
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

1-1-2007

Solving the Graph Cut Problem via Solving the Graph Cut Problem via l1 Norm Minimization 1 Norm Minimization

Arvind Bhusnurmath
University of Pennsylvania, bhusnur4@seas.upenn.edu

Camillo J. Taylor
University of Pennsylvania, cjtaylor@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Arvind Bhusnurmath and Camillo J. Taylor, "Solving the Graph Cut Problem via l1 Norm Minimization", .
January 2007.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-07-10.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/132
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76393361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=repository.upenn.edu%2Fcis_reports%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/132
mailto:repository@pobox.upenn.edu

Solving the Graph Cut Problem via Solving the Graph Cut Problem via l1 Norm Minimization 1 Norm Minimization

Abstract Abstract
Graph cuts have become an increasingly important tool for solving a number of energy minimization
problems in computer vision and other fields. In this paper, the graph cut problem is reformulated as an
unconstrained l1 norm minimization. This l1 norm minimization can then be tackled by solving a
sequence of sparse linear systems involving the Laplacian of the underlying graph. The proposed
procedure exploits the structure of these linear systems and can be implemented effectively on modern
parallel architectures. The paper describes an implementation of the algorithm on a GPU and discusses
experimental results obtained by applying the procedure to graphs derived from image processing
problems.

Disciplines Disciplines
Theory and Algorithms

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-07-10.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/132

https://repository.upenn.edu/cis_reports/132

Solving the Graph Cut Problem via l1 Norm Minimization

Arvind Bhusnurmath
GRASP Lab

CIS, University of Pennsylvania
bhusnur4@seas.upenn.edu

Camillo J Taylor
GRASP Lab

CIS,University of Pennsylvania
cjtaylor@cis.upenn.edu

Abstract

Graph cuts have become an increasingly important tool
for solving a number of energy minimization problems in
computer vision and other fields. In this paper, the graph
cut problem is reformulated as an unconstrainedl1 norm
minimization. Thisl1 norm minimization can then be tack-
led by solving a sequence of sparse linear systems involv-
ing the Laplacian of the underlying graph. The proposed
procedure exploits the structure of these linear systems and
can be implemented effectively on modern parallel archi-
tectures. The paper describes an implementation of the al-
gorithm on a GPU and discusses experimental results ob-
tained by applying the procedure to graphs derived from
image processing problems.

1. Introduction

Over the past decade graph cuts have emerged as an
important tool for solving a number of energy minimiza-
tion problems encountered in computer vision and ma-
chine learning. In their seminal paper, Kolmogorov and
Zabih [15] show that any energy function that satisfies a
property called regularity can be minimized by finding the
minimum cut of a graph whose edge weights are related to
the energy function. The energy functions that are encoun-
tered in many computer vision problems satisfy this condi-
tion which helps to explain the popularity of the approach.

Problems like image restoration [5], segmentation [3, 20]
and stereo [10, 14, 21] have all been reduced to graph cut
problems. Figure1 shows the typical structure of the re-
sulting graphs. Here the nodes s and t correspond to class
labels while the interior nodes correspond to the pixels in
the image. The graph cut methodology can also be ap-
plied to problems on 3D grids such as surface reconstruc-
tion [19, 22, 23].

Graph cut problems are usually solved using the equiv-
alent maxflow formulation with Ford-Fulkerson or Push-
relabel methods which can be found in standard algorithms
textbooks such as Cormenet al. [7]. However, most of

Figure 1. The figure shows the typical grid-like graph found in
vision problems. The dotted curve indicates the min cut.

the graphs that are encountered in vision problems tend to
have an extremely structured form - that of a grid. Boykov
and Kolmogorov [4], exploit this fact and tune the Ford-
Fulkerson algorithm to obtain better performance. The ba-
sic idea is to employ two search trees, one emanating from
the source and one from the sink, which are updated over
the course of the algorithm. Parallel implementations of the
push relabel approach on a GPU have also been described
by Dixit, Keriven and Paragios [8].

In many cases it is possible to use the solution obtained
from some prior graph to efficiently compute the mincut of
a similar graph. Kohli and Torr [13] use this idea while solv-
ing the object-background segmentation problem on video
sequences. Instead of creating a graph and computing the
mincut for each frame, the residual graph from the previous
frame is updated with the few edge weights that change and
a dynamic maxflow algorithm is used to compute the new
maximum flow. Juan and Boykov [11] use an initial par-
tition of the image pixels as a starting cut and then update
this solution to obtain the final optimal cut. An initial non-

1

feasible flow is created from the initial cut and this solution
is then driven towards feasibility. This method, known as
Active Cuts can be employed in a coarse to fine scheme
where the cut on a coarse level is used as an initial solution
for a finer level. The scheme has also been applied to video
segmentation.

Lombaertet al. [17] also solve image segmentation in a
hierarchical manner by first finding the minimum cut on a
coarser graph and then using this cut to build narrow banded
graphs at higher resolution that consist of nodes around
the boundary of the currently segmented objects. In other
words, the coarser level provides an estimate of the seg-
mentation and later stages are used to refine the location of
the boundary.

This paper describes an alternative approach to solving
the graph cut problem. Here the graph cut problem is re-
formulated as an unconstrainedl1 norm minimization prob-
lem. This convex optimization problem can be solved using
the barrier method which effectively reduces the orginal op-
timization problem to the problem of solving a sequence of
sparse linear systems involving the graph Laplacian. The
resulting procedure can be implemented using vector op-
erations and is well suited for implementation on parallel
architectures.

The remainder of the paper is organized as follows: Sec-
tions 2 and 3 describe the underlying theory and the pro-
posed implementation. Section 4 presents experimental re-
sults obtained with the procedure and Sections 5 and 6 dis-
cuss conclusions drawn and future work.

2. Theory

The goal of the min-cut problem is to divide the nodes
in the graph shown in Figure1 into two disjoint sets, one
containing s and the other containing t, such that the sum of
the weights of the edges connecting these two sets is min-
imized. In the sequeln will denote the number of interior
nodes in the graph whilem will represent the total number
of edges. This min-cut problem is typically solved by con-
sidering the associated max-flow problem. That is, if we
view the edges as pipes and the associated edge weights as
capacities, we can consider the problem of maximizing the
total flow between the source node, s, and the sink node,
t, subject to the constraint that each of the interior nodes is
neither a sink nor a source of flow. Like many combinato-
rial optimization problems [18], the max-flow problem can
be expressed as a linear program as shown in Equation1.

Let x ∈ R
m denote a vector indicating the flow in each

of the edges of the graph. A positive entry in this flow vector
corresponds to a flow along the direction of the arrow asso-
ciated with that edge, while a negative value corresponds to
a flow in the opposite direction. In other words the edges in
our graph are undirected and the associated arrows merely
represent the convention used to interpret the flow values.

The goal of the optimization problem is to maximize the
inner productcTx wherec ∈ R

m is a binary vector with +1
entries for all of the edges emanating from s and 0 entries
elsewhere; this inner product effectively computes the net
flow out of node s.

In order to express the constraint that the net flow asso-
ciated with each of the interior nodes in the graph should
be zero we introduce the node edge incidence matrixA ∈
R

n×m whose rows and columns correspond to interior
nodes and graph edges respectively. Each column of this
matrix corresponds to an edge in the graph and will contain
at most two non-zero entries, a +1 entry in the row corre-
sponding to the node at the head of the arrow associated
with that edge and a -1 for the node at the other end of
the edge. Note that those columns corresponding to edges
starting ats or terminating att will only contain a single
non-zero entry since theA matrix does not contain rows
corresponding to the s and t nodes.

The productAx ∈ R
n denotes the sum of the flows im-

pinging upon each of the interior nodes due to the flow as-
signmentx. The constraintAx = 0 reflects the fact that
the net flow at each of the interior nodes should be zero.
The vectorw ∈ R

m represents the non-negative weights
associated with each of the edges in the graph. The inequal-
ities −w ≤ x andx ≤ w reflect the capacity constraints
associated with each of the edges.

max
x

cTx

st Ax = 0

−w ≤ x ≤ w. (1)

A careful reader will note that this formulation differs
slightly from the one presented by Zabih and Kolmogorov
[15] which makes use of a directed graph. However, it can
be shown that this formulation allows us to represent pre-
cisely the same set of objective functions as the ones de-
scribed in that work.

Instead of tackling the linear program described in Equa-
tion 1 directly, we proceed by formulating the associated
dual problem. More specifically, the Lagrangian of the lin-
ear program described in Equation1 has the following form

L(x, λ, ν) = −cTx + νTAx + λT

+(x − w)

+ λT
−(−x − w)

= −wT (λ+ + λ−)

+ xT (AT ν − c + λ+ − λ−) (2)

In this expression the original primal objective func-
tion is augmented with multiples of the constraint functions
(x - w) ≤ 0, (-x - w) ≤ 0 andAx = 0. There are three sets

of Lagrange multipliersλ+ ∈ R
m, λ− ∈ R

m andν ∈ R
n

corresponding respectively to these three constraints.
The Lagrangian dual functiong(λ, ν) is obtained by

minimizing the Lagrangian with respect tox as shown be-
low:

g(λ, ν) = inf
x

L(x, λ, ν) (3)

In this case the dual function has the following form.

g(λ, ν) =

{

−wT (λ+ + λ−) iff AT ν − c = (λ− − λ+)
−∞ otherwise.

(4)
We can compute the optimal value of our original pri-

mal problem by maximizing the associated Lagrangian dual
function, g(λ, ν) , which gives rise to the following dual
problem.

min
λ,ν

wT (λ+ + λ−)

st AT ν − c = (λ− − λ+)

λ+ ≥ 0, λ− ≥ 0, (5)

Here we note that the structure of the problem im-
plies that the value of the inner productwT (λ+ + λ−) =
m

∑

i=1

wi(λ+ + λ−)i will be minimized when(λ+ + λ−)i =

|(AT ν − c)i|. To see this, consider that each term in this
inner product corresponds to the weighted sum of twonon-
negativevariables,λ−i andλ+i where their difference is
constrained by(λ− − λ+)i = (AT ν − c)i. 1 In this
case the minimum value that(λ−i + λ+i) can attain is
|(AT ν − c)i|. This property allows us to reformulate the
optimization problem in Equation5 as follows:

min
ν

m
∑

i=1

wi|(AT ν − c)i| (6)

which can be rewritten as:

min
ν

‖diag(w)(AT ν − c)‖1 (7)

Notice that the resulting optimization problem is anun-
constrainedl1 norm minimization where the decision vari-
ables correspond to the Lagrange multipliersν ∈ R

n.
The form of the objective function is not surprising since

the dual of the maxflow problem is the mincut problem
which can be expressed as the following constrainedl1
norm minimization:

min
ξ∈{0,1}n

||diag(w)(AT ξ − c)||1 (8)

1Remember that the edge weightsw are non-negative

The difference between the objective function in Equa-
tion 8 and the one Equation7 is the absence of constraints
on ν . It is possible to show that theνi variables will con-
verge to binary values without any external prodding. This
can be seen by observing that the Lagrangian variables,
λ+i, λ−i, corresponding to the edges that arenot saturated
by the max flow will converge to zero which in turn im-
plies that theν values associated with the endpoints of those
edges will converge to the same value. This property al-
lows us to conclude that the nodes will bifurcate into two
equivalence classes, one involving s and one involving t,
and that theν values associated with these two classes will
be 1 and 0 respectively. In other words, the constraints on
the node label values,ξ ∈ {0, 1}n, are superfluous and can
be safely ignored which significantly simplifies the result-
ing optimization scheme.

The unconstrained formulation in Equation7 is advanta-
geous in many ways. It underlines the connection between
graph cuts and convex optimization and allows us to em-
ploy continuous optimization techniques that can exploit the
structure of the problem.

3. Implementation

The resulting unconstrainedl1 norm minimization prob-
lem described in equation7 can itself be formulated as a lin-
ear program by introducing an auxiliary variabley ∈ R

m

wherey ≥ (AT ν − c) andy ≥ −(AT ν − c) as described
in [2]. The associated linear program is shown below.

minwTy

st

[

AT −I
−AT −I

] [

ν
y

]

≤
[

c

−c

]

. (9)

This problem can be solved using the interior point
method with logarithmic barrier potentials. In this approach
the original linear program is replaced with the following
convex objective function

φ(ν,y) = t(wT y) −
m

∑

i=1

log(yi − zi) −
m

∑

i=1

log(yi + zi)

(10)
Wherez = (AT ν − c). The scalart is used to weight

the original objective function against the barrier potentials
associated with the linear constraints.

This objective function is minimized using Newton’s
method. On each iteration of this procedure a locally opti-
mal step,[∆ν ∆y]T , is computed by solving the following
linear system:

[

AT D+A AD−

D−AT D+

] [

∆ν
∆y

]

= −
[

A(d1 − d2)
tw − (d1 + d2)

]

(11)

Whered1i = 1/(yi − zi), d2i = 1/(yi + zi); D+

andD− are diagonal matrices whose diagonal entries are
computed as followsD+ii = (d2

1i
+ d2

2i
) and D−ii =

(d2
2i

− d2
1i

). By applying block elimination to factor out
∆y the system can be further reduced to:

(Adiag(d)AT)∆ν = −Ag (12)

Where:
di = 2/(y2

i + z2
i) (13)

and

gi =
2zi

y2
i − z2

i

+
2yizi

y2
i + z2

i

(twi −
2yi

y2
i − z2

i

) (14)

Once∆ν has been obtained from Equation12, the∆y

component of the step can be computed using the following
expression.

∆y = D−1

+ ((d1 + d2) − tw − D−AT ∆ν) (15)

The entire interior point optimization procedure is out-
lined in pseudo-code as Algorithm 1. The input to this pro-
cedure is the vector of edge weights,w.

Algorithm 1 Calculate min-cut:minν ‖diag(w)(AT ν −
c)‖1

1: chooset,µ
2: ν = 0.5
3: choosey such thaty ≥ |AT ν − c|
4: while change inl1 norm since last (outer) iteration

above threshold1 do
5: while change inl1 norm since last (inner) iteration

above threshold2 do
6: Computed from Equation13
7: Computeg from Equation14
8: Solve(Adiag(d)AT)∆ν = −Ag to get∆ν
9: Compute∆y from Equation15

10: If necessary, scale step byβ so thatν + β∆ν, y +
β∆y are feasible.

11: end while
12: t = µ ∗ t
13: end while

Note that the principal step in this procedure is the solu-
tion of the sparse linear system given in Equation12which
means that the originall1 norm minimization problem has
been reduced to the problem of solving a sequence of sparse
linear systems.

At this point we note that the matrixL = (Adiag(d)AT)
corresponds to a weighted graph Laplacian where the vector
d indicates the weights that are to be associated with each

of the edges of the graph.2 The matrix is symmetric by
construction and, since the entries ind are all positive, it is
also positive definite. The entries along the diagonal of this
matrixLii correspond to the sum of the weights of the edges
impinging on the corresponding interior node in the graph -
including the links to the s and t nodes. For the off diagonal
elements,Lij , it can be shown that−Lij will correspond to
the weight of the edge connecting nodesi andj. This value
will be zero if the two nodes are not connected.

From these two observations we can conclude that the
matrix will be strictly diagonally dominant - that is the mag-
nitude of the diagonal element will be greater than the sum
of the magnitudes of the off diagonal elements since the di-
agonal entries will include the weights associated with the
links to the s and t nodes which do not make an appearance
in any of the off-diagonal entries.

The resulting sparse, banded matrix reflects the topol-
ogy of the underlying grid. Matrices with this structure are
frequently encountered in the process of solving partial dif-
ferential equations, such as Poisson’s equation, on two di-
mensional domains.

The numerical properties of the matrixL make the re-
sulting linear system amenable to solution by the method of
conjugate gradients [9]. Iterative techniques are preferred
over direct techniques like Cholesky decomposition in this
case because of the size of the matrix and the storage that
would be required for the resulting factors. Pseudocode for
the conjugate gradients method is presented in Algorithm 2.

Algorithm 2 SolveAx = b using Conjugate Gradients
1: x = x0

2: r = b− Ax0

3: p = r

4: ρ = rTr

5: while
√

ρ/||b|| > ε do
6: a = Ap

7: α = ρ/(aTp)
8: x = x + αp

9: r = r − αa

10: ρnew= rTr

11: p = r + (ρnew/ρ)p
12: ρ = ρnew
13: end while

A distinct advantage of the conjugate gradient technique
is that the steps in this algorithm can be readily parallelized.
Each conjugate gradient step involves one matrix vector
multiplication, 2 inner products and 3 SAXPY operations.
All of these operations are amenable to implementation on
the parallel architectures found on modern GPUs and multi-
core processors [16, 1].

2In fact the matrixL corresponds to the Graph Laplacian where the
rows and columns associated with the s and t nodes are elided.

For the linear system given in Equation12 we can ex-
ploit the fact that the matrix that we seek to invert has a
regular structure derived from the underlying grid which
further simplifies the matrix vector multiplication operation
required on each iteration of the conjugate gradient proce-
dure.

The conjugate gradient algorithm can be accelerated by
choosing an appropriate symmetric preconditioning matrix,
C, and then applying conjugate gradients to solve the sys-
tem (CAC)(C−1x) = Cb as described in [9]. The goal
here is to choose a matrixC in such a way that the pre-
conditioned matrixCAC ≈ I + B whereB is a low rank
matrix.

Concus, Golub and Meurant [6] describe precondition-
ing strategies that are specifically designed for the types of
matrices that we seek to invert. Section4 presents results
that illustrate how effective these strategies can be in im-
proving the convergence rate of the solver. However, the
strategies described in [6] involve the solution of a series of
tridiagonal matrices and these steps cannot be readily par-
allelized.

Experiments were also carried out using a simpler pre-
conditioning strategy where the matrixC is chosen as fol-
lows C = diag(a), ai = 1/

√
Aii. In the sequel, we will

refer to this as the diagonal preconditioner. When this pre-
conditioner is applied to a diagonally dominant matrix, such
asL, it produces a normalized variant where the diagonal
elements are all 1 and the off diagonal elements all have
magnitudes less than 1. Multiplying with such a diagonal
preconditioner does not affect the fill pattern of the matrix.

4. Results

Experiments were carried out on graphs derived from ac-
tual image processing problems in order to determine how
well the proposed scheme would work in practice. Since the
scheme essentially reduces the mincut problem to the prob-
lem of solving a sequence of sparse linear systems, one can
gauge the computational effort required to resolve a given
graph cut by recording the total number of conjugate gra-
dient iterations that are performed in the course of driving
the system to convergence. Three variants of the scheme
were used in these experiments, the first variant employed
the conjugate gradient method without any precondition-
ing, the second made use of the diagonal preconditioner
described in the previous section while the third used the
preconditioning strategy described by Concus, Golub and
Meurant [6].

The proposed scheme was applied to the image restora-
tion problem described by Boykovet al. in [5]. On the ex-
ample shown in Figure2 the proposed scheme required 237
CG iterations with no preconditioner, 156 with the diagonal
preconditioner and 32 with the Concus,Golub and Meurant
preconditioner.

Figure 2. Example of image restoration using the proposed
scheme.

Table 1. Number of iterations taken for separating the foreground
in each image in fig3, using different preconditioning strategies

Image CG with diagonal with preconditioner
name iters preconditioner in [6]

Ayers rock 393 107 25
Tomb 359 157 36

Liberty Bell 495 189 29
Footballer 441 183 39

Family 420 190 42
Superman 752 167 39
Actress 878 366 85
Giraffe 543 269 58

The method was also applied to the fore-
ground/background segmentation problems shown in
Figure 3. In these experiments the underlying weighted
graphs were constructed using the GrabCut algorithm
described by Rother, Kolmogorov and Blake [20]. All of
the images in question are512 × 512. Table1 shows the
number of conjugate gradient iterations taken by each of
the three variants of the optimization procedure.

These results demonstrate that the preconditioning
schemes are, in fact, quite successful at accelerating the
convergence of the conjugate gradient procedure in this sit-
uation. The diagonal preconditioner reduces the number of
iterations required by a factor of 0.4 on average while the
Concus and Golub preconditioner reduces the complexity
even further. Table2 shows the total number of floating
point operations required to solve each of the segmentation
problems using the diagonal preconditioner.

Experiments were also carried out to gauge how the com-
putational effort required to compute the segmentation var-
ied with the size of the input image. Table3 shows how
the number of conjugate gradient iterations changed as the
scheme was applied to scaled versions of a given image.
The diagonal preconditioner was used in this set of exper-
iments. These results provide some indication of how the
number of conjugate gradient iterations required increases
witht image size. The computational effort required to per-
form a single conjugate gradient iteration will increase lin-

Table 2. Total number of floating point operations needed forfore-
ground extraction for images in Fig3.

Image name Floating point operations (x 109)
Ayers rock 1.37

Tomb 1.45
Liberty Bell 1.69
Footballer 1.67

Family 1.63
Superman 1.79
Actress 2.96
Giraffe 2.07

Table 3. Variation of the number of Conjugate Gradient iterations
with image size

Image size CG iters
128x128 107
256x256 145
512x512 192

Table 4. Time taken for a single Conjugate gradient iteration on
images of different sizes

Image size CG iteration time(ms)
128x128 0.4
256x256 0.6
512x512 1.6

1024x1024 6.2
2048x2048 29.7

early with the size of the image.

The proposed scheme was also implemented on an
NVidia GeForce 7800 GTX GPU. In this implementation,
the weights associated with the nodes and edges were stored
as single precision floating point textures. Basic operations
such as matrix vector multiplication, SAXPY operations
and inner products were implemented as Cg pixel shaders.
The conjugate gradient solver was implemented by combin-
ing these basic operations in the appropriate sequence.

The time taken to perform a single conjugate gradient
iteration for images of different size is given in Table4.
As expected the computational effort increases linearly with
the number of pixels in the image except for very small im-
ages where overhead costs seem to constitute a more sig-
nificant fraction of the computation. This implementation
employed the diagonal preconditioning procedure.

Each conjugate gradient iteration requires18n floating
point operations. So the effective delivered performance of
the system is approximately 3.5 Gflops. At present the im-
plementation appears to be memory bound since this partic-
ular GPU has a theoretical peak computational performance

Table 5. Time taken to extract the foreground of images in Fig3
on the GPU.

Image name Time taken (in secs)
Ayers rock 0.60

Tomb 0.82
Liberty Bell 0.69
Footballer 0.71

Family 0.79
Superman 0.59
Actress 1.24
Giraffe 1.01

of around 35 Gflops3. The implementation was applied to
the segmentation problems shown in Figure3 and the tim-
ings achieved on these 512x512 problems are summarized
in Table5.

5. Conclusion

In this paper the graph cut problem is rephrased as an un-
constrainedl1 norm minimization problem. In this formula-
tion, the graph cut problem is viewed as a convex optimiza-
tion problem defined in terms of a vector of node weights,
ν ∈ R

n, which can be solved using the barrier method. The
resultingl1 norm minimization problem can be reduced to
the problem of solving a sequence of sparse linear systems
involving the graph Laplacian. This Laplacian matrix poss-
eses a number of useful numerical properties which make it
amenable to numerical solution using the method of conju-
gate gradients. We can also take advantage of the fact that
linear systems of this form have been studied extensively in
the context of partial differential equations on 2D domains
and a number of effective techniques for solving them have
been developed.

The fact that the node weights,ν, will converge to bi-
nary values at the global minimum is a useful property with
important practical consequences. Firstly, it means that the
optimization procedure yields the node labels immediately,
without the need for an intervening flow interpretation. Sec-
ondly, the fact that the weights tend towards discrete values
makes it easy to employ rounding as the barrier method ap-
proaches convergence. It also reduces the numerical preci-
sion required to execute the algorithm; in practice, one can
carry out the procedure usingsingle-precisionfloating point
arithmetic. Contrast this with the problems one encounters
in applying the barrier method to the max flow problem
where numerical issues can make it difficult to determine
whether a given link is saturated with flow or merely close
to saturation.

Importantly, the entire procedure can be carried out us-

3Performance figures obtained from the Stanford Graphics Laborato-
ries GPUBench benchmark suite.

Ayers rock Tomb

Liberty Bell Footballer

Family Superman

Actress Giraffe
Figure 3. These segmentation examples were used to test the graph cut implementation described in the previous sections. The graph
weights were computed using a variant of the Grab Cut procedure described in [20].

ing vector operations which are highly amenable to paral-
lelization. This means that the system is well suited to im-
plementation on modern multi-core CPUs and GPUs which
offer an abundance of single precision floating point per-
formance to applications that are structured to take advan-
tage of the available parallelism. Consider the remarkable
advances in CPU and GPU performance that have been en-
abled by decreasing feature size and increasing parallelism.
Table6 summarizes the single precision floating point per-
formance offered by a number of current systems. High
performance dual core processors are currently standard on

desktops, quad-core and teraflop systems from Intel are on
the horizon; GPU performance is increasing even faster.
The proposed implementation scheme is designed to exploit
the performance afforded by these types of systems.

6. Future Work

While this paper has discussed the graph cut problem us-
ing the basic grid topology where every pixel is connected
to 4 of its neighbors, it is straightforward to extend the anal-
ysis to handle the situation where each pixel has links to all
8 of its neighbors or to the 3D grids encountered in medical

Table 6. Single Precision Floating Point performance afforded by
a range of current CPUs and GPUs

Processor GFLOPS
Intel Core 2 Duo 8

NVidia 7800 35
ATI R580 125

NVidia 8800 173
Sony/IBM Cell 205

imaging.
On another front, efforts are currently underway to fur-

ther optimize the existing GPU implementation to make
better use of the available floating point units. We also
intend to port the implementation to the recently released
NVidia 8800 GPU which offers a Unified Shader Architec-
ture with greater performance and memory bandwidth.

Further work is needed to determine whether the linear
systems encountered in the optimization procedure could be
solved on the GPU using other numerical methods like the
cyclic reduction technique employed by Kass, Lefohn and
Owens [12].

Coarse to fine and multigrid approaches are also natural
candidates for further investigation. The results obtained by
solving the minimization problem on a coarser level could
be used as a starting point for the optimization procedure on
the finer scale, hopefully with a concomitant decrease in the
number of iterations required to achieve convergence.

Reformulating the graph cut problem as a continuous
optimization problem prompts us to consider whether a
change in coordinates may further simplify the optimiza-
tion problem. For example, it may be fruitful to investigate
whether a wavelet transform of the original node weight
vector would yield any advantage or insight.

References

[1] J. Bolz, I. Farmer, E. Grinspun, and P. Schroder. Sparse ma-
trix solvers on the gpu: Conjugate gradients and multigrid.
In SIGGRAPH, 2003.4

[2] S. Boyd and L. VandenBerghe.Convex Optimization. Cam-
bridge University Press, 2004.3

[3] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal
boundary and region segmentation of objects in n-d images.
In ICCV, 2001.1

[4] Y. Boykov and V. Kolmogorov. An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision. PAMI, 26, Sept 2004.1

[5] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts.PAMI, 23(11), Nov 2001.
1, 5

[6] P. Concus, G. Golub, and G. Meurant. Block preconditioning
for the conjugate gradient method.SIAM Journal of Scien-
tific Computing, 6(1), 1985.5

[7] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.Introduc-
tion to Algorithms. MIT Press, 2002.1

[8] N. Dixit, R. Keriven, and N. Paragios. Gpu-cuts: Combi-
natorial optimisation, graphic processing units and adaptive
object extraction. Technical report, CERTIS,ENPC, March
2005.1

[9] G. Golub and C. V. Loan.Matrix Computations. The Johns
Hopkins University Press, 1996.4, 5

[10] H. Ishikawa and D. Geiger. Occlusions, discontinuities and
epipolar lines in stereo. InECCV, 1998.1

[11] O. Juan and Y. Boykov. Active graph cuts. InCVPR, 2006.
1

[12] M. Kass, A. Lefohn, and J. Owens. Interactive depth of field
using simulated diffusion on a gpu. Technical report, Pixar
Animation Studios, 2006.8

[13] P. Kohli and P. Torr. Efficiently solving dynamic markov
random fields using graph cuts. InICCV, 2005.1

[14] V. Kolmogorov and R. Zabih. Computing visual correspon-
dance with occlusions via graph cuts. InICCV, 2001.1

[15] V. Kolmogorov and R. Zabih. What energy functions can be
minimized via graph cuts.PAMI, 26(2), 2004.1, 2

[16] J. Kruger and R. Westermann. Linear algebra operators
for gpu implementation of numerical algorithms. InSIG-
GRAPH, 2003.4

[17] H. Lombaert, Y. Sun, L. Grady, and C. Xu. A multilevel
banded graph cuts method for fast image segmentation. In
ICCV, 2005.2

[18] C. Papadimitriou and K. Steiglitz.Combinatorial Optimiza-
tion - Algorithms and Complexity. Prentice-Hall, 1982.2

[19] S. Paris, F. Sillon, and L. Quan. A surface reconstruction
method using global graph cut optimization.IJCV, 66(2),
2006.1

[20] C. Rother, V. Kolmogorov, and A. Blake. Grabcut - inter-
active foreground extraction using iterated graph cuts. In
SIGGRAPH, 2004.1, 5, 7

[21] S. Roy and I. Cox. A maximum-flow formulation of the n-
camera stereo correspondence problem. InICCV, 1998.1

[22] S. Sinha and M. Pollefeys. Multi-view reconstruction using
photo-consistency and exact silhoutte constraints: A maxi-
mum flow formulation. InICCV, 2005.1

[23] D. Snow, P. Viola, and R. Zabih. Exact voxel occupancy with
graph cuts. InCVPR, 2000.1

[24] B. Taskar.Learning Structured Prediction Models: A Large
Margin Approach. PhD thesis, Stanford University, 2004.

	Solving the Graph Cut Problem via l1 Norm Minimization
	Recommended Citation

	Solving the Graph Cut Problem via l1 Norm Minimization
	Abstract
	Disciplines
	Comments

	Solving the Graph Cut Problem via l₁ Norm Minimization

