hr, Gcal/hr, cum/hr.

Property Method: NRTL

Flow basis for input: Mole

Stream report composition: Mole flow

DATABANKS 'APV88 PURE32' / 'APV88 AQUEOUS' / 'APV88 SOLIDS' / & 'APV88 INORGANIC' / 'APEOSV88 AP-EOS' / 'APV88 BIODIESEL' & / NOASPENPCD

PROP-SOURCES 'APV88 PURE32' / 'APV88 AQUEOUS' / 'APV88 SOLIDS' & / 'APV88 INORGANIC' / 'APEOSV88 AP-EOS' / & 'APV88 BIODIESEL'

COMPONENTS

POS C55H104O6-3 / SOS C57H108O6-3 / POP C53H100O6-5 / PROPANE C3H8 / N-BUTANE C4H10-1 / POWDER1 NI / WATER H2O / GLYCOL C2H6O2 / NITROGEN N2

CISOLID-COMPS PROPANE POWDER1

FORMULA SOS C57H108O6-3 / POP C53H100O6-5

SOLVE

RUN-MODE MODE=SIM

FLOWSHEET

BLOCK B1 IN=S18 OUT=VAPOR LIQ BLOCK B4 IN=STEAM2 S14 OUT=RECSOLV2 BUTTER2 BLOCK B6 IN=LIQ OUT=LIQ-B BLOCK B9 IN=MIXFIL2 MIXFIL1 CFG OUT=S17 BLOCK B12 IN=S20 S36 OUT=S8 BLOCK B15 IN=S40 OUT=S25 BLOCK B16 IN=VAPOR OUT=S26 BLOCK B3 IN=S28 S35 OUT=S1 S5 BLOCK B8 IN=S13 S27 OUT=S6 S10 BLOCK B10 IN=S10 OUT=S12 BLOCK B13 IN=S1 OUT=S13 BLOCK B17 IN=S12 OUT=S16 S21 S22 BLOCK B19 IN=S29 OUT=S28 BLOCK B21 IN=S7 OUT=S35 BLOCK B22 IN=S17 S25 OUT=S37 BLOCK B11 IN=BUTTER2 S37 OUT=S3 S18 BLOCK B2 IN=S3 S4 OUT=S2 S9 BLOCK B24 IN=RECSOLV2 LIQ-B OUT=S32 S14 BLOCK B7 IN=S32 S23 OUT=S29 S24 BLOCK B5 IN=S26 S30 OUT=S7 S31 BLOCK B20 IN=S8 S38 OUT=S40 S39

PROPERTIES NRTL-RK

PROPERTIES NRTL

ESTIMATE ALL

NRTL POS WATER UNIF-LL NRTL SOS WATER UNIF-LL NRTL POP WATER UNIF-LL NRTL PROPANE WATER UNIF-LL NRTL N-BUTANE WATER UNIF-LL

PROP-DATA PCES-1

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' & HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C & VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum' & MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' & MOLE-VOLUME='cum/kmol' HEAT=Gcal MOLE-CONC='mol/l' & PDROP=bar PROP-LIST ZC / VB / RKTZRA / VLSTD PVAL POS .1369844490 / .6615363710 / .1039441350 / & .3124879070 PVAL SOS .1359747040 / .6827863210 / .1031860170 / & .3207959360 PVAL POP .1381455880 / .6368003180 / .1043993550 / & .3020326180 PROP-LIST RKTZRA / VLSTD PVAL POWDER1 .2918596200 / .2989063450

PROP-DATA KLDIP-1

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' & HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C & VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum' & MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' & MOLE-VOLUME='cum/kmol' HEAT=Gcal MOLE-CONC='mol/l' & PDROP=bar PROP-LIST KLDIP PVAL POS -3.917742515 .0278008098 -7.2976298E-5 & 8.49559300E-8 -3.716939E-11 534.1885140 655.0009430 PVAL SOS -3.954762758 .0277353126 -7.1975769E-5 & 8.28421805E-8 -3.583321E-11 540.5892920 661.9410630 PVAL POP -3.900779259 .0280167558 -7.4416988E-5 & 8.76583747E-8 -3.880642E-11 527.6972860 647.7813660 PVAL POWDER1 -5.683295086 .0195545231 -2.2517884E-5 & 1.13047419E-8 -2.137818E-12 1126.850000 1706.850000

PROP-DATA MULAND-1

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' & HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C & VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum' & MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' & MOLE-VOLUME='cum/kmol' HEAT=Gcal MOLE-CONC='mol/l' & PDROP=bar PROP-LIST MULAND PVAL POWDER1 80.74935608 -12127.32210 -10.25255770 & 1126.850000 1706.850000

PROP-DATA SIGDIP-1

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' & HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C & VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum' & MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' & MOLE-VOLUME='cum/kmol' HEAT=Gcal MOLE-CONC='mol/l' & PDROP=bar PROP-LIST SIGDIP PVAL POS 16.02907920 1.222222220 1.98528163E-8 & -2.1849025E-8 8.13483157E-9 534.1885140 645.6256810 PVAL SOS 15.21267550 1.222222220 -7.3253955E-9 & 8.06112577E-9 -3.0009643E-9 540.5892920 652.4956980 PVAL POP 16.94811190 1.222222210 4.52918561E-8 & -4.9850805E-8 1.85629697E-8 527.6972860 638.4790290 PVAL POWDER1 157.4081400 1.222222220 -4.410621E-10 & 4.9467696E-10 -1.969408E-10 1126.850000 1686.850000

PROP-DATA NRTL-1

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' & HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C & VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum' & MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' & MOLE-VOLUME='cum/kmol' HEAT=Gcal MOLE-CONC='mol/l' & PDROP=bar PROP-LIST NRTL BPVAL POS WATER 0.0 929.7625090 .300000000 0.0 0.0 0.0 & 25.0000000 25.0000000 BPVAL WATER POS 0.0 18222.13870 .3000000000 0.0 0.0 0.0 & 25.0000000 25.0000000 BPVAL SOS WATER 0.0 930.3916600 .300000000 0.0 0.0 0.0 & 25.0000000 25.0000000 BPVAL WATER SOS 0.0 18878.26580 .300000000 0.0 0.0 0.0 & 25.0000000 25.0000000 BPVAL POP WATER 0.0 929.0213710 .300000000 0.0 0.0 0.0 & 25.0000000 25.0000000 BPVAL WATER POP 0.0 17566.00890 .300000000 0.0 0.0 0.0 & 25.0000000 25.0000000 BPVAL PROPANE WATER 0.0 1903.992330 .300000000 0.0 0.0 & 0.0 25.0000000 25.0000000 BPVAL WATER PROPANE 0.0 1478.999130 .300000000 0.0 0.0 & 0.0 25.0000000 25.0000000 BPVAL N-BUTANE WATER 0.0 1927.796300 .3000000000 0.0 0.0 & 0.0 25.0000000 25.0000000 BPVAL WATER N-BUTANE 0.0 1882.505070 .3000000000 0.0 0.0 & 0.0 25.0000000 25.0000000 BPVAL WATER GLYCOL .3479000000 34.82340000 .3000000000 0.0 & 0.0 0.0 30.4000000 196.7000000 BPVAL GLYCOL WATER -.0567000000 -147.1373000 .3000000000 & 0.0 0.0 0.0 30.4000000 196.700000

PROP-SET THERMAL HMX CPMX KMX UNITS='kcal/kg' 'cal/gm-K' & SUBSTREAM=MIXED PHASE=V L

; "Enthalpy, heat capacity, and thermal conductivity"

PROP-SET TXPORT RHOMX MUMX SIGMAMX UNITS='gm/cc' & SUBSTREAM=MIXED PHASE=V L

; "Density, viscosity, and surface tension"

SUBSTREAM MIXED TEMP=50.0000000 PRES=6.000000000 & MASS-FLOW=36587.99999 MASS-FLOW POS 2734.160000 / SOS 1429.220000 / POP & 2050.620000 / PROPANE 0.0 / N-BUTANE 30073.00000 / & WATER 301.0000000

STREAM MIXFIL1

SUBSTREAM MIXED TEMP=50.00000000 PRES=6.000000000 & MASS-FLOW=9006.000000 MASS-FLOW POS 209.4399994 / SOS 109.4800000 / POP & 157.0799999 / N-BUTANE 8507.000000 / WATER 23.00000000

STREAM MIXFIL2

SUBSTREAM MIXED TEMP=50.00000000 PRES=6.000000000 & MASS-FLOW=1361.000000 MASS-FLOW POS 16.28000000 / SOS 8.510000000 / POP & 12.21000000 / N-BUTANE 1322.000000 / WATER 2.000000000

STREAM S4

SUBSTREAM MIXED TEMP=32.22000000 PRES=4.000000000 & MASS-FLOW=7905.000000 MASS-FRAC WATER 1.

STREAM S20

SUBSTREAM MIXED TEMP=53.00000000 PRES=1.200000000 & MASS-FLOW=203.0000000 MASS-FLOW N-BUTANE 203.0000000 / WATER 0.0

STREAM S23

SUBSTREAM MIXED TEMP=7.220000000 PRES=1.000000000 & MASS-FLOW=500.0000000 MASS-FRAC WATER 1.

STREAM S27

SUBSTREAM MIXED TEMP=50.00000000 PRES=6.000000000 & MASS-FLOW=1.000000000 MASS-FRAC N-BUTANE 1.

STREAM S30

SUBSTREAM MIXED TEMP=-12.2222222 PRES=4.481592241 & MASS-FLOW=4.0000000E+5 MASS-FRAC WATER 0.7 / GLYCOL 0.3

STREAM S36

SUBSTREAM MIXED TEMP=53.00000000 PRES=1.200000000 & MASS-FLOW=3059.000000 MASS-FLOW N-BUTANE 30599.00000

STREAM S38

SUBSTREAM MIXED TEMP=-12.2222222 PRES=4.481592241 & MASS-FLOW=35750.00000 MASS-FRAC WATER 0.7 / GLYCOL 0.3

STREAM STEAM2

SUBSTREAM MIXED TEMP=148.8888889 PRES=4.460628651 & MASS-FLOW=150.0000000 MASS-FRAC WATER 1.

BLOCK B9 MIXER

PARAM NPHASE=2 BLOCK-OPTION FREE-WATER=NO

BLOCK B12 MIXER

PARAM

BLOCK B22 MIXER

PARAM NPHASE=2 BLOCK-OPTION FREE-WATER=NO

BLOCK B17 FSPLIT

FRAC S16 0.7735 / S21 0.2088

BLOCK B1 FLASH2

PARAM TEMP=56.90000000 PRES=1.564830580

BLOCK B8 FLASH2

PARAM TEMP=50.00000000 PRES=0.0

BLOCK B3 DECANTER

PARAM TEMP=50.00000000 PRES=0.0 L2-COMPS=WATER SOLID-FRAC CISOLID

BLOCK B2 HEATX

PARAM T-HOT=50. MIN-TAPP=5.560000000 CALC-METHOD=SHORTCUT FEEDS HOT=S3 COLD=S4 OUTLETS-HOT S2 OUTLETS-COLD S9 HOT-SIDE DPPARMOPT=NO COLD-SIDE DPPARMOPT=NO TQ-PARAM CURVE=YES

BLOCK B5 HEATX

PARAM VFRAC-HOT=0. PRES-HOT=0.0 CALC-METHOD=SHORTCUT FEEDS HOT=S26 COLD=S30 OUTLETS-HOT S7 OUTLETS-COLD S31 PROPERTIES NRTL-RK FREE-WATER=STEAM-TA SOLU-WATER=3 & TRUE-COMPS=YES / NRTL-RK FREE-WATER=STEAM-TA & SOLU-WATER=3 TRUE-COMPS=YES FLASH-SPECS S7 NPHASE=2 FREE-WATER=NO MAXIT=30 TOL=0.0001 HOT-SIDE DPPARMOPT=NO COLD-SIDE DPPARMOPT=NO TQ-PARAM CURVE=YES EO-OPTIONS CHECK-FREE-W=YES NEG-COMP-CHK=-1E-008 & NEG-FLOW-CHK=-1E-015 ALWAYS-INST=NO FLASH-FORM=PML & PRES-TOL=1.00000000E-5 MIN-PRES=YES COMP-TOL=1E-015 & CHEM-METHOD=YES AUTO-COMPS-T=0. AUTO-PHASE=YES & AUTO-PHASE-T=0.1 TEMP-TOL=1.0000000E-3 BLOCK-OPTION SIM-LEVEL=4 PROP-LEVEL=4 STREAM-LEVEL=4 & TERM-LEVEL=4 RESTART=YES ENERGY-BAL=YES REPORT REPORT NONEWPAGE TOTBAL INPUT NOCOMPBAL RESULTS

BLOCK B7 HEATX

PARAM VFRAC-HOT=0. MIN-TAPP=5.560000000 CALC-METHOD=SHORTCUT FEEDS HOT=S32 COLD=S23 OUTLETS-HOT S29 OUTLETS-COLD S24 HOT-SIDE DPPARMOPT=NO COLD-SIDE DPPARMOPT=NO TQ-PARAM CURVE=YES

BLOCK B11 HEATX

PARAM T-HOT=80. PRES-COLD=0.0 MIN-TAPP=5.560000000 & CALC-METHOD=SHORTCUT FEEDS HOT=BUTTER2 COLD=S37 **OUTLETS-HOT S3 OUTLETS-COLD S18** PROPERTIES NRTL-RK FREE-WATER=STEAM-TA SOLU-WATER=3 & TRUE-COMPS=YES / NRTL-RK FREE-WATER=STEAM-TA & SOLU-WATER=3 TRUE-COMPS=YES FLASH-SPECS S18 NPHASE=2 FREE-WATER=NO MAXIT=30 TOL=0.0001 HOT-SIDE DPPARMOPT=NO COLD-SIDE DPPARMOPT=NO **TQ-PARAM CURVE=YES** EO-OPTIONS CHECK-FREE-W=YES NEG-COMP-CHK=-1E-008 & NEG-FLOW-CHK=-1E-015 ALWAYS-INST=NO FLASH-FORM=PML & PRES-TOL=1.0000000E-5 MIN-PRES=YES COMP-TOL=1E-015 & CHEM-METHOD=YES AUTO-COMPS-T=0. AUTO-PHASE=YES & AUTO-PHASE-T=0.1 TEMP-TOL=1.0000000E-3 BLOCK-OPTION SIM-LEVEL=4 PROP-LEVEL=4 STREAM-LEVEL=4 & TERM-LEVEL=4 RESTART=YES ENERGY-BAL=YES REPORT REPORT NONEWPAGE TOTBAL INPUT NOCOMPBAL RESULTS

BLOCK B20 HEATX

PARAM VFRAC-HOT=0. MIN-TAPP=5.560000000 CALC-METHOD=SHORTCUT FEEDS HOT=S8 COLD=S38 **OUTLETS-HOT S40 OUTLETS-COLD S39** HOT-SIDE DPPARMOPT=NO COLD-SIDE DPPARMOPT=NO TQ-PARAM CURVE=YES BLOCK B24 HEATX PARAM DUTY=27271.3 <kJ/hr> PRES-HOT=0.0 & MIN-TAPP=5.560000000 CALC-METHOD=SHORTCUT FEEDS HOT=RECSOLV2 COLD=LIQ-B **OUTLETS-HOT S32 OUTLETS-COLD S14** PROPERTIES NRTL-RK FREE-WATER=STEAM-TA SOLU-WATER=3 & TRUE-COMPS=YES / NRTL-RK FREE-WATER=STEAM-TA & SOLU-WATER=3 TRUE-COMPS=YES FLASH-SPECS S32 NPHASE=2 FREE-WATER=NO MAXIT=30 TOL=0.0001 HOT-SIDE DPPARMOPT=NO COLD-SIDE DPPARMOPT=NO **TO-PARAM CURVE=YES** EO-OPTIONS CHECK-FREE-W=YES NEG-COMP-CHK=-1E-008 & NEG-FLOW-CHK=-1E-015 ALWAYS-INST=NO FLASH-FORM=PML & PRES-TOL=1.0000000E-5 MIN-PRES=YES COMP-TOL=1E-015 & CHEM-METHOD=YES AUTO-COMPS-T=0. AUTO-PHASE=YES & AUTO-PHASE-T=0.1 TEMP-TOL=1.0000000E-3 BLOCK-OPTION SIM-LEVEL=4 PROP-LEVEL=4 STREAM-LEVEL=4 & TERM-LEVEL=4 RESTART=YES ENERGY-BAL=YES REPORT REPORT NONEWPAGE TOTBAL INPUT NOCOMPBAL RESULTS

BLOCK B4 RADFRAC

PARAM NSTAGE=3 ALGORITHM=STANDARD MAXOL=25 DAMPING=NONE COL-CONFIG CONDENSER=NONE REBOILER=NONE FEEDS STEAM2 3 ON-STAGE / S14 1 PRODUCTS RECSOLV2 1 V / BUTTER2 3 L P-SPEC 1 3.70000000 COL-SPECS DP-STAGE=.1000000000

BLOCK B6 PUMP

PARAM PRES=6.000000000 EFF=0.75

BLOCK B10 PUMP

PARAM PRES=6.000000000 EFF=0.75

BLOCK B13 PUMP

PARAM PRES=6.000000000 EFF=0.75

BLOCK B15 PUMP

PARAM PRES=6.000000000 EFF=0.75

BLOCK B19 PUMP

PARAM PRES=4.000000000 EFF=0.75

BLOCK B21 PUMP

PARAM PRES=4.000000000 EFF=0.75

BLOCK B16 DUPL

DESIGN-SPEC SSTRIP2

DEFINE LIQUIDIN STREAM-VAR STREAM=LIQ SUBSTREAM=MIXED & VARIABLE=MASS-FLOW UOM="kg/hr" DEFINE BUTTER STREAM-VAR STREAM=BUTTER2 SUBSTREAM=MIXED & VARIABLE=MASS-FLOW UOM="kg/hr" DEFINE SLVFRAC LOCAL-PARAM DEFINE SOLVENT MASS-FLOW STREAM=BUTTER2 SUBSTREAM=MIXED & COMPONENT=N-BUTANE UOM="kg/hr"

F SLVFRAC = SOLVENT/BUTTER*1000000 SPEC "SOLVENT/BUTTER*100000" TO "0.500" TOL-SPEC "0.001" VARY STREAM-VAR STREAM=STEAM2 SUBSTREAM=MIXED & VARIABLE=MASS-FLOW UOM="kg/hr" LIMITS "25" "1000"

EO-CONV-OPTI

STREAM-REPOR NOZEROFLOW NOMOLEFLOW MASSFLOW STDVOLFLOW MASSFRAC & NOVOLFRAC PROPERTIES=THERMAL TXPORT

PROPERTY-REP PARAMS PCES

* BLOCK: B1 MODEL: FLASH2

INLET STREAM: S18 OUTLET VAPOR STREAM: VAPOR OUTLET LIQUID STREAM: LIQ PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 768.562 768.562 0.147922E-15 MASS(KG/HR) 50217.0 50217.0 0.156090E-11 ENTHALPY(GCAL/HR) -30.6520 -27.0309 -0.118135

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***TWO PHASE TP FLASHSPECIFIED TEMPERATURE C56.9000SPECIFIED PRESSUREBAR1.56483MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

*** RESULTS ***
OUTLET TEMPERATURE C 56.900
OUTLET PRESSURE BAR 1.5648
HEAT DUTY GCAL/HR 3.6211
VAPOR FRACTION 0.98566

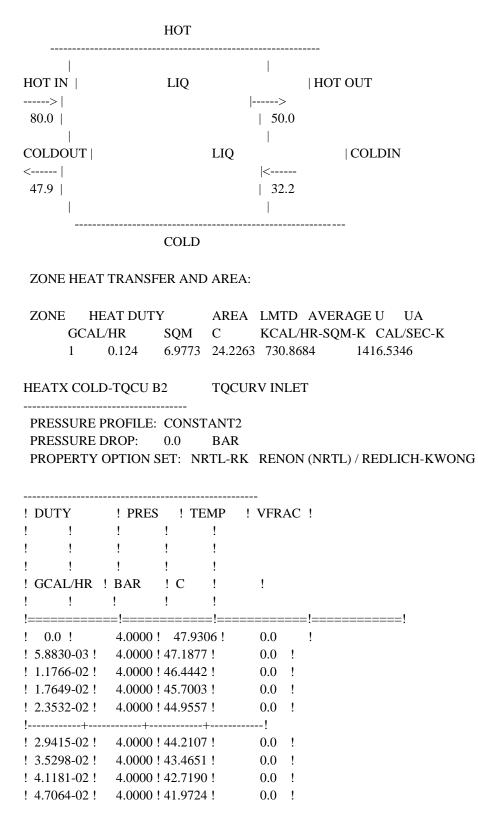
V-L PHASE EQUILIBRIUM :

COMP	F(I) = X(I)	Y(I) K(I)		
POS	0.44707E-02	0.31175	0.80867E-16	0.25940E-15
SOS	0.22633E-02	0.15782	0.19820E-16	0.12559E-15
POP	0.34659E-02	0.24168	0.12943E-15	0.53552E-15
N-BUTANE	0.96626	0.28163	0.97622	3.4664
WATER	0.23545E-01	0.71270E-02	0.23784E-01	3.3372

BLOCK: B2 MODEL: HEATX -----HOT SIDE: _____ INLET STREAM: **S**3 **OUTLET STREAM: S**2 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG COLD SIDE: -----INLET STREAM: S4 OUTLET STREAM: **S**9 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG *** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE MOLE(KMOL/HR) 0.00000 484.120 484.120 MASS(KG/HR) 15307.3 15307.3 0.00000 ENTHALPY(GCAL/HR) -36.5401 -36.5401 -0.168505E-07 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED HOT OUTLET TEMP SPECIFIED VALUE С 50.0000 LMTD CORRECTION FACTOR 1.00000 PRESSURE SPECIFICATION: HOT SIDE PRESSURE DROP BAR 0.0000

COLD SIDE PRESSURE DROP BAR 0.0000

HEAT TRANSFER COEFFICIENT SPECIFICATION:


HOT LIQUID	COLD LIQUID	KCAL/HR-SQM-K	730.8684
HOT 2-PHASE	COLD LIQUID	KCAL/HR-SQM-K	730.8684
HOT VAPOR	COLD LIQUID	KCAL/HR-SQM-K	730.8684
HOT LIQUID	COLD 2-PHASE	KCAL/HR-SQM-	К 730.8684
HOT 2-PHASE	COLD 2-PHASE	KCAL/HR-SQM-K	730.8684
HOT VAPOR	COLD 2-PHASE	KCAL/HR-	-SQM-K 730.8684
HOT LIQUID	COLD VAPOR	KCAL/HR-SQM-K	730.8684
HOT 2-PHASE	COLD VAPOR	KCAL/HR-SQM-K	730.8684
HOT VAPOR	COLD VAPOR	KCAL/HR-SQM-K	730.8684

*** OVERALL RESULTS ***

STREAMS:

S3> HOT	> \$	52		
T= 8.0000D+01		T= 5.00	00D+01	
P= 3.9000D+00		P= 3.900	00D+00	
V= 0.0000D+00		V= 0.00	00D+00	
S9 < COLD	< \$	54		
T= 4.7931D+01		T = 3.222	20D+01	
P= 4.0000D+00		P= 4.000	00D+00	
V= 0.0000D+00		V= 0.00	00D+00	
DUTY AND AREA:				
CALCULATED HEAT DUTY	GCAL/	HR	0.1235	
CALCULATED (REQUIRED)	AREA	SQM	6.9773	
ACTUAL EXCHANGER AREA		SQM	6.9773	
PER CENT OVER-DESIGN		-	0.0000	
HEAT TRANSFER COEFFICIENT:				
AVERAGE COEFFICIENT (DI	(RTY)	KCAL/H	IR-SQM-K	730.8684
UA (DIRTY) CAL	,		1416.5346	
	~~~~			
LOG-MEAN TEMPERATURE DIFFE	RENCE			
LMTD CORRECTION FACTO			1.0000	
LMTD (CORRECTED)	C		24.2263	
NUMBER OF SHELLS IN SER	e		1	
NUMBER OF STILLES IN SER	ILD		1	
PRESSURE DROP:				
HOTSIDE, TOTAL BAR		0.0000		
COLDSIDE, TOTAL BAR	BAR		0.0000	
COLDSIDE, TOTAL	DAK		0.0000	

# TEMPERATURE LEAVING EACH ZONE:



! 5.2947-02 !	4.0000 ! 41.2253 !	0.0	!	
!+	++	!		
! 5.8830-02 !	4.0000 ! 40.4776 !	0.0	!	
! 6.4713-02 !	4.0000 ! 39.7294 !	0.0	!	
! 7.0596-02 !	4.0000 ! 38.9808 !	0.0	!	
! 7.6479-02 !	4.0000 ! 38.2316 !	0.0	!	
! 8.2362-02 !	4.0000 ! 37.4819 !	0.0	!	
!+	++	!		
! 8.8245-02 !	4.0000 ! 36.7317 !	0.0	!	
! 9.4128-02 !	4.0000 ! 35.9810 !	0.0	!	
! 0.1000 !	4.0000 ! 35.2298 !	0.0	!	
! 0.1059 !	4.0000 ! 34.4781 !	0.0		!
! 0.1118 !	4.0000 ! 33.7259 !	0.0	!	
!+	++	!		
! 0.1177 !	4.0000 ! 32.9732 !	0.0	!	
! 0.1235 !	4.0000 ! 32.2201 !	0.0	!	

HEATX HOT-TQCUR B2 TQCURV INLET

_____

PRESSURE PROFILE: CONSTANT2 PRESSURE DROP: 0.0 BAR PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

! DUTY	! PRES ! TEMP	! VFRAC !
!!	!!!	
!!	!!	!
!!	!!!	
! GCAL/HR	BAR ! C !	!
!!!	1 1 1	
!========	!	=======!==============
! 0.0 !	3.9000 ! 80.0000 !	0.0 !
! 5.8830-03 !	3.9000 ! 78.5931 !	0.0 !
! 1.1766-02 !	3.9000 ! 77.1841 !	0.0 !
! 1.7649-02 !	3.9000 ! 75.7730 !	0.0 !
! 2.3532-02 !	3.9000 ! 74.3597 !	0.0 !
!+	+++	!
! 2.9415-02 !	3.9000 ! 72.9443 !	0.0 !
! 3.5298-02 !	3.9000 ! 71.5267 !	0.0 !
! 4.1181-02 !	3.9000 ! 70.1069 !	0.0 !
! 4.7064-02 !	3.9000! 68.6850!	0.0 !
! 5.2947-02 !	3.9000 ! 67.2609 !	0.0 !
!+	+++	!
! 5.8830-02 !	3.9000 ! 65.8347 !	0.0 !
! 6.4713-02 !	3.9000 ! 64.4062 !	0.0 !
! 7.0596-02 !	3.9000 ! 62.9756 !	0.0 !
! 7.6479-02 !	3.9000 ! 61.5428 !	0.0 !

!	8.2362-02 !	3.9000 ! 60.1077 ! 0.0	) !
!	+	!	
!	8.8245-02 !	3.9000 ! 58.6704 ! 0.0	) !
!	9.4128-02 !	3.9000 ! 57.2310 ! 0.0	) !
!	0.1000 !	3.9000 ! 55.7893 ! 0.0	) !
!	0.1059 !	3.9000 ! 54.3453 ! 0.0	) !
!	0.1118 !	3.9000 ! 52.8991 ! 0.0	) !
!	+	!	
!	0.1177 !	3.9000 ! 51.4507 ! 0.0	) !
!	0.1235 !	3.9000 ! 50.0000 ! 0.0	) !

BLOCK: B3 MODEL: DECANTER

_____

INLET STREAMS: S28 S35 FIRST LIQUID OUTLET: S1 SECOND LIQUID OUTLET: S5 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 761.488 761.488 0.895774E-15 MASS(KG/HR) 43503.8 43503.8 0.123104E-07 ENTHALPY(GCAL/HR) -27.7535 -26.7198 -0.372458E-01

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

LIQUID-LIQUID SPLIT, TP SPECIFICATION SPECIFIED TEMPERATURE С 50.0000 SPECIFIED PRESSURE DROP BAR 0.0 CONVERGENCE TOLERANCE ON EQUILIBRIUM 0.10000E-03 MAXIMUM NO ITERATIONS ON EQUILIBRIUM 30 EQUILIBRIUM METHOD EQUATION-SOLVING KLL COEFFICIENTS FROM OPTION SET OR EOS KLL BASIS MOLE KEY COMPONENT(S): WATER SOLID SPLIT FRACTIONS: CISOLID SUBSTREAM 1ST LIQUID: 0.0000 2ND LIQUID: 1.0000

# *** RESULTS ***

CALC	LET TEMPERATURE LET PRESSURE CULATED HEAT DUTY AR RATIO 1ST LIQUID /	BAR GCAL/I	HR		50.000 4.0000 1.0337	0.97618	
L1-L2	PHASE EQUILIBRIUM COMP F N-BUTANE 0.97523 WATER 0.024769	X1 0.99900	)	0.00117	75	0.001178 1,001.51	87
BLOCK	K: B4 MODEL: RADF	FRAC					
PROP	INLETS - STEAM2 ST S14 STAGE 1 OUTLETS - RECSOLV2 BUTTER2 STAGE 3 PERTY OPTION SET: NI	2 STAGE	2 1	(NRTL)	/ REDL	CH-KW0	ONG
	*** MASS ANI	D ENERO	GY BALA	ANCE **	**		
		OUT	RELAT	IVE DIFI	F.		
	TOTAL BALANCE						
	MOLE(KMOL/HR)						25.15
	MASS(KG/HR ) ENTHALPY(GCAL/HR						
	ENTIALI I (OCAL/IIK	)	-0.4795	2	-0.4795	,	0.520/1712-07
	*** CO2 EQUI	VALENT	SUMM	ARY ***			
					KG/HR		
	FEED STREAMS CO2E		0.00000		KO/IIK		
	FEED STREAMS CO2E PRODUCT STREAMS C						
		CO2E	0.00000	1	KG/HR		
	PRODUCT STREAMS C	CO2E PRODUC	0.00000 TION 0	.00000	KG/HR KG/HR		
	PRODUCT STREAMS ONET STREAMS CO2E F	CO2E PRODUC PUCTION	0.00000 TION 0 V	.00000 0.00000	KG/HR KG/HR		
	PRODUCT STREAMS C NET STREAMS CO2E P UTILITIES CO2E PROD	CO2E PRODUC DUCTION TION	0.00000 TION 0 J 0.00000	.00000 0.00000	KG/HR KG/HR		
	PRODUCT STREAMS CORE TSTREAMS CORE FUTILITIES CO2E PRODUCT TOTAL CO2E PRODUCT	CO2E PRODUC DUCTION TION	0.00000 TION 0 0.00000	.00000 0.00000	KG/HR KG/HR		
	PRODUCT STREAMS C NET STREAMS CO2E F UTILITIES CO2E PROD TOTAL CO2E PRODUC	CO2E PRODUC DUCTION TION	0.00000 TION 0 0.00000	.00000 0.00000	KG/HR KG/HR		
****	PRODUCT STREAMS ONET STREAMS CO2E FOUTILITIES CO2E PRODUCT TOTAL CO2E PRODUCT	CO2E PRODUC DUCTION TION	0.00000 TION 0 0.00000	.00000 0.00000	KG/HR KG/HR		
****	PRODUCT STREAMS CORE T STREAMS CO2E F UTILITIES CO2E PRODUCTOTAL PRODUCTAL PRODU	CO2E PRODUC DUCTION TION	0.00000 TION 0 0.00000	.00000 0.00000	KG/HR KG/HR		
****	PRODUCT STREAMS ONET STREAMS CO2E FOUTILITIES CO2E PRODUCT TOTAL CO2E PRODUCT ***** INPUT DA ***** INPUT DA ************************************	CO2E PRODUC DUCTION TION	0.00000 TION 0 0.00000	.00000	KG/HR KG/HR		
****	PRODUCT STREAMS ONET STREAMS CO2E PRODUCT UTILITIES CO2E PRODUCT TOTAL CO2E PRODUCT ***** INPUT DA ***** INPUT DA ************************************	CO2E PRODUC DUCTION TION	0.00000 TION 0 0.00000	.00000	KG/HR KG/HR KG/HR		
****	PRODUCT STREAMS CO NET STREAMS CO2E PRODUCT TOTAL CO2E PRODUCT ***** INPUT DA ***** INPUT DA ************************************	CO2E PRODUC DUCTION TION ************************************	0.00000 TION 0 0.00000	00000 0.00000 STA NO	KG/HR KG/HR KG/HR	KG/HR	
****	PRODUCT STREAMS OF NET STREAMS CO2E PRODUCT TOTAL CO2E PRODUCT ***** INPUT DA ***** INPUT DA ************************************	CO2E PRODUC DUCTION TION ATA *** **** **** ON	0.00000 TION 0 0.00000	00000 0.00000 STA NO ST	KG/HR KG/HR KG/HR 3 NDARD	KG/HR	
****	PRODUCT STREAMS ONET STREAMS CO2E PRODUCT UTILITIES CO2E PRODUCT TOTAL CO2E PRODUCT ***** INPUT DA ***** INPUT DA ************************************	CO2E PRODUCTON TION ATA *** ***** **** ON TER CA	0.00000 TION 0 0.00000	00000 0.00000 STA NO ST IONS	KG/HR KG/HR KG/HR 3 NDARD	KG/HR	EN

DESIGN SPECIFICATION METHODNESTEDMAXIMUM NO. OF OUTSIDE LOOP ITERATIONS25MAXIMUM NO. OF INSIDE LOOP ITERATIONS10MAXIMUM NUMBER OF FLASH ITERATIONS30FLASH TOLERANCE0.000100000OUTSIDE LOOP CONVERGENCE TOLERANCE0.000100000

**** COL-SPECS ****

MOLAR VAPOR	DIST / TOTAL DIST		1.00000
CONDENSER DU	TY (W/O SUBCOOL)	GCAL/HR	0.0
REBOILER DUTY	GCAL/HR	0.0	

**** PROFILES ****

P-SPEC STAGE 1 PRES, BAR 3.70000

***** RESULTS **** **** RESULTS ****

*** COMPONENT SPLIT FRACTIONS ***

### OUTLET STREAMS

RECSOLV2 BUTTER2 COMPONENT: POS .55895E-13 1.0000 SOS .30277E-13 1.0000 POP .10310E-12 1.0000 N-BUTANE .99998 .20532E-04 WATER .22018E-01 .97798

#### *** SUMMARY OF KEY RESULTS ***

TOP STAGE TEMPERATURE С 100.618 BOTTOM STAGE TEMPERATURE С 149.085 TOP STAGE LIQUID FLOW KMOL/HR 24.5013 BOTTOM STAGE LIQUID FLOW KMOL/HR 45.3262 TOP STAGE VAPOR FLOW KMOL/HR 3.94793 BOILUP VAPOR FLOW KMOL/HR 37.1465 CONDENSER DUTY (W/O SUBCOOL) GCAL/HR 0.0 REBOILER DUTY GCAL/HR 0.0

**** MAXIMUM FINAL RELATIVE ERRORS ****

DEW POINT0.17927E-09STAGE= 1BUBBLE POINT0.54538E-09STAGE= 1COMPONENT MASS BALANCE0.23093E-08STAGE= 1ENERGY BALANCE0.34556E-07STAGE= 1

**** PROFILES ****

# **NOTE** REPORTED VALUES FOR STAGE LIQUID AND VAPOR RATES ARE THE FLOWS FROM THE STAGE INCLUDING ANY SIDE PRODUCT.

STACET		ENTHALPY	E			
C	BAR	E PRESSUR	e UID	KCAL/MOL VAPOR	GCAL/HR	
_			-			
		-209.86 -34.3				
		-142.02 -55.7				
3 149.09	3.9000	-139.95 -56.	788			
STAGE	FLOW RATE	FEE	D RATE	PRODU KMOL/ VAPOR MIXED 3.9479	JCT RATE	
KI	MOL/HR	KM	OL/HR	KMOL/	ΉR	
LI	QUID	VAPOR I	LIQUID	VAPOR MIXED	LIQUID	VAPOR
1 24.50	3.948	11.0218		3.9479		
2 44.22						
3 45.33	37.15		38.2523	45.3262		
**	** MASS FL	OW PROFILE	S ****			
STAGE	FLOW RATE	FEE	D RATE	PRODUCT F KG/HR VAPOR MIXED 195.617	RATE	
K	G/HR	KG/	HR	KG/HR		
LI	QUID	VAPOR 1	LIQUID	VAPOR MIXED	LIQUID	VAPOR
1 7053.	195.6	6908.8320		195.617	3	
2 7385.	559.5					
3 7402.	669.6		689.126	7 7402.3414		
	**** N	AOLE-X-PRO	FILE	****		
STAGE	POS	SOS POP	N-BU	JTANE WATE	R	
1	0.14024	0.70994E-01	0.10872	0.25796E-01 0.	.65425	
2	0.77702E-01	0.39336E-01	0.60238E-	01 0.20998E-03	0.82251	
3	0.75806E-01	0.38376E-01	0.58769E-	01 0.14061E-05	0.82705	
	**** 1	AOLE-Y-PRO	FILE	****		
STAGE				ANE WATEI	ર	
1	0.48648E-13	0.13340E-13			0.21377	
2				10 0.36264E-01	0.96374	
3	0.10341E-10	0.30771E-11	0.13632E-	10 0.24826E-03	0.99975	

**** **** K-VALUES STAGE POS SOS POP N-BUTANE WATER 1 0.34689E-12 0.18790E-12 0.63985E-12 30.478 0.32674 2 0.10919E-09 0.63957E-10 0.18633E-09 172.70 1.1717 3 0.13641E-09 0.80182E-10 0.23197E-09 176.56 1.2088 **** MASS-X-PROFILE **** STAGE POS SOS POP N-BUTANE WATER 1 0.41969 0.21938 0.31477 0.52090E-02 0.40948E-01 2 0.40092 0.20957 0.30069 0.73104E-04 0.88754E-01 3 0.39986 0.20902 0.29989 0.50042E-06 0.91233E-01 **** **** MASS-Y-PROFILE STAGE POS SOS POP N-BUTANE WATER 1 0.84575E-12 0.23947E-12 0.11700E-11 0.92228 0.77724E-01 2 0.37539E-09 0.11494E-09 0.48042E-09 0.10826 0.89174 3 0.49420E-09 0.15184E-09 0.63027E-09 0.80052E-03 0.99920 BLOCK: B5 MODEL: HEATX -----HOT SIDE: _____ S26 INLET STREAM: OUTLET STREAM: **S**7 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG COLD SIDE: -----INLET STREAM: S30 OUTLET STREAM: S31 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 18233.3 18233.3 0.00000 MASS(KG/HR ) 443308. 443308. 0.393909E-15 ENTHALPY(GCAL/HR) -1308.45 -1308.45 -0.386334E-11 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR

*** INPUT DATA ***

FLASH SPECS FOR H TWO PHASE MAXIMUM NO. ITER CONVERGENCE TOL	FLASH ATIONS		60 0100000
FLASH SPECS FOR C TWO PHASE MAXIMUM NO. ITER	FLASH ATIONS	-	30
CONVERGENCE TOL	ERANCE	0.000	0100000
SPECIFIED HO SPECIFIED VA	RENT HEAT EX T VAPOR FRACT	CHANGER TION 0.0000	.00000
PRESSURE SPECIFIC	ATION:		
	ESSURE DROP	BAR	0.0000
COLD SIDE PR	ESSURE DROP	BAR 0	0.0000
HOT VAPOR HOT LIQUID HOT 2-PHASE HOT VAPOR HOT LIQUID HOT 2-PHASE HOT VAPOR	COLD LIQUID COLD LIQUID COLD LIQUID COLD 2-PHASE COLD 2-PHASE COLD 2-PHASE COLD VAPOR COLD VAPOR	KCAL/HR-SQM-F KCAL/HR-SQM-F KCAL/HR-SQM-F KCAL/HR KCAL/HR-SQM-F	K 730.8684 K 730.8684 R-SQM-K 73 K 730.8684 I-K 730.8684 K 730.8684 K 730.8684
STREAMS:			
 S26>  T= 5.6900D+01   P= 1.5648D+00   V= 1.0000D+00	НОТ	  > S7   T= 9.740   P= 1.564   V= 0.000	8D+00
S31 <	COLD	< S30	

DUTY AND AREA:

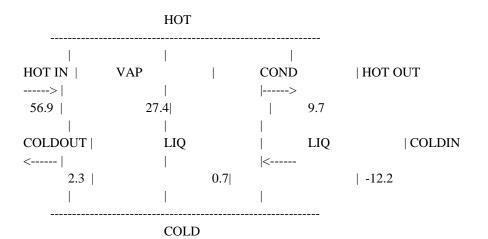
 $T= 2.3286D+00 \mid$ 

 $P= 4.4816D{+}00 \mid$ 

 $V{=}\ 0.0000D{+}00 \ |$ 

730.8684

T= -1.2222D+01


P= 4.4816D+00

 $V{=}\ 0.0000D{+}00$ 

CALCULATED HEAT I	DUTY GCAI	_/HR	4.875	6
CALCULATED (REQU	IRED) AREA	SQM	263.2	219
ACTUAL EXCHANGE	R AREA	SQM	263.2	219
PER CENT OVER-DESI	IGN	0.000	00	
HEAT TRANSFER COEFFICI		KCAL/HD S	DM K	730.8684
AVERAGE COEFFICIE	· /	KCAL/HR-SO	ZINI-K	/30.0004
UA (DIRTY)	CAL/SEC-K	53439.0426		
LOG-MEAN TEMPERATURE	DIFFERENCE:			
LMTD CORRECTION F	FACTOR	1.000	00	
LMTD (CORRECTED)	С	2	5.3434	
NUMBER OF SHELLS	IN SERIES	1		
PRESSURE DROP:				
HOTSIDE, TOTAL	BAR	0.000	00	
COLDSIDE, TOTAL	BAR	0.000	00	

*** ZONE RESULTS ***

## TEMPERATURE LEAVING EACH ZONE:



# ZONE HEAT TRANSFER AND AREA:

# ZONE HEAT DUTY AREA LMTD AVERAGE U UA GCAL/HR SQM C KCAL/HR-SQM-K CAL/SEC-K 1 0.545 19.1115 39.0154 730.8684 3879.9909 2 4.331 244.1104 24.2730 730.8684 49559.0517

# HEATX COLD-TQCU B5 TQCURV INLET

PRESSURE PROFILE: CONSTANT2 PRESSURE DROP: 0.0 BAR PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

_____ ! DUTY ! PRES ! TEMP ! VFRAC ! 1 1 1 ! ! ! ! ! ! ! 1 ! ! ! ! ! GCAL/HR ! BAR ! C ! ! !!!! ! ! ! 0.0 ! 4.4816 ! 2.3286 ! 0.0 ! ! 0.2322 ! 4.4816 ! 1.6372 ! 0.0 ! ! 0.4643 ! 4.4816 ! 0.9454 ! 0.0 ! ! 0.6965 ! 4.4816 ! 0.2533 ! 0.0 ! ! 0.5450 ! 4.4816 ! 0.7051 ! 0.0 ! !------! 

 !
 0.9287 !
 4.4816 ! -0.4390 !
 0.0 !

 !
 1.1609 !
 4.4816 ! -1.1315 !
 0.0 !

 0.0 ! ! 1.3930 ! 4.4816 ! -1.8240 ! ! 1.6252 ! 4.4816 ! -2.5166 ! 0.0 ! 0.0 ! ! 1.8574 ! 4.4816 ! -3.2093 ! !-----! ! 2.0895 ! 4.4816 ! -3.9021 ! 0.0 ! ! 2.3217 ! 4.4816 ! -4.5950 ! 0.0 ! ! 2.5539 ! 4.4816 ! -5.2879 ! 0.0 ! ! 2.7860 ! 4.4816 ! -5.9810 ! 0.0 ! 0.0 ! ! 3.0182 ! 4.4816 ! -6.6741 ! !------! ! 3.2504 ! 4.4816 ! -7.3674 ! 0.0 ! ! 3.4826 ! 4.4816 ! -8.0607 ! 0.0 ! ! 3.7147 ! 4.4816 ! -8.7541 ! 0.0 ! 0.0 ! ! 3.9469 ! 4.4816 ! -9.4475 ! ! 4.1791 ! 4.4816 ! -10.1411 ! 0.0 ! !------! ! 4.4112 ! 4.4816 ! -10.8347 ! 0.0 ! ! 4.6434 ! 4.4816 ! -11.5284 ! 0.0 ! ! 4.8756 ! 4.4816 ! -12.2222 ! 0.0 !

HEATX HOT-TQCUR B5 TQCURV INLET

_____

_____

PRESSURE PROFILE: CONSTANT2 PRESSURE DROP: 0.0 BAR PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

! DI	JTY	! PRES	5!	TEMP	! VFRAC	!
!	!	!	!	!		
!	!	!	!	!		

! !!!! ! 1 ! GCAL/HR ! BAR ! C ! ! ! ! ! ! !=====!== ==!========!====!==========! ! 0.0 ! 1.5648 ! 56.9000 ! 1.0000 ! ! 0.2322 ! 1.5648 ! 44.5843 ! 1.0000 ! ! 0.4643 ! 1.5648 ! 31.9246 ! 1.0000 ! ! 0.6965 ! 1.5648 ! 18.9094 ! 1.0000 ! ! 0.5450 ! 1.5648 ! 27.4454 ! DEW>1.0000 ! !------! ! 0.9287 ! 1.5648 ! 10.7653 ! 0.9772 ! ! 1.1609 ! 1.5648 ! 10.7233 ! 0.9185 ! ! 1.3930 ! 1.5648 ! 10.6760 ! 0.8599 ! ! 1.6252 ! 1.5648 ! 10.6227 ! 0.8014 ! ! 1.8574 ! 1.5648 ! 10.5620 ! 0.7429 ! !------! ! 2.0895 ! 1.5648 ! 10.4924 ! 0.6845 ! ! 2.3217 ! 1.5648 ! 10.4121 ! 0.6262 ! ! 2.5539 ! 1.5648 ! 10.3188 ! 0.5680 ! ! 2.7860 ! 1.5648 ! 10.2096 ! 0.5100 ! ! 3.0182 ! 1.5648 ! 10.0817 ! 0.4521 ! !------! ! 3.2504 ! 1.5648 ! 9.9333 ! 0.3945 ! ! 3.4826 ! 1.5648 ! 9.7676 ! 0.3373 ! ! 3.7147 ! 1.5648 ! 9.6054 ! 0.2805 ! ! 3.9469 ! 1.5648 ! 9.5068 ! 0.2242 ! ! 4.1791 ! 1.5648 ! 9.5304 ! 0.1682 ! !-----! ! 4.4112 ! 1.5648 ! 9.6134 ! 0.1123 ! ! 4.6434 ! 1.5648 ! 9.6868 ! 5.6217-02 ! 4.8756 ! 1.5648 ! 9.7401 ! 0.0 ! 

BLOCK: B6 MODEL: PUMP

-----

INLET STREAM: LIQ OUTLET STREAM: LIQ-B PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 11.0218 11.0218 0.00000 MASS(KG/HR) 6908.83 6908.83 -0.263285E-15 ENTHALPY(GCAL/HR) -4.31378 -4.31302 -0.174802E-03

*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR

*** INPUT DATA ***	
OUTLET PRESSURE BAR	6.00000
PUMP EFFICIENCY	0.75000
DRIVER EFFICIENCY	1.00000

FLASH SPECIFICATIONS:		
LIQUID PHASE CALCULATION		
NO FLASH PERFORMED		
MAXIMUM NUMBER OF ITERATIONS	5	30
TOLERANCE	0.000100000	

*** RESULTS *** VOLUMETRIC FLOW RATE CUM/HR 5.33874 PRESSURE CHANGE BAR 4.43517 NPSH AVAILABLE METER 0.0 FLUID POWER KW 0.65773 BRAKE POWER KW 0.87697 ELECTRICITY KW 0.87697 PUMP EFFICIENCY USED 0.75000 NET WORK REQUIRED KW 0.87697 HEAD DEVELOPED METER 34.9481

BLOCK: B7 MODEL: HEATX -----HOT SIDE: _____ INLET STREAM: S32 OUTLET STREAM: S29 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG COLD SIDE: -----INLET STREAM: S23 S24 OUTLET STREAM: PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG *********** * * * TEMPERATURE CROSS DETECTED IN TQ-CURVE * *

227

*

*** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE MOLE(KMOL/HR) 31.7021 31.7021 0.00000 MASS(KG/HR) 695.617 695.617 0.00000 ENTHALPY(GCAL/HR) -2.04556 -2.04556 -0.326447E-08 *** CO2 EOUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED HOT VAPOR FRACTION SPECIFIED VALUE 0.0000 LMTD CORRECTION FACTOR 1.00000 PRESSURE SPECIFICATION: HOT SIDE PRESSURE DROP BAR 0.0000 COLD SIDE PRESSURE DROP BAR 0.0000 HEAT TRANSFER COEFFICIENT SPECIFICATION: HOT LIQUID COLD LIQUID KCAL/HR-SQM-K 730.8684 HOT 2-PHASE COLD LIQUID KCAL/HR-SQM-K 730.8684 HOT VAPOR COLD LIQUID KCAL/HR-SQM-K 730.8684 HOT LIQUID COLD 2-PHASE 730.8684 KCAL/HR-SQM-K HOT 2-PHASE COLD 2-PHASE KCAL/HR-SQM-K 730.8684 HOT VAPOR COLD 2-PHASE 730.8684 KCAL/HR-SQM-K HOT LIQUID COLD VAPOR KCAL/HR-SQM-K 730.8684 HOT 2-PHASE COLD VAPOR KCAL/HR-SQM-K 730.8684 HOT VAPOR COLD VAPOR KCAL/HR-SQM-K 730.8684

*** OVERALL RESULTS ***

STREAMS:					
S32>  HOT T= 7.7114D+01   P= 3.7000D+00   V= 8.8985D-01	-    > \$     	T= 3.2 P= 3.7	250D+01 000D+00 0000D+00		
S24 <  COLD	< \$	\$23			
T= 5.6089D+01		T= 7.2	200D+00		
P= 1.0000D+00			000D+00		
V= 0.0000D+00		V = 0.0	0000D+00		
DUTY AND AREA: CALCULATED HEAT DUTY CALCULATED (REQUIRED) A ACTUAL EXCHANGER AREA PER CENT OVER-DESIGN	REA			0.0241 1.4385 1.4385	
TERCEIVI ÖVER-DESION			0.0000		
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIR	RTY)	KCAL/	HR-SQM	[-K	730.8684
UA (DIRTY) CAL/S	EC-K		292.036	59	
LOG-MEAN TEMPERATURE DIFFER LMTD CORRECTION FACTOR LMTD (CORRECTED) NUMBER OF SHELLS IN SERI	C C		1.0000 22.9 1	0692	
PRESSURE DROP:					
HOTSIDE, TOTAL	BAR		0.0000		
COLDSIDE, TOTAL	BAR		0.0000		
*** ZONE RESULTS '	***				
TEMPERATURE LEAVING EACH ZO	DNE:				
НОТ					
HOT IN   COND		HOT (	OUT		

HOT IN	COND		HOT OUT
>		>	
77.1		32.2	
COLDOUT	LIQ		COLDIN
<		<	
56.1			7.2

| |

COLD

ZONE HEAT TRANSFER AND AREA:

-----

 ZONE
 HEAT DUTY
 AREA
 LMTD
 AVERAGE
 UA

 GCAL/HR
 SQM
 C
 KCAL/HR-SQM-K
 CAL/SEC-K

 1
 0.024
 1.4385
 22.9692
 730.8684
 292.0369

HEATX COLD-TQCU B7 TQCURV INLET

PRESSURE PROFILE: CONSTANT2 PRESSURE DROP: 0.0 BAR PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

	! PRES ! TEMP	! VFRAC !
	!!!	
!!	!!!	
!!	1 1 1	
! GCAL/HR !	BAR ! C !	!
!!	!!!	
!==========	=!=====!====!====	======!=====!
	1.0000 ! 56.0885 !	
! 1.1499-03 !	1.0000 ! 53.8098 !	0.0 !
	1.0000 ! 51.5257 !	
! 3.4498-03 !	1.0000 ! 49.2365 !	0.0 !
! 4.5997-03 !	1.0000 ! 46.9420 !	0.0 !
!+	+++	!
! 5.7496-03 !	1.0000 ! 44.6425 !	0.0 !
! 6.8995-03 !	1.0000 ! 42.3379 !	0.0 !
	1.0000 ! 40.0284 !	
! 9.1994-03 !	1.0000 ! 37.7139 !	0.0 !
! 1.0349-02 !	1.0000 ! 35.3947 !	0.0 !
!+	+++	!
! 1.1499-02 !	1.0000 ! 33.0707 !	0.0 !
! 1.2649-02 !	1.0000 ! 30.7420 !	0.0 !
! 1.3799-02 !	1.0000 ! 28.4088 !	0.0 !
! 1.4949-02 !	1.0000 ! 26.0711 !	0.0 !
! 1.6099-02 !	1.0000 ! 23.7290 !	0.0 !
!+	+++++	!
! 1.7249-02 !	1.0000 ! 21.3826 !	0.0 !
! 1.8399-02 !	1.0000 ! 19.0320 !	0.0 !
	1.0000 ! 16.6774 !	0.0 !
! 2.0699-02 !	1.0000 ! 14.3187 !	0.0 !
! 2.1848-02 !	1.0000 ! 11.9562 !	0.0 !
!+	+++	!

! 2.2998-02 ! 1.0000 ! 9.5899 ! 0.0 ! ! 2.4148-02 ! 1.0000 ! 7.2200 ! 0.0 !

_____

_____

HEATX HOT-TQCUR B7 TQCURV INLET

PRESSURE PROFILE:CONSTANT2PRESSURE DROP:0.0BARPROPERTY OPTION SET:NRTL-RKRENON (NRTL) / REDLICH-KWONG

_____ ! DUTY ! PRES ! TEMP ! VFRAC ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! GCAL/HR ! BAR ! C ! ! !! ! ! ! !====== ===!======!====!=====!=====!======! ! 0.0 ! 3.7000! 77.1137! 0.8899 ! ! 1.1499-03 ! 3.7000 ! 72.8190 ! 0.8711 ! ! 2.2998-03 ! 3.7000 ! 67.9596 ! 0.8537 ! 3.7000 ! 62.4328 ! ! 3.4498-03 ! 0.8380 ! ! 4.5997-03 ! 3.7000 ! 56.1202 ! 0.8242 ! !------! ! 5.7496-03 ! 3.7000 ! 48.8936 ! 0.8126 ! ! 6.8995-03 ! 3.7000 ! 40.6320 ! 0.8032 ! ! 8.0494-03 ! 3.7000 ! 31.2532 ! 0.7962 ! ! 9.1994-03 ! 3.7000 ! 20.7562 ! 0.7914 ! ! 1.0349-02 ! 3.7000 ! 9.2521 ! 0.7885 ! !------! ! 1.1499-02 ! 3.7000 ! -3.0468 ! 0.7869 ! ! 1.2649-02 ! 3.7000! -15.8716! 0.7861 ! ! 1.3799-02 ! 3.7000 ! -28.9407 ! 0.7855 ! ! 1.4949-02 ! 3.7000 ! 31.7343 ! 0.4722 ! ! 1.6099-02 ! 3.7000 ! 31.4823 ! 0.4165 ! !------! ! 1.7249-02 ! 3.7000 ! 31.3848 ! 0.3594 ! ! 1.8399-02 ! 3.7000 ! 31.4011 ! 0.3011 ! ! 1.9549-02 ! 3.7000 ! 31.4976 ! 0.2419 ! ! 2.0699-02 ! 3.7000 ! 31.6481 ! 0.1820 ! ! 2.1848-02 ! 3.7000 ! 31.8327 ! 0.1216 ! !-----! ! 2.2998-02 ! 3.7000 ! 32.0367 ! 6.0911-02 ! ! 2.4148-02 ! 3.7000 ! 32.2496 ! 0.0 ! _____

### BLOCK: B8 MODEL: FLASH2

-----

INLET STREAMS: S13 S27 OUTLET VAPOR STREAM: S6 **OUTLET LIQUID STREAM: S10** PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 743.364 743.364 0.00000 MASS(KG/HR ) 43177.1 43177.1 0.168514E-15 ENTHALPY(GCAL/HR) -25.4859 -25.49020.166887E-03 ** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR

*** INPUT DATA *** TWO PHASE TP FLASH SPECIFIED TEMPERATURE C 50.0000 PRESSURE DROP 0.0 BAR MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000

*** RESULTS *** OUTLET TEMPERATURE С OUTLET PRESSURE BAR 6.0000 HEAT DUTY GCAL/HR -0.42540E-02 VAPOR FRACTION 0.0000

V-L PHASE EQUILIBRIUM :

COMP	F(I) = X(I)	Y(I) = K(I)		
N-BUTANE	0.99900	0.99900	0.97512	0.84947
WATER	0.99730E-03	0.99730E-03	0.24878E-01	21.709

50.000

#### BLOCK: B9 MODEL: MIXER

_____

INLET STREAMS: MIXFIL2 MIXFIL1 CFG OUTLET STREAM: S17 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

*** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE

712.440 712.440 0.00000 MOLE(KMOL/HR) 46955.0 MASS(KG/HR) 46955.0 0.154956E-15 ENTHALPY(GCAL/HR) 0.00000 -28.9395 1.00000 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR *** INPUT DATA *** TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 OUTLET PRESSURE: MINIMUM OF INLET STREAM PRESSURES BLOCK: B10 MODEL: PUMP -----INLET STREAM: S10 **OUTLET STREAM:** S12 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 743.364 743.364 0.00000 MASS(KG/HR) 0.00000 43177.1 43177.1 ENTHALPY(GCAL/HR) -25.4902 -25.4902 0.378440E-07 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR *** INPUT DATA *** OUTLET PRESSURE BAR 6.00000 PUMP EFFICIENCY 0.75000 DRIVER EFFICIENCY 1.00000 FLASH SPECIFICATIONS:

 FLASH SPECIFICATIONS:

 LIQUID PHASE CALCULATION

 NO FLASH PERFORMED

 MAXIMUM NUMBER OF ITERATIONS
 30

 TOLERANCE
 0.000100000

*** RESULTS *** VOLUMETRIC FLOW RATE CUM/HR 79.5748 PRESSURE CHANGE BAR 0.0 NPSH AVAILABLE METER 16.7963 FLUID POWER KW 0.0 BRAKE POWER KW 0.0 ELECTRICITY KW 0.0 PUMP EFFICIENCY USED 0.75000 NET WORK REQUIRED KW 0.0 HEAD DEVELOPED METER 0.0 BLOCK: B11 MODEL: HEATX _____ HOT SIDE: _____ INLET STREAM: **BUTTER2 OUTLET STREAM: S**3 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG COLD SIDE: -----INLET STREAM: S37 OUTLET STREAM: S18 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 813.888 813.888 0.00000 MASS(KG/HR ) 0.00000 57619.3 57619.3 -37.2957 ENTHALPY(GCAL/HR) -37.2957 0.198867E-06 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30

CONVERGENCE TOLERANCE

FLOW DIRECTION AND SPECIFICA COUNTERCURRENT HEAT I	EXCHANGER	
SPECIFIED HOT OUTLET TEN	ЛР	
SPECIFIED VALUE C	80.0000	
LMTD CORRECTION FACTOR	R 1	.00000
PRESSURE SPECIFICATION:		
HOT SIDE PRESSURE DROP	BAR 0	.0000
COLD SIDE PRESSURE DROP	BAR 0	.0000
HEAT TRANSFER COEFFICIENT SP	ECIFICATION:	
HOT LIQUID COLD LIQUII	D KCAL/HR-SQM-K	X 730.8684
HOT 2-PHASE COLD LIQUID	KCAL/HR-SQM-K	730.8684
HOT VAPOR COLD LIQUII	O KCAL/HR-SQM-K	730.8684
HOT LIQUID COLD 2-PHAS	SE KCAL/HF	R-SQM-K 730.8684
HOT 2-PHASE COLD 2-PHAS	SE KCAL/HR-SQM-K	X 730.8684
HOT VAPOR COLD 2-PHAS	SE KCAL/HF	R-SQM-K 730.8684
HOT LIQUID COLD VAPOR	R KCAL/HR-SQM-K	730.8684
HOT 2-PHASE COLD VAPOR	KCAL/HR-SQM-K	730.8684
	R KCAL/HR-SQM-K	
	C C	

*** OVERALL RESULTS ***

STREAMS:

BUTTER2>	HOT	> S3
T= 1.4909D+02		T= 8.0000D+01
P= 3.9000D+00		P= 3.9000D+00
V= 0.0000D+00		V= 0.0000D+00
S18 <	COLD	< S37
T= 5.1547D+01		T= 4.6999D+01
P= 6.0000D+00		P= 6.0000D+00
V= 3.9907D-02		V= 0.0000D+00

DUTY AND AREA:

CALCULATED HEAT DUTY GCA	AL/HR	0.3001
CALCULATED (REQUIRED) AREA	SQM	6.9950
ACTUAL EXCHANGER AREA	SQM	6.9950
PER CENT OVER-DESIGN		0.0000

HEAT TRANSFER COEFFICIENT:

AVERAGE COEFFI	CIENT (DIRTY)	KCAL/HR-SQM-K	730.8685
UA (DIRTY)	CAL/SEC-K	1420.1278	

LOG-MEAN TEMPERATURE DI	FFERENCE:	
LMTD CORRECTION FAC	CTOR	1.0000
LMTD (CORRECTED)	С	58.6902
NUMBER OF SHELLS IN S	1	
PRESSURE DROP:		
HOTSIDE, TOTAL	BAR	0.0000
COLDSIDE, TOTAL	BAR	0.0000
COLDSIDE, IOTAL	DAK	0.0000

*** ZONE RESULTS ***

# TEMPERATURE LEAVING EACH ZONE:

	НОТ		
HOT IN	LIQ	 LIQ	HOT OUT
>		>	
149.1	113.6	80.0	
COLDOUT	BOIL	LIQ	COLDIN
<		<	
51.5	51.6	47.0	
	I	I	
	COLD		

# ZONE HEAT TRANSFER AND AREA:

-----

ZONE	HEAT DUT	Y	AREA	LMTD	AVERAGE	U UA
C	CAL/HR	SQM	С	KCAL/I	HR-SQM-K	CAL/SEC-K
1	0.157	2.7337	78.4610	730.86	84 55	4.9839
2	0.143	4.2614	46.00	73 730.	8684 86	5.1438

HEATX COLD-TQCU B11 TQCURV INLET

PRESSURE PROFILE:CONSTANT2PRESSURE DROP:0.0BARPROPERTY OPTION SET:NRTL-RKRENON (NRTL) / REDLICH-KWONG

-						
!	DUTY	! PRE	S ! T	EMP	! VFRAC	!
!	!	!	!	!		
!	!	!	!	!		
!	!	!	!	!		
!	GCAL/HR	! BAR	! C	!	!	
!	!	!	!	!		

0.0 !			
	6.0000 ! 51.5467 ! 3.	9907-02 !	
1.4288-02 !	6.0000 ! 51.5422 ! 3.63	314-02 !	
2.8576-02 !	6.0000 ! 51.5396 ! 3.27	711-02 !	
4.2864-02 !	6.0000 ! 51.5388 ! 2.90	098-02 !	
5.7153-02 !	6.0000 ! 51.5395 ! 2.54	475-02 !	
+	+++	!	
7.1441-02 !	6.0000 ! 51.5417 ! 2.18	843-02 !	
8.5729-02 !	6.0000 ! 51.5452 ! 1.82	203-02 !	
0.1000 !	6.0000 ! 51.5500 ! 1.45	555-02 !	
0.1143 !	6.0000 ! 51.5558 ! 1.09	900-02 !	
0.1286 !	6.0000 ! 51.5627 ! 7.23	374-03 !	
+	+++	!	
0.1429 !	6.0000 ! 51.5705 ! 3.50	590-03 !	
0.1568 !	6.0000 ! 51.5788 ! BUH	3>0.0 !	
0.1572 !	6.0000 ! 51.5658 !	0.0 !	
0.1715 !	6.0000 ! 51.1115 !	0.0 !	
0.1857 !	6.0000 ! 50.6566 !	0.0 !	
+	+++	!	
0.2000 !	6.0000 ! 50.2012 !	0.0 !	
	6.0000 ! 49.7453 !		
0.2286 !	6.0000 ! 49.2888 !	0.0 !	
0.2429 !	6.0000 ! 48.8318 !	0.0 !	
0.2572 !	6.0000 ! 48.3742 !	0.0 !	
+	+++	!	
0.2715 !	6.0000 ! 47.9161 !	0.0 !	
0.2858 !	6.0000 ! 47.4575 !	0.0 !	
0.3001 !	6.0000 ! 46.9984 !	0.0 !	

# HEATX HOT-TQCUR B11 TQCURV INLET

_____

PRESSURE PROFILE:CONSTANT2PRESSURE DROP:0.0BARPROPERTY OPTION SET:NRTL-RKRENON (NRTL) / REDLICH-KWONG

				-		
! DUTY	! PRES	! TE	MP	! VF	FRAC	!
!!	!	!	!			
!!	!	!		!		
!!	!	!	!			
! GCAL/HR !	BAR	! C	!	!		
!!	!	!	!			
!=======	=!=====		=!=====		===!=====	!
! 0.0 !	3.9000 !	149.08	54 !	0.0	!	
! 1.4288-02 !	3.9000 !	145.90	86 !	0.0	!	
! 2.8576-02 !	3.9000 !	142.72	10 !	0.0	!	
! 4.2864-02 !	3.9000 !	139.52	25 !	0.0	!	

! 5.7153-02 !	3.9000 ! 136.3130 !	0.0	!
!+	+++	!	
! 7.1441-02 !	3.9000 ! 133.0925 !	0.0	!
! 8.5729-02 !	3.9000 ! 129.8610 !	0.0	!
! 0.1000 !	3.9000 ! 126.6183 !	0.0	!
! 0.1143 !	3.9000 ! 123.3643 !	0.0	!
! 0.1286 !	3.9000 ! 120.0990 !	0.0	!
!+	+++	!	
! 0.1429 !	3.9000 ! 116.8223 !	0.0	!
! 0.1568 !	3.9000 ! 113.6284 !	0.0	!
! 0.1572 !	3.9000 ! 113.5340 !	0.0	!
! 0.1715 !	3.9000 ! 110.2342 !	0.0	!
! 0.1857 !	3.9000 ! 106.9228 !	0.0	!
!+	+++	!	
! 0.2000 !	3.9000 ! 103.5995 !	0.0	!
! 0.2143 !	3.9000 ! 100.2645 !	0.0	!
! 0.2286 !	3.9000 ! 96.9174 !	0.0	!
! 0.2429 !	3.9000 ! 93.5584 !	0.0	!
! 0.2572 !	3.9000 ! 90.1872 !	0.0	!
!+	+++	!	
! 0.2715 !	3.9000 ! 86.8038 !	0.0	!
! 0.2858 !	3.9000 ! 83.4081 !	0.0	!
! 0.3001 !	3.9000 ! 80.0000 !	0.0	!

BLOCK: B12 MODEL: MIXER

_____

INLET STREAMS:S20S36OUTLET STREAM:S8PROPERTY OPTION SET:NRTL-RKRENON (NRTL) / REDLICH-KWONG

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 56.1220 0.00000 56.1220 MASS(KG/HR ) 3262.00 3262.00 0.00000 ENTHALPY(GCAL/HR) 0.00000 -1.65021 1.00000

*** CO2 EQUIVALENT SUMMARY ***
FEED STREAMS CO2E 0.00000 KG/HR
PRODUCT STREAMS CO2E 0.00000 KG/HR
NET STREAMS CO2E PRODUCTION 0.00000 KG/HR
TOTAL CO2E PRODUCTION 0.00000 KG/HR

*** INPUT DATA *** TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE0.000100000OUTLET PRESSURE:MINIMUM OF INLET STREAM PRESSURES

#### BLOCK: B13 MODEL: PUMP

INLET STREAM: S1 OUTLET STREAM: S13 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***OUTLET PRESSURE BAR6.00000PUMP EFFICIENCY0.75000DRIVER EFFICIENCY1.00000

FLASH SPECIFICATIONS:LIQUID PHASE CALCULATIONNO FLASH PERFORMEDMAXIMUM NUMBER OF ITERATIONSTOLERANCE0.000100000

*** RESULTS *** VOLUMETRIC FLOW RATE CUM/HR 79.5729 PRESSURE CHANGE BAR 2.00000 NPSH AVAILABLE METER -20.7902 FLUID POWER KW 4.42072 BRAKE POWER KW 5.89429 ELECTRICITY KW 5.89429 PUMP EFFICIENCY USED 0.75000 NET WORK REQUIRED KW 5.89429 HEAD DEVELOPED METER 37.5864 NEGATIVE NPSH MAY BE DUE TO VAPOR IN THE FEED OR UNACCOUNTED SUCTION HEAD.

BLOCK: B15 MODEL: PUMP

-----

INLET STREAM: S40 OUTLET STREAM: S25 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR ) 56.1220 56.1220 0.00000 MASS(KG/HR ) 3262.00 3262.00 0.00000 ENTHALPY(GCAL/HR ) -2.01341 -2.01257 -0.414395E-03

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***	
OUTLET PRESSURE BAR	6.00000
PUMP EFFICIENCY	0.75000
DRIVER EFFICIENCY	1.00000

FLASH SPECIFICATIONS:LIQUID PHASE CALCULATIONNO FLASH PERFORMEDMAXIMUM NUMBER OF ITERATIONSTOLERANCE0.000100000

*** RESULTS ***	
VOLUMETRIC FLOW RATE CUM/HR	5.45791
PRESSURE CHANGE BAR	4.80000
NPSH AVAILABLE METER	0.0
FLUID POWER KW	0.72772
BRAKE POWER KW	0.97029
ELECTRICITY KW	0.97029
PUMP EFFICIENCY USED	0.75000
NET WORK REQUIRED KW	0.97029
HEAD DEVELOPED METER	81.8960

BLOCK: B16 MODEL: DUPL

INLET STREAM: VAPOR OUTLET STREAM: S26

BLOCK: B17 MODEL: FSPLIT

-----

INLET STREAM: S12

OUTLET STREAMS: S16 S21 S22 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

*** MASS AND ENERGY BALANCE *** OUT RELATIVE DIFF. IN TOTAL BALANCE MOLE(KMOL/HR) 743.364 743.364 0.00000 MASS(KG/HR) 43177.1 43177.1 -0.168514E-15 ENTHALPY(GCAL/HR) -25.4902 -25.4902 -0.519969E-11

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

FRACTION OF FLOW STRM=S16 FRAC= 0.77350 STRM=S21 FRAC= 0.20880

*** RESULTS ***

STREAM= S16	SPLIT=	0.773	350 KEY= 0	STREAM-ORDER= 1
S21	0.208	80	0	2
S22	0.017700	0	3	

BLOCK: B19 MODEL: PUMP

-----

INLET STREAM: S29 OUTLET STREAM: S28 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 3.94793 3.94793 0.00000 MASS(KG/HR ) 195.617 195.617 0.00000 ENTHALPY(GCAL/HR) -0.166462 -0.166459 -0.187166E-04

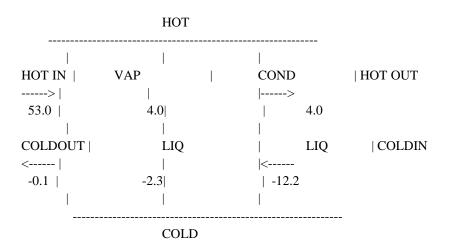
*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA *** OUTLET PRESSURE BAR PUMP EFFICIENCY DRIVER EFFICIENCY	4.00000 0.75000 1.00000	
FLASH SPECIFICATIONS: LIQUID PHASE CALCULATION NO FLASH PERFORMED		
MAXIMUM NUMBER OF ITERA TOLERANCE	ATIONS 0.000100000	30
TOLEKANCE	0.000100000	
*** RESULTS ***		
VOLUMETRIC FLOW RATE CU		0.32559
PRESSURE CHANGE BAR	0.30000	
NPSH AVAILABLE METER	0.0	
FLUID POWER KW	0.0027132	
BRAKE POWER KW	0.0036176	
ELECTRICITY KW	0.0036176	
PUMP EFFICIENCY USED	0.75000	76
NET WORK REQUIRED KW HEAD DEVELOPED METER	0.00361 5.09168	
HOT SIDE:  INLET STREAM: S8 OUTLET STREAM: S40 PROPERTY OPTION SET: NRTL-RK COLD SIDE: 	RENON (NRTL) / REDL	ICH-KWONG
INLET STREAM: \$38		
OUTLET STREAM: \$39		
PROPERTY OPTION SET: NRTL-RK	RENON (NRTL) / REDL	ICH-KWONG
*** MASS AND ENERG	Y BALANCE ***	
	RELATIVE DIFF.	
TOTAL BALANCE		
MOLE(KMOL/HR) 1618.01	1618.01	0.00000
MASS(KG/HR ) 39012.0		0.00000
ENTHALPY(GCAL/HR)	-116.562 -116.56	52 -0.122839E-10
	0.00000 KG/HR 0.00000 KG/HR	1
UTILITIES CO2E PRODUCTION		KG/HR
TOTAL CO2E PRODUCTION		

FLASH SPECS FOR HOT SIDE:	
TWO PHASE FLASH	
MAXIMUM NO. ITERATIONS 30	
CONVERGENCE TOLERANCE 0.000100000	
FLASH SPECS FOR COLD SIDE:	
TWO PHASE FLASH	
MAXIMUM NO. ITERATIONS 30	
CONVERGENCE TOLERANCE 0.000100000	
FLOW DIRECTION AND SPECIFICATION:	
COUNTERCURRENT HEAT EXCHANGER	
SPECIFIED HOT VAPOR FRACTION	
SPECIFIED VALUE 0.0000	
LMTD CORRECTION FACTOR 1.00000	
PRESSURE SPECIFICATION:	
HOT SIDE PRESSURE DROP BAR 0.0000	
COLD SIDE PRESSURE DROP BAR 0.0000	
HEAT TRANSFER COEFFICIENT SPECIFICATION:	
HOT LIQUID COLD LIQUID KCAL/HR-SQM-K 730.8684	
HOT 2-PHASE COLD LIQUID KCAL/HR-SQM-K 730.8684	
HOT VAPOR COLD LIQUID KCAL/HR-SQM-K 730.8684	
HOT LIQUID COLD 2-PHASE KCAL/HR-SQM-K 730.8684	
HOT 2-PHASE COLD 2-PHASE KCAL/HR-SQM-K 730.8684	
HOT VAPOR COLD 2-PHASE KCAL/HR-SQM-K 730.86	84
HOT LIQUID COLD VAPOR KCAL/HR-SQM-K 730.8684	
HOT 2-PHASE COLD VAPOR KCAL/HR-SQM-K 730.8684	
HOT VAPOR COLD VAPOR KCAL/HR-SQM-K 730.8684	

# *** OVERALL RESULTS ***

STREAMS:


S8>	HOT	> S40
T= 5.3000D+01		T= 4.0012D+00
P= 1.2000D+00		P= 1.2000D+00
V= 1.0000D+00		V= 0.0000D+00
S39 <	COLD	< S38
T=-9.0640D-02		T= -1.2222D+01
P= 4.4816D+00		P= 4.4816D+00
V= 0.0000D+00 $\mid$		V= 0.0000D+00

DUTY AND AREA:				
CALCULATED HEAT	T DUTY GCAL	/HR	0.3632	2
CALCULATED (REQ	UIRED) AREA	SQM	42.88	18
ACTUAL EXCHANG	ER AREA	SQM	42.88	18
PER CENT OVER-DE	SIGN	0.00	00	
HEAT TRANSFER COEFFIC	CIENT:			
AVERAGE COEFFIC	IENT (DIRTY)	KCAL/HR-S	QM-K	730.8684
UA (DIRTY)	CAL/SEC-K	8705	5.8140	
LOG-MEAN TEMPERATUR	E DIFFERENCE:			
LMTD CORRECTION	FACTOR	1.00	00	
LMTD (CORRECTED	) C	11.5	885	
NUMBER OF SHELL	S IN SERIES	1		
PRESSURE DROP:				
HOTSIDE, TOTAL	BAR	0.0000		
COLDSIDE, TOTAL	BAR	0.00	00	

*** ZONE RESULTS ***

-----

# TEMPERATURE LEAVING EACH ZONE:



# ZONE HEAT TRANSFER AND AREA:

 ZONE
 HEAT DUTY
 AREA
 LMTD
 AVERAGE U
 UA

 GCAL/HR
 SQM
 C
 KCAL/HR-SQM-K
 CAL/SEC-K

 1
 0.066
 4.1175
 21.9479
 730.8684
 835.9231

 2
 0.297
 38.7643
 10.4882
 730.8684
 7869.8909

HEATX COLD-TQCU B20 TQCURV INLET

-----

# PRESSURE PROFILE:CONSTANT2PRESSURE DROP:0.0BARPROPERTY OPTION SET:NRTL-RKRENON (NRTL) / REDLICH-KWONG

! DUTY	! PRES ! TEMP	····· ! VFRAC	!
!!	, , ,		
!!			
!!!	1 1 1		
	! BAR ! C !	!	
	1 1 1		
-	!!	-	
	4.4816 ! -9.0640-02 !		
	4.4816 ! -0.6677 !		
	4.4816 ! -1.2449 !		
	4.4816 ! -1.8221 !		
	4.4816 ! -2.2948 !		
	++++		
! 6.9180-02 !	4.4816 ! -2.3994 !		
! 8.6475-02 !	4.4816 ! -2.9767 !	0.0 !	
0.1038 !	4.4816 ! -3.5541 !	0.0 !	
0.1211 !	4.4816 ! -4.1316 !	0.0 !	
0.1384 !	4.4816 ! -4.7091 !	0.0 !	
!+	+++	!	
0.1557 !	4.4816 ! -5.2867 !	0.0 !	
. 0.1729 !	4.4816 ! -5.8643 !	0.0 !	
. 0.1902 !	4.4816 ! -6.4420 !	0.0 !	
0.2075 !	4.4816 ! -7.0198 !	0.0 !	
0.2248 !	4.4816 ! -7.5976 !	0.0 !	
	+++++		
		0.0 !	
	4.4816 ! -8.7534 !		
	4.4816 ! -9.3314 !		
	4.4816 ! -9.9095 !		
	4.4816 ! -10.4876 !		
	+++		
	4.4816 ! -11.0657 !		
	4.4816 ! -11.6439 !		
	4.4816 ! -12.2222 !		

HEATX HOT-TQCUR B20 TQCURV INLET

-----

-----

PRESSURE PROFILE:CONSTANT2PRESSURE DROP:0.0BARPROPERTY OPTION SET:NRTL-RKRENON (NRTL) / REDLICH-KWONG

DUTY	! PRES ! TEMP	! VFRAC	!
!	!!!!		
!	!!!!		
!	!!!!		
	BAR ! C !	!	
!	!!!		
	==!=====!===		!
0.0 !	1.2000 ! 53.0000 !	1.0000 !	
1.7295-02 !	1.2000 ! 40.6738 !	1.0000 !	
3.4590-02 !	1.2000 ! 27.9963 !	1.0000 !	
5.1885-02 !	1.2000 ! 14.9556 !	1.0000 !	
6.6048-02 !	1.2000 ! 4.0012 ! DEV	W>1.0000 !	
+	+++	!	
6.9180-02 !	1.2000 ! 4.0012 !	0.9895 !	
	1.2000 ! 4.0012 ! 0.93		
	1.2000 ! 4.0012 ! 0.87		
0.1211 !	1.2000 ! 4.0012 ! 0.81	49 !	
0.1384 !	1.2000 ! 4.0012 ! 0.75	66 !	
+	+++	!	
0.1557 !	1.2000 ! 4.0012 ! 0.69	984 !	
0.1729 !	1.2000 ! 4.0012 ! 0.64	02 !	
0.1902 !	1.2000 ! 4.0012 ! 0.58	320 !	
	1.2000 ! 4.0012 ! 0.52		
0.2248 !	1.2000 ! 4.0012 ! 0.46	56 !	
+	++	!	
0.2421 !	1.2000 ! 4.0012 ! 0.40	074 !	
0.2594 !	1.2000 ! 4.0012 ! 0.34	92 !	
0.2767 !	1.2000 ! 4.0012 ! 0.29	010 !	
0.2940 !	1.2000 ! 4.0012 ! 0.23	28 !	
0.3113 !	1.2000 ! 4.0012 ! 0.17	'46 !	
+	+++	!	
0.3286 !	1.2000 ! 4.0012 ! 0.11	64 !	
0.3459 !	1.2000 ! 4.0012 ! 5.82	204-02 !	
0.3632 !	1.2000 ! 4.0012 ! 0.0	!	

# BLOCK: B21 MODEL: PUMP

INLET STREAM: S7 OUTLET STREAM: S35 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

 *** CO2 EQUIVALENT SUMMARY ***
FEED STREAMS CO2E 0.0000 KG/HR
PRODUCT STREAMS CO2E PRODUCTION 0.0000 KG/HR
UTILITIES CO2E PRODUCTION 0.0000 KG/HR
TOTAL CO2E PRODUCTION 0.0000 KG/HR

*** INPUT DATA ***OUTLET PRESSURE BAR4.00000PUMP EFFICIENCY0.75000DRIVER EFFICIENCY1.00000

FLASH SPECIFICATIONS:LIQUID PHASE CALCULATIONNO FLASH PERFORMEDMAXIMUM NUMBER OF ITERATIONS30TOLERANCE0.000100000

*** RESULTS ***	
VOLUMETRIC FLOW RATE CUM/HR	72.7842
PRESSURE CHANGE BAR	2.43517
NPSH AVAILABLE METER	0.0
FLUID POWER KW	4.92338
BRAKE POWER KW	6.56451
ELECTRICITY KW	6.56451
PUMP EFFICIENCY USED	0.75000
NET WORK REQUIRED KW	6.56451
HEAD DEVELOPED METER	41.7326

BLOCK: B22 MODEL: MIXER

_____

INLET STREAMS: S17 S25 OUTLET STREAM: S37 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

*** MASS AND ENERGY BALANCE *** OUT IN **RELATIVE DIFF.** TOTAL BALANCE MOLE(KMOL/HR) 768.562 768.562 0.00000 MASS(KG/HR) 50217.0 50217.0 0.00000 ENTHALPY(GCAL/HR) -30.9521 -30.9521 0.794885E-07

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

TWOPHASEFLASHMAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000OUTLET PRESSURE:MINIMUM OF INLET STREAM PRESSURES

BLOCK: B24 MODEL: HEATX

-----

HOT SIDE:

INLET STREAM: RECSOLV2 OUTLET STREAM: S32 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG COLD SIDE: -------

INLET STREAM: LIQ-B OUTLET STREAM: S14 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 14.9697 14.9697 0.00000 MASS(KG/HR ) 7104.45 7104.45 0.583760E-13 -4.44882 ENTHALPY(GCAL/HR) -4.44882 -0.128774E-08

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

30 0.000100000

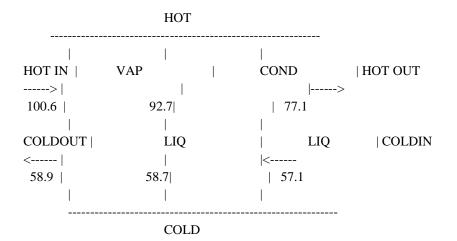
FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

30 0.000100000

FLOW DIRECTION AND SPECIFICATION:

SPECIFIED EX	RENT HEAT EX CHANGER DUTY	ľ			
SPECIFIED VA	LUE	GCAL/HR		0.0065	
LMTD CORREC	CTION FACTOR		1.00000		
PRESSURE SPECIFIC	ATION:				
HOT SIDE PRE	ESSURE DROP	BAR	0.0000		
COLD SIDE PR	ESSURE DROP	BAR	0.0000		
HEAT TRANSFER CC	DEFFICIENT SPE	CIFICATION:			
HOT LIQUID	COLD LIQUID	KCAL/HR-SQM	1-K	730.8684	
HOT 2-PHASE	COLD LIQUID	KCAL/HR-SQM	1-K	730.8684	
HOT VAPOR	COLD LIQUID	KCAL/HR-SQM	1-K	730.8684	ļ
HOT LIQUID	COLD 2-PHASE	E KCAL/	HR-SQM	-K	730.8684
HOT 2-PHASE	COLD 2-PHASE	KCAL/HR-SQM	1-K	730.8684	
HOT VAPOR	COLD 2-PHASE	E KCAL/	HR-SQM	-K	730.8684
HOT LIQUID	COLD VAPOR	KCAL/HR-SQM	1-K	730.8684	
HOT 2-PHASE	COLD VAPOR	KCAL/HR-SQM	1-K	730.8684	
HOT VAPOR	COLD VAPOR	KCAL/HR-SQM	1-K	730.8684	
		-			

# *** OVERALL RESULTS ***


# STREAMS:

RECSOLV2>	HOT	> S32					
T= 1.0062D+02		T= 7.7114D+0	1				
P= 3.7000D+00	P=	= 3.7000D+00					
V= 1.0000D+00		V= 8.8985D-01	_				
	ĺ						
S14 <  COLD	<]	LIQ-B					
T= 5.8919D+01	Í	T= 5.7061D+0	1				
P= 6.0000D+00		P= 6.0000D+00	)				
V= 0.0000D+00		V= 0.0000D+0	0				
DUTY AND AREA:							
CALCULATED HEAT	DUTY GCAL	/HR	0.0065				
CALCULATED (REQU	IRED) AREA	SQM	0.3258				
ACTUAL EXCHANGE		-					
PER CENT OVER-DES		0.0000					
HEAT TRANSFER COEFFICI	ENT·						
AVERAGE COEFFICIE	∕I_K	730 8684					
UA (DIRTY)				/30.0004			
OA(DIRTT)	CAL/SLC-K	00.138	1				
LOG-MEAN TEMPERATURE DIFFERENCE:							
LMTD CORRECTION FACTOR 1.0000							

LMTD (CORRECTED)	С	27.3568	
NUMBER OF SHELLS IN S	1		
PRESSURE DROP:			
HOTSIDE, TOTAL	BAR	0.0000	
COLDSIDE, TOTAL	BAR	0.0000	

*** ZONE RESULTS ***

# TEMPERATURE LEAVING EACH ZONE:



# ZONE HEAT TRANSFER AND AREA:

_____

ZONE HEAT DUTY		AREA	LMTD	AVERAG	EU UA	
G	CAL/HR	SQM	C K	CAL/HI	R-SQM-K	CAL/SEC-K
1	0.001	0.0273	37.7116	730.86	84 5	5.5412
2	0.006	0.2985	26.4099	730.86	84 6	0.5975

HEATX COLD-TQCU B24 TQCURV INLET

PRESSURE PROFILE:CONSTANT2PRESSURE DROP:0.0BARPROPERTY OPTION SET:NRTL-RKRENON (NRTL) / REDLICH-KWONG

!	DUTY	! PRE	S	! TEI	MP	VFRAC	!	
!	!	!	!	!				
!	!	!	!	!				
!	!	!	!	!				
!	GCAL/HR	! BAR	! C	!	!			
!	!	!	!	!				
!:		===!====		==!====		====!====		==!
!	0.0 !	6.0000	)! 58.9	192!	0.0	!		
!	3.1017-04 !	6.0000	) ! 58.830	)8!	0.0	!		

! 6.2035-04 !	6.0000 ! 58.7424 !	0.0	!	
! 7.5228-04 !	6.0000 ! 58.7048 !	0.0	!	
! 9.3052-04 !	6.0000 ! 58.6540 !	0.0	!	
!+	++++	!		
! 1.2407-03 !	6.0000 ! 58.5655 !	0.0		!
! 1.5509-03 !	6.0000 ! 58.4771 !	0.0	!	
! 1.8610-03 !	6.0000 ! 58.3887 !	0.0	!	
! 2.1712-03 !	6.0000 ! 58.3002 !	0.0	!	
! 2.4814-03 !	6.0000 ! 58.2118 !	0.0	!	
!+	++++	!		
! 2.7916-03 !	6.0000 ! 58.1233 !	0.0	!	
! 3.1017-03 !	6.0000 ! 58.0348 !	0.0	!	
! 3.4119-03 !	6.0000 ! 57.9463 !	0.0	!	
! 3.7221-03 !	6.0000 ! 57.8578 !	0.0	!	
! 4.0323-03 !	6.0000 ! 57.7693 !	0.0	!	
!+	+++	!		
! 4.3424-03 !	6.0000 ! 57.6808 !	0.0	!	
! 4.6526-03 !	6.0000 ! 57.5923 !	0.0	!	
! 4.9628-03 !	6.0000 ! 57.5038 !	0.0	!	
! 5.2729-03 !	6.0000 ! 57.4152 !	0.0	!	
! 5.5831-03 !	6.0000 ! 57.3267 !	0.0	!	
!+	+++	!		
! 5.8933-03 !	6.0000 ! 57.2381 !	0.0	!	
! 6.2035-03 !	6.0000 ! 57.1496 !	0.0	!	
! 6.5136-03 !	6.0000 ! 57.0610 !	0.0	!	

HEATX HOT-TQCUR B24 TQCURV INLET

_____

PRESSURE PROFILE: CONSTANT2 PRESSURE DROP: 0.0 BAR PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG

! DUTY	! PRE	S ! T	EMP	! VFRAC	!
!!!	!	!	!		
!!!	!	!	!		
!!!	!	!	!		
! GCAL/HR	! BAR	! C	!	!	
!!	!	!	!		
!========	!		==!===	!	!
! 0.0 !	3.7000	! 100.6	5183 !	1.0000 !	
! 3.1017-04 !	3.7000	97.364	6 !	1.0000 !	
! 6.2035-04 !	3.7000	! 94.090	)5 !	1.0000 !	
! 7.5228-04 !	3.7000	92.691	5 ! DE	W>1.0000 !	
! 9.3052-04 !	3.7000	92.319	94!	0.9963 !	
!+	+-		-+	!	
! 1.2407-03 !	3.7000	91.658	85!	0.9899 !	

! 1.5509-03 !	3.7000 ! 90.9803 !	0.9835 !
! 1.8610-03 !	3.7000 ! 90.2841 !	0.9772 !
! 2.1712-03 !	3.7000 ! 89.5693 !	0.9709 !
! 2.4814-03 !	3.7000 ! 88.8351 !	0.9647 !
!+	++	!
! 2.7916-03 !	3.7000 ! 88.0807 !	0.9585 !
! 3.1017-03 !	3.7000 ! 87.3053 !	0.9524 !
! 3.4119-03 !	3.7000 ! 86.5081 !	0.9464 !
! 3.7221-03 !	3.7000 ! 85.6882 !	0.9404 !
! 4.0323-03 !	3.7000 ! 84.8446 !	0.9345 !
!+	+++	!
•	3.7000 ! 83.9764 !	-
! 4.3424-03 !		0.9286 !
! 4.3424-03 !	3.7000 ! 83.9764 !	0.9286 !
! 4.3424-03 ! ! 4.6526-03 ! ! 4.9628-03 !	3.7000 ! 83.9764 ! 3.7000 ! 83.0825 !	0.9286 ! 0.9229 !
! 4.3424-03 ! ! 4.6526-03 ! ! 4.9628-03 ! ! 5.2729-03 !	3.7000 ! 83.9764 ! 3.7000 ! 83.0825 ! 3.7000 ! 82.1618 !	0.9286 ! 0.9229 ! 0.9172 ! 0.9115 !
! 4.3424-03 ! ! 4.6526-03 ! ! 4.9628-03 ! ! 5.2729-03 ! ! 5.5831-03 !	3.7000 ! 83.9764 ! 3.7000 ! 83.0825 ! 3.7000 ! 82.1618 ! 3.7000 ! 81.2131 !	0.9286 ! 0.9229 ! 0.9172 ! 0.9115 ! 0.9060 !
! 4.3424-03 ! ! 4.6526-03 ! ! 4.9628-03 ! ! 5.2729-03 ! ! 5.5831-03 ! !+	3.7000 ! 83.9764 ! 3.7000 ! 83.0825 ! 3.7000 ! 82.1618 ! 3.7000 ! 81.2131 ! 3.7000 ! 80.2353 !	0.9286 ! 0.9229 ! 0.9172 ! 0.9115 ! 0.9060 !
! 4.3424-03 ! ! 4.6526-03 ! ! 4.9628-03 ! ! 5.2729-03 ! ! 5.5831-03 ! !	3.7000 ! 83.9764 ! 3.7000 ! 83.0825 ! 3.7000 ! 82.1618 ! 3.7000 ! 81.2131 ! 3.7000 ! 80.2353 !	0.9286 ! 0.9229 ! 0.9172 ! 0.9115 ! 0.9060 !
! 4.3424-03 ! ! 4.6526-03 ! ! 4.9628-03 ! ! 5.2729-03 ! ! 5.5831-03 ! !	3.7000 ! 83.9764 ! 3.7000 ! 83.0825 ! 3.7000 ! 82.1618 ! 3.7000 ! 81.2131 ! 3.7000 ! 80.2353 ! +	0.9286 ! 0.9229 ! 0.9172 ! 0.9115 ! 0.9060 ! ! 0.9005 !

# Appendix C - Material Safety Data Sheets

This appendix includes the material safety data sheets for all major materials involved in the process. The MSDS forms are presented in the following order:

Butane Water Ethylene Glycol Potassium Carbonate Bunker C Fuel

MATHESON ask The Gas Professionals"	Cafotu Data Choot	ame: N-BUTANE Safety Data Sheet sps ID:
rial Name: N-BUTANE	SDS ID: MAT	king gas fire: Do not extinguish, unless leak can be stopped safely. Eliminate all ignition sou
•	* * *Section 1 - IDENTIFICATION* * *	TF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. C SON CENTER or doctor/physician if you feet unwell.
acturer Information	Canaral Informations 1.200.418. 2605	e in a welt-ventilated place. Protect from surtlight. Keep container tightly closed. Store locked up
e Road, Suite 302 Bridge, NJ 07920	Cented innomation:	ose in accordance with all applicable regulations. rds which do not Result in Classification r cause frostble upon sudden release of figuefied gas. May cause asphysia.
luct Identifier: N-BUTANE	VE	· · · Section 3 - COMPOSITION / INFORMATION ON INGREDIEN IS- · ·
Names/Synonyms	!	Component Percent Percent
MTG MSDS 11; BUTANE; LIQUIF.	MTG MSDS 11; BUTANE; LIQUIFIED PETROLEUM GAS; NORMAL BUTANE; BUTYL HYDRIDE; LPG; U-	
1011; C4H10		t Related Regulatory Information
ical Family hydrocarbons aliohatic		is product may be regulated, have exposure limits or other information identified as the following: A morthon pases (Alkane IC1-C40)
		* * *Section 4 - FIRST AID MFASHIRFS* * *
industrial		
ctions on Use		Iverse effects occur, remove to uncontaminated area. Give artificial respiration if not breathing. If t
NOTE KIOWI. * * * Sorti	* * *Section 2 - HAZARDS IDENTIFICATION* * *	cult, oxygen should be administered by qualified personnel. Get immediate medical attention.
laceification		ostbite or freezing occur, immediately flush with plenty of lukewarm water (105-115 F; 41-46 C). Di
Flammable gas. Category 1		T WATER. If warm water is not available, gently wrap affected parts in blankets. Get immediate mu
Gas under pressure, Liquefied gas		ntion.
Specific Target Organ Toxicity - Si ABEL ELEMENTS	Specific Target Organ Toxicity - Single Exposure, Category 3 (central nervous system) BEL ELEMENTS	rediately flush eyes with plenty of water for at least 15 minutes. Then get immediate medical attent
ol(s)		large amount is swallowed, get medical attention.
		rsicians
		i inhalation, consider oxygen. I mmediate
		ocation, frostbite, central nervous system effects
		Delayed
Word		
		Section 5 - FIRE FIGHLING MEASURES
1 Statement(s)		<ul> <li>Section 9 for Flammability Properties marke Arieina from the Chemical</li> </ul>
Extremely flammable gas		ere explosion hazard. Severe fire hazard. Vapor/air mixtures are explosive. The vapor is heavier the
Contains gas under pressure; may explode if heated	explode if heated	ors or gases may ignite at distant ignition sources and flash back.
May cause drowsiness and dizziness	155	ing Media
utionary Statement(s)		ion dioxide, regular dry chemical ve fines: water enrau nr for
ttion Keep away from heat, sparks, oper	ion Keep away from heat: sparks. open flame, and hot surfaces - No smoking. Avoid breathing gas. Use only	je mos. water sprag or rog Extinguishing Media
outdoors or in a well-ventilated area		ie known.
		3 Issue Date: 03/13/2013 Revision 1.0700 Print Date:

Material Name: N-BUTANE	Safety Data Sheet	SDS ID: MAT15370	Safety Data Sheet so so I So I So I So I So I So	SDS ID: MAT15370
Physical State: Color: Odor: PH: Rolling Print:	Gas Appearance: colorites Physical Form: unpleasant odor Deor Threehold: Melting/Freeking Point: -110.	coloritess, gas gas -138 °C -130 °C	RTECS Acute Toxicity (selected) The components of this material have been reviewed, and RTECS publishes the following endpoints N-BUTANE (106-97-9) Inheletion: 660000 mg/m3/2 hour inheletion Mouse LC50 650000 mg/m3/2 hour inheletion: Res LC50	ii
Decomposition: LEL: Vanor Presenter	rische Eveporation Fater DEL: mmHn @ 20 °C Henrie Law Constant?	Not available 8.5 % 0.0073340 ann.m3/mcl	Acute Toxicity Level N-BUTARIE (166-97-8) N-BUTARIE (166-97-8)	
Vapor Density (alr = 1): Water Solubility: KOC: Viscosity:	Specific Gravity (water-1): Log KOW: Auto Ignition: Molecular Weight:	0.05788 @ 0 °C 2.89 58.12	Immediate Effects and the second and the second system effects authorsolon, froatble, cantral nervous system effects Delayed Effects No information on significant adverse effects.	
Molecular Formula: C-FI3-(C-FI2 Solvent Solubility Soluble: alcohol, ether, chloroform	C-HS(C-HZ/2C-H3 e. chloroform e. chloroform - O. STABILITY AND BEACTIVITY		Instance/orrestving uses No animal testing data available for skin or eyes. RTECS Instations The components of this malerial have been reviewed and RTECS publishes no data as of the date on this comment.	on this
Reactivity No resolvity hazard is expected Chemical Stability Stable at normal tomperatures a Conditions to Avoid hear, flames, snarts and c	ity No reactivity hazard is expected. al Stability Stability ons to Arold Another starts and other sources of ignition. Minimize contact with material. Containers may rupture Avoid heat. fames, sparts and other sources of ignition.	iai. Containtets may ruchure	Target Organs N-BUTANE (106-97-8) contral nervous system Respiratory Senatrizer No data avaitable. Dermal Sensitizer	
or explore if exposed to heat. Possibly or Hazardous Reactions Will not polymerical. Incompatible Materials Hazardous Decomposition Combastion: cuides of carbon Acute and Chronic Toxides of Carbon Poly Component Analysis - LOSOU.CSO The component Analysis - LOSOU.CSOU.CSOU.CSO The component Analysis - LOSOU.CSOU.CSOU.CSOU.CSOU.CSOU.CSOU.CSOU.	or explode if exposed to heat. If ye flazardous Reactions will not polymetric. astble Materials conting meteries conting meteries combustion: oxides of cerbon Combustion: oxides of cerbon *Section 11 - TOXICOLOGICAL INFORMATION* *Section 11 - TOXICOLOGICAL INFORMATION* Combustion: oxides of cerbon *Section 11 - TOXICOLOGICAL INFORMATION* *Section 11 - TOXICOLOGICAL INFORMATION* Materials *Section 11 - TOXICOLOGICAL INFORMATION* *Section 21 - TOXICOLOGICAL INFORMATION* *Section 21 - TOXICOLOGICAL INFORMATION* *Section 31 - TOXICOLOGICAL INFORMATION*	wing selected endpoints are	No data available. Carcinogenicity Carcinogenicity None of his product's components are listed by ACGIH, IARC, NTP, OSHA or DFG. The component carcinogenicity The components of this material have been reviewed, and RTECS publishes data for one or more components. RECS Transcription: RTECS transcription	omponentis. omponents.
Page 5 of 8	Issue Date: 03/13/2013 Revision 1.0700	Print Date: 1209/2014	None known. Additional Data Stimulards such as epinephrine may induce venticular ftreflation. Stimulards such as epinephrine may induce venticular ftreflation. Stimulards such as epinephrine may induce venticular for file for the product's components. No LOLI ecotoodchy data are available for this product's components. No LOLI ecotoodchy data are available for this product's components. Page 6 of 8 Issue Date: 03/13/2013 Revision 1.0700 Phnt Data	Print Date: 12/09/2014

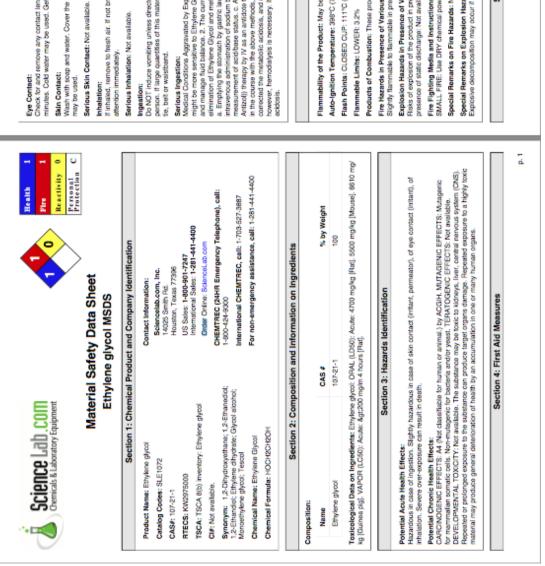
Safety Data Sheet Sos ID: MAT13370	HARDBARD COMPARIANCE COMPAR	Page 8 of 8 Psue Date: 03/13/2013 Revision 1.0700 Print Date: 12/09/2014
Material Name: N-BUTANE Safety Data Sheet Soc ID: MAT13370	Designation         Presence and Degradability         Constantiation         <	Page 7 of 8 Print Date: 03/13/2013 Revision 1.0700 Print Date: 12/09/2014

Skin Contact: Not applicable. Serious Skin Contact: Not available. Inhalation: Not applicable.	Serious inhelation: Not available. Ingestion: Not Applicable	Serious Ingestion: Not available.	A solid of the solid fill when the solid solution of the solid solution of the solid	Section 5: Fire and Explosion Data	resummenting to the research sector.	Flash Politics Net applicable.	Flammable Limits: Not applicable.	Products of Combustion: Not available.	Fire Hazards in Presence of Various Substances: Not applicable.	Explosion Hazards in Presence of Various Substances: Not Applicable	Fire Fighting Media and instructions: Not applicable.	Special Remarks on Fire Hazards: Not available.	Special Remarks on Explosion Hazards: Not available.	Section 6: Accidental Release Measures	Small Spill: Mop up, or absorb with an inert dry material and place in an appropriate waste disposal container.	Large Split. Absorb with an inert material and put the splited material in an appropriate waste disposal.		Section 7: Handling and Storage	Pressutions: No specific safety phrase has been found applicable for this product.	Storage: Not applicable.	Section 8: Exposure Controls/Personal Protection Engineering Controls: Not Applicable Personal Protection: Statevic disease. Libit cost	Personal Protection in Case of a Large Spill: Not Applicable Exposure Limits: Not available.	Section 9: Physical and Chemical Properties	Physical state and appearance: Liguid.	ο. 
		Material Safety Data Sheet	Water MSDS	Section 1: Chemical Product and Company Identification	Provinsel indomenitors	Sciencelab.com, Inc.	14025 Smith Rd. Hondon Tower 77936	US Sales: 1-800-901-7247	International Sales: 1-281-441-4400	Order Online: ScienceLab.com	CHEMITREC (24HM Emergency Telephone), call: 1-800-424-9300	International CHEMTREC, call: 1-703-527-3587	For non-emergency assistance, call: 1-281-441-4400	Section 2: Composition and Information on Ingredients		% by Weight	100	6		Section 3: Hazards Identification	Potential Acute Health Effects: Non-corrections is sin. Non-initiant for skin. Non-sensitizer for skin. Non-initiating to the systs. Non- Intractions in case of ingestion. Non-initiation. Non-initiation. Non-initiant for lungs. Non-corrective for lungs. Non- corrective to the systs. Non-corrective for lungs.	Non-hazardown w ach, vortenan tu ach, vortenanzar w ach, vortenanzar y ach, vortenanzar y ach, vortenanzar y u av voe. Non-hazardown in case of inspation. Non-hazardown ease of inheation. Non-inhazardown fururg. Non-eanellan for Ung CARCINOGENIC EFFECTS: Non available. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available.	Section 4: First Aid Measures		ŭ
Science Lab. com demicals & Laboratory Equipment		Materi		Section 1: Chemic	Descripted Manager Military	Catalos Codes: SLW1053	CAS#1 7732-18-5	RTECS: 200110000	TSCA: TSCA 8(b) Inventory: Water	CI#: Not available.	Synonym: Dihydrogen code	Chemical Name: Water	Chemical Formula: H2O	Section 2: Compa	Composition:	Name CAS #	Water 7732-18-5	Toxicological Data on ingredients: Not applicable		Sectio	Postential Acute Health Effects: Non-corrective Keanth Effects: Non-corrective for an Area Man Man Man Man Man Intransous in case of Ingestion. Non-Intransous in o corrected to the eyes. Non-corrective for langs. Postential Chronic Neath Effects:	Non-Jonated and rease of impaction. Non-hazardous Non-hazardous in case of impaction. Non-hazardous CARCINOGENIC EFFECTS: Not available. MUTA DEVELOPMENTAL TOXICITY: Not available.	Sect	Eye Contact: Not applicable.	

		special Hemanos on Unronic Errects on Humans; Not available.
		Special Remarks on other Toxic Effects on Humans: Not available.
	mole	
		Section 12: Ecological Information
	ra()	Ecotoxiciter Net available.
		BODS and COD: Not available
		Products of Blodegradation:
	valiable.	Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise.
		Toxicity of the Products of Biodegradation: The product itself and its products of degradation are not toxic.
	# 20°C)	Special Remarks on the Products of Biodegradation: Not available.
		Section 13: Disposal Considerations
	ble.	
	available.	Waste Disposal: Waste must be disposed of in accordance with heleral, state and local environmental control moulations.
	labie.	· · · · · · · · · · · · · · · · · · ·
	applicable	Cartina 14. Transmet Information
		PAY Placetifications for a DOT controlled monoid if history functions
	Section 10: Stability and Reactivity Data	identifications. Not application. Seasoial Perutations for Transacet-Not availability.
	*	
	t available.	Section 15: Other Regulatory Information
	ot available.	
	s substances: Not available.	Federal and State Regulations: TSCA 8(b) Inventory: Water
		Other Regulations: EINECS: This product is on the European Inventory of Existing Commercial Chemical Substances.
	when here available.	Other Classifications:
	avtiv Not available.	WHMIS (Canada): Not controlled under WHMIS (Canada).
· · · · ·		050L (EEC): This evolute is not classified according to the EU wardstress. Not accilently,
		HMIS (U.S.A.):
	Section 11: Toxicological Information	Health Hazard: 0
	shouch skin. Eve contact.	Fire Hazard: 0
		Reactivity: 0
		Personal Protection: a
	ac Not available.	National Fire Protection Association (U.S.A.):
	nans:	Health: 0
	imtant for skin. Non-senisitzer for skin. Non-permeator by skin. Non-hazaroous in case of case of inhalation. Non-initiant for lungs. Non-sensitizer for lungs. Non-comosive to the eves. Non-	Flareenability: 0
		Reactivity: 0
	ty to Animala: Not available.	Specific hazard:

# Protective Equipment: Not applicable. Lab cost. Not applicable. Safety glasses.

# Section 16: Other Information


References: Not available.

Other Special Considerations: Not available.

Created: 10/10/2005 08:33 PM

Last Updated: 05/21/2013 12:00 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume the fightly resulting from its use. Users should make no we investigations to determine the suitability of the information for the particular purposes, in or even that ScienceLab.com be lided for any claims, losses, or damages of any third party or for fort profiles or any special, indirect, indirentation. Compared to react ab com has been advised of the possibility of such damages.



Eye Contact: Check for and remove any contact lenses. In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Cold water may be used. Get medical attention if initiation occurs.

attention if irritation develops. Cold water with soap and water. Cover the initated skin with an emotient. Get medical

remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical

Do NOT induce vomiting unless directed to do so by medical pensomel. Never give anything by mouth to an unconscious person. It large quantities of this material are swaltowed, call a physician immediately. Loosen tight clothing such as a collar,

Intravencius administration of sodium bicarbonate, adjusting the administration rate according to repeated and frequent measurement of acaditose status. C. Administre ethanci (care) or to V) (minavenuo)) or foreptoble (kamphyraccia or attractio) thempy by IV as an anathone to initiate the anathon of toxic metabolities. All parants are disprised and treaded in the course with the across methods have be avoided if formegical or or theored thempy is effective and sany or the course with the across methods in rate and the new rest. However, none servere actions and restrice and corrected the metabolic actions, and to rand fabric to present. However, none servere actions and new or corrected the metabolic actions, and to rand fabrice in present. However, none servere actions and rend lattue occured, however, themodelyste is reconservery. It is effective in removing Ethylene Olycol and book metabolike. Medical Conditions Aggravated by Exposure: Persons with pre-existing kidney, respiratory, eye, or neurological problems might be more sensitive to Ethylene Giyosi. Notes to Physician: 1. Support vital functions, correct for dehydration and shock The manage full balance. 2. The currently recommendial material management of Entrylere Glycol potenting includes elimination of Entrylere Glycol and metabolies. Elimination of Ethylere Glycol may be actived by the following methods: a. Emphyling the scored by getter lavegary. It is useful if initiated with r< 1 of ingestion. b. Cernet metabolic actions and the docks with

# Section 5: Fire and Explosion Data

Flammability of the Product: May be combustible at high temperature.

Auto-Ignition Temperature: 398°C (748.4°F)

Flash Points: CLOSED CUP: 111°C (231.8°F). (Tagliabue.)

Products of Combustion: These products are carbon oxides (CO, CO2).

Fire Hazards in Presence of Various Substances:

Slightly flammable to flammable in presence of open flames and sparks, of heat. Non-flammable in presence of shocks. Explosion Hazards in Presence of Various Substances:

Risks of explosion of the product in presence of mechanical impact: Not available. Risks of explosion of the product in presence of static discharge. Not available.

Fire Pighting Media and Instructions: SMALL FIRE: Use DRY chemical powder. LARGE FIRE: Use water spray, fog or foam. Do not use water jet. Special Remarks on Fire Hazards: Not available.

Special Remarks on Explosion Hazards:

Explosive decomposition may occur if combined with strong acids or strong bases and subjected to elevated temperatures.

Section 6: Accidental Release Measures

Critical Temperature: Not available. Specific Gravity: 1.1088 (Water = 1) Vapor Pressure: .06 mmHg @ 20 C; .092 mmHg at 25 C Vapor Density: 2.14 (Air = 1) Volasiity: Not available. Odor Threshold: Not available. WaterV0II Dist. Coeft.: The product is more soluble in water; log(oli/water) = -1.4	Dispersion Properties: See solubility in water, acetone. Solubeling: Soluble in odd water, hot water, acetone. Signity soluble in directly des, pridine, similar coal tar bases. Practically insoluble in benzene and its homologa, chroimated hydrocartons, petroleum ether. Rection 10: Stability and Reactivity Data	control proceed is sense. Instability Temperature: Not available. Conditions of instability: Excess heat, incompatible materials. Incompatibility with various substances: Reactive with oxidizing agents, acids, akaiis. Corrostivity: Non-corrosive in presence of glass.	Special Remarks on Reactivity: Hyprescient Remarks on Reactivity: with algoritor. Allocine molitule from the air. Avoid contamination with materials with hydroxyl compounds. Also incompatible with algoritor. Allocine secondarias in an and oneum Special Remarks on Controshvity: Not available. Polymerization: Will not occur.	Section 11: Toxicological Information Routes of Entry: Absorbed Through Skin, Ingestion. Toxicity to Animals: Acute oral toxicity (LD50): 4700 mg/kg (Rat), Acute toxicity of the vapor (LC50): >200 mg/m3 4 hours [Rat].	Chronic Effects on Humans: CARCMOSAUC EFFECTS: Art (Not classifiable for human or animal.) by ACGH. MUTAGENIC EFFECTS: Mutagenic for mammalian somatic cells. Non-mutagenic for bacteria and/or yeast. May cause damage to the following organs: kidneys, liver, central nervous system (CNS). Other Toxic Effects on Humans: Hazardous in case of ingestion. Slightly hazardous in case of skin contact (irritant, permeator), of inhalation.	Special Remarks on Toxicity to Animals: Lowest Prunilished Toxic DeacConc: TDL [Man] - Route: ond; Dose: 15gm/kg Lethal Dose/Conc 50% Kill LD50 [Rabbit] - Route: demails on Chronic Effects on Numans: Special Remarks on Chronic Effects on Numans: May cause adverse reproductive effects and birth defects (seratogenic) based on animal test data. No human data has been reported at this time. May affect genetic material (mutagenic)
Small Spill:         Critical Tempera           Diute with water and mop up, or absorb with an inert dry material and place in an appropriate waste disposal container.         Critical Tempera           Diversity is the ending by spreading water on the containiner.         Specific Gravity           Stop lask friends         Stop lask friends           Stop lask friends         Stop lask friends           Stop lask friends         Vapor Pressure.           Stop lask friends         Vapor Pressure.           Stop lask friends         Valuating: Not average stopered areas; dia not dispose of according to local and regional authority.           Prevent entry into severe, basements or confired areas; dia not educh Erinhiate all ignitions surces. Call for assistance on dispose.         Voluating: Not average.           Prevent entry into severe, basements or confired areas; dia not above TLV. Chock TLV on the MSDS and with local authorize.         Oder Threehold	Section 7: Handling and Storage         Dispersion Prop           Precautions:         Solubility:         Solubility:           Komp www.from next. Komp www from sources of ignition. Emply containers pase a fire risk, evaporate the residue under a Solubility is soluble in cold with a force of condition of experiment contraining material. Do not invest-to containers to the fact, evaporate the residue under a homologic difficulties such as ovidizing agents, acids, airkate in container or the label. Komp away from incompatibiles such as ovidizing agents, acids, airkate.         Dispersion, solution in cold with a container or the label. Komp away from incompatibiles such as ovidizing agents, acids, airkate.           Storage is respected. Reep container in a cool, well-ventilated area. Hygroscopic         Solution in a container to the container in a cool, well-ventilated area. Hygroscopic	Section 8: Exposure Controls/Personal Protection Engineering Controls: Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective Conditions of the necessity of the value. Ensure that eyewests stations and safety showers are proximal to the work-station location. Concentrations Concentrations Concentrations Concentrations	Personal Protection:         Special Remarks           Statiory glasses:         Symptoson           Symptoson         Symptoson           Special Remarks         Symptoson           Symptoson         Symptoson           Symptoson         Symptoson           Special Remarks         Special Remarks           Special Remarks         Special Remarks           Special Remarks         Special Remarks           Special Remarks         Special Remarks           Special Remarks         Special Remarks	Ind States] CEIL: 125 (mg/m3) from OSHA (PEL) STEL: 104 (mg/m3) [United Kingdom (UK)] uthorities for acceptable exposure limits.	Section 9: Physical and Chemical Properties         Chronic Effects           Physical state and appearance: Liquid. (syrupy)         CAFON/OGENIC mammalan some central nervous is central nervous in the transit           Odor: Odoriess.         Other Toxic Effe	Special Remarks Route: dermai, D Special Remark: May cauce adver May cauce adver

Other Classifications: WHMIS (Canada): CLASS D-2A: Material causing other toxic effects (VERY TOXIC). DSCL (EEC): PSCL	Health: 1 Fiammability: 1 Reactivity: 0 Specific hazerd: Protective Equipment: Gioves. Lab coat. Not applicable. Safety glasses.	Section 16: Other Information           References: Not available.           References: Not available.           Other Special Considerations: Not available.           Created: 10/10/2005 06:18 PM           Last Updated: 05/21/2013 12:00 PM           The information above the belowed to be accurate and represents the best information currently available to us. However, we make no warrantion above the belowed to be accurate and represents the best information currently available to us. However, we make no warrantion from the use. Usens should make their own investigations is dominine the suitability of the information for the proceeduate above the liable for any claims, losses, or damages of any hird party of for information for the protectuate accurate on the revendands or exemplenty damages, investigations is dominine the continue that continue the continue that continue the continue that continue the suitability of the information for the proceedual of the prosectivity of auch damages.	
Special Remarks on other Toxic Effects on Humans: Acute Potnial Health Effects and Humans: whi damaged skin may result in absorption of potnetialshifts. May cause more server response if skin is abraded. A single protorged exposure is not likely to use a skin minutents. Eyes: Vapors or mist manumits. Massive contact instantion (mid temporary conjunctival inflammation) and lacrimation. Corneal injury is unikely or insignificant. Ingestion: It is apply absorbed from the gastronization and lacrimation. Corneal injury is unikely or insignificant. Ingestion: It is rapidly absorbed from the gastronization and lacrimation. Corneal injury is unikely or insignificant. Ingestion: It is rapidly absorbed from the gastronization and lacrimation. Corneal injury is unikely or insignificant. It is rapidly absorbed from the gastronization and lacrimation. Corneal injury is unikely or insignificant. It is rapidly absorbed from the gastronization and lacrimation. Corneal injury is unikely or insignificant. Ingestion: It is activities that in the gastronization and lacrimation with accompany the result of the temperatory pastronintestinal text inflation with maske, wormly and discomfort. Garmea. It can allied the involvential new counce gastronintestinal text indiation with maske, wormly advoctation can occur within the first evene allow: As she Ethylere Given is mutabolic additist and furth contral nervous system depression (cornulations, importentest) develop. Serious intoxication may develop to corna associated with hypotonia, hyporeflexia, and less commonly seizures, and meningismus. 12 to 24 hours	Section 12: Ecological Information Econoxicity: Econoxicity in water (LCS0): 41000 mg/ 96 hours [Fish (Trout)]. 46300 mg/ 48 hours [water fiea]. 34250 mg/ 96 hours [Fish (bluegil fish)]: 34250 mg/ 72 hours [Fish (Coldfish)]. BODS and COD: Not available. Products of Biodegradation: Prestby hazardous short term degradation products are not likely. However, long term degradation products may arise.	Toxicity of the Products of Biodegradation: The products of degradation are less toxic than the product fash. Special Remarks on the Products of Biodegradation: Not available. Section 13: Disposal Considerations Waste Disposad: Waste must be disposed of in accordance with federal, state and local environmental control regulations. Waste must be disposed of in accordance with federal, state and local environmental control regulations. Disposad: Waste must be disposed of in accordance with federal, state and local environmental control regulations. Disposed for the accordance with federal, state and local environmental control regulations. Boot classification: Not a DOT controlled material (United States). Identification: Not applicable.	Section 15: Other Regulatory Information Federal and State Regulations: Illinois toxic substances declosure to employee act: Ethylene gyool Illinois chemical safety act: Ethylene gyool New York reasons regime gyoon New Agroon New York African and Ethylene gyool New York Strandous substances: Ethylene gyool New York Ethylene gyool SARA 313 toxic chemical statin RTX: Ethylene gyool Massachusetts soll list: Ethylene gyool New Jaresy: Ethylene gyool SARA 313 toxic chemical substances: Ethylene gyool SARA 313 toxic chemical needed to the stating of the stating

contract of the second second second second second of the second se	exemutor. Interfector: It inteled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.	Serious inhaliation: Not avaitable. Ingestion: Do NOT induce vomiting unlises directed to do so by medical personnel. Never give anything by mouth to an unconscious person. If large quantities of this material are swallowed, call a physician immediately. Loosen tight clothing such as a collar, 6e, beit or waistband. Serious ingestion: Not available.	Section 5: Fire and Explosion Data	-flam: pplica	Flammable Limits: Not applicable. Products of Combustion: Not available.	Fire reactings in Presence or Various Substances: not applicable. Explosion Hazards in Presence of Various Substances: Raka of explosion the provider in presence of mechanical impact: Not available. Haks of explosion of the product in presence of static of scherge. Not available.	Fire Fightling Media and Instructiona: Nor applicatio. Special Remarks on Fire Hazards: Not evalable.	Special Remarks on Explosion Hazards: Not available.	Section 6: Accidental Release Measures Small Spill:	Use appropriate bools to put the splited solid in a convenient wate disposal container. Finish cleaning by spreading water on the containinated surface and dispose of according to local and regional authority nequirements. Large Split: Use a show to put the material into a convenient wate disposal container. Finish cleaning by spreading water on the containinated surface and allow to evacuate through the santary system.	Section 7: Handling and Storage	Precautions:
upment adment 200 Reactivity 1 Reactivity 1 Protection E Material Safety Data Sheet	Potassium carbonate, anhydrous MSDS Section 1: Chemical Product and Company Identification	Product Name: Potassium carbonate, arhydrous Contact Information: Catalog Codea: SLP4780, SLP1961, SLP5780, SLP575 Sciencelab.com, Inc. CASA: 564-08-7 RTECS: TS77950000 US Sales: 1-800-901-7247 International Sales: 1-281-441-400	Order Online: ScienceLab.com CHEMTREC (34HB Envenancy Toloshono) vall-	CHEMINEL (24HN Emergency latephone), call: 1-800-424-9300 International CHEMTREC, call: 1-703-627-3897 For non-emergency assistance, call: 1-281-441-4400	Section 2: Composition and Information on Ingredients	CAS# %by Weight statedar? 100	us: ORAL (LD50): Acute: 1670 n	Section 3: Hazards Identification	Potential Acute Health Effects: Nazardous in case of skin contact (infant), of eye contact (initant), of ingestion, of inhisiation. Sightly hazardous in case of eye	contract (correave). Potential Chronic Health Effects: Potential Chronic Health Effects: her available, MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance is toxic to micous membranes. The substance may be toxic to skin, eyes. Repeated or protorged exposure to the substance can produce target organs damage.	Section 4: First Aid Measures	

Stability: The product is stable. Instability Temperature: Not available.	Conditions of instability: Dust generation, molst air, water, incompatible materials	Incompatibility with various substances: Reactive with oxidizing agents, metals, acids. Sightly reactive to reactive with motsture.	Corrosivity: Non-corrosive in presence of glass.	Special Remarks on Reactivity: Hyptrescopic, Reacts with water to evolve heat, incompatible with KCO, chlorine trifluoride, calcium oxide, and magnesium.	Special Remarks on Corroshity: Not available. Polymorization: Will not nector		Section 11: Toxicological Information	Routes of Entry: Eye contact. Inhalation. Ingestion.	Toxicity to Animals: Acute oral toxicity (LD50): 1870 mg/kg [Rat].	Chronic Effects on Humans: Causes damage to the following organs: mucous membranes. May cause damage to the following organs: skin, eyes.	Other Toxic Effects on Humans: Herandrick in near of sign contrart (infrant), of Innection, of inhibition, Sindolf herandricks in near of sup contrart (intervelop)	Special Remarks on Toxicity to Animals: Not available.	Special Remarks on Chronic Effects on Humana: Not available.	Special Remarks on other Toxic Effects on Humans:	Acude Potential Health Effects: Skin: Causes severe sidn initiation. Eyes: It is severely initiating to the eyes and its muccus membranes. It may cause comeal injury. It may cause burns and loss of vision. It may cause permanent damage. The amount	of tassue damage depends on the length of contact. Ingestion: It causes gastrointestinal initiation with nausea, vomiting,	abdommal pair, swollen gottis, increased respration, and possible burns to the itps, tongue, oral mucosa, hypopharynx, stomach, or esophagus. It may afted the cardiovascular system(circulatory collepse), urhary system, and metabolism.	Inhalation: Causes respiratory tract and mucous membrane initiation. Exposure can cause coughing, chest pains, and difficulty heasthing (descenses).	-finitude(e.fr.) Faurineare	Continue 40. Contraction Information	Section 12: Ecological Information	Ecotoxicity: Not available.	BOD5 and COD: Not available.	Products of Biodegradation:	rossety nazaroous short term degradation produces are not invey. However, long term degradation products may arse.	Toxicity of the Products of Biodegradation: The products of degradation are less toxic than the product itself.	Special Remarks on the Products of Blodegradation: Not available.		Section 13: Disposal Considerations	Waste Disposal:	Waste must be disposed of in accordance with federal, state and local environmental control regulations.	4 d
Keep container day. Do not ingest. Do not breathe dust. Never add water to this product. In case of insufficient ventilation, wear suitable respiratory equipment. If higested, seek medical advice immediately and show the container or the label. Avoid contact with skin and eyes. Keep away from incompatibles such as oxidizing agents, metals, adds.	Storage: Hvrorsscoold, Keep container flohtly closed. Keep container in a cool, well-wentlieted area. Do not store above 25°C (77°F).		Section 8: Exposure Controls/Personal Protection	Engineering Controls: comprovementations and the second second comprovements and second se	exposure write. It user operations generate dust, turne or mas, use ventilation to keep exposure to arroome contaminants below the exposure fimit.	Personal Protection: Splash goggies. Lab coat. Dust respirator. Be sure to use an approvedicentified respirator or equivalent. Gloves.	Personal Protection in Case of a Large Spill:	Splean goggees. Full suit, Usis respirator, boots, Groves, A set contained preating appreasus should be used to aroud material of the product. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this address.	product. Exposure Limits: Not evaluable.		Section 9: Physical and Chemical Properties	Physical state and appearance: Solid. (Powdered solid. Deliquescent solid.)	Odor: Odories.	Taste: Not available.	Molecular Weight: 138.21 g/mole	Color: White.	pH (1% soin/wster): Not available.	Boiling Point: Decomposes.	Metting Point: 891°C (1635.8°F)	Critical Temperature: Not available.	Specific Gravity: 2.29 (Water = 1)	Vapor Pressure: Not applicable.	Vapor Density: Not available.	Volatility: Not available.	Odor Threshold: Not available.	Water/Oli Dist. Coeff.: Not available.	tonicity (in Water): Not available.	Dispersion Properties: See solubility in water.	Solubility: Soluble in cold water.		Section 10: Stability and Reactivity Data	rð di

	L
	E
	L
	Ľ
	Ľ
	г.
	۱.
	Ŀ
••	
-	L
÷	L
÷	l
÷	l
-	
14L U	l
14- LB	
14L UO	l
14: UO	l
141 UOI	
14: UOU	
14L UOID	l
CDON 14:	
SC000 14:	
ection 14:	
Hection 14:	
59C000 14:	
Section 14:	
Section 14:	
Section 14:	
Section 14:	
Section 14:	
Section 14:	
Section 14:	
Section 14:	
Section 14:	
Section 14:	

DOT Classification: Not a DOT controlled material (United States).

Special Provisions for Transport: Not applicable. Identification: Not applicable.

Section 15: Other Regulatory Information

Federal and State Regulations: TSCA 8(b) inventory. Potassium carbonate, antiydrous

Other Regulatione: CSHA: Hazardous by definition of Hazard Communication Standard (29 CFR 1910.1200), EWECS: This product is on the European Inventory of Exeting Commercial Chemical Substances.

# Other Classifications:

WHMIS (Cameda): CLASS D-2B: Material causing other toxic effects (TCXIC). CLASS E: Connoive solid.

DSCL (EEC): R22- Harmful if swallowed, R37/39- Initialing to respiratory system and skin. R41- R5k of serious damage to eyes, S2- Keep out of the reach of children. S26- In case of contact with eyes, more immediately with plenty of water and seek medical advice. S37/39- Wear suitable gitwes and eyeftace protection. S49- II swallowed, seek medical advice immediately and show this container or table!

# HMIS (U.S.A.):

Health Hazard: 2

Fire Hazard: 0

Reactivity: 1

Personal Protection: E

National Fire Protection Association (U.S.A.):

Health: 2

Flammability: 0

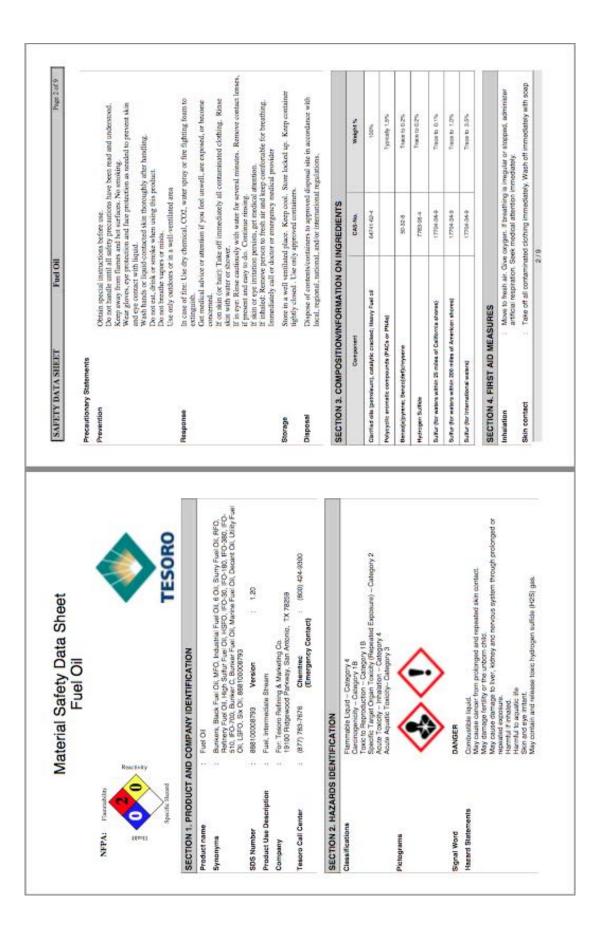
Reactivity: 0

Specific hazard:

Protective Equipment: Gloves. Lab cost: Dust respector: Be sure to use an approved/settlind respirator or equivalent. Wear appropriate respirator when ventilation is inadequate. Splitsh poggles.

# Section 16: Other Information

References: Not available.


Other Special Considerations: Not available.

Last Updated: 05/21/2013 12:00 PM Created: 10/10/2005 11:40 AM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warming of mericularity or any other warmonic, paramosis or imposit, with respect to sub-information, and we assume no labelly resulting framewing of the information in measimer one investigations to addimine the sublative of the information to ward the estimation of the information of the

un d

their particular purposes. In no event shall Sciencel ach com be liache fur any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, nowsoever arising, even if Scienced ath con-nas been advised of the possibility of such damages.



and			TOTIC VIVO I TOTIC	LINE		Fage 4 of 9
	and plenty of water. Waah contaminated clothing before re-use. If skin inflation previews.		area area	material is stored or handled. The product should areas with intrinsically safe electrical classification	andled. The produ safe electrical cla	material is stored or handled. The product should only be stored and handled in areas with immissionly surve electrical classification.
Eye contact : Ren eyel	Herrore contact lenses, Rinse immediately with plenty of water, also under the eyelics, for at least 15 minutes. If eye initiation persists, consult a specialist.		Py4 upi	rocarbon liquids in id (or state accumi	cluding this produ dators), and may	Hydrocarbon liquids including this product can act as a non-conductive flammable liquid (or static accumulators), and may form ignitiable vegor-eir mixtures in storage
Ingestion : Do / H vo/ H vo/ A spi / H vo/	Do NOT reduce vomiting. Do not give liquids. Seak medical attention immediately. It versiting does coor naturally, level need block here high to holice the rises of aspiration. Montor the neutring attributies. Senal amounts of material which enter the mount should be inteed out until the taste is deligated.		dent dent	cs or other containe ing transfer, storage (1) Ground and bo bonding may r hydrocarbon ii	Ms. Precautions 1 e or handling, incl ond containers du not be adequate p puids and vapors	tanks or other contraines. Proceautors to prevent attal-instant for or explosion during transfer, storage or hardling, include but are not limited to these examples. (1) Ground and bond containere during product transfers. Grounding and hydrocarding may not be adequate production to revent lightics: or explosion of hydrocardinon louids and vapore that are static accumulation.
Notes to physician : Sym disc pre	Symptoms: Dizzinaisa, Discomfant, Headache, Nausea, Discrear, Vormäng, Liver discretes, Koney disorders, Applration may cause pulmonary edema and preumonitis.			<ol> <li>Special slow it avoid the staft material (such containing low</li> <li>Sterano tark it</li> </ol>	and procedures to lignificen hazard th as fuel oil or dies thash point produ- evel floats must b	Special slow one procedures for "swhich loading" must be followed to avoid the state (particul missared that can note: when the promit material (such as fuel or or enset) is loaded more previously constanting provided sources to state the previously. Streams new local thats must be affectively brocked.
SECTION 5. FIRE-FIGHTING MEASURES	SURES	_	For	more information o	in precautions to paid the paid of the precautions to precautions to precise on Statement of the precise on Statement of the precise of the p	(c) decomposition are also precedent to ensure a second static-initiated fire or explosion, see NFPA. The mean method Proceedings to prevent static-initiated fire or explosion, see Second Second Proceeding Process on Static Electricity (2007), and API
Suitable extinguishing media : Cart surv	Carbon dioxide (CO2), Water spray, Dry chemical, Foam, Keep containers and surroundings cool with water spray.		E B	Hecommended Pradice 2003, Protec Lightning, and Stray Currents (2008).	te 2003, Protectio uments (2008).	Recommended Practice 2003, Protection Against tyribons Arising Out of Static, Lightning, and Stray Cuments (2008).
Specific hazards during fire : locia expo unm man and and fire f	Isolate area around container involved in free. Cool tarkes, shells, and containers exposed to fire and excension heat what k. For massion frees the use of ummanned hose holders or montor nozzies may be advantageous to further minimize presented exposure. Major frees may require exportant, allowing the tark to burn. Large storage tark frees typically require specially trained personnel and applement to entrguish the free, often including the need for properly applied and applement to antinguish the free. down including the need for properly applied and exploring form.	Conditions for str Including any Incompatabilities	'aða'	Kiep away from flame, sparks, i analytic well containers. Keep comparisation partiality for during the start pressuritized cut, heat, well or exp pressuritized cut and the start and Combustible Light Coat".	<ul> <li>sparke, eccessiv Geep containers of intainers or vessel wild or expose co his storage area s of Code". The cle API Recommende</li> </ul>	Kiep away from flame, sparke, eccessive temperatures and open flame. Use approve of containers the occuration so the care y labole. Errory or partially full product containers or vessels may contain explosive vegors. Do not pressurity, cut, heat, wold or expose containers to sources of spation. Store is a web-vegors, these logical cook. These standards of targets and the containers and Combustible Liquid Cook. The standard of tarks previously containing this product should follow API Recommended Practice (RP) 2013. "Ceaning Mobile product should follow API Recommended Practice (RP) 2013. "Ceaning Mobile
Special protective equipment : Firefight tar file-fighters common common	Fireforting activities that may result in potential exposure to high heat, amore or toxic products of construction should require NICSHMRHA- approved preserve- common set-contained breathing apparatus with hill tapapiere and hill protective clothing.		Pet Myd Car	Lanks In Flammazile and C Petroleum Storage Tanks' Hydrogen suffide may acc. Consider appropriate respi	nd Combustible L Nics". accumulate in tan espiratory protect	Taiwa la Plaimmade and computible Legud Servicer and APT HF 2013 "Clearn Petroleum Storage Tanks". Designe suitide may accumulate in tanks and buik transport compariments. Consider appropriate reptatory protection (see Section 0), Stard parkne, Aveis
Further Information : Flam mission control store flam flam	Flammable vapor production at ambient temperature in the open is expected to be minimum, as the memory is agmentative with Howkwest disparating or of contrating and orditions, it is possible flammable vapors could accumulate in the headgapers of a storage contrainers, presenting a flammability and explosion hazard. Being heavier than air, apport may at value free or explosion hazard.		vap vent Keise Inoc	vapors when growing hatches and dome covers. O withdeal and gas leaked prior to entry. Incompatible with acids.	hatches and dome and prior to entry. crink and animal i 5. ored and applied i	vapors when opening hadnes and some covers. Confined spaces should be writikited and gas testing frict to entry. Theoremarkies with work, and animal feed. Incompatible with oxidiaring agents, frictompatible with acids.
SECTION 6. ACCIDENTAL RELEASE MEASURES	ASE MEASURES	SECTION	SECTION & EXPOSURE CONTROLS / PERSONAL PROTECTION	OLS / PERSON	AL PROTECT	NOL
Personal precautions : Eva: Con	Execute remeasantial preserval and remove or secure al ignition sources. Consider wind directory stay upwind and up/lif, if possible. Evaluate the directon of encient travel, doine sewers, are no central scall areas.	Exposure	Exposure Guidelines			
Environmental precautions : Care	Carol-liv contain and stor the source of the seil. It aufo to do so. Protect bodies of	Lie	Components	CAS No.	Type:	Value
		OSHA	Payrydic aromatic compounds (or coattar pilot volatiles - benzene sotuble)		PEL	0.2 mgm3
Methods for cleaning up : Take	Take up with sand or oil atsorbing materials. Carefully vectum, showel, scoop or		Carlied dis (persionn), callingle cracked, heavy Fuel of	84741-82-4	PEL	5 mgind (as mineral of mist)
2 mil	sweep up into a waste container not recemizacit or disposal.		Hydrogen Sulfide	7783-06-4	STEL	20 ppm
SECTION 7. HANDLING AND STORAGE	DRAGE	HOOM	Hydrogen Sulfide	7783-06-4	TWA	1 ppm
autione for eate handling - Kone	Presultione for safe handline - Keen assortion for envice and heated surfaces. In envice near event when			7783-00-4	STR.	5 ppm
	No is seen and for the set to be a seen at a state for the form				100	

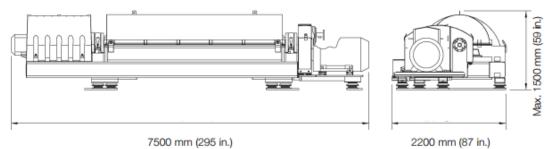
Clarified oils (perindeum), catalytic cracked; Heavy Fuel oil	hic 64741-62-4	32-4 TWA	ŝ	0.2 mg/m3 (as mineral off) Burn of 15 MTP-listed polyhoclew anomatic hydrocentoris 0.005 mg/m3	Odor threshold pH	No data available Not applicable
Polycyclic anomatic compounds (pr coal tar ritch volatiliae – haronae	a (n.	TWA		0.2 mp/m3	Melting point/freezing point	32° - 80°C (89.6° - 176°F)
soluble)	_	_			Initial boiling point & range	154 - 372 °C (310° - 702 °F)
Engineering measures : U	Ise adequate w	Use adequate ventilation to keep gas helow occurational evoce up and flar	gas and vap.	Use adequate ventilation to keep gas and vapor concentrations of this product below commitmed evolution and flammability limits markediarbin confined	Flash point	60°C (140°F) minimum
2 00	spaces.				Evaporation rate	Higher initially and declining as lighter components evaporate
Eye protection : S	afety glasses o	r goggles are rec	v bebnemmo:	Safety glasses or goggles are recommended where there is a possibility of	Flammability (solid, gas)	Flammable vapor released by heated liquid
	spiasming or spraying.	aying.			Upper explosive limit	No data available
	aloves construct	ted of nitrile, neo	prene, or PVI	Gloves constructed of nitrile, neoprene, or PVC are recommended.	Lower explosive limit	No data available
Skin and body protection : C	chemical protect	tive clothing suct used on depree c	of exposure.	Chemical protective clothing such as DuPont Tyvek QC, TyChem® or equivalent, recommended based on depree of exposure. The resistance of specific material	Vapor pressure	210 Pa at 25°C
	nay vary from p.	may vary from product to product as	as well as w	well as with degree of exposure.	Vapor density (air = 1)	92
Respiratory protection : If	hydrogen sulfi.	te concentration	may exceed	If hydrogen sulfide concentration may exceed permissible exposure limit, a	Relative density (water = 1)	>0.9 to 1.2 g/mL
	oguined as resp.	ratory protection.	. If hydrogen	positiver-pressure acrow or 1ype & supplied an respirator with escape dowe is required as respiratory protection. If hydrogen suifide concentration is below H2S	Solubility (in water)	6 to 1400 mg/L at 25°C
а. «	cid gas cartridg	ssure limit a NIOt os may be accep	SH/ MSHA-ap trable for odo	permissible exposure limit a NIOSH/MSHA-approved air-puritying respirator with acid gas cartridges may be acceptable for odor control, but continuous air	Partition coefficient	3.4 to 5 as log Pow at 25°C
68	nonitoring for H. tepirators is lim	monitoring for H2S is recommended. respirators is limited. Use a NIOSH/1	3ed. Protectio "H/ MSHA-ap.	. Protection provided by air-puritying MSHA-approved positive-pressure supplied-	Auto-ignition temperature	>176°C (<360 °F)
. e	ir respirator if th	air respirator if there is a potential for	-	uncontrolled release, exposure levels are not		tatili seconda se hal sead assethic (sella halass desenance)ian assess
* 6	mown, in oxyge unifying respirat	n-deficient atmos or may not provid	spheres, or an de adequate (	known, in oxygen-deficient atmospheres, or any other circumstance where an air- purifying respirator may not provide adequate protection. Refer to OSHA 29 CFR	Vecomposition temperature Kinematic viscosity	will evaporate on poil and possibly tyrine before decomposition occurs. >300 cST twind at 40°C
- 6	910.134, ANSI nanufacturer for	1910.134, ANSI Z88.2-1992, NIOSH manufacturer for additional guidance	ISH Respirate noe on respire	Respirator Decision Logic, and the on respiratory protection selection.		en an un mondel, and and a
Work / Hygiene practices : E	mergency eve	wash capability s	thould be ava	Emergency eve wash capability should be available in the near proximity to	SECTION 10. STABILITY AND REACTIVITY	ND REACTIVITY
	perations prese ractices. Avoid	repeated and/or	splash export protonged sh	operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or protonged skin exposure. Wash hands before	Reactivity	<ol> <li>Vapors may form explosive mixtures with air. Hazardous polymerization does not occur.</li> </ol>
90	n the skin. Do r	smoking, or usin tot use solvents o	g tollot taclin or harsh abra	earing, drinking, smoking, or using tollet taclines. Uo not use as a clearing solvent on the skin. Do not use solvents or harsh abrasive skin cleaners for washing this	Chemical Stability	Stable under normal conditions.
	fromptly remove tundering to pre	product from exposed skin areas. W Promptly remove contaminated clothi laundering to prevent the formation of	<ul> <li>Waterless</li> <li>Iothing and la word flammat</li> </ul>	product from exposed skin areas. Waterless hand cleaners are effective. Promptly remove contaminated coloning and launder before teuse. Use care when Isundering the revealence of fisementies varios which crusid inclusive variables.	Possibility of hazardous reactions	Can react with strong oxidizing agents and peroxides. Keep away from strong acids and bases.
50	washer or dryer. gloves.	Consider the ner	ed to discard	washer or dryer. Consider the need to discard contaminated leather shoes and gloves.	Conditions to avoid	Avoid high temperatures, open flames, sparks, welding, smoking and other ignition sources. Keep away from strong oxidizers.
					Hazardous decomposition products	Carbon monoxide, carbon dioxide and noncombusted hydrocarbons (smoke).
					SECTION 11. TOXICOLOGICAL INFORMATION	CAL INFORMATION
SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES	HEMICAL PI	ROPERTIES			Inhalation	<ul> <li>Because of its low vapor pressure, this product presents a minimal inhalation hazard at ambient temperature. Upon heating, fumes may be evolved, inhalation of tumes</li> </ul>
Appearance	Dark green to b	Dark green to brown or black liquid	biu			or mist may result in respiratory tract initiation and central nervous system (brain) affarts may include headache. Assinase, loss of halance and conditation
Odor	Petroleum asphalt odor	talt odor				eneose interaceres escences caracteres escences and death. The burning of any unconsciousness, coma, respiratory failure, and death. The burning of any hydrocensol evels of commusion and adquales and death. The burning of any hydrocensol evels of commusion products, including earbor momoxide, result in handroquare organi review, which may cause unconscioureness, and randroquare organi review, which may cause unconscioureness, and high inflations and taxic hydronom sufficie cases muscus to contend the faint transfer and taxic hydronom sufficie cases muscus to contend the faint faint faint and taxic advective transmission and the contend of the faint faint and taxic advective transmission and the contend of the faint faint and the contend of the contend of the contend of the content faint faint and the content faint faint faint and the content of the content faint faint faint and the contend of the contend of the content faint faint faint faint and the contend of the content faint faint and the contend of the contend of the content faint fain
						ppm continuous exposure can cause mucous membrane and respiratory tract
		5/9				6/9

SAFETY DATA SHEET Fuel Oil Page 8 of 9	Catriliogenticity, Animal experiments showed a statistically significant number of tumos.	Carcinogenicity MTP Benerichteurene Benerichtehenenen ICAE.Mn - EC 79.50	Banaciajty one: Banaciajty one		OSHA No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA.	CA Prop 65 WARNING! This product contains a chemical known to the State of California to	cause cancer. Denzo(alpyrene; Benzo(def]chrysene (CAS-No.: 60-32-8)	SECTION 12. ECOLOGICAL INFORMATION	Additional ecological : Keep out of severs, drainage areas, and waterways. Report spils and releases, as information	SECTION 13. DISPOSAL CONSIDERATIONS	Disposal : Consult federal, state and local washe regulations to determine appropriate washe characterization of material and allowable disposal methods.	SECTION 14. TRANSPORT INFORMATION	CFR Proper shipping name : Not regulated if shipped below 140°F (60°C) Elevanded framperature liquid, flammable (if shipped above 140°F	UN+No. : Not regulated if shipped below 140°F (60°C) 1996 if element advent advent (10°C)	Class : 9	Packing group : III Hazard inducer : (Clarified oils (petroleum), catalytic cracked; Heavy Fuel oil)	TDG Proper shipping name : Not regulated fi shipped below 160°F (60°C) Extended to the state of the state o		UN-No. : Not regulated if shipped below 140°F (80°C) 3266 if shipped above 140°F (60°C)	Cates : 9 Durivipion mecun		-	UN-No. : Not regulated if shipped below 140°F (60°C) 2046 if shipped shows 140°F (60°C)	Class : Not regulated if shipped before 140°C (80°C)	Not permitted for transport (at 140°F (60°C) or higher temperature)
Fuel Oil Page 7 of 9	Initiation. 50 - 500 ppm can cause headache, nauses, and dizziness. Continued exposure at these levels can lead to boss of reasoning and balance, difficulty in	preaming, rura in the lungs, and possible toos of consciousness. Areater than our ppm can cause rapid unconsciousness due to respiratory paralysis and death by	eurocesson unless the vicim is removed non exposure and successions resuscitated. Greater than 1000 ppm can cause immediate unconsciousness and	death if not promptly revived. After-effects from overexposure are not anticipated	except what would be expected if the victim was without oxygen for more than 3 to 5 minutes (apphyxiation). The fronten egg" order of hydrogen suffice is not a reliable	indicator for warning of exposure, since of actory fatigue (loss of smell) readily occurs, especially at concentrations above 50 ppm. At high concentrations, the	widhim may not even recognize the odor before becoming unconscious. May cause skin initiation with prolonged or repeated contact. Practically non-toxic if	absorbed following acute (single) exposure. Exposure may cause a phototoxicity reaction: liquid or mist on the skin may produce a painful surform reaction when	exposed to sunight. Product may be hot which could cause 1st, 2nd, or 3rd degree thermal burners in the superinneed as mild discomfort and seen as slight excess.	Fedness of the eye. This meterical has a low order of and a trainible. If faces constitutes are increased	The intervent is a very order to access backer, in says quantum or the second markets, very whithing and distribution may result. Ingredion may also cause effects similar to inhalation of the product. Could present an aspiration have reacted if liquid is inhaled this lungs, particularly from very mitting after lightedion. Approximation may react in chamical ensuing are independent and exercision way results may also determined an exercision exercision way results and have a second an exercision exercision way results the and have a second an exercision exercision way results and have a second an exercision and an exercision and are also aspirated and a second an exercision and are and a second and a second an exercision and a second and a second and a second and a second an exercision and a second and a second and a second and a second an exercision and a second and a second and a second and a second an exercision and a second and a second and a second and a second an exercision and a second and a second and a second and a second an exercision and a second a second and a second and a second an exercision and a second and a second and a second and a second an exercision and a second and a second and a second and a second an exercision and a second and a second and a second and a second an exercision and a second and a second and a second a second an a second and a second and a second and a second and a second an a second and a second and a second and a second and a second and a second a second and a second an a second and a second a second and a second a second and a second a second and a se	This material contains polynuclear aromatic hydrocarbons (PNAs), some of which	are animal carcinogens. Studies have actions that similar products produce skin cancer or skin lumps in bactoring varimals following needed applications without washing or removal. The significance of this fracting be human exposure has not been determined. Other studies with active skin carcinogens, have shown that	washing the animate skin with scap and water between applications reduced tumor formation. The presence of cardinates includes that precaultors should be retent no minimum seconds and includes that includes that are accessed to be applied t	application of gas of to rats resulted in limited evidence of fiver damage (i.e.,	Increased fiver weight and changes in hepatic serum enzyme activity) and bone marrow inocity (hypopiats and docussed hencegobin). For the proving industry monotone indicate that a monotone neoredine for more converse hence neorem not	ordenome increate and a public prim provincial juri goor provincial juri goor provincia provincia or di persona prodective equipment, and minimizing the repositied and protonged opposite to injurica and funnes, is fieldshine in reducing or diminishing the pro- previousness have distributed and summary constraints of the second or diminishing the second or diminishing the second of the providence of the second of the se	tumans, and the state of the doming another of a purprovide an offend of the state	Liver and konney injuries may occur. Components of the product may affect the nervous system.		6474145-4 Apute ovai tavijulju. LD50 nit Dovini 4.200 malka	Acute demai taricity. LOSO ration	Daw: 2.001 mg/kg	Signi initializer. Claunificializer: Initialize to skim. Hasult: Mild skim initializer	Cyre Instantion: Clearathourion: Installing to eyes. Result: Mold eye installion

IATA Passenger Transport UN-No. 3256 8 stip Class 5 Storm 5 Nor regulari Nor permits 9	Fuel Oil	SAFETY DATA SHEET	Fuel Oil Page 10 of 9
		Components	CAB-No.
	: Not regulated if shipped below 140°F (60°C)	Benzolatoweener Benzoldefichrosene	0-35-0
	3256 if shipped above 140°F (80°C)	ALL DITY 118 New Jersey Wo	provident provide and Community Britist to Know Art Nine, January Standar Amountant Sandary 34, 51
	<ul> <li>Not regulating it is nighted price if e.g. (a) to higher temperature)</li> <li>Not permitted for transport (at 140°F (60°C) or higher temperature)</li> </ul>	nents	CAS-No.
WDG-Code		Clarified oils (petroleum), catalytic cracked; Heavy Fuel	
UN-No.	. Not regulated if shipped below 140°F (60°C)	all	
Description of the goods : Elevated te	3256 f shipped above 140°F (B0°C) Elevated temperature liquet, n.o.s.	neurolalblueue, seurolaelourisene	8.3P-00
(Clarified of	(Clarified oils (petroleum), catalytic cracked; Heavy Fuel oil)		
	Not regulated if shipped below 140°F (80°c) bot permitted for transport (at 140°F (80°C) or higher temperature)	California Prop. 65 : WARN cause	WARNING! This product contains a chemical known in the State of California to cause cancer.
Packaping group : III		Benzo	Benzojajpynene; 50-32-8
IMDG-Labels : 9		07U89	Det johrtysenne
Marine pollutant : No		SECTION 16. OTHER INFORMATION	ON
SECTION 15. REGULATORY INFORMATION			
		Further Information	
CIRCLA SICTION 103 and SARA SIX,TION 304 (SRLLAS): TO THE EXVIRONENT The CERT Admittee the audious induces contain a "periodiment calculate" data which condates (see finished na) intermediate) free the case of infinite grosces and are induced to all sectors and an experimentary induced sectors and are induced and sectors and an experimentary induced sectors and are induced and sectors and are induced and and are indeed and and are induced and SAM Soc and sectors are induced and are indeed and are indeed and are induced and are induced and are induced and are indeed and are indeed and are indeed and are induced and are induced and are indeed and are indeed and are indeed and are indeed are indeed and are indeed are indeed and are indeed and are indeed and are indeed and are indeed are indeed and are indeed and are indeed are indeed are indeed are indeed are indeed and are indeed are indeed and are indeed are indeed are indeed and are indeed are	CIRCLA SIGTION 102 and SARA SIGTION 344 (SRLLASE TO THE EXVIRONEXT) The CISCLA shifting of heardway arbundues contain a "production existence" chara which chara which are provide so that which of a shifting of the state and a shifting posterior existences and any indigenses components of such from the CISCLA Society 103 expanding explorational however, other folenti separation requirements, including SARA Society 304, as well as the Clean Water Ant may still constraining explorational theorem, other folenti separation requirements, including SARA Society 304, as well as the Clean Water Ant may still constraints are accounted as the constraint requirements, including SARA Society 304, as well as the Clean Water Ant may still constraints are accounted as the constraint requirements, including SARA Society 304, as well as the Clean Water Ant may still constraints are accounted as the constraint requirements, including SARA Society 304, as well as the Clean Water Ant may still constraints are accounted as the constraint requirements, including SARA Society 304, as well as the Clean Water Ant may still constraints are accounted as the constraint requirements, including SARA Society 304, as well as the Clean Water Ant may still constraints are accounted as the constraint requirements, including SARA Society 304, as well as the Clean Water Ant may still constraints are accounted as the constraints are a	The information provided in this Safety Da the data of fis publication. The information storage, transportation, disposal and relea information relates only to the specific mat	The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of his publication. The information given is designed only as guidence for all inheling in processing, storage, it remogentation, disposal and release and is not to be considered a warranty or quality specification. The information relates only the paperdic material designate and may not be valid for such material used in the mation relates only the paperdic material designation and may not be valid for such material used in .
TSCA Status : On TSCA Inventory		combination with any other materials or in	any process, unless specfied in the text.
DSL Status : All components of this pr	: All components of this product are on the Canadian DSL list.	Pervision Date : 07/05/2012	
312 Hazarda			
		66, 68, 121, 296, 296, 347, 1003, 1006, 1	66, 66, 121, 206, 296, 347, 1003, 1006, 1007, 1000, 1010, 1022, 1054, 1084, 1084, 1086, 1089, 1588, 1888
SARA III US. EPA Emergency Planning and Comm Chemicals (40 CFR 372 66) - Supplier Not	US. EPA Emergency Planning and Community Right/TeXtow Act (EPCH4) SAPA. The III Section 313 Toxic Chemicals (43 CFR 372 60) - Suppler Notification Required		
Components	CAS-No.		
Benzo[a]pyrene; Benzo[def]chrysene	50-32-8		
SARA III US. EPA Emergency Planning and Comm Hazardous Substance (40 CFR366, Appre	US. EPA Emergency Planning and Community Right-To-Koow Act (EPCBA) SARA Title III Section 302 Extremely Nazadows Substance (+0 CFR366, Appendix A).		
Components	CAS-No.		
PENN RTK US. Perroylania Worker and Community	US. Perresylvaria Worker and Community Right to Know Law D4 Ptt. Code Chap. 501-323)		
Components	CAS-No.		
Clarified oils (petroleum), catalytic cracked; Heavy Fuel off	64741-62.4		
Benzo(a)pyrene; Benzo(del)chrysene	50-32-8		
MASS RTK US. Masadhusets Commonwealth's Righ Bection 676,000)	US. Massachusets Commowaaths Right to Kriek Law (Appendix A to 105 Cole of Massachusets Regulations Section 670.000)		
a	6/6		10/9

# **Appendix D - Supplemental Equipment Brochures**

This appendix includes supplemental equipment brochures for several pieces of equipment included in the process. The equipment brochures are presented in the following order:

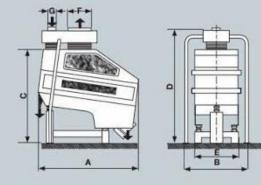

Boiler Centrifuge Destoner Filter Refrigerant Chiller

# Reboiler:

Boilers	Capacity Range* (lb/h)	Length	Width	Height	Drum Size
FM 9-22 26 30 34 43 43 48 52 57	8,200 to 40,000	7 ft 7 in. 8 ft 11 in. 9 ft 11 in. 11 ft 3 in. 12 ft 7 in. 13 ft 11 in. 15 ft 3 in. 16 ft 7 in. 17 ft 11 in.	10 ft 2-% in.	12 ft 4 in.	36 in. Steam Drum 24 in. Lower Drum
FM 10-52 57 61 66 70 79 FM 101-88	35,000 to 75,000	16 ft 7 in. 17 ft 11 in. 19 ft 3 in. 20 ft 7 in. 21 ft 11 in. 24 ft 7 in. 27 ft 3 in.	10 ft 10-% in. 11 ft 2-% in.	13 ft 6 in.	36 in. Steam Drum 24 in. Lower Drum
FM 103-70 79 88 97	70,000 to 100,000	21 ft 3-%⊧in. 23 ft 11-%⊧in. 26 ft 7-%⊧in. 29 ft 11 in.	11 ft 9 in.	13 ft 9-% in.	42 in. Steam Drum 24 in. Lower Drum
FM 106-79 88 97 FM 117-88 97	100,000 to 155,000	23 ft 11-¾ in. 26 ft 7-¾ in. 29 ft 3-¾ in. 26 ft 7-¾ in. 29 ft 3-¾ in.	11 ft 9 in. 11 ft 11-¼ in.	14 ft 3 in. 15 ft 4-½ in.	48 in. Steam Drum 24 in. Lower Drum
FM 120-97 112 124 FM 160-124	155,000 to 260,000	29 ft 3-%i in. 33 ft 7-%i in. 37 ft 3-%i in. 37 ft 3-%i in.	12 ft 5-% in. 14 ft 0-% in.	16 ft 10-½ in. 20 ft 0-½ in.	54 in. Steam Drum 24 in. Lower Drum
Stean	n capacity	Steam	pressure	Steam te	mperature
200,000 t	ICFM o 350,000 lb/h o 44.1 kg/s)	to 1250 p	isig (72 MPa)	to 825	F (441C)
200,000 t	PFM o 600,000 lb/h o 75.6 kg/s)	to 1800 ps	sig (12.4 MPa)	to 900	F (482C)

# Centrifuge:

Dimensions




### Technical data

		Foodec 800
Capacity		Depends on application
G-force max.		3243
Bowl material		Duplex stainless steel
Other wetted parts		AISI 316
Weight	kg.	13000 (28860 lbs)
Installed Power	kW	132 - 250 (140 - 330 Hp)
Sound pressure level ¹	dB(A) re. 20ÌPa	89

1 Dedared A-weighted emission sound pressure level in free field over a reflecting plane at 1 m distance from the decanter, operating at maximum bowl speed, tested with water and closed outlet.

Tailor-made solutions. Wide variety of applications.



Dimensions, technical data, weights, etc.

Туре		Di	mens	ions i	n mm			Screen width	Screen length	Vibrator power requirement	Negative air pres- sure	Ap	prox. w in kg		Volume seaworthy packing
	A	в	с	D	Е	F	G	cm	cm	kW	mbar	net	gross	sea- worthy	m³
MTSD-65/120 E	1600	1000	1195	1545	660	350	120	65	120	1 x 0.3	12	310	425	485	3.25
MTSD-65/120	1600	1000	1445	1805	660	350	120	65	120	1 x 0.3	12	400	525	590	3.75
MTSD-120/120	1600	1540	1445	1805	1200	500	120	120	120	2 x 0.3	12	600	765	845	5.5

Throughput capacity chart. The throughput capacity data refer to dry grain in the first cleaning section.

Type MTSD-	Product	Throughput t/h	Aspiration m³/min
65/120 E	Soft wheat	6	70
65/120	Soft wheat	6-12	70
120/120	Soft wheat	12-22	130
65/120 E	Durum wheat	4	70
65/120	Durum wheat	4-8	70
120/120	Durum wheat	8-14.5	130
65/120 E	Com/maize	4.5	70
65/120	Com/maize	4.5-9	70
120/120	Com/maize	9-16.5	130

E = 1 screen deck

BHS QUOTATION: BUDGET-U-00346-BFR320320-F02669-Rev. 0 DATED: 29 March 2016

> BHS Rubber Belt Filter Type BFR 320 – 320 Active Filter Area: W x L = 3.05 x 32.0 = 98 m²



BHS Rubber Belt Filter- 90 m²

BHS-Sonthofen Inc. 14300 South Lakes Drive Charlotte, North Carolina, 28273 Page 1 of 11

# 1. FILTER TYPE

Rubber Belt Filter:	BFR 320-320
Filter area:	W x L = 3.05 x 32.0 = 98m ²
Main Dimensions: (L X W X H)	36 x 4.5 x 2.8 meters (approximate)
Weight:	To be confirmed
Quantity:	One (1)

# 1.1 Nozzle table:

Pos.	Туре	No		Size	DIN
1	Fish tail	1	Slurry	2 x 4"	DIN 2501
2	Wash feed	2	Wash water	6"	DIN 2501
3	Spray bar	2	Cloth Rinse	1 1/2 "	DIN 2501
4	Filtrate outlet	3	Filtrate	10"	DIN 2501

BHS-Sonthofen Inc. 14300 South Lakes Drive Charlotte, North Carolina, 28273 Page 2 of 11

# 1.2 Materials

Product wetted parts (Vacuum box, filtrate pipe, cloth rinse trough, wash devices): PP/FRP

Non-product wetted parts:	carbon steel painted
Seals & gaskets:	EPDM, WS 3820
Transporter belt:	SBR (styrene-butadiene rubber)
Filter cloth:	Polypropylene, per the test report
Bolts & nuts:	stainless steel A 4

## 1.3 Equipment

Slurry feed device:	fish tail
Cake wash device:	2 single washes
Cake discharge:	wire supported
Fume hood:	not foreseen
Cake discharge chute:	not foreseen
Drip tray:	not foreseen
Painting:	BHS-Standard RAL 5022, Total thickness 150 µm

BHS-Sonthofen Inc. 14300 South Lakes Drive Charlotte, North Carolina, 28273 Page 3 of 11

# 1.4 Operation utilities

Electricity	55 kW for filter drive
Seal water:	6 m³/h at 2 bar
Sliding water:	Not required (roller table)
Approximate Cloth + belt rinse:	7 m³/h at 3 bar (based on one nozzle pipe and to be confirmed during testing)
Approximate Cake wash water:	2 x 80 m³/h; (To be confirmed during testing)
Instrument air:	pressure air at 6 bar

BHS-Sonthofen Inc. 14300 South Lakes Drive Charlotte, North Carolina, 28273 Page 4 of 11

# 2. OPERATION DATA

Testing:	None
Operational temperature:	80°C
Cake thickness:	To be confirmed
Belt speed:	10 - 12 meters/minute

	Normal capacity [m³/h]	Max design capacity [m³/h]	[%] Solids in feed	Medium	Feed type
Slurry					fish tail
Cloth rinse	TBA	TBA		Water	1-fold

	Normal capacity [t/h]	Max design capacity [t/h]	Moisture	Wash out	Remarks
Filter cake					

BHS-Sonthofen Inc. 14300 South Lakes Drive Charlotte, North Carolina, 28273 Page 5 of 11

#### 3. TECHNICAL DESCRIPTION

#### a) Mode of functioning

The BHS rubber belt filter is a continuously operating, horizontal vacuum belt filter. It can be used for safely separating fast settling (and also abrasive) solids from suspensions. The different filtrates can be separated simultaneously.

#### b) Base frame

The filter is designed of modular components consisting of the feed and discharge section as well as of at least one or several intermediate sections, which are firmly bolted to each other.

The filter area can be extended by adding additional modules.

#### c) Rubber carrier belt / filter cloth

The endless, flexible rubber carrier belt, which serves as a conveyor belt and filter cloth support in the top strand, is led over a drive pulley in the discharge section and a take-up pulley in the feed section. The pulley is driven by a gear motor. The take-up pulley can be adjusted in horizontal direction thus facilitating belt tracking and tensioning.

The surface of the rubber carrier belt is provided with grooves cut at right angles to the direction of travel. The carrier belt also has drainage holes for filtrate extraction into the vacuum box.

The filter cloth is a mechanically stable filter fabric. After cake discharge, assisted by a scraper, the rubber carrier belt and filter cloth separate. Both return to the take-up pulley via various carrying and deflecting rollers.

In order to prevent the filter cloth from running off track, a belt tracking device is installed in feed section of the return strand.

BHS-Sonthofen Inc. 14300 South Lakes Drive Charlotte, North Carolina, 28273 Page 6 of 11

#### d) Vacuum box / wear belt

The vacuum box is located below the rubber carrier belt and sealed against the belt by a circulating, endless wear belt. Water serves as sliding agent and lubricant to keep the vacuum loss as low as possible.

The vacuum boxes are divided into individual filtrate zones, which are connected to the manifold by vacuum-rated hose lines. This manifold is fitted to the filter frame and is segmented according to process requirements.

#### e) Belt support

The rubber carrier belt is supported by roller tables which are bolted to the individual frame parts. For this design no sliding water is required. Guide rollers fitted along the entire filter length prevent the belt from slipping sideways.

#### f) Supply of process media

The slurry is fed through a feed system.

The washing media are fed via nozzle systems and/or overflow channels. These assemblies are movable according to process requirements.

Immediately following the cake discharge, a belt washing device equipped with numerous nozzles is installed to clean the belt on the return strand.

BHS-Sonthofen Inc. 14300 South Lakes Drive Charlotte, North Carolina, 28273 Page 7 of 11

## 4.0 PERIPHERICAL PARTS (Not Included; sizing to be confirmed after testing)

All parts will be delivered separately, without piping. BHS to work to develop the optimum design for manifolding and/or combining of the vacuum pumps, separator tanks, etc.

#### 4.1 Vacuum Pump (Not Included; sizing to be confirmed after testing)

For the vacuum on the belt filter, a single-stage liquid ring pump with silencer is required, driven by means of an electric motor with v-belt, mounted to the common base frame.

Number:	1 (One per each belt filter)
Make:	To be confirmed
Design:	single-stage water ring pump
Sucking temperature:	approx. 55 deg C
Sucking capacity:	To be confirmed during testing
Intake pressure:	approx. 400 mbar
Process water requirements:	To be confirmed during testing
Water inlet temperature:	20°C
Materials:	grey cast iron
Shaft seal:	stuffing box
Drive:	v-belt
Estimated Motor Required:	To be confirmed during testing

### Suitability of the materials to be reconfirmed after clarification of the water quality.

#### 4.2 Water Separator and Collecting Tank (Not Included; sizing to be confirmed after testing)

To separate the water from the discharged air of the vacuum pump.

Number:	1 (One per each vacuum pump)
Design:	horizontal cylindrical vessel
Material:	FRP
Diameter:	To be confirmed during testing

BHS-Sonthofen Inc. 14300 South Lakes Drive Charlotte, North Carolina, 28273 Page 8 of 11

### 4.3 Filtrate Separator (Not Included; sizing to be confirmed after testing)

For separation of gaseous and liquid phases. The vessel is designed with cylindrical shell and flat ends, 1 lateral input connection, 1 discharge connection in the centre of the bottom, the suction connection on the cover on of the vessel and one pressure gauge connection.

Number:	2 (Two per each belt filter)
Diameter:	sizing to be confirmed after testing
Height:	sizing to be confirmed after testing
Material:	FRP

#### 4.4 Filtrate Pumps (Not Included)

The filtrate pump is not included in the scope of offer. It might be included after clarification of the requirements such as transport height and sucking height.

#### 3.5 PLC Controls (Not Included)

## 4.6 Options (Not Included)

BHS can include all other components such as tanks, pumps, candle filters and other components to complete the package based upon a final scope P & ID.

BHS-Sonthofen Inc. 14300 South Lakes Drive Charlotte, North Carolina, 28273 Page 9 of 11

#### 5. COMMERCIAL

5.1 Budget Price: US\$ 900,000.00

5.2 Price Basis (Material Surcharges & Drawing/Design Changes):

Due to the current volatility in material price surcharges, it will be necessary for BHS to reconfirm the price at time of order or at time of approved drawings, depending upon the scope of supply. The quotation is based upon the current mill base price and monthly surcharge for our equipment and standard piping/skid designs. When drawings and designs are finalized, any changes will be reviewed along with the surcharge in effect at the approval date and the price shall be adjusted accordingly.

5.3. Dispatch:	Ex-works, locations to be determined
5.4. Shipment:	Estimated 9 months after order
5.5. Validity:	Budget price only, non-binding
5.6. Terms of Payment:	To be discussed

5.7. Terms & Conditions:

BHS Terms & Conditions. Further, BHS WILL NOT, UNDER ANY CIRCUMSTANCES, BE LIABLE TO PURCHASER, OWNER, CLIENT OR RELATED PARTIES FOR SPECIAL (DIRECT, GENERAL OR INCIDENTAL), INDIRECT, OR CONSEQUENTIAL DAMAGES (INCLUDING BUT NOT LIMITED TO, LOSS OF PROFITS) IN ANY WAY RELATED TO GOODS AND, SERVICES, REGARDLESS OF THE LEGAL OR EQUITABLE THEORY ON WHICH THE DAMAGES ARE SOUGHT. BHS DOES NOT FURTHER ACCEPT INCOTERMS WARRANTIES AND DAMAGES. BHS LIMITS ALL WARRANTIES AND DAMAGES UP TO THE VALUE OF THE CONTRACT.

5.8. Mechanical, Controls and Process Commissioning:

Not included but provided by BHS, according to the BHS Invoicing Rates at time of commissioning. Operation of the filter must be in accordance with the operating and maintenance instructions; especially the maintenance intervals must be observed as indicated and be performed by suitably trained personnel only. This is a prerequisite for any warranty claims.

5.9. Documentation: To be advised

BHS-Sonthofen Inc. 14300 South Lakes Drive Charlotte, North Carolina, 28273 Page 10 of 11

5.10. Exclusions:

- Pumps, tanks and equipment to bring the fluids (slurry/liquids/gases) to the filter
- Fieldwork including wiring, piping, valves, etc.
- Validation documents and procedures
- Items not called out in this proposal are excluded

### 5.11. Warranty:

Machinery and Equipment. SELLER warrants that all PRODUCTS, which are machinery and equipment, shall be delivered in substantial conformance to its quoted specifications. SELLER will repair or, in its sole discretion, replace any PRODUCT which is a machine or equipment found by SELLER to be defective if such defect is reported to SELLER within ten (10) days after the earlier of 12 months after commissioning or (ii) 18 months after delivery. All of costs of removal, installation, shipping and similar will be borne by PURCHASER. This limited warranty does not cover damage or deterioration caused by storage of PRODUCTS, normal wear and tear, use under circumstances exceeding specifications or limitations, abuse or neglect, unauthorized repair or alteration, use of parts not provided by SELLER, lack of proper maintenance or damage caused by natural calamities.

PRODUCTS which are parts furnished to replace defective parts on machinery or equipment still under Seller's warranty shall be warranted to the same extent as the original machinery or equipment, but only for a period equal to the balance of the original period or three (3) months, whichever is longer. SELLER will repair or, in its sole discretion, replace any other spare parts made and sold by it, which it finds to be defective if such defect is reported to SELLER within thirty (30) days after delivery to PURCHASER. Parts not made by SELLER or a related party of SELLER, are sold AS IS, WITH ALL FAULTS, and in such cases SELLER shall, to the extent possible, assign to PURCHASER the original manufacturer's warranty.

5.12. Spare Parts: Spare parts are not included.

Respectfully Submitted By:

Barry A. Perlmutter, President & Managing Director

BHS-Sonthofen Inc, 14300 South Lakes Drive Charlotte, North Carolina, 28273 Page 11 of 11

Refrigerant Chiller:



# Water-Cooled Chillers

In many types of larger commercial and industrial buildings, water-cooled electric chillers offer an attractive alternative to air-cooled electric chillers and packaged rooftop units (RTUs). As their name implies, water-cooled chillers use water to absorb heat from the chiller and disperse it through a cooling tower, as opposed to air-cooled chillers and RTUs, which disperse heat only by using air-cooled condensor coils.

#### Water-Cooled Chiller Characteristics

The use of the cooling tower gives water-cooled systems an efficiency edge over air-cooled systems and RTUs. In addition, unlike RTUs, which circulate cool air through ducts, all chillers circulate chilled water to air-handler units, where fans push air across heat exchanger coils to deliver cooling. Because they circulate water, which is more energy dense than air, water-cooled chillers can offer a more efficient and effective cooling option than RTUs.

Water-cooled chillers are most commonly used in buildings larger than 200,000 square feet, where the cooling load is large enough for increased efficiency gains to offset the higher equipment cost. However, they're also a viable choice in smaller buildings with more than two stories because they don't have to push air through ducts across multiple stories. Potential applications for water-cooled chillers include multistory structures, universities, large office buildings, and hospitals.



O E Source

Figure 1: 100-ton water-cooled chiller. Water-cooled chillers use cooling towers to reject heat through evaporation.

### Chiller Terminology

Several terms are used to describe chiller performance and efficiency. Confusion can be minimized by first developing an understanding of the most common terms.

Tons. One ton of cooling is the amount of heat absorbed by one ton of ice melting in one day, which is equivalent to 12,000 Btus per hour, or 3.516 kilowatts (kW) (thermal).

Chiller performance is certified by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI), a manufacturer trade organization, according to its Standard 550/590: Performance Rating of Water-Chilling Packages Using the Vapor Compression Cycle. Two efficiency metrics are commonly used for water-cooled chillers: full-load efficiency and part-load efficiency.

Full-load efficiency. The efficiency of the chiller at peak load and at AHRI standard conditions is measured in kilowatts per ton (kW/ton). A lower kW/ton rating indicates higher efficiency.

Part-load efficiency. The efficiency of the chiller at part load is measured by either integrated part-load value (IPLV) or nonstandard part-load value (NPLV), depending on the particular AHRI part-load test conditions. Both give the efficiency of the chiller using a weighted average formula referencing four operating load points (100 percent, 75 percent, 50 percent, and 25 percent) and are expressed in KW/ton.

#### What's Available?

Water-cooled chillers are available in a wide range of sizes – from 20 tons to several thousand tons of cooling capacity. New water-cooled chillers commonly use one of three types of compressors: centrifugal compressors, which are the most efficient, followed by screw compressors, and then scroll compressors. The centrifugal category includes magneticbearing compressors. These use magnetic fields to levitate the compressor shaft in midair, eliminating the need for traditional oil-lubricated bearings. They generate less noise and vibration than other compressors and offer significantly better part-load efficiencies in some applications.

Water-Cooled Chillers | 1

www.FPL.com

How to choose. Which type of chiller to choose for a specific application is determined largely by the cooling capacity required and the trade-off between initial costs and operating costs. In general, for conditions that require less than 300 tons of cooling capacity, chillers with screw or scroll compressors are common. Screw chillers dominate the upper end of this capacity range, but magnetic-bearing compressors are gaining ground as they enable variablefrequency operation, which hasn't been a readily available option in the past in this size range. For requirements of more than 300 tons of cooling capacity, chillers with centrifugal compressors are typically used.

Specification considerations. Specifying an efficient watercooled chiller system can be a challenging process. Many parameters affecting system efficiency and performance need to be considered, such as:

- » Chiller efficiency
- Full-load versus part-load chiller operation
- » Variable-frequency drive (VFD) versus
- Constant-speed compressors
- Auxiliary component efficiency (pumps and fans)
- » Operating strategies
- » Interactions between components and operating strategies

Deciding which chiller is the best option for a building requires an in-depth analysis in order to maximize efficiency opportunities. This analysis is best conducted by design consultants and other professionals who can run computer simulations of the various equipment options, load factors, and operating strategies.

#### ASHRAE 90.1-2007 Addendum m

This addendum reflects continuing improvements in VFD technology, which has improved chiller part-load efficiencies and encourages the use of higher-efficiency equipment. This publication ushered in several changes to the chiller requirements in ASHRAE Standard 90.1, the Energy Standard for Buildings Except Low-Rise Residential Buildings.

The biggest change was to replace a single compliance path with two different paths. Path A affects applications that spend a significant amount of time at full load. Path B affects applications that spend a signification amount of time at part load. This specification encourages the use of chillers with better IPLVs in part-load applications and full-load efficiencies in full-load applications. For either path, minimum requirements for both full load and IPLV must still be met.

	ASHRAE 90.1 b	efore 1/1/2010	ASHRAE 90.1 as of 1/1/2010			
			Path A		Path B	
Water-cooled chiller	Full load (kW/ton)	IPLV (kW/ton)	Full load (kW/ton)	IPLV (kW/ton)	Full load (kW/ton)	IPLV (kW/ton)
Positive displacement	t chiller					
< 75 tons	0.790	0.676	0.780	0.630	0.800	0.600
≥ 75 and < 150 tons	0.790	0.676	0.775	0.615	0.790	0.586
≥ 150 and < 300 tons	0.717	0.627	0.680	0.580	0.718	0.540
≥ 300 tons	0.639	0.571	0.620	0.540	0.639	0.490
Centrifugal chiller	Centrifugal chiller					
< 150 tons	0.703	0.669	0.634	0.596	0.639	0.450
≥ 150 and < 300 tons	0.634	0.596	0.634	0.596	0.639	0.450
≥ 300 and < 600 tons	0.576	0.549	0.576	0.549	0.600	0.400
≥ 600 tons	0.576	0.549	0.570	0.539	0.590	0.400

© E Source; adapted from Jim Braun, Purdue University Notes: IPLVsintegrated part-load value; kW/tonskilowatt per ton

Table 1: Water-cooled chiller minimum efficiency requirements. The latest version of ASHRAE Standard 90.1 not only contains two compliance paths but also requires the use of more-efficient equipment.

2 | Water-Cooled Chillers

Addendum m also instituted four other changes for watercooled chillers:

- It required the use of more-efficient equipment in most size categories.
- It changed how efficiency is expressed, from coefficient of performance (COP) to kW/ton to reflect industry practice.
- It created a new size category for centrifugal chillers at or over 600 tons.
- It combined all positive displacement (reciprocating, screw, and scroll) chillers into one category.

All of these changes were rolled into the latest version of ASHRAE Standard 90.1-2010 and were adopted by the International Energy Conservation Code (IECC) of 2009. The new minimum efficiencies are shown in Table 1. Note that there are no U.S. federal minimum efficiency standards for chillers.

#### VFD Options

While many manufacturers offer chillers with a VFD option, only some offer the magnetic-bearing compressor technology. Scroll chillers aren't available with VFDs, though some manufacturers are now using digital scrolls, which perform better at part load than nondigital scrolls. VFDs can also be added to the chilled and condenser water pumps as well as the cooling tower fans.

Generally, as chillers spend most of their operating time at only 40 to 70 percent load, installing a VFD on the chiller and/ or auxiliary equipment in hot, humid climates can produce energy savings. For example, ASHRAE computer simulations run during the development of Addendum m showed a 21 percent efficiency improvement in a large Miami office building cooled by a single 600-ton water-cooled centrifugal chiller with a VFD, compared to a constant-speed chiller. It's important to note that when there are multiple chillers, savings may be less with the amount of decrease depending on the control strategy employed. VFDs aren't recommended for chillers that operate predominantly at full load because they can decrease chiller full-load efficiency by up to 4 percent.

Before purchasing a VFD chiller or auxiliary equipment, it's a good idea to conduct an hourly simulation analysis to evaluate the opportunity for a given application. Application considerations. The cost-effectiveness of a VFD for a water-cooled chiller is affected by several factors. Applications where VFDs are more likely to be cost-effective include those with the following characteristics:

- » Low chiller load factors. In applications where chillers spend a lot of time at low loads, VFDs will save the most energy and have the best chance of a quick payback.
- » Long cooling hours. Facilities that log more annual cooling hours are able to recoup the cost of cooling system improvements more quickly than those with limited or seasonal operating hours, such as a K–12 school.
- Presence of multiple chillers. Many facilities have two or more chillers that can be staged as load changes. This can create an ideal opportunity to install one or more VFD chillers to improve capacity control. Using a VFD on only one chiller allows you to more fully load the non-VFD chillers and use the VFD chiller to make up the difference in needed capacity. Using a VFD on all chillers in a plant allows you to balance run hours on all the equipment while still reaping the energy-efficiency benefits of VFDs.
- » Presence of a building automation system. Because VFD chiller plants can be operated in different ways, a building automation system can help building staff determine whether operating practices are helping or hindering overall plant efficiency.

It's possible to retrofit a VFD on an existing water-cooled centrifugal chiller in the field. However, care must be taken to integrate the capacity and other controls correctly, and it's advisable to enlist the services of an experienced design professional to ensure success.

#### Economics

Water-cooled screw and scroll chiller costs vary by manufacturer, location, and technology options. A survey of the major manufacturers shows an average cost of approximately \$250 to \$350 per ton for the chiller itself, depending on capacity.

For centrifugal chillers over 400 tons, prices range from \$200 to \$500 per ton for the chiller itself; for centrifugal chillers less than 400 tons, prices range from \$250 to \$600 per ton for the chiller itself. A VFD can add from \$30 to \$80 per ton (see Table 2). The cost to retrofit a VFD on an existing centrifugal chiller would be the cost of the VFD plus approximately 30 percent.

Estimating general installed costs for a water-cooled centrifugal chiller is difficult because rules of thumb don't apply. Centrifugal chillers are sometimes referred to as "infinitely configurable" as they offer more options than other

Water-Cooled Chillers | 3

www.FPL.com

chillers, and costs don't always follow linearly with size. They also use specialized motors and starters, the cost of which can often be more than the chiller itself. Without accounting for specific application details, you could estimate the total installed cost for a new chiller plant at \$1,500 to \$1,800 per ton, including the chiller.

Additional capital cost savings. While VFDs add significant capital cost to a chiller plant, installing a VFD chiller can allow you to reap capital cost savings in other ways:

- Install fewer chillers. Because VFD chillers operate efficiently at low loads, it's often possible to install fewer, larger chillers that can be regulated to match loads. This also saves on costs for piping, pumps, controls, and real estate.
- » Eliminate the pony chiller. Many plants include a small

"pony" chiller used to meet night or weekend loads. Because a VFD chiller can operate efficiently down to 10 percent of its full-load capacity, there's less need for a pony chiller.

Install a smaller emergency generator. In critical facilities such as hospitals and data centers, where the emergency power generator is sized to keep the cooling system running through a power interruption, the softstart capability of a VFD chiller can reduce the size and cost of the generator.

Chiller options	Dollars per ton
Screw and scroll chillers	\$250 = \$350
Centrifugal chillers < 400 tons	\$250 - \$600
Centrifugal chillers > 400 tons	\$200 = \$500
Adding a VFD to a new centrifugal chiller	\$30 = \$80
© E Source	

Table 2: Average cost for water-cooled chillers. Chiller costs vary significantly, making a "back-of-the-envelope" estimation difficult.



22986