

University of Pennsylvania **ScholarlyCommons**

Senior Design Reports (CBE)

Department of Chemical & Biomolecular Engineering

4-2014

Bio-Butadiene from Waste Carbon Monoxide

Courtney Bender University of Pennsylvania

Steven Hellstern University of Pennsylvania

Gus Roman University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/cbe_sdr Part of the Biochemical and Biomolecular Engineering Commons

Bender, Courtney; Hellstern, Steven; and Roman, Gus, "Bio-Butadiene from Waste Carbon Monoxide" (2014). Senior Design Reports (CBE). 57.

http://repository.upenn.edu/cbe_sdr/57

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cbe_sdr/57 For more information, please contact libraryrepository@pobox.upenn.edu.

Bio-Butadiene from Waste Carbon Monoxide

Abstract

This report describes a two-step process that creates 1,550 lb/hr 1,3-butadiene from a feed of effluent steel mill gas. The goal for this plant was 100,000 gallons of 1,3- butadiene per year, but preliminary economic analysis suggested a 20x scale up was necessary for economic viability. The first step of this process uses fermenters inoculated with cl. autoethanogenum to convert carbon monoxide-rich effluent gas to 2,3-butanediol. This intermediate is fed to a thermo-catalytic converter to produce 1,3- butanediene. Ethanol and MEK are both byproducts of this process that were initially isolated and sold for greater profit.

In the pages to follow, a detailed design and economic analysis for this process is presented for a plant in China. Process flow sheets, energy and utility requirements, and equipment summaries are provided and analyzed. Process profitability is highly sensitive to the pricing of butadiene and ethanol. It is shown that the plant is likely will be unprofitable at prevailing commodities prices. The investment has an internal rate of return of 0.7%, and net present value of \$-74.4MM using a discount rate of 15%. This project has a capital investment of \$126.2MM. The return on investment (ROI) is 2.0%, with a payback period of 10.3 years. Alternatives can be explored for different process configurations and varying product goals. A few possibilities are presented within this paper.

Disciplines

Biochemical and Biomolecular Engineering | Chemical Engineering | Engineering

Department of Chemical & Biomolecular Engineering

Senior Design Reports (CBE)

University of Pennsylvania

Year 2014

BIO-BUTADIENE FROM WASTE CARBON MONOXIDE

Courtney Bender University of Pennsylvania Steven Hellstern University of Pennsylvania

Gus Roman University of Pennsylvania CBE 459 Senior Design Project:

BIO-BUTADIENE FROM WASTE CARBON MONOXIDE

By:

Courtney Bender, Steven Hellstern, Gus Roman

Presented To:

Mr. Leonard Fabiano and Dr. Daeyeon Lee

April 15, 2014 Department of Chemical and Biomolecular Engineering University of Pennsylvania School of Engineering & Applied Science

Professor Leonard Fabiano Dr. Daeyeon Lee University of Pennsylvania School of Engineering & Applied Science 220 S 33rd Street Philadelphia, PA 19104 April 15, 20124

Dear Professor Fabiano and Dr. Lee,

We researched a two-step fermentation and reaction process to convert carbon monoxide to 1,3- butadiene. Our report on the solution to the design problem given by Mr. Steven Tieri is enclosed. Our design of the process includes a series of batch reactors to grow up cells, then transporting these cells to ten CSTRs that operate at steady state. Our process takes the intermediate 2,3-butanediol produced in the reactors through a thermo-catalytic converter to produce 1,3-butadiene.

This project includes detailed equipment designs and a preliminary economic analysis of the plant. The plant must be located at a medium sized steel mill to provide enough carbon monoxide to the bacteria. The overall production rate of 1,3-butanediol is 1,550 lbs/hr. This plant operates 24 hours a day for 330 days of the year.

This process introduces a novel separation scheme that is the most expensive piece of equipment for our plant. The separation unit uses a moving bed chromatography to extract the alcohols 2,3-Butadiene and ethanol from the fermentation broth. Our initial problem asked for a production rate of 100,000 gallons/year, however we increased the production by 20 fold to make the process more economically feasible. We produce 12.3 million pounds 1,3-butadiene per year.

Our economic analysis suggests we need to scale up the plant or modify current operation to become more economically feasible. The internal rate of return (IRR) is 0.7% under current conditions. The net present value (NPV) of the project is \$(74.4MM). Additionally, we explore various product price environments, demonstrating circumstances in which this can be a more profitable investment at current scale in this report.

Sincerely,

1.0 ABSTRACT	1
2.0 INTRODUCTION	2
3.0 PROJECT CHARTER	4
4.0 INNOVATION MAP	5
5.0 CONCEPT ASSESSMENT 5.1 MARKET AND COMPETATIVE ANALYISIS 5.2 CUSTOMER REQUIREMENTS 5.3 PRELIMINARY PROCESS SYNTEHSIS 5.4 ASSEMBLY OF DATABASE 5.5 BENCH-SCALE LABORATORY WORK	6 6 8 8 9 10
6.0 PROCESS FLOW DIAGRAMS & MATERIAL BALANCES	11
 7.0 PROCESS DESCRIPTION Overview CO Fermentation for the Formation of BDO Section 000: Steel Mill Gas Cooling Section 100: Media Mixing System Section 200: Batch Fermentation Section 300: CSTR and Cell Recycle Close-up Section 400: Simulated Moving Bed Chromatography Separation Formation of 1,3-Butadiene via Thermo-Catalytic Conversion of BDO Section 500: Thermo Catalytic Conversion Section 600: Distillation Separation: 1,3-Butadiene Recovery Section 700: Distillation Separation: Pressure-Swing Distillation 	30 30 30 31 31 32 33 33 33 34 35
 8.0 ENERGY BALANCE AND UTILITY REQUIREMENTS CO Fermentation for the Formation of BDO Section 000: Steel Mill Gas Cooling Section 100: Media Mixing System Section 200: Batch Fermentation Section 300: CSTR and Cell Recycle Close-up Section 400: Moving Bed Chromatography Separation Formation of 1,3-Butadiene via Thermo-Catalytic Conversion of BDO Section 500: Thermo-Catalytic Conversion Section 600: Distillation Separation: 1,3-Butadiene Recovery Section 700: Distillation Separation: Pressure-Swing Distillation Unaccounted For Energy Balance and Utility Requirements Overall Utilities by Section Amount of Utilities Used Price of Utilities Used 	36 37 37 38 39 40 41 41 42 43 43 43 44 44
9.0 UNIT DESCRIPTIONS 9.1 Fermentation Vessels 9.2 Continuous Stirred Tank Reactors 9.3 Simulated Moving Bed Chromatography 9.4 Storage Tanks 9.5 Pumps 9.6 Heaters	46 46 48 49 49 51 53

9.7 Reactors 9.8 Distillation Columns 9.9 Mixing Tanks 9.10 Compressors	54 54 56 56
9.11 Heat Exchangers	56
 10.0 COSTING SUMMARIES 10.1 EQUIPMENT COST SUMMARY CO Fermentation for the Formation of BDO Formation of 1,3-Butadiene via Thermo-Catalytic Conversion of BDO 10.2 FIXED CAPITAL SUMMARY 10.3 COMPUTATION OF ANNUAL GROSS PROFIT 	59 59 60 64 66 67
 11.0 ECONOMIC ANALYSIS 11.1 Economic Overview 11.2 Alternative Process Considerations Moving Bed Chromatography Separation Variable Product Pricing 	71 71 74 74 74
12.0 OTHER IMPORTANT CONSIDERATIONS 12.1 PLANT STARTUP 12.2 PROCESS SAFETY 12.3 ENVIRONMENTAL CONCERNS 12.4 PROCESS CONTROLLABILITY	76 76 76 76 77
13.0 CONCLUSIONS	78
14.0 ACKNOWLEDGEMENTS	80
15.0 WORKS CITED	81
APPENDICES	83
Appendix A: Sample Calculations Appendix B: Relevant ASPEN Reports Block Flow Diagram	83 88 88
Streams Blocks	88 103
Appendix C: Orochem Contact	1 36
Appendix D: Problem Statement	136
Appendix E: Heat Exchanger Design	139
Appendix F: Unit Specification Sheets	144
Appendix F: MSDS Reports	185

1.0 ABSTRACT

This report describes a two-step process that creates 1,550 lb/hr 1,3-butadiene from a feed of effluent steel mill gas. The goal for this plant was 100,000 gallons of 1,3butadiene per year, but preliminary economic analysis suggested a 20x scale up was necessary for economic viability. The first step of this process uses fermenters inoculated with *cl. autoethanogenum* to convert carbon monoxide-rich effluent gas to 2,3butanediol. This intermediate is fed to a thermo-catalytic converter to produce 1,3butanediene. Ethanol and MEK are both byproducts of this process that were initially isolated and sold for greater profit.

In the pages to follow, a detailed design and economic analysis for this process is presented for a plant in China. Process flow sheets, energy and utility requirements, and equipment summaries are provided and analyzed. Process profitability is highly sensitive to the pricing of butadiene and ethanol. It is shown that the plant is likely will be unprofitable at prevailing commodities prices. The investment has an internal rate of return of 0.7%, and net present value of \$-74.4MM using a discount rate of 15%. This project has a capital investment of \$126.2MM. The return on investment (ROI) is 2.0%, with a payback period of 10.3 years. Alternatives can be explored for different process configurations and varying product goals. A few possibilities are presented within this paper.

2.0 INTRODUCTION

1,3-Butadiene is a chemical compound used a variety of ways in the synthetic materials field, especially in the formation of polymers. It is used as an additive to make adiponitrile, a prominent component of nylon, as well as stiffer plastics such as polybutadiene rubber and styrene-butadiene rubber, most commonly used as automobile tires (Morrow, 1990). This report focuses on the use of 1,3-butadiene as the feedstock for adiponitrile.

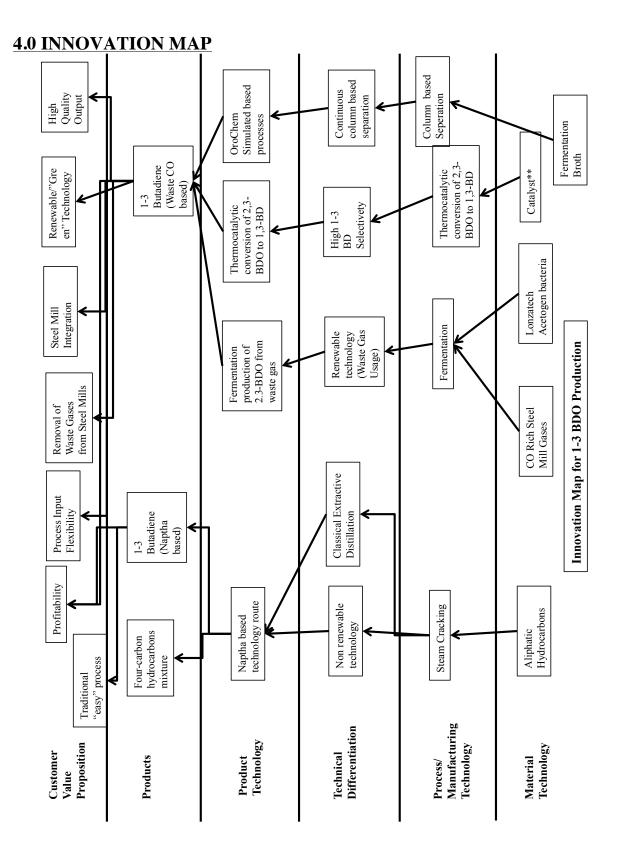
The bioplastic market is expected to expand 17-20% in the next two years due to a variety of factors. The important ones for this report are consumer demands of our Company, a desire for feedstock diversification, the increasing cost of 1,3-butadiene from fossil materials, and a desire to produce the chemical in a more environmentally friendly manner.

The most common method for producing 1,3-butadiene is as a byproduct of steam cracking that produces ethylene and other olefins. This process occurs when heavier hydrocarbons are used, however ethane has become cheaper and thus a more common feed in recent years. This has resulted in a gradual reduction in the amount of 1,3-butadiene extracted from steam cracking plants throughout the United States, Europe, and Japan (Morrow, 1990).

During World War II, 1,3-butadiene was in high demand. Competition to supply this chemical to the war efforts sparked the development of new ways of creating 1,3butadiene. One of these processes involved the catalytic conversion of 1,3-butadiene using 2,3-butanediol. 2,3-Butanediol is a chemical that can be produced by anaerobic fermentation with a *clostridium* bacteria. Not only can this process create a desired compound, but also it creates 1,3-butadiene using an environmentally friendly process. This report takes lab-scale research of the fermentation of 2,3-butanediol and applies it to a large-scale production plant to create 1,3-butadiene.

This process is split into two main sections: CO Fermentation for the Formation of BDO and Formation of 1,3-Butadiene via Thermo-Catalytic Conversion of BDO. The fermentation process uses *cl. autoethanogenum* bacteria grown in a carbon monoxide-

rich environment. Carbon monoxide is a primary product of steel mill production. Therefore, this chemical plant will be located next to a steel mill that will provide the gas feed needed for the fermentation process. A typical steel mill composition of 42% CO, $36\% N_2$, 20 CO₂, and 2% H₂ is assumed for this plant. The basis for the industrial-sized process described in this report is based off of a pilot plant by LanzaTech (LanaTech, 2012).


During the fermentation process, the *cl. autoethanogenum* cells are grown in batches to the desired operating concentration of 2 g/L. Continuous stirred-tank reactors (CSTRs) are operated in parallel at steady state to produce 10 g/L of 2,3-butanediol in solution broth. The broth also contains 20 g/L ethanol and 5 g/L cell mass, of which the former is sold as a fuel-grade product and 40% of the latter is recycled to the CSTR to maintain the desired cell density. 2,3-Butanediol and ethanol are both extracted from the fermentation broth using a separation unit that utilizes Simulated Moving Bed Chromatography (SMB). This is an Orochem product.

2,3-Butanediol, once recovered from fermentation broth, then enters the reaction process of the plant. We chose to use a thorium oxide catalyst, which has a 62% selectivity for 1,3-butadiene and is most commonly used for this reaction. Byproducts include methyl ethyl ketone (MEK), methyl vinyl carbinol (MVC), and water. A rigorous separation system was developed to perform the separation of these products. We assess the profitability of purifying MEK versus installing the required equipment in this paper.

Our primary objective was to design a plant that produced 1,3-butadiene using fermentation from waste steel mill gas. Our original problem statement proposed a yearly production of 100,000 gallons. However, the final scale is much larger to make the process more economically feasible, meaning we have an excess of 1,3-butadiene that can be put on the market. We chose to build our plant in China, where 1,3-butadiene is more profitable to produce, at \$2100/ton USD, and we assume the plant will be operational 330 days out of the year.

3.0 PROJECT CHARTER

Project Name	Bio-Butadiene from Waste CO
Project Champions	Mr. S. Tieri, Dr. D. Lee, Prof. L. Fabiano
Project Members	C. Bender, S. Hellstern, G. Roman
Specific Goals	 Economically synthesize 1,3-butadiene using 2,3-butanediol (BDO) as an intermediary in a 2-step process Covert waste CO to BDO via fermentation Thermo-catalytically convert BDO to 1,3-butadiene Create a minimum-energy plant that exceeds safety and
	environmental standards
Project Scope	In-scope
	 Production of polymer-grade 1,3-Butadiene Concentration and purity of CO feed stream is correct for the fermentation process
	 Water recycle / storage and integration into the steel mill Air purification / integration with existing furnace in steel mill Existing environmental and safety standards
	Out-of-scope
	• 1,3-Butadiene for processes other than making adiponitrile
	• New facilities for water and air treatment
Deliverables	 Detailed process design and accompanying flow sheets Includes material and energy balances How is this process completed?
	 Written and oral design reports Economic viability Environmental and safety analysis
Time Line	Milestones
	• <i>February 4</i> Preliminary material balance, computer- drawn block flow diagram
	• <i>February 25</i> Complete process synthesis, including material and energy balances for the most promising flow sheet
	• <i>March 25</i> Detailed design of process units
	• April 8 Complete rough draft of written report
	• <i>April 15</i> Complete final draft of written report
	• April 23 Final report oral presentation

5.0 CONCEPT ASSESSMENT

5.1 MARKET AND COMPETATIVE ANALYISIS

Global 1,3-butadiene demand was around 10.5 million tons in 2011, which amounted to over \$40 billion in revenues. It is expected that by 2017, these annual revenues will increase to \$180 billion. The Asia-Pacific market consumes around 45% of the 1,3-Butadiene produced annually, which is expected to grow as the Chinese and Indian economies continue to develop (Transparency Market Research, n.d.). The North American use accounts for 23% of production (IARC, 1997).

In major markets, such as the United States, Europe, and Japan, butadiene is obtained as a by-product from the steam cracking of a naphtha cut, which produces ethylene and other olefins. An additional mode of production, primarily used in South America and Eastern Europe, is to use ethanol as a feedstock in small-capacity plants. Other production pathways use either n-butenes or n-butane as reactants. Our company will attempt to reap the benefits of a new bio-based LanzaTech technology, which utilizes the carbon monoxide in a steel mill gas to produce 2,3-butanediol, which is then thermocatalytically converted to 1,3-butadiene. Current forecasts estimate 17-20% average annual growth in demand for bioplastics through 2016.

1,3-Butadiene is used in the production of many polymers. For our company, it is a critical feedstock in the production of adiponitrile, which is used in the production of Nylon 6,6. Other major end uses, by volume of annual consumption, of butadiene are butadiene rubber (27%), styrene butadiene rubber (32%), styrene butadiene latex (10%), acrylonitrile butadiene styrene (9%). Since we will be producing polymer grade butadiene with a purity of >99% by mass, our product can be used as a versatile precursor to all of these end uses.

In addition to our main butadiene project, ethanol and methyl ethyl ketone (MEK) will be produced in significant quantities as valuable side products. In Asia, ethanol is a valuable commodity, with a consumption of 4.6 billion liters while only having a production value of 4.0 billion liters (Ng, 2013). Our process at full capacity produces

36.5 million liters of synthetic grade ethanol per year, lowering this gap in the regional supply by 6.5% and providing valuable revenues to our company.

In addition to the strong revenues produced by ethanol sales, MEK is a valuable chemical in the Asia-Pacific market with over 50% of the global volumes consumed in 2012. This consumption is driven by robust growth in the paints and coatings market from the manufacturing and construction industries (Wood, 2014). MEK is used as a solvent in paints and coatings, printing inks, adhesive for PVC pipes, industrial cements, and resin thinners. In 2010, China's annual MEK production was 670 million pounds. Our process produces which produces 6.4 million tons per year and would be able to capture approximately 1% of the Chinese market.

The proposed bio-butadiene process will be valuable our Company's continued growth. The Company interested in biopolymers for several reasons, including increasing consumer demand, a business desire for feedstock diversification, the increasing price of fossil materials, a hedge for petroleum market volatility, and to positively impact global climate change. Additionally, there is potential to earn waste gas credits since this process repurposes carbon monoxide from steel mill gas exhaust. Our process is very trend-resistant since it utilizes three different chemicals as revenue generators. Especially notable is our ability to produce a significant amount of ethanol, a chemical with a growing market as more countries are beginning to integrate ethanol into their gasoline. In addition, our production of ethanol is outside the food chain using steel mill gas and bacteria as the main inputs instead of the current sugarcane and yeast based production model, allowing for a more sustainable ethanol supply chain

Value Chain Analysis: Our Company is towards the beginning of the value chain. It is a producer and retailer of plastics, which are used in the production of a wide host of consumer products. Consumer products are sold via online and brick and mortar retailers. Negotiating better terms with suppliers of the inputs to our process, the steel mill owners, and negotiating better terms with our customers could increase the strength of our position in the value chain.

Value Proposition: A 1,3-butadiene production process that offers our company the ability to fulfill consumer demand, diversify its feedstock, transition away from fossil materials, which are increasing in price, hedge petroleum market volatility, and positively impact global climate change by using a typical waste product in a new, innovative way.

Market Segmentation: We can look at our own company's needs for 1,3butadiene production as well as the market, which can offer insight to the best location for the production plant.

5.2 CUSTOMER REQUIREMENTS

Since the first butadiene plants began production in the 1940's (Vernon, 1985), consumers have been demanding butadiene of various purities for their processes. Therefore, butadiene can be classified as a fitness-to-standard (FTS) product rather than a new-unique-difficult (NUD) product. In this process, polymer-grade butadiene is created with a purity of >99% by mass, necessary for its usage as adiponitrile feedstock. In addition, customers will obtain competitively priced 1,3-butadiene created by a green process. We only use waste material, steel mill gas from the steel mill industry, and bacteria, a non-environmentally damaging resource, as the main inputs to the process.

5.3 PRELIMINARY PROCESS SYNTEHSIS

This project is highly based off of LanzaTech's new technology, where bacteria, *cl. autoethanogenum*, is used to produce useful materials from waste steel mill gas. The two main products from this process, ethanol and butadiene, are classically created using valuable hydrocarbons as their feed sources. In this process, steel mill gas, considered a waste product of steel production, is used to feed bacteria that are capable of fixating the carbon monoxide and hydrogen gas from feed gas to produce 2,3-butanediol (BDO) and ethanol. This new technology enables BDO and ethanol to be created through renewable green pathways instead of the classic energy-intensive technologies of the past.

Low levels of BDO and ethanol are present at steady state in the fermentation broth, 10 g/L and 20 g/L respectively. To produce enough BDO to use for the second

stage of the process, a series of five batch fermenters grow enough cells to inoculate five continuous stirred tank reactors (CSTRs). This batch fermentation is run twice a year, enough to inoculate a total of ten CSTRs that work in parallel. Under continuous operation at steady state, this process can produce enough quantities of BDO. The output streams from the CSTRs are filtered for solid materials, then combined and fed to a simulated moving bed chromatography unit (SMB). This is an Orochem unit that extracts the process alcohols from the fermentation broth. The alcohols are then separated to near purity using a small distillation tower. The ethanol is stored and the BDO is pumped to the thermo-catalytic conversion portion of the process. An alternative separation scheme using a distillation tower is presented later in this paper.

The second stage of our process will require the conversion of BDO to 1,3butadiene using a thermo-catalytic conversion reaction. To achieve this we will use a catalyst that has high conversion and selectivity of 1,3-butadiene. Preliminary conversion data are provided in the problem statement, however a better conversion was found using thorium oxide. The three reactions that take place in the reactor are:

(1) $C_4H_{10}O_2 \rightarrow CH_2=CHCH=CH_2 + H_2O.$ (2) $C_4H_{10}O_2 \rightarrow CH_3C(O)CH_2CH_3 + H_2O.$ (3) $C_4H_{10}O_2 \rightarrow CH_2=CHCH(OH)CH_3 + 2*H_2O.$

5.4 ASSEMBLY OF DATABASE

In order to perform the economic analysis, the following values were found for the chemicals consumed or sold in this process. Using pricing resources, the price of the following chemicals in the Asian market were found in US dollars: \$2100/ton for 1,3-butadiene, \$1700/ton for MEK, and ethanol is \$1400/ton (Research China, 2012). The price of thorium oxide is \$5.75/g when bought in quantities of 50 grams or more (Isis.com, 2014).

All systems were drawn using Visio. The process simulation was run in ASPEN PLUS for the reaction section. In order to obtain thermodynamic data and other physical properties data, the ASPEN databanks were used. Additionally, UNIQUAC and NRTL were used to estimate any missing properties data.

Conversion data and reactor operating conditions were obtained from literature. The simple pass conversion of BDO to 1,3-Butadiene over a reactor operating at 70mmHG and 1 bar is 62.1%. Additionally, 26.2% is converted to MEK and 8.3% is converted to methyl vinyl carbinol.

5.5 BENCH-SCALE LABORATORY WORK

There was no experimental component performed for this project. Bench-scale and pilot plant information was obtained from various patents belonging to LanzaTech (LanzaTech, 2012).

6.0 PROCESS FLOW DIAGRAMS & MATERIAL BALANCES

This process is divided into two steps, with eight sections overall:

CO Fermentation for the Formation of **BDO**

Section 000: Steel Mill Gas Cooling Section 100: Media Mixing System Section 200: Batch Fermentation Section 300: CSTR and Cell Recycle Close-up Section 400: Moving Bed Chromatography Separation Formation of 1,3-Butadiene via Thermo-Catalytic Conversion of BDO Section 500: Thermo Catalytic Conversion Section 600: Distillation Separation: 1,3-Butadiene Recovery Section 700: Distillation Separation: Pressure-Swing Distillation

An overall flow diagram is shown below. The individual blocks and accompanying material balances are shown in the following pages. Unit specifications and process descriptions are presented later on in the report. Each group contains separation methods to purify products. All batch processes are denoted with asterisks.

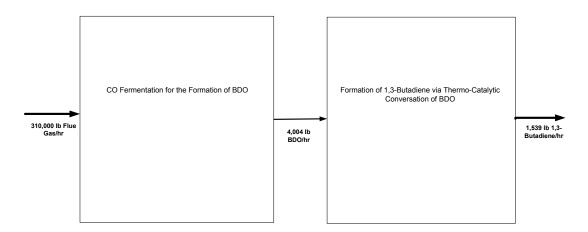


Figure 6-1: Block flow diagram.

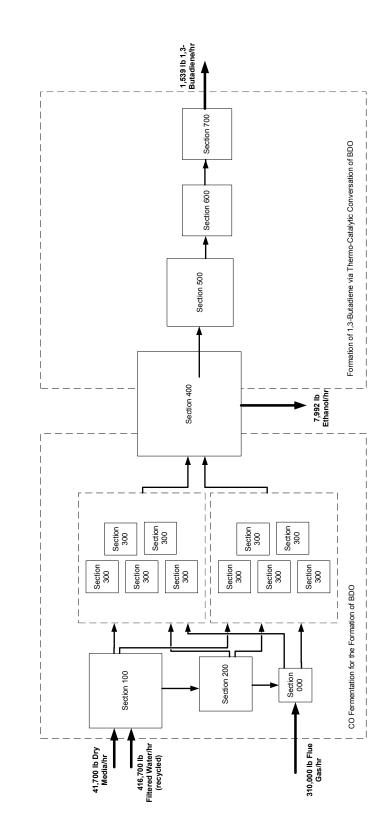
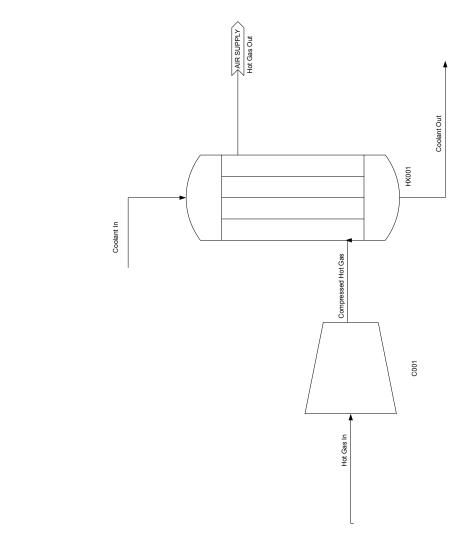



Figure 6-2: Overall Detailed Process Flow Diagram

6.0 Process Flow Diagrams & Material Balances

1 a	<mark>(18/mol)</mark> 18 18 18 28 44	Hot Gas In 0 0				
ytone	18 28 44	00	C.Hot Gas	Hot Gas Out	Coolant In	MW (g/mol) Hot Gas In C.Hot Gas Hot Gas Out Coolant In Coolant Out
de ytone	28 44	C	0	0	849,600	849,600
ytone de	28 44	2	0	0	0	0
de ytone	28 44	0	0	0	0	0
ytone	44	130,200	13,020	130,200	0	0
eytone		62,000	3,200	62,000	0	0
eytone	28	111,600	11,160	111,600	0	0
eytone	2	6,200	620	6,200	0	0
eytone		0	0	0	0	0
eytone	06	0	0	0	0	0
1,3-Butadiene C₄H₅ Methyl Ethyl Keytone C₄H₅O	46	0	0	0	0	0
Methyl Ethyl Keytone C4HsO	54	0	0	0	0	0
	72	0	0	0	0	0
Methyl Vinyl Carbinol C4H ₈ O	72	0	0	0	0	0
Total		310,000	310,000	310,000	849,600	849,600
Phase		Vapor	Vapor	Vapor	Liquid	Liquid
Temperature (°F)		482	770	98	45	88
Pressure (psi)		14	30	22	14	14

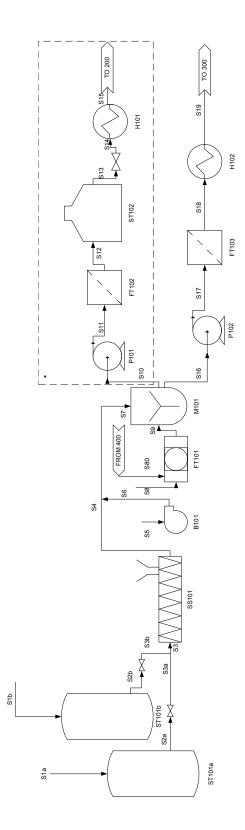
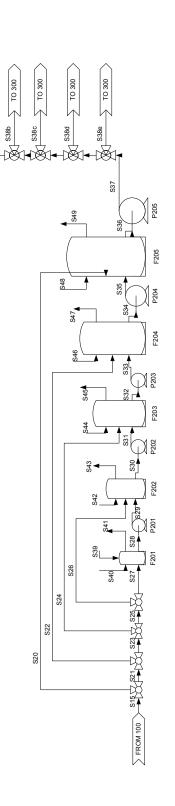
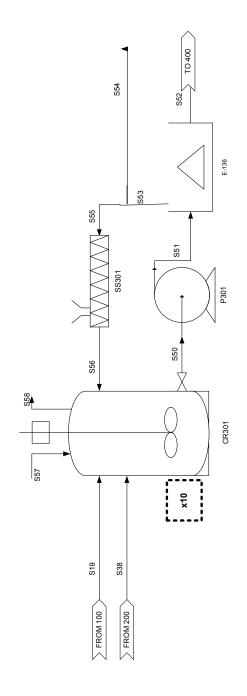



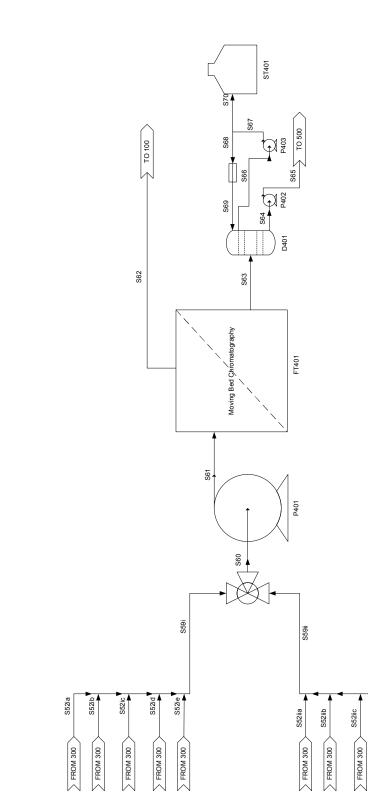
Figure 6-4: Section 100: Media Mixing System

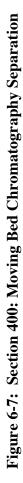
									Streams (I	Streams (Ib/hr) *(Ib/batch	atch)						
Name	Formula	MW (g/mol)	S1*	S2*	S3*	S4*		S4 SI	S5* S5	56*	* S6		S7*	S7	S8*	S62	
Water	H ₂ O	18		0	0	0	0	0	0	0	0	0	0	0	0 300,240**	*	0
Media (dry)	,	,	000096	960000** Max capac Max capac	apac Max	capac	33,360	33,360	0	0	0	0	33,360	41,700	0	0	0
Media (wet)	1	,		0	0	0	0	0	0	0	0	0	0	0	0	0	16,700
Carbon Monoxide	CO	28		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carbon Dioxide	CO ₂	44		0	0	0	0	0	5,837	5,837	5,837	5,837	0	0	0	0	0
Nitrogen	N2	28		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hydrogen	H ₂	2		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cell Mass				0	0	0	0	0	0	0	0	0	0	0	0	0	0
2,3-Butanediol	C4H10O2	06		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ethanol	C ₂ H ₆ O	46		0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,3-Butadiene	C4H ₆	54		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Methyl Ethyl Keytone C4H8O	e C₄H ₈ O	72		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Methyl Vinyl Carbinol C4H ₈ O	ol C₄H ₈ O	72		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total				0	0	0	33,360	33,360	5,837	5,837	5,837	5,837	33,360	41,700	0	0 4	416,700
Phase			Solid	Solid	Solid		Solid S	Solid V	Vapor Va	Vapor Va	Vapor Vi	Vapor N	Mixed	Mixed	Liquid	Liquid	uid
Temperature (°F)				68	68	68	68	68	68	68	68	68	68	68		68	68
Pressure (psi)				14	14	14	14	14	14	14	14	14	14	14		14	14
								Stre	Streams (lb/hr) *(lb/batch)	*(lb/batch)						Г	
Name	Formula	MM/ (a/mol)	*05	00	S10*		S11* S	C12* C	C13* C1	S14* S1	с15* С	C16 C	S17	518	C19	Т	
Water	H,0	18	330.240			0	0	0	0	0	0	0	0		0	0	
Media (dry)		,		0	0	0	0	0	0	0	0	0	0	0	0	0	
Media (wet)	,	,		0	0 33	333,600	333,600	333,600 Variable		Variable Va	Variable	416,700	416,700	416,700	0 416,700	0	
Carbon Monoxide	0	28		0	0	0	0	0	0	0	0	0	0	0	0	0	
Carbon Dioxide	co ₂	44		0	0	0	0	0	0	0	0	0	0	0	0	0	
Nitrogen	N2	28		0	0	0	0	0	0	0	0	0	0	0	0	0	
Hydrogen	H ₂	2		0	0	0	0	0	0	0	0	0	0	U	0	0	
Cell Mass	,	,		0	0	0	0	0	0	0	0	0	0	U	0	0	
2,3-Butanediol	C4H10O2	06		0	0	0	0	0	0	0	0	0	0	U	0	0	
Ethanol	C ₂ H ₆ O	46		0	0	0	0	0	0	0	0	0	0	U	0	0	
1,3-Butadiene	C4H ₆	54		0	0	0	0	0	0	0	0	0	0	0	0	0	
Methyl Ethyl Keytone C4H ₈ O	e C₄H ₈ O	72		0	0	0	0	0	0	0	0	0	0	0	0	0	
Methyl Vinyl Carbinol C4H8O	ol C₄H ₈ O	72		0	0	0	0	0	0	0	0	0	0	0	0	0	
Total			330,240	40 375,000		333,600	333,600	333,600 -	-			416,700	416,700	416,700	0 416,700	Q	
Phase			Liquid	Liquid	Liquid		Liquid L	Liquid Li	Liquid Li	Liquid Lic	Liquid Li	Liquid L	Liquid	Liquid	Liquid		
Temperature (°F)				68	68	68	68	68	68	68	98	68	68	68		98	
Pressure (psi)				14	14	14	14	14	14	14	14	14	50	23		22	


6.0 Process Flow Diagrams & Material Balances

TO 300

S38a


							1	Streams (Ib/batch)	(lb/batch)					
Name	Formula	MW (g/mol)	S15	S20	S21	S22	S23	S24	S25	S26	S27	S28	S29	
Water	H ₂ O	18	~	0	0	0	0	0	0	0	0	0	0	0
Media (dry)				0	0	0	0	0	0	0	0	0	0	0
Media (wet)	. 1		Variable	Ĕ	304,166 Variable		16,272 Variable	a 1	9,034 Variable	e	784	92	92	92
Carbon Monoxide	3 8	78	<u>n</u> -				- c	5 0						0 0
Nitrogen	z c	6		, c		• c								
Hvdrogen	Ë.	1		0 0	0	0	0 0	0 0	0	0	0	0	0	0
Cell Mass	· ,			0	0	0	0	0	0	0	0	0	0.018	0.018
2,3-Butanediol	C4H1002)6	0	0	0	0	0	0	0	0	0	0	0	0
Ethanol	C ₂ H ₆ O	4(.0	0	0	0	0	0	0	0	0	0	0	0
1,3-Butadiene	C ₄ H ₆	ň	4	0	0	0	0	0	0	0	0	0	0	0
Methyl Ethyl Keytone	C₄H ₈ O	72	2	0	0	0	0	0	0	0	0	0	0	0
Methyl Vinyl Carbinol	C₄H ₈ O	7.	2	0	0	0	0	0	0	0	0	0	0	0
Total				0 30	304,166	0	16,272	0	9,034	0	784	92	92	92
Phase			Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	d Liquid	id Mixed	ed Mixeo	-
Temperature (°F)				98	98	98	98	98	98	98	98	98	98	98
Pressure (psi)				22	22	22	22	22	22	22	22	22	22	22
								4 10	:				ſ	
								Streams (Ib/batch	_					
Name	Formula	MW (g/mol)	S30	S31	S32	S33	S34	S35	S36	S37	S38	S39		
Water	H ₂ O	11	~	0	0	0	0	0	0	0	0	0	0	
Media (dry)				0	0	0					0	0	0	
Media (wet)				876	876	9,910		26,182		330,348	330,348	66,073	0	
Carbon Monoxide	00	28	~	0	0	0	0	0	0	0	0	0	0	
Carbon Dioxide	CO ₂	4,	4	0	0	0	0	0	0	0	0	0	0	
Nitrogen	N2	28	8	0	0	0	0	0	0	0	0	0	0	
Hydrogen	H ₂		0	0	0	0	0	0	0	0	0	0	0	
Cell Mass	,	,		0.18	0.18	2	2	18	18	67	67	13	2.2*10 ⁻⁷	
2,3-Butanediol	C4H10O2	06	0	0	0	0	0	0	0	0	0	0	0	
Ethanol	C ₂ H ₆ O	4	0	0	0	0	0	0	0	0	0	0	0	
1,3-Butadiene	C₄H ₆	54	57	0	0	0	0	0	0	0	0	0	0	
Methyl Ethyl Keytone	C4H8O	7.	2	0	0	0	0	0	0	0	0	0	0	
Methyl Vinyl Carbinol	C4H ₈ O	7.	2	0	0	0		0	0	0	0	0	0	
Total				876	876	9,912		26,200	26,200	30,415	30,415	66,086	2.2*10-'	
Phase			Mixed	Mixed	Mixed	Mixed	Mixed	Mixed						
lemperature ('F)				86 CC	86 55	8, F	86	85 F	8 F	8 F	8 F	86 56	98	
				1	1	1	1	1	1	1	1	1	i.	
							s	Streams (lb/hr)	_				Γ	
Name	Formula	MW (g/mol)	S40	S41	S42	S43	S44	S45	S46	S47	S48	S49		
Water	H ₂ O	18	~	0	0	0	0	0	0	0	0	0	0	
Media (dry)	,	,		0	0	0	0	0	0	0	0	0	0	
Media (wet)				0	0	0	0	0	0	0	0	0	0	
Carbon Monoxide	00	2'	~	4	4	33	33	339	339	3,385	3,385	11,541	11,541	
Carbon Dioxide	CO2	44	5	2	2	16	16	161	161	1,612	1,612	5,496	5,496	
Nitrogen	z :	5	<u> </u>	m	m i	58	28	290	290	2,902	2,902	9,892 	9,892 	
Hydrogen	H ₂		2	0 0	0 0	7 1	7 7	16	16 2	161 2	161 2	550 î	550 î	
Cell Mass	:		,	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	
2,3-Butanediol	C4H10U2	96	`	5 0				5 0					0 0	
EtridiiOI 1.2 Dutediono	C2760	đ u	0.										5 0	
1,3-Butdulerie Mothyl Ethyl Koutono		'n'n	+ ~											
Mathyl Lunyi Raytoria Mathyl Vinyl Carhinol			4 0											
Total	C41-18 O			6	6	79	62	806	806	8.060	8.060	27.479	27.479	
Phase			Vapor	Vapor	Vapor	Vapor	Vapor	Vapor	Vapor	Vapo	r Vapu	or Vapu	or	
Temperature (°F)			_	98	98	98	98	98	98	98	86	86	98	
Pressure (psi)				22	22	22	22	22	22	22	22	22	22	
]	



20

								Stre	Streams (Ib/hr) *(Ib/batch)	batch)					
Name	Formula	MW (g/mol)	S19*	S19	S38*	S50	S51	S52	S53	S54	S55	S56	S57	S58	
Water	H ₂ O	18	8	0	0	0	0	0	0	0	0	0	0	0	0
Media (dry)				0	0	0	0	0	0	0	0	0	0	0	0
Media (wet)	,	,	24	264,240	41,670	66,060	41,670	41,671	41,671	0	0	0	0	0	0
Carbon Monoxide	8	28	00	0	0	0	0	0	0	0	0	0	0	12,823	12,403
Carbon Dioxide	CO ₂	44	4	0	0	0	0	0	0	0	0	0	0	6,106	5,906
Nitrogen	N2	28	00	0	0	0	0	0	0	0	0	0	0	10,992	10,632
Hydrogen	H2		2	0	0	0	0	0	0	0	0	0	0	611	591
Cell Mass				0	0	13	200	200	0	200	120	80	80	0	0
2,3-Butanediol	C4H10O2	06	c	0	0	0	400	400	400	0	0	0	0	0	0
Ethanol	C ₂ H ₆ O	46	ç	0	0	0	800	800	800	0	0	0	0	0	0
1,3-Butadiene	C4H6	54	4	0	0	0	0	0	0	0	0	0	0	0	0
Methyl Ethyl Keytone	C4H ₈ O	7.	72	0	0	0	0	0	0	0	0	0	0	0	0
Methyl Vinyl Carbinol	C4H8O	72	2	0	0	0	0	0	0	0	0	0	0	0	0
Total			2(264,240	41,670	66,073	43,070	43,071	42,871	200	120	80	80	30,532	29,532
Phase			Liquid	Liquid	Mixed	d Mixed	d Mixed	ed Liquid	id Solid	Solid	Solid	Solid	Vapor	or Vapor	or
Temperature (°F)				98	98	98	98	98	98	98	98	98	98	98	98
Pressure (psi)				22	22	22	22	50	22	22	22	22	22	22	22

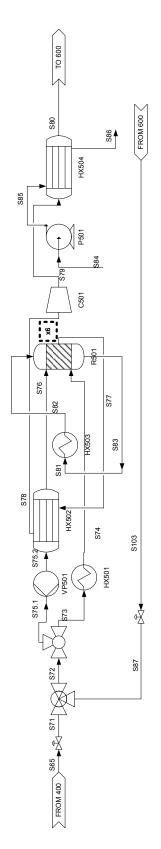
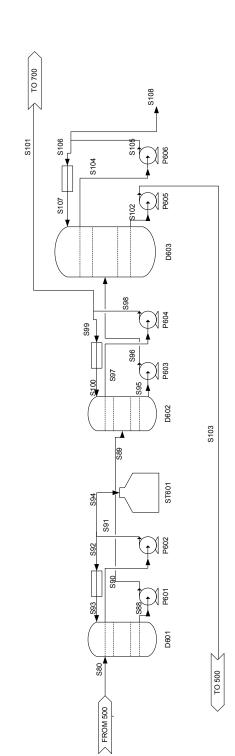
S52iid

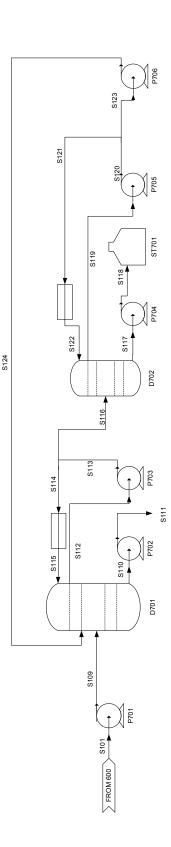
FROM 300

S52ije

> FROM 300

									Streau	Streams (lb/hr)						
Name	Formula	MW (g/mol)	S52	S59	S60	S61	S62	2 S63	S64	S65	S66	S67	S68		S69 S70	
Water	H ₂ O	18		0	0	0	0	0	0	0	0	0	0	0	0	0
Media (dry)				0	0	0	0	0	0	0	0	0	0	0	0	0
Media (wet)			41,671	71 208,355		416,710	416,710	416,710	0	0	0	0	0	0	0	0
Carbon Monoxide	00	28		0	0	0	0	0	0	0	0	0	0	0	0	0
Carbon Dioxide	co ₂	44		0	0	0	0	0	0	0	0	0	0	0	0	0
Nitrogen	N2	28		0	0	0	0	0	0	0	0	0	0	0	0	0
Hydrogen	H ₂	2		0	0	0	0	0	0	0	0	0	0	0	0	0
Cell Mass				0	0	0	0	0	0	0	0	0	0	0	0	0
2,3-Butanediol	C4H10O2	96	40	400 2,0	2,000	4,000	4,000	0	4,000	3,996	3,996	8	80	∞	∞	4
Ethanol	C ₂ H ₆ O	46	800		4,000	8,000	8,000	0	8,000	00	00	15,984	15,984	15,984	15,984	7,992
1,3-Butadiene	C4H6	54		0	0	0	0	0	0	0	0	0	0	0	0	0
Methyl Ethyl Keytone	C ₄ H ₈ O	72		0	0	0	0	0	0	0	0	0	0	0	0	0
Methyl Vinyl Carbinol	C4H ₈ O	72		0	0	0	0	0	0	0	0	0	0	0	0	0
Total			42,871	71 214,355		428,710	428,710	416,710	12,000	4,004	4,004	15,992	15,992	15,992	15,992	2,996
Phase			Liquid	Liquid	Liquid	Liquid		Liquid Liquid	id Liquid	d Liquid	d Liquid	d Liquid	iid Liquid		Liquid Liquid	pir
Temperature (°F)			51	98	98	98	98	98	98	389	389	206	206	206	206	206
Pressure (psi)			. 1	22	22	22	80	22	22	29	29	29	29	29	29	29


Figure 6-8: Section 500: Thermo Catalytic Conversion

			L					Streams (lb/	Streams (lb/hr) *(lb/batch	(-					
Name	Formula	MW (g/mol)	S65	S71	S87	S103	S72	S73*	S74*	* S75	S72.2	.2 S76	S77		
Water	H ₂ O	18		0	0	4	4	4	4	4	4	4	4	4	
Media (dry)		,		0	0	0	0	0	0	0	0	0	0	0	
Media (wet)				0	0	0	0	0	0	0	0	0	0	0	
Carbon Monoxide	00	28		0	0	0	0	0	0	0	0	0	0	0	
Carbon Dioxide	CO ₂	44		0	0	0	0	0	0	0	0	0	0	0	
Nitrogen	N_2	28		0	0	0	0	0	0	0	0	0	0	0	
Hydrogen	H ₂	2		0	0	0	0	0	0	0	0	0	0	0	
Cell Mass				0	0	0	0	0	0	0	0	0	0	0	
2,3-Butanediol	C4H1002	06		3,996	3,996	128	128	4,124	4,124	4,124	4,124	4,124	4,127	4,124	
Ethanol	C ₂ H ₆ O	46		8	00	0	0	80	80	80	80	80	80	80	
1,3-Butadiene	C₄H ₆	54		0	0	0	0	0	0	0	0	0	0	0	
Methyl Ethyl Keytone	C4H ₈ O	72		0	0	0	0	0	0	0	0	0	0	0	
Methyl Vinyl Carbinol	C4H ₈ O	72		0	0	0	0	0	0	0	0	0	0	0	
Total				4,004	4,004	2,996	132	4,136	4,136	4,136	4,136	4,136	4,136	4,136	
Phase			Liquid	Mixed	Mixed	Liquid	Mixed	Mixed	d Mixed	ed Mixed	ed Mixed	ed Mixed	ed Mixed	q	
Temperature (°F)				98	98	290	61	89	245	245	245	245	572	247	
Pressure (psi)		_		22	1	1	1	1	1	1	1	1	1	1	
									Streams (Ih/hr	hr)					Γ
Name	Eormula	MMM (a/mol)	C 7 8	670	CBD	578	570	CBD	C 81	C87	583	684	CBE	286	
Water	H,O	-		4	1.316	1.316	1.316	1.316	1.316	20.000	20.000	20.000	3 000	3 000	3000
Media (drv)				0	0	0	0	0	0	0	0	0	0	0	0
Media (wet)				0	0	0	0	0	0	0	0	0	0	0	0
Carbon Monoxide	8	28		0	0	0	0	0	0	0	0	0	0	0	0
Carbon Dioxide	CO ₂	44		0	0	0	0	0	0	0	0	0	0	0	0
Nitrogen	N_2	28		0	0	0	0	0	0	0	0	0	0	0	0
Hydrogen	H ₂	2		0	0	0	0	0	0	0	0	0	0	0	0
Cell Mass	,			0	0	0	0	0	0	0	0	0	0	0	0
2,3-Butanediol	C4H1002	06	_	4,124	128	128	128	128	128	0	0	0	0	0	0
Ethanol	C ₂ H ₆ O	46		00	00	00	00	00	00	0	0	0	0	0	0
1,3-Butadiene	C₄H ₆	54		0	1,539	1,539	1,539	1,539	1,539	0	0	0	0	0	0
Methyl Ethyl Keytone	C4H ₈ O	72		0	865	865	865	865	865	0	0	0	0	0	0
Methyl Vinyl Carbinol	C4H ₈ O	72		0	284	284	284	284	284	0	0	0	0	0	0
Total				4,136	4,140	4,140	4,140	4,140	4,140	20,000	20,000	20,000	3,000	3,000	3,000
Phase			Vapor	Vapor	Vapor	Mixed	Mixed	Mixed		ed Mixed	ed Mixed	ed Mixed			pa 200
				7/0	706	100	0+c,1	1941	174	766	007'T	766	0	06	00/
Pressure (psi)				П	П	П	/3	/3	/3	15	٢I	15	15	23	23

								Streams (Ib/hr)	s (Ib/nr)					-
Name	Formula	MW (g/mol) S80) S80	588	589	06S	S91	S92	593	S94	S95	96S	297	
Water	H ₂ O	18		1,316	1,311	1,311	20	20	15	3,612	ъ	1,204	1,204	428
Media (dry)	ī	T		0	0	0	0	0	0	0	0	0	0	0
Media (wet)	ī	ī		0	0	0	0	0	0	0	0	0	0	0
Carbon Monoxide	00	28		0	0	0	0	0	0	0	0	0	0	0
Carbon Dioxide	CO ₂	44		0	0	0	0	0	0	0	0	0	0	0
Nitrogen	N ₂	28		0	0	0	0	0	0	0	0	0	0	0
Hydrogen	H2	2		0	0	0	0	0	0	0	0	0	0	0
Cell Mass	ī	T		0	0	0	0	0	0	0	0	0	0	0
2,3-Butanediol	C4H10O2	06		128	128	128	0	0	0	0	0	128	128	0
Ethanol	C ₂ H ₆ O	46		8	∞	8	0	0	0	0	0	80	00	0
1,3-Butadiene	C₄H ₆	54		1,539	0	0	6,156	6,156	4,617	0	1,539	0	0	0
Methyl Ethyl Keytone	C4H8O	72		865	859	859	0	0	0	0	9	37	37	3,292
Methyl Vinyl Carbinol	C4H8O	72		284	284	284	0	0	0	0	0	284	284	0
Total			4,	4,140	2,590	2,590	6,176	6,176	4,632	3,612	1,550	1,661	1,661	3,720
Phase			Mixed	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	d Liquid	d Liquid	i Liquid	
Temperature (°F)				162	254	254	109	109	109	109	109	203	203	169
Pressure (psi)				73	66	99	65	65	65	65	65	19	19	17
								Streams (Ib/hr	s (Ib/hr)					
Name	Formula	MW (g/mol)) S98	66S	S100	S101	S102	S103	S104	S105	S106	S107	S108	
Water	H ₂ O	18		428	321	963	107	4	4	3,600	3,600	2,400	2,400	1,200
Media (dry)				0	0	0	0	0	0	0	0	0	0	0
Media (wet)				0	0	0	0	0	0	0	0	0	0	0
Carbon Monoxide	8	28		0	0	0	0	0	0	0	0	0	0	0
Carbon Dioxide	CO ₂	44		0	0	0	0	0	0	0	0	0	0	0
Nitrogen	N_2	28		0	0	0	0	0	0	0	0	0	0	0
Hydrogen	H2	2		0	0	0	0	0	0	0	0	0	0	0
Cell Mass	,	,		0	0	0	0	0	0	0	0	0	0	0
2,3-Butanediol	C₄H₁₀O2	06	_	0	0	0	0	128	128	0	0	0	0	0
Ethanol	C ₂ H ₆ O	46		0	0	0	0	0	0	24	24	16	16	∞
1,3-Butadiene	C₄H₅	54		0	0	0	0	0	0	0	0	0	0	0
Methyl Ethyl Keytone	C₄H ₈ O	72		3,292	2,469	2,469	823	0	0	111	111	74	74	37
Methyl Vinyl Carbinol	C₄H ₈ O	72		0	0	0	0	0	0	852	852	568	568	284
Total			3,	3,720	2,790	3,432	930	132	132	4,587	4,587	3,058	3,058	1,529
Phase			Liquid	Liquid	Liquid			Liquid						
Temperature (°F)				169	169	169	169	293	293	192	192	192	192	192
Pressure (psi)				17	17	17	17	17	17	16	16	16	16	16

6.0 Process Flow Diagrams & Material Balances

							Streams (Ib/hr	(Ib/hr)				Γ
Name	Formula	MW (g/mol)	S101	S109	S110	S111	S112	S113	S114	S115	S116	
Water	H ₂ O	18		121	121	95	95	104	140	78	78	26
Media (dry)	,	ı		0	0	0	0	0	0	0	0	0
Media (wet)	ı	ı		0	0	0	0	0	0	0	0	0
Carbon Monoxide	00	28		0	0	0	0	0	0	0	0	0
Carbon Dioxide	CO ₂	44		0	0	0	0	0	0	0	0	0
Nitrogen	N2	28		0	0	0	0	0	0	0	0	0
Hydrogen	H ₂	2		0	0	0	0	0	0	0	0	0
Cell Mass				0	0	0	0	0	0	0	0	0
2,3-Butanediol	C4H10O2	06		0	0	0	0	0	0	0	0	0
Ethanol	C ₂ H ₆ O	46		0	0	0	0	0	0	0	0	0
1,3-Butadiene	C4H6	54		0	0	0	0	0	0	0	0	0
Methyl Ethyl Keytone	C ₄ H ₈ O	72		809	809	714	714	408	408	306	306	102
Methyl Vinyl Carbinol	C ₄ H ₈ O	72		0	0	0	0	0	0	0	0	0
Total				930	930	809	809	512	548	384	384	128
Phase			Liquid	Mixed	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	
Temperature (°F)				170	170	309	309	279	279	279	279	279
Pressure (psi)				17	109	106	106	102	102	102	102	102
						c.	V 17 10				Γ	
											T	
Name	Formula	MW (g/mol)	S117	S118	S119	S120	S121	S122	S123	S124		
Water	H ₂ O	18		26	26	0	0	0	0	0	0	
Media (dry)	ı	I		0	0	0	0	0	0	0	0	
Media (wet)	ı	ı		0	0	0	0	0	0	0	0	
Carbon Monoxide	00	28		0	0	0	0	0	0	0	0	
Carbon Dioxide	CO ₂	44		0	0	0	0	0	0	0	0	
Nitrogen	N ₂	28		0	0	0	0	0	0	0	0	
Hydrogen	H ₂	2		0	0	0	0	0	0	0	0	
Cell Mass	ı			0	0	0	0	0	0	0	0	
2,3-Butanediol	C4H10O2	90		0	0	0	0	0	0	0	0	
Ethanol	C ₂ H ₆ O	46		0	0	0	0	0	0	0	0	
1,3-Butadiene	C₄H ₆	54		0	0	0	0	0	0	0	0	
Methyl Ethyl Keytone	C ₄ H ₈ O	72		95	95	32	32	24	24	8	∞	
Methyl Vinyl Carbinol	C ₄ H ₈ O	72		0	0	0	0	0	0	0	0	
Total				121	121	32	32	24	24	8	8	
Phase			Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid		
Temperature (°F)				188	188	178	178	178	178	178	102	
Pressure (psi)				24	24	18	18	18	18	18	109	

7.0 PROCESS DESCRIPTION

Overview

Our process is divided into two steps with eight overall sections, as described in Section 6. The first step is the fermentation section of the plant, where carbon monoxiderich gas is fed into continuous stirred tank reactors (CSTRs) to produce 2,3-butanediol during steady state operation. The gaseous feed is cooled in section 000 using a shell and tube heat exchanger with water as coolant. Section 100 is a mixing process for media, which supplies fresh media to sections 200 and 300. The cells are grown in sequential fermentation tanks in section 200, then provided to ten CSTRs (section 300) working in tandem, organized in two blocks of five, as shown in the Figure 6-2. The overall fermentation process concludes at the separation processes in section 400, where simulation moving bed chromatography is used to extract the alcohols 2,3-butanediol and ethanol from the fermentation broth. A small distillation tower is used to create a stream of nearly pure 2,3-butanediol. The ethanol effluent from the distillation tower is sold as a secondary product.

The second step of our process coverts 2,3-butanediol to 1,3-butadiene using a thermo catalytic converter. The reaction products are then separated in a series of distillation towers. Section 500 describes the reactor, producing 1,3-butadiene and byproducts. In sections 600 and 700, the reaction products are separated. First, 1,3-butadiene is isolated in section 600. Then, the byproduct methyl ethyl ketone is isolated in section 700 to sell as a secondary product

CO Fermentation for the Formation of BDO

Section 000: Steel Mill Gas Cooling

A shell and tube heat exchanger is used to cool excess steel mill gas from 500°F to 98°F using water as a coolant. The steel mill gas temperature can be variable depending on whether or not the steel mill recovers energy from the waste gas. We initially assume a temperature of 500°F, though a situation with a hotter feed is considered. This steel mill gas will be fed to the cells in the batch fermenters in section

200 as needed. In addition, once our overall process is running at steady state, gas will be added continuously to each CSTR at 31,000 lb/hr. There are ten of these compressor/heat exchanger units.

Section 100: Media Mixing System

The media mixing section creates wet media liquid and pumps the media to either section 100 or 200, depending on demand. The dry media powder is held in two vertical silos, with a minimum holding volume of 950,000 lbs dry media per day. The duplicity allows the plant to store enough media between refilling. For the batch fermentation process, 333,600 lbs of wet media is created in the ratio of one part dry media in nine parts pure water, which is first purchased from a water supplier for the fermentation media in the batch fermenters. Media is distributed to the batch fermenters at varying volumes and is held at 40°F in a 50,000 gallon storage vessel with a cooling jacket in the intermediary time.

333,600 lbs of media are also made to preliminary fill each CSTR in section 300. The media is fed to section 300 at 98°F, with water again purchased from a supplier. When the CSTRs are operating continuously, wet media is made and then distributed continuously at a total rate of 416,700 lbs/hr at 98°F. Under continuous operation, water is recycled after undergoing microfiltration and simulated moving bed chromatography in section 400 back into section 100 to recover and reuse media water.

Section 200: Batch Fermentation

This section utilizes five sequential fermenters to grow bacteria. The incoming media is provided from the batch system of section 100 at 98°F. The 15-gallon seed fermenter holds 312 lbs of media, growing *cl. autoethanogenum* cells from a concentration of 0.01 mg/L to 0.2 g/L. This takes 4 days including loading and transferring to the next vessel. All 92 lbs of the seed fermenter F201 are moved to the next batch vessel F202, with a capacity of 130 gallons. In addition, 784 lbs of wet media is supplied to the reactor from section 100. The cells grow from a concentration of 0.02 g/L to 0.2 g/L in the fermenter over the course of 3 days including loading and transfer.

The third vessel F203 operates at a capacity of 1,320 gallons. The fermenter contains 876 lbs of media and cells from the previous vessel in addition 9,034 lbs of fresh media. Again, it grows cells from 0.02 g/L to 0.2 g/L over the course of 3 days including loading and transfer. The fourth fermenter F204 has a volume of 13,200 gallons. From the previous fermenter, 9,910 lbs of wet media and cells are added in addition to 16,272 lbs of fresh wet media from section 100. This fermenter takes 3 days to operate including loading and transfer. The fermenter grows the cells from 0.02 g/L to 0.2 g/L and all 26,182 pounds of wet media and cells is used to fill up the last fermenter. The fifth fermenter F505 is the largest, with a volume of 45,000 gallons. The entirety of the previous fermenter, 26,182 pounds, is mixed with 304,166 lbs of fresh media from section 100. This fermenter grows the cells from a concentration of 0.06 g/L to 0.2 g/L over the course of 5 days including loading and transfer. This produces a batch with a total mass of 330,367 pounds including 67 pounds of cell mass. This is enough to inoculate five CSTRs like block 300 with 66,073 pounds of broth each. The fermenters are kept at 98°F using a dimple jacket. The batch length of section 200 is 18 days from inoculation of the seed fermenter to transferring the contents of the final vessel into section 300. Two batches are needed to inoculate all ten CSTRs.

The batch fermentation process provides enough cells to run five CSTRs at once. Since the CSTRs in section 300 grow cells themselves, they can operate with a cell recycle in steady state. Therefore, each block in section 300 needs to be seeded with cells once a year leading to section 200 only being in operation twice a year. Each seed reactor is inoculated with 0.01 mg/L of *cl. autoethanogenum* per batch, purchased fresh each year.

Section 300: CSTR and Cell Recycle Close-up

There are ten CSTRs in total in the plant. Each CSTR will have the same set up: a fermenter, filter, and cell recycle. The volume of each CSTR is 50,000 gallons. When first filled, the CSTR is operated as a batch fermenter, seeded with 66,060 lbs of media and 13 g of cells from section 200, in addition to 336,000 lbs of wet media from section 100. It takes 13 days for the cell culture to reach 2 g/L once seeded.

Once the cell concentration reaches 2 g/L in the tank, the continuous reaction begins. Fermentation broth is cycled through the CSTR at 41,670 lbs/hr. The fermentation broth contains 200 lbs/hr of cell mass, 400 lbs/hr of BDO, and 800 lbs/hr ethanol. The cell mass is collected using a disk-stack centrifuge. 120 lbs/hr of the cell mass is deposited in a settling pond, and 80 lbs/hr of the cell mass is returned to the reactor to ensure a constant concentration of 2 g/L in the vessel. The effluent from the centrifuge, which has no cell mass, is combined with the effluent from the other CSTRs to form a stream of 4000 lbs/hr of 2,3-butanediol and 8,000 lbs/hr of ethanol, which is sent to section 400.

Section 400: Simulated Moving Bed Chromatography Separation

Orochem has developed a separation technique using simulated moving bed chromatography. The feed to the separation unit is 428,355 lbs/hr, the total flow rate from all ten CSTRs. The composition of the feed is 416,710 lbs/hr used media, 4,000 lbs/hr of BDO and 8,000 lbs/hr ethane. The separation unit works by extracting alcohols and hydrocarbons from water for high purity and high recovery rates of greater than 99% (Orochem, 2012). The exit stream of used media is 416,710 lbs/hr, and the exit stream of the alcohol/hydrocarbon stream is 12,000 lbs/hr, in a ratio of 2:1 ethanol to BDO

A simple 5-tray distillation tower is used to separate ethanol from 2,3-butanediol into two pure streams due to significant differences in boiling temperatures. The separation produces 4,000 lb/hr of BDO and 8,000 lb/hr of ethanol that can be sold as a byproduct. The alternative to the simulated moving bed chromatography is to use a distillation tower to separate the output to section 300, discussed later in the report.

Formation of 1,3-Butadiene via Thermo-Catalytic Conversion of BDO

Section 500: Thermo Catalytic Conversion

The feed to this section is pure BDO at a flow rate of 4000 lb/hr, pressure of 70mmHg obtained by passing the feed through a valve, and temperature of 248°F. This

stream is combined with a recycle from Section 600, which contains unreacted BDO. The reactor preheater operates at 572°F, and the reactor operates at 932°F and 70 mmHg in order to ensure high conversions of BDO to 1,3-Butadiene. Additionally, a fired heater, which uses No 4. Fuel Oil, is used to heat steam used to maintain the reactor at 932°F.

Once the effluent leaves the reactor, it passes through a heat exchanger to preheat the reactant gas to 572°F. This heat exchanger operates at steady state. However, on startup an electric heater is used to preheat the feed to the reactor. The reactor effluent leaves the heat exchanger at a pressure of 70mmHg and 651°F Celsius. The effluent then enters section 600. The last unit in this section is a multi-stage compressor, which raises the pressure of the inlet stream to 73 psi.

The catalyst is regenerated every two months by passing high-pressure steam through the reactor for two hours. The exit steam is then treated at a waste treatment facility to remove contaminants.

Section 600: Distillation Separation: 1,3-Butadiene Recovery

Pressurized vapor from section 500 enters a heat exchanger HX601, which creates low-pressure steam to drive the reboiler of D602 in this section. The first distillation column D601 operates at 70 psi and separates out the 1,3-Butadiene from the inlet stream at a polymer grade purity of 99.3%. The distillate is then stored in a storage vessel. The bottoms product is feed to the second column D602 operating at 19 psi. The distillate from this column is a mixture of MEK and water at its azeotropic composition and is sent to section 700 to recover the MEK for sale. The bottoms product from the second column is fed to the third distillation column D603, which operates as a slightly lower pressure than the previous column. The distillate from this column contains approximately 78% by mass water, 19% methyl vinyl carbinol, and 5% MEK, and is sent off site to a wastewater treatment center. The bottoms product contains pure unreacted BDO, which is recycled to section 500.

Section 700: Distillation Separation: Pressure-Swing Distillation

The feed at the azeotropic composition of MEK/water from section 600 is sent to the first of two columns D701 for pressure-swing distillation. The first column operates at 106 psi and removes the MEK as a 99.99% pure product. The distillate is sent to the second column, which removes water as the bottoms product. The second column D602 operates at a pressure of 23 psi. Two pumps are needed in order to ensure that the feeds to the first column are at high enough pressure.

8.0 ENERGY BALANCE AND UTILITY REQUIREMENTS

Six different utilities are used in the process: electricity, cooling water, process water, steam, wastewater treatment, and fuel oil. Costs in the year 2006 were obtained from Seider et. Al. and adjusted based on an assumed CE Index of 570.

Electricity costs were assumed to be \$0.06/kWh. The overall electricity requirement of the system was calculated to be 16.7 MW.

The main cooling water requirement was to drive the condensers. Cooling water costs were assumed to \$0.075/1,000 gal. The overall cooling water requirements of the system were calculated to be 3921.4 gpm.

The process water costs were assumed to be \$0.75/1,000 gal. The overall process water requirements of the system were quite high because the fermentation broth was a large feedstock to the batch system. 748.9 gpm of process water was required.

The main steam costs were to drive the distillation column reboilers. The cost of low-pressure steam (50 psi) was assumed to be \$3.00/1000 lb. The cost of the medium-pressure steam (150 psi) was assumed to be \$4.50 / 1000 lb. The cost of the medium-pressure steam (450 psi) was assumed to be \$6.00 / 1000 lb. The overall steam requirement of the system were 28 lb/hr.

The wastewater treatment was required to treat the methyl vinyl carbinol stream leaving section 600 of the process. A rate of 336.3 lb/hr of organic waste needed to be treated at an assumed cost of \$0.15/lb organic waste removed.

Finally, No. 4 Fuel Oil was used to drive the fired heater, which provided the heat duty to the steam used to heat the reactor. The fuel oil was assumed to cost \$0.22/lb. The duty required by the fired heater was 2181.1 MBtu/hr. The HHV of the oil was 18701 Btu/lb, and the density of the oil was assumed to be 59 lb/ft³.

Below are the detailed energy balance and utility requirements of each unit by section of the process. Please see Appendix A for example calculations.

CO Fermentation for the Formation of BDO

Section 000: Steel Mill Gas Cooling

Unit	Туре	Utility type	Utilities cost (\$/yr)	Requirement	Units
HX001	Cool Gas Feed to Fermenters	Cooling Water	\$69,065	1700	gpm
C001	Compresses Air	Electricity	\$4,740,662	8751	kW
Total			\$4,809,727		

Section 100: Media Mixing System

Unit	Туре	Utility type	Utilities cost (\$/yr)	Requirement	Units
ST101a	Storage Tank	NA	NA NA	NA	NA
ST101b	Storage Tank	NA	NA	NA	NA
SS101	pneumatic conveying system	Electricity	\$128,637	237.5	kW
B101	Blower	Electricity	\$27,086	50.0	kW
FT101	Water Filter	NA	NA	NA	NA
M101	Mixing Tank	Electricity	\$202,400	373.6	kW
M101'	Mixing Tank agitator	Electricity	\$1,614	3.0	kW
P101	Pump	Electricity	\$5,989	11.1	kW
P102	Pump	Electricity	\$7,302	13.5	kW
FT102	Ultra filtration	Electricity	\$24,000	44.3	kW
FT103	Ultra filtration	Electricity	\$240,000	443.0	kW
H101	HTX	Electricity	\$6,575	12.1	kW
H102	HTX	Electricity	\$1,985,975	3666.0	kW
ST102	Storage Tank	NA	NA	NA	NA
Total	•	•	\$2,629,578		·

Unit	Туре	Utility type	Utilities cost (\$/yr)	Requirement	Units
P201*	Pump	Electricity	\$0	0.0	kW
P202*	Pump	Electricity	\$0	0.0	kW
P203*	Pump	Electricity	\$1	0.0	kW
P204*	Pump	Electricity	\$4	0.0	kW
P205*	Pump	Electricity	\$19	0.0	kW
F201*	Horizontal	Cooling	\$0	0.0	gpm
	Column	Water			
F202*	Horizontal	Cooling	\$0	0.0	gpm
	Column	Water			
F203*	Horizontal	Cooling	\$5	0.1	gpm
	Column	Water			
F204*	Horizontal	Cooling	\$44	1.1	gpm
	Column	Water			
F205*	Horizontal	Cooling	\$90	2.2	gpm
	Column	Water			
Total			\$163		

Section 200: Batch Fermentation

Unit	Туре	Utility type	Utilities	Requirement	Units
CD201	CSTR	Carlina Watan	cost (\$/yr)	2.7	
CR301		Cooling Water	\$110		gpm
CR302	CSTR	Cooling Water	\$110	2.7	gpm
CR303	CSTR	Cooling Water	\$110	2.7	gpm
CR304	CSTR	Cooling Water	\$110	2.7	gpm
CR305	CSTR	Cooling Water	\$110	2.7	gpm
CR306	CSTR	Cooling Water	\$110	2.7	gpm
CR307	CSTR	Cooling Water	\$110	2.7	gpm
CR308	CSTR	Cooling Water	\$110	2.7	gpm
CR309	CSTR	Cooling Water	\$110	2.7	gpm
CR310	CSTR	Cooling Water	\$110	2.7	gpm
P301	Pump	Electricity	\$1,079	2.0	kW
P302	Pump	Electricity	\$1,079	2.0	kW
P303	Pump	Electricity	\$1,079	2.0	kW
P304	Pump	Electricity	\$1,079	2.0	kW
P305	Pump	Electricity	\$1,079	2.0	kW
P306	Pump	Electricity	\$1,079	2.0	kW
P307	Pump	Electricity	\$1,079	2.0	kW
P308	Pump	Electricity	\$1,079	2.0	kW
P309	Pump	Electricity	\$1,079	2.0	kW
P310	Pump	Electricity	\$1,079	2.0	kW
TF301	Disk Stack	NA	NA	NA	NA
	Centrifuge				
TF302	Disk Stack	NA	NA	NA	NA
	Centrifuge				
TF303	Disk Stack	NA	NA	NA	NA
	Centrifuge				
TF304	Disk Stack	NA	NA	NA	NA
	Centrifuge				
TF305	Disk Stack	NA	NA	NA	NA
	Centrifuge				
TF306	Disk Stack	NA	NA	NA	NA
	Centrifuge				
TF307	Disk Stack	NA	NA	NA	NA
	Centrifuge				
TF308	Disk Stack	NA	NA	NA	NA
	Centrifuge				
TF309	Disk Stack	NA	NA	NA	NA
	Centrifuge				
TF310	Disk Stack	NA	NA	NA	NA
	Centrifuge				
SS301	pneumatic c.s.	Electricity	\$47,892	88.4	kW

Section 300: CSTR and Cell Recycle Close-up

Cont.					
Unit	Туре	Utility type	Utilities	Requirement	Units
			cost (\$/yr)		
SS302	pneumatic c.s.	Electricity	\$47,892	88.4	kW
SS303	pneumatic c.s.	Electricity	\$47,892	88.4	kW
SS304	pneumatic c.s.	Electricity	\$47,892	88.4	kW
SS305	pneumatic c.s.	Electricity	\$47,892	88.4	kW
SS306	pneumatic c.s.	Electricity	\$47,892	88.4	kW
SS307	pneumatic c.s.	Electricity	\$47,892	88.4	kW
SS308	pneumatic c.s.	Electricity	\$47,892	88.4	kW
SS309	pneumatic c.s.	Electricity	\$47,892	88.4	kW
SS310	pneumatic c.s.	Electricity	\$47,892	88.4	kW
SS311	pneumatic c.s.	Electricity	\$47,892	88.4	kW
SS312	pneumatic c.s.	Electricity	\$47,892	88.4	kW
Total			\$586,592		

Section 400: Moving Bed Chromatography Separation

Unit	Туре	Utility type	Utilities cost (\$/yr)	Requirement	Units
P401	Pump	Electricity	\$5,657	10.4	kW
FT401	Membrane Separation Unit	Electricity	\$499,450	922.0	kW
ST401	Storage tank	NA	NA	NA	NA
D401	Separation of Ethanol from 2,3-BDO	NA	NA	NA	NA
D401 C.A	Condenser Accumulator	NA	NA	NA	NA
D401 CHX	Condenser HX	Cooling Water	\$1,430	35.2	gpm
D401 RB	Reboiler	Low Pressure Steam	\$236,041	8.7	lb/hr
D401 RP	Reflux Pump	Electricity	\$764	1.4	kW
Total	1	1	\$743,342	-	

Formation of 1,3-Butadiene via Thermo-Catalytic Conversion of BDO

Unit	Туре	Utility type	Utilities cost	Requirement	Units
			(\$/yr)	-	
VS501	Two-stage	86% HP Steam,	\$600,000.00	HPS: 9.52,	lb/hr,
	Steam-jet	14% Cooling		CW: 2067.5	gpm
	ejector	Water			
HX502(1)	Reactor Vessel	NA - See Fired	NA	NA	NA
		Heater			
HX502 (2)	Reactor Vessel	NA - See Fired	NA	NA	NA
		Heater			
HX502 (3)	Reactor Vessel	NA - See Fired	NA	NA	NA
		Heater			
HX502 (4)	Reactor Vessel	NA - See Fired	NA	NA	NA
		Heater			
HX502 (5)	Reactor Vessel	NA - See Fired	NA	NA	NA
		Heater			
HX502 (6)	Reactor Vessel	NA - See Fired	NA	NA	NA
		Heater			
HX504	Heat Source for	Fuel Oil	\$203,715.63	923686.2	lb/hr
	Reactors				
Recycled	Reactor	NA	NA	NA	NA
Water	HX/Fired				
	Heater System				
Catalyst	Catalyst	NA	NA	NA	NA
C501	Compressor to D601	Electricity	\$281,236.21	519.1	kW
HX502	Reactor	NA	NA	NA	NA
	Effluent Heat				
	Recovery				
HX503	Compressor	Cooling Water	\$243.88	6.0	gpm
	Effluent Heat				
	Recovery				
HX501	Startup Heater	Electricity	\$307,352.18	567.4	kW
P501	Pressure	Electricity	\$41.49	0.1	kW
	increase of				1
	Cooling Water				1
	to HX				
Total			\$1,392,589		

Section 500: Thermo-Catalytic Conversion

Unit	Туре	Utility type	Utilities cost (\$/yr)	Requirement	Units
ST501	Storage Tank	NA	NA	NA	NA
D601	Tray tower for Separation of 1,3-Butadiene	NA	NA	NA	NA
D601 C.A	Condenser Accumulator	NA	NA	NA	NA
D601 CHX	Condenser HX	Cooling Water	\$202.11	5.0	gpm
D601 RB	Reboiler	Medium Pressure Steam	\$33,148.53	0.8	lb/hr
D601 RP	Reflux Pump	Electricity	\$343.96	0.6	kW
D602	Tray tower for Separation of MEK/water	NA	NA	NA	NA
D602 C.A	Condenser Accumulator	NA	NA	NA	NA
D602 CHX	Condenser HX	Cooling Water	\$212.74	5.2	gpm
D602 RB	Reboiler	Low Pressure Steam	\$25,041.68	0.9	lb/hr
D602 RP	Reflux Pump	Electricity	\$365.89	0.7	kW
D603	Tray Tower for Recycle of 2,3- BDO	NA	NA	NA	NA
D603 C.A	Condenser Accumulator	NA	NA	NA	NA
D603 CHX	Condenser HX	Cooling Water	\$721.38	17.8	gpm
D603 RB	Reboiler	Low Pressure Steam	\$97,563.24	3.6	lb/hr
D603 RP	Reflux Pump	Electricity	\$262.21	0.5	kW
Total			\$157,861.74	4	

Section 600: Distillation Separation: 1,3-Butadiene Recovery

Unit	Туре	Utility type	Utilities	Requirement	Unit
			cost (\$/yr)		S
ST701	MEK Storage	NA	NA	NA	NA
	Tank				
P701	Feed Pressure	Electricity	\$177.05	0.3	kW
	increase				
P706	Recycle Pressure	Electricity	\$242.09	0.4	kW
	increase				
D701	Tray Tower for	NA	NA	NA	NA
	Separation of				
	MEK				
D701 C.A	Condenser	NA	NA	NA	NA
	Accumulator				
D701 CHX	Condenser HX	Cooling Water	\$615.86	15.2	gpm
D701 RB	Reboiler	Medium	\$82,077.22	2.0	lb/hr
		Pressure Steam			
D701 RP	Reflux Pump	Electricity	\$764.16	1.4	kW
D702	Tray Tower for	NA	NA	NA	NA
	Separation of				
	Water				
D702 C.A	Condenser	NA	NA	NA	NA
	Accumulator				
D702 CHX	Condenser HX	Cooling Water	\$588.91	14.5	gpm
D702 RB	Reboiler	Low Pressure	\$35,217.58	1.3	lb/hr
		Steam			
D702 RP	Reflux Pump	Electricity	\$326.49	0.6	kW
Total	. *		\$120,009.36	-	

Section 700: Distillation Separation: Pressure-Swing Distillation

Unaccounted For Energy Balance and Utility Requirements

	Utility Type	Relevant Quantity (lb/hr)	Cost (\$/yr)
Section 500			
Cooling Water Used to Drive P501	Cooling Water	3000	\$213.93
High Pressure Steam Used In Generation of Catalyst	High Pressure Steam	1000*	\$75,240.00
Treatment of High Pressure Steam	Wastewater treatment	20*	\$1,504.80
Section 600			
Treatment of S108	Wastewater treatment	336.3	\$399,474.76

Overall Utilities by Section

Amount of Utilities Used

Utilities	Quantity p	er Section			
	000	100	200	300	
Steam, 450 psig	0	0	0	0	
(lb/hr)					
Steam, 150 psig	0.00	0	0	0	
(lb/hr)					
Steam, 50 psig	0.0	0	0	0	
(lb/hr)					
Cooling Water	1700	0	3.4	27.0	
(gpm)					
Electricity (kW)	8751.0	4854.1	0.0	1080.8	
Wastewater	0	0	0	0	
Treatment (lb					
organic/hr)					
Fuel Oil (lb/hr)	0.0	0	0	0	
Utilities	Quantity p		T		
	400	500	600	700	Total
Steam, 450 psig	0	10.9	0	0	10.9
(lb/hr)					
Steam, 150 psig	0	0	0.8	2.0	2.8
(lb/hr)					
Steam, 50 psig	8.7	0	4.5	1.3	14.5
(lb/hr)					
Cooling Water	35.2	2073.5	33.97	48.5	3921.4
(gpm)					
Electricity (kW)	933.8	1086.6	1.8	1.4	16709.4
Wastewater	0	0.028	336.3	0.0	336.3
Treatment (lb					
organic/hr)			0		
Fuel Oil (lb/hr)	0	923686.2			923686.2

Price of Utilities Used

Utilities	Cost per Section				
	000	100	200	300	_
Steam, 450 psig (lb/hr)	\$-	\$-	\$-	\$-	
Steam, 150 psig (lb/hr)	\$-	\$-	\$-	\$-	
Steam, 50 psig (lb/hr)	\$-	\$-	\$-	\$-	
Cooling Water (gpm)	\$69,065	\$-	\$139	\$1,098	
Electricity (kW)	\$4,740,662	\$2,629,578	\$24	\$585,494	
Wastewater Treatment (lb organic/hr)	\$-	\$-	\$-	\$-	
Fuel Oil (lb/hr)	\$-	\$-	\$-	\$-	_
Utilities	Cost per Sec				
	••••••••••••••••••••••••••••••••••••••				
	400	500	600	700	Total
Steam, 450 psig (lb/hr)	400 \$-	500 \$591,240	600 \$-	700 \$-	Total \$591,240
· 1 U	400	500			
(lb/hr) Steam, 150 psig	400 \$-	500 \$591,240	\$-	\$-	\$591,240
(lb/hr) Steam, 150 psig (lb/hr) Steam, 50 psig	400 \$- \$-	500 \$591,240 \$-	\$- \$33,149	\$- \$82,077	\$591,240 \$115,226
(lb/hr) Steam, 150 psig (lb/hr) Steam, 50 psig (lb/hr) Cooling Water	400 \$- \$- \$236,041	500 \$591,240 \$- \$-	\$- \$33,149 \$122,605	\$- \$82,077 \$35,218	\$591,240 \$115,226 \$393,863
(lb/hr) Steam, 150 psig (lb/hr) Steam, 50 psig (lb/hr) Cooling Water (gpm)	400 \$- \$- \$236,041 \$1,430	500 \$591,240 \$- \$- \$84,458	\$- \$33,149 \$122,605 \$1,136	\$- \$82,077 \$35,218 \$1,969	\$591,240 \$115,226 \$393,863 \$159,296

9.0 UNIT DESCRIPTIONS

9.1 Fermentation Vessels

The front end of our process contains five fermentation vessels made to grow the cells to their required mass for continuous operation in the CSTRs. Each fermenter operates for long enough time for the cells to grow during their logarithmic phase to a concentration of 200 mg/L. The batch fermentation vessels only need to perform two runs a year, each time with fresh *cl. autoethanogenum* from the supplier. One batch vessel run takes eighteen days.

F201 is the seed fermenter in this process. It is a carbon steel, vertical vessel with a total volume of 15 gallons. It is inoculated with 0.1 mg of *cl. Autoethanogenum* and charged with 83.4 pounds of water, 8.3 pounds of media, and 9.2 lbs/hr of steel mill gas. The gas is fed through a fermenter bubbler to enable cell growth. A dimple jacket is used to maintain the vessel at the optimum temperature of 98.6 °F. The batch schedule of this vessel is as follows:

0.5 Days to fill and inoculate3 Days of Cell Growth0.5 Days to Harvest1 Day to Clean and Sterilize

The total f.o.b. cost of this vessel was calculated to be \$5,897 with a total bare module cost of \$24,532. The contents of F201 are used to inoculate F202.

F202 is the second fermentation vessel in this process. It is a carbon steel, vertical vessel with a total volume of 130 gallons. It is inoculated with 0.018 pounds of *cl. autoethanogenum* and charged with 796 pounds of water, 80 pounds of media, and 79 lbs/hr of steel mill gas. The gas is fed to the broth through a fermenter bubbler to enable cell growth to its desired mass of 0.18 lbs. A dimple jacket is used to maintain the vessel at the optimum temperature of 98.6 °F. The batch schedule of this vessel is as follows:

0.5 Days to fill and inoculate2 Days of Cell Growth0.5 Days to Harvest1 Day to Clean and Sterilize

The total f.o.b. cost of this vessel was calculated to be \$11,837 with a total bare module cost of \$49,240. The contents of F202 are used to inoculate F203.

F203 is the third fermentation vessel in this process. It is a carbon steel, vertical vessel with a total volume of 1,320 gallons. It is inoculated with 0.18 pounds of *cl. autoethanogenum*. It is charged with 9009 pounds of water, 9009 pounds of media, and 806 lbs/hr of steel mill gas that is fed to the broth through a fermenter bubbler to enable cell growth to its desired mass of 2 lbs. A dimple jacket is used to maintain the vessel at the optimum temperature of 98.6 °F. The batch schedule of this vessel is as follows:

0.5 Days to fill and inoculate2 Days of Cell Growth0.5 Days to Harvest1 Day to Clean and Sterilize

The total f.o.b. cost of this vessel was calculated to be \$29,677 with a total bare module cost of \$123,592. The contents of F203 are used to inoculate F204.

F205 is the fourth fermentation vessel this our process. It is a carbon steel, vertical vessel with a total volume of 13,200 gallons. It is inoculated with 2 pounds of *cl. autoethanogenum*. It is charged with 23,800 pounds of water, 2,380 pounds of media, and 8060 lbs/hr of steel mill gas fed through a fermenter bubbler to enable cell growth to its desired mass of 2 pounds. A dimple jacket is used to maintain the vessel at the optimum temperature of 98.6 °F. The batch schedule of this vessel is as follows:

0.5 Days to fill and inoculate 2 Days of Cell Growth 0.5 Days to Harvest 1 Day to Clean and Sterilize

The total f.o.b. cost of this vessel was calculated to be \$86,528 with a total bare module cost of \$360,322. The contents of F204 are used to inoculate F205.

F204 is the fifth and final fermentation vessel in this process. It is a carbon steel, vertical vessel with a total volume of 45,000 gallons. It is inoculated with 18 pounds of *cl. autoethanogenum* and is charged with 300,300 pounds of water, 30,030 pounds of media, and 27,479 lbs/hr of steel mill gas. The gas is fed through a fermenter bubbler to enable cell growth to 67 pounds. A dimple jacket is used to maintain the vessel at the optimum temperature of 98.6 °F. The batch schedule of this vessel is as follows:

1 Day to fill and inoculate 3 Days of Cell Growth 1 Day to Harvest 2 Days to Clean and Sterilize

The total f.o.b. cost of this vessel was calculated to be \$157,852 with a total bare module cost of \$656,555. The contents of F205 are used to inoculate five CSTRs. A batch takes 18 days to produce one batch of cells including the loading of the seed fermenter. Two batches of cells are grown per year.

9.2 Continuous Stirred Tank Reactors

2,3-Butanediol production occurs in the continuous stirred tank reactors. The CSTRs are organized in two blocks of five, for a total of ten CSTRs operating in parallel. Each CSTR is a carbon steel horizontal vessel with a total volume of 50,000 gallons and an aspect ratio of five. CSTRs are first operated as batch processes and initially filled with 40,000 gallons of fresh wet media. Each CSTR takes 1 day to fill to capacity.

Each CSTR is also charged with 66,066 lbs of broth and cells at a concentration of 2 mg/L. This gives a starting concentration of 33 mg/L of cells for each CSTR. Steel mill gas flows at 31,000 lb/hr through a CSTR bubbler. This batch operation continues until the cells reach 2 g/L, the desired concentration for maximum BDO production. This batch production takes 13 days.

Continuous operation is started once the desired steady state concentration is achieved. Fresh media is fed at 5,000 gallons/hr, and fermentation broth is remove from the reactor at the same rate. The gas flow rate constant at 30,532 pounds per hour. The CSTR effluent contains 200 lb/hr of biomass, which is separated used a disk-stacked centrifuge. Of the biomass collected, 120 lbs/hr is sent to a settling pond and 80 lbs/hr is recycled back to the CSTR to maintain steady-state concentration. The cells are hearty and can withstand the force of the centrifuge before being sterilized and disposed of at the end of each year. The cell-free fermentation broth contains 400 lbs/hr of BDO and 800 lbs/hr of ethanol per CSTR.

Besides the difference in loading times, all of the ten CSTRs are identical and operated continuously once the cells reach the desired cell concentration. The f.o.b. cost

of each vessel was calculated to be \$177,920 with a bare module cost of \$737,790. This leads to a total f.o.b. cost of \$1,779,200 and total bare module cost of \$7,377,900.

9.3 Simulated Moving Bed Chromatography

A simulated moving bed chromatography unit (SMB) is used to separate the cell products from the fermentation broth leaving the CSTRs. The broth is free of cells and contains mostly water with 4,000 lbs/hr of BDO and 8,000 lbs/hr ethanol. The SMB works by separating alcohols and hydrocarbons from water. Please see Appendix C for information on the corporate contact. The output to the SMB unit is be two streams- an extract phase consisting of the alcohols butanediol and ethanol at a rate of 12,000 lbs/hr and a raffinate phase consisting of water and any leftover salts at a rate of 37,500 lbs/hr. The extract, stream S81, is sent to a small distillation column for further separation and the raffinate S80 is reused in the process. A typical unit is shown below.

Figure 9-1: (Orochem, 2012)

9.4 Storage Tanks

S101a is a storage tank designed to hold and transport dry media. It cylindrical, carbon steel, vessel with a volume of 50,000 gallons, a height of 41.3 ft, and a diameter of 13.8 ft. This vessel is designed to provide enough media for block 300 to operate continuously for 1 day or to provide sufficient media for a fermentation batch. Dry powder media leaves the storage tank at 4,170 lbs/hr and is sent to the mixer through the

use of blower SS101. It has a total f.o.b purchase cost of \$165,626 and total bare module cost of \$689,003. A duplicate vessel exists to ensure adequate media storage.

ST102 is a storage tank designed to store the water media mixture until it is supplied to a batch fermentation vessel in block 200. It is a cylindrical, carbon steel, pressurized vessel with a volume of 50,000 gallons, a height of 41.3 feet and a diameter of 13.8 feet. It is maintained at 40 °F through the use of a dimple jacket. ST102 keeps water/media mixture stored at cool temperature until it is needed by components of block 200. Since one batch through block 200 takes approximately 18 days, media is kept at ST102 for a maximum of approximately 19 days to include for loading time. It has a total f.o.b purchase cost of \$182,189 and total bare module cost of \$757,903.

ST601 is a storage tank is designed to store 1,3-butadiene before it can be shipped and sold. It is cylindrical, carbon steel, pressurized vessel with a volume of 50,000 gallons, a diameter of 23.4 feet. The hold-up time for this vessel is 7 days, accounting for a shipping rate of once a week. It is highly pressurized at 65 psi to ensure the 1,3butadiene remains a liquid product. It is stored at room temperature. This vessel has a total f.o.b. cost of \$226,185 and total bare module cost of \$940,923.

ST701 is a storage tank is designed to store methyl ethyl ketone before it can be shipped and sold. It is a carbon steel, cylindrical, pressurized storage tank with a volume of 21,000 gallons, a height of 31.8 feet and a diameter of 10.6 feet. The hold-up time for this vessel is 7 days, accounting for a shipping rate of once a week. In order to keep this product liquid, the tank is pressurized at 58 psi and kept at room temperature. This vessel has a total f.o.b. cost of \$115,638 and total bare module cost of \$481,052.

ST401 is a storage tank is designed to store ethanol before it can be shipped and sold. It is a carbon steel, cylindrical, pressurized storage tank with a volume of 116,717 gallons, a height of 56.3 feet and a diameter of 18.8 feet. The hold-up time for this vessel is 4 days. In order to keep this product liquid, the tank is pressurized at 40 psi and kept at room temperature. This vessel has a total f.o.b. cost of \$267,531 and a total bare module cost of \$1,112,928.

9.5 Pumps

P101 is a carbon steel, centrifugal pump used to pressurize stream S10 at 921.5 gpm. The pressure of S10 is increased from 22 psi to 50 psi to allow the stream to pass through the microfiltration unit, FT102, and then to the ST102 where it is kept for storage until needed by the batch fermenters. Therefore, this pump is only needed twice a year during batch operation. The pump is 74% efficient and uses 11.05 kW of electricity. The estimated purchase cost of P101 is \$4797 and the total purchase and installation cost is \$18,406.

P102 is a carbon steel, centrifugal pump used to pressurize stream S16 at 738 gpm. The pressure of S16 is increased from 22 psi to 50 psi to allow the stream to pass through FT103, a microfiltration unit, to block 300. At full capacity, this pump operates continuously to allow for the CSTRs to operate at steady state. The pump is 75% efficient and uses 13.5 kW of electricity. The estimated purchase cost of P102 is \$4475 and the total purchase and installation cost is \$16,836.

Pumps P201 to P205 are used to move the media and cell product between batch fermenters. These pumps are in operation twice a year and only change the pressure of the streams enough to pass the material to the next fermenter. Since the streams are mostly water, the solid cell mass can be moved by a centrifugal pump.

P201 is a carbon steel, centrifugal pump, which is used to pressurize stream S28 at 0.02 gpm. The pressure of stream S28 is increased from 22 psi to 23 psi to ensure enough pressure to traverse the pipeline from F201 to F202. This pump is also needed once each batch fermentation cycle. The pump is 30% efficient and uses 2.3×10^{-5} kW of electricity. The estimated purchase cost is \$3000 and the total purchase and installation cost is \$11,285.

P202 is a carbon steel, centrifugal pump, which is used to pressurize stream S30, which is at .16 gpm. The pressure of stream S28 is increased from 22 psi to 23 psi, so it has enough pressure to traverse the pipeline from F202 to F203. This pump is also needed twice as year or once for each batch fermentation cycle. The pump is 30% efficient and uses $2.9*10^{-4}$ kW of electricity. The estimated purchase cost of P202 is \$4390 and the total purchase and installation cost is \$16,517.

P203 is a carbon steel, centrifugal pump which is used to pressurize stream S32, The pressure of stream S32 is increased from 22 psi to 23 psi, so it has enough pressure to traverse the pipeline from F203 to F204. This pump is also needed twice as year or once for each batch fermentation cycle. The pump is 30% efficient and uses $2.4*10^{-3}$ kW of electricity. The estimated purchase cost of P203 is \$9478 and the total purchase and installation cost is \$35,658.

P204 is a carbon steel, centrifugal pump, which is used to pressurize stream S34, which is at 4.8 gpm. The pressure of stream S32 is increased from 22 psi to 23 psi, so it has enough pressure to traverse the pipeline from F204 to F205. This pump is also needed twice as year or once for each batch fermentation cycle. The pump is 30% efficient and uses electricity at 6.5×10^{-3} kW. The estimated purchase cost of P203 is \$6152 and the total purchase and installation cost is \$23,146.

P205 is a carbon steel, centrifugal pump used to pressurize stream S32. The pressure of stream S32 is increased from 22 psi to 23 psi, so it has enough pressure to traverse the pipeline from F204 to F205. This pump is needed twice as year or once for each batch fermentation cycle. The pump is 35% efficient and uses 0.3 kW of electricity. The estimated purchase cost of P203 is \$3540 and the total purchase and installation cost is \$13,317.

P301 is a carbon steel, centrifugal pump that is used to pressurize stream S50. The pressure of stream S50 is increased from 22 psi to 50 psi so as to pass through the stacked-disk centrifuge and continue to block 400. This pump operates continuously. The pump is 50% efficient and uses 2 kW of electricity. The estimated purchase cost of P301 is \$3000 and the total purchase and installation cost is \$11,283. Each CSTR has a this pump.

P401 is a carbon steel, centrifugal pump that is used to pressurize stream S60. The pressure of stream S50 is increased from 22 psi to 50 psi so it has enough pressure to travel through FT401, the simulated moving bed chromatography unit and onwards. This pump operates continuously. The pump is 73% efficient and uses 10 kW of electricity. The estimated purchase cost of P301 is \$4391 and the total purchase and installation cost is \$16,520.

52

9.6 Heaters

H101 is a carbon steel, electricity-power heater with horizontal carbon steel tubes. It is used to heat wet media in stream S14 from 68 °F to the optimal temperature of 98 °F before being used in the batch fermenters in section 200. The flowrate through H101 can vary depending on the fermentation batch vessel, but the maximum flow rate is 304,166 lbs/hr. It uses electricity to heat the wet media with a power usage of 111 kW and a thermal efficiency of 80% only during the batch fermentation period. H101 costs \$3,308 and has a total purchase and installation cost of \$3,561.

H102 is a carbon steel, electricity-power heater with horizontal carbon steel tubes. It is used to heat cold wet media in stream S17 from 68 °F to its optimal temperature of 98 °F before being used in the continuous CSTR reactions in section 300. The flowrate through H102 is 417,600 lbs/hr. It uses electricity to continuously heat the wet media with a power usage of 3666 kW and a thermal efficiency of 80%. H102 costs \$25,232 and has a total purchase and installation cost of \$90,981.

H505 is designed to heat a mixed water and steam stream flowing at 20,000lb/hr to steam at 14 psi and 1200°F. During plant startup, the water is heated from cooling water to steam. This cooling water, at 14 psi and 86°F is then passed through the heater several times to bring the temperature to 1202°F. This heating technique f.o.b. cost is \$27,889, with a bare module cost of \$69,629. Once the desired temperature of steam is achieved, the heater is then to heat the reactors in this section, modeled as catalyst-packed heat exchangers. The heater is designed to deliver a duty of 2181.08 MBTU/hr, which will heat the reactor exit stream from 911°F to1202°F. The steam is then recycled back to the heater to bring the temperature back to 648.89 Celsius. It assumed that 2,000,000 lbs of water will be sufficient to fill the piping of the system and achieve the desired flow rate of 20,000 lbs/hr. The initial cost of this water at \$0.075/1000 gallons will be negligible at \$1,424.43. We will use No 4. Fuel Oil, which has a higher heating value of 18,701 BTU/lb and costs \$0.22/lb. Therefore, using the required duty, the annual cost will be \$203,715.63.

9.7 Reactors

The six reactors operate at 932°F and 70mmHg. Due to the low operating pressure of the reactor, a large volume is needed, too large for one reactor alone. The total calculated reactor volume was 509.5 ft³, which was obtained using the reactor residence time of 1.4s, the density of the effluent gas, 0.00315 lb/ft³, and the flow rate of the effluent, 4127.9 lbs/hr (Winfield, 1945). Each individual reactor has a volume of 170 ft³. The multiple reactors ensure that 1,3-butadiene will continuously be produced. At any one time, three reactors are in operation while the catalyst in the other three is being regenerated. Regeneration is performed by passing steam at 932°F over the catalyst for two hours.

In a single reactor, there are 1557 tubes of 1-inch diameter that are 20 ft long, for a surface area of 8152 ft². The shell side pressure is 0.304 psi. Using these specifications, the f.o.b. cost of a single reactor vessel is calculated to be \$58,694 and the total bare module cost was calculated to be \$212,110. Three reactions occur in the reactor, two of which are endothermic and one of which is exothermic. There is 62.1% conversion of BDO to 1,3-Butadiene and water, 26.2% conversion to MEK and water, and 8.4% conversion to methyl vinyl carbinol and water. The heats of reaction for these reactions respectively are 107904 kJ/kmol, 1482 kJ/kmol, and -21,6755 kJ/kmol.

The amount of thorium oxide catalyst used in each reactor was calculated using the reactor volume, surface area of catalyst, 55 m²/gram, and density of the catalyst, 8.6 g/cm³. The amount of catalyst used per reactor is 336 kg, which at a price of 5.745/g results in a catalyst price of 1.93MM.

9.8 Distillation Columns

The purpose of D401 is to remove 1,3-butadiene as the distillate product at a purity of 99.3%, flow rate 1550 lb/hr, temperature of 107°F, and pressure of 65 psi. The condenser duty is -1065.6 MBtu/hr and the reboiler duty is 794.2 MBtu/hr. The bottoms product leaves at a temperature of 282°F and pressure of 70 psi. There are 21 stages and 19 sieve trays. The height of the column is 56 ft and it has a diameter is 1.5 ft. The

column is made of carbon steel, has a tray efficiency of 0.7, tray spacing of 2 ft, and theoretical stage pressure drop of 0.1 psi. The feed to the column is on stage 9. There is a total condenser and a kettle reboiler. Additionally, the pressure drop in the condenser is 3 psi.

The purpose of C603 is to remove the MEK as distillate product at its azeotropic composition of approximately 13% water and 87% MEK at 17 psi. The flow rate of this stream is 929.8 lb/hr. The condenser duty is -1121.6 MBtu/hr and the reboiler duty is 961.4 MBtu/hr. The bottoms product leaves at a temperature of 232°F and a pressure of 23 psi. There are 39 stages and 37 sieve trays. The height of the column is 114 ft and diameter is 2 ft. It is made of carbon steel, has a tray efficiency of 0.7, tray spacing of 2 ft, and theoretical stage pressure drop of 0.1 psi. The feed to the column is on stage 32. There is a total condenser and a kettle reboiler. Additionally, the pressure drop in the condenser is 3 psi.

Columns C701 and C702 separate the MEK from water at the azeotropic concentration. The first column C701 removes the MEK as a 99.99% pure product in the bottoms. The flow rate of the MEK product is 809lb/hr at 106 psi. The column has 23 stages and 21 sieve trays. The feed stage is stage 6 for both the recycle from the lower pressure column C702 as well as the feed from the previous tower C603. The height and diameter of the column are 68 ft and 2 ft, respectively. The column is made of carbon steel, with a tray efficiency of 0.7 and tray spacing of 2 ft, and a theoretical stage pressure drop of 0.1 psi. The reflux ratio is 3. There is a total condenser and a kettle reboiler. Additionally, the pressure drop in the condenser is designed to be 3 psi.

The distillate is sent to the second column, which removes the water as the bottoms product at a flow rate of 120 lb/hr. The second column operates at a pressure of 1.6 bar. The column has 33 stages and 31 trays. The feed stage is stage 15. The height and diameter of the column are 96ft and 2.5ft respectively. The column is made of carbon steel, with a tray efficiency of .7 and tray spacing of 2ft, and theoretical stage pressure drop of .1 psi. The reflux ratio is 3. There is a total condenser and a kettle reboiler. Additionally, the pressure drop in the condenser is 3 psi. The pressure-swing distillation towers are only useful to recover MEK as a product for sale. We consider not separating MEK for profit in the next sections.

9.9 Mixing Tanks

M101 is a mixing tank designed to agitate the dry media and water to a wet media mixture. It is a cylindrical, carbon steel, pressurized vessel with a volume of 15,000 gallons, a height of 27.8 ft and a diameter of 9.3 ft. During continuous operation, 416,700 pounds/hr goes through the mixer with a residence time of 18 minutes before exiting as wet media in stream S16. During batch operation, 333,600 pounds/hr goes through the mixer with a residence time as wet media in stream S10. There is also an agitator that runs at 3 kW in order to mix the solids and liquids efficiently. The agitator costs \$4,170 and is included in the purchase cost of the tank. M101 has a total purchase cost of \$95,706 and a total purchase and installation cost of \$384,960.

9.10 Compressors

C001 is a cast iron, centrifugal compressor that is used to compress hot flue gas from steel mill to 30 psi. The flowrate into the compressor is 310,000 lb/hr and it has an efficiency of 72%. The compressor has an electricity usage of 8751 kW. C001 has an estimated purchase cost of \$3,528,002 and a total purchase and instillation cost of \$7,585,376.

C501 is carbon steel, centrifugal, compressor, which is used to compress cooled reactor effluent from the distillation columns. The flowrate into the compressor is 4321 lbs/hr and an efficiency of 72%. The compressor has an electricity usage of 519 kW. C501 has an estimated purchase cost of \$368,126 and a total purchase and installation cost of \$902,278.

9.11 Heat Exchangers

HX001 is a shell-and-tube heat exchanger fabricated from cast iron. It is used to cool the steel mill gas to 98 °F at 22 psi. The flue gas enters at 770 °F and exits at 98 °F. The cold stream enters at 45 °F and exits at 88 °F. This process transfers 6,710,000 BTU/hr of heat. HX001 has an estimated purchase cost of \$21,211 and a total purchase and installation cost of \$68,301.

HX502 is a shell and tube heat exchanger fabricated from carbon steel. It is used to recover heat from compression to use for a reboiler. The hot stream enters at 1341 °F and exits at 194 °F. The cold stream enters at 90 °F and exits at 760 °F. This process transfers 4,061,080 BTU/hr of heat. HX502 has an estimated purchase cost of \$58,694 and a total purchase and installation of \$212,109.

D603 is a total condenser for the distillation tower D603 fabricated from carbon steel. It uses water, at a flowrate of 3,000 lb/hr to condense the distillate of the THIRD DISTILLATION tower. The distillation tower's distillate exits at 240 °F with a flowrate of 71 lbs/hr. The cooling water enters at 90 °F and exits at 120 °F. This process transfers 226,218 BTU/hr of heat. The estimated purchase cost is \$550,689 and the total purchase and estimation cost of \$627,786.

D601 is a total condenser for distillation tower D601 fabricated from carbon steel. It uses water at a flowrate of 8,880 lbs/hr as the cold stream. The distillate is at a flowrate of 137 and enters the condenser at 137 °F and exits at 107 °F. This process transfers 74,586 BTU/hr of heat. The estimated purchase cost of D601 is \$25,190 and it has a total purchase and installation cost of \$57,214.

D602 is a total condenser to for the distillation tower D602 tower fabricated from carbon steel. It uses water at a flowrate of 2,487 lbs/hr that enters the condenser at 90 °F and exits at 120 °F. The distillate is cooled from 198 °F to 170 °F and it is a flowrate of 930 lbs/hr. This process transfers 78,150 BTU/hr. The estimated purchase cost of D602 is \$4,469 and it has a total purchase and installation cost of \$5,340.

D401 is a total condenser for the distillation tower D401. It uses water at a flowrate of 17,902 lbs/hr that enters the condenser at 90 °F and exits the condenser at 120 °F. The distillate enters the condenser at a flowrate of 7,996 lbs/hr at 198 °F and exits at 170 °F. This process transfers 78,510 BTU/hr of heat. The estimated purchase cost of D401 is \$502,838 and the total purchase and installation cost is \$593,755.

HX501 is carbon steel, electric heat exchanger used to heat feed to the reactor, R501, during start-up conditions. This feed is 4,132 lbs/hr of 1,3- butanediol that is heated from 257 °F to 572 °F. It uses electricity at a rate of 47,334 BTU/hr to provide the heat. This unit is a conditional, continuous unit that is only in operation during project start up. The estimated purchase cost of HX501 is \$4724 and the total purchase and installation cost is \$5,669.

D701 is a carbon steel total condenser used to condense the distillate from distillation tower, D701. Water is used on the cold side at a flowrate of 7,579 lbs/hr and enters at 90 °F and exits at 120 °F. The distillate has a flowrate of 1,475 lbs/hr and enters at 310 °F and exits at 278 °F. D701 has a heat duty of 227,278 BTU/hr. The estimated purchase cost of D701 is \$4,724 and the total purchase and installation cost is \$5,669.

D702 is a carbon steel total condenser used to condense the distillate from the distillation tower, D702. Water is used on the cold side at a flowrate of 7,250 lbs/hr and enters at 90 °F and exits at 120 °F. The distillate has a flowrate of 1,255 lbs/hr and enters at 205 °F and exits at 173 °F. D701 has a heat duty of 210,330 BTU/hr. The estimated purchase cost of D701 is \$4,348 and the total purchase and installation cost is \$5,089.

HX502 is carbon steel, shell and tube heat exchanger used to preheat the feed to the reactor, R501 with effluent heat from the reactor. This feed is 4,132 lbs/hr of that is heated from that is heated from 245 °F to 572 °F. The hot stream is at 4,132 lbs/hr and is cooled from 932 °F to 652 °F. This unit is has a heat duty of 47,334 BTU/hr. The estimated purchase cost of HX501 is \$3,854 and the total purchase and installation cost is \$7,584.

10.0 COSTING SUMMARIES

10.1 EQUIPMENT COST SUMMARY

The total bare module costs were calculated for each process unit using the Guthrie method. This estimation involves finding the f.o.b. equipment cost and modifying the price by a bare module factor, which adjusts for indirect costs associated with the setup of equipment on site. The correlation equation used to calculate bare module cost was obtained in Seider et al. and based on 2006 costing data. Correspondingly, the bare module costs were adjusted using the CE index of today, which is taken to be 570. The total bare module cost for the process was calculated to be \$58,175,107.

Section	Total Bare Module Investment
000	\$7,653,677
100	\$3,599,764
200	\$1,314,344
300	\$12,178,958
400	\$14,016,860
500	\$13,938,042
600	\$3,363,827.86
700	\$2,109,634.63
<u>Total</u>	<u>\$58,175,107</u>

Table 10-1: Total bare module investment.

Additionally, the itemized bare module costs are shown for the each of the seven plant sections in the following tables.

CO Fermentation for the Formation of **BDO**

Unit	Туре	F.o.b Purchase Cost	Bare Module Cost (\$)
HX001	Cool Gas Feed to Fermenters	\$21,211	\$68,301
C001	Compresses Air	\$3,528,082	\$7,585,376
Total		\$3,549,293	\$7,653,677

Section 000: Steel Mill Gas Cooling

Section 100: Media Mixing System

Unit	Туре	F.o.b Purchase Cost	Bare Module
			Cost (\$)
ST101a	Storage Tank	\$165,626	\$689,003
ST101b	Storage Tank	\$165,626	\$689,003
SS101	pneumatic conveying		\$827,361
	system		
B101	Blower		\$9,320
FT101	Water Filter		\$50,600
M101	Mixing Tank	\$91,536	\$380,790
M101'	Mixing Tank agitator	\$4,177	(Contained in
			M101 BM)
P101	Pump	\$4,797	\$18,406
P102	Pump		\$16,836
FT102	Ultra filtration		\$6,000
FT103	Ultra filtration		\$60,000
H101	HTX		\$3,561
H102	HTX		\$90,981
ST102	Storage Tank	\$182,189	\$757,903
Total		\$613,951	\$3,599,764

Unit	Туре	F.o.b Purchase Cost	Bare Module
			Cost (\$)
P201	Pump	\$3,000	\$11,285
P202	Pump	\$4,390	\$16,517
P203	Pump	\$9,478	\$35,658
P204	Pump	\$6,152	\$23,146
P205	Pump	\$3,540	\$13,317
F201	Horizontal Column	\$5,897	\$24,532
F202	Horizontal Column	\$11,837	\$49,420
F203	Horizontal Column	\$29,677	\$123,592
F204	Horizontal Column	\$86,528	\$360,322
F205	Horizontal Column	\$157,852	\$656,555
Total		\$318,351	\$1,314,344

Section 200: Batch Fermentation

Unit	Туре	F.o.b Purchase Cost	Bare Module Cost (\$)
CR301	CSTR	\$177,920	\$737,790
CR302	CSTR	\$177,920	\$737,790
CR303	CSTR	\$177,920	\$737,790
CR304	CSTR	\$177,920	\$737,790
CR305	CSTR	\$177,920	\$737,790
CR306	CSTR	\$177,920	\$737,790
CR307	CSTR	\$177,920	\$737,790
CR308	CSTR	\$177,920	\$737,790
CR309	CSTR	\$177,920	\$737,790
CR310	CSTR	\$177,920	\$737,790
P301	Pump	\$3,000	\$11,283
P302	Pump	\$3,000	\$11,283
P303	Pump	\$3,000	\$11,283
P304	Pump	\$3,000	\$11,283
P305	Pump	\$3,000	\$11,283
P306	Pump	\$3,000	\$11,283
P307	Pump	\$3,000	\$11,283
P308	Pump	\$3,000	\$11,283
P309	Pump	\$3,000	\$11,283
P310	Pump	\$3,000	\$11,283
TF301	Disk Stack Centrifuge	\$125,000	\$170,672
TF302	Disk Stack Centrifuge	\$125,000	\$170,672
TF303	Disk Stack Centrifuge	\$125,000	\$170,672
TF304	Disk Stack Centrifuge	\$125,000	\$170,672
TF305	Disk Stack Centrifuge	\$125,000	\$170,672
TF306	Disk Stack Centrifuge	\$125,000	\$170,672
TF307	Disk Stack Centrifuge	\$125,000	\$170,672
TF308	Disk Stack Centrifuge	\$125,000	\$170,672
TF309	Disk Stack Centrifuge	\$125,000	\$170,672
TF310	Disk Stack Centrifuge	\$125,000	\$170,672
SS301	pneumatic c.s.	\$200,567	\$248,459
SS302	pneumatic c.s.	\$200,567	\$248,459
SS303	pneumatic c.s.	\$200,567	\$248,459
SS304	pneumatic c.s.	\$200,567	\$248,459
SS305	pneumatic c.s.	\$200,567	\$248,459
SS306	pneumatic c.s.	\$200,567	\$248,459
SS307	pneumatic c.s.	\$200,567	\$248,459
SS308	pneumatic c.s.	\$200,567	\$248,459
SS309	pneumatic c.s.	\$200,567	\$248,459
SS310	pneumatic c.s.	\$200,567	\$248,459

Cont.			
Unit	Туре	F.o.b Purchase Cost	Bare Module
			Cost (\$)
SS311	pneumatic c.s.	\$200,567	\$248,459
SS312	pneumatic c.s.	\$200,567	\$248,459
Total		\$5,466,004	\$12,178,958

Section 400: Moving Bed Chromatography Separation

Unit	Туре	F.o.b Purchase Cost	Bare Module Cost (\$)
P401	Pump	\$4,391	\$16,520
FT401	Membrane Separation Unit	\$6,000,000	\$12,000,000
ST401	Storage Tank	\$267,531	\$1,112,928
D401	Separation of Ethanol from	\$520,838	\$593,755
	2,3-BDO		
D401 C.A	Condenser Accumulator	\$20,020	\$52,347
D401 CHX	Condenser HX	\$27,098	\$99,231
D401 RB	Reboiler	\$37,922	\$131,080
D401 RP	Reflux Pump	\$2,924	\$10,999
Total		\$6,880,724	\$14,016,860

Formation of 1,3-Butadiene via Thermo-Catalytic Conversion of BDO

Unit	Туре	F.o.b Purchase Cost	Bare Module
			Cost (\$)
VS501	Two-stage Steam-jet	\$17,991.28	\$17,991.28
	ejector		
HX502 (1)	Reactor Vessel	\$58,694.42	\$212,109.91
HX502 (2)	Reactor Vessel	\$58,694.42	\$212,109.91
HX502 (3)	Reactor Vessel	\$58,694.42	\$212,109.91
HX502 (4)	Reactor Vessel	\$58,694.42	\$212,109.91
HX502 (5)	Reactor Vessel	\$58,694.42	\$212,109.91
HX502 (6)	Reactor Vessel	\$58,694.42	\$212,109.91
HX504	Heat Source for Reactors	\$27,889.63	\$69,629.25
Recycled	Used in Reactor HX/Fired		\$1,424.43
Water	Heater System		
Catalyst	Catalyst		\$11,566,212.70
C501	Compressor to First	\$368,126.54	\$902,278.15
	Distillation Column		
HX502	Reactor Effluent Heat	\$3,196.78	\$3,853.87
	Recovery		
HX503	Compressor Effluent Heat	\$28,003.36	\$101,566.86
	Recovery		
HX501	Startup Heater	\$4,724.71	\$5,669.44
P501	Pressure increase of	\$3,920.12	\$14,747.49
	Cooling Water to HX		
Total		\$788,028	\$13,938,042

Section 500: Thermo Catalytic Conversion

Unit	Туре	F.o.b Purchase	Bare Module Cost
		Cost	(\$)
ST601	storage tank	\$226,185.00	\$940,923.00
D601	Tray tower for Separation of 1,3-	\$531,370.98	\$605,762.92
	Butadiene		
D601 C.A	Condenser Accumulator	\$21,615.52	\$57,214.79
D601 CHX	Condenser HX	\$25,190.45	\$91,445.51
D601 RB	Reboiler	\$4,516.94	\$5,335.77
D601 RP	Reflux Pump	\$2,941.41	\$11,065.59
D602	Tray tower for Separation of	\$624,635.34	\$712,084.29
	MEK/water		
D602 C.A	Condenser Accumulator	\$21,615.52	\$57,214.79
D602 CHX	Condenser HX	\$4,468.90	\$5,339.75
D602	Reboiler	\$4,110.86	\$4,870.15
Reboiler			
D602 RP	Reflux Pump	\$2,983.78	\$11,224.98
D603	Tray Tower for Recycle of 2,3-	\$550,689.18	\$627,785.67
	BDO		
D603 C.A	Condenser Accumulator	\$21,615.52	\$57,214.79
D603 CHX	Condenser HX	\$4,769.38	\$5,698.80
D603 RB	Reboiler	\$43,800.50	\$159,328.95
D603 RP	Reflux Pump	\$3,008.54	\$11,318.14
Total	·	\$2,093,517.84	\$3,363,827.86

Section 600: Distillation Separation: 1,3-Butadiene Recover

Unit	Туре	F.o.b Purchase Cost	Bare Module
			Cost (\$)
ST701	MEK Storage Tank	\$115,638.00	\$481,052.00
P701	Feed Pressure increase	\$3,574.87	\$13,448.66
P706	Recycle Pressure increase	\$3,360.55	\$12,642.39
D701	Separation of MEK	\$552,961.59	\$630,376.21
D701 C.A	Condenser Accumulator	\$21,615.52	\$57,214.79
D701 CHX	Condenser HX	\$4,724.71	\$5,669.44
D701	Reboiler	\$35,081.02	\$126,323.16
Reboiler			
D701 RP	Reflux Pump	\$2,923.80	\$10,999.32
D702	Separation of Water	\$608,087.12	\$693,219.32
D702 C.A	Condenser Accumulator	\$21,615.52	\$57,214.79
D702 CHX	Condenser HX	\$4,347.56	\$5,089.38
D702 RB	Reboiler	\$4,408.86	\$5,223.19
D702 RP	Reflux Pump	\$2,967.03	\$11,161.98
Total		\$1,381,306.16	\$2,109,634.63

10.2 FIXED CAPITAL SUMMARY

The total capital investment was calculated to be \$126.2MM. To calculate the total of direct permanent investment (DPI), three additional costs, the Cost of site preparation, cost of service facilities, and allocated costs for utility plants and related facilities, were calculated. The cost of site preparation was assumed to be 7% of the total bare-module cost since the plant is being integrated with an existing steel mill plant facility. The cost of service facilities was assumed to be 6% of TBM since these costs are considered to be some of the largest in the construction of the plant. The allocated costs for utility plants and related facilities was calculated using the total steam requirement of 28 lb/hr, electricity requirement of 16.7 MW, cooling water of 3921.4 gpm, and total process water of 748.9 gpm. These values were used in the correlations presented in Seider et. Al. From DPI, the total depreciable capital (TDC) is calculated by adding the cost of contingencies and contractor's feed, which is assumed to be 18% of DPI. The next important number calculated is the total permanent investment, TPI. This is calculated by adding the cost of land, cost of initial royalties, and cost of plant startup, each assumed to be 2% of TDC. Since the site is in China, there is no adjustment made to the TPI number. Finally, working capital is added to the TPI to get the total capital investment

Working capital is calculated as the sum of cash reserves inventory and accounts receivable minus accounts payable, as presented in Seider, et. Al.

Total Bare-Module Investment, TBM	\$58,175,107.50
Cost Of Site Preparation ("substantial":	\$4,072,257.52
0.07*TBM)	
Cost of Service Facilities ("substantial":	\$3,490,506.45
0.06*TBM)	
Allocated Costs for Steam	\$12,292.73
Allocated Costs for Electricity	\$26,917,326.23
Allocated Costs for Cooling Water	\$277,677.63
Allocated Costs for Process Water	\$862,083.38
Total of Direct Permanent Investment, DPI	\$93,807,251.44
Cost of Contingencies and Contractor's fees	\$16,885,305.26
(0.18*DPI)	
Total Depreciable Capital, TDC	\$110,692,556.70
Cost of land (0.02*TDC)	\$2,213,851.13
Cost of royalties (0.02*TDC)	\$2,213,851.13
Cost of plant startup (0.02*TDC)	2,213,851.13
Total Permanent Investment, TPI	\$117,334,110.10
Working Capital (See Working Capital Table)	\$8,874,233.54
Total Capital Investment, TCI	\$126,208,343.65

Working Capital Calculation	Cost
Cash Reserves	\$3,828,365.78
Inventories	\$1,091,860.08
Accounts Receivable	\$4,737,080.43
Accounts Payable	\$783,072.7475
Working Capital	\$8,874,233.54

10.3 COMPUTATION OF ANNUAL GROSS PROFIT

Annual gross profit was calculated by taking the difference between annual sales and annual production costs. Sales and costs were estimated using prices for the Asian Market in accordance with the theoretical location of our plant. The process produces 1550 lb/hr of 1,3-butadiene at \$2100/metric ton, 810 lb/hr of MEK at \$1700/metric ton, and 8000 lb/hr of ethanol at \$1400/metric ton, to produce annual revenues of \$11.7 MM/yr, \$4.9 MM/yr, and \$40.2 MM/yr respectively. Therefore total annual sales are \$56.9 MM/yr.

Sales(China)	
1,3-Butadiene (\$2100/metric ton)	\$11,690,456.72
MEK (\$1700/metric ton)	\$4,941,385.10
Ethanol - Commodity (\$1400/metric ton)	\$40,235,870.45
Total	\$56,867,712.28

Total production costs were calculated using the method outlined in Seider et. Al to be \$52.7MM/yr. Total production costs were calculated by summing feedstock, utilities, operations, maintenance, property taxes and insurance, depreciation, and general expense costs.

Cost Factor	Annual Cost	
Feedstock (Raw Materials)		\$9,400,633.22
Dry Media	\$9,260,633.22	
Steel Mill Gas	\$-	
Cells	\$140,000.00	
Water	\$267406.96	
Utilities		\$10,916,296.11
Steam, 450 psig	\$591,240.00	
Steam, 150 psig	\$115,225.76	
Steam, 50 psig	\$393,863.14	
Cooling Water	\$159,295.56	
Electricity	\$9,051,976.46	
Wastewater Treatment	\$400,979.56	
Fuel Oil	\$203,715.63	
Operations (O)		\$2,642,640.00
Direct wages and benefits (DW&B)	\$2,184,000.00	
Direct salaries and benefits (0.15*DW&B)	\$327,600.00	
Operating supplies and services (0.06*DW&B)	\$131,040.00	
Technical Assistance to Manufacturing	\$-	
Control Laboratory	\$-	
Maintenance (M)		\$11,456,679.62
Wages and benefits (MW&B), Solids-fluids handling	\$4,981,165.05	
process		
Salaries and benefits	\$1,245,291.26	
Materials and Services	\$4,981,165.05	
Maintenance Overhead	\$249,058.25	
Operating Overhead		\$1,135,705.63
General plant overhead	\$353,662.72	
Mechanical department services	\$119,547.96	
Employee Relations Department	\$293,888.74	
Business Services	\$368,606.21	
Property taxes and insurance		\$2,213,851.13

Contd.		
Depreciation		\$8,192,967.17
Direct Plant	\$6,205,655.07	
Allocated Plant	\$1,987,312.10	
СОМ		\$45,958,772.88
General Expenses		\$6,710,390.05
Selling (or transfer) expense	\$1,706,031.37	
Direct research	\$2,729,650.19	
Allocated research	\$284,338.56	
Administrative expense	\$1,137,354.25	
Management incentive compensation	\$853,015.68	
Total Production Cost		\$52,669,162.93

Feedstock costs was comprised of dry media, steel mill gas, process water, and cells, presented in the tables below.

Total Feedstock	Quantity	Cost (\$/yr)
Cost		
Dry Media	333600 lb/hr	\$9,260,633.22
Process Water	375,000 lb/hr	\$267,406.96
Cells	0.1mg/twice a year	\$140,000.00
Flue Gas	305,320 lb/hr	\$-

Media Calculations	
Media (L)	10
	2.64
Density (lbs/gallon)	18
lbs	47.55
total lbs needed	333600
total loads	7015.63
cost per unit	\$4.00
cost per day	\$28,062.52
cost (yr)	\$9,260,633.22

Utilities used were steam at 450 psi, 150 psi and 50 psi, cooling water, electricity, wastewater treatment, and No. 4. fuel oil. Per unit costs are available from Seider, et. Al.

The largest operations cost was direct wages and benefits (DW&B), which was calculated assuming two operators/per plant section, three plant sections, and an hourly

wage of 35\$/hr. Please refer to the following table. for more details about assumptions. In addition to DW&B, direct salaries and benefits (15% of DW&B) and operating supplies and services (6% of DW&B) were calculated.

Operations	Value
Process Type	Continuous, Solids-
	fluids Processing
Number of Operators Per Process	2
Section	
Number of Sections	3
Number of Operators/shift	6
Shifts	5
Hours Worked/(Operator*Year)	2080
Hourly Wage	35
<u>DW&B (\$/year)</u>	\$2,184,000.00

There were four contributions to maintenance costs. Wages and benefits (MW&B) was assumed to be 4.5% of TCI because our process requires handling of both solids and fluids. Salaries and benefits were assumed to be 25% of MW&B. Materials and services cost was assumed to be equal to MW&B. Maintenance overhead was assumed to be 5% of MW&B.

There were four contributions to operating overhead as well. The four contributors are general plant overhead, mechanical department services, employee relation's department costs, and business services costs. The cost associated with these factors was assumed to be 7.1%, 2.4%, 5.9%, and 7.4% of MW&B, respectively.

Property taxes were assumed to be 2% of TCI.

Depreciation was assumed to be comprised only of direct and allocated plant costs. Direct plant costs were assumed to be 8% of the difference between allocated costs for utility plants and related faculties subtracted from TCI.

Finally, there were five contributors to general expenses, all of which were assumed to cost a certain percentage of sales. Selling expense, direct research, allocated research, administrative expense, and management incentive compensation were assumed to be 3%, 4.8%, 0.5%, 2%, and 1.5% of sales, respectively.

Therefore, gross profit is the difference in sales and total production costs, estimated to be \$4.2MM/yr in China.

11.0 ECONOMIC ANALYSIS

11.1 Economic Overview

The centerpiece of the economic analysis of the plant is the cash flow analysis. Additionally, two profitability ratios, ROI and payback period, were calculated to determine the profitability of our system. Additionally, the sensitivity of the profitability to product pricing was examined.

Using the costs and sales numbers previously calculated in section 10, as well as assuming a required rate of return of 15% and a tax rate of 40%, ROI was calculated to be 2%. ROI is defined as after-tax profit/TCI. The payback period was calculated to be 10.3 years.

Ratio	Value
Return on Investment (ROI)	2.00%
Payback Period	10.33
Assumptions	Value
Tax rate	40%
Required Return on Investment	15%

Finally, a cash flow analysis was performed, from which and IRR and NPV were calculated. We assume a plant life of 30 years and that plant construction is evenly spread out over three years. In addition, the initial working capital is assumed to be bought at the end of year three. The cost of land is incurred at the end of year one. Startup costs are incurred at the end of year three. Additionally, since we are using a proprietary LanzaTech technology, we assume that 3% of sales will be required to pay royalties for the first ten years of operation. We also assume that the first year's sales and production costs are 50% of the maximum sales and the second year's sales and production costs are 75% of the maximum sales.

For the NPV calculation, the required rate of return was assumed to be 15%. Given the above assumption, a negative NPV of 74.4 MM was obtained. The IRR was calculated by setting the NPV of the project to \$0, and the IRR obtained was 0.7%.

#	Year	fCroc	Cwc	Cland	Cstartup	Croyatties	٩	Cexcl Dep	s	Net Ear	Earnings	Discounted Cash Flow	Cash Flow (PV)		Cummulative PV
1	2014	\$ (36,897,518.90)		\$ (2,213,851.13)							Ş	(39,111,370.03)	\$ (39,111,370.03)	\$ (8	(39,111,370.03)
2	2015	\$ (36,897,518.90)									¢	(36,897,518.90)	\$ (32,084,799.04)	\$ (t	(71,196,169.08)
°	2016	\$ (36,897,518.90)	\$ (8,874,233.54)		\$ (2,213,851.13)	\$ (2,213,851.13)					\$	(50,199,454.71)	\$ (37,957,999.78)	\$ (8	(109,154,168.86)
4	2017					\$ (853,015.68)	\$ 22,138,511.34	\$ 25,227,655.90	\$ 28,433,856.14	\$ (11,359,386.66)	386.66) \$	9,926,109.00	\$ 6,526,577.79	Ş	(102,627,591.07)
5	2018					\$ (1,279,523.53)	\$ 35,421,618.14	\$ 37,841,483.85	\$ 42,650,784.21	\$ (18,367,390.67)	390.67) \$	15,774,703.95	\$ 9,019,238.18	\$ ~	(93,608,352.89)
9	2019					\$ (1,706,031.37)	\$ 21,252,970.89	\$ 50,455,311.80	\$ 56,867,712.28	\$ (8,904,342.25)	342.25) \$	10,642,597.27	\$ 5,291,251.77	\$ 2	(88,317,101.13)
7	2020					\$ (1,706,031.37)	\$ 12,751,782.53	\$ 50,455,311.80	\$ 56,867,712.28	\$ (3,803,629.23)	529.23) \$	7,242,121.93	\$ 3,130,969.16	\$ 3	(85,186,131.96)
∞	2021					\$ (1,706,031.37)	\$ 12,751,782.53	\$ 50,455,311.80	\$ 56,867,712.28	\$ (3,803,629.23)	529.23) \$	7,242,121.93	\$ 2,722,581.88	\$ ~	(82,463,550.08)
6	2022					\$ (1,706,031.37)	\$ 6,375,891.27	\$ 50,455,311.80	\$ 56,867,712.28	\$ 21,9	21,905.53 \$	4,691,765.42	\$ 1,533,746.44	\$ t	(80,929,803.64)
10	2023					\$ (1,706,031.37)		\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,440.29	140.29 \$	2,141,408.92	\$ 608,722.06	ş	(80,321,081.58)
11.00	2024					\$ (1,706,031.37)		\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,440.29	140.29 \$	2,141,408.92	\$ 529,323.53	\$ 8	(79,791,758.04)
12	2025					\$ (1,706,031.37)		\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,440.29	140.29 \$	2,141,408.92	\$ 460,281.33	\$ \$	(79,331,476.71)
13	2026					\$ (1,706,031.37)		\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,440.29	140.29 \$	2,141,408.92	\$ 400,244.64	ţ \$	(78,931,232.07)
14	2027							\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,440.29	140.29 \$	3,847,440.29	\$ 625,316.61	ţ	(78,305,915.46)
15	2028							\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,440.29	140.29 \$	3,847,440.29	\$ 543,753.57	\$ 2	(77,762,161.89)
16	2029							\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,440.29	140.29 \$	3,847,440.29	\$ 472,829.19	\$	(77,289,332.70)
17	2030							\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,440.29	140.29 \$	3,847,440.29	\$ 411,155.82	5	(76,878,176.88)
18	2031							\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,440.29	140.29 \$	3,847,440.29	\$ 357,526.80	\$	(76,520,650.08)
19	2032							\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,440.29	140.29 \$	3,847,440.29	\$ 310,892.87	2 2	(76,209,757.21)
20	2033							\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,440.29	140.29 \$	3,847,440.29	\$ 270,341.63	\$	(75,939,415.58)
21	2034							\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,440.29	140.29 \$	3,847,440.29	\$ 235,079.67	\$ 2	(75,704,335.91)
22	2035							\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,440.29	140.29 \$	3,847,440.29	\$ 204,417.11	\$	(75,499,918.80)
23	2036							\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,440.29	140.29 \$	3,847,440.29	\$ 177,754.01	\$	(75,322,164.79)
24	2037							\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,440.29	140.29 \$	3,847,440.29	\$ 154,568.70	\$	(75,167,596.09)
25	2038							\$ 50,455,311.80		\$ 3,847,440.29	140.29 \$	3,847,440.29	\$ 134,407.57	7	(75,033,188.52)
26	2039							\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,440.29	140.29 \$	3,847,440.29	\$ 116,876.15	\$	(74,916,312.38)
27	2040							\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,440.29	140.29 \$	3,847,440.29	\$ 101,631.43	\$	(74,814,680.95)
28	2041							\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,440.29	140.29 \$	3,847,440.29	\$ 88,375.16	\$	(74,726,305.79)
29	2042							\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,440.29	140.29 \$	3,847,440.29	\$ 76,847.96	<mark>\$</mark>	(74,649,457.83)
30	2043		\$ 8,874,233.54					\$ 50,455,311.80	\$ 56,867,712.28	\$ 3,847,4	3,847,440.29 \$	12,721,673.83	\$ 220,956.55	\$	(74,428,501.27)

0.40 0.15 25,227,655.90 37,841,483.85 50,455,311.80

 $\infty | \infty | \infty$

Required Rate of Return C(Excl Dep) / 1st Year C(Excl Dep) / 2nd Year C(Excl Dep) / 3rd Year +

Tax Rate

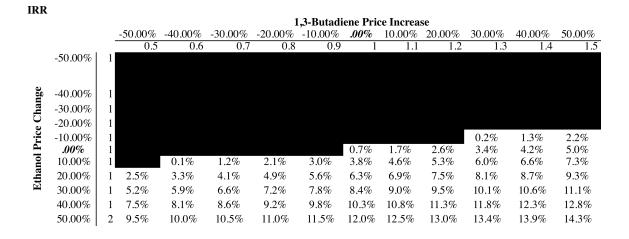
Total Depreciable Capital (over 3 years)	\$ 110,692,556.70	Tax Rate
Vorking Capital (at end of 3rd year)	\$ 8,874,233.54	Required Rate of Return
Sales / 1st year	\$ 28,433,856.14	C(Excl Dep) / 1st Year
Sales / 2nd year	\$ 42,650,784.21	C(Excl Dep) / 2nd Year
Sales / 3rd year +	\$ 56,867,712.28	C(Excl Dep) / 3rd Year +

\$ (2,213,851.13)
\$ (2,213,851.13)
_

0.40 0.007062113 25,227,655.90 37,841,483.85 50,455,311.80

 $\infty | \infty | \infty$

11.2 Alternative Process Considerations


Moving Bed Chromatography Separation

The fermentation product contains 1% BDO at the exit of the CSTR. Since the reaction is held in nearly vacuum conditions, the BDO must be concentrated to keep the reactor as small as possible. Two primary methods were examined- classic separation using a large distillation tower and the simulated moving bed chromatography unit presented earlier in this report. Since the primary objective in this process was to increase profitability, capital costs and operating costs were compared. For the classic distillation method, there is total purchase and installation cost of \$4,127,090 but a staggering yearly operating cost of \$3,114,380. This was a result of the energy intensive process of boiling out the water in the CSTR output stream. The SMB system had a high initial capital investment of \$12,539,600, but had a much lower yearly operating cost of \$737,685. The large disparity in the yearly operating costs were compared against the lifetime of our plant. By year six, the SMB process is cheaper than the distillation process with a total capital and operating cost of \$15,490,340 compared to \$16,584,610 respectively. After twenty years, the SMB process is cheaper than the classic distillation process by \$36 million. With these results in mind, the SMB process with the small distillation tower was chosen to be the process of choice for creating a nearly pure BDO stream from the CSTR outputs.

Variable Product Pricing

A sensitivity analysis was run to determine the profitability of the process under variable ethanol and 1,3-butadiene prices. If there is a 50% increase in both the price of ethanol and 1,3-Butadiene, the IRR of the process rises to 14.3%, which is very close to the required rate of return of 15%. Another point of note is that the process actually becomes more profitable if the price of ethanol decreases by 10% and the price of 1,3-Butadiene increases by 40%, with the IRR going from 0.7% to 1.3%, which shows that profitability of the process mainly depends on the price of ethanol, which is to be expected because ethanol comprises over 70% of annual revenues. The main take away

from this analysis is that under certain circumstances, it is not unreasonable to believe that this process may be profitable enough to be a viable investment.

12.0 OTHER IMPORTANT CONSIDERATIONS

12.1 PLANT STARTUP

This plant begins with a batch process, then transitions to a steady-state continuous operation. Each complete fermentation takes 18 days to complete, and it can inoculate five CSTRs at once. It is reasonable to conclude startup time until continuous operation will be less than two months. The reactor must be preheated using a heating recycle system while the CSTRs are growing cells to the correct concentration. Since equipment is being used for two purposes, it is also important to maintain constant and clear communication so that the valves direct the material flow in the right direction.

12.2 PROCESS SAFETY

During batch preparation, it is important that all the valves are switched for the appropriate directions so that the equipment can be used correctly. In addition, the media must be made without oxygen entering the system, since the cells grow in anaerobic conditions. To do this, the blower must use nitrogen gas and be monitored to ensure no oxygen can enter the system. Since hydrogen is present in the steel mill gas, we must be mindful to stay well below flammability limits.

Parts of our process operate at very high temperatures and relatively high pressures. This means potentials for burns or material leaks are possible and preventative measures should be taken to ensure they do not happen during operation. Additionally, the chemicals present throughout this process may be harmful to humans. Full details can be found in the MSDS sheets for each compound located in the appendix.

12.3 ENVIRONMENTAL CONCERNS

During continuous operation, wastewater and excess cell mass must be properly disposed of as to not contaminate the surrounding area. It is our understanding that we can place some of our biologic waste in settling ponds while it is being sanitized. We must also take precautions to see that our water with hydrocarbons is properly treated at water treatment facilities. Also, excess flue gas must get returned to the furnace that the steel mill uses to traditionally clean the gas. We cannot be responsible for releasing excess carbon monoxide into the atmosphere, especially since we feed our gas in excess to all batch fermenters and CSTRs.

12.4 PROCESS CONTROLLABILITY

As shown in Figures 1-2 to 1-8, control valves are very common in our process. Other instrumentation must also be utilized to ensure temperatures and pressures are correct throughout the plant. This project does not take into account process control, however if this project were to come into fruition, it would be paramount to install control systems into the plant.

13.0 CONCLUSIONS

This process is not profitable enough in a reasonable amount of operation time at current capacity to justify its installation. Bioprocesses generally need additional government funding in order to come into fruition. According to our sensitivity analysis, 1,3-butadiene and ethanol must be worth 50% more, either by market demand or tax incentives, for an ideal IRR of 14.3%. The current design produces 9500 tons of polymer grade 1,3-butadiene yearly along with 30,000 tons of industrial grade ethanol per year, 3,250 tons of MEK. At current market prices, we calculated an ROI of 0.7%, an IRR of 2.0%, and a NPV of -\$74 million. Though the project requires a significant initial total capital investment of \$124.2MM and has high production expenses of \$52.7 MM yearly, the potential for large profit exists depending on the future prices of the products.

With butadiene's importance in the global rubber industry, in our case for the production of adiponitrile, demand and prices will only confidently increase in the future. This growth can be expected in the growing economy of China, and in combination with their extensive steel production, allows for multiple potential locations in the future (Researching China, 2012).

The overall economics show that this process will still be only slightly profitable at current prices after 30 years, with a gross profit of \$4.1 MM/yr. This is assuming that the prices of BDO and ethanol will remain constant, two sensitive values for our calculations. Steel mill gas and *cl. autoethanogenum* cultures are likely a stable costs from now into the future and do not play into the sensitivity of our profits.

We recommend two areas of further research. It is possible that one if not all of these areas can make this a profitable process at current market values. The assumed concentrations of BDO and ethanol in broth from CSTRs were obtained from patent literature. Experimental work should be done in order to see if it is possible to create more productive bacteria that could create higher levels of BDO in solution. It is possible other bacteria can be made to be more successful converters of CO to BDO.

Also, the reaction data on the thermo-catalytic reaction section information was gathered from an outdated process. Though thorium oxide was regularly used to perform

78

this conversion, not much research has been performed on this catalyst since the steam cracking became a better way to create 1,3-butadiene. It is possible a more selective catalyst could be found.

14.0 ACKNOWLEDGEMENTS

We appreciate the extensive amount of advice given to us in order for this report to be a success. In particular, we would like to thank Mr. Leonard Fabiano, Dr. Daeyeon Lee, and Mr. Steven Tieri for their ever-available guidance. Mr. Fabiano was a tremendous help in the process design of our report, and we would not have had any ASPEN convergence without his input. Dr. Lee and Mr. Tieri were great assets in keeping us on track and enhancing our deeper understanding of the process. We would also like to thank all of the consultants that devoted their Tuesday afternoons to help us with our task.

15.0 WORKS CITED

- Abrini et al., "Clostridium autoethanogenum, sp. Nov., an Anerobic Bacterium that Produces Ethanol from Carbon Monoxide", *Archives of Microbiology*, Vol. 161, No. 4, pp. 345-351.
- Choo, Clement. "Asian Butadiene: Price Analysis." *Platts: McGraw Hill Financial*. Published March 1, 2013. Retrieved April 2, 2014.
- "Ethanol." Trading Economics. Published 2012. Retrieved April 2, 2014.
- "Global and China Methyl Ethyl Ketone Industry Report, 2010-2012." *Researching China*. Published 2012. Retrieved April 1, 2014.
- Herbert, Vernon, "Synthetic Rubber: A Project That Had to Succeed", Greenwood Press, 1985, ISBN 0-313-24634-3.
- Junyang, Jiang and Ryan R. Scott. "China- Peoples Republic of Biofuels 2011 Annual Report." USDA Foreign Agricultural Service. Published 07/21/2011. Retrieved April 2, 2014.
- Lanzatech New Zealand Limited. US20120045807 A1. Washington, DC: U.S. Patent and Trademark Office, 2012.
- Morrow NL. "The industrial production and use of 1,3-butadiene." *Environ. Health Prospect.* 1990; 86:7–8
- Ng, Esther. "Asian Ethanol Mandates Shifting Goalposts." *Asia Ethanol*, October 2013, pp. 34-39.
- Orochem. "SMB (Simulated Moving Bed) Chromatography Overview." Orochem Technologies, 2012.
- Soh, Angeline. "Tight Supply Supports Uptrend in Asia MEK prices." *ICIS*. Published December 12, 2013. Retrieved March 28, 2014.
- Source Research and Markets. "Methyl Ethyl Ketone Market Global Industry Analysis, Size, Share, Growth, Trends and Forecast to 2019." January 2014.
- Transparency Market Research. "Synthetic and Bio-Based Butadiene Market: Industry Overview, Applications and Downstream Potential Opportunities, 2010 – 2018," 2013. Retrieved April 1, 2014 from *Transparency Market Research*: http://www.transparencymarketresearch.com/synthetic-and-bio-based-butadienemarket.html

- International Agency for Research On Cancer (IARC). "1,3-Butadiene". *Review of Human Carcinogens*. 1992. Vol. 54, No. 11, pp 237-285.
- "Vacuum Systems." *IPIECA, the global oil and gas industry association for environmental and social issues,* 2013.
- Winfield, M. E. "The Catalytic Dehydration of 1,3-Butanediol to 1,3-Butadiene." *Journal* of the Council for Scientific and Industrial Research 18.4 (1945): 412-23. Print.

APPENDICES

Appendix A: Sample Calculations

Please note an example of heat exchanger sizing is given in Appendix E

Equations can be found in Chapter 22 of Seider et. Al.

Carbon Monoxide Feed Capacity

Typical steel mill product from scrubber: 1.7×10^6 lb CO₂/hr Carbon mass balance across the scrubber $100\% CO_2 = 42\% (CO_2 inlet) + 20\% (CO inlet)$ From the carbon exiting, 68% was converted from CO (assuming 1:1 conversion)

 $1.7x10^7 lb CO_2/hr * 0.68\left(\frac{28}{44}\right) = 7.36x10^7 lb CO/hr$ We have $7.36x10^7$ lb CO/hr available as gaseous feed from a medium steel mill

Density of CO air: 0.0727 lbm/ft³

From LanzaTech: $\frac{10^{7} ft^{3} / \min CO}{250 ft^{3} reactor} = 2.4 ft^{3} CO / hr / ft^{3} reactor$

Maximum volume of reactors based on feed availability $\frac{10^7 ft^3 CO/hr total}{2.4 ft^3 CO/hr/ft^3 reactor} = 4x10^6 ft^3 reactor$ $= 3x10^7 gallons max$

The problem statement calls for 100,000 gallons of BDO. We have the capacity to scale up 3000 times.

Batch Schedule Calculation

Seed Fermenter:

$$\frac{\frac{200 \frac{mg \ cells}{L} - .007 \frac{mg \ cells}{L}}{3.7 \frac{mg \ dry \ cells}{L * hr}} = 3 \ days$$

Fermenter #2:

$$\frac{200 \frac{mg \ cells}{L} - 20 \frac{mg \ cells}{L}}{3.7 \frac{mg \ dry \ cells}{L \ * hr}} = 2 \ days$$

Fermenter #3:

$$\frac{\frac{200 \frac{mg \ cells}{L} - 20 \frac{mg \ cells}{L}}{3.7 \frac{mg \ dry \ cells}{L \ * hr}} = 2 \ days$$

Fermenter #4:

$$\frac{\frac{200 \frac{mg \ cells}{L} - 20 \frac{mg \ cells}{L}}{3.7 \frac{mg \ dry \ cells}{L + hr}} = 2 \ days$$

Fermenter #5:

$$\frac{200 \frac{mg \ cells}{L} - 40 \frac{mg \ cells}{L}}{3.1 \frac{mg \ dry \ cells}{L \ * hr}} = 3 \ days$$

Number of CSTRs for target production

$$200 \frac{lbs}{hr} (original target) * 20(scale up factor) = 4,000 \frac{lbs BDO}{hr} = 1814368 \frac{grams}{hr}$$

$$Flow needed = 1814368 \frac{grams BDO}{hr} * 10 \frac{grams}{Liter} = 181,436.8 \frac{L}{hr}$$

$$Total CSTR Volume = \frac{181,436.8 \frac{L}{hr}}{0.1dilution factor hr^{-1}} = 1814368 L = 479,035 gallons$$

$$\# of CSTRS = \frac{479,035 gallons}{50,000 gallon (assumed max CSTR volume)} = 10 CSTRs$$

Example Costing: Bare Module cost from f.o.b. cost

The bare module cost used in the Guthrie Method is calculated using:

$$C_{BM} = C_{P_b} * \left(\frac{I}{I_b}\right) * (F_{BM} + (F_d * F_p * F_m - 1))$$
Where:

$$C_{P_b} \text{ is the f.o.b cost.}$$

$$\frac{I}{I_b} \text{ is the ratio of the current cost index to the base year cost index. } I \text{ is taken to be 570}$$
and I_b is taken to be 500.

$$F_{BM} \text{ is the bare-module factor}$$

$$F_d \text{ is equipment design factor}$$

$$F_p \text{ is the pressure factor}$$

$$F_m \text{ is the material factor}$$

Example Costing: Centrifugal Compressor

In a few places our process requires the pressure of a vapor stream to change pressure. The bare module cost for C501 is shown below.

 $F_{D}=1$ $F_{M}=1$ From ASPEN, driver horsepower = 969 HP

$$C_B = \exp(7.5800 + 0.80 \ln(driver \ horsepower))$$

= \$368,127

$$C_P = C_B F_D F_M =$$
\$368,127

Assuming a CE of 570, F_{bm} of 2.15, and F_P of 1

 $C_{bm} = $902,278$

Utilities Cost

From ASPEN, utilities requirement is 519 kW

Operation of 24 hours per day for 330 days at \$0.06/kWh

$$Cost = kWh * price * \frac{570}{500}$$
 (to adjust for money value today)
= \$281,236/year

Example Costing: Vacuum System

The air leakage in the system is found using the following equation:

 $W = 5 + (0.0298 + 0.03088 * \ln(P) - 0.00057333 * \ln(P)^{2}) * V^{.66}$

Where: *W* is the air leakage rate in lb/hr, *P* is the absolute pressure in torr (70 torr), *V* is the vessel volume in ft^3 (509.5).

Therefore W = 14.2lb/hr. $C_p = 2 * 1690 * S^{.41}$ Where:

S is the size factor in units of (lb/hr*torr). S is calculated by giving the Flow at suction (4132.23 lb/hr) by the vacuum pressure (70 torr) to get 59.03 lb/hr*torr. Note: This cost equation is a modification of the single-stage steam-jet cost equation. We assume that the two-stage Steam-jet ejector is twice the cost.

Therefore $C_p = \$17,991.28$. F_{BM} , F_d , F_p , F_m all taken to be 1 so $C_{bm} = \$17,991.28$

Example Costing: Reactor Vessel

We model the Reactor Vessel as a shell and tube heat exchanger with H = 20ft long, R = .5 inch radius tubes. Therefore the single tube volume and surface area are:

 $V_{one\ tube} = \pi * H * R^2 = 0.109 ft^3$ SA_{one\ tube} = 2 * \pi * R * H = 5.24 ft^2

The total flow through the reactor is:

$$q = \frac{q'}{\rho * 3600}$$

Where : q is flow rate in ft³/s, q' is flow rate in lb/hr (4127.9), ρ is density in lb/ ft³ (.0031505). Therefore q = 364 ft³/s. $V = \tau * q$

Where: τ is the residence time in seconds (1.4s). *V* is volume in ft³.

Therefore V = 509.5 ft³/s. Therefore the number of tubes required was:

$$N_{tubes,total} = \frac{509.5}{0.109} = 4671$$

In order to purchase a commercially available heat exchanger, the total volume was divided by 3. Therefore the number of tubes/reactor:

$$N_{tubes,1\,Reactor} = \frac{4671}{3} = 1557$$

Therefore the surface area per reactor was:

$$SA_{1\,Reactor} = 1557 * 5.24 = 8152.55 \, ft^2$$

Using the fixed head shell and tube HX equation:

$$C_b = \exp(11.2927 - 0.9228 * \ln(SA_{1Reactor}) + 0.09861 * \ln(SA_{1Reactor})^2)$$

= \$59,694.42

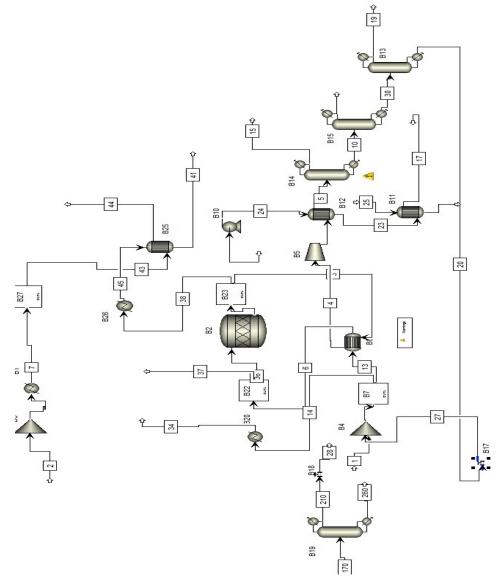
$$C_p = F_p * F_m * F_L * C_b$$

Since we are using carbon steel/carbon steel, F_p , F_m , F_L , $F_d = 1$, and $F_{bm} = 3.17$ $C_b = 212109.90

Example Costing: Catalyst

For literature the values for the following properties of thorium oxide were obtained:

 $SA_{catalyst} = 55 m^2/gram$ $\rho_{catalyst} = 8.6 g/cm^3$


Assuming a void fraction of .4, the amount of catalyst in grams was calculated as follows:

 $Amount = V * \frac{28316.85 \ cm^3}{ft^3} * \frac{(1 - .4)}{\rho_{catalyst}} = 509.5 * 28316.85 * \frac{0.6}{8.6}$ = 1,006,632.96 grams

Finally, the cost is taken to be \$287.25/50 grams, so the overall cost is \$5,783,106.35. Since the reactors were bought in duplicate, the total cost was doubled to be \$11,566,212.70.

Appendix B: Relevant ASPEN Reports

Block Flow Diagram

Streams

210

STREAM ID	210
FROM :	B19
TO :	B18

SUBSTREAM: MIXED LIQUID PHASE: COMPONENTS: LBMOL/HR H2O 0.0 MEK 0.0 2:3-B-01 4.4384-02 1:3-B-01 0.0 3-BUT-01 0.0 2-MET-01 0.0 ACETO-01 0.0 ETHAN-01 173.4791 2-BUT-01 0.0 BENZENE 0.0 COMPONENTS: MOLE FRAC H2O 0.0 MEK 0.0 2:3-B-01 2.5578-04 1:3-B-01 0.0 3-BUT-01 0.0 2-MET-01 0.0 ACETO-01 0.0 0.9997 ETHAN-01 2-BUT-01 0.0 BENZENE 0.0 COMPONENTS: LB/HR H2O 0.0 MEK 0.0 2:3-B-01 4.0000 1:3-B-01 0.0 3-BUT-01 0.0 2-MET-01 0.0 ACETO-01 0.0 ETHAN-01 7992.0160 0.0 2-BUT-01 BENZENE 0.0 COMPONENTS: MASS FRAC H2O 0.0 0.0 MEK 2:3-B-01 5.0025-04 1:3-B-01 0.0 3-BUT-01 0.0 2-MET-01 0.0 ACETO-01 0.0 0.9995 ETHAN-01 2-BUT-01 0.0 BENZENE 0.0

TOTAL FLOW: LBMOL/HR LB/HR L/MIN STATE VARIAE TEMP C PRES BAR VFRAC LFRAC SFRAC ENTHALPY: CAL/MOL CAL/GM CAL/SEC ENTROPY: CAL/MOL-K CAL/GM-K DENSITY: MOL/CC GM/CC AVG MW	173.5235 7996.0159 85.2454 3LES: 96.6605 2.0000 0.0 1.0000 0.0 -6.3932+04 -1387.4112 -1.3978+06 -75.8501 -1.6460 1.5389-02 0.7091 46.0803
260	
STREAM ID FROM : TO :	260 B19
SUBSTREAM: M PHASE: COMPONENTS H2O MEK 2:3-B-01 1:3-B-01 3-BUT-01 2-MET-01 ACETO-01 ETHAN-01 2-BUT-01 BENZENE COMPONENTS H2O MEK 2:3-B-01	LIQUID : LBMOL/HR 0.0 0.0 44.3396 0.0 0.0 0.0 0.0 0.0 0.1737 0.0 0.0 0.0

1:3-B-01	0.0
3-BUT-01	0.0
-	
2-MET-01	0.0
ACETO-01	0.0
ETHAN-01	3.9012-03
2-BUT-01	0.0
BENZENE	0.0
COMPONENTS	
H2O	0.0
MEK	0.0
2:3-B-01	3995.9840
1:3-B-01	0.0
3-BUT-01	0.0
2-MET-01	0.0
ACETO-01	0.0
ETHAN-01	8.0000
2-BUT-01	0.0
BENZENE	0.0
COMPONENTS	: MASS FRAC
H2O	0.0
MEK	0.0
2:3-B-01	0.9980
1:3-B-01	0.0
3-BUT-01	0.0
2-MET-01	0.0
ACETO-01	0.0
ETHAN-01	1.9980-03
2-BUT-01	0.0
BENZENE	0.0
TOTAL FLOW:	0.0
LBMOL/HR	44.5133
LB/HR	4003.9841
L/MIN	38.0459
STATE VARIA	BLES:
TEMP C	198.1946
PRES BAR	2.0276
VFRAC	0.0
LFRAC	1.0000
SFRAC	0.0
	0.0
ENTHALPY:	
CAL/MOL	-1.2160+05
CAL/GM	-1351.8934
CAL/SEC	-6.8202+05
ENTROPY:	
CAL/MOL-K	-126.6372
CAL/GM-K	-1.4079
	1,7077

DENSITY: MOL/CC GM/CC AVG MW 39	8.8450-03 0.7956 89.9503
STREAM ID FROM : TO :	39 B2 B23
SUBSTREAM: PHASE: COMPONENTS H2O MEK 2:3-B-01 1:3-B-01 3-BUT-01 2-MET-01 ACETO-01 ETHAN-01 2-BUT-01 BENZENE COMPONENTS H2O MEK 2:3-B-01 1:3-B-01 3-BUT-01 2-MET-01 ACETO-01 ETHAN-01 2-BUT-01 BENZENE COMPONENTS H2O MEK 2:3-B-01 1:3-B-01 3-BUT-01 2-MET-01 ACETO-01 ETHAN-01 2-MET-01 ACETO-01 ETHAN-01 2-BUT-01	VAPOR S: LBMOL/HR 73.0743 12.0000 1.4198 28.4427 3.9389 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

BENZENE COMPONENTS	0.0 : MASS FRAC
H2O	0.3186
MEK	0.2094
	3.0966-02
1:3-B-01	0.3723
	6.8734-02
3-BUT-01	
2-MET-01	0.0
ACETO-01	0.0
ETHAN-01	0.0
2-BUT-01	0.0
BENZENE	0.0
TOTAL FLOW:	
LBMOL/HR	118.8758
LB/HR	4132.2332
L/MIN	6.1901+05
STATE VARIA	
TEMP C	500.0000
_	
PRES BAR	9.3326-02
VFRAC	1.0000
LFRAC	0.0
SFRAC	0.0
ENTHALPY:	
CAL/MOL	-3.0065+04
CAL/GM	-864.9111
CAL/SEC	-4.5032+05
ENTROPY:	
CAL/MOL-K	-5.1801
CAL/GM-K	-0.1490
DENSITY:	-0.1490
	1 4510 00
MOL/CC	1.4518-06
GM/CC	5.0466-05
AVG MW	34.7609
15	
STREAM ID	15
FROM :	B14
TO :	
SUBSTREAM:	MIXED
PHASE:	LIQUID
COMPONENTS	•
H2O	0.3839
MEK	5.7559-02
WILLIN	5.1559-02

2:3-B-01	8.6441-14
1:3-B-01	28.4427
3-BUT-01	9.8657-05
2-MET-01	0.0
ACETO-01	0.0
ETHAN-01	0.0
2-BUT-01	0.0
BENZENE	0.0
COMPONENTS	
H2O	1.3291-02
MEK	1.9927-03
2:3-B-01	2.9927-15
1:3-B-01	0.9847
3-BUT-01	3.4156-06
2-MET-01	0.0
ACETO-01	0.0
ETHAN-01	0.0
2-BUT-01	0.0
BENZENE	0.0
COMPONENTS	
H2O	6.9163
MEK	4.1504
2:3-B-01	7.7903-12
1:3-B-01	1538.5136
3-BUT-01	7.1139-03
2-MET-01	0.0
ACETO-01	0.0
ETHAN-01	0.0
2-BUT-01	0.0
BENZENE	0.0
COMPONENTS	
H2O	
MEK	2.6784-03
2:3-B-01	5.0273-15
1:3-B-01	0.9929
3-BUT-01	4.5908-06
2-MET-01	0.0
ACETO-01	0.0
ETHAN-01	0.0
2-BUT-01	0.0
BENZENE	0.0
TOTAL FLOW:	
LBMOL/HR	28.8843
LB/HR	1549.5875
L/MIN	19.6485
STATE VARIA	

TEMP C PRES BAR VFRAC LFRAC SFRAC ENTHALPY: CAL/MOL CAL/GM CAL/SEC ENTROPY: CAL/MOL-K CAL/GM-K DENSITY: MOL/CC GM/CC AVG MW	$\begin{array}{r} 41.6329\\ 4.5000\\ 0.0\\ 1.0000\\ 0.0\\ \hline \\ 2.0348+04\\ 379.2932\\ \hline 7.4055+04\\ -49.1404\\ -0.9160\\ \hline \\ 1.1113-02\\ 0.5962\\ 53.6481\\ \end{array}$
19 	
STREAM ID FROM : TO :	19 B13
SUBSTREAM: N PHASE: COMPONENTS H2O MEK 2:3-B-01 1:3-B-01 3-BUT-01 2-MET-01 ACETO-01 ETHAN-01 2-BUT-01 BENZENE COMPONENTS H2O MEK 2:3-B-01 1:3-B-01 3-BUT-01 2-MET-01 ACETO-01 ETHAN-01	LIQUID : LBMOL/HR 65.7449 0.7212 2.5357-03 0.0 3.9389 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2-BUT-01	0.0
BENZENE	0.0
COMPONENTS	
	1184.4131
MEK	52.0009
2:3-B-01	0.2285
2:3-B-01 1:3-B-01	0.2283
3-BUT-01	284.0184
2-MET-01	0.0
ACETO-01	0.0
ETHAN-01	0.0
2-BUT-01	0.0
BENZENE	0.0
COMPONENTS	
H2O	0.7789
MEK	3.4196-02
2:3-B-01	1.5028-04
1:3-B-01	0.0
3-BUT-01	0.1868
2-MET-01	0.0
ACETO-01	0.0
ETHAN-01	0.0
2-BUT-01	0.0
BENZENE	0.0
TOTAL FLOW:	
LBMOL/HR	70.4075
LB/HR	1520.6608
L/MIN	12.8438
STATE VARIA	
TEMP C	88.3460
PRES BAR	1.1000
VFRAC	0.0
LFRAC	1.0000
SFRAC	0.0
ENTHALPY:	0.0
CAL/MOL	-6.7179+04
CAL/MOL CAL/GM	-3110.4475
	-5.9596+05
CAL/SEC	-3.9390+03
ENTROPY:	42 4002
CAL/MOL-K	-43.4903
CAL/GM-K	-2.0136
DENSITY:	4 1 4 4 2 . 0 2
MOL/CC	4.1442-02
GM/CC	0.8951
AVG MW	21.5980

20

STREAM ID 20 FROM : B13 TO : B17 SUBSTREAM: MIXED PHASE: LIQUID COMPONENTS: LBMOL/HR H2O 0.2499 MEK 7.8607-10 2:3-B-01 1.4173 1:3-B-01 0.0 2.1317-07 3-BUT-01 2-MET-01 0.0 ACETO-01 0.0 0.0 ETHAN-01 2-BUT-01 0.0 BENZENE 0.0 **COMPONENTS: MOLE FRAC** H2O 0.1499 4.7149-10 MEK 2:3-B-01 0.8501 1:3-B-01 0.0 3-BUT-01 1.2786-07 2-MET-01 0.0 ACETO-01 0.0 ETHAN-01 0.0 2-BUT-01 0.0 BENZENE 0.0 COMPONENTS: LB/HR H2O 4.5018 MEK 5.6681-08 127.7315 2:3-B-01 1:3-B-01 0.0 3-BUT-01 1.5371-05 2-MET-01 0.0 ACETO-01 0.0 ETHAN-01 0.0 2-BUT-01 0.0 BENZENE 0.0 COMPONENTS: MASS FRAC H2O 3.4044-02 MEK 4.2865-10 2:3-B-01 0.9660

1:3-B-01 3-BUT-01 2-MET-01 ACETO-01 ETHAN-01 2-BUT-01 BENZENE TOTAL FLOW: LBMOL/HR LB/HR L/MIN STATE VARIAB	0.0 1.1624-07 0.0 0.0 0.0 0.0 1.6672 132.2333 1.1676 LES:
TEMP C PRES BAR VFRAC LFRAC SFRAC ENTHALPY: CAL/MOL CAL/GM CAL/SEC ENTROPY: CAL/MOL-K CAL/GM-K DENSITY: MOL/CC GM/CC AVG MW	162.0657 1.3827 0.0 1.0000 0.0 -1.1511+05 -1451.3368 -2.4181+04 -115.6397 -1.4580 1.0795-02 0.8562 79.3145
8 - STREAM ID FROM : TO : -	8 B3
SUBSTREAM: M PHASE: COMPONENTS: H2O MEK 2:3-B-01 1:3-B-01 3-BUT-01 2-MET-01 ACETO-01	LIQUID

	0.0
ETHAN-01	0.0
2-BUT-01	0.0
BENZENE	0.0
COMPONENTS	
H2O	0.3470
MEK	0.6530
2:3-B-01	0.0
1:3-B-01	7.4375-20
3-BUT-01	1.3868-08
2-MET-01	0.0
ACETO-01	0.0
ETHAN-01	0.0
2-BUT-01	0.0
BENZENE	0.0
COMPONENTS	
H2O	94.8164
MEK	714.2877
2:3-B-01	0.0
1:3-B-01	6.1026-17
3-BUT-01	1.5168-05
2-MET-01	0.0
ACETO-01	0.0
ETHAN-01	0.0
2-BUT-01	0.0
BENZENE	0.0
COMPONENTS	: MASS FRAC
H2O	0.1172
MEK	0.8828
2:3-B-01	0.0
1:3-B-01	7.5424-20
3-BUT-01	1.8747-08
2-MET-01	0.0
ACETO-01	0.0
ETHAN-01	0.0
2-BUT-01	0.0
BENZENE	0.0
TOTAL FLOW:	
LBMOL/HR	15.1691
LB/HR	809.1041
L/MIN	9.2425
STATE VARIA	BLES:
TEMP C	154.0302
PRES BAR	7.3309
VFRAC	0.0
LFRAC	1.0000
SFRAC	0.0
JINAC	0.0

ENTHALPY: CAL/MOL CAL/GM CAL/SEC ENTROPY: CAL/MOL-K CAL/GM-K DENSITY: MOL/CC GM/CC AVG MW	-6.1688+04 -1156.5241 -1.1790+05 -64.1523 -1.2027 1.2407-02 0.6618 53.3391
9 -	
STREAM ID FROM : TO :	9 B6
SUBSTREAM: 1 PHASE: COMPONENTS H2O MEK 2:3-B-01 1:3-B-01 3-BUT-01 2-MET-01 ACETO-01 ETHAN-01 2-BUT-01 BENZENE COMPONENTS H2O MEK 2:3-B-01 1:3-B-01 3-BUT-01 2-MET-01 ACETO-01 ETHAN-01 2-BUT-01 BENZENE COMPONENTS H2O MEK	LIQUID : LBMOL/HR 1.4424 1.3123 0.0 6.8097-09 1.8137-09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

2:3-B-01	0.0
1:3-B-01	3.6835-07
3-BUT-01	1.3078-07
2-MET-01	0.0
ACETO-01	0.0
ETHAN-01	0.0
2-BUT-01	0.0
BENZENE	0.0
COMPONENTS	
H2O	0.2154
MEK	0.2134
2:3-B-01	0.0
1:3-B-01	3.0540-09
3-BUT-01	1.0843-09
2-MET-01	0.0
ACETO-01	0.0
ETHAN-01	0.0
2-BUT-01	0.0
BENZENE	0.0
TOTAL FLOW:	
LBMOL/HR	2.7547
LB/HR	120.6113
L/MIN	1.1842
STATE VARIA	
TEMP C	86.8378
PRES BAR	1.6410
VFRAC	0.0
LFRAC	1.0000
SFRAC	0.0
ENTHALPY:	
CAL/MOL	-6.4973+04
CAL/GM	-1483.9529
CAL/SEC	-2.2551+04
ENTROPY:	
CAL/MOL-K	-60.8474
CAL/GM-K	-1.3897
DENSITY:	
MOL/CC	1.7586-02
GM/CC	0.7700
AVG MW	43.7840
21	

STREAM ID	21
FROM :	B9

TO : **B**3 SUBSTREAM: MIXED PHASE: LIQUID COMPONENTS: LBMOL/HR H2O 6.6955 MEK 11.2213 2:3-B-01 1.6928-27 1:3-B-01 6.7326-09 3-BUT-01 2.1217-07 2-MET-01 0.0 0.0 ACETO-01 ETHAN-01 0.0 2-BUT-01 0.0 0.0 BENZENE **COMPONENTS: MOLE FRAC** H2O 0.3737 MEK 0.6263 2:3-B-01 9.4482-29 1:3-B-01 3.7577-10 3-BUT-01 1.1842-08 2-MET-01 0.0 0.0 ACETO-01 ETHAN-01 0.0 2-BUT-01 0.0 BENZENE 0.0 **COMPONENTS: LB/HR** H2O 120.6219 MEK 809.1306 2:3-B-01 1.5256-25 1:3-B-01 3.6417-07 3-BUT-01 1.5299-05 2-MET-01 0.0 0.0 ACETO-01 ETHAN-01 0.0 2-BUT-01 0.0 0.0 BENZENE COMPONENTS: MASS FRAC H2O 0.1297 MEK 0.8703 2:3-B-01 1.6409-28 1:3-B-01 3.9169-10 3-BUT-01 1.6455-08 2-MET-01 0.0 ACETO-01 0.0

ETHAN-01

0.0

2-BUT-01	0.0
BENZENE	0.0
TOTAL FLOW:	
LBMOL/HR	17.9168
LB/HR	929.7524
L/MIN	9.1457
STATE VARIA	BLES:
TEMP C	76.5195
PRES BAR	7.5000
VFRAC	0.0
LFRAC	1.0000
SFRAC	0.0
ENTHALPY:	
CAL/MOL	-6.4685+04
CAL/GM	-1246.5085
CAL/SEC	-1.4602+05
ENTROPY:	
CAL/MOL-K	-69.8677
CAL/GM-K	-1.3464
DENSITY:	
MOL/CC	1.4810-02
GM/CC	0.7685
AVG MW	51.8928

Blocks

BLOCK: B2 MODEL: RSTOIC

INLET STREAM: 36 OUTLET STREAM: 39 PROPERTY OPTION SET: NRTL RENON (NRTL) / IDEAL GAS

*** MASS AND ENERGY BALANCE *** IN OUT GENERATION RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 46.0514 118.876 72.8244 -0.119544E-15 MASS(LB/HR) 4132.23 4132.23 0.220098E-15 ENTHALPY(CAL/SEC) -603003. -450318. -0.253207

*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 LB/HR PRODUCT STREAMS CO2E 0.00000 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR

*** INPUT DATA ***

STOICHIOMETRY MATRIX:

REACTION # 1: SUBSTREAM MIXED : H2O 1.00 MEK 1.00 2:3-B-01 -1.00

REACTION # 2: SUBSTREAM MIXED : H2O 2.00 2:3-B-01 -1.00 1:3-B-01 1.00

REACTION # 3: SUBSTREAM MIXED : H2O 1.00 2:3-B-01 -1.00 3-BUT-01 1.00

REACTION CONVERSION SPECS: NUMBER= 3 REACTION # 1: SUBSTREAM:MIXED KEY COMP:2:3-B-01 CONV FRAC: 0.2620 REACTION # 2: SUBSTREAM:MIXED KEY COMP:2:3-B-01 CONV FRAC: 0.6210 REACTION # 3: SUBSTREAM:MIXED KEY COMP:2:3-B-01 CONV FRAC: 0.8600E-01

TWOPHASE TP FLASHSPECIFIED TEMPERATURE C500.000SPECIFIED PRESSUREBAR0.093326MAXIMUM NO. ITERATIONS50CONVERGENCE TOLERANCE0.000100000SIMULTANEOUS REACTIONSGENERATE COMBUSTION REACTIONS FOR FEED SPECIESNO

*** RESULTS *** OUTLET TEMPERATURE C OUTLET PRESSURE BAR HEAT DUTY CAL/SEC VAPOR FRACTION

500.00 0.93326E-01 0.15268E+06 1.0000

HEAT OF REACTIONS:

REACTION	REFERENCE	HEAT OF
NUMBER	COMPONENT	REACTION

	C	AL/MOL
1	2:3-B-01	353.97
2	2:3-B-01	25772.
3	2:3-B-01	-5177.0

REACTION EXTENTS:

REAC	ΓΙΟΝ	REACTION	J
NUMB	ER	EXTENT	
	LBN	/IOL/HR	
1	12.	.000	
2	28.	.443	
3	3.9	389	

V-L PHASE EQUILIBRIUM :

COMP	F(I)	X(I)	Y(I)	K(I)	
H2O	0.61471	0.73991	0.6147	1 10383.	
MEK	0.10095	0.13416	0.1009	95 9403.5	5
2:3-B-01	0.11944E-	01 0.1512	2E-01 0	.11944E-01	9870.9
1:3-B-01	0.23926	0.94461E	E-01 0.2.	3926 316	55.
3-BUT-01	0.33135H	E-01 0.163	847E-01	0.33135E-01	25331.

BLOCK: B19 MODEL: RADFRAC

INLETS - 170 STAGE 3 OUTLETS - 210 STAGE 1 260 STAGE 5 PROPERTY OPTION SET: NRTL RENON (NRTL) / IDEAL GAS

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 218.037 218.037 0.00000 MASS(LB/HR) 12000.0 12000.0 0.235393E-09 ENTHALPY(CAL/SEC) -0.218629E+07 -0.207981E+07 -0.487024E-01

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000LB/HRPRODUCT STREAMS CO2E0.00000LB/HRNET STREAMS CO2E PRODUCTION0.00000LB/HRUTILITIES CO2E PRODUCTION0.00000LB/HRTOTAL CO2E PRODUCTION0.00000LB/HR

**** INPUT PARAMETERS ****

NUMBER OF STAGES 5 ALGORITHM OPTION **STANDARD** ABSORBER OPTION NO INITIALIZATION OPTION **STANDARD** HYDRAULIC PARAMETER CALCULATIONS NO INSIDE LOOP CONVERGENCE METHOD **BROYDEN** DESIGN SPECIFICATION METHOD NESTED MAXIMUM NO. OF OUTSIDE LOOP ITERATIONS 25 MAXIMUM NO. OF INSIDE LOOP ITERATIONS 10 MAXIMUM NUMBER OF FLASH ITERATIONS 30 FLASH TOLERANCE 0.000100000 OUTSIDE LOOP CONVERGENCE TOLERANCE 0.000100000

**** COL-SPECS ****

MOLAR VAPOR DIST / TOTAL DIST	0.0
MASS REFLUX RATIO	1.00000
MASS DISTILLATE TO FEED RATIO	0.66000

**** PROFILES ****

P-SPEC STAGE 1 PRES, BAR 2.00000

**** TRAY VAPORIZATION EFFICIENCY ****

SEGMENT 2 4 EFFICIENCY 0.70000

*** COMPONENT SPLIT FRACTIONS ***

OUTLET STREAMS

210 260 COMPONENT: 2:3-B-01 .10000E-02 .99900 ETHAN-01 .99900 .10000E-02 *** SUMMARY OF KEY RESULTS ***

TOP STAGE TEMPERATURE С 96.6605 BOTTOM STAGE TEMPERATURE С 198.195 TOP STAGE LIQUID FLOW 280.855 LBMOL/HR BOTTOM STAGE LIQUID FLOW LBMOL/HR 44.5133 TOP STAGE VAPOR FLOW LBMOL/HR 0.0 **BOILUP VAPOR FLOW** LBMOL/HR 345.821 MOLAR REFLUX RATIO 1.61854 MOLAR BOILUP RATIO 7.76895 CONDENSER DUTY (W/O SUBCOOL) CAL/SEC -527,905. **REBOILER DUTY** CAL/SEC 634,382.

**** MANIPULATED VARIABLES ****

BOUNDSCALCULATEDLOWERUPPERVALUEMASS DISTIL TO FEED RATIO0.100001.00000.66633MASS REFLUX RATIO0.100003.00001.6185

**** DESIGN SPECIFICATIONS ****

NO SPEC-TYPE QUALIFIERS UNIT SPECIFIED CALCULATED VALUE VALUE 1 MASS-RECOV STREAMS: 210 0.99900 0.99900 COMPS: ETHAN-01 2 MASS-RECOV STREAMS: 260 0.99900 0.99900 COMPS: 2:3-B-01

**** MAXIMUM FINAL RELATIVE ERRORS ****

DEW POINT0.14501E-04STAGE= 4BUBBLE POINT0.60032E-05STAGE= 4COMPONENT MASS BALANCE0.16035E-05STAGE= 2ENERGY BALANCE0.28329E-03STAGE= 4

**** PROFILES ****

NOTE REPORTED VALUES FOR STAGE LIQUID AND VAPOR RATES ARE THE FLOWS

FROM THE STAGE INCLUDING ANY SIDE PRODUCT.

ENTHALPY STAGE TEMPERATURE PRESSURE CAL/MOL HEAT DUTY C BAR LIQUID VAPOR CAL/SEC
1 96.660 2.0000 -63932. -54902. 52790+06 2 107.71 2.0069 -64307. -54711. 3 116.27 2.0138 -79905. -54990. 4 164.69 2.0207 -0.11712E+06 -63882. 5 198.19 2.0276 -0.12160E+06 -0.10198E+06 .63438+06
STAGE FLOW RATE FEED RATE PRODUCT RATE LBMOL/HR LBMOL/HR LBMOL/HR LBMOL/HR LIQUID VAPOR LIQUID VAPOR 1 454.4 0.000 173.5234 2 283.2 454.4 3 474.5 456.7 218.0367 4 390.3 430.0 5 44.51 345.8 44.5132
STAGE FLOW RATE FEED RATE PRODUCT RATE LB/HR LB/HR LB/HR LIQUID VAPOR LIQUID VAPOR 1 0.2094E+05 0.000 7996.0159 LIQUID 2 0.1320E+05 0.2094E+05 .12000+05 3 0.2726E+05 0.2120E+05 .12000+05 4 0.3331E+05 0.2326E+05 4003.9840
**** MOLE-X-PROFILE **** STAGE 2:3-B-01 ETHAN-01 1 0.25578E-03 0.99974 2 0.12616E-01 0.98738 3 0.25843 0.74157 4 0.89111 0.10889 5 0.99610 0.39012E-02
**** MOLE-Y-PROFILE **** STAGE 2:3-B-01 ETHAN-01 1 0.38116E-05 1.0000 2 0.25578E-03 0.99974 3 0.79197E-02 0.99208 4 0.18206 0.81794 5 0.87760 0.12240

**** **** K-VALUES STAGE 2:3-B-01 ETHAN-01 1 0.14902E-01 1.0003 2 0.28963E-01 1.4465 3 0.43779E-01 1.9112 4 0.29187 10.731 5 0.88103 31.377 **** MASS-X-PROFILE **** STAGE 2:3-B-01 ETHAN-01 1 0.50025E-03 0.99950 2 0.24386E-01 0.97561 3 0.40538 0.59462 4 0.94121 0.58793E-01 5 0.99800 0.19980E-02 **** MASS-Y-PROFILE **** STAGE 2:3-B-01 ETHAN-01 1 0.74564E-05 0.99999 2 0.50025E-03 0.99950 3 0.15376E-01 0.98462 4 0.30335 0.69665 5 0.93345 0.66554E-01 **** VAPORIZATION EFF **** STAGE 2:3-B-01 ETHAN-01 1 1.0000 1.0000 2 0.70000 0.70000 3 0.70000 0.70000 4 0.70000 0.70000 5 1.0000 1.0000 BLOCK: B14 MODEL: RADFRAC _____ INLETS - 5 STAGE 9 OUTLETS - 15 STAGE 1 STAGE 16 10 PROPERTY OPTION SET: NRTL RENON (NRTL) / IDEAL GAS * * * INCOMPLETE OR INCONSISTENT KEY SPECS. APPROXIMATIONS ARE USED. *

*

*** MASS AND ENERGY BALANCE *** OUT **RELATIVE DIFF.** IN TOTAL BALANCE MOLE(LBMOL/HR) 118.876 118.876 0.119544E-15 4132.23 MASS(LB/HR) 4132.23 0.174735E-07 ENTHALPY(CAL/SEC) -657939. -676934. 0.280596E-01

*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 LB/HR PRODUCT STREAMS CO2E 0.00000 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR

**** INPUT DATA **** ****************

**** INPUT PARAMETERS ****

NUMBER OF STAGES 16 ALGORITHM OPTION **STANDARD** ABSORBER OPTION NO INITIALIZATION OPTION **STANDARD** HYDRAULIC PARAMETER CALCULATIONS NO INSIDE LOOP CONVERGENCE METHOD BROYDEN DESIGN SPECIFICATION METHOD NESTED MAXIMUM NO. OF OUTSIDE LOOP ITERATIONS 200 MAXIMUM NO. OF INSIDE LOOP ITERATIONS 10 MAXIMUM NUMBER OF FLASH ITERATIONS 30 FLASH TOLERANCE 0.000100000 OUTSIDE LOOP CONVERGENCE TOLERANCE 0.000100000

**** COL-SPECS ****

MOLAR VAPOR DIST / TOTAL DIST0.0MASS REFLUX RATIO3.00000MASS DISTILLATE TO FEED RATIO0.37500

**** PROFILES ****

P-SPEC STAGE 1 PRES, BAR 4.50000

**** TRAY VAPORIZATION EFFICIENCY ****

SEGMENT 216 EFFICIENCY 0.70000

***** RESULTS **** **** RESULTS ****

*** COMPONENT SPLIT FRACTIONS ***

OUTLET STREAMS

1	5 10	
COMPON	ENT:	
H2O	.52538E-02	.99475
MEK	.47966E-02	.99520
2:3-B-01	.60881E-13	1.0000
1:3-B-01	1.0000	23671E-09
3-BUT-01	.25047E-0	4 .99997

*** SUMMARY OF KEY RESULTS ***

TOP STAGE TEMPERATURE С 41.6329 BOTTOM STAGE TEMPERATURE С 138.928 TOP STAGE LIQUID FLOW 86.6529 LBMOL/HR BOTTOM STAGE LIQUID FLOW LBMOL/HR 89.9915 TOP STAGE VAPOR FLOW LBMOL/HR 0.0 **BOILUP VAPOR FLOW** LBMOL/HR 56.1427 MOLAR REFLUX RATIO 3.00000 MOLAR BOILUP RATIO 0.62387 CONDENSER DUTY (W/O SUBCOOL) CAL/SEC -74,588.5 **REBOILER DUTY** CAL/SEC 55,593.9

**** MAXIMUM FINAL RELATIVE ERRORS ****

DEW POINT0.88909E-05STAGE= 4BUBBLE POINT0.25420E-03STAGE= 5COMPONENT MASS BALANCE0.39691E-05STAGE= 4COMPONENT MASS BALANCE0.17236E-04STAGE= 5

**** PROFILES ****

NOTE REPORTED VALUES FOR STAGE LIQUID AND VAPOR RATES ARE THE FLOWS

FROM THE STAGE INCLUDING ANY SIDE PRODUCT.

		ENTHALPY	7		
STAGE TE	MPERATUR	E PRESSU	RE	CAL/MOL	HEAT DUTY
С	BAR	LIQUID	VAPOR	CAL/SE	С
1 111000	4.5000			74588+05	5
2 58.340	4.7068	17045.			
3 64.304	4.7137	15.161			
	4.7206				
7 119.50	4.7413		-23518.		
8 120.09	4.7482	-59832.	-23724.		
9 134.37	4.7551	-64973.	-49358.		
10 136.95	4.7620	-65113.	-54922.		
11 137.26	4.7689	-65126.	-55486.		
12 137.35		-65128.			
	4.7827				
15 138.03	4.7965	-65226.			
16 138.93	4.8034	-66232.	-55755.	.55594+0	5
	FLOW RATE	E F	EED RAT		RODUCT RATE
LBM	FLOW RATE OL/HR	E F LBMC	DL/HR	LBM	OL/HR
LBM LIQUID	FLOW RATE OL/HR VAPOR	E F LBMC	DL/HR VAPOR	LBM0 MIXED	
LBM LIQUID 1 115.5	FLOW RATE OL/HR VAPOR 0.000	E F LBMC	DL/HR	LBM0 MIXED	OL/HR
LBM LIQUID 1 115.5 2 91.18	FLOW RATE OL/HR 0 VAPOR 0.000 115.5	E F LBMC	DL/HR VAPOR	LBM0 MIXED	OL/HR
LBM LIQUID 1 115.5 2 91.18 3 72.76	FLOW RATE OL/HR 0 VAPOR 0.000 115.5 120.1	E F LBMC	DL/HR VAPOR	LBM0 MIXED	OL/HR
LBM LIQUID 1 115.5 2 91.18 3 72.76 4 53.17	FLOW RATE OL/HR 0.000 115.5 120.1 101.6	E F LBMC	DL/HR VAPOR	LBM0 MIXED	OL/HR
LBM LIQUID 1 115.5 2 91.18 3 72.76 4 53.17 7 51.79	FLOW RATE OL/HR 0.000 115.5 120.1 101.6 80.76	E F LBMC LIQUID	DL/HR VAPOR 28.88	LBM0 MIXED	OL/HR
LBM LIQUID 1 115.5 2 91.18 3 72.76 4 53.17 7 51.79 8 53.97	FLOW RATE OL/HR 0.000 115.5 120.1 101.6 80.76 80.68	LIQUID 40.1575	DL/HR VAPOR 28.88	LBM0 MIXED	OL/HR
LBM LIQUID 1 115.5 2 91.18 3 72.76 4 53.17 7 51.79 8 53.97 9 145.2	FLOW RATE OL/HR 0.000 115.5 120.1 101.6 80.76 80.68 42.69 7	E F LBMC LIQUID	DL/HR VAPOR 28.88	LBM0 MIXED	OL/HR
LBM LIQUID 1 115.5 2 91.18 3 72.76 4 53.17 7 51.79 8 53.97 9 145.2 10 146.3	FLOW RATE OL/HR 0.000 115.5 120.1 101.6 80.76 80.68 42.69 55.18	LIQUID 40.1575	DL/HR VAPOR 28.88	LBM0 MIXED	OL/HR
LBM LIQUID 1 115.5 2 91.18 3 72.76 4 53.17 7 51.79 8 53.97 9 145.2 10 146.3 11 146.4	FLOW RATE OL/HR 0.000 115.5 120.1 101.6 80.76 80.68 42.69 55.18 56.30	LIQUID 40.1575	DL/HR VAPOR 28.88	LBM0 MIXED	OL/HR
LBM LIQUID 1 115.5 2 91.18 3 72.76 4 53.17 7 51.79 8 53.97 9 145.2 10 146.3 11 146.4 12 146.4	FLOW RATE OL/HR 0.000 115.5 120.1 101.6 80.76 80.68 42.69 55.18 56.30 56.42	LIQUID 40.1575	DL/HR VAPOR 28.88	LBM0 MIXED	OL/HR
LBM LIQUID 1 115.5 2 91.18 3 72.76 4 53.17 7 51.79 8 53.97 9 145.2 10 146.3 11 146.4 12 146.4 13 146.4	FLOW RATE OL/HR 0.000 115.5 120.1 101.6 80.76 80.68 42.69 55.18 56.30 56.42 56.44	LIQUID 40.1575	DL/HR VAPOR 28.88	LBM0 MIXED	OL/HR
LBM LIQUID 1 115.5 2 91.18 3 72.76 4 53.17 7 51.79 8 53.97 9 145.2 10 146.3 11 146.4 12 146.4 13 146.4 13 146.4	FLOW RATE OL/HR 0.000 115.5 120.1 101.6 80.76 80.68 42.69 55.18 56.30 56.42 56.44 56.28	LIQUID 40.1575	DL/HR VAPOR 28.88	LBM0 MIXED 343	OL/HR
LBM LIQUID 1 115.5 2 91.18 3 72.76 4 53.17 7 51.79 8 53.97 9 145.2 10 146.3 11 146.4 12 146.4 13 146.4	FLOW RATE OL/HR 0.000 115.5 120.1 101.6 80.76 80.68 42.69 55.18 56.30 56.42 56.44	LIQUID 40.1575	DL/HR VAPOR 28.88	LBM0 MIXED 343	OL/HR

**** MASS FLOW PROFILES ****

STAGE	FL	OW RATE	F	EED RATI	E	PRODUCT	RATE
LB	/HR		LB/HR	L	.B/HR		
LIQU	ID	VAPOR	LIQUID	VAPOR	MIXED	LIQUID	VAPOR

1	6198.	0.000		1549,5874
I	0198.	0.000		1349.38/4
2	4827.	6198.		
3	3744.	6376.		
4	2566.	5294.		
7	2416.	3971.		
8	2556.	3965.	2101.4060	
9	5142.	2004.	2030.8271	
10	5190.	2559.		
11	5195.	2608.		
12	5194.	2612.		
13	5189.	2612.		
15	5160.	2585.		
16	2583.	2578.		2582.6456

**** MOLE-X-PROFILE ****

			mode n					
STA	GE	H2O	MEK		2:3-B-01	1	:3-B-01	3-BUT-01
1	0.13	291E-02	1 0.19927E	-02	0.29927E	-14	0.98471	0.34156E-05
2	0.41	256E-0	1 0.18405E	2-01	0.17249E	-12	0.94031	0.31530E-04
3	0.13	395	0.12224	0.12	2125E-10	0.74	l 353 0.	.27824E-03
4	0.35	404	0.38324	0.10)104E-08	0.26	6096 O.	.17648E-02
7	0.45	541	0.47845	0.20)674E-04	0.46	6099E-01	0.20023E-01
8	0.44	220	0.46995	0.51	248E-03	0.45	5999E-01	0.41340E-01
9	0.68	059	0.26807	0.99	702E-02	0.28	8429E-02	0.38534E-01
10	0.68	3033	0.27092	0.9	8996E-02	0.2	7538E-03	0.38576E-01
11	0.68	3037	0.27103	0.9	8917E-02	0.2	6248E-04	0.38676E-01
12	0.68	3057	0.27056	0.9	8909E-02	0.2	4954E-05	0.38981E-01
13	0.68	8114	0.26905	0.9	8929E-02	0.2	3632E-06	0.39911E-01
15	0.68	3359	0.25473	0.1	0126E-01	0.2	0309E-08	0.51553E-01
16	0.80)775	0.13271	0.1	5778E-01	0.7	4813E-10	0.43769E-01

**** MOLE-Y-PROFILE ****

		11.		110						
STA	GE H2	20	MEK	2	2:3-B-(01	1:3-B-0)1	3-BUT	-01
1	0.35549	E-02 0.	17905E-	03 0).3554	9E-16	5 0.99 6	527	0.309	41E-06
2	0.13291	E-01 0.	19927E-	02 0).2992	7E-14	0.984	71	0.341	56E-05
3	0.34529	E-01 0.	14457E-	01 0).1317	1E-12	0.950)99	0.247	67E-04
4	0.99663	E-01 0.	88069E-	01 0).8680	2E-11	0.812	207	0.200	14E-03
7	0.29601	0.31	345	0.537	43E-0	6 0.3	38429	0.0	62560E-	-02
8	0.29713	0.30	787	0.132	72E-0	4 0.3	38214	0.	12856E-	-01
9	0.44050	0.45	679	0.454	38E-0	3 0.7	74204E	-01	0.28047	'E-01
10	0.47319	0.48	8884	0.498	847E-0	03 0.	74795E	2-02	0.2999	5E-01
11	0.47665	5 0.49	9185	0.503	336E-0	03 0.	71559E	2-03	0.3027	5E-01
12	0.47722	2 0.49	9166	0.504	428E-0	03 0.	68111E	2-04	0.3055	4E-01
13	0.47780	0.49	9034	0.505	505E-0	03 0.	64739E	2-05	0.3134	8E-01
15	0.48424	4 0.4'	7437	0.517	747E-0	03 0.	57220E	2-07	0.4087	9E-01
16	0.48459	0.4	5031	0.106	662E-0	0.02	51662E	2-08	0.6403	0E-01

	***	** K-VALU	JES ****	<	
STA	GE H2O	MEK	2:3-B-01	1:3-B-01	3-BUT-01
1	0.26747	0.89849E-0	01 0.11879E-0	1 1.0117	0.90591E-01
2	0.46029	0.15467	0.24785E-01	1.4960	0.15476
3	0.36835	0.16892	0.15513E-01	1.8271	0.12715
4	0.40242	0.32816	0.12271E-01	4.4442	0.16198
7	0.92876	0.93572	0.37138E-01	11.906	0.44629
8	0.96006	0.93574	0.36998E-01	11.866	0.44423
9	0.92471	2.4338	0.65100E-01	37.277	1.0396
10	0.99370	2.5772	0.71926E-01	38.791	1.1106
11	1.0009	2.5921	0.72691E-01	38.938	1.1181
12	1.0018	2.5957	0.72831E-01	38.986	1.1196
13	1.0021	2.6033	0.72928E-01	39.130	1.1220
15	1.0120	2.6603	0.73007E-01	40.250	1.1328
16	0.85704	4.8476	0.96537E-01	98.651	2.0899

**** MASS-X-PROFILE ****

			101110011						
STA	GE	H2O	MEK		2:3-B-0	1 1	:3-B-01	3-BUT-	01
1	0.44	633E-02	2 0.26784E	E-02	0.50273	E-14	0.99285	0.4590	08E-05
2	0.14	040E-0	1 0.25071E	E-01	0.29366	E-12	0.96085	0.4294	49E-04
3	0.46	889E-0	1 0.17127	0	.21232E-	10 0	.78145	0.38983	E-03
4	0.13	217	0.57267	0.18	3871E-08	0.29	9252 0	.26372E-0	02
7	0.17	590	0.73965	0.39	9945E-04	0.53	3461E-01	0.30955	E-01
8	0.16	818	0.71539	0.97	7504E-03	0.52	2528E-01	0.62930	E-01
9	0.34	615	0.54570	0.25	5367E-01	0.43	3413E-02	0.78443	E-01
10	0.34	4544	0.55059	0.2	5146E-0	1 0.4	1983E-03	0.78399	E-01
11	0.34	4544	0.55079	0.2	5124E-0	1 0.4	0014E-04	0.78598	E-01
12	0.34	4564	0.54998	0.2	5129E-0	1 0.3	8052E-05	0.79241	E-01
13	0.34	4624	0.54741	0.2	5156E-0	1 0.3	6069E-06	0.81202	E-01
15	0.34	4875	0.52014	0.2	5842E-0	1 0.3	1108E-08	0.10527	,
16	0.50	0705	0.33343	0.4	9546E-0	0.1	4101E-09	0.10997	,

**** MASS-Y-PROFILE ****

			11111001					
STA	AGE	H2O	MEK		2:3-B-01	1	:3-B-01	3-BUT-01
1	0.11	867E-02	0.23923E	2-03	0.59366E	2-16	0.99857	0.41342E-06
2	0.44	633E-02	0.26784E	2-02	0.50273E	2-14	0.99285	0.45908E-05
3	0.11	713E-01	0.19629E	E-01	0.22351E	2-12	0.96862	0.33627E-04
4	0.34	471E-01	0.12192	0	.15019E-1	0 0	.84333	0.27707E-03
7	0.10	0845 0	.45964	0.98	8499E-06	0.42	2273 ().91739E-02
8	0.10)891 0	.45166	0.24	4336E-04	0.42	2055 ().18860E-01
9	0.16	6902 0	.70154	0.87	7219E-03	0.85	5490E-01	0.43075E-01
10	0.1	8378 ().75990	0.9	6848E-03	0.8	7221E-02	0.46628E-01
11	0.1	8538 ().76567	0.9	7936E-03	0.8	3564E-03	0.47129E-01
12	0.1	8568 ().76568	0.9	8155E-03	0.7	9570E-04	0.47583E-01
13	0.1	8603 (0.76413	0.9	8368E-03	0.7	5681E-05	0.48851E-01
15	0.1	8996 (0.74483	0.1	0155E-02	0.6	7398E-07	0.64187E-01

10	0.19014	0.70721	0.20927E	-02 0.0080.	3E-08 0.	10050
	***	* VAPOR	IZATION H	EFF ****		
STA	GE H2O	MEK	2:3-B	B-01 1:3-E	B-01 3-	BUT-01
1	1.0000	1.0000	1.0000	1.0000	1.0000	
2	0.70000	0.70000	0.70000	0.70000	0.7000	0
3	0.70000	0.70000	0.70000	0.70000	0.7000	0
4	0.70000	0.70000	0.70000	0.70000	0.7000	0
7	0.70000	0.70000	0.70000	0.70000	0.7000	0
8	0.70000	0.70000	0.70000	0.70000	0.7000	0
9	0.70000	0.70000	0.70000	0.70000	0.7000	0
10	0.70000	0.70000	0.70000	0.70000	0.7000	00
11	0.70000	0.70000	0.70000	0.70000	0.7000	00
12	0.70000	0.70000	0.70000	0.70000	0.7000	00
13	0.70000	0.70000	0.70000	0.70000	0.7000	00
15	0.70000	0.70000	0.70000	0.70000	0.7000	00
16	0.70000	0.70000	0.70000	0.70000	0.7000	00

16 0.19014 0.70721 0.20927E-02 0.60863E-08 0.10056

*** THERMAL ANALYSIS ***

STAGE TEMPERATURE PRESSURE ENTHALPY DEFICIT EXERGY LOSS CARNOT FACTOR

С	BAR	CAL/SEC	CAL/SEC	
1 41.633	4.5000	74588.	601.79 0.52839E-0	01
2 58.340	4.7068	55941.	76.598 0.10058	
3 64.304	4.7137	52314.	2272.3 0.11647	
4 86.273	4.7206	45573.	3516.5 0.17048	
7 119.50	4.7413	251.90	31.887 0.24067	
8 120.09	4.7482	-589.52	1558.6 0.24181	
9 134.37	4.7551	-24445.	417.77 0.26838	
10 136.95	4.7620	-2844.0	1.8285 0.27298	
11 137.26	4.7689	-383.13	3.9164 0.27353	
12 137.35	4.7758	-60.607	4.7584 0.27369	
13 137.45	4.7827	-90.772	5.7336 0.27386	
15 138.03	4.7965	2866.6	40.068 0.27490	
16 138.93	4.8034	55594.	25880E+28 0.27647	7

BLOCK: B15 MODEL: RADFRAC INLETS - 10 STAGE 32 OUTLETS - 29 STAGE 1 30 STAGE 36 PROPERTY OPTION SET: NRTL RENON (NRTL) / IDEAL GAS *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(LBMOL/HR)
 89.9915
 89.9915
 0.00000

 MASS(LB/HR)
 2582.65
 2582.64
 0.387507E-06

 ENTHALPY(CAL/SEC)
 -750989.
 -762205.
 0.147155E-01

*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 LB/HR PRODUCT STREAMS CO2E 0.00000 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR

**** INPUT PARAMETERS ****

NUMBER OF STAGES 36 ALGORITHM OPTION **3P-NEWTON** INITIALIZATION OPTION **AZEOTROPIC** HYDRAULIC PARAMETER CALCULATIONS NO **DESIGN SPECIFICATION METHOD** SIMULT MAXIMUM NO. OF NEWTON ITERATIONS 200 MAXIMUM NUMBER OF FLASH ITERATIONS 30 FLASH TOLERANCE 0.000100000 COLUMN EQUATIONS CONVERGENCE TOLERANCE 0.100000-06

**** COL-SPECS ****

MOLAR VAPOR DIST / TOTAL DIST0.0MASS REFLUX RATIO3.00000MASS DISTILLATE TO FEED RATIO0.36000

**** L2-STAGES SPECIFICATIONS ****

TWO LIQUID PHASE CALCULATIONS ARE PERFORMED FOR STAGE TO STAGE

1 9

**** L2-COMPS SPECIFICATIONS ****

KEY COMPONENTS IN THE SECOND LIQUID PHASE COMPONENT H2O

**** PROFILES ****

P-SPEC STAGE 1 PRES, BAR 1.15000

**** TRAY VAPORIZATION EFFICIENCY ****

SEGMENT 2 36 EFFICIENCY 0.70000

***** RESULTS **** **** RESULTS ****

*** COMPONENT SPLIT FRACTIONS ***

OUTLET STREAMS

.9 30	C
NENT:	
.92110E-	01 .90789
.93961	.60387E-01
0.0000	1.0000
1.0000	.12147E-09
.53867	E-07 1.0000
	NENT: .92110E- .93961 0.0000 1.0000

*** SUMMARY OF KEY RESULTS ***

TOP STAGE TEMPERATURE 76.3741 С BOTTOM STAGE TEMPERATURE С 110.980 TOP STAGE LIQUID FLOW LBMOL/HR 71.6672 BOTTOM STAGE LIQUID FLOW LBMOL/HR 72.0747 TOP STAGE VAPOR FLOW LBMOL/HR 0.0 **BOILUP VAPOR FLOW** LBMOL/HR 58.3740 MOLAR REFLUX RATIO 3.00000 MOLAR BOILUP RATIO 0.80991

CONDENSER DUTY (W/O SUBCOOL)CAL/SEC-78,511.7REBOILER DUTYCAL/SEC67,295.8

**** MAXIMUM FINAL RELATIVE ERRORS ****

DEW POINT0.39984E-03STAGE= 1PHASE=L1BUBBLE POINT0.39968E-03STAGE= 1PHASE=L1COMPONENT MASS BALANCE0.24404E-09STAGE= 8COMP=3-BUT-01ENERGY BALANCE0.21316E-11STAGE= 9

**** PROFILES ****

NOTE REPORTED VALUES FOR STAGE LIQUID AND VAPOR RATES ARE THE FLOWS

FROM THE STAGE INCLUDING ANY SIDE PRODUCT.

	ENTHALPY								
			RE PRESSUI		CAL/MOL				
	С	BAR	LIQUID	VAPOR	CAL/SE	ĊĊ			
		1 1 500	< 1 - 10			-			
	76.374	1.1500			78512+0	5			
	91.958	1.3568		-56025.					
	92.899	1.3982							
9	93.054	1.4051	-64313.	-56006.					
10	93.043	1.4120	-64282.	-56054.					
30	96.871	1.5499	-64574.	-56116.					
31	97.634	1.5568	-64860.	-56191.					
32	98.684	1.5637	-66580.	-56297.					
33	100.19	1.5706	-66817.	-56456.					
35	106.90	1.5844	-67415.	-57250.					
36	110.98	1.5913	-67843.	-57737.	.67296+0	5			
STA	AGE F	LOW RATE	E Fl	EED RAT	E P	RODUCT RATE			
	LBM	OL/HR	LBMO	L/HR	LBM	OL/HR			
	LIQUID	VAPOR	LIQUID	VAPOR	MIXED	LIQUID VAPOR			
1	71.67	0.000	-	17.91	.67				
2	57.18	71.67							
8	57.19	75.10							
9	56.65	75.10							
10	56.84	74.56							
		74.35							
- 31		74.03	13.3582						
	55.78	74.03 60.33	13.3582 76.6332						
32	55.78 133.8	60.33 [°]	13.3582 76.6332						
32 33	55.78 133.8 132.6								

36 72.07

58.37

STAGE FLOW RATE **ENTHALPY** LBMOL/HR CAL/MOL LIQUID1 LIQUID2 LIQUID1 LIQUID2 1 61.01 10.66 -64308. -67073. 2 49.72 7.465 -63811. -66743. 8 49.57 7.618 -63781. -66723. 9 46.31 10.34 -63776. -66719. 10 56.84 0.000 -64282. -64282. 30 56.11 0.000 -64574. -64574. 31 55.78 0.000 -64860. -64860. 32 0.000 133.8 -66580. -66580. 33 0.000 132.6 -66817. -66817. 35 0.000 130.4 -67415. -67415. 36 0.000 72.07 -67843. -67843.

**** MASS FLOW PROFILES ****

STAGE	FLOW RA	ATE F	EED RATI	E I	PRODUCT I	RATE
LH	B/HR	LB/HR	L	/HR		
LIQU	VAPO	OR LIQUID	VAPOR	MIXED	LIQUID	VAPOR
1 3719.	0.000		929.75	524		
2 2966.	. 3719.					
8 2959.	. 3890.					
9 2832.	3888.					
10 2840	. 3762.					
30 2748	. 3712.					
31 2689	. 3678.	647.600	5			
32 4625	. 2971.	1935.0440				
33 4422	. 2972.					
35 3886	. 2485.					
36 1653	. 2233.		1652.8	3922		
STAGE	FLOW RA	ATE				
LI	3/HR					

72.0746

LB/HR LIQUID1 LIQUID2 224.6 1 3494. 2 2808. 158.3 8 2797. 161.6 9 2613. 219.3 10 2840. 0.000 30 2748. 0.000 31 2689. 0.000 32 0.000 4625. 33 0.000 4422.

35 0.000 388 36 0.000 165	
50 0.000 105	
**	** MOLE-X-PROFILE ****
STAGE H2O	MEK 2:3-B-01 1:3-B-01 3-BUT-01
1 0.37370	0.62630 0.94482E-28 0.37577E-09 0.11842E-07
2 0.37412	0.62588 0.26713E-26 0.23971E-10 0.23826E-07
8 0.37660	0.62340 0.21202E-23 0.60626E-11 0.42848E-06
9 0.40877	0.59123 0.20695E-22 0.57372E-11 0.62471E-06
10 0.40917	0.59083 0.59313E-21 0.57278E-11 0.10804E-05
30 0.42755	0.52466 0.16512E-04 0.54342E-11 0.47774E-01
31 0.44197	0.47951 0.50474E-03 0.50879E-11 0.78017E-01
32 0.69772	0.22555 0.10749E-01 0.14863E-12 0.65976E-01
33 0.72042	0.18001 0.10862E-01 0.52501E-14 0.88713E-01
35 0.78622	0.56790E-01 0.11650E-01 0.27045E-17 0.14534
36 0.91565	0.10006E-01 0.19700E-01 0.11346E-19 0.54649E-01
**	** MOLE-X1-PROFILE ****
STAGE H2O	MEK 2:3-B-01 1:3-B-01 3-BUT-01
1 0.27420	0.72580 0.10000E-32 0.44005E-09 0.13735E-07
2 0.28900	0.71100 0.47713E-28 0.27486E-10 0.27081E-07
8 0.28988	0.71012 0.22990E-23 0.69723E-11 0.48835E-06
9 0.29002	0.70998 0.23108E-22 0.69855E-11 0.75077E-06
10 0.40917	0.59083 0.59313E-21 0.57278E-11 0.10804E-05
30 0.42755	0.52466 0.16512E-04 0.54342E-11 0.47774E-01
31 0.44197	0.47951 0.50474E-03 0.50879E-11 0.78017E-01
32 0.69772	0.22555 0.10749E-01 0.14863E-12 0.65976E-01
33 0.72042	0.18001 0.10862E-01 0.52501E-14 0.88713E-01
35 0.78622	0.56790E-01 0.11650E-01 0.27045E-17 0.14534
36 0.91565	0.10006E-01 0.19700E-01 0.11346E-19 0.54649E-01
**	** MOLE-X2-PROFILE ****
STAGE H2O	MEK 2:3-B-01 1:3-B-01 3-BUT-01
1 0.94343	0.56571E-01 0.63547E-27 0.77004E-11 0.10024E-08
2 0.94098	0.59021E-01 0.20144E-25 0.56202E-12 0.21494E-08
8 0.94083	0.59169E-01 0.95684E-24 0.14387E-12 0.38951E-07
9 0.94081	0.59193E-01 0.98827E-23 0.14436E-12 0.59930E-07
10 0.40917	0.59083 0.59313E-21 0.57278E-11 0.10804E-05
30 0.42755	0.52466 0.16512E-04 0.54342E-11 0.47774E-01
31 0.44197	0.47951 0.50474E-03 0.50879E-11 0.78017E-01
32 0.69772	0.22555 0.10749E-01 0.14863E-12 0.65976E-01
33 0.72042	0.18001 0.10862E-01 0.52501E-14 0.88713E-01
35 0.78622	0.56790E-01 0.11650E-01 0.27045E-17 0.14534
36 0.91565	0.10006E-01 0.19700E-01 0.11346E-19 0.54649E-01

**** MOLE-Y-PROFILE ****

	GE H2O	MEK			1:3-B-01	
1	0.34136	0.65864	0.46239		3298E-08	0.57714E-08
2	0.37370	0.62630	0.17684	E-27 0.3	37577E-09	0.11842E-07
8	0.37559	0.62440	0.65058	E-25 0.9	94254E-10	0.21399E-06
9	0.37591	0.62409	0.65904	E-24 0.9	94260E-10	0.32909E-06
10	0.40035	0.59965	0.1479	DE-22 0.9	94653E-10	0.47744E-06
30	0.40993	0.56835	0.4176	3E-06 0.	94813E-10	0.21724E-01
31	0.41451	0.54926	0.1251	5E-04 0.9	95069E-10	0.36211E-01
32	0.42278	0.52391	0.2849	8E-03 0.	76367E-11	0.53028E-01
33	0.44336	0.47714	0.3027	7E-03 0.	32211E-12	0.79197E-01
35	0.55732	0.24347	0.4392	8E-03 0.	30936E-15	0.19877
36	0.62642	0.11456	0.1710	1E-02 0.	60296E-17	0.25731
	**	** K-VAL	UES: V-L	1 ****		
STA	GE H2O	MEK	2:3-B	-01 1:3-	B-01 3-B	UT-01
1	1.2444	0.9071 2.	0732-02	16.6502	0.4200	
2	1.8472	1.2584 3.	9757-02	19.5300	0.6247	
8	1.8510	1.2561 4.	0427-02	19.3120	0.6260	
9	1.8516	1.2558 4.	0537-02	19.2766	0.6262	
10	1.3978	1.4499 3	.5621-02	23.6075	5 0.6313	
30	1.3697	1.5475 3	.6133-02	24.9249	9 0.6496	
31	1.3398	1.6364 3	.5422-02	26.6934	4 0.6631	
32	MISSIN	G MISSIN	IG MIS	SING 1	MISSING	MISSING
33	MISSIN				MISSING	
35	MISSIN		IG MIS		MISSING	MISSING
36	MISSIN				MISSING	MISSING
				51110 1		
	**	** K-VAL	UES: V-L	2 ****		
STA	GE H2O	MEK	2:3-B	-01 1:3-	B-01 3-B	UT-01
1	0.3617	11.6381 4	.8920-02	951.496	6 5.755	5
2	0.5673	15.1591 9	.5436-02	955.150	0 7.8707	7
8	0.5703	15.0756 9	.7133-02	935.915	5 7.8483	3
9		15.0620 9				
10	MISSIN	G MISSIN	IG MIS	SING 1	MISSING	MISSING
30		G MISSIN				
31		G MISSIN				
32	0.8656	3.3182 3	.7874-02	73.4022	2 1.1482	
33	0.8792					
35		6.1246 5				
36	0.9773				6.7263	
20	0.0770	1012001				
	**	** K-VAL	UES: L2-]	L1 ****		
STA	GE H2O	MEK	2:3-B	-01 1:3-	B-01 3-B	UT-01
1	0.2906	12.8299	2.3596	57.1464	13.7029	
2	0.3071	12.0464	2.4005	48.9068	12.5994	
~				10 1600		

9	0.3083	11.9943	2.4031 48.3904 12.5274
10	MISSING		
30	MISSING		
31	MISSING		
32	MISSING		
33	MISSING		
35	MISSING		
36	MISSING		
50	MISSING	WII55II (
	***	* MASS_X	K-PROFILE ****
STA	GE H2O	MEK	2:3-B-01 1:3-B-01 3-BUT-01
1	0.12974	0.87026	0.16409E-27 0.39169E-09 0.16455E-07
2	0.12994	0.87020	0.46413E-26 0.24998E-10 0.33122E-07
8	0.12774	0.86886	0.36933E-23 0.63387E-11 0.59719E-06
9	0.13114	0.85270	0.37305E-22 0.62072E-11 0.90099E-06
10	0.14750	0.85250	0.10696E-20 0.61997E-11 0.15588E-05
30	0.14730	0.83230	0.30381E-04 0.60013E-11 0.70331E-01
31	0.16516	0.71721	0.94356E-03 0.57087E-11 0.11669
32	0.36371	0.47061	0.28031E-01 0.23263E-12 0.13766
33	0.38935	0.38938	0.29367E-01 0.85194E-14 0.19190
35	0.47548	0.13747	0.35244E-01 0.49110E-17 0.35181
36	0.71929	0.31460E-	01 0.77416E-01 0.26762E-19 0.17183
~	***		(1-PROFILE ****
STA		MEK	2:3-B-01 1:3-B-01 3-BUT-01
1	0.86248E-0		0.15735E-32 0.41559E-09 0.17292E-07
2	0.92193E-0		0.76141E-28 0.26327E-10 0.34578E-07
8	0.92549E-0		0.36718E-23 0.66837E-11 0.62405E-06
9	0.92608E-0		0.36913E-22 0.66974E-11 0.95953E-06
10	0.14750	0.85250	0.10696E-20 0.61997E-11 0.15588E-05
30	0.15725	0.77238	0.30381E-04 0.60013E-11 0.70331E-01
31	0.16516	0.71721	0.94356E-03 0.57087E-11 0.11669
32	0.36371	0.47061	0.28031E-01 0.23263E-12 0.13766
33	0.38935	0.38938	0.29367E-01 0.85194E-14 0.19190
35	0.47548	0.13747	0.35244E-01 0.49110E-17 0.35181
36	0.71929	0.31460E-	01 0.77416E-01 0.26762E-19 0.17183
	***	* MASS-X	K2-PROFILE ****
STA	GE H2O	MEK	2:3-B-01 1:3-B-01 3-BUT-01
1	0.80645	0.19355	0.27174E-26 0.19764E-10 0.34295E-08
2	0.79933	0.20067	0.85602E-25 0.14335E-11 0.73080E-08
8	0.79890	0.20110	0.40645E-23 0.36681E-12 0.13238E-06
9	0.79883	0.20117	0.41978E-22 0.36803E-12 0.20367E-06
10	0.14750	0.85250	0.10696E-20 0.61997E-11 0.15588E-05
30	0.15725	0.77238	0.30381E-04 0.60013E-11 0.70331E-01
31	0.16516	0.71721	0.94356E-03 0.57087E-11 0.11669
-			

32	0.36371	0.47061	0.28031E	-01 0.23263E-12	2 0.13766
33	0.38935	0.38938	0.29367E	-01 0.85194E-14	4 0.19190
35	0.47548	0.13747	0.35244E	-01 0.49110E-1'	7 0.35181
36	0.71929	0.31460E-	01 0.77410	6E-01 0.26762E	-19 0.17183
	***	** MASS-Y	Y-PROFILE	****	
STA	GE H2O	MEK	2:3-B	-01 1:3-B-01	3-BUT-01
1	0.11464	0.88536	0.77684E-	29 0.73912E-08	0.77581E-08
2	0.12974	0.87026	0.30712E-	27 0.39169E-09	0.16455E-07
8	0.13065	0.86935	0.11321E-	24 0.98442E-10	0.29793E-06
9	0.13080	0.86920	0.11472E-	23 0.98480E-10	0.45833E-06
10	0.14296	0.85704	0.26419E	-22 0.10148E-09	9 0.68238E-06
30	0.14790	0.82073	0.75377E	-06 0.10271E-09	9 0.31371E-01
31	0.15030	0.79713	0.22701E	-04 0.10350E-09	9 0.52552E-01
32	0.15467	0.76716	0.52156E	-03 0.83886E-1	1 0.77648E-01
33	0.16595	0.71483	0.56692E	-03 0.36200E-12	2 0.11865
35	0.23923	0.41832	0.94330E	-03 0.39872E-1	5 0.34151
36	0.29501	0.21593	0.40288E	-02 0.85260E-1	7 0.48503
	***	** VAPOR	IZATION E	EFF ****	
STA	GE H2O	MEK	2:3-B	-01 1:3-B-01	3-BUT-01
1	1.0000	1.0000	1.0000	1.0000 1.00	00
2	0.70000	0.70000	0.70000	0.70000 0.7	70000
8	0.70000	0.70000	0.70000	0.70000 0.7	70000
9	0.70000	0.70000	0.70000	0.70000 0.7	70000
10	0.70000	0.70000	0.70000	0.70000 0.	70000
30	0.70000	0.70000	0.70000	0.70000 0.	70000
31	0.70000	0.70000	0.70000	0.70000 0.	70000
32	0.70000	0.70000	0.70000	0.70000 0.	70000
33	0.70000	0.70000	0.70000	0.70000 0.	70000
35	0.70000	0.70000	0.70000		70000
36	0.70000	0.70000	0.70000	0.70000 0.	70000
BLOCK: B16 MODEL: PUMP					
INL	ET STREAN	A: 31			
OUT	FLET STRE	AM: 18	5		
PRC	PERTY OP	TION SET:	NRTL 1	RENON (NRTL)	/ IDEAL GAS
	***	MASS AND) ENERGY	BALANCE ***	
		IN	OUT	RELATIVE DI	FF.
TO	TAL BALAI	NCE			
Μ	OLE(LBMC	DL/HR)	0.118709	0.118709	0.00000

MOLE(LBMOL/HR)0.1187090.1187090.00000MASS(LB/HR)8.028448.028440.00000ENTHALPY(CAL/SEC)-949.780-949.093-0.722847E-03

*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 LB/HR PRODUCT STREAMS CO2E 0.00000 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR
*** INPUT DATA ***
OUTLET PRESSURE BAR 7.50000
DRIVER EFFICIENCY 1.00000
FLASH SPECIFICATIONS:LIQUID PHASE CALCULATIONNO FLASH PERFORMEDMAXIMUM NUMBER OF ITERATIONS30TOLERANCE0.000100000
*** RESULTS ***
VOLUMETRIC FLOW RATE L/MIN 0.081469
PRESSURE CHANGE BAR 6.25894
NPSH AVAILABLE M-KGF/KG 2.80319
FLUID POWER KW 0.00084985
BRAKE POWER KW 0.0028744
ELECTRICITY KW 0.0028744
PUMP EFFICIENCY USED 0.29566
NET WORK REQUIRED KW 0.0028744
HEAD DEVELOPED M-KGF/KG 85.6693
BLOCK: B6 MODEL: RADFRAC INLETS - 32 STAGE 15 OUTLETS - 31 STAGE 1 9 STAGE 30 PROPERTY OPTION SET: NRTL RENON (NRTL) / IDEAL GAS

* * COLUMN DRIES UP OR COLUMN FLOWS VIOLATE BUILT-IN LIMITS
* *

124

*** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE MOLE(LBMOL/HR) 2.86644 2.87340 -0.242229E-02 MASS(LB/HR) 128.677 128.640 0.287973E-03 ENTHALPY(CAL/SEC) -22838.6 -23501.1 0.281878E-01

*** CO2 EQUIVALENT SUMMARY ***FEED STREAMS CO2E0.00000LB/HRPRODUCT STREAMS CO2E0.00000LB/HRNET STREAMS CO2E PRODUCTION0.00000LB/HRUTILITIES CO2E PRODUCTION0.00000LB/HRTOTAL CO2E PRODUCTION0.00000LB/HR

**** INPUT PARAMETERS ****

NUMBER OF STAGES 30 ALGORITHM OPTION **STANDARD** ABSORBER OPTION NO INITIALIZATION OPTION **STANDARD** HYDRAULIC PARAMETER CALCULATIONS NO INSIDE LOOP CONVERGENCE METHOD BROYDEN DESIGN SPECIFICATION METHOD NESTED MAXIMUM NO. OF OUTSIDE LOOP ITERATIONS 200 MAXIMUM NO. OF INSIDE LOOP ITERATIONS 10 MAXIMUM NUMBER OF FLASH ITERATIONS 30 FLASH TOLERANCE 0.000100000 OUTSIDE LOOP CONVERGENCE TOLERANCE 0.000100000

**** COL-SPECS ****

MOLAR VAPOR DIST / TOT	0.0	
MASS REFLUX RATIO		3.00000
MASS BOTTOMS RATE	LB/HR	120.618

**** PROFILES ****

P-SPEC STAGE 1 PRES, BAR 1.24106

**** TRAY VAPORIZATION EFFICIENCY ****

SEGMENT 2 10 EFFICIENCY 0.70000

***** RESULTS **** **** RESULTS ****

*** COMPONENT SPLIT FRACTIONS ***

OUTLET STREAMS

31 9 COMPONENT: H2O .30104E-07 1.0000 MEK .78472E-01 .92153 1:3-B-01 .81969 .18031 3-BUT-01 .22978E-03 .99977

*** SUMMARY OF KEY RESULTS ***

TOP STAGE TEMPERATURE С 75.8660 BOTTOM STAGE TEMPERATURE С 86.8378 TOP STAGE LIQUID FLOW LBMOL/HR 0.33525 BOTTOM STAGE LIQUID FLOW LBMOL/HR 2.75469 TOP STAGE VAPOR FLOW LBMOL/HR 0.0 **BOILUP VAPOR FLOW** LBMOL/HR 0.286644-04 MOLAR REFLUX RATIO 3.00000 MOLAR BOILUP RATIO 0.104057-04 CONDENSER DUTY (W/O SUBCOOL) CAL/SEC -443.307 **REBOILER DUTY** CAL/SEC -160.618

**** MAXIMUM FINAL RELATIVE ERRORS ****

DEW POINT6.0857STAGE= 10BUBBLE POINT0.84851STAGE= 10COMPONENT MASS BALANCE0.15332E-01STAGE= 1 COMP=MEKENERGY BALANCE0.21222STAGE= 14

**** PROFILES ****

	NOTE REPORTED VALUES FOR STAGE LIQUID AND VAPOR RATES ARE THE FLOWS FROM THE STAGE INCLUDING ANY SIDE PRODUCT.						
			ENTHALPY	7			
STA	GE TE	MPERATUR	E PRESSU		CAL/MOL	HEA	AT DUTY
	C	BAR	LIQUID				
1	75.866	1.2411			-443.3071	l	
2	60.631	1.4479	-63976.	-56172.			
			-64174.	-56304.			
12	75.540		-65536.				
13	84.378	1.5237	-65347.	-56250.			
14	84.700	1.5306	-64816.	-56273.			
15	84.943	1.5375	-65029.	-56217.			
	85.075						
27	86.505	1.6203	-64979.	-56190.			
28	86.643	1.6272	-64974.	-56190.			
29	86.818	1.6341	-64974.				
30	86.838	1.6410	-64973.	-56177.	-160.618	4	
ST 4	AGE F	FLOW RATE	a a	ΈΕΟ ΡΑΤ	Έ Ρ		RATE
517		OL/HR		DL/HR		OL/HR	
			LIQUID				VAPOR
).4470		LIQUID	0.11		LIQUID	VIIIOR
		0.4470		0.11	.07		
		0.4153					
		0.3747					
		0.3912					
		0.4073	0.596	1			
		0.2866E-04		1			
	2.766						
	2.780	0.2402E-01					
	2.780	0.2402E-01 0.2540E-01					
		0.2751E-01					
				2	7546		
	30 2.755 0.2866E-04 2.7546 **** MASS FLOW PROFILES ****						

STAGE	FLOW RATE	FEED RATE			PRODUCT	RATE
LB	LB/HR		LB/HR LB/HR			
LIQU	ID VAPOR	LIQUID	VAPOR	MIXED	LIQUID	VAPOR
1 32.23	0.000		8.559	97		
2 21.87	32.23					
3 21.46	29.95					
12 11.40	22.31					

13 11. 14 22. 15 121 16 121 27 121 28 122 29 120 30 120	57 19.90 1.1 0.1440 1.2 0.5052 1.9 1.208 2.0 1.276 0.6 1.374	6E-02 98.0 2	30.6468)299	120.6112
	:	* MOLE-X	K-PROFILE *	<
STAG	E H2O	MEK	1:3-B-01	3-BUT-01
1 ().38856E-06	5 1.0000	0.27702E-06	0.37304E-11
2 ().13259E-05	5 1.0000	0.61428E-08	0.67140E-11
3 ().44930E-05	5 1.0000	0.14514E-08	0.10309E-10
12	0.57851	0.42149	0.17839E-08	0.20026E-09
13	0.59344	0.40656	0.27412E-08	0.26259E-09
14	0.47118	0.52882	0.40133E-08	0.43312E-09
15	0.52316	0.47684	0.26987E-08	0.65718E-09
16	0.52311	0.47689	0.27301E-08	0.65702E-09
27	0.52252	0.47748	0.30889E-08	0.65528E-09
28	0.52248	0.47752	0.30104E-08	0.65503E-09
29	0.52361	0.47639	0.24726E-08	0.65842E-09
30	0.52361	0.47639	0.24720E-08	0.65842E-09
	:	* MOLEV		<

**** MOLE-Y-PROFILE ****

ST	AGE	H2O	MEK	1:3-B-01	3-BUT-01
1	0.47	7132E-06	6 0.99999	0.56803E-05	5 0.18433E-11
2	0.38	8856E-06	5 1.0000	0.27702E-06	0.37304E-11
3	0.10	0721E-05	5 1.0000	0.79477E-07	0.59063E-11
12	0.2	3236	0.76764	0.84028E-07	0.13872E-09
13	0.4	1294	0.58706	0.80556E-07	0.14401E-09
14	0.4	2993	0.57007	0.78310E-07	0.19127E-09
15	0.4	0059	0.59941	0.64218E-07	0.31675E-09
16	0.4	0079	0.59921	0.64842E-07	0.31678E-09
27	0.4	0330	0.59670	0.71829E-07	0.31696E-09
28	0.4	0452	0.59548	0.69706E-07	0.31663E-09
29	0.4	0954	0.59046	0.56685E-07	0.31747E-09
30	0.3	9975	0.60025	0.57985E-07	0.32057E-09

**** K-VALUES ****						
STA	GE H	20 M	1EK 1:	3-B-01	3-BUT-01	
1	2.4518	0.7297	4 12.056	5 0.5	4383	
2	1.1323	0.3703	9 7.4308	3 0.2	5508	
3	0.90611	0.3064	6.590	3 0.2	20501	
12	0.4597	8 1.133	32 25.51	0 0.	39362	
13	0.6337	2 1.546	52 31.97	6 0.5	56509	

14	0.82222	1.1639	21.533	0.45700
15	0.74016	1.3015	24.980	0.49340
16	0.74073	1.3007	24.927	0.49351
27	0.74700	1.2922	24.368	0.49471
28	0.74784	1.2919	24.325	0.49502
29	0.74795	1.2965	24.389	0.49695
30	0.74537	1.2919	24.295	0.49522
	****	MASS-X	-PROFILE	****
STA	GE H2O	MEK	1:3-B-0	01 3-BUT-01
1	0.97078E-07	1.0000	0.20781E	-06 0.37304E-11
2	0.33126E-06	1.0000	0.46080E	-08 0.67140E-11
3	0.11226E-05	1.0000	0.10888E	-08 0.10309E-10
12	0.25535	0.74465	0.23642E-0	0.35379E-09
13	0.26723	0.73277	0.37062E-0	08 0.47328E-09
14	0.18208	0.81792	0.46565E-0	0.66990E-09
15	0.21514	0.78486	0.33322E-0	08 0.10817E-08
16	0.21510	0.78490	0.33707E-0	08 0.10814E-08
27	0.21470	0.78530	0.38110E-0	08 0.10777E-08
28	0.21468	0.78532	0.37139E-0	08 0.10773E-08
29	0.21544	0.78456	0.30547E-0	08 0.10843E-08
30	0.21544	0.78456	0.30540E-0	08 0.10843E-08
	****	MASS-Y	-PROFILE	****
STA	GE H2O	MEK	1:3-B-0	01 3-BUT-01
1	0.11776E-06	1.0000	0.42611E	-05 0.18433E-11
2	0.97078E-07	1.0000	0.20781E	
3	0.26786E-06	1.0000	0.59620E	-07 0.59063E-11
12	0.70310E-01	0.92969	0.763411	E-07 0.16800E-09
13	0.14947	0.85053	0.87550E-0	07 0.20864E-09
14	0.15855	0.84145	0.86711E-0	07 0.28232E-09
15	0.14308	0.85692	0.68869E-0	07 0.45283E-09
16	0.14318	0.85682	0.69553E-0	07 0.45297E-09
27	0.14447	0.85553	0.77256E-0	07 0.45444E-09
28	0.14510	0.85490	0.75072E-0	07 0.45457E-09
29	0.14769	0.85231	0.61379E-0	07 0.45825E-09
30	0.14265	0.85735	0.62129E-0	07 0.45787E-09
	****		ZATION EF	
STA	GE H2O	MEK	1:3-B-(01 3-BUT-01

STA	GE	H2O	MEK	1:3-E	3-0 1	3-BUT-01
1	1.00	000	1.0000	1.0000	1.000	00
2	0.70	000	0.70000	0.70000	0.70	0000
3	0.70	000	0.70000	0.70000	0.70	0000
12	1.0	000	1.0000	1.0000	1.00	00
13	1.0	000	1.0000	1.0000	1.00	00
14	1.0	000	1.0000	1.0000	1.00	00

1.0000 15 1.0000 1.0000 1.0000 16 1.0000 1.0000 1.0000 1.0000 1.0000 27 1.0000 1.0000 1.0000 28 1.0000 1.0000 1.0000 1.0000 29 1.0000 1.0000 1.0000 1.0000 30 1.0000 1.0000 1.0000 1.0000 BLOCK: B8 MODEL: HEATX _____ HOT SIDE: _____ INLET STREAM: 3 OUTLET STREAM: 4 PROPERTY OPTION SET: NRTL RENON (NRTL) / IDEAL GAS COLD SIDE: _____ INLET STREAM: 13 OUTLET STREAM: 6 PROPERTY OPTION SET: NRTL RENON (NRTL) / IDEAL GAS *** MASS AND ENERGY BALANCE *** OUT **RELATIVE DIFF.** IN TOTAL BALANCE MOLE(LBMOL/HR) 164.927 164.927 0.00000 0.00000 8264.47 8264.47 MASS(LB/HR) ENTHALPY(CAL/SEC) -0.110065E+07 -0.110065E+07 0.00000 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 LB/HR PRODUCT STREAMS CO2E 0.00000 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000

FLOW DIRECTION AND SPECIFICATION:				
COUNTERCURRENT I	HEAT EX	CHANGER		
SPECIFIED COLD OUT	LET TEM	Р		
SPECIFIED VALUE	С	3	00.000	
LMTD CORRECTION F.	ACTOR		1.00000)
PRESSURE SPECIFICAT	ION:			
HOT SIDE PRESSURE	DROP	BAR	0.0000	
COLD SIDE PRESSURE	DROP	BAR	0.000	0
HEAT TRANSFER COEF	FICIENT	SPECIFICA	TION:	
HOT LIQUID COLD L	IQUID	CAL/SEC-S	SQCM-K	0.0203
HOT 2-PHASE COLD I	lquid	CAL/SEC-	-SQCM-K	0.0203
HOT VAPOR COLD L	JQUID	CAL/SEC-	SQCM-K	0.0203
HOT LIQUID COLD 2-	-PHASE	CAL/SEC-	-SQCM-K	0.0203
HOT 2-PHASE COLD 2	2-PHASE	CAL/SEC	C-SQCM-K	0.0203
HOT VAPOR COLD 2	-PHASE	CAL/SEC	-SQCM-K	0.0203
HOT LIQUID COLD V	APOR	CAL/SEC-	SQCM-K	0.0203
HOT 2-PHASE COLD V	VAPOR	CAL/SEC	-SQCM-K	0.0203
HOT VAPOR COLD V	APOR	CAL/SEC-	-SQCM-K	0.0203
*** OVERAL	LL RESU	LTS ***		

STREAMS:

I		I	
3>	HOT	I	> 4
T= 5.0000D+02			I = 3.4433D+02
P= 9.3326D-02			P= 9.3326D-02
V= 1.0000D+00			V= 1.0000D+00
I		I	
6 <l< td=""><td>COLD</td><td></td><td> < 13</td></l<>	COLD		< 13
T= 3.0000D+02			I = 1.1938D+02
P= 9.3326D-02			P= 9.3326D-02
V= 1.0000D+00			V= 9.7220D-01

DUTY AND AREA:

CALCULATED HEAT DUTY	CAL/SEC	47333.7292
CALCULATED (REQUIRED) AF	REA SQM	1.0767
ACTUAL EXCHANGER AREA	SQM	1.0767
PER CENT OVER-DESIGN		0.0000

HEAT TRANSFER COEFFICIENT:AVERAGE COEFFICIENT (DIRTY)CAL/SEC-SQCM-K0.0203UA (DIRTY)CAL/SEC-K218.5849

LOG-MEAN TEMPERATURE	E DIFFEF	RENCE:
LMTD CORRECTION FACT	OR	1.0000
LMTD (CORRECTED)	С	216.5462
NUMBER OF SHELLS IN SI	ERIES	1
PRESSURE DROP:		

I KESSOKE DKOI.		
HOTSIDE, TOTAL	BAR	0.0000
COLDSIDE, TOTAL	BAR	0.0000

*** ZONE RESULTS ***

TEMPERATURE LEAVING EACH ZONE:

	HOT			
HOT IN	VAP	I	VAP	HOT OUT
>	I		;	>
500.0	352.11		3	44.3
I	I		I	
COLDOUT	VAP	I	BOIL	COLDIN
<	l l		<	
300.0	119.4		1	19.4
Ι	I		I	
	COLD			

ZONE HEAT TRANSFER AND AREA:

ZON	E HEAT D	UTY A	AREA L	MTD .	AVERAGE U	UA
	CAL/SEC	SQM	C C	AL/SEC-S	SQCM-K CAL	SEC-K
1	45075.860	1.0281	215.9654	0.0203	208.7179	
2	2257.869	0.0486	228.8315	0.0203	9.8670	

BLOCK: B5 MODEL: COMPR

_____ INLET STREAM: 4 OUTLET STREAM: 12 PROPERTY OPTION SET: NRTL RENON (NRTL) / IDEAL GAS *** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE MOLE(LBMOL/HR) 118.876 118.876 0.00000 MASS(LB/HR) 4132.23 4132.23 0.00000

ENTHALPY(CAL/SEC)	-497652	237	73656.	-0.249162
*** CO2 EQUIVA FEED STREAMS CO2E PRODUCT STREAMS CO2E NET STREAMS CO2E PROD UTILITIES CO2E PRODUCT TOTAL CO2E PRODUCTION	0.0000 0.0 OUCTION ION 0	0 LB, 0000 1 0.0000 .00000	/HR LB/HR)0 LB/J LB/HR	HR
*** INPUT DA	TA ***			
ISENTROPIC CENTRIFUGA OUTLET PRESSURE BAR ISENTROPIC EFFICIENCY MECHANICAL EFFICIENC	Ý	RESSOR	5.0000 0.7200 1.00	0
*** RESULTS	***			
INDICATED HORSEPOWE BRAKE HORSEPOWER F NET WORK REQUIRED POWER LOSSES	K	W	519.1	519.146 519.146 46
ISENTROPIC HORSEPOWE CALCULATED OUTLET TE ISENTROPIC TEMPERATUI EFFICIENCY (POLYTR/ISE) OUTLET VAPOR FRACTIO HEAD DEVELOPED, M- MECHANICAL EFFICIENCY INLET HEAT CAPACITY RA INLET VOLUMETRIC FLOW OUTLET VOLUMETRIC FLOW	MP C RE C NTR) US N KGF/KG Y USED ATIO V RATE	ED , L/MIN	72 627 1.00 73,20	7.249 .231 0.72000 000 17.2 1.00000 1524 494,372.
OUTLET VOLUMETRICFE INLET COMPRESSIBILITY OUTLET COMPRESSIBILIT AV. ISENT. VOL. EXPONEN AV. ISENT. TEMP EXPONE	FACTOI Y FACTO IT	R		1.00000 1.00000 66
AV. ISENT: TEMP EXPON AV. ACTUAL VOL. EXPON AV. ACTUAL TEMP EXPON	ENT		1.1	3792 13792
BLOCK: B25 MODEL: HEA				
HOT SIDE:				
INLET STREAM: 43 OUTLET STREAM: 44 PROPERTY OPTION SET: N		RENON	(NRTL)/	IDEAL GAS

COLD SIDE: _____ **INLET STREAM:** 45 **OUTLET STREAM:** 41 PROPERTY OPTION SET: NRTL RENON (NRTL) / IDEAL GAS *** MASS AND ENERGY BALANCE *** OUT **RELATIVE DIFF.** IN TOTAL BALANCE MOLE(LBMOL/HR) 1354.39 1354.39 0.00000 26390.4 MASS(LB/HR) 26390.4 0.00000 ENTHALPY(CAL/SEC) -0.879639E+07 -0.879639E+07 -0.211751E-15 *** CO2 EQUIVALENT SUMMARY *** 0.00000 LB/HR FEED STREAMS CO2E PRODUCT STREAMS CO2E 0.00000 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED COLD OUTLET TEMP SPECIFIED VALUE 500.0000 С LMTD CORRECTION FACTOR 1.00000 PRESSURE SPECIFICATION: HOT SIDE PRESSURE DROP BAR 0.0000 COLD SIDE PRESSURE DROP 0.0000 BAR HEAT TRANSFER COEFFICIENT SPECIFICATION: HOT LIQUID COLD LIQUID CAL/SEC-SQCM-K 0.0203 HOT 2-PHASE COLD LIOUID CAL/SEC-SQCM-K 0.0203 COLD LIQUID CAL/SEC-SQCM-K HOT VAPOR 0.0203

HOT LIQUID	COLD 2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT 2-PHASE	COLD 2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT VAPOR	COLD 2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT LIQUID	COLD VAPOR	CAL/SEC-SQCM-K	0.0203
HOT 2-PHASE	COLD VAPOR	CAL/SEC-SQCM-K	0.0203
HOT VAPOR	COLD VAPOR	CAL/SEC-SQCM-K	0.0203

*** OVERALL RESULTS ***

STREAMS:

I	I					
43>	HOT	I> 44				
T= 5.9333D+02		I = 5.1000D+02				
P= 1.0000D+00		P= 1.0000D+00				
V= 1.0000D+00		V= 1.0000D+00				
I	I					
41 <l< td=""><td>COLD</td><td>I< 45</td></l<>	COLD	I< 45				
T= 5.0000D+02		I T= 5.0000D+01				
P= 9.3326D-02		P= 9.3326D-02				
V= 1.0000D+00		V= 1.0000D+00				

DUTY AND AREA:

CALCULATED HEAT DUTY	CAL/SEC	120933.1843
CALCULATED (REQUIRED) AI	REA SQM	2.5913
ACTUAL EXCHANGER AREA	SQM	2.5913
PER CENT OVER-DESIGN		0.0000

HEAT TRANSFER COEFFICIENT:

AVERAGE COEFFICIENT (DIRTY)CAL/SEC-SQCM-K0.0203UA (DIRTY)CAL/SEC-K526.0756

LOG-MEAN TEMPERATURE DIFFERENCE:LMTD CORRECTION FACTOR1.0000LMTD (CORRECTED)C229.8780

NUMBER	OF SHELLS	IN SEDIES	1	
NUMBER	OF SHELLS	IN SERIES	1	

PRESSURE DROP:

HOTSIDE, TOTAL	BAR	0.0000
COLDSIDE, TOTAL	BAR	0.0000

*** ZONE RESULTS ***

TEMPERATURE LEAVING EACH ZONE:

	НОТ	
HOT IN >	VAP	 HOT OUT >
593.3 COLDOUT	VAP	510.0 COLDIN
< 500.0 		< 50.0
	COLD	

ZONE HEAT TRANSFER AND AREA:

ZON	E HEAT DU	JTY A	AREA	LMT	D A'	VERAGE U	U UA
	CAL/SEC	SQM	С	CAL	/SEC-SC	QCM-K CA	AL/SEC-K
1	120933.184	2.5913	229.87	80 (0.0203	526.075	56

Appendix C: Orochem Contact

We were recommended to consider a relatively new technology that the company Orochem has invented to separate alcohols and hydrocarbons from water. Our team talked to an Orochem representative, Dr. Anil Oroskar, and acquired some theoretical details about this new technology. For our process which produces 14,730 metric tons of BDO per year and 29,460 metric tons of ethanol per year, the approximate capitol cost of such a piece of equipment would be 10-14 million, so the value of \$12 million was used for a semi-conservative estimate. In addition, there would be yearly operation costs of approximate \$25 dollars per metric ton of BDO produced, which would result in operating expenses of \$359,450 per year. The adsorbent used in the process, which is a proprietary Orochem technology, has a guaranteed life of 5 years, but then it needs to be recharged by an Orochem employee at an approximate cost of \$700,000 per recharge.

Appendix D: Problem Statement

11. Bio-Butadiene from Waste Carbon Monoxide (recommended by Stephen M. Tieri, DuPont)

1,3-Butadiene is a material with a wide variety of applications in the arena of synthetic materials and polymers; for the production of synthetic rubbers, as a copolymer additive, and as an ingredient in rocket fuel. For your company, it is a critical feedstock to support and maintain the continuity of Nylon 6,6 production, via nickel-catalyzed hydrocyanation to produce adiponitrile (ADN). Previously, 2,3-butanediol (BDO) was a feedstock for butadiene production for synthetic rubber; however, this production

technology was abandoned in favor of the more cost-effective naphtha-based technology route.

Current forecasts estimate 17-20% average annual growth for bioplastics through 2016, driven by a mix of internal and external market forces. Your company's interest in biopolymers is motivated by a number of factors; including consumer demand, a business desire for feedstock diversification, the increasing price of fossil materials, as a hedge for petroleum market volatility, and to positively impact global climate change.

Through research efforts and in cooperation with its partners, your company has developed and acquired innovative technology to produce bio-based 1,3-butadiene by a two-step process from carbon monoxide. The first step converts waste carbon monoxide via fermentation to 2,3-butanediol (BDO). Specifically, the research group developed a microorganism which is the catalyst and basis for this bio-based production route. The second step thermo-catalytically converts the 2,3-butanediol to 1,3-butadiene. As the butadiene from this technology has the identical structure and functionality of traditional petrochemical butadiene, it serves as a direct replacement to produce renewably sourced polymers without modifications to existing downstream equipment or processes. Early technology successes resulted in supplemental research funding awarded through government grants, which have provided partial funding for development and pilot production programs.

There are a variety of potential sources to provide the necessary CO feed, including CO- rich gas streams from thermochemical gasification of forestry and agricultural residues and other types of waste. However, also, the source of CO can be an industrial process, such as ferrous metal products manufacturing. Existing steel mills produce CO-rich gas streams, which are well suited to complement your fermentation technology. An important technology and business advantage is the input gas flexibility of your technology to utilize any single or combination of four waste gasses from an integrated steel mill, a basic oxygen furnace (BOF), a blast furnace, and coke-oven manufacturing processes.

Operation of the company's 2,3-BDO pilot plant has been extremely successful, achieving all of its technology targets and goals. More specifically, the pilot plant demonstrated its target production of 100 M gpy (M = 1,000), the capability to use "raw" steel waste gas, and to tolerate the full range of gas contaminants. Additionally, the technology demonstrated both the ability to tolerate variations in gas composition and achieved production rate targets necessary for commercial viability.

Recovery and isolation of the intermediate 2,3-BDO from fermentation broth using convention distillation separation techniques present significant challenges with respect to process energy consumption, and subsequently economic competitiveness.

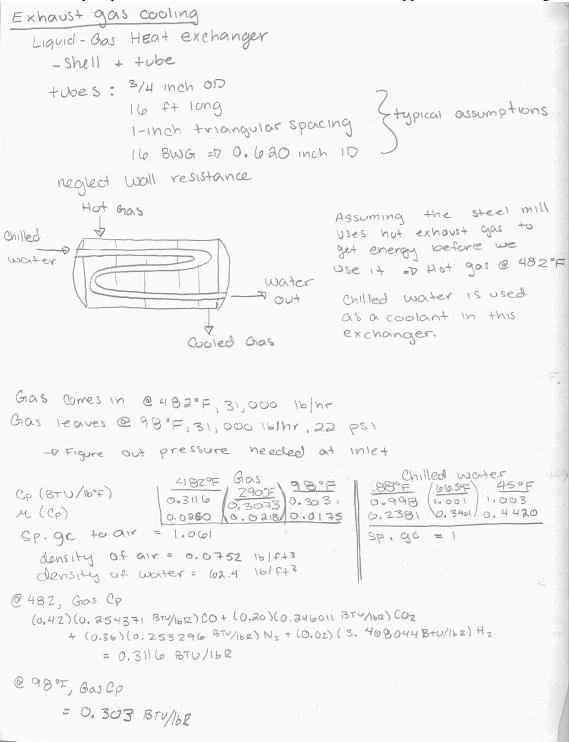
Current development studies in the area of separations indicate a high potential for chromatographic separation, and/or membrane technologies, to provide the required 2,3-BDO isolation with a significant reduction in energy requirements compared to distillation alternatives.

Many historical catalysts for dehydration of 2,3-BDO to 1,3-butadiene also produce, and potentially favor, methylethylketone (MEK). While both butadiene and MEK produced from your Bio-BDO are valuable monomers, your main interest is in butadiene to support ADN production. Your partner's catalyst technology group has identified and developed new commercially-viable heterogeneous catalysts for the thermo-catalytic conversion of

butadiene, and is continuing work to optimize conversion, selectivity, and yield. Demonstrated conversion data for preliminary catalyst formulations production is included in the table below.

Now that the research, development, and pilot-plant teams have succeeded in achieving their milestone targets, corporate leadership is eager to proceed to design the first commercial-scale production facility. Your company and its technology-development partners intend to use this technology to attract additional investors and industrial partners for both feedstock supply and sustainably branded intermediates and polymers. Your company expects to build and operate this commercial facility, in addition to some future sister facilities, and does not currently plan to license this specific technology as an additional revenue source.

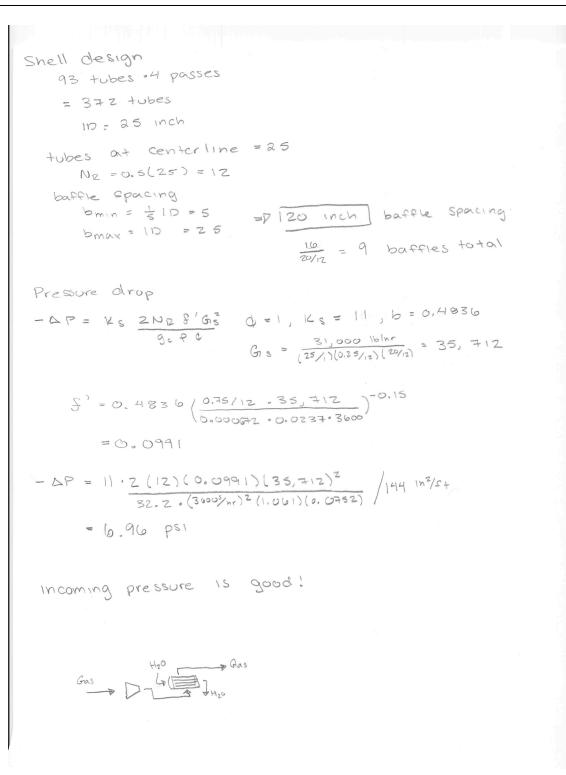
Your project team has been assembled to commercialize this new sustainable technology and design the first commercial-scale plant. Its business objective is to design a commercial-scale facility to produce polymer grade 1,3-butadiene from "raw" steel plant waste gas from an integrated steel manufacturing facility. Your Bio-Butadiene production facility will be co-located with an existing steel/ferrous metal production plant. Your team will need to identify the optimal Bio-Butadiene plant capacity/scale for economic viability, for maximum profitability, and for matching the waste gas supply capacity from an integrated steel mill, and to quantify the economic sensitivity of the process design and scale. While the current business intention is to target medium to large-size steel mills for future facilities, the scope of your team's work includes verifying the extent to which this steel mill capacity range is a reasonable target. The 1,3-butadiene product purity and quality will need to meet or exceed current commercial requirements for polymer grade material, to be acceptable for internal use and for additional sales to perspective external customers. As your technology has the potential for global application, the business team is interested in understanding the potential economic differences between locating on existing steel production sites in China, Japan, and the United States; and to identify the optimal location for the first plant.


Product	BDO Conversion	Selectivity	Yield
1,3-Butadiene	94% c3-49%	66% c3-33%	61% cs-21%

The plant design should be as environmentally-friendly as possible, as required by state and federal emissions legislation. Process materials should be recovered and recycled to the maximum economic extent. Also, energy consumption should be minimized, to the extent economically justified. The plant design must also be controllable and safe to operate. As the process technology integration and design team, you will be there for the start-up and will have to live with whatever design decisions you have made.

Undoubtedly, you will need additional data and information beyond that given here and listed in the references below. Cite any literature data used. If required, make reasonable assumptions, state them, and quantify the extent to which your design or economics are sensitive to the assumptions you have made.

Appendix E: Heat Exchanger Design


This shell-and-tube heat exchanger is for Section 000. The feed is calculated at one tenth of that actually required, so this is used as a basis but does not appear in our final design.

heat duty Q=mCPAT = 31,000 15 gas . 0. 3072 . (482°F-98°F) = 3.66× 10 " BTU/hr 3.66×10" BTU = m (d. 001 BTU Abhr) (28°F-45A) = [34,959 163/hr] chilled water ATLM $= \Delta T_1 - \Delta T_2 = \frac{(482 - 88) - (98 - 45)}{\ln((482 - 88)/(98 - 45))}$ Note: this side is $\frac{1}{\ln(0} + \frac{1}{4} + \frac{$ liquid with a relatively small =170°F AT, SU AP IS $F_{T} = \sqrt{\frac{R^{2} + 1}{R^{2} + 1}} \ln \left[\frac{(1 - S)}{(1 - RS)} \right]$ $\frac{(R - 1) \ln \left[\frac{E 2 - S(R + 1 - \sqrt{R^{2} + 1})}{E^{2} - S(R + 1 - \sqrt{R^{2} + 1})} \right]}$ not interesting. $R = \frac{T_{\text{rod}, \text{in}} - T_{\text{rod}, \text{out}}}{T_{\text{rold}, \text{out}} - T_{\text{rold}, \text{in}}} = \frac{482 - 98}{88 - 45} = 8.93$ $S = \frac{T_{cold}, out - T_{cold}, in}{T_{rot}, in - T_{cold}, in} = \frac{88 - 45}{482 - 45} = 0.0984$ F_= 0.867 >0.85 Q = UAFT STLM U for this system ~ 35 BTU /oF - ft2-br (Table 18.5, Seicleret Al) $A = \frac{0}{0 F_T \Delta T_{LM}} = \frac{3.66 \times 10^{6} BT V_{hr}}{(35 BT V_{F+4+2hr})(0.867)(170)}$ = 709 ++2 Tube clesign AL = TTD:L = TI (0.62/12) (16f+) = 2.60 ft2/pass $N_t = \frac{A}{A_t \cdot 4 \text{ passes}} = \frac{709 \text{ ft}^2}{2 \cdot 400 \text{ ft}^2 \cdot 4} = \frac{109 \text{ tubes}}{109 \text{ tubes}} \frac{100 \text{ passes}}{100 \text{ passes}}$ (69 types/pass = $\frac{4(A_{cl})}{\pi p_{l}^{2}} = \frac{4(A_{cl})}{\pi (0.6^{2}/l_{2})^{2}}$ Acr = 0.143 pt2 Aci = M: P:Vi = (02.4) 101 ft) Vi (ft/nr) [U1=9,519 Ft/nr

Shell design 69 tubes = 4 passes = 27 6 tubes 1D = 21 Zinch tubes at centerline = 21 NR = 0.5 (24 +) =10 baffle spacing =7 18 Inch baffle spacing bmin = = 110 = 4 + 2max = 10 = 21 -(18/12) = 10 baffles total Pressure drop $-\Delta P = K_S \frac{2N_R \hat{F}G\tilde{s}}{g_c P \Phi}$ $\phi = 1$, $K_S = 1.00(1+ \# of bottles)$ =12.1 $b = 0.44 + 0.08 X_{c}$ $(X_{T} - 1)^{0.43 + 1.13 / X_{c}}$ $f' = b \left(\frac{p_o G_1 s}{m_L} \right)^{0.15}$ $\begin{aligned} & X_{T} = X_{L} = \frac{P_{t}}{P_{0}} = \frac{1.00}{0.75} = 1.33\\ & b = 0.4836\\ & G_{S} = \frac{m_{0}}{\frac{D_{S}}{P_{t}} \cdot c \cdot b_{Space}} = \frac{31,000}{(37/1)(0.75/12)(10/12)} \end{aligned}$ = 26,811 f[°] = 0.4836 (0.75/12 · 26, 811 0.000672 +36 (0.0218 cp · 3600 s)^{−0.15} = 0.102 $-\Delta P_{s} = 12.1 \cdot 2(10)(0.102)(26,811)^{2}$ $32.2(3600 s/r)^{2}(1.061)(0.0752) / 144 \text{ Inch}^{2}/e +$ = 3.70 PSI Need exit pressure to be at 22 psi, which means the inlet temperature will be greater. Inlet P= 30 psi, T = 770°F Assumption: AP will not exceed 8 psi

Cp(BTU/16°F) = 0.322 C 434 °E New Thot, in $\mu(cp) = 0.0299$ cp = 0.313 $\mu = 0.0237$ Q=mCpAT = 31,000 16 gas , 0.322 . (770-98) = 6.71×10 "BTU/hr (0.71 ×106 BTU = m (1.001 BTU/hr)(88-45) mass flow of chilled water = 155,842 16s/hr ATLM = ZZSOF S = 0.0593 R=15.6 FT = 0. 877 > 0.85 Q = UAFT ATLM $A = \frac{6.71 \times 10^6 \text{ BTU/Nr}}{(35 \text{ BTV/F.s.+2.hr})(0.877)(225)}$ =) 0 7 5 5 + 5 Tube design AL = TD:L = 2.60 f+ 2/pass $N_{E} = \frac{A}{A_{E} \cdot 4 passes} = \frac{972 \text{ ft}^{2}}{2.60 \text{ ft}^{2} \cdot 64} = \overline{193 \text{ tubes}} 4 \text{ passes}$ 93 tubes/pass = $\frac{4(A_{c1})}{\pi (0.0^2/12)^2}$ Ac1 = 0.196 ft² $A_{c_1} = \frac{m}{p_U} = \frac{155,842}{(62.4)(U;)}$ U; = 12, 752 At/hr

Appendix F: Unit Specification Sheets

SEEI	D FERMENTER		
IDENTIFICATION : F201			
FUNCTION: Start to grow cells			
OPERATION: Batch			
MATERIALS HANDLED:			
	(lb)	Feed	<u>Output</u>
	Butadiene	0	0
	Butanediol	0	0
	Cells	2.2*10^-7	0.018
	Steel Mill Gas	220	220
	Water	83.4	83.4
	Media	8.3	8.3
	Total	311.7	311.7
MATERIALS HANDLED:			
	(lb/hr)	Feed	<u>Output</u>
	Steel Mill Gas	9.2	9.2
	Total	9.2	9.2
DESIGN DATA:			
	Material:	Carbon Steel	
	Pressure:	22 psig	
	Temperature:	98.6 F	
	Height:	2.8 ft	
	Diameter:	0.95 ft	
	Volume:	15 gallons	
PURCHASE COST: 5,897			

	FERMENTER		
IDENTIFICATION : F202			
FUNCTION: Continue growing	cells		
OPERATION : Batch			
MATERIALS HANDLED:			
	(lb)	Feed	Output _
	Butadiene	0	0
	Butanediol	0	0
	Cells	0.018	0.18
	Steel Mill Gas	1896	1896
	Water	796	796
	Media	80	80
	Total	2772	2772
MATERIALS HANDLED:			
	(lb/hr)	Feed	<u>Output</u>
	Steel Mill Gas	79	79
	Total	79	79
DESIGN DATA:			
	Material:	Carbon Steel	
	Pressure:	22 psig	
	Temperature:	98.6 F	
	Height:	5.8 ft	
	Diameter:	1.93 ft	
	Volume:	130 gallons	
PURCHASE COST: 11,837			

FERMENTER			
IDENTIFICATION : F203			
FUNCTION: Continue growing cel	ls		
OPERATION: Batch			
MATERIALS HANDLED:			
	(lb)	Feed	Output
	Butadiene	0	0
	Butanediol	0	0
	Cells	0.18	2
	Steel Mill Gas	19345	19345
	Water	9009	9009
	Media	901	899
	Total	29255	29255
MATERIALS HANDLED:			
	(lb/hr)	Feed	<u>Output</u>
	Steel Mill Gas	806	806
	Total	806	806
DESIGN DATA:			
	Material:	Carbon Steel	
	Pressure:	22 psig	
	Temperature:	98.6 F	
	Height:	12.5 ft	
	Diameter:	4.15 ft	
	Volume:	1320 gallons	
PURCHASE COST: 29,677			

	FERMENTER	ĸ	
IDENTIFICATION : F204			
FUNCTION: Continue growing	cells		
OPERATION : Batch			
MATERIALS HANDLED:			
	(lb)	Feed	<u>Output</u>
	Butadiene	0	0
	Butanediol	0	0
	Cells	2	18
	Steel Mill Gas	193440	193440
	Water	23800	23800
	Media	2380	2364
	Total	45527	45527
MATERIALS HANDLED:			
	(lb/hr)	Feed	<u>Output</u>
	Steel Mill Gas	8060	8060
	Total	8060	8060
DESIGN DATA:			
	Material:	Carbon Steel	
	Pressure:	22 psig	
	Temperature:	98.6 F	
	Height:	26.7 ft	
	Diameter:	8.9 ft	
PURCHASE COST: 86,528	Volume:	13200 gallons	

FE	ERMENTER		
IDENTIFICATION : F205			
FUNCTION : Continue growing cells			
OPERATION: Batch			
MATERIALS HANDLED:			
	(lb)	Feed	Output
	Butadiene	0	0
	Butanediol	0	0
	Cells	18	67
	Steel Mill Gas	659491	659472
	Water	300300	300300
	Media	30030	30000
	Total	989839	29255
MATERIALS HANDLED:			
	(lb/hr)	Feed	<u>Output</u>
	Steel Mill Gas	27479	27478
	Total	27479	27478
DESIGN DATA:			
	Material:	Carbon Steel	
	Pressure:	22 psig	
	Temperature:	98.6 F	
	Height:	40 ft	
	Diameter:	13.3 ft	
	Volume:	45000 gallons	
PURCHASE COST : 157,852			

CONTINUOUS STIRRED TANK REACTOR					
IDENTIFICATION : CR301					
FUNCTION: Enable continuous production of 2,3 Buta	nediol				
OPERATION : Continuous					
MATERIALS HANDLED:					
(lb/hr)	Feed	Output			
Cells	80	200			
Butanediol	0	400			
Steel Mill Gas	30532	29532			
Ethanol	0	800			
Water	37500	37500			
Media	4170	4050			
Total	72282	72282			
DESIGN DATA:					
Material:	Carbon Steel				
Pressure:	22 psig				
Temperature:	98.6 F				
Height:	58.2 ft				
Diameter:	11.6 ft				
Volume: 50,000 gallons					
PURCHASE COST: 177,920					

BLOWER			
IDENTIFICATION: B101			
FUNCTION: Provide dry media to the mixer			
OPERATION: Conditional, Continuous			
DESIGN DATA:			
Type:	Centrifugal		
Driver Type:	Motor		
Material:	Cast Iron		
Pressure In:	14 psi		
Pressure Out:	16 psi		
Temperature:	60 °F		
Flow Rate:	5,837 lb/hr		
Efficiency:	0.72		
Blade Type:	Sheet Metal		
UTILITIES: Electricity (50 kW)			
PURCHASE COST: \$9,320			

FILTER SCREEN	
IDENTIFICATION: FT103	
FUNCTION: Filter media to ensure it is pure	
OPERATION : Conditional, Continuous	
DESIGN DATA:	
Туре:	Ultrafiltration
Flow Rate:	50,000 gallons/hr
Pressure In:	50 psi
Pressure Out:	22 psi
Contact Area:	6000 ft ²
Flux:	200 GFD
PURCHASE COST : \$60,000	

FILTER SCREEN		
IDENTIFICATION: FT101		
FUNCTION: Filter media to ensure it is pure		
OPERATION : Conditional, Continuous		
DESIGN DATA:		
Type:	Ultrafiltration	
Flow Rate:	50,570 gallons/hr	
Pressure In:	50 psi	
Pressure Out:	22 psi	
Contact Area:	5060 ft ²	
Flux:	200 GFD	
PURCHASE COST : \$50,600		

FILTER SCREEN		
IDENTIFICATION : FT102		
FUNCTION: Filter media to ensure it is pure		
OPERATION : Conditional, Continuous		
DESIGN DATA:		
Type:	Ultrafiltration	
Flow Rate:	5,000 gallons/hr	
Pressure In:	50 psi	
Pressure Out:	22 psi	
Contact Area:	600 ft ²	
Flux:	200 GFD	
PURCHASE COST: \$6,000		

Electricity Powered Heater		
IDENTIFICATION: H102		
FUNCTION: To heat wet media before batch usag	ge	
OPERATION : Continuous		
DESIGN DATA:		
	(lb/hr)	417,600
DESIGN DATA:		
	Material:	Carbon Steel
Pov	wer Usage:	3666 kW
]	Efficiency:	0.8
	Pressure:	22
	T _{in} :	68 °F
	T _{out} :	98 °F
UTILITIES : Electricity (3666 kW)		
PURCHASE COST: \$25,232		

Electricity Powered Heater		
IDENTIFICATION: H101		
FUNCTION: To heat wet media before batch usage		
OPERATION: Batch		
DESIGN DATA:		
(lb/hr)	304,166	
DESIGN DATA:		
Material:	Carbon Steel	
Power Usage:	111 kW	
Efficiency:	0.8	
Pressure:	22	
T _{in} :	68 °F	
T _{out} :	98 °F	
UTILITIES: Electricity (111 kW)		
PURCHASE COST: 3,308		

	Mixing Tank		
IDENTIFICATION : M101			
FUNCTION: To mix dry media	and water to produce	wet media	
OPERATION : Continuous			
MATERIALS HANDLED:			
	(lb/hr)	Feed	<u>Output</u>
	Butadiene		
	Butanediol		
	Media	41700	41700
	Methyl Ethyl Ketone		
	Water	375000	375000
	Total	416700	416700
DESIGN DATA:			
	Material:	Carbon Steel	
	Pressure:	22 psig	
	Temperature:	98 °F	
	Height:	27.8 feet	
	Diameter:	9.3 feet	
	Volume:	15,000 gallons	
PURCHASE COST: \$95,706			

STORAGE TANK		
IDENTIFICATION: ST101a & ST101b		
FUNCTION: To store and transport dry media		
OPERATION: Continuous		
MATERIALS HANDLED:		
(lb/hr)	Feed	Output _
Butadiene		
Butanediol		
Media	41700	41700
Methyl Ethyl Keystone		
Water		
Total	41700	41700
DESIGN DATA:		
Material:	Carbon Steel	
Pressure:	22 psig	
Temperature:	70 °F	
Height:	41.3 ft	
Diameter:	13.8 ft	
Volume:	50,000 gallons	
PURCHASE COST : \$165, 626		

PUMP		
IDENTIFICATION : P-101		
FUNCTION: Pump wet media to CSTRs		
OPERATION : Continuous		
DESIGN DATA:		
	Type:	Centrifugal
	Material:	Carbon Steel
	Flow Rate:	921.5 gpm
	Pressure In:	21 psi
	Pressure Out:	50 psi
	Efficiency:	0.74
UTILITIES : Electricity (11.05 kW)	-	
PURCHASE COST: \$4794		

PUMP		
IDENTIFICATION : P-102		
FUNCTION: Pump wet media to batch ferr	nentation reactors	
OPERATION : Batch		
DESIGN DATA:		
	Type:	Centrifugal
	Material:	Carbon Steel
	Flow Rate:	737.7 gpm
	Pressure In:	21 psi
	Pressure Out:	50 psi
	Efficiency:	0.75
UTILITIES : Electricity (13.5 kW)		
PURCHASE COST: \$4475		

PUMP		
IDENTIFICATION: P-201		
FUNCTION: Pump wet media to batch fern	nentation reactors	
OPERATION: Batch		
DESIGN DATA:		
	Type:	Centrifugal
	Material:	Carbon Steel
	Flow Rate:	0.02 gpm
	Pressure In:	22 psi
	Pressure Out:	23 psi
	Efficiency:	0.3
UTILITIES : Electricity (2.3x10 ⁻⁵ kW)	-	
PURCHASE COST: \$3000		

PUMP		
IDENTIFICATION : P-202		
FUNCTION: Pump wet media to batch fermen	tation reactors	
OPERATION: Batch		
DESIGN DATA:		
	Type:	Centrifugal
	Material:	Carbon Steel
	Flow Rate:	0.02 gpm
	Pressure In:	22 psi
	Pressure Out:	23 psi
	Efficiency:	0.3
UTILITIES : Electricity (2.9x10 ⁻⁴ kW)		
PURCHASE COST: \$4390		

PUMP		
IDENTIFICATION : P-203		
FUNCTION: Pump wet media to batch ferr	mentation reactors	
OPERATION: Batch		
DESIGN DATA:		
	Type:	Centrifugal
	Material:	Carbon Steel
	Flow Rate:	1.8 gpm
	Pressure In:	22 psi
	Pressure Out:	23 psi
	Efficiency:	0.3
UTILITIES : Electricity (2.4x10 ⁻³ kW)		
PURCHASE COST: \$9478		

PUMP		
IDENTIFICATION: P-204		
FUNCTION: Pump wet media to batch fer	mentation reactors	
OPERATION : Batch		
DESIGN DATA:		
	Type:	Centrifugal
	Material:	Carbon Steel
	Flow Rate:	4.8 gpm
	Pressure In:	22 psi
	Pressure Out:	23 psi
	Efficiency:	0.3
UTILITIES : Electricity (6.5x10 ⁻³ kW)		
PURCHASE COST: \$6152		

PUMP		
IDENTIFICATION: P205		
FUNCTION: Pump wet media to batch fermentation reactors		
OPERATION: Batch		
DESIGN DATA:		
Туре:	Centrifugal	
Material:	Carbon Steel	
Flow Rate:	30 gpm	
Pressure In:	22 psi	
Pressure Out:	23 psi	
Efficiency:	0.35	
UTILITIES: Electricity (0.03 kW)		
PURCHASE COST: \$3540		

///

PUMP		
IDENTIFICATION: P-301		
FUNCTION : Pump wet media to batch fe	ermentation reactors	
OPERATION : Continuous		
DESIGN DATA:		
	Type:	Centrifugal
	Material:	Carbon Steel
	Flow Rate:	92 gpm
	Pressure In:	22 psi
	Pressure Out:	50 psi
	Efficiency:	0.5
UTILITIES : Electricity (2 kW)		
PURCHASE COST: \$3000		

PUMP		
IDENTIFICATION : P-401		
FUNCTION: Pump wet media to batch ferme	ntation reactors	
OPERATION : Continuous		
DESIGN DATA:		
	Type:	Centrifugal
	Material:	Carbon Steel
	Flow Rate:	692 gpm
	Pressure In:	22 psi
	Pressure Out:	50 psi
	Efficiency:	0.73
UTILITIES : Electricity (10 kW)	-	
PURCHASE COST: \$4391		

HEAT EXCHANC	GER	
IDENTIFICATION: HX001		
FUNCTION : Cool steel mill gas to 98°F at 22 psi		
OPERATION: Continuous		
MATERIALS HANDLED:		
(lb/hr)	Hot Side	Cold Side
Steel Mill Gas	0	310,000
Water	849,600	0
Total	849,600	310,000
DESIGN DATA:		
Type:	Shell-and-tube	
Material:	Carbon Steel	
Heat Transfer Area:	972	
Length:	16	
U:	35 BTU/ft2-hr-°F	
Heat Duty:	6,710,000 BTU/hr	
Pressure Drop	7 psi	
	Hot Side	Cold Side
T _{in} :	770	45
T _{out} :	98	88
PURCHASE COST : \$68,300		

COMPRESSOR		
IDENTIFICATION: C001		
FUNCTION: Compress hot flue gas from steel mill to 30 psi		
OPERATION: Continuous		
DESIGN DATA:		
Type:	Centrifugal	
Driver Type:	Motor	
Material:	Cast Iron	
Pressure In:	14 psi	
Pressure Out:	30 psi	
Temperature In:	482 °F	
Temperature Out:	770 °F	
Flow Rate:	310,000 lb/hr	
Efficiency:	0.72	
Driver Power:	1301 HP	
UTILITIES: Electricity (8751 kW)		
PURCHASE COST : \$7,585,000		

REACTOR		
IDENTIFICATION: R501		
FUNCTION: Thermo Catalytic Conversion		
OPERATION: Continuous		
MATERIALS HANDLED:		
(lb/hr) <u>Feed</u> <u>Efflue</u>	ent	_
Butadiene 0	1538	
Butanediol 4128	129	
Methyl Vinyl Carbinol 0	284	
Methyl Ethyl	866	
Ketone 0	800	
Water 5	1316	
Total 4133	4133	
DESIGN		
DATA:		
Type: Shell-and-packed Tube D	Diameter:	1 inch
Material: Carbon Steel Tube	e Length:	20 ft
Catalyst Type: Thorium Oxide Number of	of Tubes:	1557
Catalyst Mass: 2219 lb Shell D	Diameter:	55 inch
Temperature: 932 °F Number of	of Shells:	1
Pressure In: 1 psi Resident	ce Time:	1.4 s
Pressure Out: 1 psi		
CATALYST COST: \$1,927,700		
PURCHASE COST : \$212,210		

CENTRIFUGAL PUMP IDENTIFICATION: P501 FUNCTION: Continuous **OPERATION**: Pump higher pressure water to the heat exchanger **DESIGN DATA:** Centrifugal Type: Material: Carbon Steel Flow Rate: 3000 lb/hr 15 psi Pressure In: 20 psi Pressure Out: 0.3 Efficiency: Head: 19.6 ft **UTILITIES**: Electricity (0.055 kW) PURCHASE COST: \$14,750

REFLUX PUMP		
IDENTIFICATION : D603		
FUNCTION: Reflux to the third distillation	on column	
OPERATION : Continuous		
DESIGN DATA:		
	Type:	Centrifugal
	Material:	Carbon Steel
	Flow Rate:	6729 lb/hr
	Efficiency:	0.7
	Head:	100 ft
UTILITIES : Electricity (0.48 kW)		
PURCHASE COST: \$11,320		

REFLUX PUMP		
IDENTIFICATION : D601		
FUNCTION: To pump reflux back to the first distillation column		
OPERATION: Continuous		
DESIGN DATA:		
	Type:	Centrifugal
	Material:	Carbon Steel
	Flow Rate:	8202 lb/hr
	Efficiency:	0.7
UTILITIES : Electricity (0.64 kW)		
PURCHASE COST: \$11,065		

REFLUX PUMPIDENTIFICATION: D602FUNCTION: To pump reflux to the second distillation columnOPERATION: ContinuousDESIGN DATA:Type:Centrifugal
Material:Material:Carbon Steel
Flow Rate:Flow Rate:5440 lb/hr
Efficiency:UTILITIES: Electricity (0.68 kW)PURCHASE COST: \$12,225

PUMP		
IDENTIFICATION : P706		
FUNCTION: To pump feed at 109 psi to D701		
OPERATION : Continuous		
DESIGN DATA:		
Type:	Centrifugal	
Material:	Carbon Steel	
Flow Rate:	1355 lb/hr	
Pressure In:	18 psi	
Pressure Out:	109 psi	
Efficiency:	0.3	
UTILITIES: Electricity (0.45 kW)		
PURCHASE COST: \$12,640		

REFLUX PUMP		
IDENTIFICATION : D401		
FUNCTION: Pump reflux to the BDO sepa	ration distillation colur	nn
OPERATION : Continuous		
DESIGN DATA:		
	Type:	Centrifugal
	Material:	Carbon Steel
	Flow Rate:	26,612 lb/hr
	Efficiency:	0.7
UTILITIES : Electricity (1.41 kW)		
PURCHASE COST: \$11,000		

REFLUX PUMP		
IDENTIFICATION : D701		
FUNCTION: Pump reflux to the fourth d	istillation tower	
OPERATION : Continuous		
DESIGN DATA:		
	Type:	Centrifugal
	Material:	Carbon Steel
	Flow Rate:	6910 lb/hr
	Efficiency:	0.7
UTILITIES : Electricity (0.6 kW)		
PURCHASE COST: \$11,160		

REFLUX PUMP		
IDENTIFICATION : D702		
FUNCTION: Pump reflux to the fifth disti	illation column	
OPERATION : Continuous		
DESIGN DATA:		
	Type:	Centrifugal
	Material:	Carbon Steel
	Flow Rate:	6041 lb/hr
	Efficiency:	0.7
UTILITIES : Electricity (0.66 kW)		
PURCHASE COST : \$11,190		

PUMP	
IDENTIFICATION : P701	
FUNCTION: Pump feed to D701 at 109 psi	
OPERATION : Continuous	
DESIGN DATA:	
Type:	Centrifugal
Material:	Carbon Steel
Flow Rate:	930 lb/hr
Pressure In:	17
Pressure Out:	109
Efficiency:	0.3
UTILITIES: Electricity (0.33 kW)	
PURCHASE COST: \$13,450	

HEAT EXCHANGER			
IDENTIFICATION : HX504			
FUNCTION: Recover heat from compression to use	for a rebuilder		
OPERATION : Continuous			
MATERIALS HANDLED:			
(lb/hr)	Hot Side	Cold Side	
Butadiene	1538	0	
Butanediol	128	0	
Methyl Vinyl Carbinol	284	0	
Methyl Ethyl Ketone	865	0	
Water	1316	3000	
Total	4132	3000	
DESIGN DATA:			
Type:	Shell-and-tube		
Material:	Carbon Steel		
Heat Transfer Area:	446 ft ²		
U:	150 (BTU/hr-ft ² -R)		
Length:	20 ft		
Heat Duty:	4,061,080 BTU/hr		
Pressure Drop	0		
	Hot Side	Cold Side	
T _{in} :	1341	90	
T _{out} :	194	760	
PURCHASE COST : \$101,600			

VACUUM SYSTEM			
IDENTIFICATION: VS501			
FUNCTION: Reduce the pressure of streams leading into the re	actor vessel		
OPERATION: Continuous			
DESIGN DATA:			
Type:	Two-stage steam-jet ejector		
Material:	Carbon Steel		
Flow Rate:	4132 lb/hr		
Pressure Out:	70 mmHg		
Size Factor:	59.0 lb/hr*torr		
Air Leakage:	14.2 lb/hr		
UTILITIES : HP Steam (\$516,000) CW (\$84,000)			
PURCHASE COST: \$17,991			

HEAT EXCHANG	ER	
IDENTIFICATION: D603		
FUNCTION: Condense distillate of third distillation	column	
OPERATION : Continuous		
MATERIALS HANDLED:		
(lb/hr)	Hot Side	Cold Side
Butadiene	0	0
Butanediol	4	0
Methyl Vinyl Carbinol	0	0
Methyl Ethyl Ketone	1	0
Water	66	3000
Total	71	3000
DESIGN DATA:		
Туре:	Total Condenser	
Material:	Carbon Steel	
Heat Transfer Area:	134 ft ²	
Length:	20 ft	
Heat Duty:	226,218 BTU/hr	
Pressure Drop	0	
	Hot Side	Cold Side
T _{in} :	240	90
T _{out} :	191	120
PURCHASE COST: \$5700		

HEAT EXCHANGE	R	
IDENTIFICATION: D601		
FUNCTION: Condense the distillate form the first dis	stillation tower	
OPERATION: Continuous		
MATERIALS HANDLED:		
(lb/hr)	Hot Side	Cold Side
Butadiene	1539	0
Butanediol	0	0
Methyl Vinyl Carbinol	0	0
Methyl Ethyl Ketone	4	0
Water	7	8880
Total	1550	8880
DESIGN DATA:		
Type:	Total Condenser	
Material:	Carbon Steel	
Heat Transfer Area:	244 ft ²	
Length:	20 ft	
Heat Duty:	74586 BTU/hr	
Pressure Drop	0	
	Hot Side	Cold Side
T _{in} :	137	90
T _{out} :	107	120
PURCHASE COST: \$91,450		

HEAT EXCHANGE	ER	
IDENTIFICATION: D602		
FUNCTION: Totally condense the distillate of the se	cond distillation colur	nn
OPERATION: Continuous		
MATERIALS HANDLED:		
(lb/hr)	Hot Side	Cold Side
Butadiene	0	0
Butanediol	0	0
Methyl Vinyl Carbinol	0	0
Methyl Ethyl Ketone	809	0
Water	121	2487
Total	930	2487
DESIGN DATA:		
Type:	Total Condenser	
Material:	Carbon Steel	
Heat Transfer Area:	89 ft ²	
Length:	20 ft	
Heat Duty:	78,510 BTU/hr	
Pressure Drop	0	
	Hot Side	Cold Side
T _{in} :	198	90
T _{out} :	170	120
PURCHASE COST: \$5,340		

HEAT EXCHANGER			
IDENTIFICATION: D401			
FUNCTION : Totally condense the distillation column butanediol	n separating ethanol a	nd	
OPERATION : Continuous			
MATERIALS HANDLED:			
(lb/hr)	Hot Side	Cold Side	
Butadiene	0	0	
Butanediol	4	0	
Methyl Vinyl Carbinol	0	0	
Methyl Ethyl Ketone	0	0	
Ethanol	7992	0	
Water	0	17,602	
Total	7996	17,902	
DESIGN DATA:			
Type:	Total Condenser		
Material:	Carbon Steel		
Heat Transfer Area:	401 ft ²		
Length:	20 ft		
Heat Duty:	527,850		
Pressure Drop	0		
	Hot Side	Cold Side	
T _{in} :	226	90	
T _{out} :	206	120	
PURCHASE COST: \$99,230			

HEAT EXCHANGE	ĸ	
IDENTIFICATION: HX501		
FUNCTION: Heat feed to reactor during start-up cond	litions	
OPERATION: Conditional, Continuous		
MATERIALS HANDLED:		
(lb/hr)	Hot Side	Cold Side
Butadiene	0	0
Butanediol	4128	0
Methyl Vinyl Carbinol	0	0
Methyl Ethyl Ketone	0	0
Water	4	0
Total	4132	N/A
DESIGN DATA:		
Type:	Electric	
Material:	Carbon Steel	
Heat Transfer Area:	129	
Length:	20	
Heat Duty:	47,334 BTU/hr	
Pressure Drop	0	
	Hot Side	Cold Side
T _{in} :	257	N/A
T _{out} :	572	N/A
PURCHASE COST: \$5,70		

HEAT EXCHANGER			
IDENTIFICATION: D701			
FUNCTION: Totally condense the distillate to the	fourth distillation tow	ver	
OPERATION: Continuous			
MATERIALS HANDLED:			
(lb/hr)	Hot Side	Cold Side	
Butadiene	0	0	
Butanediol	0	0	
Methyl Vinyl Carbinol	0	0	
Methyl Ethyl Ketone	1234	0	
Water	241	7579	
Total	1475	7579	
DESIGN DATA:			
Туре:	Total Condenser		
Material:	Carbon Steel		
Heat Transfer Area:	65 ft ²		
Length:	20 ft		
Heat Duty:	227,278 BTU/hr		
Pressure Drop	0		
	Hot Side	Cold Side	
T _{in} :	310	90	
T _{out} :	278	120	
PURCHASE COST: \$5,090			

HEAT EXCHANGE	CR	
IDENTIFICATION: D702		
FUNCTION: Totally condense the distillate from t	he fifth distillation to	wer
OPERATION: Continuous		
MATERIALS HANDLED:		
(lb/hr)	Hot Side	Cold Side
Butadiene	0	0
Butanediol	0	0
Methyl Vinyl Carbinol	0	0
Methyl Ethyl Ketone	1234	0
Water	121	7250
Total	1255	7250
DESIGN DATA:		
Туре:	Total Condenser	
Material:	Carbon Steel	
Heat Transfer Area:	109 ft ²	
Length:	20 ft	
Heat Duty:	210,330 BTU/hr	
Pressure Drop	0	
	Hot Side	Cold Side
T _{in} :	205	90
T _{out} :	173	120
PURCHASE COST: \$5,560		

HEAT EXCHANGER			
IDENTIFICATION: HX502			
FUNCTION: Preheat the feed to the reactor with the	effluent heat from the	reactor	
OPERATION: Continuous			
MATERIALS HANDLED:			
(lb/hr)	Hot Side	Cold Side	
Butadiene	0	1538	
Butanediol	4128	128	
Methyl Vinyl Carbinol	0	284	
Methyl Ethyl Ketone	0	866	
Water	4	1316	
Total	4132	4132	
DESIGN DATA:			
Туре:	Shell-and-tube		
Material:	Carbon Steel		
Heat Transfer Area:	12 ft ²		
Length:	20 ft		
U:	150 BTU/hr-ft ² -R		
Heat Duty:	47,334 BTU/hr		
Pressure Drop	0		
	Hot Side	Cold Side	
T _{in} :	932	245	
T _{out} .	652	572	
PURCHASE COST: \$3,854			

REFLUX ACCUMULATOR

IDENTIFICATION: D603

FUNCTION: Accumulate reflux from the third distillation tower

OPERATION: Continuous

	Type:	Horizontal Drum
	Material:	Carbon Steel
	Diameter:	3 ft
	Length:	9 ft
	Capacity:	476 gallons
	Temperature:	191 °F
	Pressure:	35 psi
57 215		

PURCHASE COST: \$57,215

REFLUX ACCUMULATOR			
IDENTIFICATION: D601			
FUNCTION: Accumulate reflux from the first distillation tower			
OPERATION : Continuous			
DESIGN DATA:			
Туре:	Horizontal Drum		
Material:	Carbon Steel		
Diameter:	3 ft		
Length:	9 ft		
Capacity:	476 gallons		
Temperature:	107 °F		
Pressure:	76 psi		
PURCHASE COST: \$57,215			

REFLUX ACCUMULATOR			
IDENTIFICATION: D602			
FUNCTION: Accumulate reflux from the second distillation tower			
OPERATION : Continuous			
DESIGN DATA:			
Туре:	Horizontal Drum		
Material:	Carbon Steel		
Diameter:	3 ft		
Length:	9 ft		
Capacity:	476 gallons		
Temperature:	169 °F		
Pressure:	35 psi		
PURCHASE COST: \$57,215			

REFLUX ACCUMULATOR

IDENTIFICATION: D401

FUNCTION: Accumulate reflux from the ethanol-butanediol separation tower

OPERATION: Continuous

	Type:	Horizontal Drum
	Material:	Carbon Steel
	Diameter:	3 ft
	Length:	9 ft
	Capacity:	317 gallons
	Temperature:	206 °F
	Pressure:	35 psi
7		

PURCHASE COST: \$52,347

REFLUX ACCUMULATOR			
IDENTIFICATION : D701			
FUNCTION: Accumulate reflux from the fourth horizontal drum			
OPERATION: Continuous			
DESIGN DATA:			
Туре:	Horizontal Drum		
Material:	Carbon Steel		
Diameter:	3 ft		
Length:	9 ft		
Capacity:	476 gallons		
Temperature:	279 °F		
Pressure:	112 psi		
PURCHASE COST: \$57,215			

REFLUX ACCUMULATOR			
IDENTIFICATION: D702			
FUNCTION: Accumulate reflux from the fifth distillation tower			
OPERATION: Continuous			
DESIGN DATA:			
Туре:	Horizontal Drum		
Material:	Carbon Steel		
Diameter:	3 ft		
Length:	9 ft		
Capacity:	475 gallons		
Temperature:	173 °F		
Pressure:	35 psi		
PURCHASE COST: \$57,215			

REBOILER			
IDENTIFICATION: D603			
FUNCTION: Phase change, reboiler for the third colu	umn		
OPERATION: Continuous			
MATERIALS HANDLED:			
(lb/hr)	Hot Side	Cold Side	
Butadiene	0	4	
Butanediol	0	127	
Methyl Vinyl Carbinol	0	0	
Methyl Ethyl Ketone	0	0	
Water	0	1	
High Pressure Steam	1863	0	
Total	1863	132	
DESIGN DATA:			
Type:	U-tube		
Material:	Carbon Steel		
Heat Transfer Area:	1645 ft ²		
Length:	20		
Heat Duty:	3,745,450 BTU/hr		
Pressure Drop	0		
	Hot Side	Cold Side	
T _{in} :	298	252	
T _{out} :	298	324	
PURCHASE COST : \$159,330			

REBOILER		
IDENTIFICATION: D601		
FUNCTION: Reboiler to the first distillation column		
OPERATION: Continuous		
MATERIALS HANDLED:		
(lb/hr)	Hot Side	Cold Side
Butadiene	0	0
Butanediol	0	128
Methyl Vinyl Carbinol	0	284
Methyl Ethyl Ketone	0	861
Water	0	1309
Medium Pressure Steam	422	0
Total	422	2582
DESIGN DATA:		
Type:	U-tube	
Material:	Carbon Steel	
Heat Transfer Area:	88 ft ²	
Length:	20 ft	
Heat Duty:	794,185 BTU/hr	
Pressure Drop	0	
1	Hot Side	Cold Side
T _{in} :	366	280
T _{out} :	366	282
PURCHASE COST: \$5,340		

REBOILER		
IDENTIFICATION: D401		
FUNCTION: Reboiler to the ethanol-butanediol sepa	aration tower	
OPERATION : Continuous		
MATERIALS HANDLED:		
(lb/hr)	Hot Side	Cold Side
Butadiene	0	0
Butanediol	0	3996
Methyl Vinyl Carbinol	0	0
Methyl Ethyl Ketone	0	0
Ethanol	0	8
Water	0	0
Low Pressure Steam	4507	0
Total	4507	4004
DESIGN DATA:		
Type:	U-tube	
Material:	Carbon Steel	
Heat Transfer Area:	1034 ft ²	
Length:	20 ft	
Heat Duty:	9,061,920 BTU/hr	
Pressure Drop	0	
	Hot Side	Cold Side
T _{in} :	298	328
T _{out} :	298	389
PURCHASE COST : \$131,080		

REBOILER		
IDENTIFICATION: D701		
FUNCTION: Reboiler to the fourth distillation tower	•	
OPERATION: Continuous		
MATERIALS HANDLED:		
(lb/hr)	Hot Side	Cold Side
Butadiene	0	0
Butanediol	0	0
Methyl Vinyl Carbinol	0	0
Methyl Ethyl Ketone	0	809
Water	0	0
Medium Pressure Steam	1045	0
Total	1045	809
DESIGN DATA:		
Туре:	U-tube	
Material:	Carbon Steel	
Heat Transfer Area:	933 ft ²	
Length:	20 ft	
Heat Duty:	1,961,140 BTU/hr	
Pressure Drop	0	
1	Hot Side	Cold Side
T _{in} :	366	346
T _{out} :	366	347
PURCHASE COST: \$126,320		

REBOILER		
IDENTIFICATION : D702		
FUNCTION: Reboiler for the fifth distillation colum	n	
OPERATION: Continuous		
MATERIALS HANDLED:		
(lb/hr)	Hot Side	Cold Side
Butadiene	0	0
Butanediol	0	0
Methyl Vinyl Carbinol	0	0
Methyl Ethyl Ketone	0	0
Water	0	121
Low Pressure Steam	673	0
Total	673	121
DESIGN DATA:		
Туре:	U-tube	
Material:	Carbon Steel	
Heat Transfer Area:	78 ft ²	
Length:	20 ft	
Heat Duty:	1,352,300 BTU/hr	
Pressure Drop	0	
· · ·	Hot Side	Cold Side
T _{in} :	298	236
T _{out} :	298	237
PURCHASE COST: \$5,223		

	LTION COL	UMN	
IDENTIFICATION : D603			
FUNCTION: Isolate 2,3-butanediol	for recycle ba	ick to the reactor	
OPERATION : Continuous			
MATERIALS HANDLED:			
(lb/hr)	Feed	Distillate	Bottoms
Butadiene	0	0	0
Butanediol	128	0	128
Methyl Vinyl Carbinol	284	284	0
Methyl Ethyl	52	52	0
Ketone Water	1189	1184	5
Total	1653	1184	133
DESIGN DATA:	1055	1520	155
Number of Stages:	19	Number of Trays:	17
Overhead Pressure:	16 psi	Feed Stage:	9
Height:	48 ft	Molar Reflux Ratio:	2
Diameter:	4 ft	Tray Type:	Sieve
Material:	Carbon Steel	Op. Temp:	324 °F
Tray Efficiency:	0.7	Stage Pressure:	13 psi
Tray Spacing:	2 ft	Pressure Drop:	0.1 psi
PURCHASE COST : \$627,785			

DI	STILLTION CO	LUMN	
IDENTIFICATION : D601			
FUNCTION : Isolate the 1,3-bu	tadiene product at	near purity	
OPERATION : Continuous			
MATERIALS HANDLED:			
(lb/hr)	Feed	Distillate	Bottoms
Butadiene	1538	1538	128
Butanediol	127	0	0
Methyl Vinyl Carbinol	284	0	184
Methyl Ethyl Ketone	865	4	861
Water	1316	7	1309
Total	4130	1549	2482
DESIGN DATA:			
Number of Stages:	21	Number of Trays:	19
Overhead Pressure:	65 psi	Feed Stage:	9
Height:	56 ft	Molar Reflux Ratio:	3
Diameter:	1.5 ft	Tray Type:	Sieve
Material:	Carbon Steel	Op. Temp:	282 °F
Tray Efficiency:	0.7	Stage Pressure:	62 psi
Tray Spacing:	2 ft	Pressure Drop:	0.1 psi
PURCHASE COST : \$605,760			

	DISTILLTION	COLUMN	
IDENTIFICATION : D602			
FUNCTION: Isolate the ME	K for pressure-swi	ing distillation	
OPERATION : Continuous			
MATERIALS HANDLED:			
(lb/hr)	Feed	Distillate	Bottoms
Butadiene	0	0	0
Butanediol	128	0	128
Methyl Vinyl Carbinol	284	0	284
Methyl Ethyl Ketone	861	809	52
Water	1309	12	1189
Total	2582	821	1653
DESIGN DATA:			
Number of Stages:	38	Number of Trays:	36
Overhead Pressure:	17 psi	Feed Stage:	32
Height:	114 ft	Molar Reflux Ratio:	3
Diameter:	2 ft	Tray Type:	Sieve
Material:	Carbon Steel	Op. Temp:	232 °F
Tray Efficiency:	0.7	Stage Pressure:	14 psi
Tray Spacing:	2 ft	Pressure Drop:	0.1 psi
PURCHASE COST: \$712,0)80		

	DISTILLATIO	N COLUMN	
IDENTIFICATION: D401			
FUNCTION : Separate 2,3-	butanediol and et	hanol at near purities	
OPERATION : Continuous	4		
MATERIALS HANDLED):		
(lb/hr)	Feed	Distillate	Bottoms
Butadiene	0	0	0
Butanediol	4000	4	3996
Methyl Vinyl Carbinol	0	0	0
Methyl Ethyl Ketone	0	0	0
Ethanol	8000	7992	8
Water	0	0	0
Total	12000	7996	4004
DESIGN DATA:			
Number of Stages:	7	Number of Trays:	5
Overhead Pressure:	29 psi	Feed Stage:	3
Height:	26 ft	Molar Reflux Ratio:	1
Diameter:	4.5 ft	Tray Type:	Sieve
Material:	Carbon Steel	Op. Temp:	232 °F
Tray Efficiency:	0.7	Stage Pressure:	29 psi
Tray Spacing:	2 ft	Pressure Drop:	0.1 psi
PURCHASE COST : \$593	,760		

COMPRESSOR	
IDENTIFICATION: C501	
FUNCTION: Compress cooled reactor effluent for distillation colum	ins
OPERATION: Continuous	
DESIGN DATA:	
Type:	Centrifugal
Driver Type:	Motor
Material:	Carbon Steel
Pressure In:	1.3 psi
Pressure Out:	73 psi
Temperature In:	652 °F
Temperature Out:	1341 °F
Flow Rate:	4321 lb/hr
Efficiency:	0.72
Driver Power:	696 HP
UTILITIES: Electricity (519 kW)	
PURCHASE COST : \$902,280	

	DISTILL	ATION COI	LUMN	
IDENTIFICATION : D701				
FUNCTION: First distillati	on tower for MI	EK pressure-	swing distillation	
OPERATION: Continuous				
MATERIALS HANDLED	:			
(lb/hr)	Feed	Recycle	Distillate	Bottoms
Butadiene	0	0	0	0
Butanediol	0	0	0	0
Methyl Vinyl	0	0	0	0
Carbinol	0	0	0	0
Methyl Ethyl	809	1234	1234	809
Ketone				009
Water	121	121	241	0
Total	930	1355	1475	809
DESIGN DATA:				
Number of Stages:	22		Number of Trays:	20
Overhead Pressure:	102 psi		Feed Stage:	6
Height:	68 ft		Molar Reflux Ratio:	3
Diameter:	2 ft		Tray Type:	Sieve
Material:	Carbon Steel		Op. Temp:	347 °F
Tray Efficiency:	0.7		Stage Pressure:	99 psi
Tray Spacing:	2 ft		Pressure Drop	0.1 psi
PURCHASE COST: \$630,	380			

	DISTILLATIO	N COLUMN	
IDENTIFICATION : D702	2		
FUNCTION: Second colum	nn in MEK pressu	re-swing distillation	
OPERATION : Continuous			
MATERIALS HANDLED):		
(lb/hr)	Feed	Distillate	Bottoms
Butadiene	0	0	0
Butanediol	0	0	0
Methyl Vinyl Carbinol	0	0	0
Methyl Ethyl Ketone	1234	1234	0
Water	241	121	121
Total	1475	1355	121
DESIGN DATA:			
Number of Stages:	32	Number of Trays:	30
Overhead Pressure:	18 psi	Feed Stage:	15
Height:	96 ft	Molar Reflux Ratio:	3
Diameter:	2.5 ft	Tray Type:	Sieve
Material:	Carbon Steel	Op. Temp:	239 °F
Tray Efficiency:	0.7	Stage Pressure:	15 psi
Tray Spacing:	2 ft	Pressure Drop:	0.1 psi
PURCHASE COST: \$693	,220		

ODUCT AND COMPANY IDENTIFI Product name 2 Product Number Brand	Material Safety Data Sheet	
MPANY IDENTI	Version 5 2 Revision Date 04/18/2013 Print Date 04/08/2014	If breathed in, move person into fresh air. If not breathing, give artificial respiration. In case of skin contact Wash off with scap and plenty of water.
	CATION	In case of eye contact Flush eyes with water as a precaution.
	2,3-Butanediol	If swallowed
	B84904	
	Aldrich	o. Firkeriget und measures Conditions of flammability
Supplier Si 30	Sigma-Aldrich 3050 Spruce Street	Not flammable or combustible.
S.	SAINT LOUIS MO 63103 USA	Suitable extinguishing media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
Telephone +/ Fax +/ Fmemenov/Phone # (For //3	+1 800-325-5832 14 800-325-5022 1341/176555	Special protective equipment for finefighters Wear self contained breathing apparatus for fire fighting if necessary.
		Hazardous combustion products Hazardous devombostition nonducts firmed under fire conditions - Carbon oxides
formation	Sigma-Aldrich Corporation Product Safety - Americas Region	
	0G59-17-0-000-	Personal precautions Avoid dust formation. Avoid breathing vapours, mist or pas.
2. HAZAKUS IJENIIFICATION Emergency Overview		Environmental precautions
OSHA Hazards No known OSHA hazards		Do not reproduce the unergoined and cleaning up Methods and materials for containment and cleaning up
Not a dangerous substance or m	Not a dangerous substance or mixture according to the Globally Harmonised System (GHS).	Sweep up and shovel. Keep in suitable, closed containers for disposal.
HMIS Classification		7. HANDLING AND STORAGE
Health hazard 0 Flammability 0		Precautions for safe handling Provide appropriate exhaust ventilation at places where dust is formed.
as		Conditions for safe storage Keep container tightly closed in a dry and well-ventilated place.
Health hazard 0 Fire: 2		Hygroscopic.
Reactivity Hazard		8. EXPOSURE CONTROL S/PERSONAL PROTECTION
Health hazard Fire		Contains no substances with occupational exposure limit values.
Reactivity Hazard: 0		Personal protective equipment
Potential Health Effects		Respiratory protection
	May be harmful if inhaled. May cause respiratory tract imitation. May be harmful if absorbed through skin. May cause skin imitation. May cause sperimitation.	Respiratory protection is not required. Where protection from nuisance levels of dusts are desired, use type N95 (US) of type P11 (EN 143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).
		Hand protection Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching drunds a theorem is and a his analysis with this product. Processor of compositional a drunds that in a feature
	VGREUENIS	groves outer surface) to avoid sam rontact with this product. Dispose of contaminated groves after use in accordance with applicable faws and concil abrurghtory practices. Wash and dry hands
Formula Molecular Weight	C4H10O2 90.12 g/mol	utoronautor mari apprintator tanto dina gocon tato di angleta protocolo i maria di y manuaci. Fullo materia Mazzonia Ministri Antoches
No ingredients are hazardous according to OSHA criteria.	rding to OSHA criteria.	Mercanon Navier ducores Minimum layer thoracress 0.11 mm Break through time: 430 min

Appendix F: MSDS Reports

Appendices

Stable under recommended storage conditions. Possibility of nazardous reactions no data avaitable Conditions to avoid
Possibility of hazardous reactions no data avalable Conditions to avoid
no data available Conditions to avoid
Conditions to avoid
data survess (ZC) Conchi D. 2010) Eicherseul schere 400 (Needen 2020) - surveilier dat beste scherd Ehl274
It used in source income provide a source of s
oated use by our customers. It should not be Hazardous decomposition products Hazardous decomposition products formed under fire conditions Carbon oxides Other decompretion montrist- on data available.
Exe protection Use equipment for every protection tested and approved under appropriate government standards such as NIOSH 11. TOXICOLOGICAL INFORMATION
Acute toxicity
Choose look protection in the leaton to its type, to the concentration and amount of dangerous substances, and to the Choose elocity protection in the leaton to its type, to move the concentration and amount acceler work-place. The type of protective adjustment must be selected according to the concentration and amount of the dangerous substances at the specific workplace.
no data available
Dermal LD50 no data available
Other Information on south fourieity.
LD50 Intrapertoneal - mouse - 6,075 mg/kg
Skin corrosion/irritation
Skin - rabbit - No skin irritation - 24 h
Serious eye damage/eye irritation Eves - rabbit - No eve irritation - 72 h
Resniratory or skin sensitisation
Maximisation Test - guinea pig - Does not cause skin sensitisation OECD Test Guideline 406
Germ cell mutagenicity
Genotoxicity in vitro - S. typhimunium - with and without metabolic activation - negative
Carcinogenicity
ACGH: No component of this product present at levels greater than or equal to 0.1% is identified as carcinomen or notachtal carcinoment by a CGHH.
NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.
USHA. No component or trins product present at levels greater man or equal to U.1% IS loentlined as carcinogen or potential carcinogen by OSHA.
Reproductive toxicity
no data available
Teratogenicity
no data available
Specific target organ toxicity - single exposure (Globally Harmonized System)
no data available
Specific target organ toxicity - repeated exposure (Globally Harm onized System) no data available
Specific target organ toxicity - repeated exposure (Globally Harm no data available

Aspiration hazard		OSHA Hazards
no data available		No known OSHA hazards
Potential health effects		SARA 302 Components
Inhalation Ingestion Skin Eyes	May be harmful if inhaled. May cause respiratory tract inflation. May be harmful if swallowed. May be harmful it soorbed through skin. May cause skin imfation. May cause eyei mitation.	SARA 31C SUPPORTINGS In this indential are subject to the reporting requirements of SARA 315 Components SARA 315 Components SARA 313. This material loss not contain any chemical components with known CAS numbers that exceed the threshold (De Mirrimis) reporting levels established by SARA Title III, Section 313.
Signs and Symptoms of Exposure Gastrointestinal disturbance, Nausea	Signs and Symptoms of Exposure Gastrointestinal disturbance , Mausea, Headache, Vomiting	SARA 311/312 Hazards No SARA Hazards
Synergistic effects no data available		Massachusetts Right To Know Components No components are subject to the Massachusetts Right to Know Act.
Additional Information RTECS: EK0532000		Pennsylvaria Right To Know Components CAS-No. Revision Date Butana-2 -dini
12. ECOLOGICAL INFORMATION	NOL	o Know Components
Toxicity		
no data available		Butane-2,3-diol 513-85-9
Toxicity to daphnia and other aquatic invertebrates	Immobilization EC50 - Daphria magna (Water fiea) - > 100 mg/l - 48 h Method: OECD Test Curdeline 202	California Prop. 66 Components This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.
Toxicity to bacteria	Respiration inhibition EC50 - Sludge Treatment - > 1,000 mg/l - 0.5 h	16. OTHER INFORMATION
Persistence and degradability Biodegradability aerot Resu Meth	adability aerobic Resut > 90 % - Readity biodegradable. Rethod: OECD Test Gudeine 301A	Eurther inform ation Copyright 2013 Signa-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only Copyright 2013 Signa-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only The advoernmation in this document is based on the present state of our knowledge and is splitisation to the product with reasonal to approvide safety presendions. It does not prepresent any quarantee of the proverties of the product with reasonal to approvide safety presendations.
Bioaccumulative potential no data available	ntial	product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing sith for
Mobility in soil no data available		
PBT and vPvB assessment no data available	ment	
Other adverse effects		
no data available		
13. DISPOSAL CONSIDERATIONS	SNOIL	
Product Offer surplus and non-re	Product Offer surplus and non-recyclable solutions to a licensed disposal company.	
Contaminated packaging Dispose of as unused product	ing roduct	
14. TRANSPORT INFORMATION	lion	
DOT (US) Not dangerous goods		
IMDG Not dangerous goods		
IATA Not dangerous goods		
15. REGULATORY INFORMATION	ATION	
Alorich - B84904	Page 5 of 6	Alorich - B84904 Page 6 of 6

187

Product Name: BU ADIENE Hazards of product:	DANGERI. Extremely flammable liquid and vapor - Vapor may cause flash fire. Harmful if inhaled. May cause frostbie. May cause central nervous system effects. May cause aneshetic effects. Do not extinguish. Vapors may travel a long distance; Ignihon and/or flash back may occur. Evecuate area. Keep hyvind of split. Skay vuc	DS, DS, cause hazardous polymerization. Contents under pressure. Cancer hazard. Can cause cancer.	Potential Health Effects Eve Contact: Vapor may cause eye irritation experienced as mild discomfort and redness. Liquid may cause frostbile.	Skin Contact: No hazard from gas. Liquid may cause of explate upon skin contact. Skin Absorption: No adverse effects anticipated by skin absorption. Inhalation: In contined or poorly ventilated areas, vapor can readily accumulate and can cause unconsciousness and death. Excessive exposure may cause irritation to upper respiratory tract (nose and throad). May cause entitle inervous system effects. Symptons of excessive exposure may be anosther or anacotive fradex; dizziness and drowsiness may be observed.	Ingestion: Swallowing is unlikely because of the physical state. Liquid may cause frostbite of the lips and mouth. Aspiration hazard: Based on available information, aspiration hazard could not be determined. Effects of Repeated Exposure: In animals, effects have been reported on the following organs: Biod-forming organs (Born amrow & Speed). Kdney, Liver. Ovaries. Respiration tract. Testes. Cancer Information: has caused cancer in laboratory animals. Butadiene optieminolytract. Testes.	linked employment in two different chemical operations each with a different type of cancer. The causative factors for these axcess cancers have not been determined. Eich ArGeerentmannel Effecter. Has canced kinkh defecter in laboratory animals only of decess		3. Composition/information on ingredients	Component CAS # 13-Bitratione 106-99-0	Amounts are presented as percentages by weight	 First-aid measures Description of first aid measures
Material Safety Data Sheet The Dow Chemical Company	Issue Date: 2013.10.29 Print Date: 30 Oct 2013	The Dow Chemical Company encourages and expects you to read and understand the entire (M)SDS, as there is important information throughout the document. We expect you to follow the precautions defautilied in this document unless your use conditions would necessifiate other appropriate methods or				800-258-2436	in Canada by EH&S, Hazard Communications	800-258-2436 SDSQuestion@dow.com	989-636-4400 989-636-4400		

Appendices

Page 2 of 9

Page 1 of 9

romiting unless directed to do so by id mouth with tepid water for at least delayed assures (above) and Indication of w), no additional symptoms and	combustible gas detector b equipment. Eliminate all sc explosion: Vapor explosion which can plug drains and no buling, frothing, and rapi appropriate safety equipme Personal Protection.	before reentering area. ources of ignition in vio n hazard. Keep out of can make valves inope id generation of vapor. ent. For additional infor	Ground and b inity of spill or sewers. Spills srable. Contao See Section mation, refer t	combustible gas detector before reentering area. Ground and bond all containers and handling equipment. Eliminate all sources of ignition in vicinity of spill or released vapor to avoid fire or axplosion. Vapor explosion trazard, Keep out of severes. Spills of this inqueried gas may form ice, which can be and can make valves incopretable. Contact of ivater with inqueried gas can result in boiling, frothing, and rapid generation of vapor. See Section 10 for more specific information. Use appropriate safety equipment. For additional information, teler to Section 8, Exposure Controls and Personal Protection.
reatment needed	Environmental precautions: Prevent from entering i groundwater. See Section 12, Ecological Information.	ns: Prevent from enter 12, Ecological Informal	ing into soil, d ion.	Environmental precautions: Prevent from entering into soil, ditches, sewers, waterways and/or groundwater. See Section 12, Ecological Information.
at for frostbird, if present. No te control of symptoms and the clinical	Methods and materials for containment and clee Stop flow of gas. Ground and bond all containers a reduce vapors. If evailable, use foam to smother of until spill can be cleaned up. Knock down and dilut Disposal Considerations, for additional information.	or containment and cl and bond all containers s, use foam to smother p. Knock down and dil p. additional informatio	eaning up: Is and handling or suppress vit ute vapors wit	Methods and materials for containment and cleaning up: Isolate area until gas has dispersed. Stop flow of gas. Ground and bond all containers and handling equipment. Use fine water spray to reduce vapors. If evailable, use foam to smother or suppress vapors. Apply vapor suppression foams until spill can be cleaned up. Knock down and dilute vapors with water fog or spray. See Section 13, Disposal Considerations, for additional information.
. Once product flow has stopped, vv chemical fire extinguishers	7. Handling and Storage	torage	Ш	
cnemical nre extinguisners.	Landling			
ortiain the original material in addition and original material in addition Carbon docide. <i>Arr</i> upture due to fire. Vapors are in low lying areas. Ignition and/or flash	General Handling: Keep a General Handling: Keep a General Handling: Keep a General Handling: Keep a Blectraality bond and groun Electraality bond and groun empty containers. Use of upon the type of operation. adequate ventilation. See adequate ventilation. See adequate ventilation. See	way from heat, sparks apor. Never use air pr of all containers and ec noture or incinerate co rs. Do not cut, drill, grir non-sparking or explos. Wash throwughly afte Section 8, EXPOSURE Suctor 0 electricity and mort. If sufficient chan and the sparks	and flame. A ressure for trai quipment befo intainer. Comta id, weld, or pe di, weld, or pe di, weld, or pe dion-proof equil r handling. Ke r handling. Ke can become	Cancenting General Handling: Keep away from heat, sparks and flame. Avoid contract with eyes, skin, and cothing. Avoid breathing versor. Never use a pressure for transfering product. No smoking marea Electranish poord and ground all containers and equipment before transfer or use of material. Contrains under pressure. Do not purruture or indineers and equipment before transfer or use of material. Contrains amplied, asm contain vapors. Do not cut, drill, gind, weld, or perform similar operations on or near empty, drainers. Use of more participation and and and or and the order of the ground repressure. Do not put, drill, gind, weld, or perform similar operations on or near empty ordiners. Use of more participation and and y reperiment may be needs any with adequate vertilation. See Section 8, ExPOSURE CONTFOLS AND PERSONAL PFOTECTION This product is a poor conductor of electrativa and electration for apped, avoin bonded or grounded electroment if sufficient change is accomulated, ground or the and electromenting contract ordinated and the appression of electrome electrostical transfer and bonded or grounded electroment if sufficient change is accomulated, ground or for and is account bonded or grounded electroment if sufficient change is accomulated, ground or the appression or account and the ground electroment is sufficient change is accompared electroment and bonded or grounded electroment if sufficient change is accomulated, ground or for appression or appression and account and electroment electroment is account and electroment account and electroment account and electroment electroment and electroment electroment electroment account and the superior order account and the superior account and electroment electroment account and electroment electroment electroment electroment electroment electroment account and electroment electroment electroment electroment electroment account and electroment electroment electroment electroment electroment account and electroment electroment electroment electroment electrom
teny unnecessary entry. Stay Jaleie. Do not extinguish. If flames are water spray to cool fre exposed	can occur. Handling operations that can promote initied to mixing, fittering, purping at high flow ra- contrainer filling, tark cleaning, sampling, gauging Other Precautions: Vapors are heavier than air lying areas. Ignition and/or flash back may occur.	titions that can promote bumping at high flow ra ing, sampling, gauging rs are heavier than air flash back may occur.	accumulation tes, splash filli , switch loadin and may trave	can occur. Handling operations that can promote accumulation of static charges include but are not limited to mixing, iftering, pumping at high flow rates, spash filling, creating mists or sprays, tank and container filling, tank cleaning, ramping, guigug, switch loading, vacuum truck operations. Other Preatutions : Vapos are heavier than air and may travel a long distance and accumulate in low lying areas. Ignition and/or flash back may occur.
guibleon has passed. Fight free from ed hose holders or monitor nazzles g sound from venting safety device or so folguefied gas, apply appropriate thillouefied gas can result in bolling. d, use water spray to knock down and	Storage No smoking, open flames or sources of ignition in handling and vegors can polynomerize and pup eliet devices. Manthalin imholic vegors can polynotestenol Purge oxygen from storage vessels before 4-tert-Buykotateshol Purge oxygen from storage vessels before introgen blanket. See Section 10 for more specific information.	or sources of ignition in 1 plug relief devices. M • oxygen from storage v tion 10 for more specifi	handling and aintain inhibit essels before c information.	Storage No smoking, open flames or sources of ignition in handling and storage area. Uninhibited monomer vepos can polymerate upper leforoses. Manterin Inhibitor level. This product is inhibited with every event of the Urge oxygen from storage vessels before filling. Hold bulk storage under nitrogen blanket. See Section 10 for more specific information.
pressure self-contained breathing re fighting helmet, coat, trousers, t used, fight fire from a protected	8. Exposure Contr	Exposure Controls / Personal Protection	tection	
	Exposure Limits Component	List	Type	Value
	1,3-Butadiene	CAD AB OEL CAD BC OEL	TWA TWA	4.4 mg/m3 2 ppm 2 ppm
procedures: Evacuate area. Refer inly trained and property protected		CAD ON OEL ACGIH OFI (OUF)	TWAEV TWA TWA	2 ppm 2 ppm 4 4 modm3 2 ppm
inel out of low areas. Keep personnel Ventilate area of leak or spill. No sion hazard. Check area with		OEL (QUE)	TWA	Exposure must be minimized. 4.4 mg/m3 2 ppm

Product Name: BUTADIENE

Ingestion: If swallowed, seek medical attention. Do not induce vo medical personnel. In case of frostbite, immediately rinse lips and 15 minutes. Obtain medical attention promptly.

Most important symptoms and effects, both acute and d Asia form the information found under Description of first aid mea mmediate medical attention and special treatment needed (pelow) effects are anticipated

Indication of immediate medical attention and special tre Martain adequate ventilation and oxyganation of the patient. Trea specific and/dat. Treatment of exposure should be directed at the condition of the patient.

Fire Fighting Measures 2.

Suitable extinguishing media Do not extinguish. Stop flow of product and allow fire to burn out. small fires may be extinguished with: Water fog or fine spray. Dry carbon doxide fire extinguishers. Feam.

Special hazards arising from the substance or mixture

Hazardous Combustion Products: During a fire, smoke may con to contrustion products of versing composition witch may be toxic products may include and are not limited to. Carbon monotde. C Unusual Fire and Explosion Hazards. Container may vert and/or heavert them are and may travel a long distance and socurulate in back may occur.

Advice for firefighters

Fire Fighting Procedures: (kep people away, isolate fire and deny upwind. Keep out of low areas where gases (turnes) can accumulate accidentially surflugations, explosive repaintion may occur. Use water containners and fire attected zone until fire is out and danger of regylind may or protected location or state distance. Containners and fire atting at an accumulate protected location or state distance. Containners and fire atting at a soft and anger of regylind may upwith a soft and anger of regylind may accur. Use a distribution activate of the angel atting and and protective disting atting and and protective equipment for Firefighters: Wear positive-pressuppersition of vapors.

ocation or safe distance.

See Section 9 for related Physical Properties

Accidental Release Measures

Personal precautions, protective equipment and emergency f to Section 7, Handing, for additional precautionary measures. Or personetion must be involved in claonetup operationary measures. A point of confined or poorly ventitated arreas. Keep upwind of split, smoking in area. For large splits, warm public of downwind explos

Consult local authorities for recommended exposure limits.	
	Henry's Law Constant (H) 7.36E-02 atm ^m 3/mole, 25 °C Measured
Personal Protection Evertace Protection: For handling the gas, wear safety classes (with side shields). When contact	10. Stability and Reactivity
with the liquid (condensed gas) is possible, wear chemical goggles. If exposure causes eye discomfort, use a full-face respirator. Skin Protection: Wear clean, body-covering clothing.	Reactivity No dangerous reaction known under conditions of normal use.
Hand protection: Use an insulated glove for protection from liquid contact of the skin that may cause froathie due to rapid coording should be worn when there is a potential to exceed Respiratory Protection . Respiratory protection should be worn when there is a potential to exceed the exposure limit requirements or guidelines. If there are no applicable exposure limit requirements	Chemical stability Stable under recommended storage conditions. See Storage, Section 7. Unstable at elevated temperatures. Dimenzes readily.
or guidenes, use an approved respiration: Selection in arr-puritying or positive-pressure supplication will depend on the specific paration and the potential airborne concentration of the material. For emergency conditions, use an approved self-contained threathing apparatus. In contined or poorly ventilary self-contained air supply. The following should be effective types of air- pressure air line with auxiliary self-contained air supply. The following should be effective types of air- pressure air line with auxiliary self-contained air supply. The following should be effective types of air- pressure air line with auxiliary self-contained air supply.	Possibility of hazardous reactions Can occur. Elevated temperatures can cause hazardous polymerization. Maintain inhibitor level. Connome rontaminated with peroxides can form polymer at ambient conditions. Dry polymer containing peroxides at greater than 15% concentration can be deforrated by slight mechanical shock or east. Polymerization can be catalyzed by. Air. Peroxides. Rust. This product is inhibited with. p Tertiary butylotatechol.
Englineering Controls Ventilation: Use engineering controls to maintain airborne level below exposure limit requirements or	Conditions to Avoid: Avoid contact with air to prevent formation of explosive peroxides. Avoid static discharge.
guidenines. In there are no applicable exposure minit and quideministry of guidenines, the only in landosed providents or with local exhausts versifiation. Exhausts systems should be designed to move the air away from the source of veportaerosol generation and people working at this point. Lethal concentrations	Incompatible Materials: Avoid contact with. Air. Oxidizers. Rust. Avoid unintended contact with Peroxides.
Physical and Chemical Properties	Hazardous decomposition products Decomposition products depend upon temperature, air supply and the presence of other materials. Processing may release fumes and other decomposition products. At temperatures exceeding melt
in the field make	temperatures, polymer fragments can be released. Fumes can be irritating.
Ester 1.6 ppm <i>Literature</i>	
Not applicable -108.9 °C <i>i therature</i>	Acute Toxicity
108.9 ° C. Literature	Ingestion LD50, rat 5,480 mg/kg
-4.41 °C Liferature . 76.3 °C Liferature Flammable das ICDC)	Dermal
-10.2 Curarature riammade gas., (ChC) No test data available	As product: The dermai LD50 has not been determined. Inhabition
Extremely flammable gas. Lower 2.0 %/v/1/ <i>threature</i>	LCSU,4 n, rat. 288 mg/ Eye damage/eye irritation
Upper: 12.0 %(V) Literature	Vapor may cause eye irritation experienced as mild discomfort and redness. Liquid may cause frosthile
2,170 kPa @ 16.85 °C Literature 1.9 @ 60 °F Literature	Skin corrosion/irritation
0.62 Literature	No hazard from gas. Liquid may cause frostbite upon skin contact. Sensitization
0.130 yr (w 20 C Linerature 1 A M Mannund	Skin No relevant data found
09/160	Respiratory
1,013 hPa 420 °C <i>Literature</i> No test data available	No relevant data found. Repeated Dose Toxicity to another data have how an activities and the futurities and a formula formation and the formation of the second
0.14 mPa.s Litterature	in animitats, terreda nave overn reponded on the following organis, provou-nomining organis (poline maritow & Spleen). Kidney, Liver, Overness, Respitatory tract. Testes.
no data available no data available	Unronic Loxicity and Carcinogenicity Has caused cancer in laboratory animals. Butadiene epidemiology studies have linked employment in
5.2 lb/gal @ 15 °C L/terature 100 %(m) L/terature	two different chemical operations each with a different type of cancer. The causative factors for these excess cancers have not been determined.
1) Literature	

Page 6 of

Page 5

Product Name: BUTADIENE	Issue Date: 2013.10.29	Product Name: BUTADIEN	TADIENE	Issue Date: 2013.10.29
Carcinogenicity Classifications:				
Component List	Classification			
1,3-Butadiene ACGIH IARC	Suspected human carcinogen.; Group A2 Carcinogenic to humans.; 1	14. Transnort	Transnort Information	
Developmental 1 oxicity Has caused birth defects in laboratory animals only at differts in laboratory animals at doses toxic to the mother.	Developmental location Has caused birth defrection laboratory animals only at doses toxic to the mother. Has been toxic to the returns in aboratory animals at doses toxic to the mother.	TDG Small container Proper Shipping Name:	TDG Small container Proper Shipping Name: BUTADIENES, STABILIZED	
In animal studies, did not interfere with reproduction.	ction.	Hazard Class: 2.1	Hazard Class: 2.1 ID Number: UN1010	
ceneuc 1 oxicology In vitro genetic toxicity studies were positive. A	centeur roxionogy In vitro genetic toxicity studies were positive. Animal genetic toxicity studies were positive.	TDG Large container Proper Shipping Name: Hazard Class: 2.1 ID N	TDG Large container Proper Shipping Name: BUTADIENES, STABILIZED Hazard Class: 2.1 ID Number: UN1010	
Ecological Information		Proper Shipping N	Proper Shipping Name: BUTADIENES, STABILIZED	
		EMS Number: F-D.S-U Marine pollutant: No	S-U	
Material is slightly toxic to aquatic organisms on mg/L in the most sensitive species tested).	Material is slightly toxic to aquatic organisms on an acute basis (LC50/EC50 between 10 and 100 mg/L in the most sensitive species tested).	Transport in bulk accord Product Name: Butadiene Ship Type: Not available	Transmorth bulk according to Annex II of MARPOL 73/78 and the IBC Code Product Name & Butadian Shin Tows Not available	he IBC Code
Fish Acute & Prolonged Toxicity LC50. Pimephales promelas (fathead minnow). 96 h: 45 mg/l	96 h: 45 mg/l	Pollution Category: N/A	N/A	
Persistence and Degradability		ICAO/IATA Proper Shipping N	ICAO/IATA Proder Shidding Name: BUTADIENES: STABILIZED	
Biodegradation may occur under aerobic conditions (in the presence of oxygen) indirect Protogradation with Or Radicals Pare Constant	robic conditions (in the presence of oxygen). A Readicais Atmoscheric Haffulie	Hazard Class: 2.1 PASSENGER AIRC	Hazard Class: 2.1 ID Number: UN1010Cargo Packing Instruction: 200 PASSENGER AIRCRAFT SHIPMENTS ARE FORBIDDEN BY ICAO/IATA REGULATIONS	on: 200 D/IATA REGULATIONS.
emand: 3.26				
Bioaccumulative potential		15. Regulator	Regulatory Information	
Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Partition coefficient, n-octanol/water (log Pow); 199 Measured Bioconcentration Factor (BCF); 13; Fish, Measured	s low (BCF < 100 or Log Pow < 3). w): 1.19 Measured ssured	US. Toxic Substances Control Act All components of this product are on requirements under 40 CFR 720 30	US. Toxic Substances Control Act All components of this product are on the TSCA Invertory or are exempt from TSCA Inventory requirements under 40 CFR 720.30.	empt from TSCA Inventory
Mobility in soil: Potential for mobility in soil is very high (Koo between 0 and 50) Mobility in soil: Potential for mobility in soil is very high (Koo between 0 and 50) Partition coefficient, soil organic carbon/water (Koc): 44 - 228 Estimated. Henry's Law Constant (H): 7.38E-02 atm "m3/mole. 25 °C Measured	/ery high (koo between 0 and 50). ter (Koc): 44 - 228 Estimated. mole: 25 °C. Measured	CEPA - Domestic Substar All substances contined in are not required to be listed Hazardous Products Ad Hazardous has been dast	CEPA - Domestic Substances List (DSL) All substances contained in this product are listed on the Canadian Domestic Substances List (DSL) or are not required to be interpreted to the Canadian Domestic Substances List (DSL) of Hazardous Products Act Information: CPR Compliance This product has been classified in accordance with the hazard orther of the Canadian Controlled product has been classified in accordance with the hazard orther of the Canadian Controlled	Domestic Substances List (DSL) or ria of the Canadian Controlled
			Hazardous Products Act Information: WUMIS flassification	
3 1. 01		A	Compressed Gas	
LISPOSAI CONSIDERATIONS		B1	Flammable Gas	
DO NOT DUMP INTO ANY SEWERS, ON THE GROUND, disposal practices must be in compliance with all Federal S	DO NOT DUMP INTO ANY SEWERS, ON THE GROUND, OR INTO ANY BODY OF WATER. All disposed practices must be in compliance with all Federal. State/Provincial and local laws and	D2A D2A	Material causes Chronic Toxic Effects at Repeated Low Doses Material Probable or Known Human Carcinogen According to Classifications By JARC or ACGIH	ated Low Doses en According to Classifications By
regulations. Regulations may vary in different locations. W applicable laws are the resonability solicy fithe wase ger no CONTROL OVER THE MANAGEMENT PRACTICES O PARTES HANDLING OR USING THIS MATERIAL. THE PERTAMINS ON Y TO THE PRODUCT CONSTRUCTION IN CONTINUED IN WAY STOTED TO THE CANADISCUPTION IN CONTINUED IN CONTINUED IN WAY STOTED TO THE CANADISCUPTION IN CONTINUED IN CONTINUED IN CONTINUED IN CONTINUED IN CONTINUED IN CONTINUED IN CONTINUED IN WAY STOTED IN CONTINUED	regulations. Regulations may vary in different locations. Waste characterizations and compliance with applicable laws are the responsibility solely of the waste generator. AS YOUR SUPFLER, WE HAVE applicable laws are the mesponsibility solely of the waste generator. AS YOUR SUPFLER, WE HAVE postilizations are the responsibility and the waste generator. AS YOUR SUPFLER, WE HAVE PARTIES HANDLING OR YOUNG THE MATERIAL. THE INFORMATION PRESENTED HERE PRETILISAND DULY OT THE PRODUCT AS SHIPPEED IN ITS HOLED CONDITION AS FROM PRESENTING ON YOT THE PRODUCT AS SHIPPEED IN ITS HOLED CONDITION AS FROM PRESENTING ON YOT THE PRODUCT AS SHIPPEED IN ITS HOLED CONDITION AS FROM PRESENTING ON YOT THE PRODUCT AS SHIPPEED IN ITS HUBCH CONDITION AS FROM PRESENTING ON YOT THE PRODUCT AS SHIPPEED IN ITS HUBCH CONDITION AS FROM PRESENTING ON THE PRODUCT AS SHIPPEED IN ITS HUBCH CONDITION AS FROM PRESENTING ON YOT THE PRODUCT AS SHIPPEED IN ITS HUBCH CONDITION AS FROM PRESENTING ON YOT AND A PRESENTING ON A PRODUCT AS SHIPPEED IN ITS HUBCH CONDITION AS FROM PRESENTING ON THE PRODUCT AS SHIPPEED IN ITS HUBCH CONDITION AS FROM PRESENTING ON THE PRODUCT AS SHIPPEED IN ITS HUBCH CONDITION AS FROM PRESENTING ON THE PRODUCT AS SHIPPEED IN ITS HUBCH CONDITION AS FROM PRESENTING ON THE PRODUCT AS SHIPPEED IN ITS HUBCH CONDITION AS FROM PRESENTING ON THE PRODUCT AS SHIPPEED IN ITS HUBCH CONDITION AS FROM PRESENTING ON THE PRODUCT AS FROM PRESENTED AS FROM PRESENTED AND A PRESENTED AS FROM PRESENTED AND A PRESENTED AS FROM PRESENTED AND A PRESENTED AS FROM PRESENTED	Hazardous Produc This product contair Ingredient Disclosur Component	Hazardous Products Act Information: Hazardous Ingredients This product contains the following ingredients which are Controlled Products and/or are on the Ingredient Disclosure List (Canadian HPA Section 13 and 14). Component WWW	Products and/or are on the Amount WWW
DESCRIBED IN MISOLS SECTION. Composition information PRODUCT, the preferred options include sending to a licens thermal destruction device.		1,3-Butadiene	106-99-0	99.5%

Page 8 of 9

Page 7 of 9

Product Name: BUTADIENE

Issue Date: 2013.10.29

16. Other Information

Recommended Uses and Restrictions

Identified uses A reactive momener - Raw material for industrial use. We recommend that you use this product in a manner consistent with the listed use. If your intended use is not consistent with the stated use, please contact your safes or technical service representative.

Revision

Identification Number: 79557 / 1001 / Issue Date 2013.10.29 / Version: 4.1 Most recent revision(s) are noted by the bold, double bars in left-hand margin throughout this document.

Legend

N/A	Not available
WWW	WeightWeight
OEL	Occupational Exposure Limit
STEL	Short Term Exposure Limit
TWA	Time Weighted Average
ACGIH	American Conference of Governmental Industrial Hygienists, Inc.
DOW IHG	Dow Industrial Hygiene Guideline
WEEL	Workplace Environmental Exposure Level
HAZ_DES	Hazard Designation
VOLVOL	Volume/Volume

The Dow Chemical Company urges each customer or recipient of this (M)SDS to study it carefully and consult appropriate expertise, as measessary or appropriate, to become aware of and underated the data contained in good fails and by hazards associated with the product. The information herein is proveded in good fails and believed to be accurate as so the effective date shown above. Liver were, no warranty, express of implied, is phen. Regulation requirements are subject to charge and may differ between various focations: it is the buyer'sduser's responsibility to ansure that his activities comply with all release, state, provincial or hocal lever. The information prevented here prains only to the product as stopped. State, provincial or hocal here. The information prevented here prains only to the product as stopped. State, provincial or hocal here the social use are another the control or the sed use of the product as stopped. State, provincial or hocal here has an antifecture, this and the product as stopped. State, provincial or hocal here are and under the control or the sed use of the product as stopped. State, provincial or hocal here has an antifecture, this the publication of social here social on a second with the sed use of the product as stopped. State and the social one are not sure as the antifecture that one and defained an (M)SDS from another source of the narrow source other than ourselves. If you have obtained an (M)SDS from another source of you are not sure that the (M)SDS you have is current, please contact us for the more source of they are not sure as the area used as contact for the more source of they are not sure that the (M)SDS you have is current, please contact use for the more source of they area of the product they area and they area and they area area of they area of the product the output they area area for the more area area area area area area area area of the area of the area area area area area area area area area. They area area area area area area area

MATHESON TRI•GAS skThe Gas Frofessionals ⁻		Page 1 of 8	MATHESON TRI-GAS BACK TROM TROM TO TRANSFORMED SUDDET TROM TROM TO TRANSFORMED TROM TO TRANSFORMED
MATERIAL SAFETY	AFELY DALA SHEEL		JUNE 1. 2010 1. 1. 2010 COVENT: Jungest to corp. stupped thus, studgest to ofcorp paratic, nates, pointing, thest pair, difficulty breathing, integrate heartbest, headealth, drowsiness, fairgue, drizziness, disorientation, hellorinations, pair in extremities, tremore, Jose of coordination, hearting loss, visual disturbances, eye datamentations, and the adverse and the adverse coordination in hearting loss, visual disturbances, eye
1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION	NY IDENTIFICATION		danage; pundan skurt ovorg surroeanout, proor ursoucers, curivitasions, coura LONG TERM EXPOSURE: nausea, vonning, loss of appetite, headente, dizziness, visual disturbances, Mood discretaes heart discretaes heart domona neura domona anarcohorina discret heidi discretaen heart
MATHESON TRI-GAS, INC. 150 Alter Road Suite 302 Basking Ridge, New Jersey 07920 Information: 1-800-416-2505	Emergency Contact: CHEMTREC 1-800-424-9300 Calls Originating Outside the US: 703-527-3887 (Collect Calls Accepted)	Ģ	domage SKIN CONTACT: SKIN CONTACT: DOG TERM EXPOSURE: blisters, frostbite LONG TERM EXPOSURE: no information is available EVE CONTACT:
SUBSTANCE: CARBON MONOXIDE			SHUKL LEKM EXPOSURE: restore, plurred vision LONG TERM EXPOSURE: no information is available
TRADE NAMES/SYNONYMS: MTG MSDS 18, CARBON OXIDE; CARBONI CO, MAT04290, RTECS FG3500000	TRADE NAMES/SYNONYMS: MTG MSDS 18, CARBON OXIDE; CARBON OXIDE (CO); FLUE GAS, UN 1016; CO, MAT04290; RTECS FG3500000	IE GAS; UN 1016;	LONG TERM EXPOSURE: ingestion of a gas is unlikely LONG TERM EXPOSURE: ingestion of a gas is unlikely
CHEMICAL FAMILY: inorganic, gas			4. FIRST AID MEASURES
PRODUCT USE: industrial			INHALATION: If adverse effects occur, remove to uncontaminated area. Give artificial respiration if not
CREATION DATE: Jan 24 1989 REVISION DATE: Dec 11 2008			breathing. If breathing is difficult, oxygen should be administered by qualified personnel. Get immediate medical attention.
2. COMPOSITION, INFORMATION ON INGREDIENTS	INGREDIENTS		SKIN CONTACT: If fiostbite or freezing occur, immediately flush with plenty of lukewarm water (105- 115 F; 41-46 C). DO NOT USE HOT WATER. If warm water is not available, gently wrap affected parts in blankets. Get immediate medical attention.
COMPONENT: CARBON MONOXIDE CAS NUMBER: 630-08-0			EVE CONTACT: Contact with liquid: Immediately flush eyes with plenty of water for at least 15 minutes. Then get immediate medical attention.
00			INGESTION: If a large amount is swallowed, get medical attention.
3. HAZARDS IDENTIFICATION			NOTE TO PHYSICIAN: For inhalation, consider oxygen.
NFPA RATINGS (SCALE 0-4): HEALTH=3 FIRE=4 REACTIVITY=0	FIRE=4 REACTIVITY=0	4	5. FIRE FIGHTING MEASURES
EMERGENCY OVERVIEW: COLOR: colorless PHYSICAL FORM: gas			FIRE AND EXPLOSION HAZARDS: Severe fire hazard. Vapov/air mixtures are explosive. Containers may rupture or explode if exposed to heat.
I HAZARDS: harmful if inh	ODOR: ocorress MAJOR HEALTH HAZARDS: harmful if inhaled, blood damage, difficulty breathing MUVEVEN IN 12 A DOB. HOLMEN AND A DAMAGED		EXTINGUISHING MEDIA: carbon dioxide, regular dry chemical
FITTOLAL HAZAKUS: Flatilitatie gas, may cause hash life.	cause hash life.		Large fires: Use regular foam or flood with fine water spray.
FUTENTIAL HEALTH EFFECTS: INHALATION:			FIRE FIGHTING: Move container from fire area if it can be done without risk. Cool containers with water

Page 4 of 8 20 pm (22) mg/m3) NIOSH recommended ceiling 20 pm (22) mg/m3) NIOSH recommended ceiling 20 pm (22) mg/m3) NIOSH recommended ceiling 21 VEXTILATION: Ventilation equipment should be explosion-resistant if explosive concentrations of material argresent provide local eduats or process enclosure ventilation system. Ensure compliance with appliciable exposure limits. EVEX INLATION: For the gas: Dye protection not required, but recommended. For the liquid, Wear appropriate protective, old insulating clothing: EVEX INSOTECTION: For the gas: Protection not required, but recommended. For the liquid, Wear appropriate protective, old insulating clothing: CLOTHINC: For the gas: Protective clothing is not required. For the liquid, Wear appropriate protective, old insulating clothing: CLOTHINC: For the gas: Protective clothing is not required. For the liquid, Wear appropriate protective, old insulating clothing: CLOTHINC: For the gas: Protective clothing is not required. For the liquid, Wear appropriate protective, old insulating clothing: CLOTHINC: For the gas: Protective clothing is not required. For the liquid, Wear appropriate protective, old insulating clothing: CLOTHINC: For the gas: Protective clothing is not required. For the liquid, Wear appropriate protective, old insulating clothing: CLOTHINC: For the gas: Protective clothing is not required. For the liquid, Wear appropriate protective, old insulating clothered clothing: CLOTHINC: For the gas: Protective clothing is not requinter protective. CLOTHINC: Fore

Page 3 of 8 spray until well after the fire is out. Stay away from the ends of tanks. For fires in eargo or storage area: Cool containers with water from unmanned hose holder or monitor nozzles until well after fire is out. If this is impossible than take the following precautions: Keep numeessary people away, isolate hazard area and deny entry. Let the the hollowing precautions: Keep numeessary people away, isolate hazard area and deny discoloration of tanks due to fire. For tank, rail car or tank truck: Evacution radius 800 meters (1/2 mile). Do not attempt to exhiginsh fire unlass flow of material can be stopped first. Flood with fine water spray. Cool containers with water, Apply water from a protected location of found attence. Avoid inhalation of material or combustion by-products. Stay upwind and keep out of low areas.

FIRE FIGHTING PROTECTIVE EQUIPMENT: Wear full protective fire fighting gear including self contained breathing apparatus (SCBA) for protection against possible exposure.

FLASH POINT: Not available LOWER FLAMMABLE LIMIT: >=12.5 % by volume UPPER FLAMMABLE LIMIT: 74 % by volume AUTOIGNITION: 1292 F (700 C)

6. ACCIDENTAL RELEASE MEASURES

WATER RELEASE:

Subject to California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 63). Keep out of water supplies and sewers.

OCCUPATIONAL RELEASE: Avoid heat, flames, sparks and other sources of ignition. Stop leak if possible without personal risk. Reduce vapors with water spray. Keep unnecessary people away, isolate hazard area and deny entry. Remove sources of ignition.

7. HANDLING AND STORAGE

STORAGE: Store in accordance with all current regulations and standards. Store in a cool, dry place. Store in a well-ventilated area. Avoid direct sunight. Avoid heat, flames, sparks and other sources of ignition. Subject to storage regulations: U.S. OSHA 29 CFR 1910.101. Keep separated from incompatible substances.

8. EXPOSURE CONTROLS, PERSONAL PROTECTION

CARBON MONOXIDE: 50 ppm (55 mg/m3) OSHA TWA 35 ppm (57 mg/m3) OSHA TWA 35 ppm (299 mg/m3) OSHA (reacted by 58 FR 35338, June 30, 1993) 200 ppm (2029 mg/m3) OSHA cecling (vacated by 58 FR 35338, June 30, 1993) 25 ppm ACGHT TWA 35 ppm (40 mg/m3) NIOSH recommended TWA 10 hout(s) EXPOSURE LIMITS:

COEFFICIENT OF WATEROIL DISTRIBUTION: Not applicable conditions COEFFICIENT OF WATEROIL DISTRIBUTION: Not applicable sourcest or complication SOULVENT SOLUBILITY: SOULUBILITY FATE AND TRANSPORT: SOULVENT SOLUBILITY SOULDBLITY EAND TRANSPORT: SOULVENT SOLUBILITY BODEGRADATION: Oxidation to carb SOULVENT SOULDBLITY BODEGRADATION: Oxidation to carb SOULVENT SOULDBLITY BODEGRADATION: Oxidation to carb Io. STABILITY AND REACTIVITY BODEGRADATION: Oxidation to carb Io. STABILITY AND REACTIVITY BODEGRADATION: Oxidation to carb Io. STABILITY AND REACTIVITY AND REACTIVITY REACTIVITY: Stable at normal temperatures and pressure. ATMOSPHERIC PROCESSES: Degrad CONDITIONS TO AVOID: Avoid inhalation of material. Avoid inhalation of material or combustion by-products. Keep out of water supplies and severs. Severs. INCOMPATIBILITIES: oxidizing materials, halogens, metals, combustible materials, material. INCOMPATIBILITIES: oxidizing materials, halogens, metals, combustible materials, infinition	 ECOTOXICITY DATA: ECOTOXICITY bATA: ECOTOXICITY: 7500 ug/L 1 day(s) LC100 (Mortality) Orangespotted sunfish (Lepornis humilis) INVERTEBRATE TOXICITY: No data available. ALGAL TOXICITY: No data available. HINTOTOXICITY: No data available. INVERTEBRATE TOXICITY: No data available. INTOTIOXICITY: No data available. INTOTIOXICITY: No data available. INTOTIOXICITY: No data available. IST AND TRANSPORT: <
HAZARDOUS DECOMPOSITION: Thermal decomposition products: oxides of carbon U.S. DOT 49 CFR 172,101:	4
	nonoxide, compressed
Hat LC50	×

Page 8 of 8

Page 7 of 8

©Copyright 1984-2009 ChemADVISOR, Inc. All rights reserved.

MATHESON TRI•GAS

U.S. REGULATIONS: CERCLA SECTIONS 102a/103 HAZARDOUS SUBSTANCES (40 CFR 302.4): Not regulated. SARA TITLE III SECTION 302 EXTREMELY HAZARDOUS SUBSTANCES (40 CFR 355 Subpart B): Not regulated.

MATHESON TRI-GAS, INC. MAKES NO EXPRESS OR IMPLIED WARRANTIES, GUARANTES OR REPRESENTATIONS REGARDING THE PRODUCT OR THE INFORMATION HEREIN, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR USE. MATHESON TRI-GAS, INC. SHALL NOT BE LIABLE FOR ANY PERSONAL INJURY, PROPERTY OR OTHER DAMAGES OF ANY NATURE, MHETHER COMPENSATORY, CONSEQUENTIAL, EXEMPLARY, OR OTHER WISE, RESULTING FROM ANY PUBLICATION, USE OR RELIANCE UPON THE INFORMATION HEREIN.

> SARA TITLE III SECTION 304 EXTREMELY HAZARDOUS SUBSTANCES (40 CFR 355 Subpart C): Not regulated.

SARA TITLE III SARA SECTIONS 311/312 HAZARDOUS CATEGORIES (40 CFR 370 Subparts B and C): ACUTE: Yes CHRONIC: Yes

and C): ACUTE: Yes CHRONIC: Yes FIRE: Yes REACTIVE: No SUDDEN RELEASE: Yes SARA TITLE III SECTION 313 (40 CFR 372.65): Not regulated.

OSHA PROCESS SAFETY (29 CFR 1910.119): Not regulated

STATE RECULATIONS: Safforma For position 65: Known to the state of California to cause the following: Carbon monoxide

Carbon monoxide Developmental toxicity (Jul 01, 1989)

CANADIAN REGULATIONS: WHMIS CLASSIFICATION: A, B1, D1A, D2A. NATIONAL INVENTORY STATUS: U.S. INVENTORY (TSCA): Listed on inventory.

TSCA 12(b) EXPORT NOTIFICATION: Not listed.

CANADA INVENTORY (DSL/NDSL): Listed on DSL

16. OTHER INFORMATION

"RTECS®" is a United States trademark owned and licensed under authority of the U.S. Government, by and through Symyx Software, Inc. Portions ©Copyright 2001, U.S. Government. All rights reserved.

Reactivity

Ethyl alcohol 200 Proof MSDS Material Safety Data Sheet

I: Chemical Product and Company Iden	Contact Information:
Section 1: Cher	Product Name: Ethyl alcohol 200 Proof

ntification

Catalog Codes: SLE2248, SLE1357 CAS#: 64-17-5	
RTECS: KQ6300000	
TSCA: TSCA 8(b) inventory: Ethyl alcohol 200 Proof	

US Sales: 1-800-901-7247 International Sales: 1-281-441-4400 Order Online: ScienceLab.com Sciencelab.com, Inc. 14025 Smith Rd. Houston, Texas 77396

CHEMTREC (24HR Emergency Telephone), call: I-800-424-9300

Synonym: Ethanol: Absolute Ethanol. Alcohol; Ethanol 200 proof; Ethyl Alcohol, Anhydrous; Ethanol, undenatured; Dehydrated Alcohol: Alcohol

CI#: Not applicable.

Chemical Formula: CH3CH2OH Chemical Name: Ethyl Alcohol

or non-emergency assistance, call: 1-281-441-4400 International CHEMTREC, call: 1-703-527-3887

% by Weight 90 Section 2: Composition and Information on Ingredients 64-17-5 CAS# Ethyl alcohol 200 Proof Composition: Name

Toxicological Data on Ingredients: Ethyl alcohol 200 Proof: ORAL (LD50): Acute: 7060 mg/kg [Rat], 3450 mg/kg [Mouse]. VAPOR (LC50): Acute: 20000 ppm 8 hours [Rat], 39000 mg/m 4 hours [Mouse].

Section 3: Hazards Identification

Potential Acute Health Effects: standous in case of skin contact (irritant), of eye contact (irritant), of inhalation. Slightly hazardous in case of skin contact (permeator), of ingestion.

Potential Chronic Health Effects: Slight hrazdrous in ease of skin contact (sensitizer). CARCINOCENIC EFFECTS: A4 (Not classifiable for human or animal.) by ACGIH. MUTAGENIC EFFECTS Mutagenic for mammalian somatic cells. Mutagenic for based and/or yeast TERATOGENIC EFFECTS classified PROVEN for human. DEVELOPMENTAL TOXICIT: Classified Development toxin [PROVEN] classified Reproductive system/toxinfmale. Reproductive system/toxin/male [POSSIBLE]. The substance is toxic to blood, the reproductive system/toxinffect to the reproductive system/toxin/male [POSSIBLE]. The substance is toxic optoorup to the substance can produce larget organs damage.

Section 4: First Aid Measures

Eve Contract: The for and remove any contract lenses. Immediately flush eyes with running water for at least 15 minutes, keeping eyelids open. Cold water may be used. Get medical attention.

١

Skin Contact: In case of contact, immediately flush skin with plenty of water. Cover the irritated skin with an emollient. Remove contaminated of orbing and shoes. Cold water may be used. Wash clothing before reuse. Thoroughly clean shoes before reuse. Get medical attention. Inhalation: If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention if symptoms appear. Serious Skin Contact: Wash with a disinfectant scap and cover the contaminated skin with an anti-bacterial cream. Seek medical attention.

Serious Inhalation: Evacuate the victim to a safe area as soon as possible. Loosen tight clothing such as a collar, the, belt or waistband. If breathing is difficult, administer oxygen. If the victim is not breathing, perform mouth-to-mouth resuscitation. Seek medical attention:

Ingestion: Do NOT induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. Loosen tight clothing such as a collar, the, belt or waistband. Get medical attention if symptoms appear. Serious Ingestion: Not available.

Section 5: Fire and Explosion Data

Flammability of the Product: Flammable.

Auto-Ignition Temperature: 363°C (685.4°F)

Flash Points: CLOSED CUP: 12.78°C (55°F). OPEN CUP: 17.78°C (64°F) (Cleveland).

Flammable Limits: LOWER: 3.3% UPPER: 19%

Products of Combustion: These products are carbon oxides (CO, CO2).

Fire Hazards in Presence of Various Substances: mightly flammable in presence of open flames and sparks, of heat. Slightly flammable to flammable in presence of oxidizing mightly. impact: Not available. Slightly explosive in presence of open Explosion Hazards in Presence of Various Substances: Risks of explosion of the product in presence of mechanical i flames and sparks, of heat, of oxidizing materials, of acids.

Fire Fightting Media and Instructions: Flammable liquid, soluble or dispersed in water. SMALL FIRE: Use DRY chemical powder. LARGE FIRE: Use alcohol foam, water spray or fog.

Special Remarks on Fire Hazards: Containers should be grounded. CAUTION: MAY BURN WITH NEAR INVISIBLE FLAME Vapor may travel considerable distance to source of provide on dissh back. May form explosive maktures with air. Contact with Bromme pentatuorde to cause fire or explosion. Ethannial ginites or contact with chronide. Ethanoil grites on contact with lodine hepfalluorde gas. It ignites than explodes upon contact with mitrosly perchlorate. Addition of platinum black catalyst caused ignition.

Special Remarks on Explosion Hazards: Extend has an explosive reaction with the ordized coating around potassium metal. Ethanol ignites and then explodes on contract with acetic antifyiding explosities (ignites and may explode), disulturc acid + intific acid, phosphorous(III) oxide platinum, potassium-tert-butoxide+ acids. Ethanol forms explosive products in reaction with the following compound :

Mild to strong, rather pleasand, like wine or winskey. Alconol-like, Ethereal, vinous. Taste: Pungent. Burning. Molecular Weight: 45.07 g/mole Coor:	pH (1% soin/water): Not available:	Boiling Point: 78.5°C (173.3°F)	Melting Point: -114.1°C (-173.4°F)	Critical Temperature: 243°C (469.4°F)	Specific Gravity: 0.789 (Water = 1)	Vapor Pressure: 5.7 kPa (@ 20°C)	Vapor Density: 159 (Air = 1)	Volatility: Not available.	Odor Threshold: 100 ppm	Water/Oil Dist. Coeff.: The product is more soluble in water, log(oil/water) = -0.3	lonicity (in Water): Not available.	Dispersion Properties: See solubility in water, methanol, diethyl ether, acetone.	Solubility: Easily solubils in cold water, hot water. Solubile in methanol, diethyl ether, acetone.	Section 10: Stability and Reactivity Data	Stability: The product is stable.	instability Temperature: Not available.	Conditions of Instability: Incompatible materials, heat, sources of ignition.	incompatibility with various substances: Reactive with oxidizing agents, acids, alkalis.	Corrosivity: Non-corrosive in presence of glass.	Special Remarks on Reactivity: Ethanol repuidy absorbs molsture from the air. Can react vigorously with oxidens. The following oxidants have been demonstrated to undergo vigorous/skytosive reaction with ethanor) beaturn perchlorate, bromine pertatluoride, calcium	hypochlorite, chloryl perchlorate, chromium trioxide, chromyl chloride, dioxygen difluoride, disulfuryl difluoride, fluorine nitrate,	Nydrogen peroxide, iodine heptafluorde, intirc add introsy perchlorate, perchloria odd permangario add peroxodsiufurio add, potassium perchlorate, potassium perchlorate, perchlorate, nuthenium(VIII) oxide, silver perchlorate, silve peroxide, uranium hexefluote, uraniu venchlorate, Ethanoi reads violentilvexodes with the following compounds acet	bromide (evolves hydrogen bromide) acety chlonde, aluminum, sesquibromide ethylate, ammonium hydroxide & silver	oxide, chiorate, chromic anhydride, cyanuric acid + water, dichioromethane + suituric acid + nitrate (or) nitrite, hydrogen peroxide + sulfuric acid, iodine + methanol + mercuric oxide, manganese perchlorate + 2.2-dimethoxy propane, perchlorates.	permanganates + suffuric acid, polassium superoxida, polassium tert-butoxida, silver & nitric acid, silver perchlorate, sodum traztade, suffur acid + sodum distromate, teratorionistamer vaeit: Ettination is also incorpatible with partinum, sodum, No reality sale comprise sast under which ethy alcohol and chlorine oxides can be handed. Reads vigorousiy with	acetyl chloride	Special Remarks on Corrosivity: Not available.	Polymerization: Will not occur.		Section 11: Toxicological Information
armonta = silver intrate (forms sizver funde and siver furminate), for offine + prosponds (forms tradier) magnesum perchiorate (forms eithy) percliorate), mercuin intate, mine cail + silver (forms silver fulminate) silver intrate (forms eithy) intrate) silver(1) oxide + ammonia or hydrazine (forms silver nitride and silver fulminate), sodum (evolves hydrogen gas). Sodum Hydrazide + adootio can produce an explosion. Adootis stolver autoinate), sodum (evolves hydrogen gas). mercuin cultuminate may be formed. May form stolver an explosion. Adootis stolut for the mine dwith mercuin citrate, as explosive of alcohols to highly concentrate hydrogen peroxide forms powerful explosives. Explodes on contact with calcium hypochlorite		Saction 6. Accidental Ralease Measures		Small Spill: Dilute with water and mon up, or absorb with an inert dry material and place in an announciate warte dismocal container	70.000		sand or other non-combustible material. Do not touch spilled material. Prevent entry into sewers, basements or confined areas: dike if needed. Be careful that the product is not present at a concentration level above TLV. Check TLV on the MSDS			Section 7: Handling and Storage		Precautions: Keen jorked un Keen away from heat Keen away from sources of incition. Ground all equipment containing material Do		Storage: Stora is segregated and approved area. Keep container in a cool, well-wentilated area. Keep container tightly dosed and	sealed untilineady for use. Avoid all possible sources of ignition (spark or flame). Lo not store above 23°C (73.4°F).		Section 8: Exposure Controls/Personal Protection		Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective threshold limit value. Ensure that eyewash stations and safety showers are proximal to the work-station location.	Personal Protection: Solisation of a program Laboration Be sure to use an approved/certified respirator or equivalent. Gloves, Use a concience reterior concenter line in concorded.		Personal Protection in Case of a Large Spill: Spiash grogides. Full suit Vapor repriator. Bools, Giowes. A self contained breathing apparatus should be used to avoid Instalation of the moduld. Supported protectived othinin moth not be sufficient consult a cancialist. RFE/OFF handlind this		and the second se	bit mon Set NF FELI funded states] TWK: 1000 (ppm) from 05HA (PEL) funded States) TWX: 1900 (mg/ H fundted States) TWX: 1000 (ppm) from 1005H funded States) TWX: 1000 (ppm) fundted Kingdom (UK)) fm3) [United Kingdom (UK)] TWX: 1000 STEL: 1250 (ppm) [Canada)Consult local authorities for acceptable	exposure limits.		Section 9: Physical and Chemical Properties	Physical state and appearance: Liquid. (Liquid.)	Odor:

ō	
esti	
0	
ΰů	
<u>_</u>	
5	
8	
ati	
00	
5	
5	
t	
5	
00	
ō.	
Eye ci	
9	
Ш	
act	
ā	
Ħ	
0	
conte	
emal	
Æ	
L	
ő	
-	
kin.	
2	
L S	
-	
Ð	
5	
Ξ	
d throu	
orbe	
9	
S	
2	
1: 1	
÷	
5	
ш	
J.	
tes of Entry	
ŝ	
oute:	
out	
0	

Routes of Entry: Absorbed through skin. Demail contact. Eye contact. Inhelation. Ingestion. Toxicity to Animals: WARNING: THE LC50 VALUES HEREUNDER ARE ESTIMATED ON THE BASIS OF A 4-HOUR EXPOSURE. Acute oral toxicity (LD50): 3450 mg/kg [Mouse]. Acute toxicity of the vapor (LC50): 39000 mg/m3 4 hours [Mouse].

Chronic Effects on Humans: CarchioloEnt EFFECTS. All (Not classifiable for human or animal.) by ACGIHI, MUT AGENIC EFFECTS. Mutagenic for mammalian somic EFFECTS. All work backens and/or yeast. TERATOGENIC EFFECTS. Classified PROVEN for human. DECVELOPMENTAL TOXICITY. Classified Development toxin [PROVEN]. Classified Reproductive system/bioinframale, upper respiratory tract, skin, eartial and/oros system (CNS).

Other Toxic Effects on Humans: Hazardous in case of skin contact (irritant), of inhalation. Slightly hazardous in case of skin contact (permeator), of ingestion.

Special Remarks on Toxicity to Animals: Lower Published DesciConc. LDL(Human)- Route: Oral; Dose: 1400 mg/kg LDL [Human child] - Route: Oral; Dose: 2000 mg/ kg LDL[Fabbit] - Route: Sin; Dose: 2000 mg/kg. Special Remarks on Chronic Effects on Humans: May after genetic material (mutagenic) Causes adverse reproductive effects and birth detects (teratogenic), based on moderate to heavy consumption. May cause cancer based on animal data. Human: passes through the placenta, accreted in mediate to heavy consumption.

narcosis, hallucinations, distorted perceptions, general anesthetic), penpherial nervous system (spastic paralysis)/vision (dipologi), Moderably toxic and narcolic in high concentrations, May also affect metabolism. Joci, May readian (dystinea), and endocrine system. May affect respiratory tract, cardiovascular(cardiace arritythmas, hybertarison), and uniary systems, inhalation: May cause initiation of the respiratory tract and affect behavior/central nervous system with sympton similar to impestion. Chronic Potential Health Effects: Skin Prologed or repeated skin context may cause dematitis, an allergic readon. Ingestion: Prolonged or repeated ingestion will have similar effects as acute ingestion. Itmay also affect breator Special Remarks on other Toxic Effects on Humans: Acute potential health effects: Skin: causes skin imitation Eyes: causes eye imitation ingestion: May cause gastrointestinal tract imitation with nauseax, wonting, dammea, and alterations in gastric secretions. May affect behaviorential heaves (central nervous system depreson-anneative): headache, muscular incoordination, excitation; mild suphora, surred speech, drowsiness, staggaring galt, fatigue, changes in moodpersonality, excessive talking, dizziness, ataxia, somnlence, coma/

Section 12: Ecological Information

Ecotoxicity: Ecotoxicity in water (LC50): 14000 mg/l 96 hours [Rainbow trout]. 11200 mg/l 24 hours [fingerling trout]. BOD5 and COD: Not available.

Products of Biodegradation: Prestibly hazardous short term degradation products are not likely. However, long term degradation products may arise. Toxicity of the Products of Biodegradation: The product itself and its products of degradation are not toxic.

Special Remarks on the Products of Biodegradation: Not available.

Section 13: Disposal Considerations

Waste Disposal: Waste must be disposed of in accordance with federal, state and local environmental control regulations.

Section 14: Transport Information

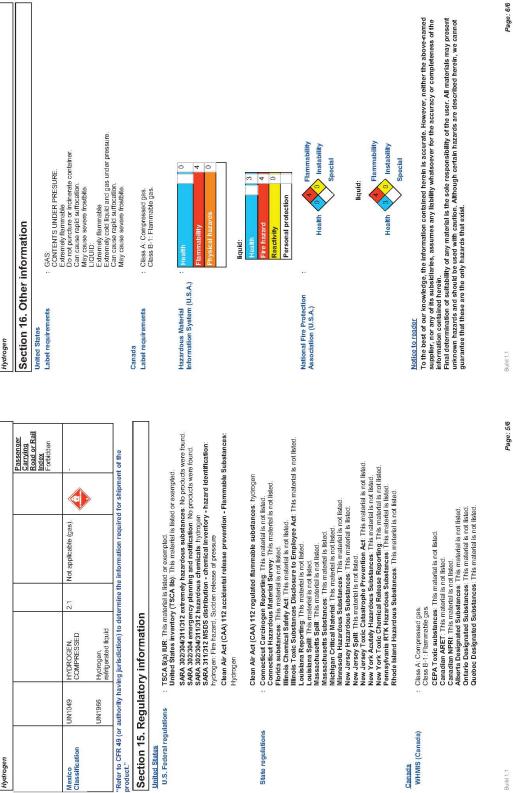
DOT Classification: CLASS 3; Flammable liquid.

Identification: | Ethanol UNNA: 1170 PG: II

Special Provisions for Transport: Not available

Section 15: Other Regulatory Information
Federal and State Regulations: California prop. 65. This product contains the following ingredents for which the State of California has found to cause cancer. California prop. 65. This product contains the following ingredents for which the State of California has found to exuse cancer, the detects or other reproductive harm, which would reque a warming under the statule. Ethy alcohol 200 Proo (in alcoholic beverages). California prop. 57. This product orientar the following ingredents for which the State of California has found consease bith detects which would reque a warming under the statule. Ethy alcohol 200 Proof (in alcoholic beverages) connectual threadous material survey. Thy alcohol 200 Proof thinois toxic substances discioura to among varies and 200 Proof. Florida: Ethy alcohol 200 Proof Minosi toxic substances they alcohol 200 Proof Amasenbustis spill list. Ethy alcohol 200 Proof Minosi 200 Proof Florida: Ethy alcohol 200 Proof Massenbustis spill list. Ethy alcohol 200 Proof Massechusetts RTK. Ethy alcohol 200 Proof Massechusets spill list. Ethy alcohol 200 Proof Massechusetts RTK. Ethy alcohol 200 Proof 200 Proof Proof. 200 Proof Massechuset Strate and substances (alcohol 200 Proof Proof Proof 200 Proof Massechuset spill list. Ethy alcohol 200 Proof Massechusetts RTK. Ethy alcohol 200 Proof 200 Proof. 200 Proof Proof.
Other Regulations: 0SHA: Hazardous by definition of Hazard Communication Standard (29 CFR 1910.1200), EINECS: This product is on the European Inventory of Existing Commercial Chemical Substances.
Other Classifications:
WHMIS (Canada): CLASS B-2. Flammable liquid with a flash point lower than 37.8°C (100°F). CLASS D-2A. Material causing other toxic effects (VER Y TOXIC).
DSCL (EEC): R11- Highly flammable. S7- Keep container tightly closed. S16- Keep away from sources of ignition - No smoking.
HMIS (LIS.A.):
Health Hazard: 2
Fire Hazard: 3
Reactivity: 0
Personal Protection: E
National Fire Protection Association (U.S.A.):
Health: 2
Flammability: 3
Reactivity: 0
Specific hazard:
Protective Equipment: Gloves. Lab coat. Vapor respirator. Be sure to use an approved/certified respirator or equivalent. Wear appropriate respirator when vertilation is inadequate. Splash goggles.
Section 16: Other Information
References: -SAX, N.I. Dangerous Properties of Indutrial Materials. Toronto, Van Nostrand Reinold, 6e ed. 1994Material safety data sheet emitted by Ia Commission de la Sartié et de la Securité du Travall du QuébecHawley, G. G., The Condensed Tomeia Dictorary, 11e ed., New York, N.Y., Van Nostrand Reinold, 1987The Syma-Adrich Library of Chemical Safety Data Fehinon II. HSDR, PTES. and 10.1 Ladabases.
Data, Edition II, HSDB, RTECS, and LOLI databases,

Other Special Considerations: Not available. Created: 1009/2005 05.28 PM Last Updated: 05/21/2013 12:00 PM The information above is believed to be accurate and represents the best information currently evailable to us. However, we make no varianty form instrability or sary of make their work investigators to determine the suitability of the information for above is believed to service their constraints of the information currently express make no varianty form its use Servicit make their work investigators to determine the suitability of the information for their pacticular purposes in no event shall ScienceLab com he label for any claim, losses, or damages of any third party or for their pacticular purposes in no event shall ScienceLab com has been advised of the possibility of such damages.


Materi	Material Safety Data Sheet	Hydrogen	
	Hydrogen	Section 3. Compos	Composition, Information on Ingredients
Section 1. Chemics	Section 1. Chemical product and company identification	<u>Name</u> Hydrogen	CAS number % Volume Exposure limits 1333-74-0 100 Oxygen Depletion [Asphyxiant]
Product name	: Hydrogen	Section 4. First aid measures	measures
Supplier	. ANK-SAS INC., on benation its subsolutions 259 NMI Radinor Chester Road Suite 100 Radinor A 1908-7529	No action shall be taken involving any personal ris the rescuer should wear an appropriate mask or si providing aid to give mouth-to-mouth resuscitation	No action shall be taken involving any personal risk or without suitable training. If it is suspected that furmes are still present, the researe should ware an appropriate mask or self-contained breathing apparatus. It may be dangerous to the person providing act to give examination threassications.
Product use	1-610-687-6263 Synthetic/Analytical chemistry.	Eye contact	 Check for and remove any contact lenses. Immediately flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get medical entorine intervention.
Synonym	 Dihydrogen; o-Hydrogen; p-Hydrogen; Molecular hydrogen; H2; UN 1049; UN 1966; Liquid hydrogen (LH2 or LH2) 	Skin contact	. In case of contact, immediately flush skin with plenty of water for at least 15 minutes
MSDS # Date of	: 001026 : 3772013.		wine removing containing deciser or outwing and shoes. Wash dowing before reuse. Clear shoes thoroughly before reuse. Get medical attention immediately.
Preparation/Revision In case of emergency	: 1-866-734-3438	Frostbite Inhalation	I rty to warm up the frozen tissues and seek medical attention. Move exposed person to fresh ar. If no beaching, if breathing is irregular or if
Section 2. Hazards identification	identification		respiratory arrest occurs, provide annuclar respiratori or oxygen by traned personnel. Loosen tight clothing such as a collar, tie, belt or waistband. Get medical attention
Physical state	: Gas or Liquid.	Ingestion	: As this product is a gas, refer to the inhalation section.
Emergency overview	: WARNING! GAS:	Section 5. Fire-figh	Fire-fighting measures
	CONTENTS UNDER PRESURE.	Flammability of the product	: Flammable.
	Extremely italminable Do not puncture or incinerate container.	Auto-ignition temperature	: 500 to 571°C (932 to 1059.8°F)
	Can cause rapid suffocation. Mav cause severe frostbite.	Flammable limits	: Lower: 4% Upper: 76%
	LIQUID:	Products of combustion	
	Extremely flammable Extremely cold liquid and gas under pressure. Con course not efforciate	Fire hazards in the presence of various substances	 Extremely flammable in the presence of the following materials or conditions: oxidizing materials.
	can cause rapid sundcaron. May cause severe frostbite.	Fire-fighting media and instructions	: Use an extinguishing agent suitable for the surrounding fire.
	Do not puncture or incinerate container. May cause target organ damage, based on animal data.		Apply water from a safe distance to cool container and protect surrounding area. If involved in fire, shut off flow immediately if it can be done without risk.
	Contact with rapidly expanding gases or liquids can cause frostbite.		Contains gas under pressure. In a fire or if heated, a pressure increase will occur and the container may britter or evolution
Target organs	: May cause damage to the following organs: lungs.	Snorial protoctive	the container may burst of explore. • Eire-fichters should wear announdete nortective anuinment and self-contained hreathing
Routes of entry Potential acute health effects	: Inhalation	special protective equipment for fire-fighters	: Fire-informers should wear appropriate protective equipment and self-contained breatming apparatus (SCBA) with a full face-piece operated in positive pressure mode.
Eyes	 Contact with rapidly expanding gas may cause burns or frostbile. Contact with cryogenic liquid can cause frostbile and cryogenic burns. 	Section 6. Acciden	Accidental release measures
Skin	 Contact with rapidly expanding gas may cause burns or frostbite. Contact with cryogenic liquid can cause frostbite and cryogenic burns. 	Personal precautions	 Immediately contact emergency personnel. Keep unnecessary personnel away. Use suitable protective equipment (section 8). Shut off gas supply if this can be done safely.
Inhalation	: Acts as a simple asphyxiant.		Isolate area until gas has dispersed.
Ingestion	 Ingestion is not a normal route of exposure for gases Contact with cryogenic liquid can cause frostbite and cryogenic burns. 	Environmental precautions	: Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers.
Potential chronic health effects		Methods for cleaning up	 Immediately contact emergency personnel. Stop leak if without risk. Note: see section 1 for emergency contact information and section 13 for waste disposal
Chronic effects	: May cause target organ damage, based on animal data.	:	
Target organs	: May cause damage to the following organs: lungs.	Section 7. Handling	
Medical conditions aggravated by over- exposure	: Pre-existing disorders involving any target organs mentioned in this MSDS as being at risk may be aggravated by over-exposure to this product.	Handling	: High pressure gas. Do not puncture or incinerate container. Use equipment rated for cylinder pressure. Close valve after each use and when empty. Protect cylinders from physical damage; do not drag, roll, silde, or drop. Use a suitable hand truck for cylinder movement.
See toxicological information (Section 11)	(Section 11)		Never allow any unprotected part of the body to touch uninsulated pipes or vessels that contain cryogenic liquids. Prevent entrapment of liquid in closed systems or piping without pressure refer devices. Some materials may become brittle at low temperatures and will easily fradure.
Build 1.1	Page: 1/6	Build 1.1	Page: 2/6

201

нуагодел		нуагодел						
Storage	: Cylinders should be stored upright, with valve protection cap in place, and firmly secured	Section 11. T	oxicolo	Section 11. Toxicological information	u			
	to prevent failing or being knocked over. Cylinder temperatures should not exceed 52 °C (125 °F). For accilitorial information concerning storage and handling refer to compressed Gas For accilitorial information concerning storage and handling refer to compressed Gas Association pemphtels P-1 State Handling of Compressed Gases in Containers and P- 12 State Handling of Cryogenic Liquids available from the Compressed Gas Association, Inc.	<u>Toxicity data</u> Chronic effects on humans Other toxic effects on humans <u>Specific effects</u>	1411 1411	: May cause damage to the following organs: lungs. : No specific information is available in our database regarring the other toxic effects of this material to humans.	e following available i	organs: lungs. in our database regard	ing the other	toxic effects of
Section 8. Exposul	Section 8. Exposure controls/personal protection	Carcinogenic effects Mutagenic effects		 No known significant effects or critical hazards. No known significant effects or critical hazards. 	cts or critic cts or critic	al hazards. al hazards.		
Engineering controls	: Use only with adequate ventilation. Use process enclosures, local exhaust ventilation or	Reproduction toxicity		: No known significant effects or critical hazards.	cts or critic	al hazards.		
	other engineering controls to keep worker exposure to airborne contaminants below any recommended or statutory limits.	Section 12. E	cologic	Section 12. Ecological information				
Personal protection		Aquatic ecotoxicity						
Eyes	: Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists or	Not available. Environmental fate	2	Not available.				
	dusts. When working with cryogenic liguids, wear a full face shield.	Environmental hazards		No known significant effects or critical hazards.	cts or critic	al hazards.		
Skin	 Personal protective equipment for the body should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling 	Saction 13 Disno	hisnosal	oxicity to the environment : Not available. Section 13 Disnosal considerations				
	this product.						C Landard of	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Respiratory	: Use a property fitted, air-purifying or air-fed respirator complying with an approved standard if a risk assessment indicates this is necessary. Respirator selection must be	Product removed mo regulation.Return cy	linders with	Froduct removed from the cylinder must be disposed of in accordance with appropriate Federal, State, local regulation.Return cylinders with residual product to Airgas, inc.Do not dispose of locally.	r in accord gas, inc.D	ance with appropriation of loca	te rederal, s Ily.	tate, local
	based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the selected respirator.	Section 14. T	ranspor	Section 14. Transport information				
	The applicable standards are (US) 29 CFR 1910.134 and (Canada) 294.4-93	Regulatory	UN number	Proper shipping	Class	Packing group	Label	Additional
Hands	Chemical-resistant, impervious gloves complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is	information		name				information
	necessary.	DOT Classification	UN1049	HYDROGEN,	2.1	Not applicable (gas).		Limited
Personal protection in case	Insulated gloves suftable for low temperatures : Self-contained breathing apparatus (SCBA) should be used to avoid inhalation of the			COMPRESSED				Yes.
of a large spill Product name	product		UN1966	Hydrogen, refrigerated liquid				Packaging instruction
hydrogen	Oxygen Depletion [Asphyxiant]			12				Passenger
Consult local authorities for acceptable exposure limits.	acceptable exposure limits.							Quantity
Section 9. Physica	Section 9. Physical and chemical properties							limitation: Forbidden.
Molecular weight	: 2.02 g/mole							Carao airera fi
Molecular formula	: H2							Quantity
Boiling/condensation point	: -253°C (-423.4°F)							limitation:
Metting/freezing point Critical temperature	: -239.15-U (-434.51F) 240.15°C (-400.3°F)							B2 00-
Vapor density	: 0.07 (Air = 1) Libuid Density@BP: 4.43 lb/ft3 (70.96 kg/m3)	TDG Classification	UN1049	HYDROGEN, COMPRESSED	2.1	Not applicable (gas).		Explosive
Specific Volume (# 3/lb)								Limited
Gas Density (lb/ft ³)	: 0.00521		UN1966	Hvdroden.			>	Quantity
Section 10. Stability and reactivity	ty and reactivity	-		refrigerated liquid				0.125
Stability and reactivity	: The product is stable.							ERAP Index
Incompatibility with various substances	: Extremely reactive or incompatible with the following materials: oxidizing materials.							3000
Hazardous decomposition products	 Under normal conditions of storage and use, hazardous decomposition products should not be amonused. 							Carrying Ship Indev
Hazardous polymerization	: Under normal conditions of storage and use, hazardous polymerization will not occur.							Forbidden
Build 1.1	Page: 3/6	Build 1.1				_		Page: 4/6
	3							\$

Hydrogen

Hydrogen

Poot To Poot reservance and reference of the several minutes Remove contract lenses, if e. ACCIDENTAL RELEASE MEASURES
Personal precautions Use personal protective equipment. Avoid breathing vapors, mist or gas. Ensure adequate ventilation. Remove all

lemperature Lower excitorion limit - no stata availabila		Upper explosion limit	pressure	Density 0.832 g/cm3 at 25 °C (77 °F)	Water solubility no data available	Partition coefficient no data available event the build n-oclano//water	Relative vapour no data available dencity		Odour Threshold no data available	Evaporation rate no data available	10. STABILITY AND REACTIVITY	Chemical stability		, if the components because the explosive mixture with air.	Conditions to avoid Heat, flames and sparks. Extremes of temperature and direct sunlight.	se in se in Strong oxidizing agents/trong oxidizing agents. Strong acids. Acid chlorides, Acid anhydrides	Hazardous decomposition products Hazardous decomposition products formed under fire conditions Carbon oxides Other decomposition products - no data available	11. TOXICOLOGICAL INFORMATION	Acı	nd at the end of Inhalation LCS0 Dermal LD50 modate available	Other information on acute toxicity	no data available	Skin corrosion/irritation no dra averiable	Serious eye damageleye irritation	no data available	Respiratory or skin sensitization no data available	Germ cell mutagenicity no data available	Carcinogenicity	IARC: No component of this product present at levels greater than or equal to 0.1% is identified as
Environmental precautions Preventi turther leakage or spilage if safe to do so. Do not let product enter drains.	Methods and materials for containment and cleaning up	Contain splitage, and then collect with an electrically protected vacuum cleaner or by wet-brushing and place in	container for disposal according to local regulations (see section 13).	7. HANDLING AND STORAGE	Drecatificate for safe handling	recautoms to sua manung Avaid contact with suin and eyes. Avoid inhalation of vapour or mist Use explosion-proof equipment. Keep away from sources of ignition - No smoking. Take measures to prevent the build	up of electrostatic charge. Conditioned for entropy	Continuons for sale scorage Store in cool place. Key container tightly dosed in a dry and well-ventilated place. Containers which are opened must	pe carejuny researed and kept upright to preventieakage.	8. EXPOSURE CONTROL S/PERSONAL PROTECTION	Contains no substances with occupational exposure limit values.	Personal protective equipment	Respiratory protection Where risk assessment chaws air-anirityion resolitations are anormotiate use a full-face resolitation with multi-onimose	combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirators the sole means of protection use as full these supplied arrespirator. Use respirators and components horded and monomedian protection concerned there acronical and are interval. Use respirators and components and and monomedian protection concerned there acronical and a protect in the concerned to the components of the concerned of the concerned of monomedian protection of the concerned of the components and the concerned of the concerned		Insure with govers covers must an approximation or user proyer prover remover remover terminate proves other states to soft skin contract with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.	Eye protection Face shield and safety glasses Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).	Skin and body protection	Complete sour protecting against chemicals, Hame relardant antistatic protective clothing. The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.	Hygiene measures Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.	9. PHYSICAL AND CHEMICAL PROPERTIES	Appearance		Colour light yellow Sefery Arte	catety data official and data available.	tting	point/freezing point Boiling noint:	nerature	

	probable, possible or confirmed human carcinogen by IARC.	Product Burn in a chemical incinerator equipped with an afterburner and scoubber but exert extra care in ioniting as this material
ACGIH	No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by ACGIH.	curring a commentation dependent and increase outper a loss seconds to a second event source are in granting as In Bright Hammable. Offer surplus and non-recyclishie solutions to a licensed disposal company. Conflact a licensed professional water disposal service to tissues on this material.
NTP	No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.	Contaminated packaging Disenses of an instead monthly of
OSHA.	No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potertial carcinogen by OSHA.	Uspuse of as bridged product. 14 TRANSPORT INFORMATION
Reprodu	Reproductive toxicity	
no dete available	alaha A	UN number: 1987 Class: 3. Propersipping name: Alcoholds, n.o.s. Macens contract: No.s.
Teratogenicity		Manue poudant. no Poison Inhalation Hazard: No
no data available	alable	IMDG UN number 1987 Class: 3 Packing group. II EMS-No: F-E, S-D
Specific t Inhalation	Specific target organ toxicity - single exposure (Giobally Harmonized System) Innalation - May cause respiratory initation.	Propershipping name: ALCOHOLS, N.O.S. (But-3-en-2-ol) Marine pollutant: No
Specific target o no data available	Specific target organ toxicity - repeated exposure (Giobally Harmonized System) no data available	IATA UN number 1987 - Class: 3 Packing group: II Propershipnion anne. Alcohols: n.o.s. (But-Sen-2-ol)
Aspiration hazard no data available	n hazard allable	18. REGULATORY INFORMATION
Potential	Potential health effects	OSHA Hazards
Inhalation Ingestion Skin		Flammable liquid, irritant SARA 302 components SARA 302: No ohemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.
Eyes Signs and To the be	Eyes Signs and Symptoms of Expose eye initiation. Signs and Symptoms of Exposites, is not boxicological properties have not been thoroughly investigated.	SARA 313 Components SARA 313. This method does not contain any othernical components with known CAS numbers that exceed the threshold //De Minimis Insontino levels exclusion by SARA The III. Section 313.
Synergistic effec no data available	Synergistic effects no data available	SARA 311/31 Hazards Fire Hazard, Al218 Heards
Addition: RTECS: E	Additional Information R TECS: EM9275050	Massachusetts Right To Know Components No components are subject to the Massachusetts Right to Know Act.
12. ECOLOGIC	12. ECOLOGICAL INFORMATION	
Toxicity		C.AS-No. Revision Date But-3-en-2-ol 598-32-3
no data available	railable	
Persistence and no data available	Persistence and degradability no right available	CAS-No. Revision Date But-3-en-2-ol 598-32-3
Bioaccumulative no data available	ter successful ender the second se	California Prop. 66 Components This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other memory-in-bise harm
Mobility in soil no data available	n soil Jailable	16 OTHER INFORMATION
PBT and vPvB a no data available	PBT and vPvB assessment	Further information
Other ad	Other adverse effects	copyright zurits signare-worker to uttue. Letter ucerse granted to make unimitied paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a
no data available	raitable	guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the
13. DISPOSAL	13. DISPOSAL CONSIDERATIONS	product Suma-addictic Compretion and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above douct. See www sigma-aldrich com and/or the reverse side of invoice or packing silp for additional terms and conditions of sale.
Aldrich - B86400	Page 6 of 7	Autrich - B86400

206

P260 Do not breathe dust fume/ gas/ mist/ vapours/ spray. P24 Wash skin throughly after handling. P270 Do not eat, drink or mole when using this product. Data Use only outdoors or in a well-weithlated area. P271 Use only outdoors or in a well-weithlated area. P271 Wear product. Data Vear product. P271 Use only outdoors or in a well-weithlated area. P280 Vear product weithe downs. P301 + P310 FS/ALLOVED: immediately call a POISON CENTER or doctor/		-34U 	222	P330 Rines moulth. P361 Rinework and immediately all contaminated clothing. P363 Wash contaminated clothing before reuse. P363 Store in a well-work date of here rouse. Keep container tightly closed. P405 P233 Store in a well-work date of the or an approved waste disposal plant. P501 Dispose of contents/ container to an approved waste disposal plant.	Hazards not otherwise classified (HNOC) or not covered by GHS Radioactive.	3 COMPOSITIONINE ORM & TON ON INCREDIENTS		Eunatances 0_2Th Formula Molecular Weight 254.04 g/mol CAS-No. 1314-20-1 FC-No. 315-25-1	s components	Component I Classification Concentration	Thorium dioxide Acute Tox. 3. Carc. 1B. STOT -	RE 2, H301 + H311 + H331 ,	For the full text of the H-Statements mentioned in this Section, see Section 16.	4. FIRST AID MEASURES 4.1 Description of first aid measures	General advice Consult a physician. Show this safety data sheet to the doctor in attendance. Move out of dangerous area.	If inhaled If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician	In case of skin contact	Wash off with soap and plenty of water. I ake victim immediately to hospital. Consult a physician. In case of eye contact	Flush eyes with water as a precaution.	If swallowed Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician. Never important symptoms and effects, both acute and delayed The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11	Indication of any immediate medical attention and special treatment needed no data available	Page 2 of 7 Page 2 of 7
sgma-allifeh.com SAFETY DATA SHEET Revision Dage 02/31/2014 Print Date 02/31/2014				ubstance as the substance annual tonnage does not seged for a later	Jainst 2.3			5.						4. FIR 4.1						th skin or if inhaled rough prolonged or repeated exposure.	4.3 been read and	Page 1 of 7 Aldrich
DRICH	1. PRODUCT AND COMPANY IDENTIFICATION			 88170 Adinch Adinch Aregistration number is not available for this substance as the substance of the uses are exempted from registration, the annuage does not require a registration or the registration is enviseged for a later registration deadline. 	CACATION. Relevant identified uses of the substance or mixture and uses advised against	s Laboratory chemicals, Manufacture of substances	Details of the supplier of the safety data sheet	Sigme-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA	+1 800-325-5832	Emeraency telephone number	none # (314) 776-6555	IFICATION	Classification of the substance or mixture	GHS Classification in accordance with 29 CFR 1910 (OSHA HCS) Acute toxicity, Oral (Category 3), H301 Acute toxicity, Inhalation (Category 3), H331	Acute toxicity. Dermal (Category 3), H311 Cateringenicity (Category 1B), H350	operind ranger organ rowardy of eperated explorate (caregory x), 1575 For the full text of the H-Statements mentioned in this Section, see Section 16	GHS Label elements, including precautionary statements		Danger	Toxic if swallowed, in contact wi May cause cancer. May cause damage to organs th	statement(s) Othain special instructions before use. Do not handle until all safety preceditions have been read and understood.	
SIGMA-ALDRICH	1. PRODUCT AND C	1.1 Product identifiers		Product Number Brand REACH No.	1.2 Relevant ider	Identified uses	1.3 Details of the	Company	Telephone Fax	1.4 Emergency t		2. HAZARDS IDENTIFICATION	2.1 Classification	GHS Classifi Acute toxicity, Acute toxicity,	Acute toxicity Carcinogenici	For the full tex	2.2 GHS Label el	Pictogram	Signal word	H azard statement(s) H301 + H311 + H33 H350 H373	Precautionary statement(s) P 202 P 202	Aldrich - 89170

Skin protection Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching gloves ou ler surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.	Body Protection Complexe suit protecting against chemicals. The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.	Respiratory protection Where risk assessment shows air-puritying respirators are appropriate use a full-face particle respirator type N 10 (15) or types (EN 143) respirator catrindes as backup to engineering controls. If the respirator is the sole mans of protection, use a full-face supplied arrenzions care expirators and components tested and approved under reporting to ensument standards such as NIOSH (ULS) or CEN (EU).	Control of environmental exposure Prevent further leakage or spillage if safe to do so. Do not let product enter drains.	 PHYSICAL AND CHEMICAL PROPERTIES Information on basic physical and chemical properties 	Appearance	 b) Odour no data available c) Odour Treeshold no data available 	Hd		 minutar ucuming point and involute available boiling range 	 g) Flash point no data available h) Evapouration rate no data available i) Flammability (solid, gas) no data available 	 Upper/lower no data available flaam abulty or exposive limits 	 K) Vapour pressure no data available 	m) Relative density no data available of Wreterschuking, so deter available	Partition coefficient: n- octanol/water	 p) Auto-ignition no data available temperature 	 percomposition no data available temperature 	r) Viscosity no data available	 Explosive properties no data available Undizing properties no data available 2.2 Other safety information no data available 	Addrich - 89170 Page4 of 7
5. FIREFIGHTING MEASURES 5.1 Extinguishing media	Suitable extinguishing media Use water spray, aconol-resistant foam, dry chemical or carbon dioxide. 5.2 Special hazards arialing from the substance or mixture	Metal oxides 6.3 Advice for finefishers Vear self contained breathing apparatus for fire fighting if necessary. 5.4 Further information	no data available 6. ACCIDENTAL RELEASE MEASURES	6.1 Personal precautions, protective equipment and emergency procedures Vear enspiration yrobection. Avoid dust formation. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. Evacuate personnel to safe areas. Avoid breathing dust.	For personal protection see section 8. 6.2 Environmental precautions	Prevent further leakage or spillage it sale to do so. Do not let product enter drans. 6.3 Methods and materials for containment and cleaning up	Pick up and arrange disposal without creating dust. Sweep up and shovel. Keep in suitable, closed containers for disposal.	6.4 Reference to other sections For disposal see section 13.	7. HANDLING AND STORAGE	7.1 Precautions for safe handling Avoid contact with skin and eyes. Avoid formation of dust and aerosols. Provide appropriate extracts ventilation at places where dust is formed Normal measures for preventive fire protection. For precautions see section 2.2.	7.2 Conditions for safe storage, including any incompatibilities Keep container ughtly closed in a dry and well-ventilated place.	Neepilla dry place. 73 Sreatific and usafe)	8. EXPOSURE CONTROLS/PERSONAL PROTECTION	8.1 Control parameters Components with workplace control parameters	Contains no substances with occupational exposure limit values. 8.2 Exposure controls	Appropriate engineering controls Avoid contact with skin, eyes and clothing. Wash hands before breaks and immediately after handling the product.	Personal protective equipment	Eyerface protection Face shield and safety glasses Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU),	Addrin89720 Page 3 of 7

208

10. STABILITY AND REACTIVITY	Additional Information RTECS: Not available
10.1 Reactivity no data available	To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated
Chemical stability Stable under recommended storage conditions.	Stomach - Irregularities - Based on Human Evidence Stomach - Irregularities - Based on Human Evidence
Possibility of hazardous reactions	12. ECOLOGICAL INFORMATION
monocomponents and the state of	12.1 Toxicity no deta available
recompany of an ender Incompany and the materials	12.2 Persistence and degradability no data available
restandeurs de composition products Other decommonschion products – an data axiallable	12.3 Bioaccumulative potential no data available
outer decomposation products - no data available	12.4 Mobility in soil no data available
11. TOXICOLOGICAL INFORMATION 11.1 Information on toxicological effects	12.5 Results of PBT and vPvB assessment PBT/vPvB assessment not available as chemical safety assessment not required/not conducted
Acute toxicity	12.6 Other adverse effects
tiu uata available no data available	no data available
Skin corrosion/intitation	13. DISPOSAL CONSIDERATIONS
no data available	13.1 Waste treatment methods
Serious eye damage/eye irritation no data available	Product Contact a finensed professional waste disposal service to dispose of this material. After use follow local procedures for reactionative waster. Criment Turking the and faderal requirations on the discrete of reactionactive waste. D
Respiratory or skin sensitisation no data available	to readeavere wase. Somean road, sates, and read an regulations on the disposal of radioactive wase. Societies a federal, state, and local environmental regulations.
Germ cell mutagenicity Carcinogenicity	Contaminated packaging Dispose of as unused product:
Possible human carcinogen	14. TRANSPORT INFORMATION
IARC: No component of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.	DOT (US) UN number 2310 Class, NONE Proper singting name: Radioactive material, excepted package-limited quantity of material Marine pollutart: No
ACGIH: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by ACGIH.	Poison Inhalaton Hazard. No
NTP: Known to be human carcinogen (Thorium dioxide)	IMDG UN number: 2910 Class: 7 EMS-No: F-I, S-S
OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA.	Proper shipping name: RADIOACTIVE MATERIAL, EXCEPTED PACKAGE - LIMITED QUANTITY OF MATERIAL Marine pollutant: No
Reproductive toxicity no data available	IATA UN number 2910 Class 7.4H
no data available	me:
Specific target organ toxicity - single exposure no data available	/ INFORMATION
Specific target organ toxicity - repeated exposure May cause damage to organs through prolonged or repeated exposure.	REACH No. A registration number is not evaliable for this substance as the substance or its uses are exempted from registration, the annual tonnage does not require a redistration or the registration is enviseded for a later.
Aspiration hazard no data available	registration deadine. SARA 302 Components
	SARA 302: No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

SARA 313 Components		
The following components are subject to reporting levels established by SARA Title III, Section 313: CAS-No.	lished by SARA Title CAS-No.	III, Section 313: Revision Date
Thonium dioxide	1314-20-1	1993-04-24
SARA 311/312 Hazards Acute Health Hazard, Chronic Health Hazard		
Massachusetts Right To Know Components		
	CAS-No.	Revision Date
Thorium dioxide	1314-20-1	1993-04-24
Pennsylvania Right To Know Components		
	CAS-No.	Revision Date
Thorium dioxide	1314-20-1	1993-04-24
New Jersey Right To Know Components		
	CAS-No.	Revision Date
Thorium dioxide	1314-20-1	1993-04-24
California Prop. 65 Components WARNINGI This product contains a chemical known to the	CAS-No.	Revision Date
State of California to cause cancer.	1314-20-1	2007-09-28
I honum dioxide		

16. OTI

NOI	Full text of H-Statements referred to under sections 2 and 3.	Acute toxicity Carcinogenicity Toxic if swallowed, in contract with skin or if inhaled Toxic if remarked, in contract with skin. Toxic in remarked	azardi 2 0 1 2 2 2 2 2	Eucline information Copyright 2014 Signa-Adrich Co. LLC. License granted to make unimited paper copies for internal use only. Copyright 2014 Signa-Adrich Co. LLC. License granted to make unimited paper copies for internal use and will as a the above information is believed to be correct but does not prepert state of our frowledge and is applicable to the guide. The information in this counter is based on the present state of our frowledge and is applicable to the product. Signa-Adrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling orden. Consolation and its Affiliates shall not be held liable for any damage resulting from handling of orden contact with the above product. See www. sigma-editich com and/or the reverse side of involve or packing silp for additional terms and conditions of sale.
OTHER INFORMATION	Full text of H-St	Acute Tox. Carc. H301 H311 + H311 H311 H311 H31 H350	HMIS Rating Health hazard Chronic Health hazard Flammability Physical Hazard NFP A Rating Health hazard Readrivity Hazard Readrivity Hazard	Eurther information Copyright 2014 Sigm The above informatio guide. The informatio guide. The informatio product. Sigma-Aldric or from contact with th sign for additional term

Aldrich - 89170

Page 7 of 7

Print Date: 03/31/2014

Revision Date: 02/13/2014

Preparation Information Bigma-Adinch Corporation Product Satety – Americas Region 1-800-521-8956 Version: 3.3 Re

	P303 + P361 + P353 IF ON SKIN (or hair); Remove/ Take off immediately all contaminated	P304 + P340 IF INHALED: Remove victim to fresh air and keep at rest in a position	comfortable for preatming. P305 + P351 + P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove		P-3/1 + P-3/8 In case on the Use only sand, dry dremical or accond-resistant roam for P403 + P-333 Store in well-wentlated place. Keep contrainer lightly dosed.			2.3 Hazards not otherwise classified (HNOC) or not covered by GHS Repeated exposure may cause skin dyness or cracking.	3 COMPOSITIONANEORM ATTON ON INGREDIENTS	COMPLEXATION OF INVESTIGATION COMPLEXATION COMPLEXATION			Formula C4H80 Malacular Weight - 7241 almal		joj	components	Component Ethni methni ketone	Flam. Lig. 2: Eve Imt. 2A, 90 - 100 % STOT SE 3: H225, H319,	H336 For the full text of the H-Statements mentioned in this Section fee		4. FIRST AID MEASURES 4.1 Description of first aid measures	General adVice Consults a characterian Schow this setstividate cheartin the dividentia attendance Maria or if of diametry is and	containt a physiciant. Show this safety data sheet to be occur in acertuative more out of uanget out area. If inhaled If threathed in, move person into fresh air. If not breathing, give antificial respiration. Consult a physician.	In case of skin contact Wash off with soap and plenty of water. Consult a physician.	In case of eye contact Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.	Sigme-Adrich - 443468 Page 2 of 9
egma-attrict.com SAFETY DATA SHEET Version 48 Revision Date 04/14/2014	UTFICATION		Z-Butanone	4434.68 Syma-Auforth 605-002-00-3	A registration number is not available for this substance as the substance or its uses are exempted from registration, the annual homage does not require a registration or the registration is enviaged for a later	registration deadline. 78-93-3	Relevant identified uses of the substance or mixture and uses advised against	Laboratory chemicals, Manufacture of substances	s safety data sheet	3930 sAurois Street 39350 sprues Street SANT LOUIS MO 63103	USA	+ 1 800-325-5832 + 1 800-325-5052	ær	(314)776-6555		nce or mixture	GHS Classification in accordance with 29 CFR 1910 (OSHA HCS) Flammable limitics (Cateonor 2) H225	Eve irritation (Category 24), H319 Specific target organ toxicity - single exposure (Category 3), Central nervous system, H336	For the full text of the H-Statements mentioned in this Section, see Section 16.	GHS Label elements, including precautionary statements		Danger	Highly flammable liquid and vapour. Causes serious eye irritation.	May cause drowsiness or dizziness.	Keep away from heat/sparks/open flames/hot surfaces - No smoking. Keep container inbitity closed. Groundbrond container and receiving equipment. Use explosion-proof electrical/ventibiting/lighting/equipment.	Page 1 of 9
SIGMA-ALDRICH	1. PRODUCT AND COMPANY IDENTIFICATION	1.1 Product identifiers		Product Number Brand Index-No.	REACHINO	CAS-No.	1.2 Relevant identified uses of th		1.3 Details of the supplier of the safety data sheet	Company		Telephone Fax	1.4 Emergency telephone number	Emergency Phone #	2. HAZARDS IDENTIFICATION	2.1 Classification of the substance or mixture	GHS Classification in accordance w Flammable liquids (Cateonory 2) H225	Eye imitation (Category 2A), H319 Specific target organ toxicity - sing	For the full text of the H-Stater	2.2 GHS Label elements, includi	Pictogram	Signal word	Hazard statement(s) H225 H319	H336 Precautionary statement(s)	P210 P233 P240 P241	Sigma-Aldrich - 443468

Appendices

Flame retardant antistatic protective clothing. The type of protective equipment must be	
o the concentration and amount of the dangerous substance at the specific workplace.	10.1 Reactivity
ion ent shows air-purifying respirators are appropriate use a full-face respirator with multi-	no data available 102 Chemical stabilitiv
r (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls. s cole means of protection rise a full-face supplied air resolicator. Use resolicators and	
and approved under appropriate government standards such as NIOSH (US) or CEN (EU).	10.3 Possibility of hazardous reactions Vapours may form explosive mixture with air.
tential exposure ige or spillage if safe to do so. Do not let product enter drains.	10.4 Conditions to avoid Exposure to moisture
ROPERTIES	
sical and chemical properties	10.5 Incompatible materials Oxidizing agents, Strong reducing agents
Form: liquid, clear Colour: colourfess	10.6 Hazardous decomposition products
no data available	Outer recomposition products - To data available In the event of fire: see section 5
no data available	11. TO/XCOLOGICAL INFORM ATION
no data available o オ o c オ o c v	11.1 Information on toxicological effects
80 °C (176 °F) - lit.	LD30 Ufat - Tat - 27,57 mg/mg LC56 Inhalation - mouse - 4 h - 32,000 mg/m3
-3 °C (27 °F) - dosed cup	LC50 Inhalation - Mammal - 38,000 mg/m3
no data available	LD50 Dermal - rabbit - 6,480 mg/kg
s) no data available	no data available
Upper explosion limit: 10.1 %(V) Lower explosion limit: 18 %(V)	Skin corrosion/irritation Bonut An cubic instation
05 hDa (71 mmH44) at 20 °C (68 °E)	result No skin initiation (OECD Test Guideline 404)
	Serious eye damage/eye irritation
2.120 (Viii = 1.10) 0.805 a/ml at 25.90 (77.95)	Eyes - rabbit Pasult intration to eves
soluble	(OECD Test Guideline 405)
log Pow.0.29	Pespiratory or skin sensitisation no data available
no data avaitable	Germ cell mutagenicity no data available
no data available	Carcinogenicity
no data available	IARC: No component of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.
no data available	ACGIH: No component of this product present at levels greater than or equal to 0.1% is identified as a
no data available	carcinogen or potential carcinogen by ACGIH. NTP: No commonent of this monitur messent at levels creater than or enual to 0.1% is identified as a
24.6 mNvm at 20 °C (68 °F.) / 2.49 - (Air = 1.0)	OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA.
	Reproductive toxicity no data avaitable
	lable
Page 5 of 9	Sigma-Aldrich - 443468 Page 6 of 9

Partition coefficient: n-octanol/water

k) Vapour pressure
 J) Vapour density
 m) Relativa density
 m) Relativa density
 n) Vater solubility
 n) Partiton osefficient
 octanolwater
 p) Auto-ignition
 enperature
 d) Locomposition

Body Protection impervious dothing, Flame retarda selected according to the concentr

Respiratory protection Where rais assessment shows air-pu purpose combination (US) or type AE purpose optiatoris the sole means of if the respiratoris the sole means of components tested and approved un

Control of environmental exposi-Prevent further leakage or spillage

9.1 Information on basic physical and chemic a) Appearance Form: liquid. colorur a) Appearance Colour: coloru colorur b) Odour no data availa c) Odour Threshold no data availa d) pH no data availa d) pH no data availa e) Melting point/freezing -87 °C (-125 °) 9. PHYSICAL AND CHEMICAL PROPERTIES

b) Odour
 c) Odour Threshold
 d) pH
 e) Melting point/freezing

Initial boiling point and boiling range

¢

Flammability (solid, gas)

Upper/lower flammability or explosive limits

Evapouration rate

g) Flash point
 h) Evapouration r
 i) Flammability (i
 j) Upperflower

Surface tension Relative vapour density

9.2

Sigma-Aldrich - 443468

temperature r) Viscosity s) Explosive properties t) Oxidizing properties Other safety information

Decomposition temperature

UN number: 1193 Class: 3 Packing group: II EMS-No: F-E, S-D Proper shipping name: ETHYL METHYL KETONE Marine pollutant: No	IATA UN number 1193 Class: 3 Packing group II	ame: Ethyl methyl ketone	15. REGULATORY INFORMATION	REACH No. A registration number is not available for this substance as the substance or the annual homore of the rest are even the from reviet atom the annual homore of the cost	require a registration or the registration is enviseded for a later require a registration or the registration is enviseded for a later registration deadline.	 SAPA 302 Components CAD 4.007 No submission in their method laws sublicit to the proceeding metric metric 2012 	on viological nuo viterritore in una materiaria are subjectivo une reporting requirementa or univor mare mi, peculori CADA 213 Commonante	SATA J. COMPONENTS SATA J. The material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.	SARA 311/312 Hazards Fire Hazard, Acute Health Hazard, Chronic Health Hazard	Massachusetts Right To Know Components CAS-Nn Baulsion Date CAS-Nn Baulsion Date	Ethyl methyl ketone 78-93-3 1993-04-24	Pennsylvania Right To Know Components CAS-No. Revision Date	Ethyl methyl ketone 78-93-3 1993-04-24 Maw Jersev Bright Tv Know Commonante	CAS-No. Revision Date	/8-93-3	California Prop. 65 Components This productions not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive fram.	16. OTHER INFORMATION	Full text of H-Statements referred to under sections 2 and 3.	nit. Liq.	H 225 Highly fammable liquid and vapour: H 319 Causes services year intration. H 336 May cause drowsiness or drzzness. STOT SE Specific target organ toxicity - single exposure	l d: th Hazard:	Flammability: 3 Physical Hazard 0	NFP A Rating Health hazard: 2 Fire Hazard: 3 Read/My Hazard: 3	Further information	Copyright 2014 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only.
Specific target organ toxicity - single exposure May cause drowsness or dizzinass. Specific target organ toxicity - repeated exposure	no data available Association hazard	no data available	Additional Information RTECS_EL6475000	Central nervous system depression, Gastrointestinal disturbance, narcosis	Liver - Irregularities - Based on Human Evidence Liver - Irregularities - Based on Human Evidence	12. ECOLOGICAL INFORMATION	12.1 Toxicity	Toxicity to fish mortality NOEC - Cyprinodon variegatus (sheepshead minnow) - 400 mg/l - 96 h	LC50 - Pimephales promelas (fathead minnow) - 3.130 - 3.320 mg/l - 96 h Toxicitytio daphnia and 1056 - Danhnia marana (Materi fiaa) - >520 mg/l - 48 h		EC50 - Daphnia magna (Water flea) - 7,060 mo/l - 24 h	12.2 Persistence and degradability	12.3 Bioaccumulative potential		12.4 Mobility in soil Do data available	12.5 Results of PET and vPVB assessment PETVPVB assessment not available as chemical safety assessment not required/not conducted	12.6 Other adverse effects	no data available	13. DISPOSAL CONSIDERATIONS 13.1 Waste treatment methods	: 프라 프레 프레	licensed professional wate disposal service to dispose of this material. Contaminate packaging Dispose of as unused product	14. TRANSPORT INFORMATION	DOT (US) UN number, 1193 Class; 3 Packing group; II Properable Quantify (RC), 500, thethy ketone Reportable Quantify (RC), 500, 500	Marine pollutant: No Poisson Intralation Hazard: No	

Appendices

product with repart to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sprime Addrich Comparation and stiffiates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigme-addrich.com and/or the reverse side of involes or packing any for addriched liens and conditions of safe.

Print Date: 04/14/2014 Revision Date: 02/26/2014 Preparation Information Sigma-Adrich Corporation Product Safety – Americas Region 1-800-621-9956 Version: 4,9 Page 9 of 9

Sigma-Aldrich - 443468