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Characterization of SO2-Poisoned Ceria-Zirconia Mixed Oxides

Abstract
CeO2, ZrO2, and a series of CexZr1-xO2 catalysts with 1 wt% Pd were exposed to fixed exposures of SO2
under oxidizing environments and then characterized by FTIR, pulse-reactor studies with CO and O2, and
temperature-programmed desorption (TPD). For exposures above 473 K, sulfates were formed on all of the
materials; however, the results are consistent with the formation of bulk sulfates on CeO2 and only surface
sulfates on ZrO2. For the mixed oxides, the quantity of sulfates formed at 673 K increased linearly with the Ce
content. In TPD, the sulfates on ZrO2 were stable to higher temperatures than those formed on CeO2, which
decomposed in a well-defined peak between 900 and 1050 K. The sulfates on both oxides were reduced by
CO above 750 K. Even though XRD patterns for the mixed oxide were significantly different from that of the
physical mixture, the TPD and pulse-reactor results were similar to what would be expected for physical
mixtures of CeO2 and ZrO2, suggesting that sulfate species are associated with individual metal cations.
Finally, pulse-reactor studies with CO and O2 at 873 K show that the sulfates can be reversibly reduced and
oxidized on both CeO2 and ZrO2, so that sulfur poisoning gives rise to an apparent increase in oxygen
storage, demonstrating that this method is not acceptable for measurement of this quantity.
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Characterization of SO2-Poisoned Ceria-Zirconia Mixed Oxides

T. Luo and R. J. Gorte
Department of Chemical and Biomolecular Engineering

University of Pennsylvania
Philadelphia, P.A. 19104 USA

Abstract

CeO2, ZrO2, and a series of CexZr1-xO2 catalysts with 1 wt% Pd were exposed to fixed 

exposures of SO2 under oxidizing environments and then characterized by FTIR, pulse-reactor 

studies with CO and O2, and temperature-programmed desorption (TPD). For exposures above 

473 K, sulfates were formed on all of the materials; however, the results are consistent with the 

formation of bulk sulfates on CeO2 and only surface sulfates on ZrO2. For the mixed oxides, the 

quantity of sulfates formed at 673 K increased linearly with the Ce content. In TPD, the sulfates 

on ZrO2 were stable to higher temperatures than those formed on CeO2, which decomposed in a 

well-defined peak between 900 and 1050 K. The sulfates on both oxides were reduced by CO 

above 750 K. Even though XRD patterns for the mixed oxide were significantly different from 

that of the physical mixture, the TPD and pulse-reactor results were similar to what would be 

expected for physical mixtures of CeO2 and ZrO2, suggesting that sulfate species are associated 

with individual metal cations. Finally, pulse-reactor studies with CO and O2 at 873 K show that 

the sulfates can be reversibly reduced and oxidized on both CeO2 and ZrO2, so that sulfur 

poisoning gives rise to an apparent increase in oxygen storage, demonstrating that this method is 

not acceptable for measurement of this quantity.

Key Words: zirconia, ceria, SO2, sulfate, H2S, Oxygen Storage Capacity, FTIR, TPD
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Introduction

Ceria is a crucial component of three-way, automotive, emissions-control catalysts 

because its redox properties provide oxygen-storage capacity (OSC) [1]. While the OSC 

properties in early ceria-containing catalysts were prone to deactivate during high-temperature 

aging [2], the redox properties of ceria in modern catalysts are stabilized and improved by the 

addition of zirconia. The ceria-zirconia mixed oxide has been shown to be very durable, even in 

the high-temperature, hydrothermal environment of the catalytic converter [3]. Indeed, the 

current generation of these mixed oxide, three-way catalysts would be sufficient to meet very 

stringent emissions requirements if it were not for the fact that sulfur, generally present in all 

commercially available fuels, poisons the properties of ceria [4-10].

The species formed by exposure of ceria to SO2 have been characterized [11-18]. Below 

approximately 473 K, SO2 adsorbs molecularly, possibly as a sulfite. At higher temperatures, this 

surface species is oxidized to Ce+3 and Ce+4 sulfates [11], using either molecular O2 from the gas 

phase or by reduction of CeO2. If ceria is exposed to SO2 in an oxidizing environment at above 

473 K, both surface and bulk sulfates are formed. The sulfates are easily reduced to Ce2O2S, 

which in turn can be easily reoxidized back to the sulfate, explaining the apparent increase in 

OSC that is observed in CO-O2 pulse studies of SO2-poisoned catalysts [10]. Under oxidizing 

conditions, the sulfate is stable to approximately 1073 K, above which temperature the sulfate 

decomposes to SO2 and O2. When the sulfate is reduced in H2, some H2S is formed along with 

Ce2O2S [11].

It is of interest to know how the presence of zirconia affects the interaction of sulfur with 

ceria in the mixed oxides that are usually used for oxygen storage, but relatively few reports have 

been published describing these interactions. In a study from our laboratory, it was shown that 

pre-exposure of either Pd/ceria or Pd/ceria-zirconia catalysts to 20 ppm of SO2 at 673 K resulted 

in large upward shifts in the WGS light-off curves, demonstrating that the catalyst properties of 

both ceria and ceria-zirconia are affected in a similar manner [10]. Bazin, et al examined 

catalysts made from ceria, zirconia, and ceria-zirconia using infrared spectroscopy and 

thermogravimetry following exposure to SO2 [12]. They reported that bulk sulfates formed on 

ceria but only surface sulfates were observed on pure zirconia. Their results also suggested that 

sulfates on the ceria-zirconia mixed oxide were more easily reduced than sulfates on pure ceria. 

Deshmukh, et al reported that the effect of SO2 on CO oxidation was much less pronounced for 
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Ce0.75Zr0.25O2 than for CeO2 and that the mixed oxide is more resistant to morphological change 

than is ceria [13]. Nelson, et al examined the effect of SO2 exposure on the microstructure of 

ceria and ceria-zirconia mixed oxides and reported that the mixed oxide showed improved sulfur 

tolerance [14]. Most recently, Liu, et al suggested that the stability of sulfate groups on ceria 

increases upon formation of solid solutions with zirconia [15].

In the present paper, we investigated the adsorption and reaction of SO2 with Pd/ZrO2

and a set of Pd/CexZr1-xO2 catalysts in order to better understand the effect of zirconia on sulfur 

tolerance. The results suggest that the sulfur chemistry of ceria and zirconia in the mixed oxides 

were only weakly affected by the presence of the other oxide under the conditions of our study.

Experimental

The catalysts used in these experiments were 1-wt% Pd supported on CeO2, 

Ce0.25Zr0.75O2, Ce0.5Zr0.5O2 , Ce0.25Zr0.75O2 and ZrO2. CeO2 and ZrO2 were prepared by thermal 

decomposition of the nitrate salts, Ce(NO3)3
.6H2O (Alfa Aesar, 99.5%) and ZrO(NO3)2

.xH2O 

(Alfa Aesar, 99.9%), at 873 K. Two types of ceria-zirconia mixed oxides were prepared. In the 

first type, aqueous solutions of Ce(NO3)3
.6H2O and ZrO(NO3)2

.xH2O were mixed, dried at 343 K 

for 4 h, and finally heated in air to 873 K. These samples are designated as CexZr(1-x)O2(N). In 

the second set of samples, designated CexZr(1-x)O2(C), aqueous solutions of the two metal-oxide 

salts were mixed with citric acid to promote formation of the solid solution. The solutions with 

citric acid were also dried at 343 K for 4 hours and calcined in air to 873 K for 4 h. 

For all the data shown in this study, Pd was added to each of the supports by wet 

impregnation of Pd(NH4)3(NO3)2, after which each catalyst was dried, calcined for 2 h in flowing 

air at 873 K, and pressed into wafers. While sulfates were observed on these supports even when 

Pd was not added, the addition of precious metal promoted the oxidation and reduction kinetics, 

increasing the amounts of material that formed. 

The surface areas of each oxide, determined by BET measurements of N2 at 78 K, are 

shown in Table 1. The effect of different preparation methods on the structure of the mixed 

oxides was also investigated by X-ray diffraction. In Fig.1, XRD patterns are shown of the ZrO2, 

CeO2, a 50:50 physical mixture of CeO2 and ZrO2, Ce0.5Zr0.5O2(N), and Ce0.5Zr0.5O2(C). ZnO 

was added to each sample to provide an internal reference at 37.35 degrees 2θ. The pattern for 

CeO2, Fig. 1a), shows the expected cubic phase, with broad peaks due to the small crystallite 
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sizes in the sample, while the XRD pattern for ZrO2, Fig. 1b), shows a mixture of tetragonal and 

monoclinic phases. As expected, the diffraction pattern for the physical mixture, Fig. 1c), 

exhibits peaks associated with both of the pure compounds. The XRD pattern for 

Ce0.5Zr0.5O2(N), Fig. 1d), is significantly different from that of the physical mixture; however, 

the asymmetry of peak near 29 degrees 2θ suggests that this sample is not a single-phase solid 

solution. The XRD pattern of Ce0.5Zr0.5O2(C), Fig. 1e), shows a more symmetric peak, centered 

at 29.3 degrees 2θ, commonly associated with the formation of a solid solution. It should be 

noted, however, that Egami and coworkers have demonstrated that XRD data cannot distinguish 

between true solid solutions of ceria and zirconia and mixed oxides with small ceria and zirconia 

domains [18], so that even the data in Fig. 1 e) do not necessarily prove that the Ce0.5Zr0.5O2(C) 

sample is a indeed true solid solution.

The temperature-programmed-desorption (TPD) and pulse-reactor measurements were 

performed in the same system that has been described in earlier papers [10,17]. The system is 

essentially a tubular reactor in which the feed to the reactor can be switched using solenoid 

valves controlled by a computer. The effluent from the reactor can be monitored continuously 

using a quadrupole mass spectrometer. In most TPD and pulse-reactor measurements, 100 mg of 

sample were placed in the ¼-inch, quartz, tubular reactor, held at atmospheric pressure. In TPD 

experiments, the composition of the gas fed to the reactor, which could be varied from pure He 

to He mixed with 5% O2, 7% H2, or 5% CO, was kept constant while the temperature of the 

sample was ramped at 10 K/min. (While TPD in an oxidizing or reducing environment is usually 

referred to as temperature-programmed oxidation or reduction, all of these experiments will be 

referred to as TPD in this manuscript.) In the pulse-reactor measurements, the sample 

temperature was fixed and the composition of the feed was varied in steps. In all cases, the total 

flow rate of gas fed to the reactor was maintained at 80 ml/min. The mass spectrometer signal 

was calibrated with known gas concentrations, enabling us to calculate the absolute quantities 

corresponding to the TPD and pulse-reactor signals. 

FTIR spectra were recorded using a Mattson Galaxy FTIR with a diffuse-reflectance 

attachment, Collector II TM provided by Spectra-Tech Inc. The FTIR experiments were 

performed under flow conditions similar to those in the pulse-reactor measurements, using the 

same catalysts.  
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For each of the characterization techniques, it was essential to know the amounts of 

sulfur on the samples. In the case of Pd/ceria, this information can be obtained by TPD 

measurements [11]. Cerium sulfates decompose over a narrow range of temperatures, with the 

evolution of SO2 and O2. The amounts of SO2 that form can be easily quantified, and 

experiments on bulk Ce(SO4)2 gave good agreement between the TPD results and the known 

sulfur content [11]. Because it was not possible to determine sulfur loadings on the zirconia-

containing samples using TPD, the sulfur loadings on Pd/ZrO2 and Pd/Ce0.5Zr0.5O2(N) were 

determined by gravimetric methods. In this case, the sample weights, before and after treating in 

flowing SO2, were measured using a Cahn 2000 microbalance. The weights were determined in 

vacuum (~10-7 torr) after heating to 423 K to remove weakly adsorbed species. After exposure to 

1% SO2 in 50% O2 for 30 min at 673 K, the weight change on the Pd/ZrO2 sample was 10.2 

mg/g. Assuming that the weight change is due to the replacement of O2- with (SO4)
2-, the sulfate 

coverage was calculated to be 160 µmol/g, or approximately 1.2 sulfates/nm2 based on the 

surface area. This value is somewhat less than one would expect for a zirconia surface covered 

by monolayer of sulfate. After the same exposure of SO2 to the Pd/Ce0.5Zr0.5O2(N) sample, the 

weight change was 59.5 mg/g, corresponding to a sulfate coverage of 950 µmol/g. Finally, the 

sulfate coverage on Pd/CeO2 exposed to SO2 for 30 min was 1,600 µmol/g, a value less than that 

corresponding to bulk Ce(SO4)2, 6,000 µmol/g, but certainly much larger than could be expected 

for a monolayer.

Results

FTIR Measurements

Fig. 2 shows a comparison of FTIR spectra measured on the Pd/CeO2 and Pd/ZrO2

samples following exposure to 1% SO2 in 50% O2 for 20 min at various temperatures. On 

Pd/CeO2, exposure to SO2 at 373 K gives rise primarily to bands at 980 cm-1 and 1220 cm-1, 

which have been interpreted as being due to surface sulfites and hydrogen sulfites [12,20-23]. It 

is noteworthy that the feature at 980 cm-1 is close to that expected for the symmetric stretch of 

the SO2 anion, 990 cm-1 [23]. A very small feature at 1345 cm-1 is likely due to the formation of 

small amounts of sulfate. For exposure at 473 K, the main feature is at 1370 cm-1 and this has 

been interpreted as being due a surface sulfate [20-22]. Finally, exposure at 673 K results in a 

broad band centered at 1160 cm-1, which is reported to be due to sulfates in the bulk [20]. While 

we regard the FTIR assignments as somewhat ambiguous (For example, molecular sulfates, both 
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bridging and chelating, are reported to exhibit maximum frequencies in the range from 1200 to 

1240 cm-1 [24].), these assignments are in essential agreement with previous TPD results from 

our laboratory [11]. In our earlier study, the desorption curves were consistent with the presence 

of molecular SO2 on the sample when ceria was exposed to SO2 below 473 K. For exposures 

above 473 K, the TPD results clearly indicated decomposition of a cerium sulfate, with only the 

amounts of sulfate increasing with increasing temperature for fixed exposure times. At 673 K, 

prolonged exposures were sufficient to form bulk Ce(SO4)2.

The data for Pd/ZrO2 are similar at the lower temperatures, but differences are evident 

following exposures above 473 K. At 298 K, molecularly adsorbed SO2 is again the primary 

product, as indicated by the peaks at 980 and 1240 cm-1. The IR spectra taken at 373 and 473 K 

change slightly in that some surface sulfate appears to have formed, as indicated by the peak at 

1350 cm-1. However, unlike with Pd/CeO2, the feature at 980 cm-1 due to molecular SO2 remains 

on Pd/ZrO2 after heating to 473 K, implying that higher temperatures are required to form the 

sulfate on Pd/ZrO2. At 673 K, the surface-sulfate band at 1370 cm-1 is much more intense and 

this remains the main feature in the spectrum at 723 K, with only a relatively small peaks 

forming near 1160 cm-1, the region of the spectrum that has been associated with bulk sulfates.

TPD and Pulse Experiment Results

Fig. 3 shows TPD curves performed using pure He as the carrier for 1 wt% Pd on CeO2, 

Ce0.5Zr0.5O2, Ce0.25Zr0.75O2, and ZrO2, after exposure to 1% SO2 in 50% O2 at 673 K for 30 min, 

monitoring the SO2 (m/e = 64) and the O2 (m/e = 32) signals. Results for the CexZr(1-x)O2(N) and 

CexZr(1-x)O2(C) were essentially indistinguishable. As in previous work on Pd/ceria [11], O2

desorbed simultaneously with the SO2 in a ratio of 1:2 in a narrow feature between 900 and 1050 

K, showing that SO2 formation is associated with sulfate decomposition. In Fig. 3a), the amount 

of SO2 removed from Pd/CeO2 after the fixed exposure of this study was approximately 1,600 

µmol/g, a substantial fraction of the amount of SO2 that could be formed by decomposition of 

bulk Ce(SO4)2, 6,000 µmol/g. The large amount of sulfate present on the Pd-CeO2 sample after 

exposure to SO2 at 673 K also agrees with the IR results that suggest formation of the bulk 

sulfates.   

By comparison, the results for Pd/ZrO2, Fig. 3d), show negligible amounts of SO2

desorbing from the sample below 1100 K. As discussed in the Experimental section, gravimetric 
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measurements on a sample exposed to SO2 in exactly the same manner indicated a surface 

coverage of 160 µmol/g, a value that is 10% of that formed on CeO2 but one that should be easily 

detected in our experiments if sulfate decomposition occurred at the same temperature on the two 

oxides. While temperature limitations for the reactor and desorption from the walls of the reactor 

made quantification of SO2 desorption difficult above 1100 K, there appears to be increased 

desorption of SO2 at these temperatures on the zirconia-containing materials compared to what is 

observed with pure CeO2, suggesting that the zirconia sulfate decomposes at a higher 

temperature. The effect of conjugate oxide on sulfate decomposition has been observed 

previously in that sulfates formed on ceria under reducing conditions, and likely associated with 

Ce+3, decomposed between 1050 and 1200 K, a temperature approximately 100 K higher than on 

CeO2 [11]. 

The TPD curves in Fig. 3b) and 3c) were obtained on the Pd/Ce0.5Zr0.5O2(N) and 

Pd/Ce0.25Zr0.75O2(N) samples. The main feature in both curves is the evolution of SO2 between 

900 and 1050 K that we observed on CeO2, although there is again increased desorption above 

1100 K as well. Indeed, the TPD curves on the mixed-oxide samples have the appearance one 

would expect for a physical mixture of the Pd/CeO2 and Pd/ZrO2 samples. The feature between 

900 and 1050 K has an identical appearance to that observed in pure CeO2, suggesting that 

similar cerium sulfates are formed on the mixed oxides as on pure CeO2. The amounts of SO2

formed in TPD between 900 and 1050 K on the mixed-oxide supports were 870 µmol/g on 

Pd/Ce0.5Zr0.5O2(N) and 310 µmol/g on Pd/Ce0.25Zr0.75O2(N). Notice that the sulfate coverage 

determined from TPD on the Pd/Ce0.5Zr0.5O2(N) sample is in good agreement with the value 

obtained from the gravimetric analysis, 950 µmol/g. The coverage determined from gravimetric 

analysis includes sulfates formed on the zirconia and should be somewhat larger.

In Fig. 4, we have plotted the amount of SO2 removed in TPD between 900 and 1050 K 

from each sample. For the mixed oxides, we include data for the samples prepared by simple 

decomposition of the nitrate salts and for the samples prepared using citric acid. Assuming that 

SO2 desorbing in this temperature interval is associated with ceria, the result indicates an almost 

linear relationship between the amount of Ce(SO4)2 that forms in each sample and the Ce content 

of the sample. Because the exposure used in the measurements in Fig. 4 was insufficient to 

completely sulfate pure CeO2, the linearity of Fig. 4 implies that the reaction probability for 

forming cerium sulfates is independent of the ZrO2 content. Together with the constant 



8

decomposition temperature of the sulfate, it appears that propensity of ceria to form sulfates is 

essentially unaffected by the presence of zirconia in the mixed oxides that were studied here. 

We also examined the decomposition of the sulfates under reducing conditions. The TPD 

curves in Fig. 5 were obtained on the Pd/CeO2, Pd/Ce0.5Zr0.5O2(N), and Pd/ZrO2 samples using a 

He carrier with 7% H2. The samples were again exposed to 1% SO2 in 50% O2 at 673 K for 30 

min. The results for Pd/CeO2 and Pd/Ce0.5Zr0.5O2(N), Figs. 5a) and b), are similar to what we 

had reported previously for Pd/CeO2 [11], although there may be a slight upward shift in the 

peak temperature on the mixed oxide. However, on both samples, we observe the formation of 

H2S (m/e = 34) between 700 and 800 K, a much lower temperature than that at which ceria 

sulfate decomposes. As reported previously, only fraction of the sulfur in the Pd/CeO2 sample 

left as H2S, with the rest remaining in the sample as Ce2O2S. This was also true of 

Pd/Ce0.5Zr0.5O2(N). In contrast, the results for Pd/ZrO2, shown in Fig. 5c), demonstrate that H2S 

is formed over a wide range of temperatures, also generally at a much higher temperatures, 

between 800 and 1200 K. Because it was difficult to accurately quantify the amount of H2S that 

formed on Pd/ZrO2, we are uncertain whether some of the sulfur remained in the sample as 

ZrOS.

Fig. 6 shows the analogous TPD results for Pd/CeO2, Pd/Ce0.5Zr0.5O2(N), and Pd/ZrO2

using 5% CO in He as the reductant. Again, each of the samples was exposed to 1% SO2 in 50% 

O2 for 30 min at 673 K. The only product observed in more than trace amounts on each of the 

samples was CO2 (m/e = 44); but this time the oxidation product, CO2, formed at approximately 

the same temperature, 750 K, on all three samples. The amounts of CO2 that formed on Pd/CeO2, 

Pd/Ce0.5Zr0.5O2(N), and Pd/ZrO2 were approximately 4,200, 2,800, and 800 µmol/g, respectively. 

Since a maximum of 100 µmol/g could be formed by reduction of PdO on each catalyst, the 

majority of the CO2 must be formed by reduction of the supports. For Pd/CeO2, previous work 

showed that most of the oxygen comes from reduction of the sulfate to form Ce2O2S [11]. We 

suggest that a similar reduction of the sulfate must be occurring with Pd/ZrO2 and this reduction 

must occur at approximately the same temperature.

To confirm that the reduction observed in Fig. 6c) is associated with sulfates and that the 

reduction of the sulfate is reversible, we performed the CO-O2 pulse measurements on the 

Pd/ZrO2, before and after exposure to SO2, with the results at 873 K shown in Fig. 7. A 

temperature of 873 K was chosen here because it is above the reduction peak in Fig. 6. In 



9

performing the pulse experiments, the initially oxidized samples were first exposed to two CO 

(m/e = 28) pulses at approximately 500 and 1100 s. Sample reduction was characterized by the 

amount of CO2 (m/e = 44) that formed in the first pulse, while the second CO pulse 

demonstrated the samples had been completely reduced. The reduced samples were then re-

oxidized by two O2 (m/e = 32) pulses at ~1900 and 2500 s, after which they were again reduced 

by a CO pulse at ~3200 s.

For unpoisoned Pd/ZrO2, the amount of CO2 that formed during the CO pulses at 500 and 

3200 s was approximately 160 to 200 µmol/g. Reduction of PdO would provide less than 100 

µmol/g for a 1-wt% catalyst, and the Bouduard reaction can be ruled out as a source of CO2 since 

no CO2 is formed during the O2 pulses. Therefore, the data imply that some zirconia has been 

reversibly reduced by the CO pulses, in agreement with a previous report from the literature [10]. 

The results for SO2-poisoned Pd/ZrO2 are qualitatively similar; but much more oxygen is 

removed from the sample, ~710 µmol/g, a value close to the amount of CO2 formed in the TPD 

experiment in Fig. 6c). The reduction of the poisoned sample was reversible, as demonstrated by 

the fact that the amount of CO2 formed in the last CO pulse was the same as the amount formed 

in the first CO pulse. Finally, it is noteworthy that reduction of 160 µmol/g of SO4
2- to S2- would 

provide 640 µmol/g of oxygen.

The effect of oxidation and reduction on Pd/ZrO2 that had been exposed to 1% SO2 in 

excess O2 for at 673 K for 10 min was also examined by FTIR, with the results shown in Fig. 8. 

The spectrum in Fig. 8a) was obtained after reducing the poisoned sample in 40 Torr CO for 10

min at temperatures approaching 873 K. (Because it was difficult to heat the sample to such high 

temperatures in the IR cell, the actual reduction temperature was likely somewhat lower.) Two 

bands are observed in the region expected for υ(S=O) stretches at 1370 and 1250 cm-1, and we 

interpret these as being due to unreduced sulfate on the zirconia surface. After oxidation in O2

for 10 min near 873 K, the spectrum of the sample changes to that shown in Fig. 8b), which is 

essentially identical to the spectrum at 673 K shown in Fig. 2b). The spectrum of the oxidized 

sample shows an increased intensity for the 1370-cm-1 peak and a decreased intensity for the 

1250-cm-1 peak. After reduction again in CO at 873 K for 10 min, the spectrum, Fig. 8c), reverts 

to its original appearance following the initial reduction. The data in Fig. 8 clearly shows the 

reversibility of the oxidation and reduction of the sulfate. If the assignment for the 1370-cm-1 

peak being due to surface sulfates is correct, the spectra would indicate a decrease in the 
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coverage of these species. The increased intensity for the 1250-cm-1 peak could be due to bulk 

sulfates being easier to observe with the decreased surface-sulfate loading.

Discussion

Clearly, sulfates can be formed on ceria, on zirconia, and on ceria-zirconia mixed oxides. 

Based on the observations of the present study, only surface sulfates are formed on zirconia by 

exposure to SO2 under oxidizing conditions at 673 K, while bulk sulfates form readily on ceria 

and ceria-zirconia mixed oxides. Sulfates on zirconia decomposed at higher temperatures than 

sulfates formed on ceria, but the temperature at which reduction occurs for sulfates on ceria and 

zirconia during exposure to CO is very similar. 

One surprise from the present study is that the mixed oxides showed very similar results 

to what one would expect for a physical mixture of pure ceria and zirconia. The amounts of 

sulfate that formed on the mixed oxides following a fixed exposure to SO2 and O2 varied linearly

with the Ce content; the TPD curves on the mixed oxides showed features that could be 

associated with pure ceria and pure zirconia. These observations suggest that the sulfate ions are 

associated with a single metal cation or very small clusters of adjacent cations. Furthermore, the 

environment surrounding that cation does not appear to affect the chemistry that we observe for 

the sulfate, consistent with our earlier findings with ceria [10,11]. For example, with pure ceria, 

both surface and bulk sulfates decomposed to SO2 and O2 in the same narrow temperature range. 

Also, when sulfates were formed under somewhat reducing conditions on ceria, we observed two 

well-defined decomposition features which were interpreted as being due to Ce+4 and Ce+3. If the 

sulfate decomposition were associated with an average, bulk oxidation state, the decomposition 

temperature would likely have varied between the two extremes, rather than decomposing in two 

separate features.

We suggest that there are several ways to reconcile our results with those of Liu, et al, 

who reported an increased stability of sulfate groups on ceria upon formation of solid solutions 

with zirconia [15]. First, the low desorption temperatures observed in that study, which cannot be 

explained by the fact that they performed their desorption measurements at lower pressures [26], 

might indicate that the species formed on the single crystals were not true sulfates. 

Decomposition of a sulfate should give rise to desorption of SO2 and O2 in a 2:1 ratio, which was 

not established. Alternatively, there is precedence for the chemistry of the single crystals being 

much different from that of low-temperature powders [2,28].
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Sulfates on both ceria and zirconia are reduced in a similar temperature range when 

exposed to CO, approximately 800 K. This relatively low reduction temperature helps to explain 

some of the chemistry associated with sulfated zirconias used as acid catalysts. In that case, too, 

reduction of the sulfate has been reported. For example, a TPD study of benzene on sulfated 

zirconia showed the formation of CO2 at a similar temperature to that observed here [25]. It has 

been shown that reduction of Ce(SO4)2 results in the formation of Ce2O2S [26]. By analogy, 

reduction of ZrO(SO4) must result in ZrOS [27].

Judging by the temperature at which H2S is formed, reduction of the sulfates in H2 seems 

to occur at the same temperatures at which reduction occurs with CO. (While it should be 

possible to monitor this reduction by H2O formation, this was not possible in our system.) On the 

ceria-containing materials, rapid H2S formation at 750 K must be caused by reaction of H2 with 

excess sulfur on the surface. The high sulfate coverages on ceria, along with the change in the 

stoichiometric Ce:S ratio going from Ce(SO4)2 to Ce2O2S, will result in significant amounts of 

free sulfur available for reaction with H2. In the case of zirconia, the sulfate coverages were 

much lower, even though the sulfates appear to remain at the surface. The formation of H2S may 

occur over a wider temperature range if it involves reaction with ZrOS. 

As discussed in an earlier study, the oxidation and reduction of sulfate species on ceria 

and ceria-zirconia mixed oxides leads to an increase in the apparent "oxygen storage capacity" of 

sulfur- poisoned samples when this property is measured using CO-O2 pulse data [9]. Since it is 

well known that sulfur poisoning decreases the true OSC of operating catalysts [10,11], the 

values determined from pulse studies and from temperature-programmed reduction 

measurements are likely not very meaningful for understanding OSC. Obviously, developing 

simple methods for measuring OSC remains an interesting and important challenge.

Conclusion

Exposure of supported Pd catalysts prepared from ceria, zirconia, and ceria-zirconia 

mixed oxides to SO2 under oxidizing conditions at above 473 K results in the formation of 

sulfates. Sulfates on zirconia are distinguishable from those on ceria in that only surface sulfates 

are formed on zirconia The decomposition temperature for sulfate occurs at a higher temperature 

than that for cerium sulfate, but both sulfates are reduced by CO above 750 K. Most 

significantly, the ceria-zirconia mixed oxides exhibit SO2 adsorption properties similar to what 
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would be expected for a physical mixture of ceria and zirconia, implying that the sulfates are 

likely associated with a single metal cation. Both sulfates can also be reversibly oxidized and 

reduced using CO and O2 pulses, with oxysulfides being the likely product following reduction.
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Captions:

Fig.1 X-ray diffraction patterns for a) CeO2, b) ZrO2, c) a physical mixture of CeO2 and ZrO2 , 
d)Ce0.5Zr0.5O2(N), and e) Ce0.5Zr0.5O2(C). All samples were calcined in air at 873 K.

Fig.2 DRIFTS spectra obtained for the following conditions:
i) a) A Pd/CeO2 catalyst calcined at 773 K. The remaining spectra were obtained after 
exposure to 1% SO2 and 50% O2 for 20 min at b) 373 K, c) 473 K, and d) 673 K.
ii) a) A Pd/ZrO2 catalyst calcined at 773 K. The remaining spectra were obtained after 
exposure to 1% SO2 and 50% O2 for 20 min at b) 298 K, c) 373 K, d) 473 K, e) 673 K, 
and f) 723 K.

Fig.3 TPD results using pure He as carrier gas for a series of SO2 poisoned catalysts: a) 
Pd/CeO2; b) Pd/Ce0.5Zr0.5O2(N), c) Pd/Ce0.25Zr0.75O2(N), and d) Pd/ZrO2. All catalysts 
were poisoned by 1% SO2 in 50% O2 at 673 K for 30 min.

Fig.4 A plot of the amount of SO2 formed in TPD between 900K and 1050 K as a function of 
Ce content of the sample. Hollow diamonds show data from CexZr(1-x)O2(C); solid 
diamond are data from CexZr(1-x)O2(N).

Fig.5 TPD results obtained using a 7% H2 in He for SO2-poisoned catalysts: a) Pd/CeO2, b) 
Pd/Ce0.5Zr0.5O2(N), and c) Pd/ZrO2.

Fig.6 TPD results using a 5% CO in He SO2-poisoned catalysts: a) Pd/CeO2, b) 
Pd/Ce0.5Zr0.5O2(N), and c) Pd/ZrO2. The amounts of CO2 in these experiments were: a) 
4200 µmol/g, b) 2800 µmol/g, and c) 800 µmol/g respectively.

Fig.7 CO-O2 pulse experiments for Pd/ZrO2 operated at 873 K, before and after poisoning in 
1% SO2 and 50% O2 at 673 K for 30 min. The amounts of CO2 formed during the CO 
pulses are approximately 160 µmol/g for fresh catalyst and 710 µmol/g for poisoned 
catalyst.

Fig.8  FTIR spectra of the Pd/ZrO2 sample poisoned in 1% SO2 and 50% O2 at 673 K for 10 
min, obtained after the following pretreatments:
a) heated to 873 K in 40 torr CO for 10 min;
b) heated in O2 at 873 K for 10 min;
c)   heated to 873 K in 40 torr CO for 10 min.
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