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C4 Operations Optimization

Abstract

The primary objective of the project chronicled in this report was to design a model that optimizes C4
operations. This model will optimize the options for processing both “crude C4” and “Cat BB” streams, taking
the feed stream makeup, market pricings, and capacity constraints into account. Crude C4 streams contain
butanes, butenes, and butadienes, while “Cat BB” streams are similar in makeup but do not include
butadienes.

It is assumed that the equipment for all unit operations is readily available. In addition, the plant will already
have a baseload of feedstock that does not fully utilize all the equipment in the plant, which allows for the
purchase of feedstock that could potentially be profitable.

Available unit operations include Butadiene extraction, MTBE production, Metathesis, 1-Butene distillation,
Skeletal Isomerization, Olefin Isomerization, and Alkylation. The model will be required to make choices
about which unit operations to utilize based on the constraints input by the user. While the model will not
directly produce revenue, it will allow the company to optimize processes within the plant, finding the most
profitable situation. Thus, it will be possible to assess the program’s value based on its accuracy.
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The following report contains our project, C4 Operations Optimization, which was
recommended by Mr. Gary Sawyer. The optimization program uses Microsoft Excel to
determine the optimal processing of a crude C4 stream, and utilizes unit operations at an
existing petrochemical plant. Given feed stream makeup, market pricings, and capacity
constraints, the optimization program we designed is able to determine the most profitable
course of action for the petrochemical plant in question.

Our report contains detailed information on the program that was designed, as well as
information on unit operations, market analysis, utility and capacity requirements, and
customer requirements. A discussion of typical scenarios is also included, as well as a sensitivity
analysis and an investment opportunity analysis. The program is user-friendly and can be
modified to fit the specifications of the petrochemical plant in question, meeting the
requirements laid out in the project statement. The group recommends that the company
begin use of this program immediately because it can significantly increase company profits.
Suggestions for improvements to the code of the project program are included in this report as

well.
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Abstract

The primary objective of the project chronicled in this report was to design a model that
optimizes C4 operations. This model will optimize the options for processing both “crude C4”
and “Cat BB” streams, taking the feed stream makeup, market pricings, and capacity constraints
into account. Crude C4 streams contain butanes, butenes, and butadienes, while “Cat BB”

streams are similar in makeup but do not include butadienes.

It is assumed that the equipment for all unit operations is readily available. In addition, the
plant will already have a baseload of feedstock that does not fully utilize all the equipment in

the plant, which allows for the purchase of feedstock that could potentially be profitable.

Available unit operations include Butadiene extraction, MTBE production, Metathesis, 1-Butene
distillation, Skeletal Isomerization, Olefin Isomerization, and Alkylation. The model will be
required to make choices about which unit operations to utilize based on the constraints input

by the user.

While the model will not directly produce revenue, it will allow the company to optimize
processes within the plant, finding the most profitable situation. Thus, it will be possible to

assess the program’s value based on its accuracy.

Introduction

Crude C4s and Cat BBs are products of the steam cracking process designed to produce
petrochemicals. These streams contain a mix of butanes, butenes and butadienes. Often,
chemical refinery plants opt to process and sell these products, which calls for the use of an
optimization program to determine the most profitable pathway. Both butadiene, which can be
recovered through extractive distillation, and 1-butene, which can be recovered through

conventional distillation, are valuable monomers if high in purity. In addition, isobutylene can



be profitable as a monomer, but is often converted to methyl-tertiary butyl ether (MTBE), a
high octane fuel additive that is typically more profitable. Furthermore, there are multiple
options for the processing of cis- and trans-2-butene. These options include alkylation, skeletal
isomerization, metathesis, and olefin isomerization. Alkylation requires isobutane and produces
alkylate, a motor fuel. Skeletal isomerization allows for an equilibrium mixture of butene and
isobutylene to be recycled back to the MTBE reaction unit to increase profit. Metathesis
requires ethylene and produces propylene, a chemical typically more valuable than ethylene.
Olefin isomerization, also commonly known as butene isomerization or positional
isomerization, allows for the production and recuperation of 1-butene, which can then be sold.
Hydrogenation of 2-butene to n-butane is an additional, albeit less desirable, option, where the

n-butane is sold as feedstock.

The focus of this project was to create a program that made decisions based on feedstock
composition, market prices of products, and capacity constraints of unit operations in the plant
in order to maximize profit. The program was to also explore the opportunity of buying
additional feedstock in the event that the base load did not fully utilize equipment capacity.
This required research on utility costs, capacity information, and the petrochemical market, as
well as the characterization of typical crude C4 and cat BB streams. These factors are discussed
in the report. The majority of the project involved using Microsoft Excel to build a user-friendly
model that could optimize refinery plant operations. Additional calculations included material

balances and profit analysis.

The model in Microsoft Excel will be used by a large petrochemicals company. It will be
designed to fit the specific needs of the company, and will be assessed based on ease of use
and on accuracy. It is assumed that the company in question already possesses all of the
necessary equipment for the unit operations, thus it will not be necessary to purchase

additional units.



Project Charter

Name: C4 Operations Optimization
Project Students: Michael Moroney, Evan Smith, Marissa Thompson, and Fernando Torres
Project Advisors: Mr. Leonard Fabiano, Dr. Wen K. Shieh, and Mr. Gary Sawyer
Specific Goals: The development of an optimization program to be used for C4 optimization.
Scope: [In Scope]
Capacity and utility costs of unit operations
Typical market pricing of products
Economic Analysis
Programming and coding to design optimizations program in Microsoft Excel
Mass and energy balances
[Out of Scope]
Reactor Design
Lab work and experimental procedures
Deliverables:
Fully functional optimization program that allows customizable user inputs
Economic and market analysis
Mass and energy balances (Incorporated into model)

Timeline: Completion of design project within the 3 month semester.

Market and Competitive Analyses

Market Analysis for Compounds

Volatility in oil prices globally factors into the petrochemical industry. With recent historically
low oil prices, many petrochemical companies, especially those in Europe, have benefited from

an increase in their margins.



Crackers in Europe (companies who take feedstock and break it down to make olefins) have
benefited most since their main feedstock is naphtha (C5-C8), a direct product from crude.
Their energy costs have also gone down, since they use oil to fuel their cracking operations, as
opposed to the United States, which uses shale gas (and has usually enjoyed much greater
competitiveness thanks to its price). The drop in oil prices then comes as a relief to
petrochemicals companies, considering as how feedstock and energy costs account for close to

85% of the operating cost.

However, their customers have not enjoyed the effects of this price drop. Many of these
companies, under the financial strain they usually face, failed to make adequate investments
that have now cost them in the form of unprecedented shutdowns. These have led to a
decrease in the supply of their products (ethylene, propylene, byproducts, and derivatives),

resulting in an increase in price. 16

Supply for ethylene was tight in 2015, and looks to remain tight in 2016 as well. Prices have
dropped in general, although the margin for the producer has increased because of the low oil
price and the tight supply. The US is expecting to begin at least 7 large-scale projects to increase
the production capacity of ethylene by 50% over the next few years. It can be expected that the

increase of ethylene production capacity may result in a greater quantity of crude c4. > 1®

Propylene supply is not expected to be tight in 2016. Demand for it has fallen relative to that of
ethylene, as its derivatives’ markets do not have as positive/steady outlooks. The margin gap

between ethylene and propylene continues to broaden. **?°

Linear low-density polyethylene (LLDPE) is currently the fastest growing application for alpha

olefins such as 1-butene, driven by the increasing demand for high-quality plastics. As such, the



demand for alpha olefins is expected to grow globally. Pricing, however, is inherently

dependent on the volatile prices of the raw materials required for production.

While methanol pricing should be independent of oil prices, because of Methanol to Olefins
(MTO) and Methanol to Propylene (MTP) processes that are operational in China, the price of
Methanol has been impacted. MTO and MTP processes that produce ethylene and propylene
compete with the more traditional approach that uses naphtha as a feedstock. Since the costs
of this traditional approach went down because of the drop in crude prices, in order to
compete, the price of methanol also decreased. In 2015, capacity in the US for methanol

production increased by more than 75%. 2016 is expected to be stable. Pricing was very volatile

due to the uncertainty in supply, although current prices are at a 6-year low. >
Table 1: Chemical and Utility Prices

Material MED LOW HIGH CUSTOM Source Month Year
Ethylene $0.18 $0.15 $0.20 $0.18 Platt January 2016
Propylene $0.30 $0.26 $0.34 $0.30 Platt January 2016
1-Butene $0.67 S0.64 $0.69 $0.67 Argus August 2015
Methanol $0.41 $0.34 $0.29 $0.41 Platt January 2016
MTBE $0.23 $0.20 $0.26 $0.23 Platt January 2016
Butadiene $0.42 $0.36 $0.47 $0.42 Argus August 2015
n-Butane $0.51 $0.51 $0.51 $0.51 Argus August 2015
i-Butane $0.51 $0.51 $0.51 $0.51 Argus August 2015
Crude C4 $0.01 $1.26 $1.51 $0.01 Argus August 2015
isobutylene $0.58 $0.55 $0.60 $0.58 Argus August 2015
Alkylate $0.20 $0.20 $0.27 $0.20 OPIS February 2016
Hydrogen $8.00 $8.00 $8.00 $8.00
Electricity $0.06 $0.06
Steam (150
p5|g)' $10.50 $10.50 “Cost Sheet
Cooling Outline” on
water $0.02 $0.02

page 604 of

Process Dr. Warren
water 20.20 20.20 Seider’s NA 2016
boiler feed Product and
water $0.50 $0.50 Process
Natural Gas $3.20 $3.20 Design
il Principles
Water $4.00 $4.00 ’
Steam (50
psig) $6.60 $6.60




The majority of MTBE (95%) is used to oxygenate gasoline and boost its octanes. Although the
supply of MTBE is expected to decrease in Europe next year (2016), it is expected to grow in
other emerging economies. As China and India impose stricter environmental rules, the

demand for MTBE is expected to increase. Throughout 2015 prices were fairly volatile. ’

Most Butadiene is obtained by extracting it from the crude C4 which results from naphtha
cracking to make olefins. In the US, roughly 75% of butadiene is used to produce styrene
butadiene rubber (SBR), which is used in the production of tires. Of this about 80% is used in
the replacement tire market, which has suffered a drop in demand. The remaining Butadiene
produced in the US is used to make acrylonitrile-butadiene-styrene (ABS), which is used to
make plastics for cars, amongst other things. For most of 2015, supply remained ample with a
steady but mediocre demand. In general, the price of Butadiene fell with the price of oil,
although for periods in 2015 the price increased, most probably due to supply constraints.
Another development has been in the technologies used to make Butadiene. While the
traditional method employs a naphtha feedstock, new methods explore using lighter feedstocks
like ethane, while others explore the dehydrogenation of n-butane. Overall, the view of the
Butadiene market from participants is pessimistic. The markets of Butadiene customers are

expected to decrease, and demand is expected to further slow. ®

About two-thirds of the butane produced globally is used in liquefied petroleum gas (LPG).
Demand for LPG as a domestic fuel has surged in both commercial and residential sectors,
leading to the growth of the butane market. The tight supply of ethylene has also contributed
to the growth of the butane market, since butanes are used in the production of ethylene.
Exceptional growth, however, has been held back by the volatile crude oil market and

environmental concerns. Overall, the market is expected to increase modestly. *®



Competitive Analysis for Model

Although similar models exist at competitor plants, because this model is designed specifically
for the plant in question, there is no direct competitor. Since the model has been created from
scratch in Microsoft Excel, there are no concerns about patent infringement. The company
must have a license for Microsoft Excel to run the model, but there are no other royalties or
fees to outside parties that the company needs to pay. However, it is essential that the model
fits all standards set by the company so that the plant is able to earn more profits and compete

against other petroleum plants.

Customer Requirements

Our group has been hired by the Operations Planning department of a petrochemical company.
As previously stated, the project is to design an optimization model that will determine
profitable opportunities to buy feedstock. This program must be user-friendly, and must be
demonstrated at the final presentations in April of 2016. The customer has required that the
model find optimal process configurations given capacity information, pricing information, and
the feed composition. Typical utility information is also required for the model to function
correctly. All of these customer requirements are classified as fitness-to-standard (FTS). Ease of
use could potentially be categorized as new-unique-difficult (NUD), as could other variables

such as warnings about unrealistic pricing inputs, or infeasible capacity restraint inputs.

Because this product is to be designed for a specific company, it does not have to compete with
those at other companies. However, it must be efficient and accurate. It must outperform
whatever previous models the company has been using, potentially giving them a competitive

edge and allowing them to increase profits through the most efficient use of unused capacity.

Product Concepts

Several different programming tools were available for the product design. These tools included

Microsoft Excel, Matlab, and potentially ASPEN Plus. Microsoft Excel features an add-in called



Solver that serves as an optimization tool. Matlab can also be used to create extensive
operations optimization. Finally, ASPEN Plus is an additional option, however it requires

different inputs than the Microsoft Excel and Matlab options.

Superior Concept

The programming tool selected for this product design was Microsoft Excel and the Solver add-
in. This allows for the design of an optimization model using multiple spreadsheets for each of
the mass balances. In addition, a user-friendly “landing page” can be created that allows the
user to input the necessary constraints and prices. Furthermore, Solver blocks can be easily
troubleshooted and the file itself easily shared. The Excel format requires certain assumptions,
namely utilities that scale linearly with process throughput in order for the model to provide a
suggested C4 purchase amount in a timely manner. While the assumption of proportional
utilities introduces some error in the cost calculations, particularly in the 1-butene distillation
and any process unit running at very low throughput, the model can be easily updated with

utility requirements observed by process operators.

Matlab and ASPEN were decided against because they did not easily allow for the same
accessibility and visual output that an Excel model could possess. Matlab would have required
the user to keep track of a very large workspace of variables that could cause confusion and
error if the user did not take extreme care when changing multiple process parameters. More
of the coding for graphical analysis would have been left for the user to input, restricting the

potential users to those in the company with proficient Matlab skills.

Assumptions

Several assumptions were necessary in order to create a working optimization model. First, it
was assumed that utilities scale linearly with throughput. This allowed the model to quickly
provide a purchase amount using the information available to the group. It is also assumed that
all unit operations exist at the given petrochemicals plant, and that these unit operations are

readily available. The reactors in these processes were assumed to operate under the same



conditions regardless of throughput. Any additional reactants, i.e. hydrogen, were added in
stoichiometric proportion. By doing this, the group is assuming that there is already excess
reactant that is being recycled in the process, requiring only stoichiometric makeup of the
reactant for the process to operate. Varying reactor conditions was not considered as an
optimization parameter. For the program to function, it was necessary to assume that the unit
operations were already heat integrated and no further heat integration was necessary. For
the investment page of the program, it was assumed that the interest rate was constant, the

prices and utility costs were constant, and that there was no inflation.

Description of Model

The optimization model must make a series of choices regarding the possible processes that
can be carried out in the plant. Both butadiene and 1-butene can be sold as monomers, and are
quite profitable when sold in pure form. Isobutylene can also be sold as a monomer, but it is
often used in the reaction to form MTBE. 2-butene is not as valuable as a monomer, but there
are several processes that can serve as profitable options for 2-butene. These options include:
Alkylation, which creates a motor fuel known as “alkylate”; skeletal isomerization to form
isobutylene and butenes, which in turn can be converted to MTBE; Metathesis, which creates
propylene that can be sold for profit; and olefin isomerization, which creates an equilibrium mix
of both 1- and 2-butenes, where the 1-butene can be recovered and sold. The model optimizes
the plant by varying the split fractions of the Raffinate 2 stream leaving the MTBE unit, the split
fractions of the Raffinate 3 stream leaving the 1-butene distillation, and the amount of

additional crude C4 purchased.

The model comes preset with capacity, utility, and chemical price values as cited in the
following sections of the report. However, the user is free to change these parameters,
denoted by blue cell shading, to whatever values the user sees fit. This allows the user to
update the model to reflect changes in prices in the chemical marketplace and/or changes in

the operating characteristics of the plant brought on by maintenance, fouling, etc.



Opening the model displays the Landing Page (Figure 1), which contains a detailed summary of
the plant operations at the process level with the throughput, throughput constraints, capacity,
product, and profit of each unit displayed in the “Process Information” table. In the top left of
the Landing Page is the “Feed Information” table, which allows the user to manually input: the
amount of crude C4 incoming from the upstream processes, as well as the composition of the
C4 feeds. The amount of External Feed is determined by the model and is not a user input.
Composition inputs are changed using drop down menus, which reference preset standard
compositions and user selected compositions located in the Feed Information sheet (the 6th
sheet listed). To the right of the “Feed Information” table, the “Price Scenario” table provides
the user with dropdown menus for each of the relevant reactants/products in the plant. These
prices reference the Pricing Information sheet, which contains the most up-to-date prices the
team could find. As prices can vary geographically and will vary over time, a custom price input
is available for each chemical. The “Reset Price” button will automatically reset the price of all
chemicals to the “Mid” value as listed in the Pricing Information sheet. To the right of the
“Price Scenario” table is the “Utility Information” table, which has utility costs for the relevant
utilities in the units specified in the table. The table values are preset according to the “Cost
Sheet Outline” on page 604 of Dr. Warren Seider’s Product and Process Design Principles.*® Like
chemical pricing, utility costs can vary by region and will vary over time, so the model allows the
user to input updated utility values in the ‘Pricing Information’ Sheet, automatically updating
those in the Landing Page. The column to the right of the aforementioned tables contains the
button that the user clicks to run the optimization simulation with the selected inputs.
Displayed below the button is the total profit for the plant for a week of operation. The
opportunity cost listed below the total profit is the amount of money the company could expect
to make from selling a week’s worth of upstream crude C4 production at market price instead
of running it through the plant. The table directly below the opportunity cost is a summary of
the profit breakdown by product. It should be noted that the profit breakdown for the
products reflects the difference between the product revenue and the total cost of operation

for the unit which directly produces that product. To make the sum of the profits equal to the

10



total profit, the profit of MTBE includes the utilities of the skeletal isomerization unit, and the 1-
butene profit includes the utilities of the olefin isomerization unit. A more accurate
representation of the profit from producing each chemical would be given by spreading the
utility costs of upstream processes like butadiene extraction to downstream products like
propylene and alkylate, which need these upstream processes in order to be produced. Putting
a price on the intermediate streams could also be used to obtain more accurate profit margins
for the chemicals. The team would make this improvement in the next version of the model by
distributing utility costs, as pricing intermediate streams accurately would require market data
from the user, which is expensive and may not be directly available. Finally, the two tables at

the bottom of the right column display the split fractions of the

11
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Raffinate 2 and Raffinate 3 streams, respectively. The Raffinate 2 is the product of the MTBE

unit, and the Raffinate 3 is the bottoms product of the 1-butene distillation.

The second sheet is the 3D Sensitivity Analysis. This sheet allows the user to quickly visualize
the impact of price changes of two chemicals and/or utilities, selected by the user, on the total
weekly profit of the plant. The user also selects the percent change in the selected
material/utility prices. The model will apply this percent change to the average price of the
material/utility, as given in the ‘Price Information’ sheet, in order to get eight data points. The
“Run Analysis” button executes a macro which runs the optimization program varying the
prices of the selected chemicals by the specified increments. The macro also plots the data
automatically in a 3D surface plot. While the user can select any two prices to vary, the most
interesting and important results arise from the varying of prices of two products that require
Raffinate 2 or Raffinate 3 as inputs. This setup would allow the user to see which product holds
more influence over the profitability of the plant and is therefore vital in deciding where the
majority of the raffinate goes when the plant is running optimally. By varying the price of an
input and product of one process, for example ethylene and propylene, the user will be able to
observe how changes in profitability of one unit operation impacts overall plant profitability.
This analysis could be used in conjunction with econometric forecasting of chemical prices to
produce a range of forecasted profits for the plant. The optimal split fractions for the units
could also be forecasted and preparations could be made to scale units up or down depending

on the analysis results.

The third sheet, Investment Analysis, provides the user with a way to quickly examine the
cost/benefit analysis of expanding the capacity of a bottlenecked process. The user decides by
what percentage to increase capacity and how much it will cost on a per pound basis. The user
also selects the interest rate used to evaluate the net present value of the investment as well as
the number of years that the investment will last. The process to be expanded is chosen by the

user, but it is recommended that the user choose a process that is operating at 100% capacity.

13



Based on these inputs, the sheet will calculate the new capacity of the selected process and the

cost of process expansion.
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Clicking on the “Investment Analysis” button will execute that runs the macro. It first optimizes
the process using the original capacities. The macro will then optimize the process using the
new capacity for the selected process. It will then take the profit before the expansion and after
the expansion, calculate an incremental weekly profit, and annualize it in order to do a
discounted cash flow analysis using the interest rate and years previously selected by the user.
The output of this analysis includes the investment cost, the discounted future cash flows, the
year by which the investment is expected to break even, and the net present value of the

investment.

A number of assumptions have been made when constructing the investment analysis feature.
The interest rate is assumed to remain constant throughout the life of the investment. Future
versions could allow for a variable interest rate that could be provided by the company’s
econometric forecasting for each year in the period, increasing the accuracy of the discounted
cash flow analysis. Another assumption is that prices for utilities and chemicals are constant
over this time frame. This assumption reduces the calculation accuracy, as prices are almost
certain to change. Future versions could include the option of changing the set of chemical
prices yearly as the forecasting wing of the company sees fit. Adding this functionality would
only improve the calculations for the first few years at best, however. Since price volatility,
especially in the current economic climate, makes long term forecasting lose a lot of predictive
power, adding this functionality would only improve the calculations for the first few years at
best. Capacity expansion also assumes that construction will not impact current operations. The
user is expected to consider all costs in the expansion process, including any start up costs
when the expansion is integrated into the existing process. ldeally these are condensed in the

per pound cost that the user inputs.

The Profit Breakdown sheet gives a graphical depiction of the profit breakdown by product.
The waterfall chart automatically updates when the optimization model is run and/or when the
user changes the price inputs in the landing page. As was noted in the Landing Page section,

the profit breakdown is calculated based on the difference between the product revenue and
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the operating cost of the unit that produces it. In the case of the MTBE production, the costs of
skeletal isomerization have been included when calculating the profit. Similarly, the cost of
olefin isomerization has been taken into account when determining the profit of 1-butene
distillation. These combinations were made because the isomerization units do not directly
produce a sellable product, as their functions are to increase production of the process units
their costs have been combined with. This method of calculating profit results in an accurate
total plant profit, but it does not include the cost of requisite upstream processes in the
production of downstream products like alkylate and propylene. Future versions of the
optimization program would spread these costs out and provide a more accurate account of

the profit breakdown.

Profit Analysis

PROFIT BREAKDOWN

(in thousands of dollars)

5151.4

|

TOTAL PROFIT Butadiene MTBE 1-butene Propylene Alkylate n-Butane

Figure 4: Profit Analysis

The user can get a clearer visual of the plant operations on this sheet. The possible connections
between the plant processes are shown along with the percentage of a unit’s output
intermediate stream that is sent along a particular path. The percentages update automatically
with every run of the optimization macro from the Landing Page. Product streams are shown

as dashed lines, but the flow rates must be recorded from the Landing Page. The group
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excluded the product flow rates because the large numbers would overcrowd the diagram

while only providing information that the user could easily find on another page.

This sheet is preloaded with different compositions of crude C4 based on the production
specifications of the Dow Chemical Company. The medium, high, and low butadiene content
compositions displayed in the table are the ones referenced in the drop down menu on the
Landing Page. Additionally, there are two columns for custom compositions of crude C4. These
columns have been included because it is unlikely that the company’s own crude C4
composition and the composition of the crude C4 available for purchase will match those of the
selected Dow Chemical options. After lab sampling of both the internal and external crude C4,
the user can input the results in the custom columns of the table. These can also be referred to
in the dropdown menus on the Landing Page. If the compositions inputted by the user lie
outside the Dow Chemical specs shown below the table, the green circle will turn red next to
the outlier species. To help prevent user error, if the sum of the custom percentages does not

equal 100%, the cell in the last row will turn red.

FEED INFORMATION

INPUTS ARE INDICATED BY THE CELLS HIGHLIGHTED IN CYAN AND BY THE CELLS WITH BLUE FONT
DOW CHEMICAL CRUDE C4
Composition of Incoming C4
Ideally would be derived from lab results

Chemical DOW Chemical

(High  (Low Butadiene)

1,3-Butadiene 45.0% 60% 30% O s1% |O  58%
isobutylene 25.0% 15% 30% O 2% |0 2%
1-butene 12.0% 15% 15% O 9% Q 7%
2-butene 10.0% 10% 14% O 9% Q 6%
n-butane 6.0% 0% 8% O 8% Q 6%
isobutane 1.0% 0% 2% O 0% Q 2%
1,2 butadiene 1.0% 0% 1% O o% @ 0%
TOTAL 100.0% 100.0% 100.0% 100.0% 100.0%

Typical Crude C4 Compositions from Dow Chemical
Minimum Maximum

1,3-Butadiene 30% 60%
isobutylene 10% 30%
1-butene 5% 16%
2-butene 0% 14%
n-butane 0% 8%
isobutane 0% 2%
1,2 butadiene 0% 1%

Figure 6: Feed Information
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The most recent prices the group could locate for the chemicals and utilities relevant to the
plant are located in the table on the left of this sheet. Source and date information are located
in each row, with the majority of prices coming from Platt and Argus within the several months
of the report’s publishing. It should be noted that these prices are not from the same point in
time, and with the recent volatility in the industry, the varied timeframes may cause the results
of the optimization program to return unrealistic profit margins, as well as inaccurate split
fractions. It is therefore recommended that the company frequently update the prices of the
chemicals with their most up to date information. The custom column was created for this
purpose, although all other columns can also be updated. For some chemicals like MTBE, crude
C4, and alkylate, the prices quoted are often on a volume basis. Since the optimization
program operates on a mass flow basis, the Pricing Information sheet converts the price per
volume to price per pound in the table on the right. The user simply needs to input the price

per gallon and the remaining cells in the table will autofill with the price per pound in cents.

Pricing Information

INPUTS ARE INDICATED BY THE CELLS HIGHLIGHTED IN CYAN AND BY THE CELLS WITH BLUE FONT

Prices
($ per ib)

Material MED _ LOW  HIGH _ CUSTOM _ Source _ Month _ Year
Ethylene 0.18 0.153 0.20 0.18 Platt January 2016 Alkylate 5.93 Ib/gal
Propylene 03 0.255 034 030 Platt January 2016 | 11964 | 11904 | 12014 |
1-Butene 0.665 0.64 0.69 0.665 Argus August 2015 Crude C4 5.09 Ib/gal
Methanol 0405 | 034425 | 02926125 | 0405 Platt January 2016 | 7085 | 768 | 641 |
MTBE 02346 | 0.19941 026 023 Platt January 2016 MTBE 6.18 Io/gal
Butadiene 0415 036 047 0415 Argus August 2015 | 145 | 1235 | 163 |
n-Butane 05106 | 05075 | 05138 | 05106 Argus August 2015 145 12325 163.4875
i-Butane 05112 | 05088 | 05138 | 05112 Argus August 2015
Crude ¢4 001 1.2593 1.5088 001 Argus August 2015
isobutylene 0.575 0.55 0.6 0.575 Argus August 2015
Alkylate 02017 | 0.2009 027 0.2017 opIS February 2016

8 8 8 8

Electricity 0.06 0.06
Steam (150 psig) 105 105
Cooling water 0.02 0.02
Process water 0.2 0.2
boiler feed water| 05 0.5
Natural Gas 32 32
Chilled Water 4 4
Steam (50 psig) 6.6 6.6

Figure 7: Pricing Information
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The sheets for each of the plant processes have the same basic structure and function, so for
brevity the report will base the discussion of the process sheets on the Extractive Distillation

sheet. Any differences in other process sheets will be noted.

Since extractive distillation is the first process in the plant, its sheet is unique in that it is set up
with additional information about the crude C4 feed. The selected compositions for the internal
and external crude C4 feeds are displayed in the top left of the sheet. Below the percentage
compositions are the mass flows for each of the relevant chemicals in each of the feeds. The
block diagram for the process is seen to the right of these tables. For the streams shown, the
mass flow rates are shown in the large table underneath the diagram. All processes have a
main table similar to this one in which the mass flows of input, intermediate, and output
streams are calculated. The output stream for butadiene extraction is Raffinate-1, whose mass
flow rates are referenced as one of the input flow streams of the MTBE production sheet. The
rest of the intermediate streams are linked between processes as depicted in the Detailed Flow

Diagram.

The process parameters of: distillation effectiveness, cell J133; fraction of unrecovered
butadiene hydrogenated, cell 049; and fractional conversion of hydrogenated butadiene, cells
R49-51, are used in calculating the mass flows of the intermediate streams and hydrogen input.
The required hydrogen is then converted to Ibs per Ib butadiene product for the butadiene
material cost cell on the Landing Page. For other processes with additional inputs like MTBE
production, metathesis, and alkylation, the additional input is also calculated on the right of the
main process stream table and is changed to a |Ib per Ibs product basis. Other processes also
have parameters that affect performance that can be tuned to the user’s preference. This
freedom allows the user to account for changes in the plant’s efficiency as the plant ages or

between routine maintenance.
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The butadiene extraction utility data is collected on the right of the sheet. The data for each
process has been selected from the sources listed in each process description. The utility
requirements are then combined with the utility prices on the Landing Page to provide a total
utility bill per Ib of product for a given process. This number is then brought back to the
Landing Page in the utility cost row for the processes. Capacity conversions are shown next to

the utility information.

Using the Model

When using the model, the user must first provide the amount of available crude C4 feed
coming from upstream processes in the company, as well as its composition and the
composition of the crude C4 available for purchase. The model will update the profit and mass
flow rates for the given split fractions immediately after each input value is changed. The
results will not be optimized, however, until the user clicks on the “Run Simulation” button.
Once the user has selected the desired chemical and utility prices on the Pricing Information
sheet, the user can select capacity restraints for each of the processes. It should be noted that
over constraining the processes can cause the available crude C4 flow to be insufficient or
overload the processes, depending on the constraints selected. For example, if a high flow
requirement is desired for every process that receives an input from 1-butene distillation, there
might not be enough flow through the distillation process to satisfy the constraints for the
other processes. Conversely, if a high flow minimum is imposed on the 1-butene distillation
and low maximums are imposed on the downstream units, there might be too much flow to
meet the constraints downstream. If the selected constraints, which can be changed by the
user, are not met, the circle in the “percent capacity used” column will change from green to
red for the process. Once the prices and capacity constraints have been selected, the user can
run the simulation to optimize the plant by clicking on the “Run Simulation” button. The
Process Information table will then display the optimal split fractions for the plant along with
capacity usage and product information. The external C4 will then be set to the optimal value,
resulting in the total profit being maximized. If the change in external C4 and the split fractions

cannot satisfy capacity constraints, an error window will pop up after running the optimization
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stating that the constraints could not be met. Adjustments to the capacity constraints or
external C4 composition can be made to attempt to satisfy the constraints, rerunning the
simulation after each change. In the design team’s experience, overloaded processes in the
downstream part of the plant can be rectified by increasing butadiene content in the external
crude C4 composition if adjusting the capacity constraints is not possible. If the user exhausts
all possible adjustment options and the constraints are not satisfied, they should consider
taking action like selling available crude C4 or inputting additional feed at different points in the
plant, depending on if the plant is overfull or running dry. The user can perform trial-and-error
to determine how much available crude needs to be sold, but the model does not easily allow

for the addition of external feed at multiple points in the plant.

Assuming the constraints are met, the user now has the optimal amount of external crude C4 to
be purchased and the resulting profits. Now the user may turn their attention to the Sensitivity
Analysis page. The user can then select the two prices that they want to vary from the drop
down menus. The increments of change can be inputted as percentages for each variable.
Clicking on the “Run Analysis” button will present the relationship between the variables’ prices

and the total profit.

The Investment Analysis page is straightforward to use. After running the optimization on the
Landing Page, running the Investment Analysis by clicking the button will automatically locate
the bottleneck of the plant under the current conditions. If there is no bottleneck, which is
unlikely given the proportional utility assumption, the analysis will report back that there is
none. The user needs to simply input the percent expansion of the unit’s capacity, the interest
rate, and the lifetime of the expansion. The cost per |b added capacity must also be provided
by the user through an outside costing analysis for the unit. Once the inputs are entered, the
additional profit per year are displayed, and the present value for the additional profit and the
expansion project are given in the table. The requisite lifetime for the project to turn a profit is

displayed above the table.
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Case Study

To give a more concrete example of how the model is used, consider the pricing scenario as

shown in Figure 8.

Price Scenario : - .

P Reset Prices Utility Information

(5 perIb)
Ethylene CUSTOM S 0.28 Electricity $ 0.06
Propylene CUSTOM S 0.40 Steam (150 psig) $ 10.50
1-Butene CUsTOM S 0.58 Cooling water $ 0.02
Methanol CUSTOM S 0.30 Process water $ 0.20
MTBE cusTom S 0.45 boiler feed water $ 0.50
Butadiene CUSTOM S 0.64 Natural Gas S 3.20
n-Butane CUSTOM S 0.35 Chilled Water $ 4.00
i-Butane cusToM S 0.33 Steam (50 psig) S 6.60
Crude C4 CUSTOM S 0.40
Alkylate CUSTOM S 0.50
Hydrogen CUSTOM S 8.00

Figure 8: Pricing Scenario for Case Study

Assume an available feed of 15,000,000 Ib/week of crude C4 at the composition given by high
butadiene Dow Chemical crude C4, and the crude C4 available for purchase has the same
composition. Figure 9 has the results of the optimization model for this situation, with the
process flow constraints given in the Process Information table. The optimization has the
optimal purchase of the external crude C4 at 4.57 * 1076 lbs/week. The valuation of a week’s
worth the internal C4, the opportunity cost, is calculated at $6,000,000. The weekly profit from
operating the plant is calculated at $8,951,659. Therefore, the benefit from running the plant is
$2,951,659/week or roughly $153.5million per year. Notable results are that the MTBE unit
and 1-butene distillation are at 100% capacity. This arises from the fact that the MTBE unit has
a higher capacity than the 1-butene distillation column, and the MTBE unit can send the
difference in capacity to the metathesis unit. The olefin isomerization unit is also operating at
maximum capacity, while the skeletal isomerization unit is operating against the lower bound
of its flow constraints. This suggests that the plant would need to operate below the lower
constraint of the skeletal isomerization unit for the plant to reach an unconstrained profit

maximum.
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Examining the 3D Sensitivity Analysis page, an interesting relationship to examine is the effect
of varying isobutane and alkylate prices on the total profit of the plant. The general trend of
the 3D graph (Figure 10) is rising profits as the price spread between the chemicals is the
largest, with the alkylate at a high price and isobutane at a low price. This is shown on the
graph with lower profit at the near right corner and higher profit towards the back left of the
graph. The steeper slope from right to left indicates that a change in alkylate price has much
more of an impact of the profit than a change in isobutane price. This relationship makes sense
because the isobutane requirement roughly one pound of isobutane per four pounds of
alkylate. The standard deviation of the profit ranges is $73,336, which is a relatively small figure
compared to the profits in the $8million range. This small standard deviation indicates that the
plant profit is relatively robust to five percent variations in the prices of isobutane and alkylate.
Looking at the Profit Breakdown sheet (Figure 11), the alkylate represents a small portion of the
overall profit. Therefore, the small deviations in overall profit in response to chemical price
changes in the alkylate process makes sense. Butadiene and MTBE price changes would show a

greater standard deviation in the overall profit.

The Investment Analysis page shows an interesting but not unexpected result (Figure 12). The
bottleneck selected by the user is the MTBE production. Although the 1-butene column is also
operating at 100% capacity, additional flow through the MTBE column would allow the
metathesis and alkylation processes to fill out more while still keeping the 1-butene column
operating at max capacity. Expanding the 1-butene column would only take away flow from
the metathesis pathway, since the MTBE process bottleneck restricts the downstream flow. In
this scenario the user is evaluating a 15% expansion of the MTBE unit. For a sample expansion
cost, $45.00 per Ib/week is used. Note that this value has not been calculated using costing
models and is solely intended for the purpose of highlighting the Investment Analysis function.
The user would have to perform these calculations when using the Investment Analysis sheet.
An interest rate of 12% annually and a project lifetime of 15 years is selected. The cost of

expansion is calculated at roughly $57million, and the break even point of the expansion is
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between years two and three after the capacity is expanded. The net present value of the

process over its 15 year lifespan is $123 million.
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Unit Operations Descriptions

Extractive Butadiene Distillation is the first process in the block diagram, and thus the first
decision point for the process optimizations model. This process removes butadiene from the
mixed crude C4 stream. The resulting butadiene stream is high in purity. Butadiene is used to
produce several types of rubbers. Extractive distillation is necessary because the similarities in
volatilities between the products in the C4 stream prevent the use of conventional distillation.
The specific process described in this report is the BASF butadiene process, which requires the
use of N-methylpyrrolidinone (NMP) as a solvent.** NMP is not corrosive, which allows for

carbon steel to be used in the plant without the risk of corrosion.?

BASF butadiene extractive distillation requires three processes. These processes are extractive
distillation, degassing, and distillation. The extractive distillation has an overhead product
containing butenes and a bottoms product containing crude butadiene. The solvent is
recovered during the degassing process, while the butadiene is purified using the distillation
process, which allows for a purity of 99.7% or higher. The unrecovered butadiene is then
selectively hydrogenated to 90% butenes and 10% butanes before proceeding on to the

subsequent processes of the plant.*®

Methyl tertiary butyl ether (MTBE) is an oxygenate commonly used in gasoline, although its use
has been declining as environmental concerns have surfaced. MTBE and other oxygenates
became popular in the 1990s as concerns arose about the air pollution resulting from lead
octane enhancers, a problem partially alleviated by the use of oxygenates. However, by the late
1990s and early 2000s, the popularity of MTBE declined due to problems with groundwater

contamination and leaks in underground storage tanks.
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The specific process used in this report is the Ethermax Process, licensed by UOP.* This process
converts 99% of isobutylene. The process requires an adiabatic reactor, where the primary
reaction occurs. The effluent runs to a distillation column, where the bottoms is the MTBE
product. Unreacted components are fed through a fractionator to promote conversion. The
methanol in the overhead from the distillation column is then recovered through a system of
separations. Although this was the process with the best characteristics the group could find, its
capacity created a crippling bottleneck on the rest of the plant. In order to show off the
model’s capabilities, the group assumed that the plant had access to multiple trains of the

Ethermax process.

The metathesis reaction produces propylene from 2-butene, 1-butene and ethylene. The
specific process detailed in this project report is the UOP Oleflex Process.™ In the propylene
production process, a feed of liquefied petroleum gas is depropanized to separate and remove
the butanes and other hydrocarbons. It is then sent to an Oleflex unit and reacted. The two
resulting product streams are a vapor that is rich in hydrogen, as well as a liquid that is rich in

both propane and propylene.

1-Butene distillation allows for the recovery of high purity 1-butene. The 1-butene monomer
can be very profitable if it is pure. In a series of two distillation columns, the heavy
hydrocarbons are removed in the bottoms stream first, while 1-butene is removed as the
bottoms from the second distillation column. This process requires no butadiene or

isobutene.’

Skeletal Isomerization involves isobutylene, 1-butene, and 2-butene. At high temperature,
these constituents reach chemical equilibrium. Skeletal isomerization allows for the product to

be fed to an MTBE unit and convert the isobutylene into profit. The process described in this
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report is the skeletal isomerization process (SKIP) process, introduced by the Texas Olefins
Company.® A feed of 1 and 2-butenes are first vaporized, and steam is added. The stream is
heated to reaction temperature, which falls between 480-550° C. Next, the stream is reacted in
a fixed-bed reactor, where some of the 1- and 2-butenes are converted to isobutylene.
Following reaction and equilibrium, the stream is cooled in a heat exchanger and a water-
guench column. The hydrocarbons are then separated from the stream and depropanized to

recover the isobutylene for use in other processes.

The SKIP process, like other similar processes introduced by other companies, is often included
following an MTBE process. The isobutylene is then recycled back to the MTBE unit for further
production of the profitable MTBE. An alternative option for setup is to include two MTBE units

with a SKIP unit between them.

Olefin Isomerization, also commonly known as butene isomerization or positional
isomerization, involves the conversion of 2-butene to 1-butene. The process described here is
the Comonomer Production Technology (CPT) by CB&I.* However, specific utility requirements
were unavailable for any commercial olefin isomerization technology. Using a ratio comparing
the utility costs of existing skeletal and olefin isomerization technologies, it was possible to
obtain an estimate for olefin isomerization, at approximately 38% of the utility cost of skeletal
isomerization.® The CPT Process includes two sections. In the first section, 2-butene is
isomerized to 1-butene. The stream is vaporized and preheated before being fed to a reactor
where the 2-butene is isomerized over a catalyst. The product stream contains both 1- and 2-
butene at thermal equilibrium. The second section is the fractionation section where 1- and 2-
butene are separated using a butene fractionator. The 1-butene is the overhead product, while
the 2-butene is the bottoms which is then recycled to the isomerization reaction. However,
since our plant already has its own 1-butene distillation, our olefin process only represents this

first section.
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Olefin isomerization allows for a large increase in 1-butene recovery, which then allows it to be

sold for profit.

Alkylation is a process by which trimethylpentane or “alkylate” is formed from isobutane,
isobutylene and 2-butene. Alkylate is a component for motor fuel, which was popular in the
1940s. However, with the decline in popularity of MTBE due to serious environmental concerns,
it is possible that alkylate will increase in value in the coming years. The specific process listed
here is the STRATCO Alkylation process by Dupont, which uses sulfuric acid.*®* According to the
process description, there are five sections of the process, which include the reaction section,
the refrigerator section, the effluent treating section, the fractionation section and the
blowdown section. The reaction section includes the reaction between the hydrocarbon stream
and the sulfuric acid catalyst. The refrigeration section removes both heat of reaction as well as
light hydrocarbons. In the effluent treating section, free acid, alkyl sulfates and dialkyl sulfates
are removed from the stream. The fractionation section follows the effluent treating section,
where isobutane is removed and recycled to the reaction section. Finally, in the blowdown

section, the acid is degassed and the pH of the wastewater is adjusted.

Butenes can be hydrogenated to n-butane, which allows them to be returned to the steam
cracker as a feed. This option is typically less desirable than the other unit operations that can
be used to process 2-butene. The hydrogenation process listed here is the Hiils Selective
Hydrogenation Process (SH P).14 The selective hydrogenation process can be used with various

feed streams, including C3-C5 streams.

Utility and Capacity Requirements

Overall utility information is included below for each of the unit processes. Pricing information
was obtained from the Product and Process Design Principles Textbook for the cost of
electricity, water, gas and steam.* Pricing for various acid solutions, including the sulfuric acid

and sodium hydroxide for the Alkylation process, were obtained from Alibaba. It should be
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noted that this project creates an optimization program for an already existing petrochemicals
plant, thus it is not necessary to purchase additional equipment for the unit operations because

it is assumed that the company already possesses all necessary equipment.

Utility Requirement

Electric Power 6500 kW/h

Boiler Feed Water 10 metric tons per hour
Cooling water 6000 m> /h

Fuel Gas 13.1 million kcal/h

Capacity 350,000 MTA

Utility Requirement (unit/barrel)

Electric Power 15 kW

Cooling water 1370 gal

Process water 4 gal

Steam 194 1b

Fresh acid 13 1b

NaOH .05lb

Capacity 240 MT per stream day

Utility Requirement

Electric Power 177 kWh

Medium-Pressure Steam 7.9 mt per hour

Cooling Water 52 cubic meters per hour
Condensate 7.9 metric tons per hour
Capacity 50,000 MTA
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Butadiene Extraction (BASF)

100-200 kWh
1.5-2.5t
100-200 cubic meters

$0.60 (per metric ton product)
$2.50 (per metric ton product)
29,000 to 430,000 MTA

Hydrogenation (Hils Selective Hydrogenation Process)

46 kWh
798 kg/hr
798 kg/hr
51 m”3/hr
6373 BPD

Skeletal Hydrogenation (SKIP Process)

234.16 kWh
1.735mt
1.739 mt
6.576 GJ
1.679 GJ
2400 BPD
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1-Butene Distillation
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Conclusion and Recommendations

This report chronicles a project entitled C4 Operations Optimization, which involved the
creation of a computer model that can optimize operations and processes for an existing
petrochemicals plant. Other features of the project include a sensitivity analysis and
investment analysis that provide the user with an idea of how the plant profitability will
respond to changes in the economic climate and plant capacity. Itis recommended that the
plant in question begin using this model promptly, as it can increase profits by a considerable
margin. For further developments in the model, we recommend modifications to the method
by which it takes utility costs into account. Instead of assuming proportional utilities, functions
relating utility requirements to throughput could be incorporated into the model. These
functions could be derived from plant observation or from ASPEN simulations.

With the current model, profitability is listed by product, but subsequent versions could spread
the utility costs so that one product is not absorbing all the utility costs. Another feature that
could be added is a set of purity constraints for each product as specified by the

company. These would be most applicable in the 1-butene and n-butane product streams, as
trace amounts of isobutylene and isobutane, respectively, can enter these product streams and

lower purity.
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