

University of Pennsylvania ScholarlyCommons

Senior Design Reports (CBE)

Department of Chemical & Biomolecular Engineering

4-2016

High-Temperature Nuclear Power Cycle Using Either Helium or s-CO2

Sally E. Mink University of Pennsylvania, smink@seas.upenn.edu

Stephanie E. Gedal University of Pennsylvania, sgedal@seas.upenn.edu

Dillon M. Weber University of Pennsylvania, dillonw@seas.upenn.edu

Abhinav Dantuluri *University of Pennsylvania,* abhid@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cbe_sdr Part of the <u>Biochemical and Biomolecular Engineering Commons</u>

Mink, Sally E.; Gedal, Stephanie E.; Weber, Dillon M.; and Dantuluri, Abhinav, "High-Temperature Nuclear Power Cycle Using Either Helium or s-CO2" (2016). *Senior Design Reports (CBE)*. Paper 84. http://repository.upenn.edu/cbe_sdr/84

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cbe_sdr/84 For more information, please contact repository@pobox.upenn.edu.

High-Temperature Nuclear Power Cycle Using Either Helium or s-CO2

Abstract

The goal of this process was to model the helium-based modular, nuclear reactor power cycle after the existing MIT Pebble-Bed Nuclear Reactor Power Cycle (Kadak, 2005), and to improve on the design by changing the working fluid to supercritical carbon dioxide (s-CO₂). The power output of the process as specified in the problem statement, provided by Adam Brostow, was 120 MW. S-CO₂ is a much denser fluid, and should theoretically require smaller equipment sizes, making it the more economically viable option for this process. However, it was found that with a return on investment (ROI) of -2.13% and a net present value (NPV) of -\$489 million, this process was not economically feasible, due to the high temperatures, pressures, and flow rates required. This process had an electrical output of 118 MW, while the helium met the design condition of 120 MW. The helium process had a ROI of 11% and a NPV of \$241 million. For this reason, helium is recommended as the working fluid for a nuclear reactor power cycle of this magnitude.

Disciplines

Biochemical and Biomolecular Engineering | Chemical Engineering | Engineering

University of Pennsylvania

Department of Chemical and Biomolecular Engineering

220 South 33rd Street

Philadelphia, PA 19104

April 5th, 2016

Dear Professor Fabiano, Dr. Seider, and Mr. Brostow,

Enclosed are the contents of the written report containing the solution to the design problem recommended by Adam A.Brostow of Air Products and Chemicals. The assignment was in two parts: to model a helium-based modular, nuclear, power plant that would produce 120 MW of electricity, and then to try to improve it by changing the working fluid to supercritical carbon dioxide (s-CO₂). Mr. Brostow provided an existing process flow diagram designed by MIT as a Pebble-Bed Nuclear Reactor Power Cycle.

The electrical output of the helium process meets the 120 MW design condition exactly and the s-CO₂ process supplies 118 MW. Theoretically, the s-CO₂ cycle should be more economically feasible because it is a denser fluid than helium, and should require smaller equipment sizes. After a thorough investigation, it was found that the s-CO₂ cycle was not economically feasible, with a return on investment of -2.13% and a net present value of -\$489 million, due to the high temperatures, pressures, and flow rates necessary for the design. The helium, by contrast, has a return on investment of 11% and a net present value of \$241 million. For this reason, helium is recommended as the working fluid of choice for such a design.

Both the helium and s-CO₂ processes were modeled on ASPEN Plus V8.8. The cost estimates and profitability analysis were calculated using the ASPEN Process Economic Analyzer, ASPEN Exchanger Design & Rating, the "Profitability Analysis-4.0" Microsoft Excel spreadsheet prepared by Brian Downey, and *Product and Process Design Principles 3rd Edition*, by Seider, Seader, Lewin, & Widagdo.

We would like to thank you and the industrial consultants, Richard Bockrath, Gary Sawyer, and David M. Kolesar, for your assistance throughout this project.

Sincerely,

Abhinav Dantuluri

Sally Mink

Dillon Weber

Stephanie Gedal

High-Temperature Nuclear Power Cycle Using Either Helium or s-CO₂

Senior Design Project, CBE 459

Project Authors:	Sally Mink
	Stephanie Gedal
	Dillon Weber
	Abhinav Dantuluri
Project submitted to:	Professor Leonard A. Fabiano
	Dr. Warren Seider
Project proposed by:	Adam A. Brostow

Department of Chemical and Biomolecular Engineering

School of Engineering and Applied Science

University of Pennsylvania

Philadelphia, PA 19104

April 12, 2016

Table of Contents

1. Abstract	
2. Introduction and Objective-Time Chart	
2.1 Introduction	
2.2 Objective-Time Chart	
3. Market and Competitive Analyses	
4. Preliminary Process Synthesis	
4.1 Helium Circuit with Single Turbine-Compressor Stage	
4.2 Helium Circuit with Three Turbines, Four Compressors	
4.3 S-CO ₂ Circuit using 850,000 lb/hr Flow Rate	
4.4 S-CO ₂ Circuit 4.4 million lb/hr Flow Rate	
4.5 S-CO ₂ Supercritical Brayton Cycle	
5. Assembly of Database	
5.1 Property Methods	
5.2 Toxicity	
5.3 Materials Pricing	
6. Process Flow Diagram and Material Balances	
6.1 Helium Process Flow Diagram	
6.2 Helium Material Balance	
6.3 S-CO ₂ Process Flow Diagram	
6.4 S-CO ₂ Material Balance	
7. Process Description	
7.1 Helium Process	
7.2 S-CO ₂ Process	
8. Energy Balance and Utility Requirements	
8.1 Helium Process	
8.2 S-CO ₂ process	
9. Equipment List and Unit Descriptions	
9.1 Heat Exchangers	
9.2 Compressors	
9.3 Turbines	
9.4 Helium Process	
9.4.1 Heat Exchangers	
9.4.2 Compressors	
9.4.3 Turbines	
9.5 S-CO ₂ Process	
9.5.1 Heat Exchangers	
9.5.2 Compressors	
9.5.3 TURDINES	
10. Specification Sheets	
10.1 Helium Process	
10.1.1 Heat Exchangers	
10.1.2 Compressors	59

10.1.3 Turbines	63
10.2 S-CO ₂ Process	
10.2.1 Heat Exchangers	
10.2.2 Compressors	72
10.2.3 Turbines	74
12. Equipment Cost and Fixed-Capital Investment Summaries	
12.1 Helium Process	
12.2 S-CO ₂ Process	
13. Operating Cost – Cost of Manufacture	
13.1 Helium Process	
13.1.1 Utilities	
13.1.2 Operations	
13.1.3 Maintenance	
13.1.4 Operating Overhead	
13.1.5 Property taxes and insurance	
13.2 S-CO ₂ Process	
13.2.1 Utilities	
13.2.2 Operations	
13.2.3 Maintenance	
13.2.4 Operating Overhead	
13.2.5 Property taxes and insurance	
14. Other Important Considerations	84
14.1 Safety and Health Concerns	
14.1.1 Helium	
14.1.2 Carbon Dioxide	
14.1.3 Overall Plant	
14.2 Plant Location	
15. Profitability Analysis – Business Case	89
15.1 Profitability Measures	
15.1.1 Helium Process	
15.1.2 S-CO ₂ Process	
15.2 Lost Summary	
15.2.1 Helium Process	
15.2.2 S-CO ₂ Process	
16. Conclusions and Recommendations	
17. Acknowledgments	
18. Bibliography	
Appendix A – Insights into Turbocharger Process Design	
Appendix B – Sample Calculations	
B.1 Intermediate Pressure between Compressors	
B.2 Distance between Emergency Breathing Apparatuses	
B.3 System Volume Estimation	
B.3.1 Piping	
B.3.2 Turbines and Compressors	
B.3.3 Heat Exchangers	

B.4 Turbine Purchase Cost B.5 Levelized Cost of Electricity	
Appendix C. Material Safety and Data Sheets	
C.2 Carbon Dioxide	
Appendix D. Original Project Statement	
Appendix E. Aspen Exchanger Design and Rating Results	
E.2 S-CO ₂ Process	
Appendix D. Aspen Block Results	147
D.1 Helium Process	147
D.2 S-CO ₂ Process	

1. Abstract

The goal of this process was to model the helium-based modular, nuclear reactor power cycle after the existing MIT Pebble-Bed Nuclear Reactor Power Cycle (Kadak, 2005), and to improve on the design by changing the working fluid to supercritical carbon dioxide (s-CO₂). The power output of the process as specified in the problem statement, provided by Adam Brostow, was 120 MW. S-CO₂ is a much denser fluid, and should theoretically require smaller equipment sizes, making it the more economically viable option for this process. However, it was found that with a return on investment (ROI) of -2.13% and a net present value (NPV) of -\$489 million, this process was not economically feasible, due to the high temperatures, pressures, and flow rates required. This process had an electrical output of 118 MW, while the helium met the design condition of 120 MW. The helium process had a ROI of 11% and a NPV of \$241 million. For this reason, helium is recommended as the working fluid for a nuclear reactor power cycle of this magnitude.

2. Introduction and Objective-Time Chart

2.1 Introduction

The idea behind using a nuclear reactor to generate electricity is that the entire process runs on clean energy. The nuclear reactor is used to heat the helium to a high temperature. The process of generating electricity using this heat was first published by MIT (Kadak, 2005), and the process diagram is shown below in Figure 2.1. The hot helium stream coming from the reactor is sent through the intermediate heat exchanger and then expanded in a series of turbines, also known as expanders, which power the compressors and generate the electricity for the process. The compressors, in conjunction with the intercoolers, provide the cooled and compressed fluid that absorbs heat in the recuperator heat exchanger. This cycle is known as the Brayton Power Cycle.

Figure 2.1. MIT Pebble-Bed Nuclear Reactor Power Cycle (Kadak, 2005).

For the purposes of this project, the details concerning the nuclear reactor were considered out-of-scope. As specified by Kadak in his paper, the reactor would be a pebble-bed type. These types of reactors are inherently safer than other options because they prevent the possibility of a meltdown or fuel damage and support online refueling. The fundamental concept of the reactor is that it takes advantage of the high temperature properties of helium, permitting thermal efficiencies upwards of 50%.

This helium-based cycle was to be modeled first, and then compared to a similar process using supercritical carbon dioxide (s-CO₂) as the working fluid. There was also discussion of the possibility of a combined cycle, using both helium and s-CO₂ as the working fluids in conjunction with each other, but this was concluded as out-of-scope for this project. The idea behind using s-CO₂ instead of helium is that, as a supercritical fluid, the s-CO₂ is much more dense than helium, reducing the compression and capital costs of operation, which is important in developing a modular design. The helium-based nuclear power cycle process, as shown in Figure 2.1, was likely to be changed when s-CO₂ became the working fluid. The assignment was to make this process economically more feasible than the helium-based process, because CO₂ is much more readily available than helium.

2.2 Objective-Time Chart

Project Name: High-Temperature Nuclear Power Cycle Using Either Helium or s-CO2

Project Leaders: Sally Mink, Steph Gedal, Dillon Weber, Abhinav Dantuluri

Specific Goals: Model two high-temperature nuclear reactor power cycles after the MIT design using the ASPEN Plus process simulator: one with helium as the working fluid and one with supercritical carbon dioxide as the working fluid.

Project Scope:

In-Scope

- Power cycles generating 120 MW for both the helium-based and s-CO₂-based processes.
- A profitable cycle for both, with the s-CO₂ cycle potentially more economical due to s-CO₂ being more dense

Out-of-Scope

- A similar power cycle design, except with concentrated solar power as the source of energy
- Nuclear reactor details and design
- Combined cycle (both helium and s-CO₂ as the working fluids)

Deliverables:

- Business Opportunity Assessment
 - Will the s-CO₂ cycle end up being more profitable than the helium cycle as expected?
 - Will either cycle be profitable?
- Technical Feasibility Assessment
 - Will the designs be technically feasible?
- Manufacturing Capability Assessment
 - Can the design be manufactured without significant capital investment?
- Timeline Assessment
 - Will the processes achieve a reasonable investor rate of return?

Timeline: Complete design and economic analysis by April 12, 2015.

3. Market and Competitive Analyses

The helium process will produce 120 MW of electricity for sale in the PJM Interconnection wholesale market, which is North America's largest wholesale electricity market and serves Pennsylvania and many of the surrounding states. According to analysis of data from the Energy Information Administration (EIA) – a branch of the United States Department of Energy responsible for providing energy data and forecasts for prices – on wholesale prices, electricity sold for an average of \$54/MWh over the last 5 years in this market. However, a recommended price of \$70/MWh was used after consultation with technical advisors (Seider, et al., 2016). In addition, the EIA predicts that United States electricity prices to rise at an annual rate of 0.6% to 2040, so this forecast was used to model changes in the price of the product over the lifetime of the process.

The current peak electricity demand in the PJM market is approximately 183 GW (188,000 MW). Moody's Analytics has predicted this demand will grow at an average rate of 0.9% over the next 15 years ("PJM Load," 2015), meaning additional generation capacity will be needed as older power plants retire. By 2020, at least 2,653 MW of capacity is set to retire in the PJM market and this process aims to be the replacement of choice for investors for several key reasons ("Future Deactivations," 2016).

First, this process produces electricity without generation of carbon dioxide or other harmful emissions into the environment. The implementation of the Clean Power Plan in the PJM market will ensure strong demand for carbon-free power, and the growing possibility of further economic or regulatory restrictions on greenhouse-gas emitting power sources, such as a Carbon Tax or Cap and Trade Scheme, means the product will be increasingly attractive to investors worried about the regulatory risk of CO₂. Regardless of political concerns regarding

climate change, it is clear that there is a sustained market for carbon-free power in the United States generally and in PJM specifically.

Second, this process is a reliable source of baseload power, meaning a reliable electricity generation source that can generate at all hours of the day and night. The process avoids the inherent, intangible risks of intermittency that are associated with renewable power while remaining carbon-free. Much of the retiring electricity capacity in this market is from thermal coal plants, which were originally sources of baseload power—consistently available for generation of electricity at any time. Wind and photovoltaic solar generated power thus cannot perfectly replace these lost baseload coal plants because of their intermittent nature, while this process has no concern about intermittency. This makes it a logical and safe choice for replacing retiring coal plants without the need for expensive solutions like utility-scale battery storage.

This provides a strong opportunity for the helium loop to be implemented at various nuclear power plants throughout the PJM market. There are currently 33 operating nuclear units in PJM, if the process was implemented on all stations it could result in an additional power capacity of 3,960 MW.

As of 2013, nearly 4,500 MW of combined-cycle gas plants had committed to construction and operation (Spees & Pfeifenberger, 2013). This will be the main competitor in the market. An analysis of the competitiveness of this project and a combined-cycle gas turbine, as well as that of other electricity generation technologies is best pursued using the concept of a levelized cost of electricity. This cost is defined by the EIA as "the per-kilowatt-hour cost (in real dollars) of building and operating a generating plant over an assumed financial life and duty cycle" ("Levelized Cost," 2015). Because our process and those we will be comparing it with are

on a utility-scale, the levelized cost was adjusted here to a per-megawatt-hour cost in calculations.

Based on this metric, our helium process easily outcompetes coal-fired generation as well as wind and hydroelectric, according to average EIA numbers provided in the Annual Energy Outlook 2015 report ("Levelized Cost," 2015). It is important to note that specific levelized costs will vary with each individual project and are not set for a given source of generation, and that for fuel-based generation such as natural gas combined-cycle turbines, the levelized cost is highly sensitive to the price of fuel. Consistently lower natural gas prices since the EIA Report data was gathered, and the natural gas glut in the Northeastern region due to hydraulic fracturing of shale in Pennsylvania leads to the belief that combined cycle gas levelized costs are likely much more competitive with this process than the EIA report suggests. Additionally, the EIA assumes an additional discount rate in its calculations for all CO₂ emitting power sources under the assumption a stricter regulatory framework will eventually be put in place—a further case for reducing the reported cost of natural gas generation in this comparison.

Figure 7.1: Per Megawatt-Hour Cost of Electricity for Various Generating Plants. Values presented are averages compiled throughout the United States and do not indicate the economics of any specific power plant (Conti et al., 2015).

4. Preliminary Process Synthesis

The goal of this project is to design a modular addition to a power plant that generates 120 MW of electricity in the most economically efficient way. There were two working fluids that were examined that are well suited for high temperature processes. The first of these is helium, which is a small molecule that leaks out of the system and typically requires special equipment. The limitations of using helium motivate us to replace the secondary circuit with supercritical carbon dioxide (s-CO₂). Figure 4.1 outlines the decision making process that was taken in order to determine the best possible process using the most effective working fluid. All of the alternatives are discussed in the sections below.

Figure 4.1. Preliminary Process Synthesis. The decision making map that was used to document all of the alternative process designs that were considered while solving the design problem.

4.1 Helium Circuit with Single Turbine-Compressor Stage

The first iteration of the power plant using helium as the working fluid followed a simplified version of the MIT Pebble-Bed Nuclear Reactor Power Cycle. The recommended 850,000 lb/hr flow rate is used in this flow diagram. However, only 26.7 MW of power is generated, which falls short of the 120 MW goal. The result is expected, because the original Pebble-Bed Power Cycle was simplified for the purpose of studying the contribution and specifications of each piece of equipment. Figure 4.2, below, shows the first step of the process design, which uses one turbine-compressor stage and follows the flow and pressure specifications of the original Pebble-Bed Power Cycle design.

Figure 4.2. Simplified Pebble-Bed Power Cycle. This process uses helium in a single turbine-compressor stage.

4.2 Helium Circuit with Three Turbines, Four Compressors

The previous process design, Figure 4.2, was used as a starting point for the next attempt. Two more turbines and three more compressors were added in Figure 4.3, which is the helium circuit design that generates the required amount of power, 120 MW. In this design, the helium flows through three turbines, which power four compressors and generate a net of 120 MW of power. In the original Pebble-Bed Power Cycle design, each of the first two turbines powered two combined shaft compressor pairs and the last turbine acted as a generator, producing 120 MW of power. However, it was more efficient to have free-standing compressors due to their low pressure ratios and the high cost of such large combined shaft compressors. This helium circuit competes with the best iteration of the s-CO₂ circuit. Refer to the Profitability Analysis in section 15 for more information on how it was selected to be the best overall design.

Figure 4.3. Final Process Design. Produces 120 MW of electricity. Details on profitability, especially as compared to the best design using $s-CO_2$ are discussed in later sections.

4.3 S-CO₂ Circuit using 850,000 lb/hr Flow Rate

This process flow diagram takes the same equipment from the Pebble-Bed Power Cycle and the flow rate used for the helium process, shown in Figure 4.3, and changes the working fluid to s-CO₂. Several key pressure and temperature changes were also necessary since the properties of the working fluid are now changed. This design does not produce nearly as much power as the helium did. This process design, shown in Figure 4.4, will act as a starting point for the iterations using s-CO₂ as the working fluid in the secondary circuit. Note that the working fluid in the primary loop, "HOT1", is still helium.

Figure 4.4. S-CO₂. Process Design using Three Turbines, Four Compressors. This process generates net power in the generator (third turbine, T3). The flow rate used for this iteration was 850,000 lb/hr.

4.4 S-CO₂ Circuit 4.4 million lb/hr Flow Rate

Since the design discussed above did not generate nearly enough power, the flow rate of the working fluid was increased about five times. Although at a flow rate of 4.4 million lb/hr slightly more power was produced, it still did not reach the 120 MW goal, so this entire design was abandoned.

4.5 S-CO₂ Supercritical Brayton Cycle

Finally, the s-CO₂ circuit was built using a modified Brayton Power Cycle for supercritical CO₂. The Brayton cycle, as developed by the Sandia National Laboratories did not produce enough power, so the primary loop was traced through two more heat exchangers, using more residual heat to heat up two more streams before they entered turbines (Wright et al., 2010). This modification, shown in Figure 4.5, was able to generate enough power, making this process design a viable competitor to the helium process shown in Figure 4.3. The flow rate of this process, however, is 9.5 million lb/hr, which is about 10 times the flow rate in the best helium cycle. This seems unintuitive, since the reason for switching to the s-CO₂ process is so that a more dense fluid could be used to minimize the equipment size necessary, prevent leaks in the system, and avoid the high costs of helium. However, the more dense and high pressure a fluid is, the harder it is to expand it through a turbine, thereby producing less power. Since s-CO₂ did not produce enough power through the turbines at 850,000 lb/hr, it was necessary to increase the flow rate. Unfortunately, higher flowrates end up offsetting the extra power produced because the equipment sizes get extremely large. Therefore, even though s-CO₂ is more dense than helium, the large flow rate required to get the same power output is too large to justify the high capital expenditure, making this option not economically viable. Refer to the Profitability Analysis in Section 15.1.2 for a detailed economic justification of the final process design, where the economic pitfalls of the s-CO₂ Supercritical Brayton Cycle will also be more evident.

Figure 4.5. $S-CO_2$ Circuit Based on Supercritical Brayton Cycle. The Brayton cycle here has been slightly modified. Also, helium is still being used in the primary loop.

5. Assembly of Database

5.1 Property Methods

In this project, the Peng-Robinson (PR) property method was used during the helium process, while the Lee-Kesler Plöcker (LK PLOCK) property method was used for the supercritical carbon dioxide process in Aspen 8.8. The Peng-Robinson property method was selected for the helium process because of its ability to accurately represent a large range of gases including helium, and it was also the recommended property method by multiple industrial consultants. The Lee-Kesler Plöcker property method was selected for the s-CO₂ process because of its accuracy in representing non-polar substances, especially in the supercritical region, and it is often used in simulations for s-CO₂ Brayton cycles ("Development of a Supercritical," 2004).

5.2 Toxicity

Helium is a nontoxic asphixiant, while sCO₂ is a toxic asphixiant that must be monitored very closely (Appendix C.2). The Occupational Safety and Health Administration (OSHA) recommends a CO₂ concentration limit of 0.5% by volume for an 8-hour workday. All toxicity levels are stated on a by volume basis in this report. The American Conference of Governmental Industrial Hygienists (ACGIH) also recommends an additional ceiling exposure limit of 3%, and an immediately dangerous to life and health limit of 4%. A concentration of 9% CO₂ over a period of 5 minutes can prove to be fatal ("Appendix C," 2006). The safety protocol and alarm techniques used to ensure low levels of helium and CO₂ in the work area is covered in the Safety and Health Concerns in section 14.1.

5.3 Materials Pricing

The pricing of the materials is one of the main factors inspiring the attempted switch from using helium as the working fluid in the process to using supercritical carbon dioxide.

Helium is a relatively rare element on Earth, and is only found naturally in dilute quantities, at a maximum purity of about 7% (Tilghman, 2011). Carbon dioxide, however, is a waste product in most power generation facilities, and can be found in concentrations above 99% by weight in separated combustion flue gas streams (Last & Schmick, 2011). Thus, helium is relatively difficult to obtain and expensive, while carbon dioxide is quite cheap and abundant.

Helium costs around \$200 per thousand cubic feet at our operating temperature and pressure (Hamak, 2016), and with an operating volume in the helium system of about 11.1 million cubic feet, that gives us a helium cost of around \$2.2 million. Prices for bulk carbon dioxide are incredibly difficult to find, since although there is a lot of it available, hardly anyone is interested in buying it. However, in *small* bulk quantities the cost is around three cents per cubic foot ("Price List," 2013), which when combined with the s-CO₂ process operating volume of 626 thousand cubic feet yields a carbon dioxide cost of only \$18.8 thousand. We also need to factor in about another 10% volume for small system losses throughout the operating year, as recommended by the consultants.

Both of these costs can be regarded as negligible given the costs of our processes. Also, since our $s-CO_2$ process is already financially infeasible, the exact price of the carbon dioxide is not important.

6. Process Flow Diagram and Material Balances

6.1 Helium Process Flow Diagram

6.2 Helium Material Balance

Stream Number	P-1	P-2	S-1	S-2	S-3	S-4	S-5	S-6
Temperature (°F)	1652.0	948.6	1503.8	1334.8	1165.5	770.0	361.2	86.0
Pressure (psi)	1121.1	110.1	1145.8	890.9	675.3	306.8	306.8	393.1
Mass Flow (lb/s)	279.3	279.3	235.9	235.9	235.9	235.9	235.9	235.9
Volume Flow (ft ³ /s)	1425.7	9593.9	1096.6	1286.5	1534.7	2546.8	1703.9	889.5
Density (lb/ft ³)	0.196	0.029	0.215	0.183	0.154	0.093	0.138	0.265
Stream Number	S-7	S-8	S-9	S-10	S-11	S-12	S-13	S-14
Temperature (°F)	169.7	122.0	205.5	157.5	240.7	157.5	253.7	662.0
Pressure (psi)	506.7	514.9	653.4	677.3	847.6	886.2	114.8	1145.8
Mass Flow (lb/s)	235.9	235.9	235.9	235.9	235.9	235.9	235.9	235.9
Volume Flow (ft ³ /s)	797.3	726.1	655.7	588.0	534.6	452.3	405.8	631.6
Density (lb/ft ³)	0 296	0 325	0 360	0.401	0 441	0 522	0 581	0 374

6.3 S-CO₂ Process Flow Diagram

6.4 S-CO₂ Material Balance

Stream Number	P-1	P-2	P-3	P-4	S-1	S-2	S-3	S-4
Temperature (° F)	1652.0	1338.6	1293.5	1139.0	1310.0	1197.1	1220.0	1133.5
Pressure (psi)	1121.1	1121.1	1121.1	1121.1	1160.3	797.7	797.7	592.0
Mass Flow (lb/s)	1322.8	1322.8	1322.8	1322.8	2645.6	2645.6	2645.6	2645.6
Volume Flow (ft ³ /s)	621.0	528.2	514.7	468.4	1005.0	1357.8	1376.9	1751.9
Density (lb/ft ³)	2.13	2.50	2.57	2.82	2.63	1.95	1.92	1.51
Stream Number	S-5	S-6	S-7	S-8	S-9	S-10	S-11	
Temperature (°F)	1211.8	191.2	82.4	139.4	131.4	176.3	1148.7	
Pressure (psi)	592.0	592.0	592.0	870.2	870.2	1160.3	1160.3	
Mass Flow (lb/s)	2645.6	2645.6	2645.6	2645.6	2645.6	2645.6	2645.6	
Volume Flow (ft ³ /s)	1839.3	631.4	449.7	337.4	325.9	264.2	911.5	
Density (lb/ft ³)	1.44	4.19	5.88	7.84	8.12	10.01	2.90	

7. Process Description

7.1 Helium Process

The helium process produces 120 MW of electricity by taking residual heat from a primary helium stream in a nuclear reactor and transferring it to a secondary expansion and compression loop also composed of helium. This initial heat transfer between the primary loop P-1 and the secondary loop S-1 occurs at HX-1 in Figure 4.3 on page 15. The reader will find reference to this flowsheet helpful throughout the description of this process. P-1 comes out of HX-1 (page 53) as P-2 and is recycled through the reactor, though the process by which the primary loop is heated and cool in the nuclear reactor core is outside the scope of this project.

The prime area of concern for this process is the secondary helium loop and its expansion and compression. Stream S-1 has a mass flow rate of 850,000 lb/hr helium and receives approximately 2.6x10⁹ Joules of residual heat from P-1. Exiting HX-1, S-1 is at a temperature of 1504 °F and pressure of 1146 psi. It then enters turbine T-1 (page 63) for the first stage expansion. T-1 expands the helium, with an accompanying pressure drop to 885 psi and a temperature drop to 1335 °F. This first-stage expansion produces 52.8 MW of power.

After exiting T-1, S-2 enters the second turbine, T-2 (page 64). T-2 also produces 52.8 MW of power and the helium exits this process unit at 682 psi and 1166 °F. T-1 and T-2 generate specified amounts of power which correspond with the power inputs required for the compressors to be discussed momentarily. Finally, the helium stream enters T-3 (page 65) and is once again expanded to produce 123 MW of power. The stream then exits this turbine at a temperature of 770 °F and a pressure of 305 psi. Each of the turbines in the expansion step was assumed to have an efficiency of 90%, as suggested by industrial consultants.

S-4 then enters HX-2 (page 54), the recuperator. The recuperator is composed of five identical shell-and-tube heat exchangers in parallel. The details of these exchangers can be found in the Equipment List and Unit Descriptions in section 9.

Stream S-4 transfers 2.71×10^9 joules to the cold stream and exits HX-2 as S-5, with a temperature of 361 °F and a pressure of 305 psi.

The stream S-5 then enters HX-3 (page 55), which is a further shell-and-tube heat exchanger with utility cooling water flowing through it. The helium stream exits this heat exchanger at 86 °F. This additional cooling was included to reduce the power requirements of the coming compression to reasonable amounts.

Now the helium enters compressor C-1 (page 59), before interacting with the intercooler HX-4 (page 56) and passing through compressor C-2 (page 60). This compressions results in a pressure increase to 653 psi, while the temperature is increased to 205 °F before being cooled again at HX-5 (page 57) to 158 °F. C-1 and C-2 each require 26.1 MW of power to achieve the desired compression.

The helium stream then enters C-3 (page 61) for another compression stage, is cooled at HX-6 (page 58) and enters the final compressor C-4 (page 63). C-3 requires an additional 26.1 MW of power to achieve its compression while C-4 requires 30 MW of power. Having reached a temperature of 253 °F and a pressure of 1146 psi, stream S-13 re-enters HX-2 as a cold stream to be heated by S-4. The helium stream S-14 exits HX-2 at a temperature of 662 °F and a pressure of 1146 psi, which is a sufficient condition to close the loop and send it back to HX-1 for heat transfer from the primary loop P-1. This loop, having achieved the 120 MW target, continues to cycle through for continuous operation and production of electricity.

The selection of a three turbine, four compressor model with intercoolers was based on the MIT design given in the original problem statement (Kadak, 2005). Earlier designs included fewer compressors which, due to the inability to cool the process streams between compressions and the need to achieve greater compression ratios, produced less net power generation and was thus less profitable. All intercoolers throughout this process use simple cooling water.

7.2 S-CO₂ Process

The s-CO₂ process will produce 118.7 MW of net power from the residual heat of the nuclear reactor. As with the helium process, consideration of the primary helium loop is beyond the scope of this project though in this design residual heat is extracted in three stages from this primary stream before it loops back to the nuclear reactor. The process flowsheet can be viewed in Figure 4.5 on page 22 and will be helpful in reading this process description.

The s-CO₂ stream S-1, which has a mass flow rate of 9.5 million lb/hr CO₂, exits HX-1 (page 66) at a temperature of 1310 °F and a pressure of 1160 psi. It then enters T-1 (page 74) where it is expanded to produce 91.4 MW of power. This expansion brings the s-CO₂ down to a temperature of 1197 °F and 798 psi as S-2. S-2 then enters HX-2 (page 67), which is a second shell-and-tube heat exchanger and receives a further heat transfer from the primary helium loop stream (now at 1339 °F and 1117 psi). The s-CO₂ stream leaves HX-2 as S-3 at a temperature of 1220 °F and 798 psi and then enters T-2 (page 75). T-2 expands the s-CO₂ to generate an additional 69 MW of power, bringing the secondary loop conditions to 1134 °F and 595 psi.

After leaving T-2, the stream S-4 enters HX-3 (page 68) to receive the final heat transfer from the primary helium loop and reaches a temperature of 1211 °F and pressure of 595 psi. The stream then enters HX-4 (page 69), a recuperator shell-and-tube heat exchanger network of five-by-five heat exchangers in series and parallel. The necessity of this heat exchanger network

significantly increases the overall cost of the project as discussed in the Profitability Analysis section.

The stream exits the recuperator as stream S-6 and enters HX-5 (page 70) for further cooling before compression. Again, this cooling is done to reduce the overall duty required in compression, just as in the helium process.

HX-5 cools S-6 and the stream exits as S-7 at 82 °F and 595 psi before entering C-1 (page 72). C-1 increases the pressure to 870 psi while also raising the temperature to 140 °F. This compression requires 23.3 MW of power.

Leaving the compressor and intercooler, the s-CO₂ stream S-8 enters an intercooler HX-6 (page 71) where it is cooled to 131 °F before again being compressed in C-2 (page 73) to a pressure of 1160 psi and temperature of 176 °F. This compression requires 18.4 MW of power. The stream exits the compressor then enters the recuperator as the cold stream S-10 and is heated by the previously mentioned stream S-4 to a temperature of 1148 °F. This stream S-11 is then recycled back to HX-1 to be heated by the primary helium loop.

As noted earlier, the primary loop interacts with the secondary loop on three occasions in this process, at HX-1, HX-2, and HX-3. This was found to be the most efficient way to extract the residual heat from the stream for s-CO₂, whose heat transfer properties are far less favorable than those of helium. The choice to use a three-stage heating by the primary loop was motivated because of the size constraints on what would have needed to be an impossibly large heat exchanger for a single-stage heating of the secondary loop such as the one performed in the helium process described above.

8. Energy Balance and Utility Requirements

8.1 Helium Process

The energy balances of the helium and the s-CO₂ process start with free residual heat from the nuclear reactor in stream P-1 in the helium and s-CO₂ processes, respectively. From here, both processes heat a secondary circuit that runs through a series of compressors, turbines and intercoolers to generate 120 MW power.

In the helium loop, the biggest utility requirement is that of the four intercoolers. These coolers are placed between each compressor to reduce the power consumed by the compressors. The intercoolers use cooling water that is recycled throughout the plant and comes into the process at 80.6 °F. The cooling water is cooled in a cooling tower that is already attached and used by the nuclear reactor. This cooling water costs .01 cents/gallon and about 11.9 million lb/hr of water is used for each intercooler (Seider et al., 2009). This is true for the s-CO₂ process as well. The overall energy use and utility costs of the intercoolers are summarized in Table 8.1. The energy balances for the heat exchangers in the process are also found there in the first two lines of the table.

Demand	Satisfaction	Energy Transferred (MWh)	Cost/MWh (\$)
Stream S-14 is heated from 662 °F to 1504 °F	Stream P-1 is cooled from 1652 °F to 948 °F	260.033	
Stream S-4 is cooled from 770 °F to 361 °F	Stream S-13 is heated from 253 °F to 662 °F	126.225	
Stream S-5 is cooled from 361 °F to 86 °F	Cooling water is heated from 81 °F to 86 °F	84.856	\$19.32
Stream S-7 is cooled from 1211 °F to 190 °F	Cooling water is heated from 81 °F to 104 °F	14.7296	\$19.32
Stream S-9 is cooled from 205 °F to 158 °F	Cooling water is heated from 81 °F to 86 °F	14.808	\$19.32
Stream S-11 is cooled from 241 °F to 158 °F	Cooling water is heated from 81 °F to 88 °F	25.669	\$19.32

Table 8.1. Heat Exchanger Energy Balance and Utility Requirements for the Helium Process.
The turbine, compressor, and generator energy balances are summarized in Table 8.2. The first two turbines, T-1 and T-2 generate enough energy to power the four compressors, which each take 26.1 MW. The last turbine, which is effectively a generator, generates an excess of 120 MW of energy, which is the ultimate goal of our process design. This excess energy, which is noted at the bottom of Table 8.2 as the total power generated, is what is being sold at the end of the day.

Note that the pressures between each stage of compression vary by about 15 to 30 psi because the stream is slightly expanded through each intercooler before it enters the compressor.

Demand	Satisfaction	Power Generated/ Consumed (MW)
Turbine T-1 generates power	Stream S-1 is expanded from 1146 psi to 885 psi	52.8
Turbine T-2 generates power	Stream S-2 is expanded from 885 psi to 682 psi	52.8
Turbine T-3 generates power	Stream S-3 is expanded from 682 psi to 305 psi	123
Stream S-6 is compressed from 392 psi to 508 psi	Compressor C-1 consumes power	-26.1
Stream S-8 is compressed from 522 psi to 653 psi	Compressor C-2 consumes power	-26.1
Stream S-10 is compressed from 682 psi to 841 psi	Compressor C-3 consumes power	-26.1
Stream S-12 is compressed from 885 psi to 1146 psi	Compressor C-4 consumes power	-30.3
TOTAL I	120	

Table 8.1. Turbine and Compressor Power Requirements for the Helium Process.

8.2 S-CO₂ process

The s-CO₂ process is similar to the helium one in terms of utility requirements. However, this process only uses two intercoolers during the compression stages. Both coolers use 11.9 million lb/hr of water, just as in the helium process. On the other hand, the s-CO₂ process uses

four heat exchangers. In this process, heat is transferred from the primary to the secondary loop in steps, between each expansion, requiring two extra heat exchangers. The heat exchanger energy balances as well as the overall cost and energy requirements of the utilities are shown in Table 8.3.

Demand	Satisfaction	Energy Transferred (MWh)	Cost/MWh (\$)
Stream S-11 is heated from 1148 °F to 1310 °F	Stream P-1 is cooled from 1652 °F to 1339 °F	132.419	
Stream S-2 is heated from 1197 °F to 1220 °F	Stream P-2 is cooled from 1339 °F to 1294 °F	18.6816	
Stream S-4 is heated from 1134 °F to 1211 °F	Stream P-3 is cooled from 1294 °F to 1139 °F	63.2895	
Stream S-5 is cooled from 1211 °F to 190 °F	Stream S-10 is heated from 176 °F to 1148 °F	768.994	
Stream S-8 is cooled from 140 °F to 131 °F	Process is heated from 81 °F to 82 °F	7.93241	\$19.32
Stream S-6 is cooled from 190 °F to 82 °F	Cooling water is heated from 81 °F to 100 °F	87.8065	\$19.32

Table 8.2. Heat Exchanger Energy Balance and Utility Requirements for the s-CO₂ Process.

The power consumption and generation from the turbines and compressors is summarized in Table 8.4. The first turbine, T-1, is responsible for powering both compressors as well as generating about 50 MW. The second turbine is effectively a generator and harvests 69 MW, bringing the power generated in the whole cycle to about 118.6 MW. Although the turbinecompressor system is different than in the helium process, the energy balance works out to be essentially the same.

Demand	Satisfaction	Power Generated/ Consumed (MW)
Turbine T-1 generates power	Stream S-1 is expanded from 1160 psi to 798 psi	91.363
Turbine T-2 generates power	Stream S-3 is expanded from 798 psi to 595 psi	69.050
Stream S-9 is compressed from 870 psi to 1160 psi	Compressor C-1 consumes power	-18.398
Stream S-7 is compressed from 595 psi to 870 psi	Compressor C-2 consumes power	-23.364
TOTAL Power Generated		118.651

Table 8.3. Turbine and Compressor Power Requirements for the s-CO₂ Process.

9. Equipment List and Unit Descriptions

9.1 Heat Exchangers

The heat exchangers were all designed as shell-and-tube units with the ASPEN Exchanger Design & Rating program, using data from the ASPEN simulations of the processes. Both the helium and carbon dioxide cycles have extremely high flow rates and temperature and pressure conditions, making the design of these exchangers especially difficult. Constraints were made on the program to limit the number of units in series, as this would complicate the design and increase the price. However, due to the aforementioned high flow rates, temperatures, and pressures, each of the exchanger designs needed to have multiple units in parallel. The exchangers had extremely large areas and high prices, compared to average heat exchangers for such processes, to accommodate for the design conditions. The descriptions of each heat exchanger for each process are detailed in the following pages.

9.2 Compressors

The compressors are all centrifugal-style, with carbon steel as the material of construction. The temperatures and pressures were low enough that carbon steel can be used. Carbon steel is ideal because it is the cheapest available material that can be used with these design conditions. All of the compressors have an electricity utility requirement, which is satisfied by two of the turbines, T-1 and T-2. The design data shown in the following tables is taken from the ASPEN simulation output of the process with helium as the working fluid. The efficiency of all the compressors was set to be 70%. The unit descriptions of the compressors for both processes are detailed in the following pages.

9.3 Turbines

The turbines generate electricity, with T-1 and T-2 being the two turbines that directly drive compressors, called companders. T-1 directly drives C-1 and C-2, while T-2 directly drives C-3 and C-4. T-3 is the generator-loaded turbine that produces the electrical power output for the cycle. Each of the turbines in this process uses the material Stainless Steel 310S. SS 310S is used because it is the cheapest known type of stainless steel that will withstand the high temperatures and pressures in this design. All the turbines were designed with an efficiency of 90%. The data in the following tables was taken from the ASPEN simulation output of the cycle, except the total purchase cost. The total purchase cost was calculated using the equations in the textbook, and a sample calculation is shown in Appendix B.4.

9.4 Helium Process

9.4.1 Heat Exchangers

Since bare module factor is based on the type of equipment, the bare module factor for all of the heat exchangers is 3.17 (Seider, et al., 2009). The overall summary as given by ASPEN is in Appendix B.5 of this report.

HX-1

HX-1 is also known as the internal heat exchanger for the helium process. It cools the hot stream coming from the reactor from 1652 °F to 949 °F in order to provide heat for the feed to the power generating loop, increasing the temperature of this stream from 662 °F to 1472 °F. The flow rates of helium on the tube side (hot side) and shell side (cold side) are 1 million lb/h and 850,000 lb/h, respectively. The exchanger was designed as a shell and tube with those inputs in the ASPEN Exchanger Design and Rating Program. Stainless Steel 310S was the chosen material of construction because it is the cheapest material programmed into ASPEN that can handle

these high temperatures. The results of the program showed that this exchanger would have 1 unit in series and 4 in parallel. The total surface area would be 38,920 ft², with a heat transfer coefficient of 110 BTU/h-ft²-°F, and a heat duty of 8.709x10⁸ BTU/h. The purchase cost, given in the ASPEN output, was \$4,296,000. The total installed cost was calculated to be \$13,620,000 (Seider, et al., 2009).

Initially, this exchanger was modeled using Hastelloy C, an expensive metal, making its cost in the hundred million dollar range. After consulting with engineers in the field who expertise in modeling heat exchangers at these temperatures, it was concluded that Stainless Steel 310S could be used, reducing the price significantly. The number of units in series was limited to 1 using a design constraint, which simplified the design and reduced the price even more. Another decision that was made was dealing with the TEMA (Tubular Exchanger Manufacturer's Association) type. The BEM type was chosen due to its low cost per square foot of heat transfer area and because it provides the maximum amount of surface area for a given shell tube diameter and length. After trying other types, this one seemed to be the best option, as expected.

HX-2

The second heat exchanger is known in the helium process as a recuperator. It cools the stream coming from the generator-loaded turbine from 410 °F to 183 °F to reheat the stream that is sent back to HX-1 from 123 °F to 350 °F. The flow rate on both the tube and shell side is 849,200 lb/h. These were the inputs on the exchanger design program. HX-2 was also a shell and tube exchanger, as well as the same TEMA type. With the lower temperatures, a cheaper material of construction, Stainless Steel 304, could be used. The number of units in series was 1 and the number of units in parallel was 5. The total surface area was calculated to be 147,400 ft²,

the heat transfer coefficient was 30.54 BTU/h-ft²- $^{\circ}$ F, and the heat duty was 2.406x10⁸ BTU/h. The purchase cost was \$4,112,000, and the installed cost was found to be \$13,030,000. *HX-3*

HX-3 is the shell and tube intercooler that cools the stream from the recuperator going into the first compressor, C-1, with cooling water. The stream from the recuperator, S-5, has a flow rate of 849,200 lb/h through the tube side (hot side), and it is cooled from 183 °F to 30 °F. The cooling water has a flow rate of 6,455,000 lb/h through the shell side (cold side), and the temperature increases from 68 °F to 113 °F. This shell and tube intercooler also has a BEM TEMA type. Carbon steel was used as the material of construction because it was the cheapest material of construction for heat exchangers; the temperatures here were low enough that carbon steel could be used. The number of units in series was 1 and there were 5 units in parallel. The total surface area is 18,020 ft², the heat transfer coefficient was 262.3 BTU/h-ft²-°F, and the heat duty was 2.895x10⁸ BTU/h. The purchase cost was found to be \$518,700, and the installed cost was calculated to be \$1,644,000.

HX-4

HX-4 is another shell and tube intercooler that cools the stream from the first compressor, C-1, going into the second compressor, C-2, with cooling water. The tube side flow is the helium, which cools from 76 °F to 50 °F, and has a flow rate of 849,200 lb/h. The shell side flow is the cooling water, with a flow rate of 5,599,000 lb/h, and the temperature increases from 68 °F to 77 °F. This intercooler also has the BEM model, with 1 unit in series and 9 units in parallel. The material of construction was selected to be carbon steel, for the same reasons listed for HX-3. The total surface area was 6575 ft², the heat transfer coefficient was 262.3 BTU/h-ft²-°F, and

the heat duty was 5.026×10^8 BTU/h. The purchase cost was \$323,700, and the installed cost was \$1,644,000.

HX-5

The fifth heat exchanger cools the stream from the second compressor, C-2, going into the third compressor, C-3, also with cooling water. This stream flows through the tube side at 849,200 lb/h, and is cooled from 204.8 °F to 158 °F. The cooling water flows through the shell side with a flow rate of 5,629,000 lb/h, and is heated from 68 °F to 77 °F. This is a shell and tube intercooler with the BEM type and is to be constructed with carbon steel. It has 1 unit in series and 10 units in parallel. The total surface area is 5502 ft², the heat transfer coefficient is 286.8 BTU/h-ft²-°F, and a heat duty of 5.019x10⁷ BTU/h. The purchase cost was \$312,100, and the installed cost was \$989,200.

HX-6

The sixth heat exchanger cools the stream from the third compressor, C-3, going into the fourth compressor, C-4. The tube side flow consists of helium, has a flow rate of 849,200 lb/h, and is cooled from 240.8 °F to 158 °F. The shell side flow is cooling water at a rate of 4,880,000 lb/h that is heated from 68 °F to 86 °F. HX-6 is a shell and tube intercooler with 1 unit in series and 8 in parallel. The total surface area is 73,850 ft², with a heat transfer coefficient of 55.65 BTU/h-ft²-°F and a heat duty of 8.786x10⁷ BTU/h. The material of construction was carbon steel. The purchase cost was \$1,634,000, and the installed cost was calculated to be \$5,181,000.

C-1

The function of the first compressor was to increase the pressure of stream S-6 to yield stream S-7 going into the second compressor. C-1 was designed as a centrifugal compressor with

an electric motor and carbon steel as the material of construction. Carbon steel was used because it was the cheapest available material for such a process, and since helium is the working fluid, there is no possibility of rusting occurring. The pressure increased from 393 psi to 515 psi, and the temperature increased from 86 °F to 179 °F. The flow rate through this compressor was 849,200 lb/h, and the driver power was 35,000 hp. The utility requirement is 26.1 MW, and the total installed cost was found to be \$16,890,000. The cost numbers were retrieved from the ASPEN simulation using the ASPEN Process Economic Analyzer (APEA).

C-2

The function of the second compressor was to increase the pressure of stream S-8 to yield stream S-9 going into the second compressor. C-2 was designed as a centrifugal compressor with an electric motor and carbon steel as the material of construction. Carbon steel was used because it was the cheapest available material for such a process, and since helium is the working fluid, there is no possibility of rusting occurring. The pressure increased from 515 psi to 654 psi, and the temperature increased from 122 °F to 206 °F. The flow rate through this compressor was 849,200 lb/h, and the driver power was 35,000 hp. The utility requirement is 26.1 MW, and the total installed cost was found to be \$14,570,000. The cost numbers were retrieved from the ASPEN simulation using the APEA.

C-3

The function of the third compressor was to increase the pressure of stream S-10 to yield stream S-11 going into the fourth compressor. C-3 was designed as a centrifugal compressor with an electric motor and carbon steel as the material of construction. Carbon steel was used because it was the cheapest available material for such a process, and since helium is the working fluid, there is no possibility of rusting occurring. The pressure increased from 677 psi to

847 psi, and the temperature increased from 157 °F to 241 °F. The flow rate through this compressor was 849,200 lb/h, and the driver power was 35,000 hp. The utility requirement is 26.1 MW, and the total installed cost was found to be \$11,340,000. The cost numbers were retrieved from the ASPEN simulation using the APEA.

C-4

The function of the fourth compressor was to increase the pressure of stream S-12 to yield stream S-13 going into the recuperator, HX-2. C-4 was designed as a centrifugal compressor with an electric motor and carbon steel as the material of construction. Carbon steel was used because it was the cheapest available material for such a process, and since helium is the working fluid, there is no possibility of rusting occurring. The pressure increased from 886 psi to 1146 psi, and the temperature increased from 157 °F to 254 °F. The flow rate through this compressor was 850,000 lb/h, and the driver power was 35,000 hp. The utility requirement is 26.1 MW, and the total installed cost was found to be \$11,100,000. The cost numbers were retrieved from the ASPEN simulation using the APEA.

9.4.3 Turbines

The Sample Calculations for the design and costing of the turbines are shown in Appendix B.4.

T-1

The function of this turbine is to generate electricity for compressors C-1 and C-2. The material used was Stainless Steel 310S, for the same reasons some heat exchangers were designed using this material. SS 310S is the cheapest material that can withstand these temperatures and pressures. The helium flowed through at a rate of 849,200 lb/h. The stream expands from 1146 psi to 890 psi, and the temperature correspondingly cools from 1504 °F to

1335 °F. The driver power was 70,810 hp. The total cost was calculated to be \$19,320,000 (Seider, et al., 2009).

T-2

The function of this turbine is to generate electricity for compressors C-3 and C-4. The material used was Stainless Steel 310S, for the same reasons some heat exchangers were designed using this material. SS 310S is the cheapest material that can withstand these temperatures and pressures. The helium flowed through at a rate of 849,200 lb/h. The stream expands from 890 psi to 676 psi, and the temperature correspondingly cools from 1335 °F to 1166 °F. The driver power was 70,810 hp. The total cost was calculated to be \$19,320,000. *T-3*

T-3 generates electricity as the power output for the process. The material used was Stainless Steel 310S, for the same reasons some heat exchangers were designed using this material. SS 310S is the cheapest material that can withstand these temperatures and pressures. The helium flowed through at a rate of 849,200 lb/h. The stream expands from 676 psi to 307 psi, and the temperature correspondingly cools from 1166 °F to 770 °F. The driver power was 164,900 hp. The total cost was calculated to be \$38,330,000.

9.5.4 Equipment Summary

Unit Name	Unit Type	Material of Construction	Size	Total Installed Cost
HX-1	Shell-and-Tube Heat Exchanger	SS 310S	38,920 ft ²	\$ 13,620,000
HX-2	Shell-and-Tube Heat Exchanger	SS 304	147,400 ft ²	\$ 13,030,000
HX-3	Shell-and-Tube Intercooler	Carbon Steel	18,020 ft ²	\$ 1,644,000
HX-4	Shell-and-Tube Intercooler	Carbon Steel	6,575 ft ²	\$ 1,026,000
HX-5	Shell-and-Tube Intercooler	Carbon Steel	5,502 ft ²	\$ 989,200
HX-6	Shell-and-Tube Intercooler	Carbon Steel	73,850 ft ²	\$ 5,180,000
C-1	Centrifugal Compressor	Carbon Steel	35,000 hp	\$ 16,890,000
C-2	Centrifugal Compressor	Carbon Steel	35,000 hp	\$ 14,570,000
C-3	Centrifugal Compressor	Carbon Steel	35,000 hp	\$ 11,340,000
C-4	Centrifugal Compressor	Carbon Steel	35,000 hp	\$ 11,100,000
T-1	Isentropic Turbine	SS 310S	70,810 hp	\$ 19,320,000
T-2	Isentropic Turbine	SS 310S	70,810 hp	\$ 19,320,000
T-3	Isentropic Turbine	SS 310S	164,900 hp	\$ 38,330,000

9.5 S-CO₂ Process

9.5.1 Heat Exchangers

Since bare module factor is based on the type of equipment, the bare module factor for all of the heat exchangers is 3.17 (Seider, et al., 2009). The overall summary as given by ASPEN is in Appendix B.5 of this report. Because of the extremely high flow rates, the solutions for the heat exchangers on the ASPEN Exchanger Design & Rating Program weren't converging.

Therefore, the flow rates were cut tenfold when designing the heat exchangers, and the values given in the output from ASPEN were scaled up accordingly.

HX-1

HX-1 cools the feed of supercritical CO₂, P-1, using a different stream of CO₂, S-11, coming from the fourth heat exchanger, HX-4. The exchanger was designed with a shell and tube BEM type, as are all the exchangers in this process, with Stainless Steel 310S as the material of construction. The flow rate on the tube side (hot side) was 4,762,000 lb/h and the stream was cooled from 1652 °F to 1339 °F. The flow rate on the shell side (cold side) was 9,524,000 lb/h, and the stream was heated from 1148 °F to 1310 °F. The number of units in series was 1 and the number of units in parallel was 3. The total surface area given by ASPEN was 13,200 ft², with a heat transfer coefficient of 163.9 BTU/h-ft²-°F and a heat duty of 4.550x10⁸ BTU/h. The purchase cost was given to be \$3,916,000, and the installed cost was calculated to be \$12,410,000.

HX-2

This heat exchanger cools the stream coming from HX-1, P-2, with the stream, S-2, coming from the first turbine, T-1. HX-2 is a shell and tube exchanger with the BEM type. The tube side flow rate was 4,762,000 lb/h and the stream was cooled from 1339 °F to 1294 °F. The shell side flow rate was 9,524,000 lb/h, and the stream was heated from 1197 °F to 1220 °F. The working fluid was supercritical CO₂, and Stainless Steel 304L was used as the material of construction. The number of units in series was 1 and the number of units in parallel was 3. The total surface area was 6,986 ft², with a heat transfer coefficient of 133.5 BTU/h-ft²-°F and a heat duty of 6.521×10^7 BTU/h. The purchase cost was given to be \$5,044,000, and the installed cost was calculated to be \$15,990,000.

HX-3

This heat exchanger cools the stream coming from HX-2, P-3, with the stream, S-4, coming from the second turbine, T-2. HX-3 is a shell and tube exchanger with the BEM type. The tube side flow rate was 4,762,000 lb/h and the stream was cooled from 1294 °F to 1139 °F. The shell side flow rate was 9,524,000 lb/h, and the stream was heated from 1134 °F to 1211 °F. The working fluid was supercritical CO₂, and Stainless Steel 304 was used as the material of construction. The number of units in series was 2 and the number of units in parallel was 4. Unlike the previously described heat exchangers, it was not possible to design HX-3 with only one unit in series. This does complicate the design, but after multiple attempts at varying the design constraints, this design proved to be the cheapest. The total surface area was 116,700 ft², with a heat transfer coefficient of 133.5 BTU/h-ft²-°F and a heat duty of 2.181x10⁸ BTU/h. The purchase cost was given to be \$33,030,000, and the installed cost was calculated to be \$104,700,000.

HX-4

This heat exchanger cools the stream, S-5, with the stream, S-10, coming from the second compressor, C-2. HX-4 is a shell and tube exchanger with the BEM type. The tube side flow rate was 9,524,000 lb/h and the stream was cooled from 1212 °F to 191.2 °F. The shell side flow rate was 9,5424,000 lb/h, and the stream was heated from 176.3 °F to 1149 °F. The working fluid was supercritical CO₂, and Stainless Steel 304 was used as the material of construction. The number of units in series was 5 and the number of units in parallel was 5. Unlike the previously described heat exchangers, it was not possible to design HX-4 with only one unit in series. This does complicate the design, but after multiple attempts at varying the design constraints, this

total surface area was 201,600 ft², with a heat transfer coefficient of 29.35 BTU/h-ft²-°F and a heat duty of 2.650×10^8 BTU/h. The purchase cost was given to be \$250,200,000, and the installed cost was calculated to be \$793,100,000. This extremely high cost can be attributed to the design conditions.

HX-5

This heat exchanger cools the stream S-6 using cooling water. HX-5 is a shell and tube exchanger with the BEM type. The tube side (CO₂) flow rate was 9,524,000 lb/h and the stream was cooled from 183.2 °F to 82.4 °F. The shell side (cooling water) flow rate was 1,190,000 lb/h, and the stream was heated from 80.6 °F to 98.6 °F. Carbon steel was used as the material of construction. The number of units in series was 2 and the number of units in parallel was 1. The total surface area was 64,960 ft², with a heat transfer coefficient of 172 BTU/h-ft²-°F and a heat duty of 2.377×10^7 BTU/h. The purchase cost was given to be \$1,889,000, and the installed cost was calculated to be \$5,987,000.

HX-6

This heat exchanger cools the stream S-6 using cooling water. HX-5 is a shell and tube exchanger with the BEM type. The tube side (CO₂) flow rate was 9,524,000 lb/h and the stream was cooled from 140 °F to 131 °F. The shell side (cooling water) flow rate was 1,190,000 lb/h, and the stream was heated from 80.6 °F to 82.4 °F. Carbon steel was used as the material of construction. The number of units in series was 1 and the number of units in parallel was 1. The total surface area was 3,063 ft², with a heat transfer coefficient of 387.3 BTU/h-ft²-°F and a heat duty of 2.355×10^7 BTU/h. The purchase cost was given to be \$474,800, and the installed cost was calculated to be \$1,505,000.

9.5.2 Compressors

C-1

The function of the first compressor was to increase the pressure of stream S-7 to yield stream S-8 going into the sixth heat exchanger. C-1 was designed as a centrifugal compressor with an electric motor and carbon steel as the material of construction. Carbon steel was used because it was the cheapest available material for such a process, and since helium is the working fluid, there is no possibility of rusting occurring. The pressure increased from 592 psi to 870 psi, and the temperature increased from 82.4 °F to 139 °F. The flow rate through this compressor was 216,400 lb/h, and the driver power was 31,330 hp. The utility requirement is 23.4 MW, and the total installed cost was found to be \$7,451,000. The cost numbers were retrieved from the ASPEN simulation using the APEA.

C-2

The function of the second compressor was to increase the pressure of stream S-9 to yield stream S-10 going into the fourth heat exchanger. C-2 was designed as a centrifugal compressor with an electric motor and carbon steel as the material of construction. Carbon steel was used because it was the cheapest available material for such a process, and since helium is the working fluid, there is no possibility of rusting occurring. The pressure increased from 870 psi to 1160 psi, and the temperature increased from 131 °F to 176 °F. The flow rate through this compressor was 216,400 lb/h, and the driver power was 24,670 hp. The utility requirement is 18.4 MW, and the total installed cost was found to be \$7,578,000. The cost numbers were retrieved from the ASPEN simulation using the APEA.

9.5.3 Turbines

The Sample Calculations for the design and costing of the turbines are shown in Appendix B.4.

T-1

The first turbine works with the second to generate electricity as the power output of the process and to provide electricity to the compressors. The material used was Stainless Steel 310S, for the same reasons some heat exchangers were designed using this material. SS 310S is the cheapest material that can withstand these temperatures and pressures. The helium flowed through at a rate of 216,400 lb/h. The stream expands from 1160 psi to 798 psi, and the temperature correspondingly cools from 1310 °F to 1197 °F. The driver power was 122,500 hp. The total cost was calculated to be \$30,120,000.

T-2

The second turbine works with the first to generate electricity as the power output of the process and to provide electricity to the compressors. The material used was Stainless Steel 310S, for the same reasons some heat exchangers were designed using this material. SS 310S is the cheapest material that can withstand these temperatures and pressures. The helium flowed through at a rate of 216,400 lb/h. The stream expands from 798 psi to 592 psi, and the temperature correspondingly cools from 1220 °F to 1133 °F. The driver power was 92,600 hp. The total cost was calculated to be \$24,010,000.

9.5.4 Equipment Summary

Unit Name	Unit Type	Material of	Size	Total Installed
		Construction		Cost
HX-1	Shell-and-Tube Heat	SS 310S	13,200 ft^2	\$ 12,410,000
	Exchanger			
HX-2	Shell-and-Tube Heat	SS 304L	6,986 ft ²	\$ 15,990,000
	Exchanger			
HX-3	Shell-and-Tube	SS 304	116,700 ft ²	\$ 33,030,000
	Intercooler			
HX-4	Shell-and-Tube	Carbon Steel	201,600 ft ²	\$ 793,200,000
	Intercooler			
HX-5	Shell-and-Tube	Carbon Steel	64,960 ft ²	\$ 5,987,000
	Intercooler			
HX-6	Shell-and-Tube	Carbon Steel	3,063 ft ²	\$ 1,505,000
	Intercooler			
C-1	Centrifugal	Carbon Steel	31,330 hp	\$ 7,451,000
	Compressor		_	
C-2	Centrifugal	Carbon Steel	24,670 hp	\$ 7,578,000
	Compressor		_	
T-1	Isentropic	SS 310S	122,500 hp	\$ 30,120,000
	Turbine		-	
T-2	Isentropic	SS 310S	92,600 hp	\$ 24,010,000
	Turbine			

10. Specification Sheets

10.1 Helium Process

10.1.1 Heat Exchangers

HEAT EXCHANGER (Helium Process)			
Identification:	HX-1		
Function:	Cools stream from reactor to heat the feed to the power cycle		
Operation:	Continu	uous	
Exchanger Type:	Shell and	l Tube	
ТЕМА Туре:	BEN	A	
Working Fluid:	Heliu	ım	
Stream ID	Tube Side	Shell Side	
Inlet Outlet	P-1 P-2	S-14 S-1	
Flow Rate (lb/h) Temperature In (°F) Temperature Out (°F)	1,006,000 1652 949	849,200 662 1472	
	Surface Area (ft ²)	38,920	
Design Data:	LMTD (°F)	229.3	
	Heat Transfer Coefficient (BTU/h-ft ² -°F)	110	
	Heat Duty (BTU/h)	8.709×10^8	
	Material of Construction	Stainless Steel 310S	
	Number of Units in Series	1	
	Number of Units in Parallel	4	
Purchase Cost	\$4,296,000		
Installed Cost	\$13,620,000		

HEAT EXCHANGER (Helium Process)			
Identification:	HX-2		
Function:	Cool the expanded stream from the generator-loaded turbine, and reheat the working fluid that is sent back to HX-1		
Operation:	Contin	uous	
Exchanger Type:	Shell and	l Tube	
ТЕМА Туре:	BEN	h	
Working Fluid:	Heliu	ım	
Stream ID	Tube Side	Shell Side	
Inlet Outlet	S-13 S-14	S-4 S-5	
Flow Rate (lb/h) Temperature In (°F) Temperature Out (°F)	849,200 410 183	849,200 123 350	
	Surface Area (ft ²)	147,400	
Design Data:	LMTD (°F)	60	
	Heat Transfer Coefficient (BTU/h-ft ² -°F)	30.54	
	Heat Duty (BTU/h)	2.406×10^8	
	Material of Construction	Stainless Steel 304	
	Number of Units in Series	1	
	Number of Units in Parallel	5	
Purchase Cost	\$4,112,00		
Installed Cost	\$13,030,000		

HEAT EXCHANGER (Helium Process)			
Identification:	HX-3		
Function:	Cools stream from the recuperator going into the first compressor		
Operation:	Contin	uous	
Exchanger Type:	Shell and Tube	e Intercooler	
ТЕМА Туре:	BEN	Ν	
Working Fluid:	Heliu	ım	
Stream ID	Tube Side	Shell Side	
Inlet Outlet	S-5 S-6	CW CW	
Flow Rate (lb/h) Temperature In (°F) Temperature Out (°F)	849,200 183 30	6,455,000 68 113	
	Surface Area (ft ²)	18,020	
Design Data:	LMTD (°F)	87.95	
	Heat Transfer Coefficient (BTU/h-ft ² -°F)	262.3	
	Heat Duty (BTU/h)	2.895×10^8	
	Material of Construction	Carbon Steel	
	Number of Units in Series	1	
	Number of Units in Parallel	5	
Purchase Cost	\$518,700		
Installed Cost	\$1,644,000		

HEAT EXCHANGER (Helium Process)			
Identification:	HX-4		
Function:	Cools stream from the first compressor, C-1, going into the second compressor, C-2		
Operation:	Contin	uous	
Exchanger Type:	Shell and Tube	e Intercooler	
ТЕМА Туре:	BEN	N	
Working Fluid:	Helium and Co	ooling Water	
Stream ID	Tube Side	Shell Side	
Inlet Outlet	S-7 S-8	CW CW	
Flow Rate (lb/h) Temperature In (°F) Temperature Out (°F)	849,200 76 50	5,599,000 68 77	
	Surface Area (ft ²)	6575	
Design Data:	LMTD (°F)	229.2	
	Heat Transfer Coefficient (BTU/h-ft ² -°F)	262.3	
	Heat Duty (BTU/h)	5.026×10^8	
	Material of Construction	Carbon Steel	
	Number of Units in Series	1	
	Number of Units in Parallel	9	
Purchase Cost	\$323,700		
Installed Cost	\$ 1,026,000		

HEAT EXCHANGER (Helium Process)			
Identification:	HX-5		
Function:	Cools stream from the second compressor, C-2, going into the third compressor, C-3		
Operation:	Contin	uous	
Exchanger Type:	Shell and Tube	e Intercooler	
ТЕМА Туре:	BEN	Ν	
Working Fluid	Helium and Co	ooling Water	
Stream ID	Tube Side	Shell Side	
Inlet Outlet	S-9 S-10	CW CW	
Flow Rate (lb/h) Temperature In (°F) Temperature Out (°F)	849,200 204.8 158	5,629,000 68 77	
	Surface Area (ft ²)	5502	
Design Data:	LMTD (°F)	107.8	
	Heat Transfer Coefficient (BTU/h-ft ² -°F)	286.8	
	Heat Duty (BTU/h)	5.019x10 ⁷	
	Material of Construction	Carbon Steel	
	Number of Units in Series	1	
	Number of Units in Parallel	10	
Purchase Cost	\$312,100		
Installed Cost	\$989,200		

HEAT EXCHANGER (Helium Process)			
Identification:	HX-6		
Function:	Cools stream from the third compressor, C-3, going into the fourth compressor, C-4		
Operation:	Contin	uous	
Exchanger Type:	Shell and Tube	e Intercooler	
ТЕМА Туре:	BEN	М	
Working Fluid:	Helium and Co	ooling Water	
Stream ID	Tube Side	Shell Side	
Inlet Outlet	S-11 S-12	CW CW	
Flow Rate (lb/h) Temperature In (°F) Temperature Out (°F)	849,200 240.8 158	4,880,000 68 86	
	Surface Area (ft ²)	73,850	
Design Data:	LMTD (°F)	119.5	
	Heat Transfer Coefficient (BTU/h-ft ² -°F)	55.65	
	Heat Duty (BTU/h)	$8.786 ext{x} 10^7$	
	Material of Construction	Carbon Steel	
	Number of Units in Series	1	
	Number of Units in Parallel	8	
Purchase Cost	\$1,634,000		
Installed Cost	\$5,181,000		

10.1.2 Compressors

COMPRESSOR (Helium Process)			
Identification:	C-1		
Function:	To increase the pressure of stream S-6 to yield stream S-7 going into the second compressor		
Operation:	Continuous		
Working Fluid:	Helium		
	Type:	Centrifugal	
	Driver Type:	Electric Motor	
	Material:	Carbon Steel	
	Pressure Inlet: (psi)	392	
Design Data:	Pressure Outlet: (psi)	515	
	Temperature Inlet (°F)	86	
	Temperature Outlet (°F)	170	
	Flow Rate (lb/h)	849,200	
	Driver Power (hp)	35,000	
	Efficiency	70%	
Utility Requirement: (MW)	26.1		
Total Purchase Cost:	\$15,870,000		
Total Installed Cost:	\$16,890,000		

COMPRESSOR (Helium Process)				
Identification:		C-2		
Function:	To increase the pre going	ssure of stream S-8 to yield stream S-9 into the third compressor		
Operation:		Continuous		
Working Fluid:		Helium		
	Type:	Centrifugal		
	Driver Type:	Electric Motor		
	Material:	Carbon Steel		
	Pressure Inlet: (psi)	515		
Design Data:	Pressure Outlet: (psi)	654		
	Temperature Inlet (°F)	122		
	Temperature Outlet (°F)	206		
	Flow Rate (lb/h)	849,220		
	Driver Power (hp)	35,000		
	Efficiency	70%		
Utility Requirement: (MW)	26.1			
Total Purchase Cost:	\$13,490,000			
Total Installed Cost:	\$14,570,000			

COMPRESSOR (Helium Process)			
Identification:	C-3		
Function:	To increase the pressure of stream S-10 to yield stream S-11 going into the fourth compressor		
Operation:		Continuous	
Working Fluid:		Helium	
	Туре:	Centrifugal	
	Driver Type:	Electric Motor	
	Material:	Carbon Steel	
	Pressure Inlet: (psi)	677	
Design Data:	Pressure Outlet: (psi)	847	
	Temperature Inlet (°F)	157	
	Temperature Outlet (°F)	241	
	Flow Rate (lb/h)	849,200	
	Driver Power (hp)	35,000	
	Efficiency	70%	
Utility Requirement: (MW)	26.1		
Total Purchase Cost:	\$10,120,000		
Total Installed Cost:	\$11,340,000		

COMPRESSOR (Helium Process)			
Identification:		C-4	
Function:	To increase the pressure of stream S-12 to yield stream S-13 going into the recuperator, HX-2		
Operation:		Continuous	
Working Fluid:	Helium		
	Type:	Centrifugal	
	Driver Type:	Electric Motor	
	Material:	Carbon Steel	
	Pressure Inlet: (psi)	886	
Design Data:	Pressure Outlet: (psi)	1146	
	Temperature Inlet (°F)	157	
	Temperature Outlet (°F)	254	
	Flow Rate (lb/h)	849,200	
	Driver Power (hp)	35,000	
	Efficiency	70%	
Utility Requirement: (MW)	26.1		
Total Purchase Cost:	\$9,724,000		
Total Installed Cost:	\$11,104,100		

10.1.3 Turbines

TURBINE (Helium Process)		
Identification:	T-1	
Function:	To generate electricity for compressors C-1 and C-2	
Operation:	Continuous	
	Type:	Electrical
	Material:	Stainless Steel 310S
	Pressure Inlet: (psi)	1146
Design Data:	Pressure Outlet: (psi)	890
	Temperature Inlet (°F)	1504
	Temperature Outlet (°F)	1335
	Flow Rate (lb/h)	849,220
	Driver Power (hp)	70,810
	Efficiency	90%
Total Purchase Cost:	\$8,987,000	
Total Installed Cost:	\$19,320,000	

_

TURBINE (Helium Process)		
Identification:	T-2	
Function:	To generate electricity for compressors C-3 and C-4	
Operation:	Continuous	
	Type:	Electrical
	Material:	Stainless Steel 310S
	Pressure Inlet: (psi)	890
Design Data:	Pressure Outlet: (psi)	676
Design Data:	Temperature Inlet (°F)	1335
	Temperature Outlet (°F)	1166
	Flow Rate (lb/h)	849,200
	Driver Power (hp)	70,810
	Efficiency	90%
Total Purchase Cost:	\$8,987,000	
Total Installed Cost:	\$19,320,000	

TURBINE (Helium Process)		
Identification:	T-3	
Function:	To generate electricity as the power output of the process	
Operation:	Continuous	
	Type:	Electrical
	Material:	Stainless Steel 310S
	Pressure Inlet: (psi)	676
Design Data:	Pressure Outlet: (psi)	307
Design Data:	Temperature Inlet (°F)	1166
	Temperature Outlet (°F)	770
	Flow Rate (lb/h)	849,200
	Driver Power (hp)	164,900
	Efficiency	90%
Total Purchase Cost:	\$17,830,000	
Total Installed Cost:	\$38,330,000	

10.2 S-CO₂ Process

10.2.1 Heat Exchangers

HEAT EXCHANGER (CO ₂ Process)			
Identification:	HX-1		
Function:	Cools feed, P-1, using stream S-11 coming from the fourth exchanger, HX-4		
Operation:	Continu	uous	
Exchanger Type:	Shell and	l Tube	
ТЕМА Туре:	BEM		
Stream ID	Tube Side	Shell Side	
Inlet Outlet	P-1 P-2	S-11 S-1	
Flow Rate (lb/h) Temperature In (°F) Temperature Out (°F)	4,762,000 1652 1339	9,524,000 1148 1310	
	Surface Area (ft ²)	13,200	
Design Data:	LMTD (°F)	220.8	
	Heat Transfer Coefficient (BTU/h-ft ² -°F)	163.9	
	Heat Duty (BTU/h)	$4.550 ext{x} 10^8$	
	Material of Construction	Stainless Steel 310S	
	Number of Units in Series	1	
	Number of Units in Parallel	3	
Purchase Cost	\$3,916,000		
Installed Cost	\$12,410,000		

HEAT EXCHANGER (CO ₂ Process)			
Identification:	HX-2		
Function:	Cools stream P-2 using stream S-2 coming from the first turbine, T-1		
Operation:	Continu	uous	
Exchanger Type:	Shell and	l Tube	
ТЕМА Туре:	BEM		
Stream ID	Tube Side	Shell Side	
Inlet Outlet	P-2 P-3	S-2 S-3	
Flow Rate (lb/h) Temperature In (°F) Temperature Out (°F)	4,762,000 1339 1294	9,524,000 1197 1220	
Decise Deter	Surface Area (ft ²)	6,986	
Design Data:	LMTD (°F)	108	
	Heat Transfer Coefficient (BTU/h-ft ² -°F)	133.5	
	Heat Duty (BTU/h)	6.521×10^7	
	Material of Construction	Stainless Steel 304L	
	Number of Units in Series	1	
	Number of Units in Parallel	3	
Purchase Cost	\$5,044,000		
Installed Cost	\$15,990,000		

HEAT EXCHANGER (CO ₂ Process)			
Identification:	HX-3		
Function:	Cools stream P-3 using stream S-4 coming from the second turbine, T-2		
Operation:	Contin	uous	
Exchanger Type:	Shell and	l Tube	
ТЕМА Туре:	BEM		
Stream ID	Tube Side	Shell Side	
Inlet Outlet	P-3 P-4	S-4 S-5	
Flow Rate (lb/h) Temperature In (°F) Temperature Out (°F)	4,762,000 1294 1139	9,524,000 1134 1211	
Decise Data:	Surface Area (ft ²)	116,700	
Design Data:	LMTD (°F)	28.51	
	Heat Transfer Coefficient (BTU/h-ft ² -°F)	133.5	
	Heat Duty (BTU/h)	2.181×10^8	
	Material of Construction	Stainless Steel 304	
	Number of Units in Series	2	
	Number of Units in Parallel	4	
Purchase Cost	\$33,030,000		
Installed Cost	\$104,700,000		

HEAT EXCHANGER (CO ₂ Process)			
Identification:	HX-4		
Function :	Cools stream S-5 using stream S-10 coming from the second compressor, C-2		
Operation:	Continu	uous	
Exchanger Type:	Shell and	Shell and Tube	
ТЕМА Туре:	BEM		
Stream ID	Tube Side	Shell Side	
Inlet Outlet	S-5 S-6	S-10 S-11	
Flow Rate (lb/h) Temperature In (°F) Temperature Out (°F)	9,524,000 1212 191.2	9,524,000 176.3 1149	
Decise Deter	Surface Area (ft ²)	201,600	
Design Data:	LMTD (°F)	45.44	
	Heat Transfer Coefficient (BTU/h-ft ² -°F)	29.35	
	Heat Duty (BTU/h)	2.650×10^8	
	Material of Construction	Stainless Steel 304	
	Number of Units in Series	5	
	Number of Units in Parallel	5	
Purchase Cost	\$250,200,000		
Installed Cost	\$793,100,000		

HEAT EXCHANGER (CO ₂ Process)				
Identification:	HX-5			
Function:	Cools stream S-6 using cooling water			
Operation:	Continu	uous		
Exchanger Type:	Shell and	Shell and Tube		
ТЕМА Туре:	BEM			
Stream ID	Tube Side	Shell Side		
Inlet Outlet	S-6 S-7	CW CW		
Flow Rate (lb/h) Temperature In (°F) Temperature Out (°F)	9,524,000 183.2 82.4	1,190,000 80.6 98.6		
Decim Data:	Surface Area (ft ²)	64,960		
Design Data:	LMTD (°F)	21.77		
	Heat Transfer Coefficient (BTU/h-ft ² -°F)	172		
	Heat Duty (BTU/h)	2.377×10^7		
	Material of Construction	Carbon Steel		
	Number of Units in Series	2		
	Number of Units in Parallel	1		
Purchase Cost	\$1,889,000			
Installed Cost	\$5,987,000			
HEAT EXCHANGER (CO2 Process)				
---	--	---------------------------	--	
Identification:	HX-	6		
Function:	Cools stream S-8 using cooling water			
Operation:	Continu	ious		
Exchanger Type:	Shell and	Tube		
ТЕМА Туре:	BEN	Л		
Stream ID	Tube Side	Shell Side		
Inlet Outlet	S-8 S-9	CW CW		
Flow Rate (lb/h) Temperature In (°F) Temperature Out (°F)	9,524,000 140 131	1,190,000 80.6 82.4		
Decise Data:	Surface Area (ft ²)	3063		
Design Data:	LMTD (°F)	53.91		
	Heat Transfer Coefficient (BTU/h-ft ² -°F)	387.3		
	Heat Duty (BTU/h)	2.355×10^7		
	Material of Construction	Carbon Steel		
	Number of Units in Series	1		
	Number of Units in Parallel	1		
Purchase Cost	\$474,800			
Installed Cost	\$1,505,000			

10.2.2 Compressors

COMPRESSOR (CO ₂ Process)				
Identification:		C-1		
Function:	To increase the pressure of stream S-7 to yield stream S-8 going into the sixth heat exchanger. HX-6			
Operation:		Continuous		
Working Fluid:		Helium		
	Type:	Centrifugal		
	Driver Type:	Electric Motor		
	Material:	Carbon Steel		
	Pressure Inlet: (psi)	592		
Design Data:	Pressure Outlet: (psi)	870		
	Temperature Inlet (°F)	82.4		
	Temperature Outlet (°F)	139		
	Flow Rate (lb/h)	216,400		
	Driver Power (hp)	31,330		
	Efficiency	70%		
Utility Requirement: (MW)	23.4			
Total Purchase Cost:	\$ 5,490,000			
Total Installed Cost:	\$7,451,000			

COMPRESSOR (CO ₂ Process)				
Identification:		C-2		
Function:	To increase the pres going into t	ssure of stream S-9 to yield stream S-10 he fourth heat exchanger, HX-4		
Operation:		Continuous		
Working Fluid:		Helium		
	Type: Centrifugal			
	Driver Type:	Electric Motor		
	Material:	Carbon Steel		
	Pressure Inlet: (psi)	870		
Design Data:	Pressure Outlet: (psi)	1160		
	Temperature Inlet (°F)	131		
	Temperature Outlet (°F)	176		
	Flow Rate (lb/h)	216,400		
	Driver Power (hp)	24,670		
	Efficiency	70%		
Utility Requirement: (MW)	18.4			
Total Purchase Cost:	\$5,388,000			
Total Installed Cost:	\$7,578,000			

10.2.3 Turbines

TURBINE (CO ₂ Process)				
Identification:				
Function:	To generate electricity as the power output of the process and to provide electricity to the compressors			
Operation:		Continuous		
Working Fluid:	Helium			
	Type:	Electrical		
	Material:	Stainless Steel 310S		
	Pressure Inlet: (psi)	1160		
Design Data:	Pressure Outlet: (psi)	798		
	Temperature Inlet (°F)	1310		
	Temperature Outlet (°F)	1197		
	Flow Rate (lb/h)	216,400		
	Driver Power (hp)	122,500		
	Efficiency	90%		
Total Purchase Cost:		\$14,010,000		
Total Installed Cost:		\$30,120,000		

_

TURBINE (CO ₂ Process)				
Identification:		T-2		
Function:	To generate electricity as the power output of the process and to provide electricity to the compressors			
Operation:		Continuous		
Working Fluid:	Helium			
	Type:	Electrical		
	Material:	Stainless Steel 310S		
Design Data:	Pressure Inlet: (psi)	798		
	Pressure Outlet: (psi)	592		
	Temperature Inlet (°F)	1220		
	Temperature Outlet (°F)	1133		
	Flow Rate (lb/h)	216,400		
	Driver Power (hp)	92,600		
	Efficiency	90%		
Total Purchase Cost:		\$11,170,000		
Total Installed Cost:		\$24,010,000		

12. Equipment Cost and Fixed-Capital Investment Summaries

12.1 Helium Process

A summary of capital investment costs and purchase costs for all process units in the helium process is available in Table 12.1. The total permanent investment for the process is approximately \$218 million, with equipment costs and installation accounting for \$166 million of this total. Contingency and contractor fees were assumed to be 5% of direct permanent investment, which is consistent with estimates for new electricity plant costs as calculated by the Energy Information Administration (EIA) ("Levelized Cost," 2015). Site preparation and service facilities were estimated at 1% of bare module cost each. This is a lower estimate than that provided by Downey in the Profitability Analysis Spreadsheet (2008). The choice was made to lower this cost, as well as the cost of land (1% of total depreciable capital) due to the nature of this process: it will add on to an existing plant facility rather than break ground as a new plant and thus, the existence of developed infrastructure and available land is assumed to represent an opportunity for cost savings.

The cost of start-up for this process is estimated at 10% of total depreciable capital as recommended by Downey. A site factor of 1.1 was used to account for creating this process in a Northeastern U.S. location. A detailed breakdown of these costs is available in the Profitability Analysis section.

Table 12.1. Equipment Cost and Capital Investment Summary for Helium Design. Costs for compressors were calculated using the Process Economic Analyzer (*Aspen Process*, 2015). Costs for turbines, as well as bare module factors, were calculated using the textbook (Seider, et al., 2009), and heat exchanger costs were calculated using the Exchanger Design and Rating program (*Aspen Exchanger*, 2015).

Unit	Unit Description	Estimated	Bare Module	Estimated Capital
Name		Purchase Cost	Factor	Investment
T1	High Temperature Turbine	\$8,986,000	2.15	\$19,320,000
T2	High Temperature Turbine	\$8,986,000	2.15	\$19,320,000
T3	High Temperature Turbine	\$17,827,000	2.15	\$38,330,000
C1	High Pressure Compressor	\$15,874,000	1.06	\$16,830,000
C2	High Pressure Compressor	\$13,488,000	1.08	\$14,570,000
C3	High Pressure Compressor	\$10,123,000	1.12	\$11,340,000
C4	High Pressure Compressor	\$9,724,000	1.14	\$11,090,000
HX-1	Internal Heat Exchanger (Shell-and-Tube)	\$4,296,000	3.17	\$13,620,000
HX-2	Recuperator Heat Exchanger (Shell-and-Tube)	\$4,112,000	3.17	\$13,040,000
HX-3	Intercooler Heat Exchanger (Shell-and-Tube)	\$519,000	3.17	\$1,645,000
HX-4	Intercooler Heat Exchanger (Shell-and-Tube)	\$324,000	3.17	\$1,027,000
HX-5	Intercooler Heat Exchanger (Shell-and-Tube)	\$312,000	3.17	\$989,000
HX-6	Intercooler Heat Exchanger (Shell-and-Tube)	\$1,634,000	3.17	\$5,180,000
Total	· · · · ·	\$96,205,000		\$166,301,000
Cost pe	er MWh per year	\$101		\$175

12.2 S-CO₂ Process

A summary of capital investment costs and purchase costs for all process units in the s-CO₂ process is available in Table 12.2. The total permanent investment for the process is approximately \$1.26 billion, with equipment costs and installation accounting for \$1 billion of this total. Contingency and contractor fees were assumed to be 5% of direct permanent investment, which is consistent with estimates for new electricity plant costs as calculated by the EIA ("Levelized Cost," 2015). Site preparation and service facilities were estimated at 1% of

bare module cost each. This is a lower estimate than that provided by Downey in the profitability analysis spreadsheet. The choice was made to lower this cost, as well as the cost of land (1% of total depreciable capital) due to the nature of this process: it will add on to an existing plant facility rather than break ground as a new plant and thus, the existence of developed infrastructure and available land is assumed to represent an opportunity for cost savings. The cost of start-up for this process is estimated at 10% of total depreciable capital as recommended by Downey. A site factor of 1.1 was used to account for creating this process in a Northeastern U.S. location. A detailed breakdown of these costs is available in the profitability analysis section.

Table 12.2. Equipment Cost and Capital Investment Summary for s-CO₂ design. Costs for compressors were calculated using the Process Economic Analyzer (*Aspen Process*, 2015). Costs for turbines, as well as bare module factors, were calculated using the textbook (Seider, et al., 2009), and heat exchanger costs were calculated using the Exchanger Design and Rating program (*Aspen Exchanger*, 2015).

Unit	Unit Description	Estimated	Bare Module	Estimated Capital
Name		Purchase Cost	Factor	Investment
T-1	Turbine - Gas Powered	\$14,000,000	2.15	\$30,100,000
T-2	Turbine - Gas Powered	\$11,200,000	2.15	\$2,408,000
C-1	Compressor - Gas Turbine Powered	\$7,451,000	1.36	\$10,130,000
C-2	Compressor - Gas Turbine Powered	\$7,578,000	1.41	\$10,680,000
HX-1	Internal Heat Exchanger - Shell and Tube	\$3,916,000	3.17	\$12,410,000
HX-2	Internal Heat Exchanger – Shell-and-Tube	\$5,044,000	3.17	\$15,990,000
HX-3	Internal Heat Exchanger – Shell-and-Tube	\$33,000,000	3.17	\$104,610,000
HX-4	Recuperator Heat Exchanger – Shell-and-Tube	\$250,000,000	3.17	\$792,500,000
HX-5	Intercooler Heat Exchanger – Shell-and-Tube	\$1,889,000	3.17	\$5,988,000
HX-6	Intercooler Heat Exchanger – Shell-and-Tube	\$475,000	3.17	\$1,506,000
Total		\$334,553,000		\$986,322,000
Cost pe	er MWh per year	\$358		\$1,056

13. Operating Cost – Cost of Manufacture

13.1 Helium Process

Fixed costs for this process are estimated at \$5.2 million per year. The variable costs are estimated at \$5.1 million per year. This gives a total cost of manufacture of \$10.3 million per year, or \$10.89/MWh produced. A short discussion of these costs is provided below, and a detailed table is available in the profitability analysis section.

13.1.1 Utilities

The utilities are estimated at a yearly cost of \$2.3 million. This comes from an estimation of the need for cooling water at 0.01 cents/gallon of cooling water (Seider, et al., 2009). The cost per MWh of electricity produced comes to \$2.41. Cooling water to cool hot streams is the only needed utility for this process, as all electricity needed to power compressors and other plant machinery is provided by the process and heating is provided to the process from the primary nuclear reactor loop.

13.1.2 Operations

Operations costs were calculated assuming the need for a single operator to oversee the process and five shifts for continuous operation of the plant. Our operators will have Direct wages and benefits costs of \$40/operator hour, with salaries and benefits costs set to zero as we do not anticipate needing to hire additional management or operation support staff to supervise the operators. Operating supplies and services is estimated at 6% of direct wages and benefits for the operators.

13.1.3 Maintenance

Maintenance costs for yearly operation of the plant are assumed to be \$1 million. Wages and benefits for maintenance came to \$445,000 with an equivalent amount allocated for materials

and services. Maintenance overhead was estimated at \$22,000 per year and salaries and benefits for management of the maintenance team was estimated at \$111,000 per year. These costs are significant reductions from the estimates (Seider, et al., 2009). Due to the limited number of process units in this process and the likelihood of a maintenance team already existing at the plant at which this process would be installed, cost of maintenance is expected to be minimal.

13.1.4 Operating Overhead

Operating overhead for this process is estimated at \$195,000 per year, with \$146,000 allocated for general plant overhead and \$48,000 for mechanical department services. These cost estimates are again reductions from that suggested by Downey (2008), as need for additional operations costs will be limited due to the existence of an already built an operating plant.

13.1.5 Property taxes and insurance

Property taxes and Insurance are expected to cost \$3,563,000 per year, or 2% of Total Depreciable Capital (Seider, et al., 2009).

13.2 S-CO₂ Process

Fixed costs for this process are estimated at \$3.2 million per year. The variable costs are estimated at \$5 million per year. This gives a total cost of manufacture of \$7.2 million per year, or \$8.79/MWh produced. A short discussion of these costs is provided below, and a detailed table is available in the profitability analysis section.

13.2.1 Utilities

The utilities are estimated at a yearly cost of \$2.3 million. This comes from an estimation of the need for cooling water at .01 cents/gallon of cooling water (Seider, et al., 2009). The cost per MWh of electricity produced comes to \$2.41. Cooling water to cool hot streams is the only needed utility for this process, as all electricity needed to power compressors and other plant

machinery is provided by the process and heating is provided to the process from the primary nuclear reactor loop.

13.2.2 Operations

Operations costs were calculated assuming the need for a single operator to oversee the process and five shifts for continuous operation of the plant. Our operators will have direct wages and benefits costs of \$40/operator hour, with salaries and benefits costs set to zero as we do not anticipate needing to hire additional management or operation support staff to expand the plant. Operating supplies and services is estimated at 6% of direct wages and benefits for the operators.

13.2.3 Maintenance

Maintenance costs for yearly operation of the plant are assumed to be \$1 million. Wages and benefits for maintenance came to \$445,000 with an equivalent amount allocated for materials and services. Maintenance overhead was estimated at \$22,000 per year and salaries and benefits for management of the maintenance team was estimated at \$111,000 per year. These costs are significant reductions from the estimates provided by Seider et al. Due to the limited number of process units in this process and the likelihood of a maintenance team already existing at the plant at which this process would be installed, cost of maintenance is expected to be minimal.

13.2.4 Operating Overhead

Operating overhead for this process is estimated at \$195,000 per year, with \$146,000 allocated for general plant overhead and \$48,000 for mechanical department services. These cost estimates are again reductions from that suggested by Downey (2008), as need for additional operations costs will be limited due to the existence of an already built an operating plant.

13.2.5 Property taxes and insurance

Property taxes and Insurance are expected to cost \$3,563,000 per year.

14. Other Important Considerations

Many considerations that would be important in designing a plant like this were out of the scope of our project. Primarily, these include environmental concerns, since our project depends on the use of a nuclear power plant. One of the main reasons that nuclear power is not more widespread is because of public concern over a nuclear disaster. However, since our project assumes that we are merely using the waste heat stream from a nuclear plant, the environmental and other concerns relating to the nuclear power itself were considered outside the scope of the project and not explored further. Plant startup and shutdown costs are also important considerations, but these analyses were also considered outside the scope of our process, and the default percentages were used in calculating these costs. Two other important concerns, Safety and Health and Plant Location, are explored further below.

14.1 Safety and Health Concerns

Two of the largest safety concerns in engineering industries are fires and explosions, and toxic releases and dispersion. Since the power generation cycle in this project is at very high temperatures and pressures, both of these safety concerns are incredibly important in this process. Thus, the flammability and toxicity of the fluids used in the power generation cycle must be examined. All concentration levels noted here are on a per volume basis.

14.1.1 Helium

Helium is a relatively safe gas when looking at these two safety concerns, as it is both non-flammable and non-toxic. Although this seems to remove the two largest safety concerns identified above, helium is an asphixiant, so although inhaling it is not a toxicity issue, a leak is still dangerous as it could cause suffocation (Appendix C.1).

The most important methods to combat the risk of suffocation from a helium release are installation of an industrial exhaust system to eliminate the risk of fluid buildup in the plant area, and an easy and well-marked evacuation route in case a large leak or blowout were to occur. Industrial exhaust systems consist of large fans to increase ventilation, an air filtration unit to clean the air, and an exhaust pipe to release the cleaned air outside or recycle it back into the work area. Of course, there is a possibility that the ventilation system could be compromised, or a leak could go undetected and be too large for the leaking fluid to be removed through the industrial ventilation. As a secondary protection, the containment building of the power generation equipment must be fitted with oxygen-depletion alarm systems, and site workers are also required to carry portable oxygen monitors, which can be carried in a pocket and provide continuous oxygen monitoring. A secondary emergency ventilation system is also necessary that immediately vents all of the work area gaseous contents into the outside air.

In addition to the oxygen depletion alarm system, emergency-breathing apparatuses, a form of self-contained breathing apparatuses that are easy to don and so are used in emergency evacuation situations, are placed at strategic places throughout the facilities ("Respiratory Protection," 2011). They are placed in such a way that a worker standing in any area of the plant is no more than 400 feet away from an emergency breathing apparatus or a doorway (Appendix B.2). This is done because of the large size of the plant, which makes it probable that not all workers will be able to hold their breath for a long enough time to exit the facilities.

OSHA identifies the minimum acceptable oxygen level as 19.5%, so the first alarm threshold is placed at this concentration. At this alarm, all personnel are required to immediately evacuate the enclosed area of the process. A secondary alarm threshold is placed at 14%, when oxygen depletion begins to impair worker judgment, and this is when the emergency ventilation

system is triggered. A final emergency alarm is placed at 8% oxygen, the level at which a 10minute exposure can prove fatal ("Overview of OSHA Standards").

14.1.2 Carbon Dioxide

The above safety measures are used in both the scenario of helium as the working fluid and CO₂ as the working fluid. However, CO₂ has a couple additional safety concerns. First, whereas helium is nontoxic, CO₂ is a toxic asphixiant, so CO₂ levels are also measured when this is the working fluid of the plant (Appendix C.2). Similar alarm systems as the oxygen monitors are placed around the plant in this process, with different CO₂ alarm limits. The first limit is placed at 0.5%, which is the maximum allowable concentration for an 8-hour workday as recommended by OSHA. A second alarm threshold is placed at 3%, marking the ceiling exposure limit recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). A third and final alarm threshold is placed at 4%, as this is the concentration identified by the ACGIH as being immediately dangerous to workers' life and health. The fatal concentration of CO₂ is about 9% over a 5-minute period ("Appendix C," 2006).

The second additional safety concern when working with CO_2 is that the fluid is incompatible with many common metals, including chromium, above 550 °C, and uranium above 750 °C (Appendix C.2). The piping of the process as well as the equipment units are made out of varying grades of stainless steel, which contain chromium and other non-compatible metals. Fortunately, as scale develops inside the piping and equipment units from the interaction of the CO_2 with the metals, the scale itself acts as a barrier to continued degradation of the metal. Degradation of the metal is shown to be a mere decrease in thickness of about 1mm per year at the most, with no added frailty with the scale formation ("Development of a Supercritical,"

2004). Thus, piping is checked for leaks or excessive buildup during scheduled maintenance every year, but it is unlikely to need replacements any more often than in the helium process.

14.1.3 Overall Plant

Both high temperatures and high pressures are present throughout the helium and the CO₂ processes. These extreme conditions led to the careful selection of piping and equipment materials, and higher grades of stainless steel are used where necessary to prevent leaks, explosions, or meltdowns. Extensive temperature monitoring is put in place in the system, with alarms set to sound if the temperature exceeds 90% of the meltdown temperature of the material, and emergency cooling systems surrounding the compressors. Guardrails are also placed around all major equipment to keep employees at a safe distance in case of hot piping and equipment, and warning labels are placed on all pipes and equipment warning of the high temperatures and pressures. As a secondary protection, in case operators accidentally brush against a piece of equipment, all operators are required to wear boiler suits, which consist of a full suit of clothing made to withstand extremely high temperatures (Meher). Reinforced containment walls are also built around the process, to contain any contaminants in the case of a blowout.

14.2 Plant Location

The only location restriction of our process is that it needs to be located in very close proximity to a nuclear facility. With nearly a hundred operating nuclear facilities in the United States, there are numerous potential locations for our process. We chose to locate our process close to Philadelphia, since we are most familiar with the energy markets and nuclear facilities of the surrounding area. The Philadelphia area also has four nuclear power generation units within about fifty miles of the city and many more close by ("Operating Nuclear Power Reactors," 2015), making it a promising location for a pilot nuclear power generation process. The location

was important for the Economic Analysis, as it affected both the site factor, which is 1.1 for the Northeast region, and the local price of electricity in the PJM Interconnection service area.

15. Profitability Analysis – Business Case

The Profitability Analysis-4.0.xls spreadsheet by Brian K. Downey (2008) was used in order to make a business case for the best helium and s-CO₂ processes. The profitability analysis worksheets will be compared for both working fluids and a final recommendation will be made after a thorough economic analysis of each competing process.

15.1 Profitability Measures

15.1.1 Helium Process

For the profitability analysis, it is assumed that the effective tax rate is 37% for both competing processes. For the helium process, the cash flow analysis determined that the project would have an 11% return on investment (ROI), a net present value (NPV) of \$241 million, and a 13% internal rate of return (IRR). The cash flow in each year is summarized in Table 24.1 and shows that the helium process will break even after the ninth year of the project's life using a discount rate of 6.1%. This is the typical discount rate used for power plant projects by the EIA ('Levelized Costs', 2015).

Note that normally cash flow sheets are only projected for the first 20 years. However, a nuclear plant license lasts for 40 years, so all profitability analyses are performed with a 40 year project lifetime for completeness. Due to the limitations of the Profitability Analysis spreadsheet, the cash flow of the last 19 years of the project were determined independently. All years of the cash flow were aggregated in Table 15.1 to reflect the 40-year lifetime of the project.

The Internal Rate of Return (IRR) for this project is	13.02%
The Net Present Value (NPV) of this project in 2016 is	\$240,797,986.02

ROI Analysis (Third Production Year)

Annual Sales	67,328,731
Annual Costs	(10,346,199)
Depreciation	(17,404,622)
Income Tax	(14,643,826)
Net Earnings	24,934,083
Total Capital Investment	224,184,248
ROI	11.12%

Table 15.1 End of the Year Cash Flows. Here, the helium process is presented with the corresponding cumulative NPV at a 6.1% discount rate for a 40 year project.

Year	Cash Flow	Cumulative NPV at 6.1%
2017	\$ (220,871,000.00)	\$ (208,172,478.79)
2018	\$ 12,630,800.00	\$ (196,952,291.91)
2019	\$ 22,927,100.00	\$ (177,756,635.24)
2020	\$ 31,414,300.00	\$ (152,967,244.61)
2021	\$ 31,108,400.00	\$ (129,830,579.78)
2022	\$ 30,856,800.00	\$ (108,200,477.05)
2023	\$ 30,652,900.00	\$ (87,948,665.33)
2024	\$ 30,694,500.00	\$ (68,835,285.42)
2025	\$ 30,955,100.00	\$ (50,667,844.52)
2026	\$ 31,224,000.00	\$ (33,396,159.90)
2027	\$ 31,481,200.00	\$ (16,983,383.40)
2028	\$ 31,753,200.00	\$ (1,380,570.81)
2029	\$ 32,013,500.00	\$ 13,445,742.28
2030	\$ 32,288,700.00	\$ 27,539,772.08
2031	\$ 32,552,300.00	\$ 40,931,941.06
2032	\$ 32,830,700.00	\$ 53,662,105.11
2033	\$ 31,152,700.00	\$ 65,047,134.78

2034	\$ 29,483,000.00	\$ 75,202,481.65
2035	\$ 29,759,700.00	\$ 84,863,796.93
2036	\$ 30,038,100.00	\$ 94,054,839.57
2037	\$ 30,318,200.00	\$ 102,798,239.65
2038	\$ 31,226,400.00	\$ 111,285,811.68
2039	\$ 40,721,289.40	\$ 121,717,814.39
2040	\$ 41,004,725.77	\$ 131,618,486.97
2041	\$ 41,289,862.76	\$ 141,014,829.54
2042	\$ 41,576,710.57	\$ 149,932,473.82
2043	\$ 41,865,279.47	\$ 158,395,752.26
2044	\$ 42,155,579.79	\$ 166,427,763.69
2045	\$ 42,447,621.90	\$ 174,050,435.66
2046	\$ 42,741,416.27	\$ 181,284,583.70
2047	\$ 43,036,973.40	\$ 188,149,967.50
2048	\$ 43,334,303.88	\$ 194,665,344.33
2049	\$ 43,633,418.34	\$ 200,848,519.77
2050	\$ 43,934,327.48	\$ 206,716,395.81
2051	\$ 44,237,042.09	\$ 212,285,016.58
2052	\$ 44,541,572.97	\$ 217,569,611.83
2053	\$ 44,847,931.05	\$ 222,584,638.05
2054	\$ 45,156,127.27	\$ 227,343,817.72
2055	\$ 45,466,172.67	\$ 231,860,176.39
2056	\$ 45,778,078.34	\$ 236,146,078.05
2057	\$ 52,718,355.45	\$ 240,797,986.02

15.1.2 S-CO₂ Process

For the s-CO₂ process, the cash flow analysis determined that the project would have a -2.13% return on investment (ROI) after the third year of production, a net present value (NPV) of -\$489 million, and a -0.85% internal rate of return (IRR). The cash flow in each year is summarized in Table 15.2 and shows that the s-CO₂ process will not break even throughout the projected lifespan of the project. Because the unprofitable nature of this project was clear, the lifetime cash flows were not calculated passed the 21 years allowed by the Downey spreadsheet. As discussed in Section 4.5, this project seems like it should generate more power at a lower flowrate than the helium process, but the s-CO₂ is too dense and does not expand through the turbines as well as helium. Therefore, higher flowrates are needed, leading to a higher cost of instillation, which accounts for the main pitfall of this design.

Profitability Measures

The Internal Rate of Return (IRR) for this project is	-0.85%
The Net Present Value (NPV) of this project in 2016 is	\$(489,268,300)

ROI Analysis (Third Production Year)

Annual Sales	66,198,509
Annual Costs	(8,214,105)
Depreciation	(100,640,068)
Income Tax	15,782,596
Net Earnings	(26,873,068)
Total Capital Investment	1,264,355,122
ROI	-2.13%

Year	Cash Flow (\$)	Cumulative NPV at 6.1% (\$)
2017	(1,261,178,000)	(1,188,669,200)
2018	92,015,100	(1,106,930,400)
2019	147,662,000	(983,300,800)
2020	110,054,100	(896,455,800)
2021	80,894,800	(836,290,800)
2022	81,146,500	(779,408,400)
2023	59,342,600	(740,201,900)
2024	37,540,100	(716,825,800)
2025	37,796,400	(694,643,200)
2026	38,054,300	(673,593,300)
2027	38,313,600	(653,618,400)
2028	38,574,600	(634,663,700)
2029	38,837,100	(616,677,200)
2030	39,101,100	(599,609,600)
2031	39,366,800	(583,413,900)
2032	39,634,000	(568,045,700)
2033	39,902,900	(553,462,900)
2034	40,173,400	(539,625,200)
2035	40,445,400	(526,494,900)
2036	40,719,200	(514,035,600)
2037	40,994,500	(502,213,300)
2038	47,625,800	(489,268,300)

Table 15.2 End of the Year Cash Flows. Here, the s- CO_2 process is shown with the corresponding cumulative NPV at a 6.1% discount rate for a 40 year project.

15.2 Cost Summary

15.2.1 Helium Process

A summary of the breakdown of the total capital investment as generated by the Profitability Spreadsheet is included in the tables below. The total capital investment for the best helium process is about \$224 million. Of that, variable costs make up about \$5 million and fixed costs make up about \$5 million. The primary cost for this project is the permanent investment, totaling about \$217 million.

The cash flow analysis used a 15-year depreciation schedule following the modified accelerated cost recovery system (MACRS) as determined by the IRS.

Finally, the last table shows a sensitivity analysis on the price of electricity. The price of electricity used in this analysis is \$70/MWh (Seider, et al., 2009) and increases accordance with EIA projections ("Wholesale Electricity," 2016). However, electricity prices have historically wavered and if they drop below \$28/MWh, the projected IRR will suffer and possibly produce an economically unsuccessful project.

General Information

Process Title: Nuclear Reactor Product: Electricity Plant Site Location: PJM Interconnection Site Factor: 1.10 Operating Hours per Year: 7919 Operating Days Per Year: 330 Operating Factor: 0.9040

Product Information

This Process will Yield

120 MWh of Electricity per hour 2,880 MWh of Electricity per day 950,400 MWh of Electricity per year

Price

\$70.00 /MWh

Chronology

		Distribution of	Production	Depreciation	Product Price
Year	Action	Permanent Investment	Capacity	15 year MACRS	
2016	Design		0.0%		
2017	Construction	100%	0.0%		
2018	Production	0%	50.0%	5.00%	\$70.00
2019	Production	0%	75.0%	9.50%	\$70.42
2020	Production	0%	100.0%	8.55%	\$70.84
2021	Production		100.0%	7.70%	\$71.27
2022	Production		100.0%	6.93%	\$71.70
2023	Production		100.0%	6.23%	\$72.13
2024	Production		100.0%	5.90%	\$72.56
2025	Production		100.0%	5.90%	\$72.99
2026	Production		100.0%	5.91%	\$73.43
2027	Production		100.0%	5.90%	\$73.87
2028	Production		100.0%	5.91%	\$74.32
2029	Production		100.0%	5.90%	\$74.76
2030	Production		100.0%	5.91%	\$75.21
2031	Production		100.0%	5.90%	\$75.66
2032	Production		100.0%	5.91%	\$76.11
2033	Production		100.0%	2.95%	\$76.57
2034	Production		100.0%		\$77.03
2035	Production		100.0%		\$77.49
2036	Production		100.0%		\$77.96
2037	Production		100.0%		\$78.43
2038	Production		100.0%		\$78.90

Variable Cost Summary

Variable Costs at 100% Capacity:

General Expenses

	Selling / Trans	sfer Expenses:	\$ 665,280	
	Direct Resear	ch:	\$ -	
	Allocated Res	earch:	\$ -	
	Administrative	Expense:	\$ 1,330,560	
	Management	Incentive Compensation:	\$ 831,600	
Total Gene	ral Expenses		\$ 2,827,440	
<u>Raw Materi</u>	als	\$0.000000 per MWh of Electricity	\$0	
Byproducts	<u>8</u>	\$0.000000 per MWh of Electricity	\$0	
<u>Utilities</u>		\$2.414880 per MWh of Electricity	\$2,295,102	
Total Varia	ble Costs		\$ 5,122,542	

Operations

[Direct Wages and Benefits	S	416,000
[Direct Salaries and Benefits	S	-
(perating Supplies and Services	S	24,960
1	echnical Assistance to Manufacturing	\$	-
(Control Laboratory	\$	-
1	otal Operations	\$	440,960
Maintenance			
١	Vages and Benefits	\$	445,450
5	alaries and Benefits	\$	111,362
Ν	laterials and Services	\$	445,450
Ν	Aaintenance Overhead	\$	22,272
1	otal Maintenance	\$	1,024,535
Operating Ov	erhead		
C	General Plant Overhead:	s	145,922
Ν	lechanical Department Services:	\$	48,641
E	mployee Relations Department:	\$	-
E	Business Services:	\$	-
I	otal Operating Overhead	\$	194,562
Property Tax	es and Insurance		
F	Property Taxes and Insurance:	\$	3,563,600
Other Annual	Expenses		
F	Rental Fees (Office and Laboratory Space):	s	-
L	icensing Fees:	\$	-
Ν	/iscellaneous:	\$	-
I	otal Other Annual Expenses	\$	
Total Fixed C	osts	\$	5,223,657

Investment Summary

Total Bare	Module Costs:		
	Fabricated Equipment	\$ 35,494,075	
	Process Machinery	\$ 130,873,804	
	Spares	\$ -	
	Storage	\$ -	
	Other Equipment	\$ -	
	Catalysts	\$ -	
	Computers, Software, Etc.	\$ -	
	Total Bare Module Costs:		\$ 166,367,879
Direct Peri	manent Investment		
	Cost of Site Preparations:	\$ 1,663,679	
	Cost of Service Facilities:	\$ 1,663,679	
	Allocated Costs for utility plants and related facilities:	\$ 	
	Direct Permanent Investment		\$ 169,695,236
Total Depr	eciable Capital		
	Cost of Contingencies & Contractor Fees	\$ 8,484,762	
	Total Depreciable Capital		\$ 178,179,998
Total Dece	an ant Investment		
Total Perm			
	Cost of Land:	\$ 1,781,800	
	Cost of Royalties:	\$ -	
	Cost of Plant Start-Up:	\$ 17,818,000	
	Total Permanent Investment - Unadjusted		\$ 197,779,798
	Site Factor		1.10
	Total Permanent Investment		\$ 217,557,778

Working Capital

	<u>2017</u>	<u>2018</u>	<u>2019</u>
Accounts Receivable	\$ 2,734,027	\$ 1,367,014	\$ 1,367,014
Cash Reserves	\$ 969,225	\$ 484,612	\$ 484,612
Accounts Payable	\$ (754,554)	\$ (377,277)	\$ (377,277)
Electricity Inventory	\$ 364,537	\$ 182,268	\$ 182,268
Raw Materials	\$ -	\$ -	\$ -
Total	\$ 3,313,235	\$ 1,656,618	\$ 1,656,618
Present Value at 6.1%	\$ 3, 122, 748	\$ 1,471,606	\$ 1, 386, 999
Total Capital Investment		\$ 223,539,130	

	\$1,280,635	\$2,049,017	\$2,817,398	\$3,585,779	\$4,354,161	\$5,122,542	\$5,890,923	\$6,659,305	\$7,427,686	\$8,196,067	\$8,964,448
\$17.50	-0.48%	-0.92%	-1.38%	-1.85%	-2.35%	-2.87%	-3.42%	-3.99%	-4.61%	-5.27%	-5.98%
\$28.00	4.42%	4.11%	3.80%	3.48%	3.15%	2.82%	2.49%	2.14%	1.79%	1.42%	1.05%
\$38.50	8.15%	7.90%	7.64%	7.38%	7.12%	6.86%	6.59%	6.32%	6.04%	5.76%	5.48%
\$49.00	11.33%	11.11%	10.88%	10.65%	10.42%	10.19%	9.96%	9.72%	9.49%	9.25%	9.01%
\$59.50	14.18%	13.97%	13.76%	13.55%	13.35%	13.14%	12.92%	12.71%	12.50%	12.28%	12.07%
\$70.00	16.80%	16.61%	16.41%	16.22%	16.02%	15.83%	15.63%	15.43%	15.23%	15.03%	14.83%
\$80.50	19.27%	19.09%	18.90%	18.72%	18.53%	18.34%	18.16%	17.97%	17.78%	17.59%	17.40%
\$91.00	21.62%	21.44%	21.26%	21.09%	20.91%	20.73%	20.55%	20.37%	20.19%	20.01%	19.83%
\$101.50	23.87%	23.70%	23.53%	23.36%	23.19%	23.01%	22.84%	22.67%	22.49%	22.32%	22.14%
\$112.00	26.05%	25.88%	25.72%	25.55%	25.38%	25.21%	25.05%	24.88%	24.71%	24.54%	24.37%
\$122.50	28.16%	28.00%	27.84%	27.68%	27.51%	27.35%	27.18%	27.02%	26.86%	26.69%	26.53%

Variable Costs

Product Price

15.2.2 S-CO₂ Process

A summary of the breakdown of the total capital investment as generated by the Profitability Spreadsheet is included in the tables below. The total capital investment for the best S-CO₂ process is about \$1.26 billion. Of that, variable costs make up about \$5 million and fixed costs make up about \$3 million. The primary cost for this project is the permanent investment, totaling about \$1.26 billion.

The cash flow analysis used a 5-year depreciation schedule following the modified accelerated cost recovery system (MACRS). The s-CO₂ process uses a 5-year depreciation schedule as opposed to a 15-year schedule because it is considered a new carbon free technology and is promoted by the government to run on a 5-year schedule ("Incentives Available," 2016).

A sensitivity analysis is not presented for this process because it is not relevant in the scope of this vastly unsuccessful project.

General Information

Process Title: Nuclear Reactor Product: Electricity Plant Site Location: PJM Interconnection Site Factor: 1.10 Operating Hours per Year: 7919 Operating Days Per Year: 330 Operating Factor: 0.9040

Product Information

This Process will Yield

118 MWh of Electricity per hour 2,832 MWh of Electricity per day 934,446 MWh of Electricity per year

Price

\$70.00 /MWh

Chronology

		Distribution of	Production	Depreciation	Product Price
Year	Action	Permanent Investment	<u>Capacity</u>	5 year MACRS	
2016	Design		0.0%		
2017	Construction	100%	0.0%		
2018	Production	0%	50.0%	20.00%	\$70.00
2019	Production	0%	75.0%	32.00%	\$70.42
2020	Production	0%	100.0%	19.20%	\$70.84
2021	Production		100.0%	11.52%	\$71.27
2022	Production		100.0%	11.52%	\$71.70
2023	Production		100.0%	5.76%	\$72.13
2024	Production		100.0%		\$72.56
2025	Production		100.0%		\$72.99
2026	Production		100.0%		\$73.43
2027	Production		100.0%		\$73.87
2028	Production		100.0%		\$74.32
2029	Production		100.0%		\$74.76
2030	Production		100.0%		\$75.21
2031	Production		100.0%		\$75.66
2032	Production		100.0%		\$76.11
2033	Production		100.0%		\$76.57
2034	Production		100.0%		\$77.03
2035	Production		100.0%		\$77.49
2036	Production		100.0%		\$77.96
2037	Production		100.0%		\$78.43
2038	Production		100.0%		\$78.90

Variable Cost Summary

Variable Costs at 100% Capacity:

General Expenses

Sellin	g / Transfer Expenses:	\$ 654,112
Direct	Research:	\$ -
Alloca	ited Research:	\$ -
Admi	nistrative Expense:	\$ 1,308,224
Mana	gement Incentive Compensation:	\$ 817,640
Total General Ex	penses	\$ 2,779,977
Raw Materials	\$0.000000 per MWh of Electricity	\$0
Byproducts	\$0.000000 per MWh of Electricity	\$0
Utilities	\$2.414880 per MWh of Electricity	\$2,256,575
Total Variable Co	<u>sts</u>	\$ 5,036,552

Operations

Direct Wages and Benefits	\$	416,000
Direct Salaries and Benefits	\$	-
Operating Supplies and Services	\$	24,960
Technical Assistance to Manufacturing	\$	-
Control Laboratory	\$	-
Total Operations	\$	440,960
Maintenance		
Wages and Benefits	\$	25,874
Salaries and Benefits	\$	6,469
Materials and Services	\$	25,874
Maintenance Overhead	\$	1,294
Total Maintenance	\$	59,511
Operating Overhead		
General Plant Overhead:	\$	67,251
Mechanical Department Services:	\$	22,417
Employee Relations Department:	\$	-
Business Services:	\$	-
Total Operating Overhead	\$	89,669
Property Taxes and Insurance		
Property Taxes and Insurance:	\$	2,587,414
Other Annual Expenses		
Rental Fees (Office and Laboratory Space):	s	-
Licensing Fees:	\$	-
Miscellaneous:	\$	-
Total Other Annual Expenses	\$	-
Total Fixed Costs	\$	3,177,553

Investment Summary

Fabricated Equipment \$ 933,760,906 Process Machinery \$ 69,054,567 Spares \$ - Storage \$ - Other Equipment \$ - Catalysts \$ - Computers, Software, Etc. \$ - Total Bare Module Costs: \$ 1,002,815,473 Direct Permanent Investment \$ 1,002,815 Cost of Site Preparations: \$ 1,002,815 Allocated Costs for utility plants and related facilities: \$ - Direct Permanent Investment \$ 1,002,815 Direct Permanent Investment \$ 1,002,815 Allocated Costs for utility plants and related facilities: \$ - Direct Permanent Investment \$ 1,004,821,104 Total Depreciable Capital \$ 1,004,821,104 Total Depreciable Capital \$ 1,034,965,737 Total Permanent Investment \$ 1,034,965,737 Total Permanent Investment \$ 5,174,829 Cost of Land: \$ 5,174,829 Cost of Paint Start-Up: \$ 103,496,574 Total Permanent Investment - Unadjusted \$ 1,143,637,139 Site Factor 1,10	Total Bare	Module Costs:			
Process Machinery \$ 69,054,567 Spares \$ - Storage \$ - Other Equipment \$ - Catalysts \$ - Computers, Software, Etc. \$ - Total Bare Module Costs: \$ 1,002,815,473 Direct Permanent Investment \$ 1,002,815,473 Cost of Site Preparations: \$ 1,002,815 Cost of Service Facilities: \$ - Direct Permanent Investment \$ 1,002,815 Direct Permanent Investment \$ 1,004,821,104 Total Depreciable Capital \$ 1,004,821,104 Total Depreciable Capital \$ 1,004,821,104 Total Depreciable Capital \$ 1,034,965,737 Total Permanent Investment \$ 30,144,633 Total Permanent Investment \$ 5,174,829 Cost of Contingencies & Contractor Fees \$ 30,496,574 Total Permanent Investment \$ 1,10,496,574 Total Permanent Investment - Unadjusted \$ 1,143,637,139 Site Factor		Fabricated Equipment	\$	933,760,906	
Spares \$ - Storage \$ - Other Equipment \$ - Catalysts \$ - Computers, Software, Etc. \$ - Total Bare Module Costs: \$ - Direct Permanent Investment \$ 1,002,815,473 Direct Permanent Investment \$ 1,002,815 Cost of Site Preparations: \$ 1,002,815 Allocated Costs for utility plants and related facilities: \$ - Direct Permanent Investment \$ 1,004,821,104 Total Depreciable Capital \$ 1,004,821,104 Total Depreciable Capital \$ 1,034,965,737 Total Permanent Investment \$ 5,174,829 Cost of Contingencies & Contractor Fees \$ 30,144,633 Total Permanent Investment \$ 5,174,829 Cost of Royalties: \$ - Cost of Plant Start-Up: \$ 103,496,574 Total Permanent Investment - Unadjusted \$ 1,143,637,139 Site Factor 1.10 \$ <td></td> <td>Process Machinery</td> <td>\$</td> <td>69,054,567</td> <td></td>		Process Machinery	\$	69,054,567	
Storage \$ - Other Equipment \$ - Catalysts \$ - Computers, Software, Etc. \$ - Total Bare Module Costs; \$ 1,002,815,473 Direct Permanent Investment \$ 1,002,815 Cost of Site Preparations: \$ 1,002,815 Cost of Service Facilities: \$ 1,002,815 Allocated Costs for utility plants and related facilities: \$ - Direct Permanent Investment \$ 1,004,821,104 Total Depreciable Capital \$ 1,004,821,104 Total Depreciable Capital \$ 1,034,965,737 Total Depreciable Capital \$ 1,034,965,737 Total Permanent Investment \$ 5,174,829 Cost of Land: \$ 5,174,829 Cost of Plant Start-Up: \$ 103,496,574 Total Permanent Investment - Unadjusted \$ 1,143,637,139 Site Factor 1.10 1.10		Spares	\$	-	
Other Equipment \$ - Catalysts \$ - Computers, Software, Etc. \$ - Total Bare Module Costs: \$ 1,002,815,473 Direct Permanent Investment \$ 1,002,815,473 Direct Permanent Investment \$ 1,002,815 Cost of Site Preparations: \$ 1,002,815 Cost of Service Facilities: \$ 1,002,815 Allocated Costs for utility plants and related facilities: \$ - Direct Permanent Investment \$ 1,004,821,104 Total Depreciable Capital \$ 1,004,821,104 Total Depreciable Capital \$ 1,034,965,737 Total Depreciable Capital \$ 1,034,965,737 Total Permanent Investment \$ 5,174,829 Cost of Land: \$ 5,174,829 Cost of Royalties: \$ - Cost of Plant Start-Up: \$ 103,496,574 Total Permanent Investment - Unadjusted \$ 1,10		Storage	\$	-	
Catalysts \$ - Computers, Software, Etc. \$ - Total Bare Module Costs: \$ 1,002,815,473 Direct Permanent Investment \$ 1,002,815,473 Direct Permanent Investment \$ 1,002,815 Cost of Site Preparations: \$ 1,002,815 Cost of Service Facilities: \$ 1,002,815 Allocated Costs for utility plants and related facilities: \$ - Direct Permanent Investment \$ 1,004,821,104 Total Depreciable Capital \$ 1,004,821,104 Cost of Contingencies & Contractor Fees \$ 30,144,633 Total Depreciable Capital \$ 1,034,965,737 Total Permanent Investment \$ 5,174,829 Cost of Land: \$ 5,174,829 Cost of Plant Start-Up: \$ 103,496,574 Total Permanent Investment - Unadjusted \$ 1,143,637,139 Site Factor 1.10 \$		Other Equipment	\$	-	
Computers, Software, Etc. \$ - Total Bare Module Costs: \$ 1,002,815,473 Direct Permanent Investment \$ 1,002,815 Cost of Site Preparations: \$ 1,002,815 Cost of Service Facilities: \$ 1,002,815 Allocated Costs for utility plants and related facilities: \$ - Direct Permanent Investment \$ 1,004,821,104 Total Depreciable Capital \$ 1,004,821,104 Cost of Contingencies & Contractor Fees \$ 30,144,633 Total Depreciable Capital \$ 1,034,965,737 Total Permanent Investment \$ 1,034,965,737 Total Permanent Investment \$ 5,174,829 Cost of Contingencies: \$ - Cost of Royalties: \$ - Cost of Plant Start-Up: \$ 103,496,574 Total Permanent Investment - Unadjusted \$ 1,143,637,139 Site Factor 1,10		Catalysts	\$	-	
Initial Bare Module Costs: \$ 1,002,815,473 Direct Permanent Investment Cost of Site Preparations: \$ 1,002,815 Cost of Service Facilities: \$ 1,002,815 Allocated Costs for utility plants and related facilities: \$ 1,002,815 Direct Permanent Investment \$ 1,004,821,104 Total Depreciable Capital \$ 1,004,821,104 Cost of Contingencies & Contractor Fees \$ 30,144,633 Total Depreciable Capital \$ 1,034,965,737 Total Permanent Investment \$ 5,174,829 Cost of Land: \$ 5,174,829 Cost of Royalties: \$ - Cost of Plant Start-Up: \$ 103,496,574 Total Permanent Investment - Unadjusted \$ 1,143,637,139 Site Factor 1,10		Computers, Software, Etc.	\$	-	
Direct Permanent Investment Cost of Site Preparations: \$ 1,002,815 Cost of Service Facilities: \$ 1,002,815 Allocated Costs for utility plants and related facilities: \$ - Direct Permanent Investment \$ 1,004,821,104 Total Depreciable Capital Cost of Contingencies & Contractor Fees \$ 30,144,633 Total Depreciable Capital \$ 1,034,965,737 Total Permanent Investment \$ 1,034,965,737 Total Permanent Investment \$ 5,174,829 Cost of Land: \$ 5,174,829 Cost of Plant Start-Up: \$ 1,03,496,574 Total Permanent Investment - Unadjusted \$ 1,143,637,139 Site Factor \$ 1,10		Total Bare Module Costs:			\$ 1,002,815,473
Cost of Site Preparations: \$ 1,002,815 Cost of Service Facilities: \$ 1,002,815 Allocated Costs for utility plants and related facilities: \$ - Direct Permanent Investment \$ 1,004,821,104 Total Depreciable Capital \$ 30,144,633 Total Depreciable Capital \$ 1,034,965,737 Total Permanent Investment \$ 1,034,965,737 Total Permanent Investment \$ 5,174,829 Cost of Cost of Condingencies: \$ - Cost of Plant Start-Up: \$ 103,496,574 Total Permanent Investment - Unadjusted \$ 1,143,637,139 Site Factor \$ 1,10	Direct Per	manent Investment			
Cost of Service Facilities: \$ 1,002,815 Allocated Costs for utility plants and related facilities: \$. Direct Permanent Investment \$ 1,004,821,104 Total Depreciable Capital \$ 30,144,633 Cost of Contingencies & Contractor Fees \$ 30,144,633 Total Depreciable Capital \$ 1,034,965,737 Total Permanent Investment \$ 5,174,829 Cost of Land: \$ 5,174,829 Cost of Plant Start-Up: \$ 103,496,574 Total Permanent Investment - Unadjusted \$ 1,143,637,139 Site Factor \$ 1,10		Cost of Site Preparations:	\$	1,002,815	
Allocated Costs for utility plants and related facilities: \$		Cost of Service Facilities:	\$	1,002,815	
Direct Permanent Investment \$ 1,004,821,104 Total Depreciable Capital Cost of Contingencies & Contractor Fees \$ 30,144,633 Total Depreciable Capital \$ 1,034,965,737 Total Permanent Investment \$ 5,174,829 Cost of Land: \$ 5,174,829 Cost of Royalties: \$ - Cost of Plant Start-Up: \$ 103,496,574 Total Permanent Investment - Unadjusted \$ 1,143,637,139 Site Factor \$ 1,10		Allocated Costs for utility plants and related facilities:	\$	-	
Total Depreciable Capital Cost of Contingencies & Contractor Fees \$ 30,144,633 Total Depreciable Capital \$ 1,034,965,737 Total Permanent Investment \$ 5,174,829 Cost of Land: \$ 5,174,829 Cost of Royalties: \$ - Cost of Plant Start-Up: \$ 103,496,574 Total Permanent Investment - Unadjusted \$ 1,143,637,139 Site Factor \$ 1,10		Direct Permanent Investment			\$ 1,004,821,104
Cost of Contingencies & Contractor Fees \$ 30,144,633 <u>Total Depreciable Capital</u> \$ 1,034,965,737 <u>Total Permanent Investment</u> \$ 5,174,829 Cost of Land: \$ 5,174,829 Cost of Royalties: \$ - Cost of Plant Start-Up: \$ 103,496,574 Total Permanent Investment - Unadjusted \$ 1,143,637,139 Site Factor 1.10	Total Depr	reciable Capital			
Total Depreciable Capital \$ 1,034,965,737 Total Permanent Investment Investment Cost of Land: \$ 5,174,829 Cost of Royalties: \$ - Cost of Plant Start-Up: \$ 103,496,574 Total Permanent Investment - Unadjusted \$ 1,143,637,139 Site Factor 1.10		Cost of Contingencies & Contractor Fees	\$	30,144,633	
Total Permanent Investment Cost of Land: \$ 5,174,829 Cost of Royalties: \$ - Cost of Plant Start-Up: \$ 103,496,574 Total Permanent Investment - Unadjusted \$ 1,143,637,139 Site Factor 1.10		Total Depreciable Capital			\$ 1,034,965,737
Cost of Land: \$ 5,174,829 Cost of Royalties: \$ - Cost of Plant Start-Up: \$ 103,496,574 Total Permanent Investment - Unadjusted \$ 1,143,637,139 Site Factor 1.10	Total Perm	nanent Investment			
Cost of Royalties: \$ - Cost of Plant Start-Up: \$ 103,496,574 Total Permanent Investment - Unadjusted \$ 1,143,637,139 Site Factor 1.10		Cost of Land	\$	5 174 829	
Cost of Plant Start-Up: \$ 103,496,574 Total Permanent Investment - Unadjusted \$ 1,143,637,139 Site Factor 1.10		Cost of Royalties:	ŝ	0,111,020	
Total Permanent Investment - Unadjusted \$ 1,143,637,139 Site Factor 1.10		Cost of Plant Start-Up:	\$	103,496,574	
		Total Permanent Investment - Unadjusted Site Factor			\$ 1,143,637,139 1.10
Total Permanent Investment \$ 1,258,000,853		Total Permanent Investment			\$ 1,258,000,853

Working Capital

	2017	<u>2018</u>	<u>2019</u>
Accounts Receivable	\$ 2,688,132	\$ 1,344,066	\$ 1,344,066
Cash Reserves	\$ 872,472	\$ 436,236	\$ 436,236
Accounts Payable	\$ (741,888)	\$ (370,944)	\$ (370,944)
Electricity Inventory	\$ 358,418	\$ 179,209	\$ 179,209
Raw Materials	\$ -	\$ -	\$ -
Total	\$ 3,177,134	\$ 1,588,567	\$ 1,588,567
Present Value at 6.1%	\$ 2,994,472	\$ 1,411,155	\$ 1,330,024
Total Capital Investment		\$ 1,263,736,504	

16. Conclusions and Recommendations

The two processes that were analyzed each produce about 120 MW of electricity taken from residual heat from a nuclear reactor. Both processes use helium as the working fluid in the primary loop, which is the stream in contact with the nuclear reactor. As for the secondary loop, designs were made using both helium and s-CO₂. Since helium is a small atom that is prone to leak out of the system and is costly to purchase, s-CO₂ was explored. However, after a complete analysis of both competing processes, it is obvious to say that the helium process is the winning process. With an ROI of 11% and a NPV of \$241 million, using helium as the working fluid gives the only economically successful process design. It is recommended that the helium process be pursued in further research in attempt to reduce equipment sizes. At the present 11% ROI, the project has economic potential and has value for being carbon free and beating out coal power plants when comparing costs per MWh.

Fortunately, the s- CO_2 process also has promise and is recommended for further research. There is a possibility that using a turbocharger would reduce the number of equipment pieces needed in the whole process, thereby reducing the capital investment. This alternative is looked at by the design team and several insights are discussed in Appendix A.

17. Acknowledgments

We would like to thank our advisor Dr. Warren Seider and our professor Mr. Leonard Fabiano for the countless hours they have spent helping us research and implement the many different aspects of our project. Their industry knowledge and creativity were invaluable throughout the design process. We would also like to thank our industrial consultant Mr. Adam Brostow for writing our problem statement and guiding us through the preliminary planning stages of the project. His experience with our specific equipment pieces was incredibly helpful, and we appreciate his patience in explaining the complexities of a high-capacity Brayton cycle.

In addition, we would like to thank the other industrial consultants who provided their insight and expertise during the semester. We would like to thank Mr. Gary Sawyer for his help in calculating a system volume for both of our processes, Mr. David Kolesar for his help in the design of high-temperature heat exchangers, and Dr. Richard Bockrath for sharing his expertise in safety regulations for high temperature systems. We could not have prepared this report without the constant attention and time given by all of these people.
18. Bibliography

- "Appendix C: Health Risk Evaluation for Carbon Dioxide (CO2)." *Howell Petroleum Phase III/IV CO2 Enhanced Oil Recovery Project: Salt Creek Oil Field* (2006): n. pag. Web. 28 Mar. 2016.
- Aspen Exchanger Design and Rating. Computer software. AspenTech. Vers. 8.8. Aspen Technology, Inc., 2015. Web.
- Aspen Process Economic Analyzer. Computer software. AspenTech. Vers. 8.8. Aspen Technology, Inc., 2015. Web.
- "Carbon Dioxide." Praxair Safety Data Sheet (2013): n. pag. Web. 22 Mar. 2016.
- Conti, John J., Paul D. Holtberg, James R. Diefenderfer, Sam A. Napolitano, A. Michael Schaal, James T. Turnure, and Lynn D. Westfall. "Annual Energy Outlook 2015 with Projections to 2040." U. S. Energy Information Administration. U. S. Department of Energy, Apr. 2015. Web. 29 Mar. 2016.
- "Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility." *Idaho National Engineering and Environmental Laboratory: Nuclear Energy Reasearch Initiative* (2004): n. pag. Web. 15 Feb. 2016.
- Downey, Brian K. Profitability Analysis 4.0. N.p.: n.p., 2008. XLS.
- "Future Deactivations." PJM Interconnection. N.p., 21 Mar. 2016. Web. 28 Mar. 2016.
- Hamak, John E. "Mineral Commodity Summaries: Helium." U. S. Geological Survey. U. S. Department of the Interior, Jan. 2016. Web. 3 Apr. 2016.
- "Helium." Air Products Material Safety Data Sheet (1994): n. pag. Web. 22 Mar. 2016.
- "Incentives Available." CarbonFree Technology. N.p., 2016. Web. 2 Apr. 2016.
- Kadak, Andrew C. "A Future for Nuclear Energy: Pebble Bed Reactors." *International Journal* of Critical Infrastructures 1.4 (2005): 339. Web. 20 Feb. 2016.
- Last, G. V., and M. T. Schmick. "Identification and Selection of Major Carbon Dioxide Stream Compositions." *Pacific Northwest National Laboratory*. U. S. Department of Energy, June 2011. Web. 3 Apr. 2016.
- "Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2015." *U. S. Energy Information Administration*. U. S. Department of Energy, 3 June 2015. Web. 31 Mar. 2016.

Meher, Anand. "Boiler Suit." Safety Clothing - Pyrotek (n.d.): 4. Web. 31 Mar. 2016.

- "Operating Nuclear Power Reactors (by Location or Name)." United States Nuclear Regulatory Commission. N.p., 9 Nov. 2015. Web. 03 Apr. 2016.
- An Overview of OSHA Standards and Confined Space Hazards. N.p.: Western Iowa Tech Community College, n.d. PPT.
- "PJM Load Forecast Report." *PJM Interconnection*. PJM Resource Adequacy Planning Department, Jan. 2015. Web. 3 Apr. 2016.
- "PJM Nuclear Generation Owners User Group Charter." *PJM Interconnection*. N.p., 17 Jan. 2013. Web. 28 Mar. 2016.
- "Price List Praxair Distribution." Praxair. N.p., 1 Mar. 2013. Web. 3 Apr. 2016.
- "Respiratory Protection Supplied Air/Domestic Preparedness." *Matheson Safety Catalogue* 2011 (2011): 86. Web. 29 Mar. 2016.
- Seider, Warren D., J.D. Seader, Daniel R. Lewin, and Soemantri Widagdo. *Product and Process Design Principles: Synthesis, Analysis, and Evaluation.* 3rd ed. Hoboken, NJ: John Wiley & Sons, 2009. Print.
- Spees, Kathleen, and Johannes Pfeifenberger. "Outlook on Fundamentals in PJM's Energy and Capacity Markets." *12th Annual Power and Utility Conference*. Goldman Sachs, 8 Aug. 2013. Web. 25 Mar. 2016.
- "Supercritical CO2 Brayton Cycle." *Sandia National Laboratories*. Sandia Corporation, Lockheed Martin, 2015. Web. 22 Mar. 2016.
- Tilghman, Matt. "The Helium Crisis: Real and Avoidable." *Introduction to the Physics of Energy*. Stanford University, 18 Nov. 2011. Web. 3 Apr. 2016.
- "Turbojet." Wikipedia. N.p., 19 Mar. 2016. Web. 2 Apr. 2016.
- "Wholesale Electricity and Natural Gas Market Data." U. S. Energy Information Administration. U. S. Department of Energy, 21 Mar. 2016. Web. 30 Mar. 2016.
- Wright, Steven A., Ross F. Radel, Milton E. Vernon, Gary E. Rochau, and Paul S. Pickard. "Operation and Analysis of a Supercritical CO2 Brayton Cycle." Sandia Report. Sandia National Laboratories, Sept. 2010. Web. 29 Mar. 2016.

Appendix A – Insights into Turbocharger Process Design

A turbocharger is essentially a generator that is driven by an engine. It typically contains an inlet, an outlet, a compressor, a combustion chamber, and a turbine that drives the compressor ("Turbojet," 2016). For our purposes, we could use a modified turbocharger that does not have a combustion chamber since our energy is derived from a hot stream of residual nuclear heat. Therefore, a hot inlet of helium or s-CO₂ would enter the inlet and be passed through turbines that would generate electricity and then compressed in 2 to 3 stages of compression chambers. Figure A.1 shows a graphic of a typical, unmodified turbocharger.

Figure A.1. Model of a typical turbocharger with all units – no modification ("Turbojet," 2016).

Figure A.2 shows a preliminary process design using the turbocharger. The primary loop from the nuclear reactor remains unchanged and has the capacity to deliver the same amount of energy to the secondary loop. This loop works with both the helium and s-CO₂ working fluids, but an economic analysis has not been performed to determine which working fluid is preferred as this is beyond the scope of the design. It is recommended that this design be looked into

further and costed in hopes of reducing the cost of capital and increasing the economic viability of the s-CO₂ project.

Figure A.2. Preliminary Process design using turbocharger and a 3-stage compressor-intercooler unit.

Appendix B – Sample Calculations

B.1 Intermediate Pressure between Compressors

Most of the temperatures and pressures in the helium process are given to us in the problem statement, but compressors C-1 and C-2, and C-3 and C-4 are treated as pairs in the process and the intermediate pressures between them are not specified. In order to be able to input all of the pressure specifications for the system compressors into the Aspen simulation, it is necessary to find these intermediate pressures. These calculations are shown below, where P_2 is the intermediate pressure, P_1 is the inlet pressure to the first compressor, and P_3 is the outlet pressure from the second compressor.

$$\frac{P_3}{P_1} = \frac{P_2}{P_3} = \sqrt{\frac{P_2}{P_1}}$$
$$P_3 = P_1 * \sqrt{\frac{P_2}{P_1}}$$

B.2 Distance between Emergency Breathing Apparatuses

A couple assumptions are made to find a safe distance at which emergency breathing apparatuses can be placed in the plant. First, it is assumed that although most humans can hold their breath for about two minutes in a normal situation, during an emergency situation this time period is reduced to only about thirty seconds. Second, it is assumed that the average running speed of an adult is around 10 to 15 mph. Taking the slower end of the range to be safe, the following calculations are performed.

Running Speed (ft/s) = 10 mph *
$$\frac{1.467 \text{ ft/s}}{1 \text{ mph}}$$
 = 14.67 ft/s
Distance = 14.67 ft/s * 30 s = 440 ft

As a safety precaution, this distance was reduced to 400 ft between each emergency breathing apparatus or exit doorway to ambient air.

B.3 System Volume Estimation

The total volumes contained inside piping and equipment for both the helium and the s- CO_2 processes are calculated using a few assumptions about the different piping and pieces of equipment. Here we will show only the calculations for the s- CO_2 system, as the calculations for the helium system follow the same process.

B.3.1 Piping

First, the volume of the piping is calculated. For this, it is a general assumption that water flowing through a piping system can move at a linear velocity of around 15 ft/s before the pressure drop causes problems. Since we have a gas and a supercritical fluid instead of water, this linear velocity is converted to a new linear velocity for the other fluids. It is also assumed here that there are approximately 50 ft of piping between each piece of equipment.

$$\rho_{s-CO_2} * v_{s-CO_s}^2 = \rho_{H_2O} * v_{H_2O}^2$$

$$v_{s-CO_2} = \sqrt{\frac{\rho_{H_2O} * v_{H_2O}^2}{\rho_{s-CO_2}}} = \sqrt{\frac{1 \text{ g/cm}^3 * (15 \text{ ft/s})^2}{0.023 \text{ g/cm}^3}} = 98.8 \text{ ft/s}$$

$$Cross - sectional Area = \frac{volumetric flowrate}{linear velocity} = \frac{1839.29 \text{ ft}^3/\text{s}}{98.8 \text{ ft/s}} = 18.6 \text{ ft}^2$$

Volume Piping = $18.6 \text{ ft}^2 * 50 \text{ ft} * 10 \text{ Equipment Pieces} = 9300 \text{ ft}^3$

B.3.2 Turbines and Compressors

For both the turbines and the compressors, the standard assumption of a residence time in each piece of equipment of 5 seconds (based on a linear velocity of 15 ft/s) is used. This has to be adjusted for the new linear velocity, and the following calculations are performed.

Calculations for T-1 are shown, and the process is the same for the other turbine and compressors.

Residence Time =
$$t_{s-CO_2} = \frac{v_{H_2O} * t_{H_2O}}{v_{s-CO_2}} = \frac{15 \text{ ft/s} * 5 \text{ s}}{98.8 \text{ ft/s}} = 0.759 \text{ s}$$

Volume Turbine = volumetric flowrate $* t_{s-CO_2} = 1181.4 \frac{\text{ft}^3}{\text{s}} * 0.759 \text{ s} = 897 \text{ ft}^3$

B.3.3 Heat Exchangers

The volume of the heat exchangers is calculated without any assumptions, since the heat exchanger designs supply us with all the required information to find the tube-side volume. The calculations are as follows for HX-1.

Tube Cross – sectional Area = A =
$$\left(\frac{\pi * d_{in}}{2}\right)^2 = \left(\frac{\pi * 1.67 \text{ ft}}{2}\right)^2 = 6.847 \text{ ft}^2$$

Volume Heat Exchanger = A * # of tubes * tube length = 6.847 ft² * 226 tubes * 12 ft = 5917 ft³ Once all of the volumes of the pieces of equipment are found, they are summed together to get the total volume of the system.

B.4 Turbine Purchase Cost

The costs of the turbines were calculated using the equations from the textbook (Table 22.32). A sample calculation is shown below for T-1 from the helium process, where α is a factor that accounts for the material. It is 1 for carbon steel, and 2 for stainless steel.

$$C_n = \alpha * 530 * P^{0.81} = 2 * 530 * (70,806 hp)^{0.81} = $8,986575$$

B.5 Levelized Cost of Electricity

The levelized cost of electricity was calculated using the EIA definition in the Levelized Cost source.

$$LCOE = \frac{C}{G * Y} + \frac{Fc}{G} + \frac{Vc}{G} = 33.4$$

C = Total Permanent Investment: \$217,000,000

 $F_c = Total Fixed Costs = $5,200,000$ $V_c = Total Variable Costs = $21,000,000$ G = Net generation (per year) = 950,400 MWh Y = Years of operation = 40

Appendix C. Material Safety and Data Sheets

C.1 Helium

Ν	IATERIAL SAFETY DATA SHEET
SE	CTION 1. PRODUCT IDENTIFICATION
PRODUCT NAME: CHEMICAL NAME: FORMULA: SYNONYMS:	Helium, compressed Helium He Helium gas, Gaseous helium, Balloon gas
MANUFACTURER:	Air Products and Chemicals, Inc. 7201 Hamilton Boulevard Allentown, PA 18195-1501
PRODUCT INFORMATIO MSDS NUMBER: 1008 REVISION DATE: March August 1997 **	N: 1-800-752-1597 REVISION: 4 1994 REVIEW DATE:
SECTION 2. C	OMPOSITION / INFORMATION ON INGREDIENTS
Helium is sold as pure pr CAS NUMBER: 7440-59 EXPOSURE LIMITS: OSHA: Not established	oduct > 99%. 7 ACGIH: Simple asphyxiant NIOSH: Not establishe
SI	ECTION 3. HAZARD IDENTIFICATION
Helium is a nontoxic, odo high pressure. It can cat reduce oxygen levels be points or along ceilings. required by rescue worke	EMERGENCY OVERVIEW pricess, colorless, nonflammable gas stored in cylinders at use rapid suffocation when concentrations are sufficient to low 19.5%. It is lighter than air and may collect in high Self-Contained Breathing Apparatus (SCBA) may be 's.
EI 800 610	MERGENCY TELEPHONE NUMBERS - 523 - 9374 Continental U.S., Canada and Puerto Rico - 481 - 7711 other locations
POTENTIAL HEALTH EF INHALATION: Simple suffocation by displa	FECTS: e asphyxiant. Helium is nontoxic, but may cause cing the oxygen in air. Lack of sufficient oxygen can caus

EYE CONTACT: No adverse effect. SKIN CONTACT: No adverse effect.

MSDS# 1008 PUB # 310-409 HELIUM

Page 1 of 5

EXPOSURE INFORMATION:

ROUTE OF ENTRY: Inhalation

TARGET ORGANS: None

EFFECT: Asphyxiation (suffocation)

SYMPTOMS: Exposure to an oxygen deficient atmosphere (less than 19.5%) may cause dizziness, drowsiness, nausea, vomiting, excess salivation, diminished mental alertness, loss of consciousness and death. Exposure to atmospheres containing 8-10% or less oxygen will bring about unconsciousness without warning and so quickly that the individuals cannot help or protect themselves.

MEDICAL CONDITIONS AGGRAVATED BY OVEREXPOSURE: None

CARCINOGENIC POTENTIAL: Helium is not listed as a carcinogen or potential carcinogen by NTP, IARC, or OSHA Subpart Z.

WARNING

The practice of intentionally inhaling helium for a voice altering effect is extremely dangerous and may result in serious injury or death!

SECTION 4. FIRST AID

INHALATION: Persons suffering from lack of oxygen should be moved to fresh air. If victim is not breathing, administer artificial respiration. If breathing is difficult, administer oxygen. Obtain prompt medical attention.

EYE / SKIN CONTACT: Not applicable

SECTION 5. FIRE AND EXPLOSION

FLASH POINT: Not applicable AUTOIGNITION: Nonflammable FLAMMABLE LIMITS: Nonflammable

EXTINGUISHING MEDIA: Helium is nonflammable and does not support combustion. Use extinguishing media appropriate for the surrounding fire.

HAZARDOUS COMBUSTION PRODUCTS: None

SPECIAL FIRE FIGHTING INSTRUCTIONS: Helium is a simple asphyxiant. If possible, remove helium cylinders from fire area or cool with water. Self contained breathing apparatus may be required for rescue workers.

UNUSUAL FIRE AND EXPLOSION HAZARDS: Upon exposure to intense heat or flame cylinder will vent rapidly and or rupture violently. Most cylinders are designed to vent contents when exposed to elevated temperatures. Pressure in a container can build up due to heat and it may rupture if pressure relief devices should fail to function.

SECTION 6. ACCIDENTAL RELEASE MEASURES

Evacuate all personnel from affected area. Increase ventilation to release area and monitor oxygen level. Use appropriate protective equipment (SCBA). If leak is from container or it's valve, call the Air Products' emergency telephone number. If leak is in user's system close cylinder valve and vent pressure before attempting repairs.

SECTION 7. STORAGE AND HANDLING

STORAGE: Cylinders should be stored upright in a well-ventilated, secure area, protected from the weather. Storage area temperatures should not exceed 125 °F (52 °C) and area should be free of

MSDS# 1008 PUB # 310-409 HELIUM

Page 2 of 5

combustible materials. Storage should be away from heavily traveled areas and emergency exits. Avoid areas where salt or other corrosive materials are present. Valve protection caps and valve outlet seals should remain on cylinders not connected for use. Separate full from empty cylinders. Avoid excessive inventory and storage time. Use a first-in first-out system. Keep good inventory records.

HANDLING: Do not drag, roll, or slide cylinder. Use a suitable handtruck designed for cylinder movement. Never attempt to lift a cylinder by its cap. Secure cylinders at all times while in use. Use a pressure reducing regulator or separate control valve to safely discharge gas from cylinder. Use a check valve to prevent reverse flow into cylinder. Do not overheat cylinder to increase pressure or discharge rate. If user experiences any difficulty operating cylinder valve, discontinue use and contact supplier. Never insert an object (e.g., wrench, screwdriver, pry bar, etc.) into valve cap openings. Doing so may damage valve causing a leak to occur. Use an adjustable strapwrench to remove over-tight or rusted caps.

Helium is compatible with all common materials of construction. Pressure requirements should be considered when selecting materials and designing systems.

SPECIAL REQUIREMENTS: Always store and handle compressed gases in accordance with Compressed Gas Association, Inc. (ph. 703-412-0900) pamphlet CGA P-1, *Safe Handling of Compressed Gases in Containers*. Local regulations may require specific equipment for storage or use.

CAUTION: Compressed gas cylinders shall not be refilled except by qualified producers of compressed gases. Shipment of a cylinder which has not been filled by the owner or with the owner's written consent is a violation of federal law.

SECTION 8. PERSONAL PROTECTION / EXPOSURE CONTROL

ENGINEERING CONTROLS: Provide good ventilation and/or local exhaust to prevent accumulation of high concentrations of gas. Oxygen levels in work area should be monitored to ensure they do not fall below 19.5%.

RESPIRATORY PROTECTION:

GENERAL USE: None required.

EMERGENCY: Use SCBA or positive pressure air line with mask and escape pack in areas where oxygen concentration is less than 19.5%. Air purifying respirators will not provide protection.

OTHER PROTECTIVE EQUIPMENT: Safety shoes are recommended when handling cylinders.

SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE: Colorless gas ODOR: Odorless MOLECULAR WEIGHT: 4.00 BOILING POINT (1 atm): -452.1 °F (-268.9 °C) SPECIFIC GRAVITY (Air =1): 0.138 SPECIFIC VOLUME (at 70 °F (21.1 °C) and 1 atm): 96.71 ft³/lb (6.037 m³/kg) FREEZING POINT/MELTING POINT: None VAPOR PRESSURE (AT 70°F): Not applicable GAS DENSITY (at 70 °F (21.1 °C) and 1 atm): 0.0103 lb/ft³ (0.165 kg/m³) SOLUBILITY IN WATER (Vol./Vol. at 32 °F (0 °C)): 0.0094

MSDS# 1008 PUB # 310-409 HELIUM

Page 3 of 5

SECTION 10. REACTIVITY / STABILITY

CHEMICAL STABILITY: Stable CONDITIONS TO AVOID: None INCOMPATIBILITY: None HAZARDOUS DECOMPOSITION PRODUCTS: None HAZARDOUS POLYMERIZATION: Will not occur.

SECTION 11. TOXICOLOGICAL INFORMATION

Helium is a simple asphyxiant.

SECTION 12. ECOLOGICAL INFORMATION

Helium is not toxic. No adverse ecological effects are expected. Helium does not contain any Class I or Class II ozone depleting chemicals. Helium is not listed as a marine pollutant by DOT (49 CFR 171).

SECTION 13. DISPOSAL

UNUSED PRODUCT / EMPTY CONTAINER: Return container and unused product to supplier. Do not attempt to dispose of residual or unused quantities.

DISPOSAL: For emergency disposal, secure the cylinder and slowly discharge gas to the atmosphere in a well ventilated area or outdoors.

SECTION 14. TRANSPORTATION

DOT HAZARD CLASS: 2.2

DOT SHIPPING LABEL: Nonflammable Gas

DOT SHIPPING NAME: Helium, Compressed

IDENTIFICATION NUMBER: UN1046

REPORTABLE QUANTITY (RQ): None

SPECIAL SHIPPING INFORMATION: Cylinders should be transported in a secure upright position in a well ventilated truck. Never transport in passenger compartment of a vehicle.

SECTION 15. REGULATORY INFORMATION

U.S. FEDERAL REGULATIONS:

EPA - ENVIRONMENTAL PROTECTION AGENCY

CERCLA: Comprehensive Environmental Response, Compensation, and Liability Act of 1980 requires notification to the National Response Center of a release of quantities of hazardous substances equal to or greater than the reportable quantities (RQ) in 40 CFR 302.4.

CERCLA Reportable Quantity: None

SARA TITLE III: SUPERFUND AMENDMENT AND REAUTHORIZATION ACT OF 1986

SECTION 302: Requires emergency planning based on threshold planning quantities (TPQ) and release reporting based on reportable quantities (RQ) of EPA's extremely hazardous substances (40 CFR 355).

Helium is not listed as an Extremely Hazardous Substance.

MSDS# 1008 PUB # 310-409 HELIUM

Page 4 of 5

SECTIONS 311/312: Require submission of material safety data sheets (MSDSs) and chemical inventory reporting with identification of EPA defined hazard classes. The bazard classes for this product are:

IMMEDIATE HEALTH:	No	PRESSURE:	Yes
DELAYED HEALTH: No		REACTIVITY:	No
		FIRE:	No

SECTION 313: Requires submission of annual reports of release of toxic chemicals that appear in 40 CFR 372. This information should be included in all MSDSs that are copied and distributed for this material.

Helium is not listed as a toxic chemical.

40 CFR PART 68: Risk Management for Chemical Accident Release Prevention. Requires the development and implementation of risk management programs at facilities that manufacture, use, store, or otherwise handle regulated substances in quantities that exceed specified thresholds.

Helium is not listed as a regulated substance.

TSCA - TOXIC SUBSTANCE CONTROL ACT : Helium is listed on the TSCA inventory.

OSHA - OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION

29 CFR 1910.119: Process Safety Management of Highly Hazardous Chemicals. Requires facilities to develop a process safety management program based on Threshold Quantities (TQ) of highly hazardous chemicals.

Helium is not listed as a Highly Hazardous Chemical.

STATE REGULATIONS:

CALIFORNIA:

Proposition 65: This product does NOT contain any listed substances which the State of California requires warning under this statute. SCAQMD Rule: VOC = Not applicable

SECTION 16. SUPPLEMENTAL INFORMATION

HAZARD RATINGS:

NFPA RATINGS: HEALTH: 0 FLAMMABILITY:0 REACTIVITY: 0 SPECIAL: SA* HMIS RATINGS: HEALTH: 0 FLAMMABILITY: 0 REACTIVITY: 0

*Compressed Gas Association recommendation to designate simple asphyxiant.

**Documents with Effective Date of March 1994 and August 1997 are identical in content and either may be used.

MSDS# 1008 PUB # 310-409 HELIUM

Page 5 of 5

C.2 Carbon Dioxide

Praxair Safety Data Sheet

Product: Carbon Dioxide

SDS No. P-4574-K March 2013

1. Identification

Product Identifier: Carbon DioxideTrade Names: Carbon Dioxide, Medipure® Carbon DioxideRecommended Uses:Industrial:analytical, lasers; semiconductor process gas; supercritical fluidextractionextractionanalytical, lasers; semiconductor process gas; supercritical fluid

Restrictions on Use: Use only as directed.

Supplier: Praxair, Inc., 39 Old Ridgebury Road Danbury, CT 06810-5113 USA

Emergency Telephone Numbers: *

Onsite emergencies: 1-800-645-4633

CHEMTREC: USA: 1-800-424-9300 International: 001-703-527-3887, Contract: 17729

* Call emergency numbers only for spills, leaks, fire, exposure, or accidents involving this product. For routine information, contact your supplier, Praxair sales representative, or call 1-800-772-9247.

2. Hazards Identification

OSHA REGULATORY STATUS: This material is considered hazardous by the OSHA Hazard Communications Standard (29 CFR 1910.1200).

Hazard Classification: Gases Under Pressure – Liquefied Gas

Precautionary Statements: Protect from sunlight. Store in a well-ventilated place.

← A vertical line in the left margin indicates revised or new material. This is a general revision; please read entire document.

> Copyright © 1980, 1985, 1986, 1989, 1991-1993, 1997, 1999, 2004, 2007, 2013, Praxair Technology, Inc. All rights reserved.

> > Page 1 of 12

Product: Carbon Dioxide

SDS No. P-4574-K March 2013

3. Composition/Information on Ingredients

This section covers materials of manufacture only. See sections 5, 8, 10, 11, and 16 for information on by-products generated during use in welding and cutting or as a result of exposure to fire.

See section 16 for important information about mixtures.

Chemical Name	Common Name and Synonyms	CAS NUMBER	CONCENTRATION
Carbon Dioxide	Carbonic anhydride, carbonic acid gas, refrigerant gas R744	124-38-9	>99%

* The symbol > means "greater than."

4. First Aid Measures

INHALATION: Immediately remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, qualified personnel may give oxygen. Call a physician.

SKIN CONTACT: For exposure to cold vapor or solid carbon dioxide (dry ice), immediately warm frostbite area with warm water not to exceed 105°F (41°C). In case of massive exposure, remove contaminated clothing while showering with warm water. Call a physician.

EYE CONTACT: For exposure to cold vapor or solid carbon dioxide (dry ice), immediately flush eyes thoroughly with warm water for at least 15 minutes. Hold the eyelids open and away from the eyeballs to ensure that all surfaces are flushed thoroughly. See a physician, preferably an ophthalmologist, immediately.

SWALLOWING: An unlikely route of exposure. This product is a gas at normal temperature and pressure.

NOTES TO PHYSICIAN: Treatment of overexposure should be directed at the control of symptoms and the clinical condition of the patient.

5. Fire Fighting Measures

FLAMMABLE PROPERTIES: Nonflammable

Protective Equipment and Precautions for Firefighters: Firefighters should wear personal protective equipment and fire-fighting turnout gear as appropriate for surrounding fire.

SUITABLE EXTINGUISHING MEDIA: Carbon dioxide cannot catch fire but cylinders exposed to fire may explode. Use media appropriate for surrounding fire.

PRODUCTS OF COMBUSTION: Not applicable.

PROTECTION OF FIREFIGHTERS: WARNING! High-pressure liquid and gas. Evacuate all personnel from danger area. Immediately deluge cylinders with water from maximum distance until cool; then move them away from fire area if without risk. Self-contained breathing apparatus may be required by rescue workers. On-site fire brigades must comply with OSHA 29 CFR 1910.156 and applicable standards under 29 CFR 1910 Subpart L—Fire Protection.

Product: Carbon Dioxide SDS No. P-4574-K March 2013

Specific Physical and Chemical Hazards: Heat of fire can build pressure in cylinder and cause it to rupture. No part of cylinder should be subjected to a temperature higher than 125°F (52°C). Carbon dioxide cylinders are typically equipped with a pressure relief device. (Exceptions may exist where authorized by DOT.)

6. Accidental Release Measures

STEPS TO BE TAKEN IF MATERIAL IS RELEASED OR SPILLED:

WARNING! High-pressure liquid and gas. Rapid release of gaseous carbon dioxide through a pressure relief device (PRD) or valve can result in the formation of dry ice, which is very cold and can cause frostbite.

PERSONAL PRECAUTIONS: Carbon dioxide is an asphyxiant. Lack of oxygen can kill. Use self-contained breathing apparatus where needed. See Section 11.

PERSONAL PROTECTIVE EQUIPMENT (PPE): See Section 8, Exposure Control/Personal Protection.

EMERGENCY PROCEDURES: Evacuate all personnel from danger area. Shut off leak if you can do so without risk. Ventilate area or move cylinder to a well-ventilated area. Test for sufficient oxygen, especially in confined spaces, before allowing reentry.

Methods and Materials for Containment and Cleaning Up: Prevent waste from contaminating the surrounding environment. Discard any product, residue, disposable container, or liner in an environmentally acceptable manner, in full compliance with federal, state, and local regulations. If necessary, call your local supplier for assistance.

7. Handling and Storage

PRECAUTIONS TO BE TAKEN IN HANDLING: Protect from sunlight.

Avoid breathing gas. Do not get liquid in eyes, on skin, or clothing. *Protect cylinders from damage.* Use a suitable hand truck to move cylinders; do not drag, roll, slide, or drop. Never attempt to lift a cylinder by its cap; the cap is intended solely to protect the valve. *Never insert an object (e.g., wrench, screwdriver, pry bar) into cap openings*; doing so may damage the valve and cause a leak. Use an adjustable strap wrench to remove over-tight or rusted caps. *Open valve slowly.* If valve is hard to open, discontinue use and contact your supplier. Keep cylinder upright when in use. *Never apply flame or localized heat directly to any part of the cylinder.* High temperatures may damage the cylinder and could cause the pressure relief device to fail prematurely, venting the cylinder contents. For other precautions in using carbon dioxide, see section 16.

PRECAUTIONS TO BE TAKEN IN STORAGE: Store in a well-ventilated place.

Gas can cause rapid suffocation due to oxygen deficiency. Store and use with adequate ventilation. Store only where temperature will not exceed 125°F (52°C). Carbon dioxide is heavier than air. It tends to accumulate near the floor of an enclosed space, displacing air and pushing it upward. This creates an oxygen-deficient atmosphere near the floor or in pits and trenches. Ventilate space before entry. Verify sufficient oxygen concentration. Close cylinder valve after each use; keep closed even when empty. **Prevent reverse flow.** Reverse flow into

Product:	Carbon Dioxide	SDS No. P-4574-K
		March 2013

cylinder may cause rupture. Use a check valve or other protective device in any line or piping from the cylinder. **Do not strike an arc on the cylinder.** The defect produced by an arc burn could lead to cylinder rupture. Do not ground the cylinder or allow it to become part of an electrical circuit. **Firmly secure cylinders upright to keep them from falling or being knocked over.** Screw valve protection cap firmly in place by hand. **Store full and empty cylinders separately.** Use a first-in, first-out inventory system to prevent storing full cylinders for long periods.

RECOMMENDED PUBLICATIONS: For further information on storage, handling, and use, see Praxair publications P-14-153, *Guidelines for Handling Gas Cylinders and Containers;* P-15-073, *Safety Precautions for Carbon Dioxide;* and P-3499, *Safety Precautions and Emergency Response Planning.* Obtain from your local supplier.

8. Exposure Controls/Personal Protection

See section 16 for important information on by-products generated during use in welding and cutting.

COMPONENT	OSHA PEL	ACGIH TLV (2012)
Carbon dioxide	5,000 ppm	5,000 ppm TWA, 30,000 ppm 15-min STEL

IDLH = 40,000 ppm.

ENGINEERING CONTROLS:

Local Exhaust. Use a local exhaust system, if necessary, to keep the concentration of carbon dioxide below all applicable exposure limits in the worker's breathing zone.

Mechanical (General). Under certain conditions, general exhaust ventilation may be acceptable to keep carbon dioxide below the exposure limits.

Special. WARNING: Concentration levels of carbon dioxide about 1 percent are dangerous—see Section 11. Praxair recommends continuous monitoring with alarms to indicate unsafe conditions before and during potential personnel exposure. Use appropriate monitoring devices to ensure a safe oxygen level (minimum of 19.5 percent) and a safe carbon dioxide level.

Other. None

PERSONAL PROTECTIVE EQUIPMENT (PPE):

Skin Protection. Wear insulated neoprene gloves for cylinder handling; welding gloves for welding. Metatarsal shoes for cylinder handling. Select in accordance with OSHA 29 CFR 1910.132, 1910.136, and 1910.138. See section 16 for requirements when using carbon dioxide or carbon dioxide mixtures in welding and cutting.

Eye/Face Protection. Select in accordance with OSHA 29 CFR 1910.133. See section 16 for requirements when using carbon dioxide or carbon dioxide mixtures in welding and cutting.

Respiratory Protection. None required under normal use. An air-supplied respirator must be used in confined spaces. Respiratory protection must conform to OSHA rules as specified in 29 CFR 1910.134. Select per OSHA 29 CFR 1910.134 and ANSI Z88.2.

Product: Carbon Dioxide

SDS No. P-4574-K March 2013

9. Physical and Chemical Properties

APPEARANCE:	Colorless gas
ODOR:	Odorless. It is felt by some to have a slight,
	pungent odor and biting taste.
ODOR THRESHOLD:	Not applicable.
PHYSICAL STATE:	Gas at normal temperature and pressure
pH:	3.7 (for carbonic acid).
MELTING POINT/FREEZING POINT at 1 atm:	Sublimation Point -109.3°F (-78.5°C)
INITIAL BOILING POINT at 1 atm:	Sublimation Point -109.3°F (-78.5°C)
BOILING RANGE at 1 atm:	Not applicable.
FLASH POINT (test method):	Not applicable.
EVAPORATION RATE (Butyl Acetate = 1):	High
FLAMMABILITY:	Nonflammable
FLAMMABLE LIMITS IN AIR, % by volume:	LOWER: N/A * UPPER: N/A *
VAPOR PRESSURE at 68°F (20°C):	838 psig (5778 kPa)
VAPOR DENSITY at 70°F (21.1°C) and 1 atm:	Liquid Density (saturated) 47.6 lb/ft ³ (762 kg/m ³)
RELATIVE DENSITY/SPECIFIC GRAVITY (H ₂ O = 1) at 19.4°F (-7°C):	1.22
RELATIVE DENSITY/SPECIFIC GRAVITY	1.52
(Air = 1) at 70°F (21.1°C) and 1 atm:	
SOLUBILITY IN WATER, % by wt:	0.90
PARTITION COEFFICIENT: n-octanol/water:	Not available.
AUTOIGNITION TEMPERATURE:	Not applicable.
DEGONDOOLTON TEMPEDATURE	
DECOMPOSITION TEMPERATURE:	Not available.
PERCENT VOLATILES BY VOLUME:	Not available. 100
PERCENT VOLATILES BY VOLUME: VISCOSITY:	Not available. 100 Not applicable.
DECOMPOSITION TEMPERATURE: PERCENT VOLATILES BY VOLUME: VISCOSITY: MOLECULAR WEIGHT:	Not available. 100 Not applicable. 44.01.

* N/A – Not applicable

10. Stability and Reactivity Information

REACTIVITY:

Non-Reactive

CHEMICAL STABILITY:	Unstable	🛛 Stable
---------------------	----------	----------

Reactive

POSSIBILITY OF HAZARDOUS REACTIONS: 🔲 May Occur 🛛 Will Not Occur

Decomposition into toxic, flammable, and/or oxidizing materials under above-stated conditions.

Page 5 of 12

Product:	Carbon Dioxide	SDS No. P-4574-K
		March 2013

CONDITIONS TO AVOID: Contact with incompatible materials, exposure to electrical discharges, and/or high temperatures as stated below.

INCOMPATIBLE MATERIALS: Alkali metals, alkaline earth metals, metal acetylides, chromium, titanium above 1022°F (550°C), uranium above 1382°F (750°C), magnesium above 1427°F (775°C)

HAZARDOUS DECOMPOSITION PRODUCTS: Carbon monoxide and oxygen may result from the decomposition of carbon dioxide exposed to electrical discharges and high temperatures.

11. Toxicological Information

POTENTIAL HEALTH EFFECTS:

Effects of a Single (Acute) Overexposure

Inhalation: Carbon dioxide gas is an asphyxiant with effects due to lack of oxygen. It is also physiologically active, affecting circulation and breathing. Moderate concentrations may cause headache, drowsiness, dizziness, stinging of the nose and throat, excitation, rapid breathing and heart rate, excess salivation, vomiting, and unconsciousness. Lack of oxygen can kill.

Carbon dioxide is an asphyxiant. It initially stimulates respiration and then causes respiratory depression. High concentrations result in narcosis. Symptoms in humans are as follows:

Carbon Dioxide Concentration Inhaled	EFFECTS	
1%	Breathing rate increases slightly.	
2%	Breathing rate increases to 50% above normal level. Prolonged exposure can cause headache, tiredness.	
3%	Breathing increases to twice normal rate and becomes labored. Weak narcotic effect. Impaired hearing, headache, increased blood pressure and pulse rate.	
4–5%	Breathing increases to approximately four times normal rate, symptoms of intoxication become evident, and slight choking may be felt.	
5–10%	Characteristic sharp odor noticeable. Very labored breathing, visual impairment, headache, and ringing in the ears. Judgment may be impaired, followed within minutes by loss of consciousness.	
10–100%	Unconsciousness occurs more rapidly above 10% level. Prolonged exposure to high concentrations may eventually result in death from asphyxiation.	

The welding process may generate hazardous fumes/gases. (See sections 10 and 16.) Skin Contact. No harm expected from vapor. Cold gas, or liquid or solid carbon dioxide may cause severe frostbite.

Product:	Carbon Dioxide	SDS No. P-4574-K
		March 2013

Swallowing. An unlikely route of exposure. This product is a gas at normal temperature and pressure.

Eye Contact: No harm expected from vapor. Cold gas, or liquid or solid carbon dioxide may cause severe frostbite.

Effects of Repeated (Chronic) Overexposure: No harm expected.

Other Effects of Overexposure: Damage to retinal or ganglion cells and central nervous system may occur.

Medical Conditions Aggravated by Overexposure: The toxicology and the physical and chemical properties of carbon dioxide suggest that overexposure is unlikely to aggravate existing medical conditions.

ACUTE DOSE EFFECTS: LC_{Lo} = 90,000 ppm, 5 min., human

REPRODUCTIVE EFFECTS: A single study has shown an increase in heart defects in rats exposed to 6% carbon dioxide in air for 24 hours at different times during gestation. There is no evidence that carbon dioxide is teratogenic in humans.

CARCINOGENICITY: Carbon dioxide is not listed by NTP, OSHA, or IARC.

12. Ecological Information

ECOTOXICITY: No known effects.

PERSISTANCE AND DEGRADABILITY: Not applicable.

BIOACCUMULATIVE POTENTIAL: Not applicable.

MOBILITY IN SOIL: Not applicable.

OTHER ADVERSE EFFECTS: No adverse ecological effects expected. The components of this mixture do not contain any Class I or Class II ozone-depleting chemicals.

13. Disposal Considerations

WASTE DISPOSAL METHOD: Do not attempt to dispose of residual or unused quantities. Return cylinder to supplier.

Product: Carbon Dioxide

SDS No. P-4574-K March 2013

14. Transport Information

UN NUMBER: UN101	3 PROPER	SHIPPING NAME:	Carbon Dic	oxide	
HAZARD CLASS(ES)	2.2	PACKING GROUP	NA*	PRODUCT RQ:	None
ENVIRONMENTAL H	AZARDS: Not lis	sted as a marine pollu	utant.		
 SPECIAL Cylinders should be transported in a secure position, in a well-ventilated vehicle. Cylinders transported in an enclosed, non-ventilated compartment of a vehicle can present serious safety hazards. 			ntilated npartment		
 Shipment of compressed gas cylinders that have been filled without the owner's consent is a violation of federal law [49 CFR 173.301(e)]. 					
SHIPPING LABEL(s):	NON	FLAMMABLE GAS			
PLACARD (when req	uired): NON	FLAMMABLE GAS			

*NA = Not applicable.

15. Regulatory Information

The following selected regulatory requirements may apply to this product. Not all such requirements are identified. Users of this product are solely responsible for compliance with all applicable federal, state, and local regulations.

U.S. FEDERAL REGULATIONS:

EPA (ENVIRONMENTAL PROTECTION AGENCY)

CERCLA: COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY ACT OF 1980 (40 CFR Parts 117 and 302):

Reportable Quantity (RQ): None

SARA: SUPERFUND AMENDMENT AND REAUTHORIZATION ACT:

SECTIONS 302/304: Require emergency planning based on Threshold Planning Quantity (TPQ) and release reporting based on Reportable Quantities (RQ) of Extremely Hazardous Substances (EHS) (40 CFR Part 355):

TPQ: None

EHS RQ (40 CFR 355): None

SECTIONS 311/312: Require submission of SDSs and reporting of chemical inventories with identification of EPA hazard categories. The hazard categories for this product are as follows:

MMEDIATE: Yes	PRESSURE: Yes
DELAYED: No	REACTIVITY: No
	FIRE: No

SECTION 313: Requires submission of annual reports of release of toxic chemicals that appear in 40 CFR Part 372.

Carbon dioxide is not subject to reporting under Section 313.

Page 8 of 12

-		000 NL 0 4574 K
Product:	Carbon Dioxide	SDS NO. P-45/4-K
		March 2013

40 CFR 68: RISK MANAGEMENT PROGRAM FOR CHEMICAL ACCIDENTAL RELEASE PREVENTION: Requires development and implementation of risk management programs at facilities that manufacture, use, store, or otherwise handle regulated substances in quantities that exceed specified thresholds.

Carbon dioxide is not listed as a regulated substance.

TSCA: TOXIC SUBSTANCES CONTROL ACT: Carbon dioxide is listed on the TSCA inventory.

OSHA: OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION:

29 CFR 1910.119: PROCESS SAFETY MANAGEMENT OF HIGHLY HAZARDOUS CHEMICALS: Requires facilities to develop a process safety management program based on Threshold Quantities (TQ) of highly hazardous chemicals.

Carbon dioxide is not listed in Appendix A as a highly hazardous chemical.

STATE REGULATIONS:

CALIFORNIA: Carbon dioxide is not listed by California under the SAFE DRINKING WATER AND TOXIC ENFORCEMENT ACT OF 1986 (Proposition 65). PENNSYLVANIA: Carbon dioxide is subject to the PENNSYLVANIA WORKER AND COMMUNITY RIGHT-TO-KNOW ACT (35 P.S. Sections 7301-7320).

16. Other Information

Be sure to read and understand all labels and instructions supplied with all containers of this product.

ADDITIONAL SAFETY AND HEALTH HAZARDS: Using carbon dioxide or mixtures containing carbon dioxide in welding and cutting may create additional hazards.

Read and understand the manufacturer's instructions and the precautionary labels on the products used in welding and cutting. Ask your welding products supplier for a copy of Praxair's free safety booklets, P-2035, *Precautions and Safe Practices for Gas Welding, Cutting, and Heating,* and P-52-529, *Precautions and Safe Practices for Electric Welding and Cutting,* and for other manufacturers' safety publications. For a detailed treatment, get ANSI Z49.1, *Safety in Welding and Cutting and Allied Processes,* published by the American Welding Society (AWS), 8669 Doral Blvd., #130, Doral, FL 33166, http://www.aws.org.

FUMES AND GASES can be dangerous to your health and may cause serious lung disease.

 Keep your head out of fumes. Do not breathe fumes and gases. Use enough ventilation, local exhaust, or both to keep fumes and gases from your breathing zone and the general area. Short-term overexposure to fumes may cause dizziness; nausea; and dryness or irritation of the nose, throat, and eyes; or may cause other similar discomfort.

Fumes and gases cannot be classified simply. The amount and type depend on the metal being worked and the process, procedure, equipment, and supplies used. Possible dangerous materials may be found in fluxes, electrodes, and other materials. Get an SDS for every material you use.

Product:	Carbon Dioxide	SDS No. P-4574-K
		March 2013

Contaminants in the air may add to the hazard of fumes and gases. One such contaminant, chlorinated hydrocarbon vapors from cleaning and degreasing activities, poses a special risk.

 Do not use electric arcs in the presence of chlorinated hydrocarbon vapors highly toxic phosgene may be produced.

Metal coatings such as paint, plating, or galvanizing may generate harmful fumes when heated. Residues from cleaning materials may also be harmful.

 Avoid arc operations on parts with phosphate residues (anti-rust, cleaning preparations)—highly toxic phosphine may be produced.

To find the quantity and content of fumes and gases, you can take air samples. By analyzing these samples, you can find out what respiratory protection you need. One recommended sampling method is to take air from inside the worker's helmet or from the worker's breathing zone. See AWS F1.1, *Method for Sampling Airborne Particulates Generated by Welding and Allied Processes*, available from the American Welding Society, 8669 Doral Blvd., #130, Doral, FL 33166, http://www.aws.org.

NOTES TO PHYSICIAN:

Acute: Gases, fumes, and dusts may cause irritation to the eyes, lungs, nose, and throat. Some toxic gases associated with welding and related processes may cause pulmonary edema, asphyxiation, and death. Acute overexposure may include signs and symptoms such as watery eyes, nose and throat irritation, headache, dizziness, difficulty breathing, frequent coughing, or chest pains.

Chronic: Protracted inhalation of air contaminants may lead to their accumulation in the lungs, a condition that may be seen as dense areas on chest x-rays. The severity of change is proportional to the length of exposure. The changes seen are not necessarily associated with symptoms or signs of reduced lung function or disease. In addition, the changes on x-rays may be caused by non-work-related factors such as smoking, etc.

PROTECTIVE CLOTHING AND EQUIPMENT FOR WELDING OPERATIONS:

PROTECTIVE GLOVES: Wear welding gloves.

EYE PROTECTION: Wear a helmet or use a face shield with a filter lens. Select lens per ANSI Z49.1. Provide protective screens and flash goggles if needed to protect others; select per OSHA 29 CFR 1910.133.

OTHER PROTECTIVE EQUIPMENT: Wear hand, head, and body protection. (See ANSI Z49.1.) Worn as needed, these help prevent injury from radiation, sparks, and electrical shock. Minimum protection includes welder's gloves and a face shield. For added protection consider arm protectors, aprons, hats, shoulder protection, and dark, substantial clothing.

OTHER HAZARDOUS CONDITIONS OF HANDLING, STORAGE, AND USE: High-pressure liquid and gas. Use piping and equipment adequately designed to withstand pressures to be encountered. Prevent reverse flow. Reverse flow into cylinder may cause rupture. Use a check valve or other protective device in any line or piping from the cylinder. Do not strike an arc on the cylinder. The defect produced by an arc burn could lead to cylinder rupture. Never work on a pressurized system. If there is a leak, close the cylinder valve. Blow the system down in a safe and environmentally sound manner in compliance with all federal, state, and local laws; then repair the leak. Never place a compressed gas cylinder where it may

Product:	Carbon Dioxide	SDS No. P-4574-K
		March 2013

become part of an electrical circuit. When using compressed gases in and around electric welding applications, never ground the cylinders. Grounding exposes the cylinders to damage by the electric welding arc.

Mixtures. When you mix two or more gases or liquefied gases, you can create additional, unexpected hazards. Obtain and evaluate the safety information for each component before you produce the mixture. Consult an industrial hygienist or other trained person when you evaluate the end product. Remember, gases and liquids have properties that can cause serious injury or death.

HAZARD RATING SYSTEMS:

NFPA RATINGS:

HMIS RATINGS:

HEALTH	= 1	HEALTH	= 1
FLAMMABILITY	= 0	FLAMMABILITY	= 0
INSTABILITY	= 0	PHYSICAL HAZARD	= 3
SPECIAL	= SA (CGA recon	nmends this to designat	e Simple Asphyxiant.)

STANDARD VALVE CONNECTIONS FOR U.S. AND CANADA:

THREADED:	CGA-320
PIN-INDEXED YOKE:	CGA-940 (medical use)
ULTRA-HIGH-INTEGRITY CONNECTION:	CGA-716

Use the proper CGA connections. **DO NOT USE ADAPTERS.** Additional limited-standard connections may apply. See CGA pamphlet V-1 listed below.

Ask your supplier about free Praxair safety literature as referred to in this SDS and on the label for this product. Further information can be found in the following materials published by the Compressed Gas Association, Inc. (CGA), http://www.cganet.com.

- AV-1 Safe Handling and Storage of Compressed Gases
- AV-7 Characteristics and Safe Handling of Carbon Dioxide
- G-6 Carbon Dioxide
- G-6.1 Standard for Low Pressure Carbon Dioxide Systems at Customer Sites
- G-6.2 Commodity Specification for Carbon Dioxide
- P-1 Safe Handling of Compressed Gases in Containers
- SB-2 Oxygen-Deficient Atmospheres
- V-1 Compressed Gas Cylinder Valve Inlet and Outlet Connections
- Handbook of Compressed Gases

Last revised 31 Mar 2013.

Page 11 of 12

Product:	Carbon Dioxide	SDS No. P-4574-K March 2013

Praxair asks users of this product to study this SDS and become aware of product hazards and safety information. To promote safe use of this product, a user should (1) notify employees, agents, and contractors of the information in this SDS and of any other known product hazards and safety information, (2) furnish this information to each purchaser of the product, and (3) ask each purchaser to notify its employees and customers of the product hazards and safety information.

The opinions expressed herein are those of qualified experts within Praxair, Inc. We believe that the information contained herein is current as of the date of this Safety Data Sheet. Since the use of this information and the conditions of use of the product are not within the control of Praxair, Inc., it is the user's obligation to determine the conditions of safe use of the product.

Praxair SDSs are furnished on sale or delivery by Praxair or the independent distributors and suppliers who package and sell our products. To obtain current SDSs for these products, contact your Praxair sales representative or local distributor or supplier. If you have questions regarding Praxair SDSs, would like the form number and date of the latest SDS, or would like the names of the Praxair suppliers in your area, phone or write the Praxair Call Center (**Phone:** 1-800-PRAXAIR; **Address:** Praxair Call Center, Praxair, Inc., PO Box 44, Tonawanda, NY 14151-0044).

Praxair, Making our planet more productive, and the Flowing Airstream design are trademarks or registered trademarks of Praxair Technology, Inc. in the United States and/or other countries.

Praxair, Inc. 39 Old Ridgebury Road Danbury, CT 06810-5113

Printed in USA

Page 12 of 12

Appendix D. Original Project Statement

9. High-temperature Pebble-bed Nuclear Reactor with "Lego" Modular Design Improvements (recommended by Adam A. Brostow, Air Products and Chemicals)

Background

Figure 1 shows the process PFD of MIT's High-temperature Pebble-bed Nuclear Reactor. The system comprises a primary and secondary helium circuit. Helium in the primary circuit is heated to a high temperature in the nuclear reactor core. Helium in the secondary circuit is heated in the intermediate heat exchanger (IHX) against helium in the primary circuit to avoid possible radioactive contamination. It is then expanded in a series of expanders (isentropic turbines). Some of those turbines directly drive compressors (so-called companders). Then, the working fluid is expanded in a generator-loaded turbine to produce electric power. The expanded stream is cooled in the recuperator (economizer) heat exchanger, further cooled in a precooler, compressed, reheated in the recuperator, and sent back to the IHX. This is the so-called Brayton power cycle. The nuclear reactor is of pebble-bed type, which eliminates the possibility of a meltdown and is inherently safer than other types.

Figure 8, in *A Future for Nuclear Energy: Pebble Bed Reactors* (see Literature), shows a variation of the cycle with three expanders, rather than two, a different compressor arrangement, and slightly different conditions.

Figure 1 MIT Pebble-Bed Nuclear Reactor Power Cycle

Figure 2 shows the supercritical CO_2 Brayton cycle developed by the Sandia National Laboratories.

Figure 2 CO₂ Brayton cycle

Figure 3 shows a Supercritical Brayton cycle applied to a nuclear power plant similar to the ones shown on Figures 1 and 2.

Figure 3 Supercritical Brayton cycle

Figure 4 (U.S. Patent Application 20120216536) shows a supercritical CO₂ Brayton cycle applied concentrated solar power plant.

Figure 4 Supercritical CO₂ Brayton cycle applied concentrated solar power plant

Design Problem

An MIT-type modular, nuclear, power plant supplies 120 MW of electricity. Helium, as working fluid, is believed to be well suited for high temperature applications. However, helium requires exotic equipment and easily leaks out of the system. Equipment sizes are large.

This assignment is to model the helium-based plant as described in the literature using the ASPEN PLUS process simulator and to try to improve it by replacing helium in the secondary circuit at least partially with supercritical CO_2 (S-CO2) while maintaining the modular character of the design.

Another part of the assignment applies the same S-CO2 design to the high-temperature, concentrated, power plant also producing 120 MW of electricity. Because the design is modular, at least some modules should be identical, the difference being the possibly lower maximum temperature and primary circuit working fluid (oil, molten salt, etc.).

The students, then, would compare short-term and long-term economics of the two variants: nuclear and renewable.

Appendix E. Aspen Exchanger Design and Rating Results

Printed: 4/3/2016 at 8:39:16 PM

E.1 Helium Process

HX-1

Aspen Exchanger Design and Rating Shell & Tube V8.8

File: \base\root\homedir\IHX1 Design 3.3 single pass.EDR Company: Team 9 Location: Service of Unit: Hot Helium Exchanger Our Reference: Item No.: IHX1 Your Reference: Date: 02/20/16 Rev No.: Job No.:

Overall Summary

1	Size 59 X	216	in	Туре	BEM H	lor	Connected in	4 parallel	1 series		
2	Surf/Unit (gross/eff/finned	(t	44009	/ 38915.3	/	ft	² Shells/unit 4				
з	Surf/Shell (gross/eff/finne	ed)	11002.2	/ 9728.8	/	ft	2				
4	Design (Sizing)			PE	RFORMAN	ICE OF ONE	UNIT				
5			Sh	nell Side	π	ube Side	Heat Transfer Pa	rameters			
6	Process Data		In	Out	In	Out	Total heat load	B	TU/h a	870904700	
7	Total flow	lb/h	849	206	100	5556	Eff. MTD/ 1 pass I	MTD	°F 229.2	/ 229.18	
8	Vapor	b/h	849206	849206	1005556	1005556	Actual/Reqd area	ratio - fouled/clean	1.13	/ 1.13	
9	Liquid	b/h	0	0	0	0					
10	Noncondensable	b/h		0		0	Coef./Resist.	BTU/(h-ft²-F) ft²-h-F/	BTU %	
11	Cond./Evap.	lb/h		0		0	Overall fouled	110	0.0091		
12	Temperature	°F	662	1472	1652	948.56	Overall clean	110	0.0091		
13	Dew / Bubble point	°F					Tube side film	146.96	0.0068	74.85	
14	Quality		1	1	1	1	Tube side fouling		0	0	
15	Pressure (abs)	psi	1145.8	1130.82	1121.14	1120.1	Tube wall	2278.08	0.0004	4.83	
16	DeltaP allow/cal	psi	15	14.97	15	1.05	Outside fouling		0	0	
17	Velocity	ft/s	84.13	146.69	54.05	36.08	Outside film	541.36	0.0018	20.32	
18	Liquid Properties						Shell Side Press	ure Drop	psi	%	
19	Density	b/ft ³					Inlet nozzle		0.19	1.31	
20	Viscosity	ср					InletspaceXflow		1.7	11.43	
21	Specific heat	BTU/(lb-F)					Baffle Xflow		8.7	58.53	
22	Therm. cond.	BTU/(ft-h-F)					Baffle window		0.99	6.66	
23	Surface tension	bf/ft					OutletspaceXflow		2.83	19.04	
24	Molecular weight						Outlet nozzle		0.45	3.04	
25	Vapor Properties						Intermediate nozz	es			
26	Density	b/ft ³	0.381	0.218	0.198	0.297	Tube Side Press	ure Drop	psi	%	
27	Viscosity	ср	0.0335	0.0488	0.0507	0.0394	Inlet nozzle		0.31	28.97	
28	Specific heat	BTU/(lb-F)	1.2489	1.2483	1.2483	1.2486	Entering tubes		0.03	2.8	
29	Therm. cond.	BTU/(ft-h-F)	0.142	0.225	0.227	0.172	Inside tubes		0.5	46.25	
30	Molecular weight		4	4	4	4	Exiting tubes		0.03	2.72	
31	Two-Phase Properties						Outlet nozzle		0.21	19.25	
32	Latent heat	BTU/lb					Intermediate nozz	es			
33	Heat Transfer Paramete	ers					Velocity / R	lho*V2	ft/s	b/(ft-s ²)
34	Reynolds No. vapor		88931.3	61060.12	16219.38	20867.36	Shell nozzle inlet		53.67	1097	
35	Reynolds No. liquid						Shell bundle Xflov	v 84.1	3 146.69		
36	Prandtl No. vapor		0.71	0.65	0.68	0.69	Shell baffle windo	w 69.4	13 121.07		
37	Prandtl No. liquid						Shell nozzle outle	t -	12.32	2754	
38	Heat Load		I	3TU/h		BTU/h	Shell nozzle interr	n			
39	Vapor only		8587	88500	-8830	020900			ft/s	lb/(ft-s ²	:)
40	2-Phase vapor			0		0	Tube nozzle inlet	1	22.26	2959	
41	Latent heat			0		0	Tubes	54.0	5 36.08		
42	2-Phase liquid			0		0	Tube nozzle outle	t -	115.76	3974	
43	Liquid only			0		0	Tube nozzle interr	n			
44	Tubes				Baffles		Nozz	les: (No./OD)			
45	Туре			Plain	Туре	Single segr	menta	Shell	Side	Tube Side	
46	ID/OD	in O	.62 /	0.75	Number		6 Inlet	in 1 /	28	1 / 28	
47	Length act/eff	ft	18 /	15.9167	Cut(%d)	25.23	Outle	t 1/	26	1 / 24	
48	Tube passes		1		Cut orient	ation	H Intern	nediate /		/	
49	Tube No.	3	113		Spacing: o	c/c in	24.25 Impin	gement protection	None		
50	Tube pattern		30		Spacing a	t inlet in	34.875				
51	Tube pitch	in 0.9	9375		Spacing a	t outlet in	34.875				
52	nsert			None							
53	Vibration problem		Yes	/ No			BhoV	2 violation		No	

Shell & Tube V8.8

Aspen Exchanger Design and Rating File: \\base\root\homedir\RECP Design 2.23.EDR Company: Team 9 Location: Service of Unit: Cold Helium Heat Exchanger Item No.: Recuperator Date: 02/23/16 Rev No.: Our Reference: Your Reference: Job No.:

Overall Summary

1	Size 100 X	200	in	Туре	BEM	Hor	Connected in	5 paralle	1 series	
2	Surf/Unit (gross/eff/finned	d)	153512.5	/ 147372	/	ft	² She ll s/unit	5		
3	Surf/Shell (gross/eff/finne	ed)	30702.5	/ 29474.4	1	ft ^a	2			
4	Design (Sizing)			PE	RFORMA	NCE OF ONE	UNIT			
5			Sh	ell Side	т	ube Side	Heat Transfe	er Parameters		
6	Process Data		In	Out	In	Out	Total heat loa	d	BTU/h :	240594500
7	Total flow	b/h	849	206	84	9206	Eff. MTD/ 1 p	ass MTD	°F 60	/ 60
8	Vapor	b/h	849206	849206	849206	849206	Actual/Reqd	area ratio - fouled/clea	an 1.12	/ 1.12
9	Liquid	b/h	0	0	0	0				
10	Noncondensable	lb/h	C)		0	Coef./Resist	BTU/(h-ft	2-F) ft2-h-F/	BTU %
11	Cond./Evap.	b/h	C)		0	Overall fouled	30.54	0.0327	
12	Temperature	°F	123	350	410	183	Overall clean	30.54	0.0327	
13	Dew / Bubble point	°F					Tube side filn	n 39.18	0.0255	77.94
14	Quality		1	1	1	1	Tube side fou	lling	0	0
15	Pressure (abs)	psi	79	67.36	21	19.71	Tube wall	1644.51	0.0006	1.86
16	DeltaP allow/cal	psi	15	11.64	15	1.29	Outside foulir	ng	0	0
17	Velocity	ft/s	538.38	868.28	266.55	209.86	Outside film	151.2	0.0066	20.2
18	Liquid Properties						Shell Side P	ressure Drop	psi	%
19	Density	b/ft ³					Inlet nozzle		0.28	2.45
20	Viscosity	ср					InletspaceXfl	ow	1.54	13.23
21	Specific heat	BTU/(lb-F)					Baffle Xflow		7.41	63.79
22	Therm. cond.	BTU/(ft-h-F)					Baffle windov	V	0.5	4.34
23	Surface tension	bf/ft					Outletspace×	flow	2.3	19.82
24	Molecular weight						Outlet nozzle		0.52	4.51
25	Vapor Properties	IL //10					Intermediate	nozzles		
26	Density	ID/ft ³	0.051	0.031	0.009	0.011	Tube Side Pi	ressure Drop	psi	%
27	Viscosity	cp	0.0208	0.0264	0.0278	0.0223			0.37	28.15
28	Specific neat		1.2483	0.117	0.101	1.2481	Entering tube	s	0.03	2.6
29	Melecular weight	BIU/(II-n-F)	0.096	0.117	0.121	0.102	Inside lubes		0.67	50.43
30	Tive Phase Presenting		4	4	4	4	Exiting tubes		0.04	2.88
31	I otopt hast	PTU/b							0.23	17.08
32	Heat Transfer Peremete	BTU/ID					Valacity		ft/c	b/(ft.c2)
24	Revealde No. veper	15	101004 7	05510 75	6622.10	9265 72	Sholl pozzlo i		175 09	1552
35	Reynolds No. liquid		121204.7	35512.75	0052.10	0203.72	Shell bundle	Xflow 5	38 38 868 28	1555
36	Prandtl No. vanor		0.66	0.68	0.69	0.66	Shell baffle w	indow 3	00.30 000.20	
37	Prandtl No. liquid		0.00	0.00	0.00	0.00	Shell nozzle (outlet	325.99	3296
38	Heat Load		F	STU/h		BTU/h	Shell nozzle i	nterm	020.00	0200
39	Vapor only		24060	8700	-240	580300			ft/s	b/(ft-s ²)
40	2-Phase vapor)		0	Tube nozzle i	nlet	623.99	3504
41	Latent heat		()		0	Tubes	2	66.55 209.86	
42	2-Phase liquid)		0	Tube nozzle (outlet	609.11	4240
43	Liquid only		Ċ)		0	Tube nozzle i	nterm		
44	Tubes				Baffles		ľ	lozzles: (No./OD)		
45	Туре			Plain	Туре	Single segr	nental	Sh	ell Side	Tube Side
46	ID/OD	in C).62 /	0.75	Number		8 I	nlet in 1	/ 32	1 / 40
47	Length act/eff	ft 16	.6667 /	16	Cut(%d)	10.22	C	Dutlet 1	/ 30	1 / 36
48	Tube passes		1		Cut orien	tation	нι	ntermediate	1	/
49	Tube No.	9	382		Spacing:	c/c in	14.75	mpingement protectio	n None	
50	Tube pattern		30		Spacing a	at inlet in	44.375			
51	Tube pitch	in 0.	9375		Spacing a	at outlet in	44.375			
52	Insert			None	-					
53	Vibration problem		Yes	/ No			F	RhoV2 violation		Yes

Printed: 4/3/2016 at 8:41:26 PM

Aspen Exchanger Design and Rating File: \\base\root\homedir\Helium_B22.EDR Shell & Tube V8.8

Printed: 4/3/2016 at 8:43:15 PM

Overall Summary

1	Size 48 X	120	in	Туре	BEM H	or	Connected in	5 parallel 1	series	
2	Surf/Unit (gross/eff/finned	d)	18849.5	/ 18024.9	/	ft ^a	² She ll s/unit 5			
3	Surf/Shell (gross/eff/finne	ed)	3769.9	/ 3605	/	fť	2			
4	Design (Sizing)			PE	RFORMAN	CE OF ONE	UNIT			
5			Sh	ell Side	Tu	be Side	Heat Transfer Para	neters		
6	Process Data		In	Out	In	Out	Total heat load	ca	ıl/s	20395640
7	Total flow	lb/h	849	206	645	5225	Eff. MTD/ 1 pass MT	D	°F 87.95	/ 87.68
8	Vapor	lb/h	849206	849206	0	0	Actual/Reqd area rat	io - fouled/clean	1.03	/ 1.03
9	Liquid	lb/h	0	0	6455225	6455225				
10	Noncondensable	lb/h	()		0	Coef./Resist.	BTU/(h-ft²-F)	ft²-h-F/	BTU %
11	Cond./Evap.	b/h	C)		0	Overall fouled	188.49	0.0053	
12	Temperature	°F	361.4	85.96	68	113	Overall clean	188.49	0.0053	
13	Dew / Bubble point	°F					Tube side film	392.02	0.0026	48.08
14	Quality		1	1	0	0	Tube side fouling		0	0
15	Pressure (abs)	psi	304.58	290.02	14.7	14.13	Tube wa ll	3828.61	0.0003	4.92
16	DeltaP allow/cal	psi	15	14.56	3	0.56	Outside fouling		0	0
17	Velocity	ft/s	455.53	317.28	1.61	1.62	Outside film	401.07	0.0025	47
18	Liquid Properties						Shell Side Pressure	e Drop	psi	%
19	Density	lb/ft ³			62.355	61.972	Inlet nozzle		0.24	1.65
20	Viscosity	ср			1.0163	0.5981	InletspaceXflow		2.98	20.4
21	Specific heat	BTU/(lb-F)			1.0016	1	Baffle Xflow		7.02	48.01
22	Therm. cond.	BTU/(ft-h-F)			0.343	0.362	Baffle window		1.62	11.05
23	Surface tension	lbf/ft					OutletspaceXflow		2.36	16.11
24	Molecular weight				18.01	18.01	Outlet nozzle		0.41	2.79
25	Vapor Properties						Intermediate nozzles	3		
26	Density	b/ft ³	0.138	0.198			Tube Side Pressure	e Drop	psi	%
27	Viscosity	ср	0.0267	0.0198			Inlet nozzle		0.25	44.82
28	Specific heat	BTU/(lb-F)	1.2485	1.249			Entering tubes		0.01	1.53
29	Therm. cond.	BTU/(ft-h-F)	0.118	0.091			Inside tubes		0.11	20.06
30	Molecular weight		4	4			Exiting tubes		0.01	2.4
31	Two-Phase Properties						Outlet nozzle		0.18	31.2
32	Latent heat	BTU/lb					Intermediate nozzles	3		
33	Heat Transfer Paramete	rs					Velocity / Rho	o*V2	ft/s	lb/(ft-s²)
34	Reynolds No. vapor		219435.1	294997.8			Shell nozzle inlet	98	3.11	1331
35	Reynolds No. liquid				7155.74	12160.04	Shell bundle Xflow	455.53	3 317.28	
36	Prandtl No. vapor		0.68	0.66			Shell baffle window	342.55	5 238.59	
37	Prandtl No. liquid		_		7.18	4	Shell nozzle outlet	11.	7.83	2751
38	Heat Load		E	STU/h	ł	BTU/h	Shell nozzle interm			
39	Vapor only		-2920	61500		0			ft/s	Ib/(ft-s ²)
40	2-Phase vapor		()		0	Tube nozzle inlet	6.	.01	2250
41	Latent heat		()		0	Tubes	1.61	1.62	0005
42	2 Phase liquid		()		0	Tube nozzle outlet	7.	.37	3365
43			()	2906	80700	Tube nozzle interm	(11- (00)		
44	Tubes			Disis	Bames	0	NOZZIES	:: (NO_/UD)		Tube Olds
45	iype	:- 0	E04 '	Plain	iype Numetra	Single segr	nental	snell Si	ide oc	
46	IU/UU	in 0	.584 /	0.75		10.04		in 1 /	20 20	1 / 14
4/	Length act/em	π	10 /	9.0025	Cut ariant	13.34	Outlet	/ [20	i / 12./5
48	Tube passes		1		Cut orienta	(1001)	10.5 Imai	mont proto -t'	N	1
49	Tube NO.	1	920 20		Spacing: C	rc IN indot i∽	i∠.o impinge	ment protection	None	
50	Tube pattern	in O	00 0375		Spacing at	outlet in	38 625			
50	Incort	III 0.3	5010	None	Spacing at	outet IN	30.023			
52	Vibration problem)occibl				Pho//2	violation		No
50	violation problem		055101					nonduorr		INU

Shell & Tube V8.8

Aspen Exchanger Design and Rating File: \\base\root\homedir\Helium_B19 2.26.EDR Company: Team 9 Location: Service of Unit: HOT Helium/Cooling Water Item No.: B19 Your Reference: Date: 2/26/16 Rev No.: Job No.: Our Reference:

Overall Summary

1	Size 26 X	96	in	Туре	BEM I	Hor	Connected in	9 parallel 1	series	
2	Surf/Unit (gross/eff/finned	d)	6870.7	/ 6575.4	/	ft	² She ll s/unit 9			
з	Surf/Shell (gross/eff/finne	ed)	763.4	/ 730.6	/	ft ^a	2			
4	Design (Sizing)			PE	RFORMAN	ICE OF ONE	UNIT			
5			Sh	ell Side	Т	ube Side	Heat Transfer P	arameters		
6	Process Data		In	Out	In	Out	Total heat load	BTU	/h	50059560
7	Total flow	b/h	849	206	559	99868	Eff. MTD/ 1 pass	MTD	°F 71.24	/ 71.23
8	Vapor	b/h	849206	849206	0	0	Actual/Reqd area	a ratio - fouled/clean	2.45	/ 2.45
9	Liquid	lb/h	0	0	5599868	5599868				
10	Noncondensable	b/h	()		0	Coef./Resist.	BTU/(h-ft²-F)	ft²-h-F/	BTU %
11	Cond./Evap.	lb/h	()		0	Overall fouled	262.33	0.0038	
12	Temperature	°F	168.8	122	68	77	Overall clean	262.33	0.0038	
13	Dew / Bubble point	°F					Tube side film	622.31	0.0016	42.15
14	Quality		1	1	0	0	Tube side fouling	I	0	0
15	Pressure (abs)	psi	507.63	504.2	14.7	13.95	Tube wall	3836.28	0.0003	6.84
16	DeltaP allow/cal	psi	3.75	3.44	3	0.74	Outside fouling		0	0
17	Velocity	ft/s	103.12	96.02	3.07	3.07	Outside film	514.3	0.0019	51.01
18	Liquid Properties						Shell Side Press	sure Drop	psi	%
19	Density	b/ft ³			62.355	62.32	Inlet nozzle		0.25	7.18
20	Viscosity	ср			1.0163	0.8974	InletspaceXflow		0.94	27.15
21	Specific heat	BTU/(lb-F)			1.0016	1.0012	Baffle Xflow		0.83	24.01
22	Therm. cond.	BTU/(ft-h-F)			0.343	0.347	Baffle window		0.36	10.39
23	Surface tension	lbf/ft					OutletspaceXflov	v	0.89	25.8
24	Molecular weight				18.01	18.01	Outlet nozzle		0.19	5.48
25	Vapor Properties						Intermediate noz	zles		
26	Density	b/ft ³	0.301	0.323			Tube Side Press	sure Drop	psi	%
27	Viscosity	ср	0.022	0.0208			Inlet nozzle		0.17	22.95
28	Specific heat	BTU/(lb-F)	1.2492	1.2494			Entering tubes		0.03	4.19
29	Therm. cond.	BTU/(ft-h-F)	0.101	0.096			Inside tubes		0.28	38.26
30	Molecular weight		4	4			Exiting tubes		0.05	6.54
31	Two-Phase Properties						Outlet nozzle		0.21	28.06
32	Latent heat	BTU/lb					Intermediate noz	zles		
33	Heat Transfer Paramete	ers					Velocity /	Rho*V2	ft/s	Ib/(ft-s ²)
34	Reynolds No. vapor		131281.7	138806.6			Shell nozzle inlet	68	.64	1418
35	Reynolds No. liquid				13624.2	7 15429.87	Shell bundle Xflo	w 103.12	96.02	
36	Prandti No. vapor		0.66	0.66	7.40	0.00	Shell baffle wind	ow 96.94	90.25	1000
37	Prandti No. liquid		-	NTI 1 /1-	7.18	6.26	Shell nozzle outi	et 63	.96	1322
38	Heat Load		1005	31U/n		BTU/n	Shell nozzle inter	rm	b /-	11- ((4 2))
39	vapor only		-4965	51400		0	Take a secola inte	-	TVS	ID/(π-s²)
40	2-Phase vapor		()		0	Tube nozzie iniei	5.	00	1598
41	Catent neat		()		0	Tubes	3.07	3.07	0070
42	2-Phase liquid		() >	504	0	Tube nozzle out	et 7.	98	3972
43			(J	504	67720	Tube nozzle Inter			
44	Tubes			Plain	Tuno	Single coor	noz	cies. (NO2OD) Shall Si	do	Tubo Sido
45		in 0	E01 /	0.75	Numbor	Single segn	0 Inlot	in 1 /	16	1 / 10.75
40	Length act/eff	111 U. ft	g /	7 6562	Cut(%d)	10.62		at 1 /	16	1 / 8.625
41	Tube passes		1 /	1.0002	Cut oright	etion	H Inter	mediate /	10	/ / 0.025
40	Tube No		186		Spacing	au011	23.5 Imni	ngement protection	Nono	'
50	Tube nattern	-	30		Spacing a	it in let in	34 1875	ngement protection	None	
51	Tube pitch	in O	9375		Snacing a	it outlet in	34 1875			
52	Insert			None	opuonig a		01.10/0			
53	Vibration problem		Yes	/ No			Rho'	V2 violation		No

Shell & Tube V8.8

Aspen Exchanger Design and Rating File: \\base\root\homedir\Helium_B20.EDR Company: Team 9 Location: Service of Unit: Hot Helium/Cooling Water Item No.: B20 Your Reference: Date: 2/26/16 Rev No.: Job No.: Our Reference:

Overall Summary

1	Size 23 X	96	in	Туре	BEM H	lor	Connected in	n 10 parallel	1 series	
2	Surf/Unit (gross/eff/finned	d)	5749.1	/ 5502.1	/	ft	² She ll s/unit	10		
з	Surf/Shell (gross/eff/finne	ed)	574.9	/ 550.2	/	ft ^a	2			
4	Design (Sizing)			PE	RFORMAN	CE OF ONE	UNIT			
5			Sh	ell Side	Tu	ibe Side	Heat Transf	er Parameters		
6	Process Data		In	Out	In	Out	Total heat loa	ad	BTU/h	50194100
7	Total flow	b/h	849	206	562	8792	Eff. MTD/ 1 p	bass MTD	°F 107.8	/ 107.8
8	Vapor	b/h	849206	849206	0	0	Actual/Reqd	area ratio - fouled/clea	in 3.39	/ 3.39
9	Liquid	b/h	0	0	5628792	5628792				
10	Noncondensable	b/h	C)		0	Coef./Resis	t. BTU/(h-ft ²	²-F) ft²-h-F/	BTU %
11	Cond./Evap.	b/h	C)		0	Overall foule	d 286.76	0.0035	
12	Temperature	°F	204.8	158	68	77	Overall clear	n 286.76	0.0035	
13	Dew / Bubble point	°F					Tube side fil	n 733.93	0.0014	39.07
14	Quality		1	1	0	0	Tube side fo	uling	0	0
15	Pressure (abs)	psi	652.67	649.7	14.7	13.67	Tube wal	3836.28	0.0003	7.47
16	DeltaP allow/cal	psi	3.75	2.97	3	1.02	Outside fouli	ng	0	0
17	Velocity	ft/s	86.18	80.43	3.68	3.69	Outside film	536.47	0.0019	53.45
18	Liquid Properties						Shell Side F	ressure Drop	psi	%
19	Density	b/ft ³			62.355	62.32	Inlet nozzle		0.18	5.87
20	Viscosity	ср			1.0163	0.8974	InletspaceXf	ow	0.78	26.06
21	Specific heat	BTU/(Ib-F)			1.0016	1.0012	Battle Xflow		0.7	23.42
22	Therm. cond.	BTU/(ft-h-F)			0.343	0.347	Baffle windo	w	0.37	12.27
23	Surface tension	Ibf/ft					Outletspace:	Xtlow	0.74	24.81
24	Molecular weight				18.01	18.01	Outlet nozzle		0.23	7.57
25	Vapor Properties	H //10					Intermediate	nozzles		
26	Density	ID/ft ³	0.366	0.392			Tube Side P	ressure Drop	psi	%
27	VISCOSITY	cp	0.0229	0.0217			Inlet nozzle		0.35	34.53
28	Specific neat		0.104	1.2496			Entering tube	85	0.04	4.4
29	Meleculor weight	БТО/(II-II-F)	0.104	0.1			Exiting tubes		0.38	37.30
30	Two Bhase Bronartics		4	4			Exiting tubes	i	0.07	16.00
31	I stort bast	PTU/b						, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.17	10.03
32	Heat Transfer Peremeter	BTU/ID					Velocity	/ Bho*\/2	ft/c	b/(ft.c2)
34	Beynolds No. yapor	10	128121 7	135055.2			Shell pozzle	inlet	52.5	1009
35	Reynolds No. liquid		120121.7	100000.2	16366 22	18535.2	Shell bundle	Xflow 8	6 18 80 43	1000
36	Prandtl No. vapor		0.66	0.66	10000.22	. 10000.2	Shell baffle v	vindow 9	1 78 85 66	
37	Prandtl No. liquid		0.00	0.00	7 18	6.26	Shell nozzle	outlet	62.84	1548
38	Heat Load		P	TU/h		BTU/h	Shell nozzle	interm	22.01	
39	Vapor only		-4965	9790		0			ft/s	b/(ft-s2)
40	2-Phase vapor		C)		0	Tube nozzle	inlet	7.22	3249
41	Latent heat		C)		0	Tubes		3.68 3.69	
42	2-Phase liquid		c)		0	Tube nozzle	outlet	7.22	3250
43	Liquid only		c)	5072	28370	Tube nozzle	interm		
44	Tubes				Baffles			Nozzles: (No./OD)		
45	Туре			Plain	Туре	Single segr	nental	Sh	ell Side	Tube Side
46	D/OD	in 0.	.584 /	0.75	Number		2	Inlet in 1	/ 16	1 / 8.625
47	Length act/eff	ft	8 /	7.6562	Cut(%d)	39.41		Outlet 1	/ 14	1 / 8.625
48	Tube passes		1		Cut orienta	ation	н	ntermediate	/	/
49	Tube No.	3	366		Spacing: c	/c in	23.5	Impingement protection	n None	
50	Tube pattern		30		Spacing at	tin l et in	34.1875			
51	Tube pitch	in 0.9	9375		Spacing at	toutlet in	34.1875			
52	Insert			None						
53	Vibration problem		Yes	/ No				RhoV2 violation		No

Printed: 4/3/2016 at 8:45:07 PM

Shell & Tube V8.8

Aspen Exchanger Design and Rating File: \\base\root\homedir\Helium_B21.EDR Company: Team 9 Location: Service of Unit: Hot Helium/Cooling Water Item No.: B21 Your Reference: Date: 2/26/16 Rev No.: Job No.:

Our Reference:

Overall Summary

1	Size 69 X	138	in	Туре	BEM H	Hor	Connected in	8 parallel	1 series	
2	Surf/Unit (gross/eff/finned	i)	77278.4	/ 73848.5	/	ft	2 She ll s/unit	8		
з	Surf/Shell (gross/eff/finne	ed)	9659.8	/ 9231.1	/	ft ^a	2			
4	Design (Sizing)			PE	RFORMAN	ICE OF ONE	UNIT			
5			She	ell Side	τι	ube Side	Heat Transfe	r Parameters		
6	Process Data		In	Out	In	Out	Total heat loa	d B	BTU/h	87856630
7	Total flow	b/h	8492	206	488	80445	Eff. MTD/ 1 p	ass MTD	°F 119.5	/ 119.49
8	Vapor	lb/h	849206	849206	0	0	Actual/Reqd a	area ratio - fouled/clean	5.59	/ 5.59
9	Liquid	lb/h	0	0	4880445	4880445				
10	Noncondensable	b/h	0			0	Coef./Resist	BTU/(h-ft²-F	⁻) ft ² -h-F/l	BTU %
11	Cond./Evap.	b /h	0			0	Overall fouled	55.65	0.018	
12	Temperature	°F	240.8	158	68	86	Overall clean	55.65	0.018	
13	Dew / Bubble point	°F					Tube side film	n 80.83	0.0124	68.85
14	Quality		1	1	0	0	Tube side fou	ling	0	0
15	Pressure (abs)	psi	58	45.1	1.01	0.98	Tube wall	3834.36	0.0003	1.45
16	DeltaP allow/cal	psi	15	12.9	0.2	0.03	Outside foulir	ıg	0	0
17	Velocity	ft/s	769.19	856.71	0.34	0.34	Outside film	187.4	0.0053	29.7
18	Liquid Properties						Shell Side P	ressure Drop	psi	%
19	Density	b/ft ³			62.355	62.262	Inlet nozzle		0.24	1.83
20	Viscosity	ср			1.0163	0.7998	InletspaceXfl	WC	2.57	19.94
21	Specific heat	BTU/(Ib-F)			1.0016	1.0008	Baffle Xflow		5.96	46.27
22	Therm. cond.	BTU/(ft-h-F)			0.343	0.351	Baffle window	/	0.67	5.18
23	Surface tension	lbf/ft					OutletspaceX	flow	2.81	21.78
24	Molecular weight				18.01	18.01	Outlet nozzle		0.64	4.99
25	Vapor Properties						Intermediate	nozzles		
26	Density	Ib/tt ³	0.031	0.027			Tube Side Pr	essure Drop	psi	%
27	Viscosity	cp	0.0238	0.0217					0.01	36.2
28	Specific heat	BTU/(ID-F)	1.2482	1.2482			Entering tube	s	0	1.11
29	Therm. cond.	BTU/(ft-n-F)	0.108	0.1			Inside tubes		0.01	18.16
30	Nolecular weight		4	4			Exiting tubes		0	1.73
31	Iwo-Phase Properties	DTU/I					Outlet nozzle		0.01	42.8
32	Latent neat	BTU/ID					Intermediate		ft/o	lb//ft_o2)
24	Roynolds No. yapor	15	02577 74	101424 4			Sholl pozzlo i		204 74	1204
35	Reynolds No. Vapol		92377.74	101424.4	1517 55	1028 30	Shell hundle	Vilow 760	10 956 71	1234
36	Prandtl No. vanor		0.67	0.66	1317.33	1920.09	Shell baffle w	indow 647	15 720 78	
37	Prandtl No. liquid		0.07	0.00	7 18	5 52	Shell pozzle (outlet	367 56	3676
38	Heat Load		в	TU/h	7.10	BTU/h	Shell nozzle i	nterm	007.00	00/0
39	Vapor only		-8776	2530		0	0.101 1022101		ft/s	b/(ft-s²)
40	2-Phase vapor		0,,0 N			0	Tube nozzle i	nlet	1.34	113
41	Latent heat		0			0	Tubes	0.9	34 0.34	110
42	2-Phase liquid		0			0	Tube nozzle (outlet	2 15	287
43	Liquid only		0		879	50740	Tube nozzle i	nterm		
44	Tubes				Baffles		N	lozzles: (No./OD)		
45	Туре			Plain	Туре	Single segn	nental	Shel	Side	Tube Side
46	ID/OD	in 0.	.584 /	0.75	Number	5 5	4 li	nlet in 1	/ 30	1 / 20
47	Length act/eff	ft 1	1.5 /	10.9896	Cut(%d)	11.36	c	Dutlet 1	/ 24	1 / 16
48	Tube passes		1		Cut orient	ation	ни	ntermediate	/	/
49	Tube No	4	278		Spacing: o	c/c in	15 li	npingement protection	None	
50	Tube pattern		30		Spacing a	t inlet in	43.4375			
51	Tube pitch	in 0.9	9375		Spacing a	t outlet in	43.4375			
52	Insert			None						
53	Vibration problem		Yes	/ No			F	hoV2 violation		Yes

Printed: 4/3/2016 at 8:46:00 PM

E.2 S-CO₂ Process

HX-1

Shell & Tube V8.8

Aspen Exchanger Design and Rating File: \\base\root\homedir\CO2 Cycle H1 3.15.EDR Company: Team 9 Location: sCO2 Heat Exchanger Service of Unit: Hot s-CO2 Our Refe Our Reference: Item No.: H1 Date: 03/15/16 Your Reference: Rev No.: Job No.:

Overall Summary

1	Size 20 X	144	in	Туре	BEM I	Hor	Connected in	3 parallel	1 series	
2	Surf/Unit (gross/eff/finned	i)	1597.5	/ 1320.2	/	ft	² She ll s/unit 3	•		
3	Surf/Shell (gross/eff/finne	d)	532.5	/ 440.1	1	ft ^a	2			
4	Design (Sizing)			PE	RFORMAN	ICE OF ONE	UNIT			
5			Sh	ell Side	Т	ube Side	Heat Transfer P	arameters		
6	Process Data		In	Out	In	Out	Total heat load	c	cal/s	3185235
7	Total flow	b/h	952	381	47	6190	Eff. MTD/ 1 pass	MTD	°F 220.79	/ 258.78
8	Vapor	b/h	952381	952381	476190	476190	Actual/Reqd are	a ratio - fouled/clean	1.05	/ 1.05
9	Liquid	lb/h	0	0	0	0				
10	Noncondensable	b/h	(0		0	Coef /Resist	BTU/(h-ft²-F)	ft²-h-F/	BTU %
11	Cond./Evap.	lb/h	(0		0	Overall fouled	163.93	0.0061	
12	Temperature	°F	1148	1310	1652	1338.76	Overall clean	163.93	0.0061	
13	Dew / Bubble point	°F					Tube side fi l m	323.1	0.0031	50.74
14	Quality		1	1	1	1	Tube side fouling	a la	0	0
15	Pressure (abs)	psi	1160.3	1145.74	1116.79	1102.72	Tube wa	2433.89	0.0004	6.74
16	DeltaP allow/cal	psi	15	14.56	15	14.07	Outside fouling		0	0
17	Velocity	ft/s	68.76	76.6	87.33	72.7	Outside film	385.47	0.0026	42.53
18	Liquid Properties						Shell Side Pres	sure Drop	psi	%
19	Density	b/ft ³					Inlet nozzle		0.34	2.33
20	Viscosity	ср					InletspaceXflow		1.71	11.79
21	Specific heat	BTU/(lb-F)					Baffle Xflow		5.99	41.29
22	Therm. cond.	BTU/(ft-h-F)					Baffle window		4.24	29.22
23	Surface tension	lbf/ft					OutletspaceXflov	N	1.86	12.79
24	Molecular weight						Outlet nozzle		0.38	2.59
25	Vapor Properties						Intermediate noz	zles		
26	Density	b/ft ³	2.961	2.656	2.17	2.515	Tube Side Pres	sure Drop	psi	%
27	Viscosity	ср	0.0372	0.0397	0.0405	0.04	Inlet nozzle		0.28	1.91
28	Specific heat	BTU/(lb-F)	0.2961	0.3006	0.3009	0.3011	Entering tubes		1.65	11.33
29	Therm. cond.	BTU/(ft-h-F)	0.037	0.04	0.041	0.041	Inside tubes		10.25	70.37
30	Molecular weight		44.01	44.01	44.01	44.01	Exiting tubes		2.21	15.17
31	Two-Phase Properties						Outlet nozzle		0.18	1.22
32	Latent heat	BTU/lb					Intermediate noz	zes		
33	Heat Transfer Paramete	rs					Velocity /	Rho*V2	ft/s	b/(ft-s²)
34	Reynolds No. vapor		509238.3	477195.3	359406.1	363812.1	Shell nozzle inle	t 2	26.27	2043
35	Reynolds No. liquid						Shell bundle Xflo	w 68.7	6 76.6	
36	Prandtl No. vapor		0.72	0.72	0.71	0.72	Shell baffle wind	ow 55.8	3 62.2	
37	Prandtl No. liquid		_				Shell nozzle out	et 2	29.28	2278
38	Heat Load		E	3TU/h		BTU/h	Shell nozzle inte	rm		
39	Vapor only		4604	8110	-449	960150			ft/s	lb/(ft-s ²)
40	2-Phase vapor		(0		0	Tube nozzle inle	t 3	36.34	2865
41	Latent heat		(0		0	Tubes	87.3	3 72.7	
42	2-Phase liquid		(0		0	Tube nozzle out	et 3	31.34	2471
43	Liquid only			0		0	lube nozzle inte	rm		
44	Tubes			-	Bames	<u>.</u>	Noz	zles: (No./OD)	.	
45	Type			Plain	Type	Single segr	nental	Shell	Side	Tube Side
46		in C	10 /	0.75	Number	047	4 Inlet	. in 1 /	18	1 / 12.75
47	Length act/eff	π	12 /	9.9167	Cut(%d)	34.7	Out	et 1 /	18	1 / 12.75
48	Tube passes		2		Cut orient	ation	H Inter	mediate /	N	/
49		2	220		Spacing:	c/c in	15.5 Impi	ngement protection	None	
50	Tube pattern		30		Spacing a	atiniet in	36.25			
51	i upe pitch	in 0.	9315	NL	Spacing a	a outlet in	36.25			
52	Insert			None						
53	vibration problem		Yes	/ No			Rho	v2 violation		Yes

Shell & Tube V8.8

Aspen Exchanger Design and Rating File: \\base\root\homedir\CO2 Cycle H2 3.15.EDR Company: Team 9 Location: CO2 Heat Exchanger Service of Unit: Hot s-CO2 Our Refe Item No.: H2 Your Reference: Date: 3/15/16 Rev No.: Job No.: Our Reference: Your Reference:

Printed: 4/3/2016 at 8:47:29 PM

Overall Summary

1	Size 20 X	72	in	Туре	BEM H	lor	Connected in	3 parallel 1	series	
2	Surf/Unit (gross/eff/finned	I)	795.2	/ 698.6	/	ft ^a	2 She ll s/unit	3		
з	Surf/Shell (gross/eff/finne	d)	265.1	/ 232.9	1	ft ^a	2			
4	Design (Sizing)			PE	RFORMAN	CE OF ONE	UNIT			
5			Sh	ell Side	Tu	ibe Side	Heat Transfer	Parameters		
6	Process Data		In	Out	In	Out	Total heat load	BTU	J/h	6521279
7	Total flow	b/h	9523	381	476	5190	Eff. MTD/ 1 pas	ss MTD	°F 107.64	/ 107.65
8	Vapor	lb/h	952381	952381	476190	476190	Actual/Reqd ar	ea ratio - fouled/clean	1.54	/ 1.54
9	Liquid	b/h	0	0	0	0				
10	Noncondensable	lb/h	C)		0	Coef./Resist.	BTU/(h-ft²-F)	ft²-h-F/	BTU %
11	Cond./Evap.	lb/h	C)		0	Overall fouled	133.49	0.0075	
12	Temperature	°F	1196.6	1220	1338.8	1293.8	Overall clean	133.49	0.0075	
13	Dew / Bubble point	°F					Tube side film	252.23	0.004	52.93
14	Quality		1	1	1	1	Tube side fouli	ng	0	0
15	Pressure (abs)	psi	797.71	783.76	1116.79	1109.59	Tube wall	803.85	0.0012	16.61
16	DeltaP allow/cal	psi	15	13.95	15	7.2	Outside fouling		0	0
17	Velocity	ft/s	105.93	109.19	79.96	78.46	Outside film	438.17	0.0023	30.47
18	Liquid Properties						Shell Side Pre	ssure Drop	psi	%
19	Density	b/ft ³					Inlet nozzle		0.52	3.74
20	Viscosity	ср					InletspaceXflow	v	3.29	23.65
21	Specific heat	BTU/(lb-F)					Baffle Xflow		3.92	28.15
22	Therm. cond.	BTU/(ft-h-F)					Baffle window		2.28	16.35
23	Surface tension	lbf/ft					OutletspaceXfl	ow	3.36	24.16
24	Molecular weight						Outlet nozzle		0.55	3.95
25	Vapor Properties						Intermediate no	ozzles		
26	Density	b/ft ³	1.976	1.914	2.547	2.596	Tube Side Pre	ssure Drop	psi	%
27	Viscosity	ср	0.0377	0.038	0.04	0.0394	Inlet nozzle		0.25	3.38
28	Specific heat	BTU/(lb-F)	0.2958	0.2966	0.3011	0.3	Entering tubes		0.88	12.08
29	Therm. cond.	BTU/(ft-h-F)	0.037	0.038	0.041	0.04	Inside tubes		4.41	60.55
30	Molecular weight		44.01	44.01	44.01	44.01	Exiting tubes		1.61	22.12
31	Two-Phase Properties						Outlet nozzle		0.14	1.87
32	Latent heat	BTU/lb					Intermediate no	ozzles		
33	Heat Transfer Paramete	rs					Velocity /	Rho*V2	ft/s	Ib/(ft-s²)
34	Reynolds No. vapor		516432.9	511366	264945.4	269282.7	Shell nozzle in	et 39	9.37	3062
35	Reynolds No. liquid						Shell bundle Xi	low 105.93	3 109.19	
36	Prandtl No. vapor		0.72	0.72	0.72	0.72	Shell baffle win	dow 99.05	102.1	
37	Prandtl No. liquid		_				Shell nozzle ou	itlet 40	0.63	3160
38	Heat Load		B	TU/h		BIU/h	Shell nozzle inf	erm		
39	Vapor only		6601	538	-644	1028			ft/s	Ib/(ft-s ²)
40	2-Phase vapor		C)		0	Tube nozzle in	let 30	0.95	2440
41	Latent heat		C	1		0	Tubes	/9.96	78.46	0005
42	2-Phase liquid		C)		0	Tube nozzle ou	itlet 30	0.37	2395
43	Liquid only		C)		0	Tube nozzle ini	term		
44	Tubes			.	Bamles	o: I	NC	zzles: (No./OD)		
45	Type			Plain	Туре	Single segr	nental	Snell Si	de	
46		in C	0.42 /	U./5		00.04	∠ Ini	et IN 1 /	10	1 / 12.75
47	Length act/eff	π	o /	5.2708	Cut(%d)	28.34		nier 1 /	IB	1 / 12.75
48	Tube passes		1		Cut orienta		11 75 Int	ermediate /	NI	1
49	Tube no.	2	220 00		Spacing: C	vo in Lindat in	11.75 Im	pingement protection	ivone	
50	Tube pattern	in Or	0075		Spacing at	tinniet in teutlet i≂	20.75			
51	rube pitch	in 0.9	9375	N	opacing at	ioutiet in	25.75			
52			¥	NONE	•			a)/0 violation		¥
53	vibration problem		Yes	/ NO			Rh	iov2 violation		Yes
Shell & Tube V8.8

Aspen Exchanger Design and Rating File: \\base\root\homedir\CO2 Cycle H3 3.15.EDR Company: Team 9 Location: s-CO2 Heat Exchanger Service of Unit: HOT s-CO2 Our Ref Item No.: H3 Your Reference: Date: 3/15/16 Rev No.: Job No.: Our Reference:

Printed: 4/3/2016 at 8:48:28 PM

Overall Summary

1	Size 32 X	216	in	Туре	BEM H	lor	Connected	in 4	parallel	2 series	
2	Surf/Unit (gross/eff/finne	d)	12751.7	/ 11666.9	/	fť	² Shells/unit	8			
3	Surf/Shell (gross/eff/finne	ed)	1594	/ 1458.4	/	ft [;]	2				
4	Design (Sizing)			PE	RFORMAN	ICE OF ONE	UNIT				
5			Sh	ell Side	π	ube Side	Heat Trans	fer Parameters	5		
6	Process Data		In	Out	In	Out	Total heat	oad		cal/s	1526880
7	Total flow	lb/h	952	381	47	6190	Eff. MTD/ 1	pass MTD		°F 28.51	/ 28.46
8	Vapor	b/h	952381	952381	476190	476190	Actual/Req	d area ratio - fo	uled/clean	1	/ 1
9	Liquid	b/h	0	0	0	0					
10	Noncondensable	b/h	C)		0	Coef./Resi	st. B	TU/(h-ft²-F	F) ft ² -h-F/	BTU %
11	Cond./Evap.	b/h	C)		0	Overall fou	ed 6	65.72	0.0152	
12	Temperature	°F	1133.6	1211	1293.8	1139	Overall clea	an 6	65.72	0.0152	
13	Dew / Bubble point	°F					Tube side f	ilm 1	12.44	0.0089	58.45
14	Quality		1	1	1	1	Tube side f	ouling		0	0
15	Pressure (abs)	psi	594.65	586.22	1116.79	1111.17	Tube wall	7	77.88	0.0013	8.45
16	DeltaP allow/cal	psi	15	8.44	15	5.62	Outside fou	uling		0	0
17	Velocity	ft/s	16.55	17.59	29.17	26.73	Outside filn	n 1	98.51	0.005	33.1
18	Liquid Properties						Shell Side	Pressure Drop)	psi	%
19	Density	lb/ft ³					Inlet nozzle			0.2	2.39
20	Viscosity	ср					Inletspace?	Ktlow		0.96	11.43
21	Specific heat	BIU/(ID-F)					Baffle Xflov	v		3.8	45.01
22	Therm. cond.	BIU/(ft-n-F)					Baffle wind	ow		1.48	17.6
23	Surface tension	D1/IT					Outletspac	extiow		0.99	11.75
24	Noiecular weight						Outlet nozz			0.3	3.56
25	vapor Properties	16.442	4 504	1 400	0.010	0.054	Intermediat	e nozzles Brazera Braz		0.7	8.26
26	Viegosity	ID/II ³	1.531	0.0279	2.613	2.851	Iube Side	Pressure Drop		psi	% E 0 E
27	Specific heat		0.0305	0.0376	0.0394	0.037	Entoring tu	; boo		0.3	5.35
20	Therm cond	BTU/(fb-F)	0.2320	0.2300	0.0	0.2355	Inside tube	6		4.17	73.65
30	Molecular weight	B10/(it-ii-i)	44.01	44.01	44.01	44.01	Exiting tube	3 20		4.17 0.41	7 32
31	Two-Phase Properties		44.01	44.01	44.01	44.01	Outlet noza			0.41	2.28
32	Latent heat	BTU/b					Intermediat	e nozzles		0.10	7.3
33	Heat Transfer Paramete	ers					Velocity	/ Bho*V2		ft/s	/.c
34	Revnolds No. vapor		64566.05	62417.5	100758	107351.8	Shell nozzl	e inlet		29.09	1296
35	Revnolds No. liquid						Shell bund	e Xflow	16.	55 17.59	
36	Prandtl No. vapor		0.72	0.72	0.72	0.72	Shell baffle	window	26.	08 27.71	
37	Prandtl No. liquid						Shell nozz	e outlet		45.8	3020
38	Heat Load		E	STU/h		BTU/h	Shell nozz	e interm		43.78	2887
39	Vapor only		2167	1180	-219	54680				ft/s	lb/(ft-s²)
40	2-Phase vapor		C)		0	Tube nozz	e inlet		32.12	2695
41	Latent heat		C)		0	Tubes		29.	17 26.73	
42	2-Phase liquid		C)		0	Tube nozz	e outlet		29.43	2470
43	Liquid only		C)		0	Tube nozz	e interm		29.93	2512
44	Tubes				Baffles			Nozzles: (No.	/OD)		
45	Туре			Plain	Туре	Single segr	nental		She	Side	Tube Side
46	ID/OD	in C).42 /	0.75	Number		6	Inlet	in 1	/ 20	1 / 10.75
47	Length act/eff	ft	18 /	16.4688	Cut(%d)	39.85		Outlet	1	/ 16	1 / 10.75
48	Tube passes		1		Cut orienta	ation	н	Intermediate	1	/ 16	1 / 10.75
49	Tube No.	4	451		Spacing: o	c/c in	27	Impingement p	protection	None	
50	Tube pattern		30		Spacing a	t inlet in	31.3125				
51	Tube pitch	in 0.	9375		Spacing a	t outlet in	31.3125				
52	Insert			None							
53	Vibration problem		Yes	/ No				RhoV2 violatio	'n		No

Shell & Tube V8.8

Aspen Exchanger Design and Rating File: \\base\root\homedir\CO2 Cycle H4 3.15.EDR Company: Team 9 Location: s-CO2 cycle Service of Unit: s-CO2 Item No.: H4 Date: 3/15/16 Rev No.: Job No.: Our Reference: Your Reference:

Printed: 4/3/2016 at 8:49:36 PM

Overall Summary

1	Size 44 X	288	in	Туре	BEM	Hor	Connected in	5 pa	arallel 5	series		
2	Surf/Unit (gross/eff/finned	i)	213353.2	/ :01592.	/	f	² She ll s/unit	25				
з	Surf/Shell (gross/eff/finne	d)	8534.1	/ 8063.7	/	f	2					
4	Design (Sizing)			PE	RFORMA	NCE OF ONE	UNIT					
5			Sh	ell Side	Т	ube Side	Heat Transfe	er Parameters				
6	Process Data		In	Out	In	Out	Total heat loa	d	BTU/	h 2	2649834	00
7	Total flow	lb/h	952	381	95	52381	Eff. MTD/ 1 p	ass MTD	0	F 45.44	/ 4	5.4
8	Vapor	b/h	952381	952381	952381	952381	Actual/Reqd	area ratio - fou l e	d/c l ean	1.01	/ 1	.01
9	Liquid	b/h	0	0	0	0						
10	Noncondensable	lb/h	()		0	Coef./Resist	. BTU	/(h-ft²-F)	ft²-h-F/	ΒTU	%
11	Cond./Evap.	lb/h	()		0	Overall fouled	29.3	35	0.0341		
12	Temperature	°F	176.26	1148.72	1211.8	190.98	Overall clean	29.	35	0.0341		
13	Dew / Bubble point	°F					Tube side filn	n 40.	09	0.0249	73	3.22
14	Quality		1	1	1	1	Tube side fou	ling		0		0
15	Pressure (abs)	psi	1160.3	1147.24	592.04	588.68	Tube wall	854	.49	0.0012	3	.44
16	DeltaP allow/cal	psi	15	13.07	15	3.36	Outside foulir	ng		0		0
17	Velocity	ft/s	4.92	17.16	15.87	5.48	Outside film	125	.71	0.008	23	3.35
18	Liquid Properties						Shell Side P	ressure Drop		psi		%
19	Density	b/ft ³					Inlet nozzle			0.16	1	.19
20	Viscosity	ср					InletspaceXfl	ow		0.63	4	.85
21	Specific heat	BTU/(lb-F)					Baffle Xflow			7.63	5	8.5
22	Therm. cond.	BTU/(ft-h-F)					Baffle windov	v		1.55	11	1.89
23	Surface tension	bf/ft					OutletspaceX	flow		0.8	6	.11
24	Molecular weight						Outlet nozzle			0.19	1	.42
25	Vapor Properties						Intermediate	nozzles		2.09	16	5.04
26	Density	b/ft ³	10.204	2.926	1.453	4.204	Tube Side P	ressure Drop		psi		%
27	Viscosity	ср	0.0235	0.0372	0.0378	0.0213	Inlet nozzle			0.21	6	.19
28	Specific heat	BTU/(lb-F)	0.3111	0.296	0.2954	0.2627	Entering tube	s		0.07	1	.96
29	Therm cond	BTU/(ft-h-F)	0.018	0.037	0.038	0.016	Inside tubes			1.56	45	5.59
30	Molecular weight		44.01	44.01	44.01	44.01	Exiting tubes			0.1	2	.82
31	Two-Phase Properties						Outlet nozzle			0.17	5	.05
32	Latent heat	BTU/Ib					Intermediate	nozzles		1.31	3	8.4
33	Heat Transfer Paramete	rs	1001715	105007 1		0.1700 7	Velocity	/ Rho*V2		ft/s	Ib/	(ft-s²)
34	Reynolds No. vapor		198474.5	125637.4	36492.2	1 64703.7	Shell nozzle i	niet	9.2	17 10	87	/
35	Reynolds No. liquid		0.00	0.70	0.70	0.05	Shell bundle	XIIOW indow	4.92	10.47		
30	Prandt No. Vapor		0.96	0.72	0.72	0.65	Shell partle w	autlet	3.60	13.47	110	
20	Heat Load			atu/b		RTU/b	Shell nozzle i	ntorm	20	.~ 07	246	14 16
30	Vapor only		2630,	12800	-066	124100	Shell HUZZIE I	molili	20.	ft/e	240 Ih/	(ft_c2)
40	2-Phase vapor		20384	, 1	-200	0	Tube pozzla	inlet	26	3	101	5
40	Latent heat		(,		0	Tubes	in et	15.87	5/8	131	5
42	2-Phase liquid		(, 1		0	Tube nozzle (outlet	10.07	1	331	٩
43			(, 1		0	Tube nozzle i	interm	39	22	272	5 97
44	Tubes			,	Baffles	0		lozzles: (No /O[.00.		212	. /
45	Type			Plain	Type	Sinale sea	mental		Shell Sid	e	Tube S	ide
46	1)po	in 0	482 /	0.75	Number	onigio oog	12 1	nlet ir	n 1 / 1	2 75	1 /	16
47	Length act/eff	ft	24 /	22 6771	Cut(%d)	29.7		Dutlet	1 /	16	1 /	10 75
48	Tube passes		1 1		Cut orien	tation	н	ntermediate	1 / 1	2.75	1 /	14
49	Tube No.	1	811		Spacing	c/c in	18.25	mpingement prot	tection	None		
50	Tube pattern		30		Spacing :	at inlet in	35,6875	,				
51	Tube pitch	in 0	9375		Spacing a	at outlet in	35,6875					
52	Insert	•.		None								
53	Vibration problem		Yes	/ <u>N</u> o			F	RhoV2 violation				No

Shell & Tube V8.8

Aspen Exchanger Design and Rating File: \\base\root\homedir\CO2 Cycle H5 3.15.EDR Company: Team 9 Location: s-CO2 Cycle Service of Unit: s-CO2+Water Our F Item No.: H5 Your Reference: Date: 3/15/16 Rev No.: Job No.: Our Reference: Your Reference: Job No.:

Printed: 4/3/2016 at 8:50:20 PM

Overall Summary

1	Size 32 X	240	in	Туре	BEM I	Hor	Connected i	n 1 paralle	2 series	
2	Surf/Unit (gross/eff/finned	I)	6683.7	/ 6495.8	/	ft	² Shells/unit	2		
з	Surf/Shell (gross/eff/finne	d)	3341.9	/ 3247.9	1	ft	2			
4	Design (Sizing)			PE	RFORMAN	ICE OF ONE	UNIT			
5			Sh	ell Side	Т	ube Side	Heat Trans	er Parameters		
6	Process Data		In	Out	In	Out	Total heat lo	ad	cal/s	1664240
7	Total flow	b/h	1190	476	95	2381	Eff. MTD/ 1	pass MTD	°F 21.77	/ 21.52
8	Vapor	b/h	0	0	952381	952381	Actual/Reqc	area ratio - fouled/clea	an 1.02	/ 1.02
9	Liquid	lb/h	1190476	1190476	0	0				
10	Noncondensable	lb/h	C	1		0	Coef./Resis	t. BTU/(h-ft	²-F) ft²-h-F/	BTU %
11	Cond./Evap.	lb/h	C	1		0	Overall foul	ed 172.01	0.0058	
12	Temperature	°F	80.6	98.6	183.2	82.65	Overall clea	n 172.01	0.0058	
13	Dew / Bubble point	°F					Tube side fi	m 202.36	0.0049	85
14	Quality		0	0	1	1	Tube side fo	uling	0	0
15	Pressure (abs)	psi	420.61	405.78	594.65	586.86	Tube wall	3795.19	0.0003	4.53
16	DeltaP allow/cal	psi	15	14.83	15	7.79	Outside fou	ing	0	0
17	Velocity	ft/s	4.97	4.98	38.6	29.19	Outside film	1643.92	0.0006	10.46
18	Liquid Properties						Shell Side	Pressure Drop	psi	%
19	Density	b/ft ³	62.299	62.147			Inlet nozzle		0.19	1.28
20	Viscosity	ср	0.8561	0.6917			InletspaceX	low	1.37	9.22
21	Specific heat	BTU/(lb-F)	1.001	1.0004			Baffle Xflow		8.4	56.65
22	Therm. cond.	BTU/(ft-h-F)	0.348	0.356			Baffle windo	w	2.14	14.4
23	Surface tension	bf/ft					Outletspace	Xflow	1.34	9.03
24	Molecular weight		18.01	18.01			Outlet nozz	e	0.49	3.31
25	Vapor Properties						Intermediate	e nozzles	0.9	6.1
26	Density	b/ft ³			4.33	5.726	Tube Side F	Pressure Drop	psi	%
27	Viscosity	ср			0.0212	0.0188	Inlet nozzle		0.27	3.33
28	Specific heat	BTU/(lb-F)			0.264	0.2865	Entering tub	es	0.61	7.54
29	Therm. cond.	BTU/(ft-h-F)			0.016	0.014	Inside tubes		5.88	72.25
30	Molecular weight				44.01	44.01	Exiting tube	S	0.82	10.12
31	Two-Phase Properties						Outlet nozz	e	0.19	2.37
32	Latent heat	BTU/lb					Intermediate	e nozzles	0.36	4.4
33	Heat Transfer Paramete	rs					Velocity	/ Rho*V2	ft/s	lb/(ft-s²)
34	Reynolds No. vapor				572261	642173.8	Shell nozzle	inlet	4.18	1091
35	Reynolds No. liquid		33639.77	41637.09			Shell bundle	Xflow	4.97 4.98	
36	Prandtl No. vapor				0.85	0.91	Shell baffle	window	4.55 4.56	
37	Prandtl No. liquid		5.95	4.7			Shell nozzle	outlet	6.78	2853
38	Heat Load		В	TU/h		BTU/h	Shell nozzle	interm	6.76	2847
39	Vapor only		C		-261	07750	L		ft/s	Ib/(ft-s ²)
40	2-Phase vapor		C			0	Tube nozzle	inlet	25.4	2794
41	Latent heat		C			0	Tubes		38.6 29.19	
42	2-Phase liquid		C) 		0	Tube nozzle	outlet	23.47	3153
43	Liquid only		2144	2760		0	Tube nozzle	interm	20.01	2201
44	Tubes			DI :	Battles	0. 1		Nozzles: (No./OD)		T 1. 011
45	Type			Plain	Type	Single segr	nental	Sh	ell Side	Tube Side
46		in 0	.584 /	0.75	Number	<u> </u>	8	iniet in 1	/ 16	1 / 22
47	Length act/eff	tt	20 /	19.4375	Cut(%d)	39.85		Outlet 1	/ 12.75	1 / 20
48	Tube passes		1		Cut orient	ation	H	Intermediate 1	/ 12.75	1 / 22
49	Tube No.	8	351		Spacing:	c/c in	23.25	Impingement protectio	n None	
50	Tube pattern		30		Spacing a	utinilet in	35.25			
51	i ube pitch	in 0.	9375		Spacing a	atoutlet in	35.25			
52	Insert			None						
53	vibration problem		Yes	/ No				Rnov2 violation		No

Shell & Tube V8.8

Aspen Exchanger Design and RatingFile: \\base\root\homedir\CO2 Cycle H6.EDR
Company: Team 9
Location:Service of Unit: s-CO2 + WaterOur
Your Reference:Item No.: H6Your Reference:Date: 3/15/16Rev No.:Job No.: Our Reference: Your Reference: Job No.:

Overall Summary

1	Size 21 X	72	in	Туре	ВЕМ Н	or	Connected in	1 para	el 1 series	
2	Surf/Unit (gross/eff/finned	1)	331	/ 306.3	/	ft ^a	2 She ll s/unit	1		
3	Surf/Shell (gross/eff/finne	d)	331	/ 306.3	1	ft [;]	2			
4	Design (Sizing)			PE	RFORMAN	CE OF ONE	UNIT			
5			Sh	ell Side	Tu	be Side	Heat Transfe	r Parameters		
6	Process Data		In	Out	In	Out	Total heat load	t	BTU/h	2355492
7	Total flow	b/h	1190	476	952	2381	Eff. MTD/ 1 pa	ass MTD	°F 53.91	/ 53.91
8	Vapor	b/h	0	0	952381	952381	Actual/Reqd a	rea ratio - fouled/cle	ean 2.72	/ 2.72
9	Liquid	b/h	1190476	1190476	0	0				
10	Noncondensable	b/h	C)	(0	Coef./Resist.	BTU/(h-	ft ² -F) ft ² -h-F/	BTU %
11	Cond./Evap.	b/h	C)	(0	Overall fouled	387.32	0.0026	
12	Temperature	°F	80.6	82.4	140	130.97	Overall clean	387.32	0.0026	
13	Dew / Bubble point	°F					Tube side film	523.77	0.0019	73.95
14	Quality		0	0	1	1	Tube side fou	ing	0	0
15	Pressure (abs)	psi	420.61	412.38	870.23	860.43	Tube wall	3792.77	0.0003	10.21
16	DeltaP allow/cal	psi	15	8.23	15	9.8	Outside foulin	g	0	0
17	Velocity	ft/s	14.73	14.73	64.3	63.08	Outside film	2445.14	0.0004	15.84
18	Liquid Properties						Shell Side Pr	essure Drop	psi	%
19	Density	b/ft ³	62.298	62.286			Inlet nozzle		0.21	2.52
20	Viscosity	ср	0.8566	0.8371			InletspaceXflo	w	1.98	24.02
21	Specific heat	BTU/(lb-F)	1.001	1.001			Baffle Xflow		2.7	32.81
22	Therm. cond.	BTU/(ft-h-F)	0.348	0.349			Baffle window		0.98	11.9
23	Surface tension	bf/ft					OutletspaceXI	low	1.97	23.96
24	Molecular weight		18.01	18.01			Outlet nozzle		0.39	4.79
25	Vapor Properties						Intermediate r	lozzles		
26	Density	b/ft ³			7.872	8.023	Tube Side Pro	essure Drop	psi	%
27	Viscosity	ср			0.0214	0.0213	Inlet nozzle		0.62	6.23
28	Specific heat	BIU/(Ib-F)			0.2981	0.3004	Entering tubes	6	1.74	17.36
29	Therm cond	BTU/(ft-h-F)			0.017	0.017	Inside tubes		4.57	45.68
30	Molecular weight				44.01	44.01	Exiting tubes		2.63	26.32
31	Iwo-Phase Properties	DTUM					Outlet nozzle		0.44	4.4
32	Latent neat	BTU/ID					Intermediate r	lozzies	f+ / -	11- ((44 - 2)
33	Heat Transfer Paramete	rs			1700011	1704000	velocity /	Rho^v2	π/s	ID/(ft-S ²)
34	Reynolds No. Vapor		00000.05	101050.0	1709314	1724063	Shell hozzle in	net Manua	4.18	1091
35	Reynolds No. Ilquid		99630.05	101952.9	0.00	0.00	Shell bundle A	ndow	14.73 14.73	
30	Prandti No. Vapor		E 05	E 0	0.92	0.93	Shell partie of	utlot	12.53 12.53	0946
38	Heat Load		0.90 E	0.0 TLI/b		STU/b	Shell nozzle ir	nterm	0.70	2040
30	Vanor only			10/11	-256	6049	Shell Hozzle II	literini	ft/e	b/(ft-c ²)
40	2-Phase vanor		, ,	,)	-200	00 4 3 N	Tube nozzle ir	let	28 56	6422
41	Latent heat		((,)		n	Tubes	101	64.3 63.08	0722
42	2-Phase liquid			,)		'n	Tube nozzle o	utlet	28.02	6299
43			2144	, 1935	Ì	n	Tube nozzle ir	nterm	20.02	0200
44	Tubes		214-	1000	Baffles	0	N	ozzles: (No./OD)		
45	Type			Plain	Type	Single sear	nental	s	shell Side	Tube Side
46	D/OD	in 0	.584 /	0.75	Number		2 In	let in 1	/ 16	1 / 16
47	Length act/eff	ft	6 /	5.5521	Cut(%d)	25.5		utlet 1	/ 12.75	1 / 16
48	Tube passes		1		Cut orienta	ution	H In	termediate	/	
49	Tube No.	\$	281		Spacing: 0	/c in	11 In	npingement protecti	on None	
50	Tube pattern	-	30		Spacing at	inlet in	27.8125			
51	Tube pitch	in 0.9	9375		Spacing at	outlet in	27.8125			
52	Insert			None						
53	Vibration problem		ossib	E/ No			В	hoV2 violation		No

Printed: 4/3/2016 at 8:51:12 PM

Appendix D. Aspen Block Results

D.1 Helium Process

BLOCK: IHX1 MODEL: MHEATX _____ HOT SIDE: INLET STREAM OUTLET STREAM -----HOT1 6 COLD SIDE: INLET STREAM OUTLET STREAM -----COLD1 2 PROPERTIES FOR STREAM HOT1 PROPERTY OPTION SET: PENG-ROB STANDARD PR EQUATION OF STATE PROPERTIES FOR STREAM COLD1 PROPERTY OPTION SET: PENG-ROB STANDARD PR EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 210193. 210193. 0.00000 MASS(KG/HR) 841320. 841320. 0.00000 ENTHALPY(CAL/SEC) 0.182024E+09 0.182024E+09 -0.163727E-15 *** INPUT DATA *** SPECIFICATIONS FOR STREAM HOT1 : ONE PHASE TP FLASH SPECIFIED PHASE IS VAPOR SPECIFIED TEMPERATURE С 509.200 SPECIFIED PRESSURE 7.59000 BAR MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 SPECIFICATIONS FOR STREAM COLD1 : TWO PHASE FLASH PRESSURE DROP BAR 0.0 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 *** **RESULTS** *** INLET OUTLET OUTLET OUTLET STREAM DUTY TEMPERATURE PRESSURE VAPOR FRAC CAL/SEC C BAR HOT1 -0.62108E+08 509.20 7.5900 1.0000 COLD1 0.62108E+08 817.68 79.000 1.0000 _____ HOT1 6 ----->| 0.11396E+06 KMOL/HR |-----> | 509.20 900.00

2 | COLD1 <------| 96237. KMOL/HR |<------817.68 | | 350.00

*** INTERNAL ANALYSIS ***

FLOW IS COUNTERCURRENT. DUTY 0.62108E+08 CAL/SEC UA 0.53262E+06 CAL/SEC-K AVERAGE LMTD (DUTY/UA) 116.61 C 82.317 C MIN TEMP APPROACH HOT-SIDE TEMP APPROACH 82.317 C COLD-SIDE TEMP APPROACH 159.20 C HOT-SIDE NTU 3.3514 COLD-SIDE NTU 4.0107

DUTY T HOT T COLD DELTA T LMTD UA ZONE Q ZONE UA PINCH STREAM IN/OUT/DEW/

POINT BUBBLE POINT

CAL/SEC C C C C CAL/SEC-K CAL/SEC CAL/SEC-K

0.000 509.20 350.00 159.20

0.1035E+08574.36427.92146.43152.730.6778E+050.1035E+080.6778E+050.2070E+08639.50505.86133.64139.940.7397E+050.1035E+080.1417E+060.3105E+08704.64583.81120.83127.130.8142E+050.1035E+080.2232E+060.4141E+08769.77661.76108.00114.300.9056E+050.1035E+080.3137E+060.5176E+08834.89739.7295.17101.450.1020E+060.1035E+080.4158E+060.6211E+08900.00817.6882.3288.590.1169E+060.1035E+080.5326E+06GBL

GBL = GLOBAL LOC = LOCAL DP = DEW POINT BP = BUBBLE POINT

BLOCK: IHX1 MODEL: MHEATX

COLD SIDE: INLET STREAM OUTLET STREAM

COLD1 2

PROPERTIES FOR STREAM HOT1 PROPERTY OPTION SET: PENG-ROB STANDARD PR EQUATION OF STATE

PROPERTIES FOR STREAM COLD1 PROPERTY OPTION SET: PENG-ROB STANDARD PR EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(KMOL/HR)
 210193.
 210193.
 0.00000

 MASS(KG/HR)
 841320.
 841320.
 0.00000

 ENTHALPY(CAL/SEC)
 0.182024E+09
 0.182024E+09
 -0.163727E-15

*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR

*** INPUT DATA ***

SPECIFICATIONS FOR STREAM HOT1:ONEPHASE TP FLASHSPECIFIED PHASE ISVAPORSPECIFIED TEMPERATUREC509.200SPECIFIED PRESSUREBAR7.59000MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

SPECIFICATIONS FOR STREAM COLD1 :TWO PHASE FLASHPRESSURE DROPBAR0.0MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

*** RESULTS ***

INLET OUTLET OUTLET OUTLET STREAM DUTY TEMPERATURE PRESSURE VAPOR FRAC CAL/SEC C BAR

HOT1	-0.62108E+08	509.20	7.5900	1.0000
COLD1	0.62108E+08	817.68	79.000	1.0000

 HOT1 > 900.00	0.11396E	+06 KMOL/HR	 6 > 509.20
2 < 817.68 	96237.	KMOL/HR	COLD1 < 350.00

*** INTERNAL ANALYSIS ***

FLOW IS COUNTER	CURRENT.		
DUTY	0.62108E+	08 CAL/SI	EC
UA	0.53262E+06	5 CAL/SEC	С-К
AVERAGE LMTD (I	DUTY/UA)	116.6	1 C
MIN TEMP APPROA	ACH	82.317	С
HOT-SIDE TEMP A	PPROACH	82.317	7 C
COLD-SIDE TEMP A	APPROACH	159.2	20 C
HOT-SIDE NTU	3.351	14	
COLD-SIDE NTU	4.01	07	

THOT TCOLD DELTAT LMTD UAZONE QZONE UA DUTY PINCH STREAM IN/OUT/DEW/ POINT BUBBLE POINT CAL/SEC С С С C CAL/SEC-K CAL/SEC CAL/SEC-K 509.20 350.00 159.20 0.000 0.1035E+08 574.36 427.92 146.43 152.73 0.6778E+05 0.1035E+08 0.6778E+05 0.2070E+08 639.50 505.86 133.64 139.94 0.7397E+05 0.1035E+08 0.1417E+06 0.3105E+08 704.64 583.81 120.83 127.13 0.8142E+05 0.1035E+08 0.2232E+06 0.4141E+08 769.77 661.76 108.00 114.30 0.9056E+05 0.1035E+08 0.3137E+06 0.5176E+08 834.89 739.72 95.17 101.45 0.1020E+06 0.1035E+08 0.4158E+06 0.6211E+08 900.00 817.68 82.32 88.59 0.1169E+06 0.1035E+08 0.5326E+06 GBL GBL = GLOBAL LOC = LOCAL DP = DEW POINT BP = BUBBLE POINT BLOCK: RECP MODEL: MHEATX ------HOT SIDE: INLET STREAM OUTLET STREAM _____ HOTIN S23 COLD SIDE: INLET STREAM OUTLET STREAM _____ COLDIN COLD1 PROPERTIES FOR STREAM COLDIN PROPERTY OPTION SET: PENG-ROB STANDARD PR EQUATION OF STATE PROPERTIES FOR STREAM HOTIN PROPERTY OPTION SET: PENG-ROB STANDARD PR EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 192475. 192475. 0.00000 770400. 770400. MASS(KG/HR) 0.00000 0.648615E+08 0.648615E+08 0.00000 ENTHALPY(CAL/SEC) *** INPUT DATA *** SPECIFICATIONS FOR STREAM COLDIN : ONE PHASE TP FLASH SPECIFIED PHASE IS VAPOR SPECIFIED TEMPERATURE С 350.000 PRESSURE DROP BAR 0.0 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 SPECIFICATIONS FOR STREAM HOTIN : ONE PHASE FLASH SPECIFIED PHASE IS VAPOR PRESSURE DROP BAR 0.0 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 *** RESULTS *** OUTLET OUTLET OUTLET INLET

STREAM DUTY TEMPERATURE PRESSURE VAPOR FRAC CAL/SEC C BAR

COLDIN HOTIN	0.30148 -0 30148F	E+08 E+08	350.00 182.90	79.000 21.155	1.0000
nornv	0.501101	1100	102.90	21.133	1.0000
COLDIN				COLD1	
>	96237.	KM	OL/HR	>	
123.17				350.00	
S23				HOTIN	
<	96237.	KM	OL/HR	<	
182.90				409.97	

*** INTERNAL ANALYSIS ***

FLOW IS COUNTERCURRENT. DUTY -.30148E+08 CAL/SEC 0.50360E+06 CAL/SEC-K UA AVERAGE LMTD (DUTY/UA) 59.866 C MIN TEMP APPROACH 59.727 C 59.974 C HOT-SIDE TEMP APPROACH COLD-SIDE TEMP APPROACH 59.727 C HOT-SIDE NTU 3.7931 COLD-SIDE NTU 3.7890

DUTY T HOT T COLD DELTA T LMTD UA ZONE Q ZONE UA PINCH STREAM IN/OUT/DEW/

POINT BUBBLE POINT

CAL/SEC C C C C CAL/SEC-K CAL/SEC CAL/SEC-K

0.000 409.97 350.00 59.97

0.5025E+07372.12312.1859.9459.960.8380E+050.5025E+070.8380E+050.1005E+08334.27274.3659.9159.930.8385E+050.5025E+070.1676E+060.1507E+08296.43236.5559.8759.890.8390E+050.5025E+070.2515E+060.2010E+08258.58198.7559.8359.850.8395E+050.5025E+070.3355E+060.2512E+08220.74160.9559.7859.810.8402E+050.5025E+070.4195E+060.3015E+08182.90123.1759.7359.760.8409E+050.5025E+070.5036E+06GBL

GBL = GLOBAL LOC = LOCAL DP = DEW POINT BP = BUBBLE POINT

BLOCK: RECP MODEL: MHEATX

HOT SIDE: INLET STREAM OUTLET STREAM

------HOTIN \$23

COLD SIDE: INLET STREAM OUTLET STREAM

COLDIN COLD1

PROPERTIES FOR STREAM COLDIN PROPERTY OPTION SET: PENG-ROB STANDARD PR EQUATION OF STATE

PROPERTIES FOR STREAM HOTIN PROPERTY OPTION SET: PENG-ROB STANDARD PR EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(KMOL/HR)
 192475.
 192475.
 0.00000

 MASS(KG/HR)
 770400.
 770400.
 0.00000
 ENTHALPY(CAL/SEC)
 0.648615E+08
 0.648615E+08
 0.00000

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

SPECIFICATIONS FOR STREAM COLDIN :ONEPHASE TP FLASHSPECIFIED TEMPERATURECSPECIFIED TEMPERATURECSURE DROPBARMAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

SPECIFICATIONS FOR STREAM HOTIN :ONE PHASE FLASH SPECIFIED PHASE IS VAPORPRESSURE DROPBAR0.0MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

*** RESULTS ***

INLET OUTLET OUTLET OUTLET STREAM DUTY TEMPERATURE PRESSURE VAPOR FRAC CAL/SEC C BAR

COLDIN0.30148E+08350.0079.0001.0000HOTIN-0.30148E+08182.9021.1551.0000

*** INTERNAL ANALYSIS ***

FLOW IS COUNTERCURRENT.

DUTY -.30148E+08 CAL/SEC UA 0.50360E+06 CAL/SEC-K AVERAGE LMTD (DUTY/UA) 59.866 C MIN TEMP APPROACH 59.727 C 59.974 C HOT-SIDE TEMP APPROACH COLD-SIDE TEMP APPROACH 59.727 C HOT-SIDE NTU 3.7931 COLD-SIDE NTU 3.7890 THOT TCOLD DELTAT LMTD UAZONE QZONE UA DUTY PINCH STREAM IN/OUT/DEW/ POINT BUBBLE POINT CAL/SEC С С С C CAL/SEC-K CAL/SEC CAL/SEC-K 0.000 409.97 350.00 59.97 0.5025E+07 372.12 312.18 59.94 59.96 0.8380E+05 0.5025E+07 0.8380E+05 0.1005E+08 334.27 274.36 59.91 59.93 0.8385E+05 0.5025E+07 0.1676E+06 0.1507E+08 296.43 236.55 59.87 59.89 0.8390E+05 0.5025E+07 0.2515E+06 0.2010E+08 258.58 198.75 59.83 59.85 0.8395E+05 0.5025E+07 0.3355E+06 0.2512E+08 220.74 160.95 59.78 59.81 0.8402E+05 0.5025E+07 0.4195E+06 0.3015E+08 182.90 123.17 59.73 59.76 0.8409E+05 0.5025E+07 0.5036E+06 GBL GBL = GLOBAL LOC = LOCAL DP = DEW POINT BP = BUBBLE POINT BLOCK: B19 MODEL: HEATER -----S21 INLET STREAM: **OUTLET STREAM:** S22 PROPERTY OPTION SET: PENG-ROB STANDARD PR EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE MOLE(KMOL/HR) 96237.4 96237.4 0.00000 MASS(KG/HR) 385200. 385200. 0.00000 ENTHALPY(CAL/SEC) 0.707679E+07 0.355869E+07 0.497133 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR KG/HR PRODUCT STREAMS CO2E 0.00000 NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR 0.00000 TOTAL CO2E PRODUCTION KG/HR *** INPUT DATA *** TWO PHASE TP FLASH SPECIFIED TEMPERATURE С 50.0000 SPECIFIED PRESSURE BAR 35.5000 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 *** RESULTS *** OUTLET TEMPERATURE C 50.000 OUTLET PRESSURE BAR 35.500 HEAT DUTY CAL/SEC -0.35181E+07 OUTLET VAPOR FRACTION 1.0000

V-L PHASE EQUILIBRIUM :

COMP X(I) Y(I) K(I)F(I)1.0000 1.0000 HELIUM 1.0000 MISSING BLOCK: B20 MODEL: HEATER **INLET STREAM:** S11 **OUTLET STREAM:** S18 PROPERTY OPTION SET: PENG-ROB STANDARD PR EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE MOLE(KMOL/HR) 96237.4 96237.4 0.00000 MASS(KG/HR) 385200. 385200. 0.00000 ENTHALPY(CAL/SEC) 0.979256E+07 0.625629E+07 0.361119 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR *** INPUT DATA *** TWO PHASE TP FLASH SPECIFIED TEMPERATURE С 69.7000 SPECIFIED PRESSURE BAR 46.7000 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000

*** RESULTS ***OUTLET TEMPERATURE69.700OUTLET PRESSUREBAR46.700HEAT DUTYCAL/SEC-0.35363E+07OUTLET VAPOR FRACTION1.0000

V-L PHASE EQUILIBRIUM :

 COMP
 F(I)
 X(I)
 Y(I)
 K(I)

 HELIUM
 1.0000
 1.0000
 1.0000
 MISSING

BLOCK: B21 MODEL: HEATER

INLET STREAM: S19 OUTLET STREAM: S20 PROPERTY OPTION SET: PENG-ROB STANDARD PR EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 96237.4 96237.4 0.00000 MASS(KG/HR) 385200. 385200. 0.00000 ENTHALPY(CAL/SEC) 0.124902E+08 0.635935E+07 0.490851

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***TWOPHASE TP FLASHSPECIFIED TEMPERATUREC69.7000SPECIFIED PRESSUREBAR61.1000MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

*** RESULTS ***OUTLET TEMPERATURE69.700OUTLET PRESSUREBAR61.10061.100HEAT DUTYCAL/SECOUTLET VAPOR FRACTION1.0000

V-L PHASE EQUILIBRIUM :

COMP F(I) X(I) Y(I) K(I) HELIUM 1.0000 1.0000 1.0000 MISSING

BLOCK: B22 MODEL: HEATER

INLET STREAM:S23OUTLET STREAM:S24PROPERTY OPTION SET:PENG-ROB STANDARD PR EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(KMOL/HR)
 96237.4
 96237.4
 0.00000

 MASS(KG/HR)
 385200.
 385200.
 0.00000

 ENTHALPY(CAL/SEC)
 0.211104E+08
 842917.
 0.960071

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***TWOPHASE TP FLASHSPECIFIED TEMPERATUREC30.0000SPECIFIED PRESSUREBAR27.1000MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

*** RESULTS *** OUTLET TEMPERATURE C 30.000 OUTLET PRESSURE 27.100 BAR HEAT DUTY CAL/SEC -0.20268E+08 OUTLET VAPOR FRACTION 1.0000 V-L PHASE EQUILIBRIUM : COMP F(I)Y(I)K(I) X(I)HELIUM 1.0000 1.0000 1.0000 MISSING BLOCK: COM1 MODEL: COMPR ------**INLET STREAM:** S24 OUTLET STREAM: S21 PROPERTY OPTION SET: PENG-ROB STANDARD PR EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE MOLE(KMOL/HR) 96237.4 96237.4 0.00000 385200. 0.00000 MASS(KG/HR) 385200. ENTHALPY(CAL/SEC) 842917. 0.707679E+07 -0.880890 *** CO2 EOUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR *** INPUT DATA *** ISENTROPIC CENTRIFUGAL COMPRESSOR POWER SUPPLIED KW 26,100.0 ISENTROPIC EFFICIENCY 0.70000 MECHANICAL EFFICIENCY 1.00000 *** RESULTS *** INDICATED HORSEPOWER REQUIREMENT KW 26,100.0 HORSEPOWER REQUIREMENT KW 26,100.0 BRAKE NET WORK REQUIRED KW 26,100.0 POWER LOSSES KW 0.0 ISENTROPIC HORSEPOWER REQUIREMENT KW 18,270.0 CALCULATED OUTLET PRES BAR 34.9352 CALCULATED OUTLET TEMP C 76.4994 ISENTROPIC TEMPERATURE C 62.4278 EFFICIENCY (POLYTR/ISENTR) USED 0.70000 OUTLET VAPOR FRACTION 1.00000 HEAD DEVELOPED, M-KGF/KG 17,411.4 MECHANICAL EFFICIENCY USED 1.00000 INLET HEAT CAPACITY RATIO 1.67042 INLET VOLUMETRIC FLOW RATE, L/MIN 1,511,420. OUTLET VOLUMETRIC FLOW RATE, L/MIN 1,354,770.

INLET COMPRESSIBILITY FACTOR	1.01316
OUTLET COMPRESSIBILITY FACTOR	1.01502
AV. ISENT. VOL. EXPONENT	1.69361
AV. ISENT. TEMP EXPONENT	1.66712
AV. ACTUAL VOL. EXPONENT	2.32094
AV. ACTUAL TEMP EXPONENT	2.28263

BLOCK: COM2 MODEL: COMPR

INLET STREAM: S22 OUTLET STREAM: S11 PROPERTY OPTION SET: PENG-ROB STANDARD PR EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(KMOL/HR)
 96237.4
 96237.4
 0.00000

 MASS(KG/HR)
 385200.
 385200.
 0.00000

 ENTHALPY(CAL/SEC)
 0.355869E+07
 0.979256E+07
 -0.636593

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

ISENTROPIC CENTRIFUGAL COMPRESSORPOWER SUPPLIED KW26,100.0ISENTROPIC EFFICIENCY0.70000MECHANICAL EFFICIENCY1.00000

*** RESULTS ***

INDICATED HORSEPO	WER REQUIREMEN	T KW	26,100.0
BRAKE HORSEPOW	ER REQUIREMENT	KW	26,100.0
NET WORK REQUIRED	KW	26,100.0	
POWER LOSSES	KW	0.0	
ISENTROPIC HORSEPC	WER REQUIREMEN	T KW	18,270.0
CALCULATED OUTLE	ΓPRES BAR	45.	0487
CALCULATED OUTLE	Г ТЕМР С	96.3	900
ISENTROPIC TEMPERA	ATURE C	82.32	09
EFFICIENCY (POLYTRA	(ISENTR) USED	0.	70000
OUTLET VAPOR FRAC	TION	1.0000	0
HEAD DEVELOPED,	M-KGF/KG	17,411.4	4
MECHANICAL EFFICIE	ENCY USED	1.0	0000
INLET HEAT CAPACIT	Y RATIO	1.670)79
INLET VOLUMETRIC F	LOW RATE , L/MIN	1,23	33,800.
OUTLET VOLUMETRIC	C FLOW RATE, L/MI	N 1,	114,190.
INLET COMPRESSIBIL	JTY FACTOR	1.0)1636
OUTLET COMPRESSIB	ILITY FACTOR	1	.01850
AV. ISENT. VOL. EXPO	NENT	1.69977	1
AV. ISENT. TEMP EXPO	ONENT	1.6671	6
AV. ACTUAL VOL. EXI	PONENT	2.336	513

2.28898

BLOCK: COM3 MODEL: COMPR

INLET STREAM: S18 OUTLET STREAM: S19 PROPERTY OPTION SET: PENG-ROB STANDARD PR EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(KMOL/HR)
 96237.4
 96237.4
 0.00000

 MASS(KG/HR)
 385200.
 385200.
 0.000000

 ENTHALPY(CAL/SEC)
 0.625629E+07
 0.124902E+08
 -0.499103

*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR

*** INPUT DATA ***

ISENTROPIC CENTRIFUGAL COMPRESSORPOWER SUPPLIED KW26,100.0ISENTROPIC EFFICIENCY0.70000MECHANICAL EFFICIENCY1.00000

*** RESULTS ***

INDICATED HORSEPOWER REQUIREMENT KW 26,100.0 26,100.0 BRAKE HORSEPOWER REQUIREMENT KW NET WORK REQUIRED KW 26,100.0 POWER LOSSES KW 0.0 ISENTROPIC HORSEPOWER REQUIREMENT KW 18,270.0 CALCULATED OUTLET PRES BAR 58.4365 CALCULATED OUTLET TEMP C 115.949 ISENTROPIC TEMPERATURE C 101.883 EFFICIENCY (POLYTR/ISENTR) USED 0.70000 OUTLET VAPOR FRACTION 1.00000 HEAD DEVELOPED, M-KGF/KG 17,411.4 MECHANICAL EFFICIENCY USED 1.00000 INLET HEAT CAPACITY RATIO 1.67123 INLET VOLUMETRIC FLOW RATE, L/MIN 999,142. 908,390. OUTLET VOLUMETRIC FLOW RATE, L/MIN INLET COMPRESSIBILITY FACTOR 1.02052 OUTLET COMPRESSIBILITY FACTOR 1.02300 AV. ISENT. VOL. EXPONENT 1.70773 AV. ISENT. TEMP EXPONENT 1.66720 AV. ACTUAL VOL. EXPONENT 2.35442 AV. ACTUAL TEMP EXPONENT 2.29580

BLOCK: COM4 MODEL: COMPR

INLET STREAM: S20

OUTLET STREAM: COLDIN PROPERTY OPTION SET: PENG-ROB STANDARD PR EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(KMOL/HR)
 96237.4
 96237.4
 0.00000

 MASS(KG/HR)
 385200.
 385200.
 0.00000

 ENTHALPY(CAL/SEC)
 0.635935E+07
 0.136027E+08
 -0.532492

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

ISENTROPIC CENTRIFUGAL COMPRESSOR	
OUTLET PRESSURE BAR	79.0000
ISENTROPIC EFFICIENCY	0.70000
MECHANICAL EFFICIENCY	1.00000

*** RESULTS ***

INDICATED HORSEPO	OWER REQUIREMEN	T KW	30,326.3
BRAKE HORSEPOW	VER REQUIREMENT	KW	30,326.3
NET WORK REQUIRE	D KW	30,326.3	
POWER LOSSES	KW	0.0	
ISENTROPIC HORSEP	OWER REQUIREMEN	T KW	21,228.4
CALCULATED OUTLE	ET TEMP C	123.1	68
ISENTROPIC TEMPER	ATURE C	106.83	31
EFFICIENCY (POLYTE	R/ISENTR) USED	0.	70000
OUTLET VAPOR FRAC	CTION	1.0000	0
HEAD DEVELOPED,	M-KGF/KG	20,230.	8
MECHANICAL EFFICI	ENCY USED	1.0	0000
INLET HEAT CAPACIT	ΓY RATIO	1.672	211
INLET VOLUMETRIC	FLOW RATE , L/MIN	76	8,497.
OUTLET VOLUMETRI	C FLOW RATE, L/MI	N E	589,584.
INLET COMPRESSIBI	LITY FACTOR	1.0)2697
OUTLET COMPRESSIE	BILITY FACTOR	1	.03074
AV. ISENT. VOL. EXPO	ONENT	1.72122	
AV. ISENT. TEMP EXP	ONENT	1.6672	6
AV. ACTUAL VOL. EX	PONENT	2.371	40
AV. ACTUAL TEMP EX	XPONENT	2.29	384

BLOCK: T1 MODEL: COMPR

INLET STREAM: 2 OUTLET STREAM: S6 PROPERTY OPTION SET: PENG-ROB STANDARD PR EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR)96237.496237.40.00000MASS(KG/HR)385200.385200.0.00000ENTHALPY(CAL/SEC)0.105859E+090.932480E+080.119131

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

ISENTROPIC TURBINEPOWER SUPPLIED KW52,800.0ISENTROPIC EFFICIENCY0.90000MECHANICAL EFFICIENCY1.00000

*** RESULTS ***

INDICATED HORSEPOW	'ER REQUIREMEN	T KW	-52,800.0
BRAKE HORSEPOWER	R REQUIREMENT	KW	-52,800.0
NET WORK REQUIRED	KW	-52,800.0	
POWER LOSSES	KW	0.0	
ISENTROPIC HORSEPOW	ER REQUIREMEN	T KW	-58,666.7
CALCULATED OUTLET	PRES BAR	61.	4283
CALCULATED OUTLET	ГЕМР С	723.7	796
ISENTROPIC TEMPERAT	URE C	713.24	42
EFFICIENCY (POLYTR/IS	SENTR) USED	0.	90000
OUTLET VAPOR FRACTI	ON	1.0000	00
HEAD DEVELOPED, M	M-KGF/KG	-55,909.	.7
MECHANICAL EFFICIEN	CY USED	1.0	00000
INLET HEAT CAPACITY	RATIO	1.668	355
INLET VOLUMETRIC FLO	OW RATE , L/MIN	1,80	53,320.
OUTLET VOLUMETRIC H	FLOW RATE, L/MI	N 2,	,186,130.
INLET COMPRESSIBILIT	TY FACTOR	1.0)1190
OUTLET COMPRESSIBIL	ITY FACTOR	1	1.01007
AV. ISENT. VOL. EXPON	ENT	1.68585	5
AV. ISENT. TEMP EXPON	JENT	1.6668	0
AV. ACTUAL VOL. EXPC	NENT	1.574	62
AV. ACTUAL TEMP EXPO	ONENT	1.55	701

BLOCK: T2 MODEL: COMPR

INLET STREAM: S6 OUTLET STREAM: S7 PROPERTY OPTION SET: PENG-ROB STANDARD PR EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(KMOL/HR)
 96237.4
 96237.4
 0.00000

 MASS(KG/HR)
 385200.
 385200.
 0.00000

 ENTHALPY(CAL/SEC)
 0.932480E+08
 0.806369E+08
 0.135242

*** CO2 EQUIVALENT SUMMARY ***

FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

ISENTROPIC TURBINEPOWER SUPPLIED KW52,800.0ISENTROPIC EFFICIENCY0.90000MECHANICAL EFFICIENCY1.00000

*** RESULTS ***

INDICATED HORSEPOWER REQUIREMENT KW -52.800.0BRAKE HORSEPOWER REQUIREMENT KW -52,800.0 NET WORK REQUIRED KW -52,800.0 POWER LOSSES KW 0.0 ISENTROPIC HORSEPOWER REQUIREMENT KW -58,666.7 CALCULATED OUTLET PRES BAR 46.5595 CALCULATED OUTLET TEMP C 629.727 ISENTROPIC TEMPERATURE C 619.173 EFFICIENCY (POLYTR/ISENTR) USED 0.90000 OUTLET VAPOR FRACTION 1.00000 HEAD DEVELOPED, -55,909.7 M-KGF/KG MECHANICAL EFFICIENCY USED 1.00000 INLET HEAT CAPACITY RATIO 1.66849 INLET VOLUMETRIC FLOW RATE, L/MIN 2,186,130. OUTLET VOLUMETRIC FLOW RATE, L/MIN 2,607,740. INLET COMPRESSIBILITY FACTOR 1.01007 OUTLET COMPRESSIBILITY FACTOR 1.00838 AV. ISENT. VOL. EXPONENT 1.68283 AV. ISENT. TEMP EXPONENT 1.66679 AV. ACTUAL VOL. EXPONENT 1.57151 AV. ACTUAL TEMP EXPONENT 1.55670

BLOCK: T3 MODEL: COMPR

INLET STREAM: S7 OUTLET STREAM: HOTIN PROPERTY OPTION SET: PENG-ROB STANDARD PR EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 96237.4 96237.4 0.00000 MASS(KG/HR) 385200. 385200. 0.00000 ENTHALPY(CAL/SEC) 0.806369E+08 0.512588E+08 0.364325

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

ISENTROPIC TURBINE123,000.POWER SUPPLIED KW123,000.ISENTROPIC EFFICIENCY0.90000MECHANICAL EFFICIENCY1.00000

*** RESULTS ***

INDICATED HORSEPOWER REQUIREMENT KW -123,000. HORSEPOWER REQUIREMENT KW -123,000. BRAKE NET WORK REQUIRED KW -123,000. KW 0.0 POWER LOSSES ISENTROPIC HORSEPOWER REQUIREMENT KW -136,667. CALCULATED OUTLET PRES BAR 21.1553 CALCULATED OUTLET TEMP C 409.974 ISENTROPIC TEMPERATURE C 385.385 EFFICIENCY (POLYTR/ISENTR) USED 0.90000 OUTLET VAPOR FRACTION 1.00000 HEAD DEVELOPED, M-KGF/KG -130,244. MECHANICAL EFFICIENCY USED 1.00000 INLET HEAT CAPACITY RATIO 1.66843 INLET VOLUMETRIC FLOW RATE , L/MIN 2,607,740. OUTLET VOLUMETRIC FLOW RATE, L/MIN 4,327,520. INLET COMPRESSIBILITY FACTOR 1.00838 OUTLET COMPRESSIBILITY FACTOR 1.00494 AV. ISENT. VOL. EXPONENT 1.67831 AV. ISENT. TEMP EXPONENT 1.66678 AV. ACTUAL VOL. EXPONENT 1.55740 AV. ACTUAL TEMP EXPONENT 1.54695

D.2 S-CO₂ Process

BLOCK: H1 MODEL: MHEATX

HOT SIDE: INLET STREAM OUTLET STREAM

HOT S6

COLD SIDE: INLET STREAM OUTLET STREAM

COLDIN COLDOUT

PROPERTIES FOR STREAM COLDIN PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE

PROPERTIES FOR STREAM HOT PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 147240. 147240. 0.00000 MASS(KG/HR) 0.648000E+07 0.648000E+07 0.00000 ENTHALPY(CAL/SEC) -0.352581E+10 -0.352581E+10 0.135242E-15

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.648000E+07 KG/HRPRODUCT STREAMS CO2E0.648000E+07 KG/HRNET STREAMS CO2E PRODUCTION0.00000 KG/HRUTILITIES CO2E PRODUCTION0.00000 KG/HRTOTAL CO2E PRODUCTION0.00000 KG/HR

*** INPUT DATA ***

SPECIFICATIONS FOR STREAM COLDIN :TWOPHASE TP FLASHSPECIFIED TEMPERATUREC710.000PRESSURE DROPBAR0.0MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

SPECIFICATIONS FOR STREAM HOT:TWOPHASEFLASHPRESSURE DROPBAR0.0MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

*** RESULTS ***

INLET OUTLET OUTLET OUTLET STREAM DUTY TEMPERATURE PRESSURE VAPOR FRAC CAL/SEC C BAR

COLDIN0.31628E+08710.0080.0001.0000HOT-0.31628E+08725.8777.3001.0000

COLDIN			COLDOUT
>	98160.	KMOL/HR	>
620.40			710.00
S6			HOT
<	49080.	KMOL/HR	<
725.87			900.00

*** INTERNAL ANALYSIS ***

FLOW IS COUNTERCURRENT. DUTY -.31628E+08 CAL/SEC UA 0.21978E+06 CAL/SEC-K AVERAGE LMTD (DUTY/UA) 143.90 C MIN TEMP APPROACH 105.46 C HOT-SIDE TEMP APPROACH 190.00 C COLD-SIDE TEMP APPROACH 105.46 C HOT-SIDE NTU 1.2101 COLD-SIDE NTU 0.62263

DUTY T HOT T COLD DELTA T LMTD UA ZONE O ZONE UA PINCH STREAM IN/OUT/DEW/

POINT BUBBLE POINT

CAL/SEC С С С C CAL/SEC-K CAL/SEC CAL/SEC-K

0.000 900.00 710.00 190.00 0.5271E+07 871.34 695.19 176.15 182.99 0.2881E+05 0.5271E+07 0.2881E+05 0.1054E+08 842.54 680.33 162.22 169.09 0.3117E+05 0.5271E+07 0.5998E+05 0.1581E+08 813.61 665.42 148.19 155.10 0.3399E+05 0.5271E+07 0.9397E+05 0.2109E+08 784.52 650.46 134.06 141.00 0.3738E+05 0.5271E+07 0.1314E+06 0.2636E+08 755.28 635.46 119.82 126.80 0.4157E+05 0.5271E+07 0.1729E+06 0.3163E+08 725.86 620.40 105.46 112.49 0.4686E+05 0.5271E+07 0.2198E+06 GBL

GBL = GLOBAL LOC = LOCAL DP = DEW POINT BP = BUBBLE POINT

BLOCK: H1 MODEL: MHEATX

HOT SIDE: INLET STREAM OUTLET STREAM -----

> HOT S6

COLD SIDE: INLET STREAM OUTLET STREAM

COLDIN COLDOUT

PROPERTIES FOR STREAM COLDIN PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE

PROPERTIES FOR STREAM HOT PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 147240. 147240. 0.00000 MASS(KG/HR) 0.648000E+07 0.648000E+07 0.00000 ENTHALPY(CAL/SEC) -0.352581E+10 -0.352581E+10 0.135242E-15

*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.648000E+07 KG/HR PRODUCT STREAMS CO2E 0.648000E+07 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR

*** INPUT DATA ***

SPECIFICATIONS FOR STREAM COLDIN : TWO PHASE TP FLASH SPECIFIED TEMPERATURE 710.000 С PRESSURE DROP BAR 0.0 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 SPECIFICATIONS FOR STREAM HOT:TWOPHASEFLASHPRESSURE DROPBAR0.0MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

*** RESULTS ***

INLET OUTLET OUTLET OUTLET STREAM DUTY TEMPERATURE PRESSURE VAPOR FRAC CAL/SEC C BAR

COLDIN0.31628E+08710.0080.0001.0000HOT-0.31628E+08725.8777.3001.0000

 COLDIN > 620.40	98160.	KMOL/HR	 COLDOUT > 710.00
S6 < 725.87 	49080.	KMOL/HR	 HOT < 900.00

*** INTERNAL ANALYSIS ***

FLOW IS COUNTERCURRENT.

CAL/SEC

DUTY -.31628E+08 CAL/SEC UA 0.21978E+06 CAL/SEC-K AVERAGE LMTD (DUTY/UA) 143.90 C MIN TEMP APPROACH 105.46 C 190.00 C HOT-SIDE TEMP APPROACH COLD-SIDE TEMP APPROACH 105.46 C HOT-SIDE NTU 1.2101 COLD-SIDE NTU 0.62263

DUTY T HOT T COLD DELTA T LMTD UA ZONE Q ZONE UA PINCH STREAM IN/OUT/DEW/

POINT BUBBLE POINT C C C C CAL/SEC-K CAL/SEC CAL/SEC-K

0.000900.00710.00190.000.5271E+07871.34695.19176.15182.990.2881E+050.5271E+070.2881E+050.1054E+08842.54680.33162.22169.090.3117E+050.5271E+070.5998E+050.1581E+08813.61665.42148.19155.100.3399E+050.5271E+070.9397E+050.2109E+08784.52650.46134.06141.000.3738E+050.5271E+070.1314E+060.2636E+08755.28635.46119.82126.800.4157E+050.5271E+070.1729E+060.3163E+08725.86620.40105.46112.490.4686E+050.5271E+070.2198E+06GBL

GBL = GLOBAL LOC = LOCAL DP = DEW POINT BP = BUBBLE POINT

BLOCK: H2 MODEL: MHEATX

HOT SIDE: INLET STREAM OUTLET STREAM -----S6 RCTR1 COLD SIDE: INLET STREAM OUTLET STREAM

S5

PROPERTIES FOR STREAM S5 PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE

PROPERTIES FOR STREAM S6

3

PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 147240. 147240. 0.00000 0.648000E+07 0.648000E+07 0.00000 MASS(KG/HR) ENTHALPY(CAL/SEC) -0.354763E+10 -0.354763E+10 0.00000

*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.648000E+07 KG/HR PRODUCT STREAMS CO2E 0.648000E+07 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR

*** INPUT DATA ***

SPECIFICATIONS FOR STREAM S5 : TWO PHASE TP FLASH SPECIFIED TEMPERATURE С 660.000 PRESSURE DROP BAR 0.0 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000

SPECIFICATIONS FOR STREAM S6 • TWO PHASE FLASH PRESSURE DROP BAR MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

0.0 30 0.000100000

*** RESULTS ***

INLET OUTLET OUTLET OUTLET STREAM DUTY TEMPERATURE PRESSURE VAPOR FRAC CAL/SEC C BAR

S5 0.44620E+07 660.00 55.000 1.0000 **S**6 -0.44620E+07 700.83 77.300 1.0000

> -----

S5	00160		3									
647.26	98160.	JO. KMOL/HK		660.00								
RCTR1			 S	6								
< 700 83	49080.	KMOL/H	IR <-	775 87								
/00.83				125.81								
-												
	***	INTERN	AL ANAI	YSIS **	**							
FLOW I	S COUNT	ERCURE	ENT.									
DUTY		440	520E+07 (CAL/SEC	2							
	CE I MTI	74978 ו/עדערו כ	CAL/	SEC-K	C							
MIN TE	MP APPR	ROACH	53	.566 C	C							
HOT-SI	DE TEMP	APPROA	СН	65.868	С							
COLD-S	SIDE TEM	IP APPRO	ACH	53.566	С							
COLD-SI	DE NTU SIDF NTU	Т	0.42067									
COLD		,	0.21401									
DUTY	T HC	T T CO	LD DEL	TAT L	MTD	UA Z	ONE	Q ZONI	E UA	4	PINCH	STREAM
IN/OU1/1	JEW/				Р	OINT	BUBI	BLE POI	ЛЛ			
CAL/SE	C C	С	C C	CAL/S	SEC-K	CAL	/SEC	CAL/SE	EC-K			
0.000	725 87	660.00	65 87									
0.7437E	+06 721	.70 657.8	63.87 8 63.82	64.84	0.1147	7E+05	0.7437	7E+06 0.	1147E+	+05		
0.1487E	+07 717	.53 655.7	6 61.78	62.79	0.1184	E+05	0.7437	7E+06 0.	2331E+	-05		
0.2231E	+07 713	.36 653.6	4 59.73	60.75	0.1224	IE+05	0.7437	7E+06 0.	3556E+	-05		
0.2975E	+07 709 +07 705	.19 651.5	1 57.68 9 55.62	58.70	0.1267	E+05	0.743	/E+06 0.4 7E+06 0.4	4823E+ 6135E+	-05 -05		
0.4462E	+07 700	.83 647.2	6 53.57	54.59	0.1362	2E+05	0.743	7E+06 0.	7498E+	-05 GF	BL	
GBL = C	GLOBAL	LOC = I	OCAL	DP = DI	EW PO	INT	BP =	BUBBLE	E POIN	Т		
DI OCIV												
BLOCK:	H2 N	10DEL: M 	HEAIX									
LIOT SI	DE. INI	ET OTDE				r						
HUI SI	DE: INI	LEI SIRE	AM UU	ILEI SI	IKEAM	1						
	S6	RCTR1										
COLD S	SIDE: IN	LET STRE	EAM O	UTLET S	TREAM	М						
	S5	3										
PROPE	RTIES FO	OR STREA	M S5									
PROPE	RTY OPT	TON SET:	LK-PLO	CK LEE	E-KESL	ER-PL	.OCKE	ER EQUA	TION	OF STA	ATE	
PROPE	RTIES EC	R STREA	M 86									
PROPE	RTY OPT	ION SET:	LK-PLO	CK LEE	E-KESL	ER-PL	.OCKE	ER EQUA	TION	OF STA	ATE	

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.
 TOTAL BALANCE
 MOLE(KMOL/HR)
 147240.
 147240.
 0.00000

 MASS(KG/HR)
 0.648000E+07
 0.648000E+07
 0.00000

 ENTHALPY(CAL/SEC)
 -0.354763E+10
 -0.354763E+10
 0.00000

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.648000E+07KG/HRPRODUCT STREAMS CO2E0.648000E+07KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

SPECIFICATIONS FOR STREAM S5:TWOPHASE TP FLASHSPECIFIED TEMPERATUREC660.000PRESSURE DROPBAR0.0MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

SPECIFICATIONS FOR STREAM S6:TWO PHASE FLASHFLASHPRESSURE DROPBAR0.0MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE(1)

*** RESULTS ***

INLET OUTLET OUTLET OUTLET STREAM DUTY TEMPERATURE PRESSURE VAPOR FRAC CAL/SEC C BAR

S5	0.44620E+07	660.00	55.000	1.0000
S6	-0.44620E+07	700.83	77.300	1.0000

S5 > 647.26	98160.	KMOL/HR	 3 > 660.00
RCTR1 < 700.83 	49080.	KMOL/HR	 \$6 < 725.87

*** INTERNAL ANALYSIS ***

FLOW IS COUNTERCU	JRREN	T.		
DUTY	44620	DE+07	CAL/SEC	
UA 7-	4978.	CAL	/SEC-K	
AVERAGE LMTD (DU'	TY/UA	.)	59.511	С
MIN TEMP APPROACE	Н	5.	3.566 C	
HOT-SIDE TEMP APPE	ROACH	I	65.868	С

0.000100000

COLD-SIDE TEMP APPROACH 53.566 C HOT-SIDE NTU 0.42067 COLD-SIDE NTU 0.21401 THOT TCOLD DELTAT LMTD UAZONE QZONE UA DUTY IN/OUT/DEW/ POINT BUBBLE POINT CAL/SEC С С С С CAL/SEC-K CAL/SEC CAL/SEC-K 0.000 725.87 660.00 65.87 0.7437E+06 721.70 657.88 63.82 64.84 0.1147E+05 0.7437E+06 0.1147E+05 0.1487E+07 717.53 655.76 61.78 62.79 0.1184E+05 0.7437E+06 0.2331E+05 0.2231E+07 713.36 653.64 59.73 60.75 0.1224E+05 0.7437E+06 0.3556E+05 0.2975E+07 709.19 651.51 57.68 58.70 0.1267E+05 0.7437E+06 0.4823E+05 0.3718E+07 705.01 649.39 55.62 56.64 0.1313E+05 0.7437E+06 0.6135E+05 0.4462E+07 700.83 647.26 53.57 54.59 0.1362E+05 0.7437E+06 0.7498E+05 GBL GBL = GLOBAL LOC = LOCAL DP = DEW POINT BP = BUBBLE POINT BLOCK: H3 MODEL: MHEATX _____ HOT SIDE: INLET STREAM OUTLET STREAM _____ RCTR1 11 COLD SIDE: INLET STREAM OUTLET STREAM _____ 1 2 PROPERTIES FOR STREAM RCTR1 PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE PROPERTIES FOR STREAM 1 PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE DIFF. IN

PINCH STREAM

TOTAL BALANCE

 MOLE(KMOL/HR)
 147240.
 147240.
 0.00000

 MASS(KG/HR)
 0.648000E+07
 0.648000E+07
 0.00000

 ENTHALPY(CAL/SEC)
 -0.356413E+10
 -0.356413E+10
 0.00000

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.648000E+07KG/HRPRODUCT STREAMS CO2E0.648000E+07KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

SPECIFICATIONS FOR STREAM RCTR1 :ONEPHASE TP FLASHSPECIFIED PHASE ISVAPORSPECIFIED TEMPERATUREC615.000PRESSURE DROPBAR0.0

MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

30 0.000100000

SPECIFICATIONS FOR STREAM 1:THREE PHASEFLASHPRESSURE DROPBARMAXIMUM NO. ITERATIONSCONVERGENCE TOLERANCE

0.0 30

0.000100000

*** RESULTS ***

INLET OUTLET OUTLET OUTLET STREAM DUTY TEMPERATURE PRESSURE VAPOR FRAC BETA CAL/SEC C BAR

RCTR1 -0.15116E+08 615.00 77.300 1.0000 1 0.15116E+08 655.44 40.820 1.0000 1.0000

RCTR1			11
>	49080.	KMOL/HR	>
700.83			615.00
2			1
<	98160.	KMOL/HR	<
655.44			611.96

*** INTERNAL ANALYSIS ***

FLOW IS COUNTERCURRENT. DUTY 0.15116E+08 CAL/SEC UA 0.95952E+06 CAL/SEC-K AVERAGE LMTD (DUTY/UA) 15.754 C MIN TEMP APPROACH 3.0444 C 45.389 C HOT-SIDE TEMP APPROACH COLD-SIDE TEMP APPROACH 3.0444 C HOT-SIDE NTU 5.4483 COLD-SIDE NTU 2.7605

CAL/SEC

С

DUTY T HOT T COLD DELTA T LMTD UA ZONE Q ZONE UA PINCH STREAM IN/OUT/DEW/

POINT BUBBLE POINT C C C CAL/SEC-K CAL/SEC CAL/SEC-K

0.000	615.00 61	1.96 3	3.04	GBL
0.2519E+07	629.42	619.24	10.18	5.91 0.4261E+06 0.2519E+07 0.4261E+06
0.5039E+07	643.79	626.51	17.29	13.42 0.1877E+06 0.2519E+07 0.6138E+06
0.7558E+07	7 658.12	633.76	24.36	20.62 0.1222E+06 0.2519E+07 0.7360E+06
0.1008E+08	672.40	641.00	31.40	27.73 0.9085E+05 0.2519E+07 0.8268E+06
0.1260E+08	8 686.64	648.23	38.41	34.79 0.7243E+05 0.2519E+07 0.8992E+06
0.1512E+08	8 700.83	655.44	45.39	41.80 0.6027E+05 0.2519E+07 0.9595E+06

GBL = GLOBAL LOC = LOCAL DP = DEW POINT BP = BUBBLE POINT

BLOCK: H3 MODEL: MHEATX

HOT SIDE: INLET STREAM OUTLET STREAM RCTR1 11 COLD SIDE: INLET STREAM OUTLET STREAM _____ 2 1 PROPERTIES FOR STREAM RCTR1 PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE PROPERTIES FOR STREAM 1 PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE 147240. 147240. 0.00000 MOLE(KMOL/HR) MASS(KG/HR) 0.648000E+07 0.648000E+07 0.00000 ENTHALPY(CAL/SEC) -0.356413E+10 -0.356413E+10 0.00000 *** CO2 EOUIVALENT SUMMARY *** FEED STREAMS CO2E 0.648000E+07 KG/HR PRODUCT STREAMS CO2E 0.648000E+07 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR *** INPUT DATA *** SPECIFICATIONS FOR STREAM RCTR1 : ONE PHASE TP FLASH SPECIFIED PHASE IS VAPOR SPECIFIED TEMPERATURE С 615.000 PRESSURE DROP BAR 0.0 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 SPECIFICATIONS FOR STREAM 1 ٠ THREE PHASE FLASH PRESSURE DROP BAR 0.0 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 *** RESULTS *** INLET OUTLET OUTLET OUTLET STREAM DUTY TEMPERATURE PRESSURE VAPOR FRAC BETA BAR CAL/SEC C RCTR1 -0.15116E+08 615.00 77.300 1.0000

*** INTERNAL ANALYSIS ***

FLOW IS COUNTERCURRENT.DUTY0.15116E+08 CAL/SECUA0.95952E+06 CAL/SEC-KAVERAGE LMTD (DUTY/UA)15.754CCMIN TEMP APPROACH3.0444CHOT-SIDE TEMP APPROACH45.389CCOLD-SIDE TEMP APPROACH3.0444CHOT-SIDE NTU5.4483COLD-SIDE NTU2.7605

DUTY T HOT T COLD DELTA T LMTD UA ZONE Q ZONE UA PINCH STREAM IN/OUT/DEW/

POINT BUBBLE POINT CAL/SEC C C C C CAL/SEC-K CAL/SEC CAL/SEC-K

0.000615.00611.963.04GBL0.2519E+07629.42619.2410.185.910.4261E+060.2519E+070.4261E+060.5039E+07643.79626.5117.2913.420.1877E+060.2519E+070.6138E+060.7558E+07658.12633.7624.3620.620.1222E+060.2519E+070.7360E+060.1008E+08672.40641.0031.4027.730.9085E+050.2519E+070.8268E+060.1260E+08686.64648.2338.4134.790.7243E+050.2519E+070.8992E+060.1512E+08700.83655.4445.3941.800.6027E+050.2519E+070.9595E+06

GBL = GLOBAL LOC = LOCAL DP = DEW POINT BP = BUBBLE POINT

BLOCK: H4 MODEL: MHEATX

HOT SIDE: INLET STREAM OUTLET STREAM

2 S8

COLD SIDE: INLET STREAM OUTLET STREAM

COLD COLDIN

PROPERTIES FOR STREAM COLD PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE

PROPERTIES FOR STREAM 2

PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(KMOL/HR)
 196320.
 196320.
 0.00000

 MASS(KG/HR)
 0.864000E+07
 0.864000E+07
 0.00000

 ENTHALPY(CAL/SEC)
 -0.493891E+10
 -0.493891E+10
 0.00000

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.864000E+07KG/HRPRODUCT STREAMS CO2E0.864000E+07KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

SPECIFICATIONS FOR STREAM COLD:TWOPHASE TP FLASHSPECIFIED TEMPERATUREC620.400PRESSURE DROPBAR0.0MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

SPECIFICATIONS FOR STREAM 2:TWOPHASEFLASHPRESSURE DROPBARMAXIMUM NO. ITERATIONSCONVERGENCE TOLERANCE

*** RESULTS ***

INLET OUTLET OUTLET OUTLET STREAM DUTY TEMPERATURE PRESSURE VAPOR FRAC CAL/SEC C BAR

 COLD
 0.18367E+09
 620.40
 80.000
 1.0000

 2
 -0.18367E+09
 88.47
 40.820
 1.0000

*** INTERNAL ANALYSIS ***

FLOW IS COUNTERCURRENT. DUTY -.18367E+09 CAL/SEC 0.0

30

0.000100000

UA0.67011E+07 CAL/SEC-KAVERAGE LMTD (DUTY/UA)27.409CMIN TEMP APPROACH8.3237CHOT-SIDE TEMP APPROACH35.044CCOLD-SIDE TEMP APPROACH8.3237CHOT-SIDE NTU20.686COLD-SIDE NTU19.71119.711

DUTY T HOT T COLD DELTA T LMTD UA ZONE Q ZONE UA PINCH STREAM IN/OUT/DEW/

POINT BUBBLE POINT CAL/SEC C C C C C CAL/SEC-K CAL/SEC CAL/SEC-K

0.000 655.44 620.40 35.04 0.3061E+08 566.86 531.88 34.97 35.01 0.8744E+06 0.3061E+08 0.8744E+06 0.6122E+08 476.02 441.40 34.63 34.80 0.8797E+06 0.3061E+08 0.1754E+07 0.9184E+08 382.58 348.92 33.66 34.14 0.8966E+06 0.3061E+08 0.2651E+07 0.1224E+09 286.25 255.02 31.23 32.43 0.9439E+06 0.3061E+08 0.3595E+07 0.1531E+09 187.32 162.24 25.08 28.04 0.1092E+07 0.3061E+08 0.4686E+07 0.1837E+09 88.47 80.14 8.32 15.19 0.2015E+07 0.3061E+08 0.6701E+07 GBL

GBL = GLOBAL LOC = LOCAL DP = DEW POINT BP = BUBBLE POINT

BLOCK: H4 MODEL: MHEATX

HOT SIDE: INLET STREAM OUTLET STREAM

2 S8

COLD SIDE: INLET STREAM OUTLET STREAM

COLD COLDIN

PROPERTIES FOR STREAM COLD PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE

PROPERTIES FOR STREAM 2 PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 196320. 196320. 0.00000 MASS(KG/HR) 0.864000E+07 0.864000E+07 0.00000 ENTHALPY(CAL/SEC) -0.493891E+10 -0.493891E+10 0.00000

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.864000E+07KG/HRPRODUCT STREAMS CO2E0.864000E+07KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

SPECIFICATIONS FOR STREAM COLD TWO PHASE TP FLASH SPECIFIED TEMPERATURE C PRESSURE DROP BAR MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	: 620.400 0.0 30 0.000100000
SPECIFICATIONS FOR STREAM 2 : TWO PHASE FLASH PRESSURE DROP BAR MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	0.0 30 0.000100000
*** RESULTS ***	
INLET OUTLET OUTLET STREAM DUTY TEMPERATURE CAL/SEC C BAR	OUTLET PRESSURE VAPOR FRAC
COLD 0.18367E+09 620.40 80.000 2 -0.18367E+09 88.47 40.820) 1.0000 1.0000
COLD COLD > 98160. KMOL/HR 80.14 620.4	DIN -> 40
S8 2 <	44
*** INTERNAL ANALYSI	S ***
FLOW IS COUNTERCURRENT.DUTY18367E+09 CALUA0.67011E+07 CAL/SAVERAGE LMTD (DUTY/UA)27.MIN TEMP APPROACH8.3237HOT-SIDE TEMP APPROACH35.0COLD-SIDE TEMP APPROACH8.3HOT-SIDE NTU20.686COLD-SIDE NTU19.711	/SEC EC-K 409 C C 044 C 3237 C
DUTY T HOT T COLD DELTA IN/OUT/DEW/	T LMTD UA ZONE Q ZONE UA PINCH STREAM
	POINT BUBBLE POINT
CAL/SEC C C C C C	AL/SEU-K CAL/SEC UAL/SEC-K
0.000 655.44 620.40 35.04	
U.3061E+08 566.86 531.88 34.97 3	5.01 0.8744E+06 0.3061E+08 0.8744E+06
0.0122E+08 4/0.02 441.40 34.63 3 0.0184E+08 382 58 348.02 33.66 3	4.80 0.8797E+00 0.3061E+08 0.1754E+07 4.14 0.8966E+06 0.3061E+08 0.2651E+07
0.1224E+09 286.25 255.02 31.23 3	2.43 0.9439E+06 0.3061E+08 0.3595E+07

0.1531E+09 187.32 162.24 25.08 28.04 0.1092E+07 0.3061E+08 0.4686E+07 0.1837E+09 88.47 80.14 8.32 15.19 0.2015E+07 0.3061E+08 0.6701E+07 GBL

GBL = GLOBAL LOC = LOCAL DP = DEW POINT BP = BUBBLE POINT

BLOCK: H5 MODEL: MHEATX

HOT SIDE: INLET STREAM OUTLET STREAM

S8 4

COLD SIDE: INLET STREAM OUTLET STREAM

WATERIN WATEROUT

PROPERTIES FOR STREAM S8 PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE

PROPERTIES FOR STREAM WATERIN PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(KMOL/HR)
 397906.
 397906.
 0.00000

 MASS(KG/HR)
 0.972000E+07
 0.972000E+07
 0.00000

 ENTHALPY(CAL/SEC)
 -0.830262E+10
 -0.830262E+10
 0.00000

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.432000E+07KG/HRPRODUCT STREAMS CO2E0.432000E+07KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

SPECIFICATIONS FOR STREAM S8:TWOPHASE TP FLASHSPECIFIED TEMPERATUREC28.0000PRESSURE DROPBAR0.0MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

SPECIFICATIONS FOR STREAM WATERIN :TWOPHASEFLASHPRESSURE DROPBAR0.0MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

*** RESULTS ***

INLET OUTLET OUTLET OUTLET STREAM DUTY TEMPERATURE PRESSURE VAPOR FRAC CAL/SEC C BAR S8 -0.20972E+08 28.00 40.820 1.0000 WATERIN 0.20972E+08 38.04 29.000 0.0000

*** INTERNAL ANALYSIS ***

FLOW IS COUNTERCURRENT.DUTY0.20972E+08 CAL/SECUA0.17977E+07 CAL/SEC-KAVERAGE LMTD (DUTY/UA)11.666CCMIN TEMP APPROACH1.0000CCHOT-SIDE TEMP APPROACH50.431COLD-SIDE TEMP APPROACH1.0000CCHOT-SIDE NTU5.1832COLD-SIDE NTU0.94609

DUTY T HOT T COLD DELTA T LMTD UA ZONE Q ZONE UA PINCH STREAM IN/OUT/DEW/

POINT BUBBLE POINT

CAL/SEC C C C C CAL/SEC-K CAL/SEC CAL/SEC-K

0.000 23	8.00 27	.00 1	.00	GBL
0.3495E+07	37.02	28.84	8.17	3.41 0.1024E+07 0.3495E+07 0.1024E+07
0.6991E+07	46.59	30.69	15.90	11.61 0.3010E+06 0.3495E+07 0.1325E+07
0.1049E+08	56.61	32.53	24.08	19.71 0.1773E+06 0.3495E+07 0.1502E+07
0.1398E+08	66.97	34.37	32.61	28.13 0.1243E+06 0.3495E+07 0.1626E+07
0.1748E+08	77.61	36.20	41.41	36.83 0.9490E+05 0.3495E+07 0.1721E+07
0.2097E+08	88.47	38.04	50.43	45.77 0.7636E+05 0.3495E+07 0.1798E+07

GBL = GLOBAL LOC = LOCAL DP = DEW POINT BP = BUBBLE POINT

BLOCK: H5 MODEL: MHEATX

HOT SIDE: INLET STREAM OUTLET STREAM

------S8 4

COLD SIDE: INLET STREAM OUTLET STREAM

WATERIN WATEROUT

PROPERTIES FOR STREAM S8 PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE PROPERTIES FOR STREAM WATERIN PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(KMOL/HR)
 397906.
 397906.
 0.00000

 MASS(KG/HR)
 0.972000E+07
 0.972000E+07
 0.00000

 ENTHALPY(CAL/SEC)
 -0.830262E+10
 -0.830262E+10
 0.00000

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.432000E+07KG/HRPRODUCT STREAMS CO2E0.432000E+07KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

SPECIFICATIONS FOR STREAM S8:TWOPHASE TP FLASHSPECIFIED TEMPERATUREC28.0000PRESSURE DROPBAR0.0MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

SPECIFICATIONS FOR STREAM WATERIN :TWOPHASEFLASHFLASHPRESSURE DROPBAR0.030CONVERGENCE TOLERANCE0.000100000

*** RESULTS ***

INLET OUTLET OUTLET OUTLET STREAM DUTY TEMPERATURE PRESSURE VAPOR FRAC CAL/SEC C BAR

S8 -0.20972E+08 28.00 40.820 1.0000 WATERIN 0.20972E+08 38.04 29.000 0.0000

 S8
 |
 |

 S8
 |
 4

 ----->
 98160. KMOL/HR
 |----->

 88.47
 |
 |
 28.00

 WATEROUT
 |
 |
 WATERIN

 <------|</td>
 0.29975E+06 KMOL/HR
 |
 27.00

 |
 |
 |
 1
*** INTERNAL ANALYSIS ***

FLOW IS COUNTERCURRENT. DUTY 0.20972E+08 CAL/SEC UA 0.17977E+07 CAL/SEC-K AVERAGE LMTD (DUTY/UA) 11.666 C MIN TEMP APPROACH 1.0000 C HOT-SIDE TEMP APPROACH 50.431 C 1.0000 C COLD-SIDE TEMP APPROACH HOT-SIDE NTU 5.1832 COLD-SIDE NTU 0.94609 T HOT T COLD DELTA T LMTD UA ZONE Q ZONE UA PINCH STREAM DUTY IN/OUT/DEW/ POINT BUBBLE POINT CAL/SEC C C C C CAL/SEC-K CAL/SEC CAL/SEC-K 0.000 28.00 27.00 1.00 GBL 0.3495E+07 37.02 28.84 8.17 3.41 0.1024E+07 0.3495E+07 0.1024E+07 0.6991E+07 46.59 30.69 15.90 11.61 0.3010E+06 0.3495E+07 0.1325E+07 0.1049E+08 56.61 32.53 24.08 19.71 0.1773E+06 0.3495E+07 0.1502E+07 0.1398E+08 66.97 34.37 32.61 28.13 0.1243E+06 0.3495E+07 0.1626E+07 0.1748E+08 77.61 36.20 41.41 36.83 0.9490E+05 0.3495E+07 0.1721E+07 0.2097E+08 88.47 38.04 50.43 45.77 0.7636E+05 0.3495E+07 0.1798E+07 GBL = GLOBAL LOC = LOCAL DP = DEW POINT BP = BUBBLE POINT BLOCK: H6 MODEL: MHEATX _____ HOT SIDE: INLET STREAM OUTLET STREAM 5 6 COLD SIDE: INLET STREAM OUTLET STREAM -----10 9 **PROPERTIES FOR STREAM 9** PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE **PROPERTIES FOR STREAM 5** PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 397906. 397906. 0.00000 MASS(KG/HR) 0.972000E+07 0.972000E+07 0.00000 ENTHALPY(CAL/SEC) -0.831801E+10 -0.831801E+10 0.229304E-15 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.432000E+07 KG/HR PRODUCT STREAMS CO2E 0.432000E+07 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR

179

KG/HR

UTILITIES CO2E PRODUCTION 0.00000

*** INPUT DATA ***

SPECIFICATIONS FOR ST TWO PHASE TP FLASH SPECIFIED TEMPERATUR PRESSURE DROP MAXIMUM NO. ITERATIC CONVERGENCE TOLERA	REAM 9 : [RE C BAR DNS NCE	28.0000 0.0 30 0.000100000
SPECIFICATIONS FOR ST TWO PHASE FLASH PRESSURE DROP MAXIMUM NO. ITERATIC CONVERGENCE TOLERA	REAM 5 : BAR DNS NCE	0.0 30 0.000100000
*** RESULT	S ***	БТ
STREAM DUTY TEM CAL/SEC C	IPERATURE PRESSU BAR	JRE VAPOR FRAC
9 0.18946E+07 28.00 5 -0.18946E+07 55.20	29.000 0.0000 60.000 1.0000)
9 > 0.29975E+06 KMC 27.00	DL/HR > 28.00	
6 < 98160. KM0 55.20	 5 DL/HR < 59.66	
I 		

*** INTERNAL ANALYSIS ***

FLOW IS COUNTERCURRENT. DUTY -.18946E+07 CAL/SEC UA 63399. CAL/SEC-K AVERAGE LMTD (DUTY/UA) 29.884 C MIN TEMP APPROACH 28.203 C HOT-SIDE TEMP APPROACH 31.660 C 28.203 C COLD-SIDE TEMP APPROACH HOT-SIDE NTU 0.14915 COLD-SIDE NTU 0.33463E-01

DUTY T HOT T COLD DELTA T LMTD UA ZONE Q ZONE UA PINCH STREAM IN/OUT/DEW/

POINT BUBBLE POINT CAL/SEC C C C C C CAL/SEC-K CAL/SEC CAL/SEC-K

0.000 59.66 28.00 31.66

0.3158E+06 58.91 27.83 31.07 31.36 0.1007E+05 0.3158E+06 0.1007E+05 0.6315E+06 58.16 27.67 30.49 30.78 0.1026E+05 0.3158E+06 0.2033E+05 0.9473E+06 57.41 27.50 29.91 30.20 0.1046E+05 0.3158E+06 0.3078E+05 0.1263E+07 56.67 27.33 29.34 29.62 0.1066E+05 0.3158E+06 0.4144E+05 29.05 0.1087E+05 0.3158E+06 0.5231E+05 0.1579E+07 55.93 27.17 28.77 28.48 0.1109E+05 0.3158E+06 0.6340E+05 GBL 0.1895E+07 55.20 27.00 28.20 GBL = GLOBAL LOC = LOCAL DP = DEW POINT BP = BUBBLE POINT BLOCK: H6 MODEL: MHEATX HOT SIDE: INLET STREAM OUTLET STREAM -----5 6 COLD SIDE: INLET STREAM OUTLET STREAM _____ 9 10 **PROPERTIES FOR STREAM 9** PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE **PROPERTIES FOR STREAM 5** PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE DIFF. IN TOTAL BALANCE MOLE(KMOL/HR) 397906. 397906. 0.00000 MASS(KG/HR) 0.972000E+07 0.972000E+07 0.00000 ENTHALPY(CAL/SEC) -0.831801E+10 -0.831801E+10 0.229304E-15 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.432000E+07 KG/HR PRODUCT STREAMS CO2E 0.432000E+07 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR *** INPUT DATA *** SPECIFICATIONS FOR STREAM 9 • TWO PHASE TP FLASH SPECIFIED TEMPERATURE 28.0000 С PRESSURE DROP BAR 0.0 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 SPECIFICATIONS FOR STREAM 5 : TWO PHASE FLASH PRESSURE DROP BAR 0.0 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000

*** RESULTS ***

INLET OUTLET OUTLET OUTLET STREAM DUTY TEMPERATURE PRESSURE VAPOR FRAC CAL/SEC C BAR 9 0.18946E+07 28.00 29.000 0.0000 5 -0.18946E+07 55.20 60.000 1.0000 9 | 10 ----->| 0.29975E+06 KMOL/HR |-----> 27.00 | 28.00 6 | | 5 <-----| 98160. KMOL/HR |<-----55.20 59.66 *** INTERNAL ANALYSIS *** FLOW IS COUNTERCURRENT. DUTY -.18946E+07 CAL/SEC UA 63399. CAL/SEC-K AVERAGE LMTD (DUTY/UA) 29.884 C 28.203 C MIN TEMP APPROACH 31.660 C HOT-SIDE TEMP APPROACH COLD-SIDE TEMP APPROACH 28.203 C HOT-SIDE NTU 0.14915 COLD-SIDE NTU 0.33463E-01 DUTY THOT T COLD DELTA T LMTD UA ZONE Q ZONE UA PINCH STREAM IN/OUT/DEW/ POINT BUBBLE POINT CAL/SEC C C C C CAL/SEC-K CAL/SEC CAL/SEC-K 59.66 28.00 31.66 0.000 0.3158E+06 58.91 27.83 31.07 31.36 0.1007E+05 0.3158E+06 0.1007E+05 0.6315E+06 58.16 27.67 30.49 30.78 0.1026E+05 0.3158E+06 0.2033E+05 0.1579E+07 55.93 27.17 28.77 29.05 0.1087E+05 0.3158E+06 0.5231E+05 0.1895E+07 55.20 27.00 28.20 28.48 0.1109E+05 0.3158E+06 0.6340E+05 GBL GBL = GLOBAL LOC = LOCAL DP = DEW POINT BP = BUBBLE POINT BLOCK: B2 MODEL: COMPR _____ INLET STREAM: 3 OUTLET STREAM: 1 PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE

 MOLE(KMOL/HR)
 98160.0
 98160.0
 0.00000

 MASS(KG/HR)
 0.432000E+07
 0.432000E+07
 0.00000

 ENTHALPY(CAL/SEC)
 -0.236980E+10
 -0.238629E+10
 0.691129E-02

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.432000E+07KG/HRPRODUCT STREAMS CO2E0.432000E+07KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

POLYTROPIC COMPRESSOR USING ASME METHOD
OUTLET PRESSURE BAR40.8200POLYTROPIC EFFICIENCY0.90000MECHANICAL EFFICIENCY1.00000

*** RESULTS ***

INDICATED HO	RSEPOWER F	EQUIREMEN	T KW	-69,050.2	
BRAKE HORS	SEPOWER REG	QUIREMENT	KW	-69,050.2	
NET WORK REQ	UIRED	KW	-69,050.2		
POWER LOSSES	I	KW	0.0		
ISENTROPIC HC	RSEPOWER F	REQUIREMEN	T KW	-62,309.6	
CALCULATED O	DUTLET TEMI	P C	611	.956	
EFFICIENCY (POLYTR/ISENTR) USED		0	0.90000		
OUTLET VAPOR FRACTION		1.00000			
HEAD DEVELOR	PED, M-KC	F/KG	-5,280	.87	
MECHANICAL E	EFFICIENCY U	ISED	1.	00000	
INLET HEAT CA	PACITY RAT	0	1.19	628	
INLET VOLUME	TRIC FLOW F	RATE , L/MIN	2,3	39,690.	
OUTLET VOLUM	METRIC FLOW	/ RATE, L/MI	N 2	2,976,960.	
INLET COMPRE	ESSIBILITY FA	ACTOR	1.	.01382	
OUTLET COMPR	RESSIBILITY	FACTOR		1.00935	
AV. ISENT. VOL	. EXPONENT		1.2109	8	
AV. ISENT. TEM	P EXPONENT		1.190	04	
AV. ACTUAL VO	DL. EXPONEN	Т	1.23	777	
AV. ACTUAL TE	EMP EXPONEN	νT	1.2	1549	

BLOCK: B5 MODEL: COMPR

INLET STREAM: 4 OUTLET STREAM: 5 PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE 0.00000 MOLE(KMOL/HR) 98160.0 98160.0 MASS(KG/HR) 0.432000E+07 0.432000E+07 0.00000

ENTHALPY(CAL/SEC) -0.257582E+10 -0.257024E+10 -0.216648E-02

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.432000E+07 KG/HRPRODUCT STREAMS CO2E0.432000E+07 KG/HR

NET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

POLYTROPIC COMPRESSOR USING A	SME METHOD
OUTLET PRESSURE BAR	60.0000
POLYTROPIC EFFICIENCY	0.90000
MECHANICAL EFFICIENCY	1.00000

*** RESULTS ***

INDICATED HORS	EPOWER REQU	IREMENT	KW	23,364.3	
BRAKE HORSEP	OWER REQUIR	EMENT K	W	23,364.3	
NET WORK REQUI	RED K	W	23,364.3		
POWER LOSSES	KW	0	.0		
ISENTROPIC HORS	EPOWER REQU	JIREMENT	KW	20,915.8	
CALCULATED OUT	TLET TEMP C		59.65	97	
EFFICIENCY (POLY	TR/ISENTR) US	SED	0.9	00000	
OUTLET VAPOR FRACTION			1.00000		
HEAD DEVELOPED	, M-KGF/KO	£	1,786.87	7	
MECHANICAL EFF	ICIENCY USED		1.00	0000	
INLET HEAT CAPA	CITY RATIO		1.7920	50	
INLET VOLUMETR	IC FLOW RATE	, L/MIN	764	,161.	
OUTLET VOLUME	TRIC FLOW RA	ΓE, L/MIN	5	73,253.	
INLET COMPRESS	IBILITY FACTO)R	0.7	6149	
OUTLET COMPRES	SIBILITY FACT	ſOR	0.	.75979	
AV. ISENT. VOL. EX	KPONENT		1.29255		
AV. ISENT. TEMP E	XPONENT		1.33090)	
AV. ACTUAL VOL.	EXPONENT		1.3399	96	
AV. ACTUAL TEMP	P EXPONENT		1.350	49	

BLOCK: COMPR MODEL: COMPR

INLET STREAM: 6 OUTLET STREAM: COLD PROPERTY OPTION SET: LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 98160.0 98160.0 0.00000 MASS(KG/HR) 0.432000E+07 0.432000E+07 0.00000 ENTHALPY(CAL/SEC) -0.257213E+10 -0.256774E+10 -0.170839E-02

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.432000E+07KG/HRPRODUCT STREAMS CO2E0.432000E+07KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

POLYTROPIC COMPRESSOR USING ASME METHOD

OUTLET PRESSURE BAR	80.0000
POLYTROPIC EFFICIENCY	0.90000
MECHANICAL EFFICIENCY	1.00000

*** RESULTS ***

INDICATED HORSEPOWER REQUIREMENT KW 18,397.6 BRAKE HORSEPOWER REQUIREMENT KW 18,397.6 NET WORK REQUIRED KW 18,397.6 POWER LOSSES KW 0.0 ISENTROPIC HORSEPOWER REQUIREMENT KW 16,493.1 CALCULATED OUTLET TEMP C 80.1447 EFFICIENCY (POLYTR/ISENTR) USED 0.90000 OUTLET VAPOR FRACTION 1.00000 HEAD DEVELOPED, M-KGF/KG 1,407.03 MECHANICAL EFFICIENCY USED 1.00000 INLET HEAT CAPACITY RATIO 1.85845 INLET VOLUMETRIC FLOW RATE, L/MIN 553,730. OUTLET VOLUMETRIC FLOW RATE, L/MIN 448,888. INLET COMPRESSIBILITY FACTOR 0.74387 OUTLET COMPRESSIBILITY FACTOR 0.74728 AV. ISENT. VOL. EXPONENT 1.32193 AV. ISENT. TEMP EXPONENT 1.32350 AV. ACTUAL VOL. EXPONENT 1.37054 AV. ACTUAL TEMP EXPONENT 1.34138

BLOCK: TURB MODEL: COMPR

INLET STREAM:COLDOUTOUTLET STREAM:S5PROPERTY OPTION SET:LK-PLOCK LEE-KESLER-PLOCKER EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(KMOL/HR)
 98160.0
 98160.0
 0.00000

 MASS(KG/HR)
 0.432000E+07
 0.432000E+07
 0.00000

 ENTHALPY(CAL/SEC)
 -0.235244E+10
 -0.237426E+10
 0.919097E-02

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.432000E+07KG/HRPRODUCT STREAMS CO2E0.432000E+07KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

*** INPUT DATA ***

POLYTROPIC COMPRESSOR USING ASME METHODOUTLET PRESSURE BAR55.0000POLYTROPIC EFFICIENCY0.90000MECHANICAL EFFICIENCY1.00000

*** RESULTS ***

INDICATED HORSEPOWER REQUIREMENT KW -91,363.4

BRAKE	HORSEPOWE	ER REQUIREMENT	KW		-91,363.4	
NET WOR	K REQUIRED	KW	-91	1,363.4		
POWER LO	OSSES	KW	0.0			
ISENTROF	VIC HORSEPO	WER REQUIREMEN	IT K	W	-82,498.6	
CALCULATED OUTLET TEMP C				647.264		
EFFICIENCY (POLYTR/ISENTR) USED				0.90000		
OUTLET VAPOR FRACTION				1.00000		
HEAD DE	VELOPED,	M-KGF/KG		-6,987.3	35	
MECHANI	CAL EFFICIE	NCY USED		1.0	0000	
INLET HE	AT CAPACITY	I RATIO		1.196	i36	
INLET VO	LUMETRIC FI	LOW RATE , L/MIN		1,70)7,730.	
OUTLET V	OLUMETRIC	FLOW RATE, L/MI	N	2,	307,220.	
INLET CC	OMPRESSIBIL	ITY FACTOR		1.0	02160	
OUTLET C	COMPRESSIBI	LITY FACTOR		1	.01358	
AV. ISEN7	. VOL. EXPO	NENT		1.21836		
AV. ISEN7	TEMP EXPO	NENT		1.1883	5	
AV. ACTU	AL VOL. EXP	ONENT		1.245	33	
AV. ACTU	AL TEMP EX	PONENT		1.21	356	